1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 15 #include "internal.h" 16 #include <asm/dma.h> 17 #include <asm/pgalloc.h> 18 #include <asm/pgtable.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 else 71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 72 nid); 73 74 return section; 75 } 76 77 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 78 { 79 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 80 struct mem_section *section; 81 82 if (mem_section[root]) 83 return -EEXIST; 84 85 section = sparse_index_alloc(nid); 86 if (!section) 87 return -ENOMEM; 88 89 mem_section[root] = section; 90 91 return 0; 92 } 93 #else /* !SPARSEMEM_EXTREME */ 94 static inline int sparse_index_init(unsigned long section_nr, int nid) 95 { 96 return 0; 97 } 98 #endif 99 100 #ifdef CONFIG_SPARSEMEM_EXTREME 101 int __section_nr(struct mem_section* ms) 102 { 103 unsigned long root_nr; 104 struct mem_section *root = NULL; 105 106 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 107 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 108 if (!root) 109 continue; 110 111 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 112 break; 113 } 114 115 VM_BUG_ON(!root); 116 117 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 118 } 119 #else 120 int __section_nr(struct mem_section* ms) 121 { 122 return (int)(ms - mem_section[0]); 123 } 124 #endif 125 126 /* 127 * During early boot, before section_mem_map is used for an actual 128 * mem_map, we use section_mem_map to store the section's NUMA 129 * node. This keeps us from having to use another data structure. The 130 * node information is cleared just before we store the real mem_map. 131 */ 132 static inline unsigned long sparse_encode_early_nid(int nid) 133 { 134 return (nid << SECTION_NID_SHIFT); 135 } 136 137 static inline int sparse_early_nid(struct mem_section *section) 138 { 139 return (section->section_mem_map >> SECTION_NID_SHIFT); 140 } 141 142 /* Validate the physical addressing limitations of the model */ 143 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 144 unsigned long *end_pfn) 145 { 146 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 147 148 /* 149 * Sanity checks - do not allow an architecture to pass 150 * in larger pfns than the maximum scope of sparsemem: 151 */ 152 if (*start_pfn > max_sparsemem_pfn) { 153 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 154 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 155 *start_pfn, *end_pfn, max_sparsemem_pfn); 156 WARN_ON_ONCE(1); 157 *start_pfn = max_sparsemem_pfn; 158 *end_pfn = max_sparsemem_pfn; 159 } else if (*end_pfn > max_sparsemem_pfn) { 160 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 161 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 162 *start_pfn, *end_pfn, max_sparsemem_pfn); 163 WARN_ON_ONCE(1); 164 *end_pfn = max_sparsemem_pfn; 165 } 166 } 167 168 /* 169 * There are a number of times that we loop over NR_MEM_SECTIONS, 170 * looking for section_present() on each. But, when we have very 171 * large physical address spaces, NR_MEM_SECTIONS can also be 172 * very large which makes the loops quite long. 173 * 174 * Keeping track of this gives us an easy way to break out of 175 * those loops early. 176 */ 177 int __highest_present_section_nr; 178 static void section_mark_present(struct mem_section *ms) 179 { 180 int section_nr = __section_nr(ms); 181 182 if (section_nr > __highest_present_section_nr) 183 __highest_present_section_nr = section_nr; 184 185 ms->section_mem_map |= SECTION_MARKED_PRESENT; 186 } 187 188 static inline int next_present_section_nr(int section_nr) 189 { 190 do { 191 section_nr++; 192 if (present_section_nr(section_nr)) 193 return section_nr; 194 } while ((section_nr <= __highest_present_section_nr)); 195 196 return -1; 197 } 198 #define for_each_present_section_nr(start, section_nr) \ 199 for (section_nr = next_present_section_nr(start-1); \ 200 ((section_nr >= 0) && \ 201 (section_nr <= __highest_present_section_nr)); \ 202 section_nr = next_present_section_nr(section_nr)) 203 204 static inline unsigned long first_present_section_nr(void) 205 { 206 return next_present_section_nr(-1); 207 } 208 209 /* Record a memory area against a node. */ 210 void __init memory_present(int nid, unsigned long start, unsigned long end) 211 { 212 unsigned long pfn; 213 214 #ifdef CONFIG_SPARSEMEM_EXTREME 215 if (unlikely(!mem_section)) { 216 unsigned long size, align; 217 218 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 219 align = 1 << (INTERNODE_CACHE_SHIFT); 220 mem_section = memblock_alloc(size, align); 221 } 222 #endif 223 224 start &= PAGE_SECTION_MASK; 225 mminit_validate_memmodel_limits(&start, &end); 226 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 227 unsigned long section = pfn_to_section_nr(pfn); 228 struct mem_section *ms; 229 230 sparse_index_init(section, nid); 231 set_section_nid(section, nid); 232 233 ms = __nr_to_section(section); 234 if (!ms->section_mem_map) { 235 ms->section_mem_map = sparse_encode_early_nid(nid) | 236 SECTION_IS_ONLINE; 237 section_mark_present(ms); 238 } 239 } 240 } 241 242 /* 243 * Mark all memblocks as present using memory_present(). This is a 244 * convienence function that is useful for a number of arches 245 * to mark all of the systems memory as present during initialization. 246 */ 247 void __init memblocks_present(void) 248 { 249 struct memblock_region *reg; 250 251 for_each_memblock(memory, reg) { 252 memory_present(memblock_get_region_node(reg), 253 memblock_region_memory_base_pfn(reg), 254 memblock_region_memory_end_pfn(reg)); 255 } 256 } 257 258 /* 259 * Subtle, we encode the real pfn into the mem_map such that 260 * the identity pfn - section_mem_map will return the actual 261 * physical page frame number. 262 */ 263 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 264 { 265 unsigned long coded_mem_map = 266 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 267 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 268 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 269 return coded_mem_map; 270 } 271 272 /* 273 * Decode mem_map from the coded memmap 274 */ 275 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 276 { 277 /* mask off the extra low bits of information */ 278 coded_mem_map &= SECTION_MAP_MASK; 279 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 280 } 281 282 static void __meminit sparse_init_one_section(struct mem_section *ms, 283 unsigned long pnum, struct page *mem_map, 284 unsigned long *pageblock_bitmap) 285 { 286 ms->section_mem_map &= ~SECTION_MAP_MASK; 287 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 288 SECTION_HAS_MEM_MAP; 289 ms->pageblock_flags = pageblock_bitmap; 290 } 291 292 unsigned long usemap_size(void) 293 { 294 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 295 } 296 297 #ifdef CONFIG_MEMORY_HOTPLUG 298 static unsigned long *__kmalloc_section_usemap(void) 299 { 300 return kmalloc(usemap_size(), GFP_KERNEL); 301 } 302 #endif /* CONFIG_MEMORY_HOTPLUG */ 303 304 #ifdef CONFIG_MEMORY_HOTREMOVE 305 static unsigned long * __init 306 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 307 unsigned long size) 308 { 309 unsigned long goal, limit; 310 unsigned long *p; 311 int nid; 312 /* 313 * A page may contain usemaps for other sections preventing the 314 * page being freed and making a section unremovable while 315 * other sections referencing the usemap remain active. Similarly, 316 * a pgdat can prevent a section being removed. If section A 317 * contains a pgdat and section B contains the usemap, both 318 * sections become inter-dependent. This allocates usemaps 319 * from the same section as the pgdat where possible to avoid 320 * this problem. 321 */ 322 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 323 limit = goal + (1UL << PA_SECTION_SHIFT); 324 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 325 again: 326 p = memblock_alloc_try_nid_nopanic(size, 327 SMP_CACHE_BYTES, goal, limit, 328 nid); 329 if (!p && limit) { 330 limit = 0; 331 goto again; 332 } 333 return p; 334 } 335 336 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 337 { 338 unsigned long usemap_snr, pgdat_snr; 339 static unsigned long old_usemap_snr; 340 static unsigned long old_pgdat_snr; 341 struct pglist_data *pgdat = NODE_DATA(nid); 342 int usemap_nid; 343 344 /* First call */ 345 if (!old_usemap_snr) { 346 old_usemap_snr = NR_MEM_SECTIONS; 347 old_pgdat_snr = NR_MEM_SECTIONS; 348 } 349 350 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 351 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 352 if (usemap_snr == pgdat_snr) 353 return; 354 355 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 356 /* skip redundant message */ 357 return; 358 359 old_usemap_snr = usemap_snr; 360 old_pgdat_snr = pgdat_snr; 361 362 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 363 if (usemap_nid != nid) { 364 pr_info("node %d must be removed before remove section %ld\n", 365 nid, usemap_snr); 366 return; 367 } 368 /* 369 * There is a circular dependency. 370 * Some platforms allow un-removable section because they will just 371 * gather other removable sections for dynamic partitioning. 372 * Just notify un-removable section's number here. 373 */ 374 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 375 usemap_snr, pgdat_snr, nid); 376 } 377 #else 378 static unsigned long * __init 379 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 380 unsigned long size) 381 { 382 return memblock_alloc_node_nopanic(size, pgdat->node_id); 383 } 384 385 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 386 { 387 } 388 #endif /* CONFIG_MEMORY_HOTREMOVE */ 389 390 #ifdef CONFIG_SPARSEMEM_VMEMMAP 391 static unsigned long __init section_map_size(void) 392 { 393 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 394 } 395 396 #else 397 static unsigned long __init section_map_size(void) 398 { 399 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 400 } 401 402 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid, 403 struct vmem_altmap *altmap) 404 { 405 unsigned long size = section_map_size(); 406 struct page *map = sparse_buffer_alloc(size); 407 408 if (map) 409 return map; 410 411 map = memblock_alloc_try_nid(size, 412 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 413 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 414 return map; 415 } 416 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 417 418 static void *sparsemap_buf __meminitdata; 419 static void *sparsemap_buf_end __meminitdata; 420 421 static void __init sparse_buffer_init(unsigned long size, int nid) 422 { 423 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 424 sparsemap_buf = 425 memblock_alloc_try_nid_raw(size, PAGE_SIZE, 426 __pa(MAX_DMA_ADDRESS), 427 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 428 sparsemap_buf_end = sparsemap_buf + size; 429 } 430 431 static void __init sparse_buffer_fini(void) 432 { 433 unsigned long size = sparsemap_buf_end - sparsemap_buf; 434 435 if (sparsemap_buf && size > 0) 436 memblock_free_early(__pa(sparsemap_buf), size); 437 sparsemap_buf = NULL; 438 } 439 440 void * __meminit sparse_buffer_alloc(unsigned long size) 441 { 442 void *ptr = NULL; 443 444 if (sparsemap_buf) { 445 ptr = PTR_ALIGN(sparsemap_buf, size); 446 if (ptr + size > sparsemap_buf_end) 447 ptr = NULL; 448 else 449 sparsemap_buf = ptr + size; 450 } 451 return ptr; 452 } 453 454 void __weak __meminit vmemmap_populate_print_last(void) 455 { 456 } 457 458 /* 459 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 460 * And number of present sections in this node is map_count. 461 */ 462 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 463 unsigned long pnum_end, 464 unsigned long map_count) 465 { 466 unsigned long pnum, usemap_longs, *usemap; 467 struct page *map; 468 469 usemap_longs = BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS); 470 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 471 usemap_size() * 472 map_count); 473 if (!usemap) { 474 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 475 goto failed; 476 } 477 sparse_buffer_init(map_count * section_map_size(), nid); 478 for_each_present_section_nr(pnum_begin, pnum) { 479 if (pnum >= pnum_end) 480 break; 481 482 map = sparse_mem_map_populate(pnum, nid, NULL); 483 if (!map) { 484 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 485 __func__, nid); 486 pnum_begin = pnum; 487 goto failed; 488 } 489 check_usemap_section_nr(nid, usemap); 490 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap); 491 usemap += usemap_longs; 492 } 493 sparse_buffer_fini(); 494 return; 495 failed: 496 /* We failed to allocate, mark all the following pnums as not present */ 497 for_each_present_section_nr(pnum_begin, pnum) { 498 struct mem_section *ms; 499 500 if (pnum >= pnum_end) 501 break; 502 ms = __nr_to_section(pnum); 503 ms->section_mem_map = 0; 504 } 505 } 506 507 /* 508 * Allocate the accumulated non-linear sections, allocate a mem_map 509 * for each and record the physical to section mapping. 510 */ 511 void __init sparse_init(void) 512 { 513 unsigned long pnum_begin = first_present_section_nr(); 514 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 515 unsigned long pnum_end, map_count = 1; 516 517 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 518 set_pageblock_order(); 519 520 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 521 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 522 523 if (nid == nid_begin) { 524 map_count++; 525 continue; 526 } 527 /* Init node with sections in range [pnum_begin, pnum_end) */ 528 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 529 nid_begin = nid; 530 pnum_begin = pnum_end; 531 map_count = 1; 532 } 533 /* cover the last node */ 534 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 535 vmemmap_populate_print_last(); 536 } 537 538 #ifdef CONFIG_MEMORY_HOTPLUG 539 540 /* Mark all memory sections within the pfn range as online */ 541 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 542 { 543 unsigned long pfn; 544 545 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 546 unsigned long section_nr = pfn_to_section_nr(pfn); 547 struct mem_section *ms; 548 549 /* onlining code should never touch invalid ranges */ 550 if (WARN_ON(!valid_section_nr(section_nr))) 551 continue; 552 553 ms = __nr_to_section(section_nr); 554 ms->section_mem_map |= SECTION_IS_ONLINE; 555 } 556 } 557 558 #ifdef CONFIG_MEMORY_HOTREMOVE 559 /* Mark all memory sections within the pfn range as online */ 560 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 561 { 562 unsigned long pfn; 563 564 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 565 unsigned long section_nr = pfn_to_section_nr(pfn); 566 struct mem_section *ms; 567 568 /* 569 * TODO this needs some double checking. Offlining code makes 570 * sure to check pfn_valid but those checks might be just bogus 571 */ 572 if (WARN_ON(!valid_section_nr(section_nr))) 573 continue; 574 575 ms = __nr_to_section(section_nr); 576 ms->section_mem_map &= ~SECTION_IS_ONLINE; 577 } 578 } 579 #endif 580 581 #ifdef CONFIG_SPARSEMEM_VMEMMAP 582 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 583 struct vmem_altmap *altmap) 584 { 585 /* This will make the necessary allocations eventually. */ 586 return sparse_mem_map_populate(pnum, nid, altmap); 587 } 588 static void __kfree_section_memmap(struct page *memmap, 589 struct vmem_altmap *altmap) 590 { 591 unsigned long start = (unsigned long)memmap; 592 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 593 594 vmemmap_free(start, end, altmap); 595 } 596 #ifdef CONFIG_MEMORY_HOTREMOVE 597 static void free_map_bootmem(struct page *memmap) 598 { 599 unsigned long start = (unsigned long)memmap; 600 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 601 602 vmemmap_free(start, end, NULL); 603 } 604 #endif /* CONFIG_MEMORY_HOTREMOVE */ 605 #else 606 static struct page *__kmalloc_section_memmap(void) 607 { 608 struct page *page, *ret; 609 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 610 611 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 612 if (page) 613 goto got_map_page; 614 615 ret = vmalloc(memmap_size); 616 if (ret) 617 goto got_map_ptr; 618 619 return NULL; 620 got_map_page: 621 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 622 got_map_ptr: 623 624 return ret; 625 } 626 627 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 628 struct vmem_altmap *altmap) 629 { 630 return __kmalloc_section_memmap(); 631 } 632 633 static void __kfree_section_memmap(struct page *memmap, 634 struct vmem_altmap *altmap) 635 { 636 if (is_vmalloc_addr(memmap)) 637 vfree(memmap); 638 else 639 free_pages((unsigned long)memmap, 640 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 641 } 642 643 #ifdef CONFIG_MEMORY_HOTREMOVE 644 static void free_map_bootmem(struct page *memmap) 645 { 646 unsigned long maps_section_nr, removing_section_nr, i; 647 unsigned long magic, nr_pages; 648 struct page *page = virt_to_page(memmap); 649 650 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 651 >> PAGE_SHIFT; 652 653 for (i = 0; i < nr_pages; i++, page++) { 654 magic = (unsigned long) page->freelist; 655 656 BUG_ON(magic == NODE_INFO); 657 658 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 659 removing_section_nr = page_private(page); 660 661 /* 662 * When this function is called, the removing section is 663 * logical offlined state. This means all pages are isolated 664 * from page allocator. If removing section's memmap is placed 665 * on the same section, it must not be freed. 666 * If it is freed, page allocator may allocate it which will 667 * be removed physically soon. 668 */ 669 if (maps_section_nr != removing_section_nr) 670 put_page_bootmem(page); 671 } 672 } 673 #endif /* CONFIG_MEMORY_HOTREMOVE */ 674 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 675 676 /* 677 * returns the number of sections whose mem_maps were properly 678 * set. If this is <=0, then that means that the passed-in 679 * map was not consumed and must be freed. 680 */ 681 int __meminit sparse_add_one_section(int nid, unsigned long start_pfn, 682 struct vmem_altmap *altmap) 683 { 684 unsigned long section_nr = pfn_to_section_nr(start_pfn); 685 struct mem_section *ms; 686 struct page *memmap; 687 unsigned long *usemap; 688 int ret; 689 690 /* 691 * no locking for this, because it does its own 692 * plus, it does a kmalloc 693 */ 694 ret = sparse_index_init(section_nr, nid); 695 if (ret < 0 && ret != -EEXIST) 696 return ret; 697 ret = 0; 698 memmap = kmalloc_section_memmap(section_nr, nid, altmap); 699 if (!memmap) 700 return -ENOMEM; 701 usemap = __kmalloc_section_usemap(); 702 if (!usemap) { 703 __kfree_section_memmap(memmap, altmap); 704 return -ENOMEM; 705 } 706 707 ms = __pfn_to_section(start_pfn); 708 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 709 ret = -EEXIST; 710 goto out; 711 } 712 713 /* 714 * Poison uninitialized struct pages in order to catch invalid flags 715 * combinations. 716 */ 717 page_init_poison(memmap, sizeof(struct page) * PAGES_PER_SECTION); 718 719 section_mark_present(ms); 720 sparse_init_one_section(ms, section_nr, memmap, usemap); 721 722 out: 723 if (ret < 0) { 724 kfree(usemap); 725 __kfree_section_memmap(memmap, altmap); 726 } 727 return ret; 728 } 729 730 #ifdef CONFIG_MEMORY_HOTREMOVE 731 #ifdef CONFIG_MEMORY_FAILURE 732 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 733 { 734 int i; 735 736 if (!memmap) 737 return; 738 739 /* 740 * A further optimization is to have per section refcounted 741 * num_poisoned_pages. But that would need more space per memmap, so 742 * for now just do a quick global check to speed up this routine in the 743 * absence of bad pages. 744 */ 745 if (atomic_long_read(&num_poisoned_pages) == 0) 746 return; 747 748 for (i = 0; i < nr_pages; i++) { 749 if (PageHWPoison(&memmap[i])) { 750 atomic_long_sub(1, &num_poisoned_pages); 751 ClearPageHWPoison(&memmap[i]); 752 } 753 } 754 } 755 #else 756 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 757 { 758 } 759 #endif 760 761 static void free_section_usemap(struct page *memmap, unsigned long *usemap, 762 struct vmem_altmap *altmap) 763 { 764 struct page *usemap_page; 765 766 if (!usemap) 767 return; 768 769 usemap_page = virt_to_page(usemap); 770 /* 771 * Check to see if allocation came from hot-plug-add 772 */ 773 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 774 kfree(usemap); 775 if (memmap) 776 __kfree_section_memmap(memmap, altmap); 777 return; 778 } 779 780 /* 781 * The usemap came from bootmem. This is packed with other usemaps 782 * on the section which has pgdat at boot time. Just keep it as is now. 783 */ 784 785 if (memmap) 786 free_map_bootmem(memmap); 787 } 788 789 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 790 unsigned long map_offset, struct vmem_altmap *altmap) 791 { 792 struct page *memmap = NULL; 793 unsigned long *usemap = NULL; 794 795 if (ms->section_mem_map) { 796 usemap = ms->pageblock_flags; 797 memmap = sparse_decode_mem_map(ms->section_mem_map, 798 __section_nr(ms)); 799 ms->section_mem_map = 0; 800 ms->pageblock_flags = NULL; 801 } 802 803 clear_hwpoisoned_pages(memmap + map_offset, 804 PAGES_PER_SECTION - map_offset); 805 free_section_usemap(memmap, usemap, altmap); 806 } 807 #endif /* CONFIG_MEMORY_HOTREMOVE */ 808 #endif /* CONFIG_MEMORY_HOTPLUG */ 809