xref: /openbmc/linux/mm/sparse.c (revision 4f89e4b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19 
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section	- memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available()) {
69 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 	} else {
71 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72 					      nid);
73 		if (!section)
74 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
75 			      __func__, array_size, nid);
76 	}
77 
78 	return section;
79 }
80 
81 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 {
83 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 	struct mem_section *section;
85 
86 	/*
87 	 * An existing section is possible in the sub-section hotplug
88 	 * case. First hot-add instantiates, follow-on hot-add reuses
89 	 * the existing section.
90 	 *
91 	 * The mem_hotplug_lock resolves the apparent race below.
92 	 */
93 	if (mem_section[root])
94 		return 0;
95 
96 	section = sparse_index_alloc(nid);
97 	if (!section)
98 		return -ENOMEM;
99 
100 	mem_section[root] = section;
101 
102 	return 0;
103 }
104 #else /* !SPARSEMEM_EXTREME */
105 static inline int sparse_index_init(unsigned long section_nr, int nid)
106 {
107 	return 0;
108 }
109 #endif
110 
111 #ifdef CONFIG_SPARSEMEM_EXTREME
112 unsigned long __section_nr(struct mem_section *ms)
113 {
114 	unsigned long root_nr;
115 	struct mem_section *root = NULL;
116 
117 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119 		if (!root)
120 			continue;
121 
122 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123 		     break;
124 	}
125 
126 	VM_BUG_ON(!root);
127 
128 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129 }
130 #else
131 unsigned long __section_nr(struct mem_section *ms)
132 {
133 	return (unsigned long)(ms - mem_section[0]);
134 }
135 #endif
136 
137 /*
138  * During early boot, before section_mem_map is used for an actual
139  * mem_map, we use section_mem_map to store the section's NUMA
140  * node.  This keeps us from having to use another data structure.  The
141  * node information is cleared just before we store the real mem_map.
142  */
143 static inline unsigned long sparse_encode_early_nid(int nid)
144 {
145 	return (nid << SECTION_NID_SHIFT);
146 }
147 
148 static inline int sparse_early_nid(struct mem_section *section)
149 {
150 	return (section->section_mem_map >> SECTION_NID_SHIFT);
151 }
152 
153 /* Validate the physical addressing limitations of the model */
154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155 						unsigned long *end_pfn)
156 {
157 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158 
159 	/*
160 	 * Sanity checks - do not allow an architecture to pass
161 	 * in larger pfns than the maximum scope of sparsemem:
162 	 */
163 	if (*start_pfn > max_sparsemem_pfn) {
164 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 			*start_pfn, *end_pfn, max_sparsemem_pfn);
167 		WARN_ON_ONCE(1);
168 		*start_pfn = max_sparsemem_pfn;
169 		*end_pfn = max_sparsemem_pfn;
170 	} else if (*end_pfn > max_sparsemem_pfn) {
171 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 			*start_pfn, *end_pfn, max_sparsemem_pfn);
174 		WARN_ON_ONCE(1);
175 		*end_pfn = max_sparsemem_pfn;
176 	}
177 }
178 
179 /*
180  * There are a number of times that we loop over NR_MEM_SECTIONS,
181  * looking for section_present() on each.  But, when we have very
182  * large physical address spaces, NR_MEM_SECTIONS can also be
183  * very large which makes the loops quite long.
184  *
185  * Keeping track of this gives us an easy way to break out of
186  * those loops early.
187  */
188 unsigned long __highest_present_section_nr;
189 static void section_mark_present(struct mem_section *ms)
190 {
191 	unsigned long section_nr = __section_nr(ms);
192 
193 	if (section_nr > __highest_present_section_nr)
194 		__highest_present_section_nr = section_nr;
195 
196 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
197 }
198 
199 static inline unsigned long next_present_section_nr(unsigned long section_nr)
200 {
201 	do {
202 		section_nr++;
203 		if (present_section_nr(section_nr))
204 			return section_nr;
205 	} while ((section_nr <= __highest_present_section_nr));
206 
207 	return -1;
208 }
209 #define for_each_present_section_nr(start, section_nr)		\
210 	for (section_nr = next_present_section_nr(start-1);	\
211 	     ((section_nr != -1) &&				\
212 	      (section_nr <= __highest_present_section_nr));	\
213 	     section_nr = next_present_section_nr(section_nr))
214 
215 static inline unsigned long first_present_section_nr(void)
216 {
217 	return next_present_section_nr(-1);
218 }
219 
220 void subsection_mask_set(unsigned long *map, unsigned long pfn,
221 		unsigned long nr_pages)
222 {
223 	int idx = subsection_map_index(pfn);
224 	int end = subsection_map_index(pfn + nr_pages - 1);
225 
226 	bitmap_set(map, idx, end - idx + 1);
227 }
228 
229 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
230 {
231 	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
232 	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
233 
234 	if (!nr_pages)
235 		return;
236 
237 	for (nr = start_sec; nr <= end_sec; nr++) {
238 		struct mem_section *ms;
239 		unsigned long pfns;
240 
241 		pfns = min(nr_pages, PAGES_PER_SECTION
242 				- (pfn & ~PAGE_SECTION_MASK));
243 		ms = __nr_to_section(nr);
244 		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
245 
246 		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
247 				pfns, subsection_map_index(pfn),
248 				subsection_map_index(pfn + pfns - 1));
249 
250 		pfn += pfns;
251 		nr_pages -= pfns;
252 	}
253 }
254 
255 /* Record a memory area against a node. */
256 void __init memory_present(int nid, unsigned long start, unsigned long end)
257 {
258 	unsigned long pfn;
259 
260 #ifdef CONFIG_SPARSEMEM_EXTREME
261 	if (unlikely(!mem_section)) {
262 		unsigned long size, align;
263 
264 		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
265 		align = 1 << (INTERNODE_CACHE_SHIFT);
266 		mem_section = memblock_alloc(size, align);
267 		if (!mem_section)
268 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
269 			      __func__, size, align);
270 	}
271 #endif
272 
273 	start &= PAGE_SECTION_MASK;
274 	mminit_validate_memmodel_limits(&start, &end);
275 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
276 		unsigned long section = pfn_to_section_nr(pfn);
277 		struct mem_section *ms;
278 
279 		sparse_index_init(section, nid);
280 		set_section_nid(section, nid);
281 
282 		ms = __nr_to_section(section);
283 		if (!ms->section_mem_map) {
284 			ms->section_mem_map = sparse_encode_early_nid(nid) |
285 							SECTION_IS_ONLINE;
286 			section_mark_present(ms);
287 		}
288 	}
289 }
290 
291 /*
292  * Mark all memblocks as present using memory_present(). This is a
293  * convienence function that is useful for a number of arches
294  * to mark all of the systems memory as present during initialization.
295  */
296 void __init memblocks_present(void)
297 {
298 	struct memblock_region *reg;
299 
300 	for_each_memblock(memory, reg) {
301 		memory_present(memblock_get_region_node(reg),
302 			       memblock_region_memory_base_pfn(reg),
303 			       memblock_region_memory_end_pfn(reg));
304 	}
305 }
306 
307 /*
308  * Subtle, we encode the real pfn into the mem_map such that
309  * the identity pfn - section_mem_map will return the actual
310  * physical page frame number.
311  */
312 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
313 {
314 	unsigned long coded_mem_map =
315 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
316 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
317 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
318 	return coded_mem_map;
319 }
320 
321 /*
322  * Decode mem_map from the coded memmap
323  */
324 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
325 {
326 	/* mask off the extra low bits of information */
327 	coded_mem_map &= SECTION_MAP_MASK;
328 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
329 }
330 
331 static void __meminit sparse_init_one_section(struct mem_section *ms,
332 		unsigned long pnum, struct page *mem_map,
333 		struct mem_section_usage *usage, unsigned long flags)
334 {
335 	ms->section_mem_map &= ~SECTION_MAP_MASK;
336 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
337 		| SECTION_HAS_MEM_MAP | flags;
338 	ms->usage = usage;
339 }
340 
341 static unsigned long usemap_size(void)
342 {
343 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
344 }
345 
346 size_t mem_section_usage_size(void)
347 {
348 	return sizeof(struct mem_section_usage) + usemap_size();
349 }
350 
351 #ifdef CONFIG_MEMORY_HOTREMOVE
352 static struct mem_section_usage * __init
353 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
354 					 unsigned long size)
355 {
356 	struct mem_section_usage *usage;
357 	unsigned long goal, limit;
358 	int nid;
359 	/*
360 	 * A page may contain usemaps for other sections preventing the
361 	 * page being freed and making a section unremovable while
362 	 * other sections referencing the usemap remain active. Similarly,
363 	 * a pgdat can prevent a section being removed. If section A
364 	 * contains a pgdat and section B contains the usemap, both
365 	 * sections become inter-dependent. This allocates usemaps
366 	 * from the same section as the pgdat where possible to avoid
367 	 * this problem.
368 	 */
369 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
370 	limit = goal + (1UL << PA_SECTION_SHIFT);
371 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
372 again:
373 	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
374 	if (!usage && limit) {
375 		limit = 0;
376 		goto again;
377 	}
378 	return usage;
379 }
380 
381 static void __init check_usemap_section_nr(int nid,
382 		struct mem_section_usage *usage)
383 {
384 	unsigned long usemap_snr, pgdat_snr;
385 	static unsigned long old_usemap_snr;
386 	static unsigned long old_pgdat_snr;
387 	struct pglist_data *pgdat = NODE_DATA(nid);
388 	int usemap_nid;
389 
390 	/* First call */
391 	if (!old_usemap_snr) {
392 		old_usemap_snr = NR_MEM_SECTIONS;
393 		old_pgdat_snr = NR_MEM_SECTIONS;
394 	}
395 
396 	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
397 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
398 	if (usemap_snr == pgdat_snr)
399 		return;
400 
401 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
402 		/* skip redundant message */
403 		return;
404 
405 	old_usemap_snr = usemap_snr;
406 	old_pgdat_snr = pgdat_snr;
407 
408 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
409 	if (usemap_nid != nid) {
410 		pr_info("node %d must be removed before remove section %ld\n",
411 			nid, usemap_snr);
412 		return;
413 	}
414 	/*
415 	 * There is a circular dependency.
416 	 * Some platforms allow un-removable section because they will just
417 	 * gather other removable sections for dynamic partitioning.
418 	 * Just notify un-removable section's number here.
419 	 */
420 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
421 		usemap_snr, pgdat_snr, nid);
422 }
423 #else
424 static struct mem_section_usage * __init
425 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
426 					 unsigned long size)
427 {
428 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
429 }
430 
431 static void __init check_usemap_section_nr(int nid,
432 		struct mem_section_usage *usage)
433 {
434 }
435 #endif /* CONFIG_MEMORY_HOTREMOVE */
436 
437 #ifdef CONFIG_SPARSEMEM_VMEMMAP
438 static unsigned long __init section_map_size(void)
439 {
440 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
441 }
442 
443 #else
444 static unsigned long __init section_map_size(void)
445 {
446 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
447 }
448 
449 struct page __init *__populate_section_memmap(unsigned long pfn,
450 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
451 {
452 	unsigned long size = section_map_size();
453 	struct page *map = sparse_buffer_alloc(size);
454 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
455 
456 	if (map)
457 		return map;
458 
459 	map = memblock_alloc_try_nid(size,
460 					  PAGE_SIZE, addr,
461 					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
462 	if (!map)
463 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
464 		      __func__, size, PAGE_SIZE, nid, &addr);
465 
466 	return map;
467 }
468 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
469 
470 static void *sparsemap_buf __meminitdata;
471 static void *sparsemap_buf_end __meminitdata;
472 
473 static void __init sparse_buffer_init(unsigned long size, int nid)
474 {
475 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
476 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
477 	sparsemap_buf =
478 		memblock_alloc_try_nid_raw(size, PAGE_SIZE,
479 						addr,
480 						MEMBLOCK_ALLOC_ACCESSIBLE, nid);
481 	sparsemap_buf_end = sparsemap_buf + size;
482 }
483 
484 static void __init sparse_buffer_fini(void)
485 {
486 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
487 
488 	if (sparsemap_buf && size > 0)
489 		memblock_free_early(__pa(sparsemap_buf), size);
490 	sparsemap_buf = NULL;
491 }
492 
493 void * __meminit sparse_buffer_alloc(unsigned long size)
494 {
495 	void *ptr = NULL;
496 
497 	if (sparsemap_buf) {
498 		ptr = PTR_ALIGN(sparsemap_buf, size);
499 		if (ptr + size > sparsemap_buf_end)
500 			ptr = NULL;
501 		else
502 			sparsemap_buf = ptr + size;
503 	}
504 	return ptr;
505 }
506 
507 void __weak __meminit vmemmap_populate_print_last(void)
508 {
509 }
510 
511 /*
512  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
513  * And number of present sections in this node is map_count.
514  */
515 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
516 				   unsigned long pnum_end,
517 				   unsigned long map_count)
518 {
519 	struct mem_section_usage *usage;
520 	unsigned long pnum;
521 	struct page *map;
522 
523 	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
524 			mem_section_usage_size() * map_count);
525 	if (!usage) {
526 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
527 		goto failed;
528 	}
529 	sparse_buffer_init(map_count * section_map_size(), nid);
530 	for_each_present_section_nr(pnum_begin, pnum) {
531 		unsigned long pfn = section_nr_to_pfn(pnum);
532 
533 		if (pnum >= pnum_end)
534 			break;
535 
536 		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
537 				nid, NULL);
538 		if (!map) {
539 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
540 			       __func__, nid);
541 			pnum_begin = pnum;
542 			goto failed;
543 		}
544 		check_usemap_section_nr(nid, usage);
545 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
546 				SECTION_IS_EARLY);
547 		usage = (void *) usage + mem_section_usage_size();
548 	}
549 	sparse_buffer_fini();
550 	return;
551 failed:
552 	/* We failed to allocate, mark all the following pnums as not present */
553 	for_each_present_section_nr(pnum_begin, pnum) {
554 		struct mem_section *ms;
555 
556 		if (pnum >= pnum_end)
557 			break;
558 		ms = __nr_to_section(pnum);
559 		ms->section_mem_map = 0;
560 	}
561 }
562 
563 /*
564  * Allocate the accumulated non-linear sections, allocate a mem_map
565  * for each and record the physical to section mapping.
566  */
567 void __init sparse_init(void)
568 {
569 	unsigned long pnum_begin = first_present_section_nr();
570 	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
571 	unsigned long pnum_end, map_count = 1;
572 
573 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
574 	set_pageblock_order();
575 
576 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
577 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
578 
579 		if (nid == nid_begin) {
580 			map_count++;
581 			continue;
582 		}
583 		/* Init node with sections in range [pnum_begin, pnum_end) */
584 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
585 		nid_begin = nid;
586 		pnum_begin = pnum_end;
587 		map_count = 1;
588 	}
589 	/* cover the last node */
590 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
591 	vmemmap_populate_print_last();
592 }
593 
594 #ifdef CONFIG_MEMORY_HOTPLUG
595 
596 /* Mark all memory sections within the pfn range as online */
597 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
598 {
599 	unsigned long pfn;
600 
601 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
602 		unsigned long section_nr = pfn_to_section_nr(pfn);
603 		struct mem_section *ms;
604 
605 		/* onlining code should never touch invalid ranges */
606 		if (WARN_ON(!valid_section_nr(section_nr)))
607 			continue;
608 
609 		ms = __nr_to_section(section_nr);
610 		ms->section_mem_map |= SECTION_IS_ONLINE;
611 	}
612 }
613 
614 #ifdef CONFIG_MEMORY_HOTREMOVE
615 /* Mark all memory sections within the pfn range as offline */
616 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
617 {
618 	unsigned long pfn;
619 
620 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
621 		unsigned long section_nr = pfn_to_section_nr(pfn);
622 		struct mem_section *ms;
623 
624 		/*
625 		 * TODO this needs some double checking. Offlining code makes
626 		 * sure to check pfn_valid but those checks might be just bogus
627 		 */
628 		if (WARN_ON(!valid_section_nr(section_nr)))
629 			continue;
630 
631 		ms = __nr_to_section(section_nr);
632 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
633 	}
634 }
635 #endif
636 
637 #ifdef CONFIG_SPARSEMEM_VMEMMAP
638 static struct page *populate_section_memmap(unsigned long pfn,
639 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
640 {
641 	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
642 }
643 
644 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
645 		struct vmem_altmap *altmap)
646 {
647 	unsigned long start = (unsigned long) pfn_to_page(pfn);
648 	unsigned long end = start + nr_pages * sizeof(struct page);
649 
650 	vmemmap_free(start, end, altmap);
651 }
652 static void free_map_bootmem(struct page *memmap)
653 {
654 	unsigned long start = (unsigned long)memmap;
655 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
656 
657 	vmemmap_free(start, end, NULL);
658 }
659 #else
660 struct page *populate_section_memmap(unsigned long pfn,
661 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
662 {
663 	struct page *page, *ret;
664 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
665 
666 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
667 	if (page)
668 		goto got_map_page;
669 
670 	ret = vmalloc(memmap_size);
671 	if (ret)
672 		goto got_map_ptr;
673 
674 	return NULL;
675 got_map_page:
676 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
677 got_map_ptr:
678 
679 	return ret;
680 }
681 
682 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
683 		struct vmem_altmap *altmap)
684 {
685 	struct page *memmap = pfn_to_page(pfn);
686 
687 	if (is_vmalloc_addr(memmap))
688 		vfree(memmap);
689 	else
690 		free_pages((unsigned long)memmap,
691 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
692 }
693 
694 static void free_map_bootmem(struct page *memmap)
695 {
696 	unsigned long maps_section_nr, removing_section_nr, i;
697 	unsigned long magic, nr_pages;
698 	struct page *page = virt_to_page(memmap);
699 
700 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
701 		>> PAGE_SHIFT;
702 
703 	for (i = 0; i < nr_pages; i++, page++) {
704 		magic = (unsigned long) page->freelist;
705 
706 		BUG_ON(magic == NODE_INFO);
707 
708 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
709 		removing_section_nr = page_private(page);
710 
711 		/*
712 		 * When this function is called, the removing section is
713 		 * logical offlined state. This means all pages are isolated
714 		 * from page allocator. If removing section's memmap is placed
715 		 * on the same section, it must not be freed.
716 		 * If it is freed, page allocator may allocate it which will
717 		 * be removed physically soon.
718 		 */
719 		if (maps_section_nr != removing_section_nr)
720 			put_page_bootmem(page);
721 	}
722 }
723 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
724 
725 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
726 		struct vmem_altmap *altmap)
727 {
728 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
729 	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
730 	struct mem_section *ms = __pfn_to_section(pfn);
731 	bool section_is_early = early_section(ms);
732 	struct page *memmap = NULL;
733 	unsigned long *subsection_map = ms->usage
734 		? &ms->usage->subsection_map[0] : NULL;
735 
736 	subsection_mask_set(map, pfn, nr_pages);
737 	if (subsection_map)
738 		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
739 
740 	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
741 				"section already deactivated (%#lx + %ld)\n",
742 				pfn, nr_pages))
743 		return;
744 
745 	/*
746 	 * There are 3 cases to handle across two configurations
747 	 * (SPARSEMEM_VMEMMAP={y,n}):
748 	 *
749 	 * 1/ deactivation of a partial hot-added section (only possible
750 	 * in the SPARSEMEM_VMEMMAP=y case).
751 	 *    a/ section was present at memory init
752 	 *    b/ section was hot-added post memory init
753 	 * 2/ deactivation of a complete hot-added section
754 	 * 3/ deactivation of a complete section from memory init
755 	 *
756 	 * For 1/, when subsection_map does not empty we will not be
757 	 * freeing the usage map, but still need to free the vmemmap
758 	 * range.
759 	 *
760 	 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
761 	 */
762 	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
763 	if (bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION)) {
764 		unsigned long section_nr = pfn_to_section_nr(pfn);
765 
766 		if (!section_is_early) {
767 			kfree(ms->usage);
768 			ms->usage = NULL;
769 		}
770 		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
771 		ms->section_mem_map = sparse_encode_mem_map(NULL, section_nr);
772 	}
773 
774 	if (section_is_early && memmap)
775 		free_map_bootmem(memmap);
776 	else
777 		depopulate_section_memmap(pfn, nr_pages, altmap);
778 }
779 
780 static struct page * __meminit section_activate(int nid, unsigned long pfn,
781 		unsigned long nr_pages, struct vmem_altmap *altmap)
782 {
783 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
784 	struct mem_section *ms = __pfn_to_section(pfn);
785 	struct mem_section_usage *usage = NULL;
786 	unsigned long *subsection_map;
787 	struct page *memmap;
788 	int rc = 0;
789 
790 	subsection_mask_set(map, pfn, nr_pages);
791 
792 	if (!ms->usage) {
793 		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
794 		if (!usage)
795 			return ERR_PTR(-ENOMEM);
796 		ms->usage = usage;
797 	}
798 	subsection_map = &ms->usage->subsection_map[0];
799 
800 	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
801 		rc = -EINVAL;
802 	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
803 		rc = -EEXIST;
804 	else
805 		bitmap_or(subsection_map, map, subsection_map,
806 				SUBSECTIONS_PER_SECTION);
807 
808 	if (rc) {
809 		if (usage)
810 			ms->usage = NULL;
811 		kfree(usage);
812 		return ERR_PTR(rc);
813 	}
814 
815 	/*
816 	 * The early init code does not consider partially populated
817 	 * initial sections, it simply assumes that memory will never be
818 	 * referenced.  If we hot-add memory into such a section then we
819 	 * do not need to populate the memmap and can simply reuse what
820 	 * is already there.
821 	 */
822 	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
823 		return pfn_to_page(pfn);
824 
825 	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
826 	if (!memmap) {
827 		section_deactivate(pfn, nr_pages, altmap);
828 		return ERR_PTR(-ENOMEM);
829 	}
830 
831 	return memmap;
832 }
833 
834 /**
835  * sparse_add_section - add a memory section, or populate an existing one
836  * @nid: The node to add section on
837  * @start_pfn: start pfn of the memory range
838  * @nr_pages: number of pfns to add in the section
839  * @altmap: device page map
840  *
841  * This is only intended for hotplug.
842  *
843  * Return:
844  * * 0		- On success.
845  * * -EEXIST	- Section has been present.
846  * * -ENOMEM	- Out of memory.
847  */
848 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
849 		unsigned long nr_pages, struct vmem_altmap *altmap)
850 {
851 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
852 	struct mem_section *ms;
853 	struct page *memmap;
854 	int ret;
855 
856 	ret = sparse_index_init(section_nr, nid);
857 	if (ret < 0)
858 		return ret;
859 
860 	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
861 	if (IS_ERR(memmap))
862 		return PTR_ERR(memmap);
863 
864 	/*
865 	 * Poison uninitialized struct pages in order to catch invalid flags
866 	 * combinations.
867 	 */
868 	page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
869 
870 	ms = __pfn_to_section(start_pfn);
871 	set_section_nid(section_nr, nid);
872 	section_mark_present(ms);
873 
874 	/* Align memmap to section boundary in the subsection case */
875 	if (section_nr_to_pfn(section_nr) != start_pfn)
876 		memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
877 	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
878 
879 	return 0;
880 }
881 
882 #ifdef CONFIG_MEMORY_FAILURE
883 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
884 {
885 	int i;
886 
887 	if (!memmap)
888 		return;
889 
890 	/*
891 	 * A further optimization is to have per section refcounted
892 	 * num_poisoned_pages.  But that would need more space per memmap, so
893 	 * for now just do a quick global check to speed up this routine in the
894 	 * absence of bad pages.
895 	 */
896 	if (atomic_long_read(&num_poisoned_pages) == 0)
897 		return;
898 
899 	for (i = 0; i < nr_pages; i++) {
900 		if (PageHWPoison(&memmap[i])) {
901 			atomic_long_sub(1, &num_poisoned_pages);
902 			ClearPageHWPoison(&memmap[i]);
903 		}
904 	}
905 }
906 #else
907 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
908 {
909 }
910 #endif
911 
912 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
913 		unsigned long nr_pages, unsigned long map_offset,
914 		struct vmem_altmap *altmap)
915 {
916 	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
917 			nr_pages - map_offset);
918 	section_deactivate(pfn, nr_pages, altmap);
919 }
920 #endif /* CONFIG_MEMORY_HOTPLUG */
921