1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/slab.h> 6 #include <linux/mmzone.h> 7 #include <linux/bootmem.h> 8 #include <linux/compiler.h> 9 #include <linux/highmem.h> 10 #include <linux/export.h> 11 #include <linux/spinlock.h> 12 #include <linux/vmalloc.h> 13 14 #include "internal.h" 15 #include <asm/dma.h> 16 #include <asm/pgalloc.h> 17 #include <asm/pgtable.h> 18 19 /* 20 * Permanent SPARSEMEM data: 21 * 22 * 1) mem_section - memory sections, mem_map's for valid memory 23 */ 24 #ifdef CONFIG_SPARSEMEM_EXTREME 25 struct mem_section *mem_section[NR_SECTION_ROOTS] 26 ____cacheline_internodealigned_in_smp; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) { 69 if (node_state(nid, N_HIGH_MEMORY)) 70 section = kzalloc_node(array_size, GFP_KERNEL, nid); 71 else 72 section = kzalloc(array_size, GFP_KERNEL); 73 } else { 74 section = memblock_virt_alloc_node(array_size, nid); 75 } 76 77 return section; 78 } 79 80 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 81 { 82 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 83 struct mem_section *section; 84 85 if (mem_section[root]) 86 return -EEXIST; 87 88 section = sparse_index_alloc(nid); 89 if (!section) 90 return -ENOMEM; 91 92 mem_section[root] = section; 93 94 return 0; 95 } 96 #else /* !SPARSEMEM_EXTREME */ 97 static inline int sparse_index_init(unsigned long section_nr, int nid) 98 { 99 return 0; 100 } 101 #endif 102 103 #ifdef CONFIG_SPARSEMEM_EXTREME 104 int __section_nr(struct mem_section* ms) 105 { 106 unsigned long root_nr; 107 struct mem_section* root; 108 109 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 110 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 111 if (!root) 112 continue; 113 114 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 115 break; 116 } 117 118 VM_BUG_ON(root_nr == NR_SECTION_ROOTS); 119 120 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 121 } 122 #else 123 int __section_nr(struct mem_section* ms) 124 { 125 return (int)(ms - mem_section[0]); 126 } 127 #endif 128 129 /* 130 * During early boot, before section_mem_map is used for an actual 131 * mem_map, we use section_mem_map to store the section's NUMA 132 * node. This keeps us from having to use another data structure. The 133 * node information is cleared just before we store the real mem_map. 134 */ 135 static inline unsigned long sparse_encode_early_nid(int nid) 136 { 137 return (nid << SECTION_NID_SHIFT); 138 } 139 140 static inline int sparse_early_nid(struct mem_section *section) 141 { 142 return (section->section_mem_map >> SECTION_NID_SHIFT); 143 } 144 145 /* Validate the physical addressing limitations of the model */ 146 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 147 unsigned long *end_pfn) 148 { 149 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 150 151 /* 152 * Sanity checks - do not allow an architecture to pass 153 * in larger pfns than the maximum scope of sparsemem: 154 */ 155 if (*start_pfn > max_sparsemem_pfn) { 156 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 157 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 158 *start_pfn, *end_pfn, max_sparsemem_pfn); 159 WARN_ON_ONCE(1); 160 *start_pfn = max_sparsemem_pfn; 161 *end_pfn = max_sparsemem_pfn; 162 } else if (*end_pfn > max_sparsemem_pfn) { 163 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 164 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 165 *start_pfn, *end_pfn, max_sparsemem_pfn); 166 WARN_ON_ONCE(1); 167 *end_pfn = max_sparsemem_pfn; 168 } 169 } 170 171 /* Record a memory area against a node. */ 172 void __init memory_present(int nid, unsigned long start, unsigned long end) 173 { 174 unsigned long pfn; 175 176 start &= PAGE_SECTION_MASK; 177 mminit_validate_memmodel_limits(&start, &end); 178 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 179 unsigned long section = pfn_to_section_nr(pfn); 180 struct mem_section *ms; 181 182 sparse_index_init(section, nid); 183 set_section_nid(section, nid); 184 185 ms = __nr_to_section(section); 186 if (!ms->section_mem_map) 187 ms->section_mem_map = sparse_encode_early_nid(nid) | 188 SECTION_MARKED_PRESENT; 189 } 190 } 191 192 /* 193 * Only used by the i386 NUMA architecures, but relatively 194 * generic code. 195 */ 196 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 197 unsigned long end_pfn) 198 { 199 unsigned long pfn; 200 unsigned long nr_pages = 0; 201 202 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 203 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 204 if (nid != early_pfn_to_nid(pfn)) 205 continue; 206 207 if (pfn_present(pfn)) 208 nr_pages += PAGES_PER_SECTION; 209 } 210 211 return nr_pages * sizeof(struct page); 212 } 213 214 /* 215 * Subtle, we encode the real pfn into the mem_map such that 216 * the identity pfn - section_mem_map will return the actual 217 * physical page frame number. 218 */ 219 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 220 { 221 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 222 } 223 224 /* 225 * Decode mem_map from the coded memmap 226 */ 227 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 228 { 229 /* mask off the extra low bits of information */ 230 coded_mem_map &= SECTION_MAP_MASK; 231 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 232 } 233 234 static int __meminit sparse_init_one_section(struct mem_section *ms, 235 unsigned long pnum, struct page *mem_map, 236 unsigned long *pageblock_bitmap) 237 { 238 if (!present_section(ms)) 239 return -EINVAL; 240 241 ms->section_mem_map &= ~SECTION_MAP_MASK; 242 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 243 SECTION_HAS_MEM_MAP; 244 ms->pageblock_flags = pageblock_bitmap; 245 246 return 1; 247 } 248 249 unsigned long usemap_size(void) 250 { 251 unsigned long size_bytes; 252 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 253 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 254 return size_bytes; 255 } 256 257 #ifdef CONFIG_MEMORY_HOTPLUG 258 static unsigned long *__kmalloc_section_usemap(void) 259 { 260 return kmalloc(usemap_size(), GFP_KERNEL); 261 } 262 #endif /* CONFIG_MEMORY_HOTPLUG */ 263 264 #ifdef CONFIG_MEMORY_HOTREMOVE 265 static unsigned long * __init 266 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 267 unsigned long size) 268 { 269 unsigned long goal, limit; 270 unsigned long *p; 271 int nid; 272 /* 273 * A page may contain usemaps for other sections preventing the 274 * page being freed and making a section unremovable while 275 * other sections referencing the usemap remain active. Similarly, 276 * a pgdat can prevent a section being removed. If section A 277 * contains a pgdat and section B contains the usemap, both 278 * sections become inter-dependent. This allocates usemaps 279 * from the same section as the pgdat where possible to avoid 280 * this problem. 281 */ 282 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 283 limit = goal + (1UL << PA_SECTION_SHIFT); 284 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 285 again: 286 p = memblock_virt_alloc_try_nid_nopanic(size, 287 SMP_CACHE_BYTES, goal, limit, 288 nid); 289 if (!p && limit) { 290 limit = 0; 291 goto again; 292 } 293 return p; 294 } 295 296 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 297 { 298 unsigned long usemap_snr, pgdat_snr; 299 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 300 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 301 struct pglist_data *pgdat = NODE_DATA(nid); 302 int usemap_nid; 303 304 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 305 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 306 if (usemap_snr == pgdat_snr) 307 return; 308 309 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 310 /* skip redundant message */ 311 return; 312 313 old_usemap_snr = usemap_snr; 314 old_pgdat_snr = pgdat_snr; 315 316 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 317 if (usemap_nid != nid) { 318 pr_info("node %d must be removed before remove section %ld\n", 319 nid, usemap_snr); 320 return; 321 } 322 /* 323 * There is a circular dependency. 324 * Some platforms allow un-removable section because they will just 325 * gather other removable sections for dynamic partitioning. 326 * Just notify un-removable section's number here. 327 */ 328 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 329 usemap_snr, pgdat_snr, nid); 330 } 331 #else 332 static unsigned long * __init 333 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 334 unsigned long size) 335 { 336 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 337 } 338 339 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 340 { 341 } 342 #endif /* CONFIG_MEMORY_HOTREMOVE */ 343 344 static void __init sparse_early_usemaps_alloc_node(void *data, 345 unsigned long pnum_begin, 346 unsigned long pnum_end, 347 unsigned long usemap_count, int nodeid) 348 { 349 void *usemap; 350 unsigned long pnum; 351 unsigned long **usemap_map = (unsigned long **)data; 352 int size = usemap_size(); 353 354 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 355 size * usemap_count); 356 if (!usemap) { 357 pr_warn("%s: allocation failed\n", __func__); 358 return; 359 } 360 361 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 362 if (!present_section_nr(pnum)) 363 continue; 364 usemap_map[pnum] = usemap; 365 usemap += size; 366 check_usemap_section_nr(nodeid, usemap_map[pnum]); 367 } 368 } 369 370 #ifndef CONFIG_SPARSEMEM_VMEMMAP 371 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 372 { 373 struct page *map; 374 unsigned long size; 375 376 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 377 if (map) 378 return map; 379 380 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 381 map = memblock_virt_alloc_try_nid(size, 382 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 383 BOOTMEM_ALLOC_ACCESSIBLE, nid); 384 return map; 385 } 386 void __init sparse_mem_maps_populate_node(struct page **map_map, 387 unsigned long pnum_begin, 388 unsigned long pnum_end, 389 unsigned long map_count, int nodeid) 390 { 391 void *map; 392 unsigned long pnum; 393 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 394 395 map = alloc_remap(nodeid, size * map_count); 396 if (map) { 397 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 398 if (!present_section_nr(pnum)) 399 continue; 400 map_map[pnum] = map; 401 map += size; 402 } 403 return; 404 } 405 406 size = PAGE_ALIGN(size); 407 map = memblock_virt_alloc_try_nid(size * map_count, 408 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 409 BOOTMEM_ALLOC_ACCESSIBLE, nodeid); 410 if (map) { 411 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 412 if (!present_section_nr(pnum)) 413 continue; 414 map_map[pnum] = map; 415 map += size; 416 } 417 return; 418 } 419 420 /* fallback */ 421 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 422 struct mem_section *ms; 423 424 if (!present_section_nr(pnum)) 425 continue; 426 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 427 if (map_map[pnum]) 428 continue; 429 ms = __nr_to_section(pnum); 430 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 431 __func__); 432 ms->section_mem_map = 0; 433 } 434 } 435 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 436 437 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 438 static void __init sparse_early_mem_maps_alloc_node(void *data, 439 unsigned long pnum_begin, 440 unsigned long pnum_end, 441 unsigned long map_count, int nodeid) 442 { 443 struct page **map_map = (struct page **)data; 444 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 445 map_count, nodeid); 446 } 447 #else 448 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 449 { 450 struct page *map; 451 struct mem_section *ms = __nr_to_section(pnum); 452 int nid = sparse_early_nid(ms); 453 454 map = sparse_mem_map_populate(pnum, nid); 455 if (map) 456 return map; 457 458 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 459 __func__); 460 ms->section_mem_map = 0; 461 return NULL; 462 } 463 #endif 464 465 void __weak __meminit vmemmap_populate_print_last(void) 466 { 467 } 468 469 /** 470 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap 471 * @map: usemap_map for pageblock flags or mmap_map for vmemmap 472 */ 473 static void __init alloc_usemap_and_memmap(void (*alloc_func) 474 (void *, unsigned long, unsigned long, 475 unsigned long, int), void *data) 476 { 477 unsigned long pnum; 478 unsigned long map_count; 479 int nodeid_begin = 0; 480 unsigned long pnum_begin = 0; 481 482 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 483 struct mem_section *ms; 484 485 if (!present_section_nr(pnum)) 486 continue; 487 ms = __nr_to_section(pnum); 488 nodeid_begin = sparse_early_nid(ms); 489 pnum_begin = pnum; 490 break; 491 } 492 map_count = 1; 493 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 494 struct mem_section *ms; 495 int nodeid; 496 497 if (!present_section_nr(pnum)) 498 continue; 499 ms = __nr_to_section(pnum); 500 nodeid = sparse_early_nid(ms); 501 if (nodeid == nodeid_begin) { 502 map_count++; 503 continue; 504 } 505 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 506 alloc_func(data, pnum_begin, pnum, 507 map_count, nodeid_begin); 508 /* new start, update count etc*/ 509 nodeid_begin = nodeid; 510 pnum_begin = pnum; 511 map_count = 1; 512 } 513 /* ok, last chunk */ 514 alloc_func(data, pnum_begin, NR_MEM_SECTIONS, 515 map_count, nodeid_begin); 516 } 517 518 /* 519 * Allocate the accumulated non-linear sections, allocate a mem_map 520 * for each and record the physical to section mapping. 521 */ 522 void __init sparse_init(void) 523 { 524 unsigned long pnum; 525 struct page *map; 526 unsigned long *usemap; 527 unsigned long **usemap_map; 528 int size; 529 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 530 int size2; 531 struct page **map_map; 532 #endif 533 534 /* see include/linux/mmzone.h 'struct mem_section' definition */ 535 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 536 537 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 538 set_pageblock_order(); 539 540 /* 541 * map is using big page (aka 2M in x86 64 bit) 542 * usemap is less one page (aka 24 bytes) 543 * so alloc 2M (with 2M align) and 24 bytes in turn will 544 * make next 2M slip to one more 2M later. 545 * then in big system, the memory will have a lot of holes... 546 * here try to allocate 2M pages continuously. 547 * 548 * powerpc need to call sparse_init_one_section right after each 549 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 550 */ 551 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 552 usemap_map = memblock_virt_alloc(size, 0); 553 if (!usemap_map) 554 panic("can not allocate usemap_map\n"); 555 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, 556 (void *)usemap_map); 557 558 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 559 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 560 map_map = memblock_virt_alloc(size2, 0); 561 if (!map_map) 562 panic("can not allocate map_map\n"); 563 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, 564 (void *)map_map); 565 #endif 566 567 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 568 if (!present_section_nr(pnum)) 569 continue; 570 571 usemap = usemap_map[pnum]; 572 if (!usemap) 573 continue; 574 575 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 576 map = map_map[pnum]; 577 #else 578 map = sparse_early_mem_map_alloc(pnum); 579 #endif 580 if (!map) 581 continue; 582 583 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 584 usemap); 585 } 586 587 vmemmap_populate_print_last(); 588 589 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 590 memblock_free_early(__pa(map_map), size2); 591 #endif 592 memblock_free_early(__pa(usemap_map), size); 593 } 594 595 #ifdef CONFIG_MEMORY_HOTPLUG 596 #ifdef CONFIG_SPARSEMEM_VMEMMAP 597 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 598 { 599 /* This will make the necessary allocations eventually. */ 600 return sparse_mem_map_populate(pnum, nid); 601 } 602 static void __kfree_section_memmap(struct page *memmap) 603 { 604 unsigned long start = (unsigned long)memmap; 605 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 606 607 vmemmap_free(start, end); 608 } 609 #ifdef CONFIG_MEMORY_HOTREMOVE 610 static void free_map_bootmem(struct page *memmap) 611 { 612 unsigned long start = (unsigned long)memmap; 613 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 614 615 vmemmap_free(start, end); 616 } 617 #endif /* CONFIG_MEMORY_HOTREMOVE */ 618 #else 619 static struct page *__kmalloc_section_memmap(void) 620 { 621 struct page *page, *ret; 622 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 623 624 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 625 if (page) 626 goto got_map_page; 627 628 ret = vmalloc(memmap_size); 629 if (ret) 630 goto got_map_ptr; 631 632 return NULL; 633 got_map_page: 634 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 635 got_map_ptr: 636 637 return ret; 638 } 639 640 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 641 { 642 return __kmalloc_section_memmap(); 643 } 644 645 static void __kfree_section_memmap(struct page *memmap) 646 { 647 if (is_vmalloc_addr(memmap)) 648 vfree(memmap); 649 else 650 free_pages((unsigned long)memmap, 651 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 652 } 653 654 #ifdef CONFIG_MEMORY_HOTREMOVE 655 static void free_map_bootmem(struct page *memmap) 656 { 657 unsigned long maps_section_nr, removing_section_nr, i; 658 unsigned long magic, nr_pages; 659 struct page *page = virt_to_page(memmap); 660 661 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 662 >> PAGE_SHIFT; 663 664 for (i = 0; i < nr_pages; i++, page++) { 665 magic = (unsigned long) page->lru.next; 666 667 BUG_ON(magic == NODE_INFO); 668 669 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 670 removing_section_nr = page->private; 671 672 /* 673 * When this function is called, the removing section is 674 * logical offlined state. This means all pages are isolated 675 * from page allocator. If removing section's memmap is placed 676 * on the same section, it must not be freed. 677 * If it is freed, page allocator may allocate it which will 678 * be removed physically soon. 679 */ 680 if (maps_section_nr != removing_section_nr) 681 put_page_bootmem(page); 682 } 683 } 684 #endif /* CONFIG_MEMORY_HOTREMOVE */ 685 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 686 687 /* 688 * returns the number of sections whose mem_maps were properly 689 * set. If this is <=0, then that means that the passed-in 690 * map was not consumed and must be freed. 691 */ 692 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn) 693 { 694 unsigned long section_nr = pfn_to_section_nr(start_pfn); 695 struct pglist_data *pgdat = zone->zone_pgdat; 696 struct mem_section *ms; 697 struct page *memmap; 698 unsigned long *usemap; 699 unsigned long flags; 700 int ret; 701 702 /* 703 * no locking for this, because it does its own 704 * plus, it does a kmalloc 705 */ 706 ret = sparse_index_init(section_nr, pgdat->node_id); 707 if (ret < 0 && ret != -EEXIST) 708 return ret; 709 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id); 710 if (!memmap) 711 return -ENOMEM; 712 usemap = __kmalloc_section_usemap(); 713 if (!usemap) { 714 __kfree_section_memmap(memmap); 715 return -ENOMEM; 716 } 717 718 pgdat_resize_lock(pgdat, &flags); 719 720 ms = __pfn_to_section(start_pfn); 721 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 722 ret = -EEXIST; 723 goto out; 724 } 725 726 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION); 727 728 ms->section_mem_map |= SECTION_MARKED_PRESENT; 729 730 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 731 732 out: 733 pgdat_resize_unlock(pgdat, &flags); 734 if (ret <= 0) { 735 kfree(usemap); 736 __kfree_section_memmap(memmap); 737 } 738 return ret; 739 } 740 741 #ifdef CONFIG_MEMORY_HOTREMOVE 742 #ifdef CONFIG_MEMORY_FAILURE 743 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 744 { 745 int i; 746 747 if (!memmap) 748 return; 749 750 for (i = 0; i < nr_pages; i++) { 751 if (PageHWPoison(&memmap[i])) { 752 atomic_long_sub(1, &num_poisoned_pages); 753 ClearPageHWPoison(&memmap[i]); 754 } 755 } 756 } 757 #else 758 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 759 { 760 } 761 #endif 762 763 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 764 { 765 struct page *usemap_page; 766 767 if (!usemap) 768 return; 769 770 usemap_page = virt_to_page(usemap); 771 /* 772 * Check to see if allocation came from hot-plug-add 773 */ 774 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 775 kfree(usemap); 776 if (memmap) 777 __kfree_section_memmap(memmap); 778 return; 779 } 780 781 /* 782 * The usemap came from bootmem. This is packed with other usemaps 783 * on the section which has pgdat at boot time. Just keep it as is now. 784 */ 785 786 if (memmap) 787 free_map_bootmem(memmap); 788 } 789 790 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 791 unsigned long map_offset) 792 { 793 struct page *memmap = NULL; 794 unsigned long *usemap = NULL, flags; 795 struct pglist_data *pgdat = zone->zone_pgdat; 796 797 pgdat_resize_lock(pgdat, &flags); 798 if (ms->section_mem_map) { 799 usemap = ms->pageblock_flags; 800 memmap = sparse_decode_mem_map(ms->section_mem_map, 801 __section_nr(ms)); 802 ms->section_mem_map = 0; 803 ms->pageblock_flags = NULL; 804 } 805 pgdat_resize_unlock(pgdat, &flags); 806 807 clear_hwpoisoned_pages(memmap + map_offset, 808 PAGES_PER_SECTION - map_offset); 809 free_section_usemap(memmap, usemap); 810 } 811 #endif /* CONFIG_MEMORY_HOTREMOVE */ 812 #endif /* CONFIG_MEMORY_HOTPLUG */ 813