xref: /openbmc/linux/mm/sparse.c (revision 4bb1eb3c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 
17 #include "internal.h"
18 #include <asm/dma.h>
19 
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section	- memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available()) {
69 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 	} else {
71 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72 					      nid);
73 		if (!section)
74 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
75 			      __func__, array_size, nid);
76 	}
77 
78 	return section;
79 }
80 
81 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 {
83 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 	struct mem_section *section;
85 
86 	/*
87 	 * An existing section is possible in the sub-section hotplug
88 	 * case. First hot-add instantiates, follow-on hot-add reuses
89 	 * the existing section.
90 	 *
91 	 * The mem_hotplug_lock resolves the apparent race below.
92 	 */
93 	if (mem_section[root])
94 		return 0;
95 
96 	section = sparse_index_alloc(nid);
97 	if (!section)
98 		return -ENOMEM;
99 
100 	mem_section[root] = section;
101 
102 	return 0;
103 }
104 #else /* !SPARSEMEM_EXTREME */
105 static inline int sparse_index_init(unsigned long section_nr, int nid)
106 {
107 	return 0;
108 }
109 #endif
110 
111 #ifdef CONFIG_SPARSEMEM_EXTREME
112 unsigned long __section_nr(struct mem_section *ms)
113 {
114 	unsigned long root_nr;
115 	struct mem_section *root = NULL;
116 
117 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119 		if (!root)
120 			continue;
121 
122 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123 		     break;
124 	}
125 
126 	VM_BUG_ON(!root);
127 
128 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129 }
130 #else
131 unsigned long __section_nr(struct mem_section *ms)
132 {
133 	return (unsigned long)(ms - mem_section[0]);
134 }
135 #endif
136 
137 /*
138  * During early boot, before section_mem_map is used for an actual
139  * mem_map, we use section_mem_map to store the section's NUMA
140  * node.  This keeps us from having to use another data structure.  The
141  * node information is cleared just before we store the real mem_map.
142  */
143 static inline unsigned long sparse_encode_early_nid(int nid)
144 {
145 	return (nid << SECTION_NID_SHIFT);
146 }
147 
148 static inline int sparse_early_nid(struct mem_section *section)
149 {
150 	return (section->section_mem_map >> SECTION_NID_SHIFT);
151 }
152 
153 /* Validate the physical addressing limitations of the model */
154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155 						unsigned long *end_pfn)
156 {
157 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158 
159 	/*
160 	 * Sanity checks - do not allow an architecture to pass
161 	 * in larger pfns than the maximum scope of sparsemem:
162 	 */
163 	if (*start_pfn > max_sparsemem_pfn) {
164 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 			*start_pfn, *end_pfn, max_sparsemem_pfn);
167 		WARN_ON_ONCE(1);
168 		*start_pfn = max_sparsemem_pfn;
169 		*end_pfn = max_sparsemem_pfn;
170 	} else if (*end_pfn > max_sparsemem_pfn) {
171 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 			*start_pfn, *end_pfn, max_sparsemem_pfn);
174 		WARN_ON_ONCE(1);
175 		*end_pfn = max_sparsemem_pfn;
176 	}
177 }
178 
179 /*
180  * There are a number of times that we loop over NR_MEM_SECTIONS,
181  * looking for section_present() on each.  But, when we have very
182  * large physical address spaces, NR_MEM_SECTIONS can also be
183  * very large which makes the loops quite long.
184  *
185  * Keeping track of this gives us an easy way to break out of
186  * those loops early.
187  */
188 unsigned long __highest_present_section_nr;
189 static void section_mark_present(struct mem_section *ms)
190 {
191 	unsigned long section_nr = __section_nr(ms);
192 
193 	if (section_nr > __highest_present_section_nr)
194 		__highest_present_section_nr = section_nr;
195 
196 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
197 }
198 
199 #define for_each_present_section_nr(start, section_nr)		\
200 	for (section_nr = next_present_section_nr(start-1);	\
201 	     ((section_nr != -1) &&				\
202 	      (section_nr <= __highest_present_section_nr));	\
203 	     section_nr = next_present_section_nr(section_nr))
204 
205 static inline unsigned long first_present_section_nr(void)
206 {
207 	return next_present_section_nr(-1);
208 }
209 
210 #ifdef CONFIG_SPARSEMEM_VMEMMAP
211 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
212 		unsigned long nr_pages)
213 {
214 	int idx = subsection_map_index(pfn);
215 	int end = subsection_map_index(pfn + nr_pages - 1);
216 
217 	bitmap_set(map, idx, end - idx + 1);
218 }
219 
220 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221 {
222 	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
223 	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
224 
225 	if (!nr_pages)
226 		return;
227 
228 	for (nr = start_sec; nr <= end_sec; nr++) {
229 		struct mem_section *ms;
230 		unsigned long pfns;
231 
232 		pfns = min(nr_pages, PAGES_PER_SECTION
233 				- (pfn & ~PAGE_SECTION_MASK));
234 		ms = __nr_to_section(nr);
235 		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
236 
237 		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
238 				pfns, subsection_map_index(pfn),
239 				subsection_map_index(pfn + pfns - 1));
240 
241 		pfn += pfns;
242 		nr_pages -= pfns;
243 	}
244 }
245 #else
246 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
247 {
248 }
249 #endif
250 
251 /* Record a memory area against a node. */
252 static void __init memory_present(int nid, unsigned long start, unsigned long end)
253 {
254 	unsigned long pfn;
255 
256 #ifdef CONFIG_SPARSEMEM_EXTREME
257 	if (unlikely(!mem_section)) {
258 		unsigned long size, align;
259 
260 		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
261 		align = 1 << (INTERNODE_CACHE_SHIFT);
262 		mem_section = memblock_alloc(size, align);
263 		if (!mem_section)
264 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
265 			      __func__, size, align);
266 	}
267 #endif
268 
269 	start &= PAGE_SECTION_MASK;
270 	mminit_validate_memmodel_limits(&start, &end);
271 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
272 		unsigned long section = pfn_to_section_nr(pfn);
273 		struct mem_section *ms;
274 
275 		sparse_index_init(section, nid);
276 		set_section_nid(section, nid);
277 
278 		ms = __nr_to_section(section);
279 		if (!ms->section_mem_map) {
280 			ms->section_mem_map = sparse_encode_early_nid(nid) |
281 							SECTION_IS_ONLINE;
282 			section_mark_present(ms);
283 		}
284 	}
285 }
286 
287 /*
288  * Mark all memblocks as present using memory_present().
289  * This is a convenience function that is useful to mark all of the systems
290  * memory as present during initialization.
291  */
292 static void __init memblocks_present(void)
293 {
294 	struct memblock_region *reg;
295 
296 	for_each_memblock(memory, reg) {
297 		memory_present(memblock_get_region_node(reg),
298 			       memblock_region_memory_base_pfn(reg),
299 			       memblock_region_memory_end_pfn(reg));
300 	}
301 }
302 
303 /*
304  * Subtle, we encode the real pfn into the mem_map such that
305  * the identity pfn - section_mem_map will return the actual
306  * physical page frame number.
307  */
308 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
309 {
310 	unsigned long coded_mem_map =
311 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
312 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
313 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
314 	return coded_mem_map;
315 }
316 
317 /*
318  * Decode mem_map from the coded memmap
319  */
320 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
321 {
322 	/* mask off the extra low bits of information */
323 	coded_mem_map &= SECTION_MAP_MASK;
324 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
325 }
326 
327 static void __meminit sparse_init_one_section(struct mem_section *ms,
328 		unsigned long pnum, struct page *mem_map,
329 		struct mem_section_usage *usage, unsigned long flags)
330 {
331 	ms->section_mem_map &= ~SECTION_MAP_MASK;
332 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
333 		| SECTION_HAS_MEM_MAP | flags;
334 	ms->usage = usage;
335 }
336 
337 static unsigned long usemap_size(void)
338 {
339 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
340 }
341 
342 size_t mem_section_usage_size(void)
343 {
344 	return sizeof(struct mem_section_usage) + usemap_size();
345 }
346 
347 #ifdef CONFIG_MEMORY_HOTREMOVE
348 static struct mem_section_usage * __init
349 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
350 					 unsigned long size)
351 {
352 	struct mem_section_usage *usage;
353 	unsigned long goal, limit;
354 	int nid;
355 	/*
356 	 * A page may contain usemaps for other sections preventing the
357 	 * page being freed and making a section unremovable while
358 	 * other sections referencing the usemap remain active. Similarly,
359 	 * a pgdat can prevent a section being removed. If section A
360 	 * contains a pgdat and section B contains the usemap, both
361 	 * sections become inter-dependent. This allocates usemaps
362 	 * from the same section as the pgdat where possible to avoid
363 	 * this problem.
364 	 */
365 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
366 	limit = goal + (1UL << PA_SECTION_SHIFT);
367 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
368 again:
369 	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
370 	if (!usage && limit) {
371 		limit = 0;
372 		goto again;
373 	}
374 	return usage;
375 }
376 
377 static void __init check_usemap_section_nr(int nid,
378 		struct mem_section_usage *usage)
379 {
380 	unsigned long usemap_snr, pgdat_snr;
381 	static unsigned long old_usemap_snr;
382 	static unsigned long old_pgdat_snr;
383 	struct pglist_data *pgdat = NODE_DATA(nid);
384 	int usemap_nid;
385 
386 	/* First call */
387 	if (!old_usemap_snr) {
388 		old_usemap_snr = NR_MEM_SECTIONS;
389 		old_pgdat_snr = NR_MEM_SECTIONS;
390 	}
391 
392 	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
393 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
394 	if (usemap_snr == pgdat_snr)
395 		return;
396 
397 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
398 		/* skip redundant message */
399 		return;
400 
401 	old_usemap_snr = usemap_snr;
402 	old_pgdat_snr = pgdat_snr;
403 
404 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
405 	if (usemap_nid != nid) {
406 		pr_info("node %d must be removed before remove section %ld\n",
407 			nid, usemap_snr);
408 		return;
409 	}
410 	/*
411 	 * There is a circular dependency.
412 	 * Some platforms allow un-removable section because they will just
413 	 * gather other removable sections for dynamic partitioning.
414 	 * Just notify un-removable section's number here.
415 	 */
416 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
417 		usemap_snr, pgdat_snr, nid);
418 }
419 #else
420 static struct mem_section_usage * __init
421 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
422 					 unsigned long size)
423 {
424 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
425 }
426 
427 static void __init check_usemap_section_nr(int nid,
428 		struct mem_section_usage *usage)
429 {
430 }
431 #endif /* CONFIG_MEMORY_HOTREMOVE */
432 
433 #ifdef CONFIG_SPARSEMEM_VMEMMAP
434 static unsigned long __init section_map_size(void)
435 {
436 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
437 }
438 
439 #else
440 static unsigned long __init section_map_size(void)
441 {
442 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
443 }
444 
445 struct page __init *__populate_section_memmap(unsigned long pfn,
446 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
447 {
448 	unsigned long size = section_map_size();
449 	struct page *map = sparse_buffer_alloc(size);
450 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
451 
452 	if (map)
453 		return map;
454 
455 	map = memblock_alloc_try_nid_raw(size, size, addr,
456 					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
457 	if (!map)
458 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
459 		      __func__, size, PAGE_SIZE, nid, &addr);
460 
461 	return map;
462 }
463 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
464 
465 static void *sparsemap_buf __meminitdata;
466 static void *sparsemap_buf_end __meminitdata;
467 
468 static inline void __meminit sparse_buffer_free(unsigned long size)
469 {
470 	WARN_ON(!sparsemap_buf || size == 0);
471 	memblock_free_early(__pa(sparsemap_buf), size);
472 }
473 
474 static void __init sparse_buffer_init(unsigned long size, int nid)
475 {
476 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
477 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
478 	/*
479 	 * Pre-allocated buffer is mainly used by __populate_section_memmap
480 	 * and we want it to be properly aligned to the section size - this is
481 	 * especially the case for VMEMMAP which maps memmap to PMDs
482 	 */
483 	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
484 					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
485 	sparsemap_buf_end = sparsemap_buf + size;
486 }
487 
488 static void __init sparse_buffer_fini(void)
489 {
490 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
491 
492 	if (sparsemap_buf && size > 0)
493 		sparse_buffer_free(size);
494 	sparsemap_buf = NULL;
495 }
496 
497 void * __meminit sparse_buffer_alloc(unsigned long size)
498 {
499 	void *ptr = NULL;
500 
501 	if (sparsemap_buf) {
502 		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
503 		if (ptr + size > sparsemap_buf_end)
504 			ptr = NULL;
505 		else {
506 			/* Free redundant aligned space */
507 			if ((unsigned long)(ptr - sparsemap_buf) > 0)
508 				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
509 			sparsemap_buf = ptr + size;
510 		}
511 	}
512 	return ptr;
513 }
514 
515 void __weak __meminit vmemmap_populate_print_last(void)
516 {
517 }
518 
519 /*
520  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
521  * And number of present sections in this node is map_count.
522  */
523 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
524 				   unsigned long pnum_end,
525 				   unsigned long map_count)
526 {
527 	struct mem_section_usage *usage;
528 	unsigned long pnum;
529 	struct page *map;
530 
531 	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
532 			mem_section_usage_size() * map_count);
533 	if (!usage) {
534 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
535 		goto failed;
536 	}
537 	sparse_buffer_init(map_count * section_map_size(), nid);
538 	for_each_present_section_nr(pnum_begin, pnum) {
539 		unsigned long pfn = section_nr_to_pfn(pnum);
540 
541 		if (pnum >= pnum_end)
542 			break;
543 
544 		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
545 				nid, NULL);
546 		if (!map) {
547 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
548 			       __func__, nid);
549 			pnum_begin = pnum;
550 			goto failed;
551 		}
552 		check_usemap_section_nr(nid, usage);
553 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
554 				SECTION_IS_EARLY);
555 		usage = (void *) usage + mem_section_usage_size();
556 	}
557 	sparse_buffer_fini();
558 	return;
559 failed:
560 	/* We failed to allocate, mark all the following pnums as not present */
561 	for_each_present_section_nr(pnum_begin, pnum) {
562 		struct mem_section *ms;
563 
564 		if (pnum >= pnum_end)
565 			break;
566 		ms = __nr_to_section(pnum);
567 		ms->section_mem_map = 0;
568 	}
569 }
570 
571 /*
572  * Allocate the accumulated non-linear sections, allocate a mem_map
573  * for each and record the physical to section mapping.
574  */
575 void __init sparse_init(void)
576 {
577 	unsigned long pnum_end, pnum_begin, map_count = 1;
578 	int nid_begin;
579 
580 	memblocks_present();
581 
582 	pnum_begin = first_present_section_nr();
583 	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
584 
585 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
586 	set_pageblock_order();
587 
588 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
589 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
590 
591 		if (nid == nid_begin) {
592 			map_count++;
593 			continue;
594 		}
595 		/* Init node with sections in range [pnum_begin, pnum_end) */
596 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
597 		nid_begin = nid;
598 		pnum_begin = pnum_end;
599 		map_count = 1;
600 	}
601 	/* cover the last node */
602 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
603 	vmemmap_populate_print_last();
604 }
605 
606 #ifdef CONFIG_MEMORY_HOTPLUG
607 
608 /* Mark all memory sections within the pfn range as online */
609 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
610 {
611 	unsigned long pfn;
612 
613 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
614 		unsigned long section_nr = pfn_to_section_nr(pfn);
615 		struct mem_section *ms;
616 
617 		/* onlining code should never touch invalid ranges */
618 		if (WARN_ON(!valid_section_nr(section_nr)))
619 			continue;
620 
621 		ms = __nr_to_section(section_nr);
622 		ms->section_mem_map |= SECTION_IS_ONLINE;
623 	}
624 }
625 
626 #ifdef CONFIG_MEMORY_HOTREMOVE
627 /* Mark all memory sections within the pfn range as offline */
628 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629 {
630 	unsigned long pfn;
631 
632 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
633 		unsigned long section_nr = pfn_to_section_nr(pfn);
634 		struct mem_section *ms;
635 
636 		/*
637 		 * TODO this needs some double checking. Offlining code makes
638 		 * sure to check pfn_valid but those checks might be just bogus
639 		 */
640 		if (WARN_ON(!valid_section_nr(section_nr)))
641 			continue;
642 
643 		ms = __nr_to_section(section_nr);
644 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
645 	}
646 }
647 #endif
648 
649 #ifdef CONFIG_SPARSEMEM_VMEMMAP
650 static struct page * __meminit populate_section_memmap(unsigned long pfn,
651 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
652 {
653 	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
654 }
655 
656 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
657 		struct vmem_altmap *altmap)
658 {
659 	unsigned long start = (unsigned long) pfn_to_page(pfn);
660 	unsigned long end = start + nr_pages * sizeof(struct page);
661 
662 	vmemmap_free(start, end, altmap);
663 }
664 static void free_map_bootmem(struct page *memmap)
665 {
666 	unsigned long start = (unsigned long)memmap;
667 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668 
669 	vmemmap_free(start, end, NULL);
670 }
671 
672 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
673 {
674 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
675 	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
676 	struct mem_section *ms = __pfn_to_section(pfn);
677 	unsigned long *subsection_map = ms->usage
678 		? &ms->usage->subsection_map[0] : NULL;
679 
680 	subsection_mask_set(map, pfn, nr_pages);
681 	if (subsection_map)
682 		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
683 
684 	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
685 				"section already deactivated (%#lx + %ld)\n",
686 				pfn, nr_pages))
687 		return -EINVAL;
688 
689 	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
690 	return 0;
691 }
692 
693 static bool is_subsection_map_empty(struct mem_section *ms)
694 {
695 	return bitmap_empty(&ms->usage->subsection_map[0],
696 			    SUBSECTIONS_PER_SECTION);
697 }
698 
699 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
700 {
701 	struct mem_section *ms = __pfn_to_section(pfn);
702 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
703 	unsigned long *subsection_map;
704 	int rc = 0;
705 
706 	subsection_mask_set(map, pfn, nr_pages);
707 
708 	subsection_map = &ms->usage->subsection_map[0];
709 
710 	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
711 		rc = -EINVAL;
712 	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
713 		rc = -EEXIST;
714 	else
715 		bitmap_or(subsection_map, map, subsection_map,
716 				SUBSECTIONS_PER_SECTION);
717 
718 	return rc;
719 }
720 #else
721 struct page * __meminit populate_section_memmap(unsigned long pfn,
722 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
723 {
724 	return kvmalloc_node(array_size(sizeof(struct page),
725 					PAGES_PER_SECTION), GFP_KERNEL, nid);
726 }
727 
728 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
729 		struct vmem_altmap *altmap)
730 {
731 	kvfree(pfn_to_page(pfn));
732 }
733 
734 static void free_map_bootmem(struct page *memmap)
735 {
736 	unsigned long maps_section_nr, removing_section_nr, i;
737 	unsigned long magic, nr_pages;
738 	struct page *page = virt_to_page(memmap);
739 
740 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
741 		>> PAGE_SHIFT;
742 
743 	for (i = 0; i < nr_pages; i++, page++) {
744 		magic = (unsigned long) page->freelist;
745 
746 		BUG_ON(magic == NODE_INFO);
747 
748 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
749 		removing_section_nr = page_private(page);
750 
751 		/*
752 		 * When this function is called, the removing section is
753 		 * logical offlined state. This means all pages are isolated
754 		 * from page allocator. If removing section's memmap is placed
755 		 * on the same section, it must not be freed.
756 		 * If it is freed, page allocator may allocate it which will
757 		 * be removed physically soon.
758 		 */
759 		if (maps_section_nr != removing_section_nr)
760 			put_page_bootmem(page);
761 	}
762 }
763 
764 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
765 {
766 	return 0;
767 }
768 
769 static bool is_subsection_map_empty(struct mem_section *ms)
770 {
771 	return true;
772 }
773 
774 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
775 {
776 	return 0;
777 }
778 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
779 
780 /*
781  * To deactivate a memory region, there are 3 cases to handle across
782  * two configurations (SPARSEMEM_VMEMMAP={y,n}):
783  *
784  * 1. deactivation of a partial hot-added section (only possible in
785  *    the SPARSEMEM_VMEMMAP=y case).
786  *      a) section was present at memory init.
787  *      b) section was hot-added post memory init.
788  * 2. deactivation of a complete hot-added section.
789  * 3. deactivation of a complete section from memory init.
790  *
791  * For 1, when subsection_map does not empty we will not be freeing the
792  * usage map, but still need to free the vmemmap range.
793  *
794  * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
795  */
796 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
797 		struct vmem_altmap *altmap)
798 {
799 	struct mem_section *ms = __pfn_to_section(pfn);
800 	bool section_is_early = early_section(ms);
801 	struct page *memmap = NULL;
802 	bool empty;
803 
804 	if (clear_subsection_map(pfn, nr_pages))
805 		return;
806 
807 	empty = is_subsection_map_empty(ms);
808 	if (empty) {
809 		unsigned long section_nr = pfn_to_section_nr(pfn);
810 
811 		/*
812 		 * When removing an early section, the usage map is kept (as the
813 		 * usage maps of other sections fall into the same page). It
814 		 * will be re-used when re-adding the section - which is then no
815 		 * longer an early section. If the usage map is PageReserved, it
816 		 * was allocated during boot.
817 		 */
818 		if (!PageReserved(virt_to_page(ms->usage))) {
819 			kfree(ms->usage);
820 			ms->usage = NULL;
821 		}
822 		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
823 		/*
824 		 * Mark the section invalid so that valid_section()
825 		 * return false. This prevents code from dereferencing
826 		 * ms->usage array.
827 		 */
828 		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
829 	}
830 
831 	/*
832 	 * The memmap of early sections is always fully populated. See
833 	 * section_activate() and pfn_valid() .
834 	 */
835 	if (!section_is_early)
836 		depopulate_section_memmap(pfn, nr_pages, altmap);
837 	else if (memmap)
838 		free_map_bootmem(memmap);
839 
840 	if (empty)
841 		ms->section_mem_map = (unsigned long)NULL;
842 }
843 
844 static struct page * __meminit section_activate(int nid, unsigned long pfn,
845 		unsigned long nr_pages, struct vmem_altmap *altmap)
846 {
847 	struct mem_section *ms = __pfn_to_section(pfn);
848 	struct mem_section_usage *usage = NULL;
849 	struct page *memmap;
850 	int rc = 0;
851 
852 	if (!ms->usage) {
853 		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
854 		if (!usage)
855 			return ERR_PTR(-ENOMEM);
856 		ms->usage = usage;
857 	}
858 
859 	rc = fill_subsection_map(pfn, nr_pages);
860 	if (rc) {
861 		if (usage)
862 			ms->usage = NULL;
863 		kfree(usage);
864 		return ERR_PTR(rc);
865 	}
866 
867 	/*
868 	 * The early init code does not consider partially populated
869 	 * initial sections, it simply assumes that memory will never be
870 	 * referenced.  If we hot-add memory into such a section then we
871 	 * do not need to populate the memmap and can simply reuse what
872 	 * is already there.
873 	 */
874 	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
875 		return pfn_to_page(pfn);
876 
877 	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
878 	if (!memmap) {
879 		section_deactivate(pfn, nr_pages, altmap);
880 		return ERR_PTR(-ENOMEM);
881 	}
882 
883 	return memmap;
884 }
885 
886 /**
887  * sparse_add_section - add a memory section, or populate an existing one
888  * @nid: The node to add section on
889  * @start_pfn: start pfn of the memory range
890  * @nr_pages: number of pfns to add in the section
891  * @altmap: device page map
892  *
893  * This is only intended for hotplug.
894  *
895  * Note that only VMEMMAP supports sub-section aligned hotplug,
896  * the proper alignment and size are gated by check_pfn_span().
897  *
898  *
899  * Return:
900  * * 0		- On success.
901  * * -EEXIST	- Section has been present.
902  * * -ENOMEM	- Out of memory.
903  */
904 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
905 		unsigned long nr_pages, struct vmem_altmap *altmap)
906 {
907 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
908 	struct mem_section *ms;
909 	struct page *memmap;
910 	int ret;
911 
912 	ret = sparse_index_init(section_nr, nid);
913 	if (ret < 0)
914 		return ret;
915 
916 	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
917 	if (IS_ERR(memmap))
918 		return PTR_ERR(memmap);
919 
920 	/*
921 	 * Poison uninitialized struct pages in order to catch invalid flags
922 	 * combinations.
923 	 */
924 	page_init_poison(memmap, sizeof(struct page) * nr_pages);
925 
926 	ms = __nr_to_section(section_nr);
927 	set_section_nid(section_nr, nid);
928 	section_mark_present(ms);
929 
930 	/* Align memmap to section boundary in the subsection case */
931 	if (section_nr_to_pfn(section_nr) != start_pfn)
932 		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
933 	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
934 
935 	return 0;
936 }
937 
938 #ifdef CONFIG_MEMORY_FAILURE
939 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
940 {
941 	int i;
942 
943 	/*
944 	 * A further optimization is to have per section refcounted
945 	 * num_poisoned_pages.  But that would need more space per memmap, so
946 	 * for now just do a quick global check to speed up this routine in the
947 	 * absence of bad pages.
948 	 */
949 	if (atomic_long_read(&num_poisoned_pages) == 0)
950 		return;
951 
952 	for (i = 0; i < nr_pages; i++) {
953 		if (PageHWPoison(&memmap[i])) {
954 			num_poisoned_pages_dec();
955 			ClearPageHWPoison(&memmap[i]);
956 		}
957 	}
958 }
959 #else
960 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
961 {
962 }
963 #endif
964 
965 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
966 		unsigned long nr_pages, unsigned long map_offset,
967 		struct vmem_altmap *altmap)
968 {
969 	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
970 			nr_pages - map_offset);
971 	section_deactivate(pfn, nr_pages, altmap);
972 }
973 #endif /* CONFIG_MEMORY_HOTPLUG */
974