1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/bootmem.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 15 #include "internal.h" 16 #include <asm/dma.h> 17 #include <asm/pgalloc.h> 18 #include <asm/pgtable.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 else 71 section = memblock_virt_alloc_node(array_size, nid); 72 73 return section; 74 } 75 76 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 77 { 78 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 79 struct mem_section *section; 80 81 if (mem_section[root]) 82 return -EEXIST; 83 84 section = sparse_index_alloc(nid); 85 if (!section) 86 return -ENOMEM; 87 88 mem_section[root] = section; 89 90 return 0; 91 } 92 #else /* !SPARSEMEM_EXTREME */ 93 static inline int sparse_index_init(unsigned long section_nr, int nid) 94 { 95 return 0; 96 } 97 #endif 98 99 #ifdef CONFIG_SPARSEMEM_EXTREME 100 int __section_nr(struct mem_section* ms) 101 { 102 unsigned long root_nr; 103 struct mem_section *root = NULL; 104 105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 107 if (!root) 108 continue; 109 110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 111 break; 112 } 113 114 VM_BUG_ON(!root); 115 116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 117 } 118 #else 119 int __section_nr(struct mem_section* ms) 120 { 121 return (int)(ms - mem_section[0]); 122 } 123 #endif 124 125 /* 126 * During early boot, before section_mem_map is used for an actual 127 * mem_map, we use section_mem_map to store the section's NUMA 128 * node. This keeps us from having to use another data structure. The 129 * node information is cleared just before we store the real mem_map. 130 */ 131 static inline unsigned long sparse_encode_early_nid(int nid) 132 { 133 return (nid << SECTION_NID_SHIFT); 134 } 135 136 static inline int sparse_early_nid(struct mem_section *section) 137 { 138 return (section->section_mem_map >> SECTION_NID_SHIFT); 139 } 140 141 /* Validate the physical addressing limitations of the model */ 142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 143 unsigned long *end_pfn) 144 { 145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 146 147 /* 148 * Sanity checks - do not allow an architecture to pass 149 * in larger pfns than the maximum scope of sparsemem: 150 */ 151 if (*start_pfn > max_sparsemem_pfn) { 152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 154 *start_pfn, *end_pfn, max_sparsemem_pfn); 155 WARN_ON_ONCE(1); 156 *start_pfn = max_sparsemem_pfn; 157 *end_pfn = max_sparsemem_pfn; 158 } else if (*end_pfn > max_sparsemem_pfn) { 159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 161 *start_pfn, *end_pfn, max_sparsemem_pfn); 162 WARN_ON_ONCE(1); 163 *end_pfn = max_sparsemem_pfn; 164 } 165 } 166 167 /* 168 * There are a number of times that we loop over NR_MEM_SECTIONS, 169 * looking for section_present() on each. But, when we have very 170 * large physical address spaces, NR_MEM_SECTIONS can also be 171 * very large which makes the loops quite long. 172 * 173 * Keeping track of this gives us an easy way to break out of 174 * those loops early. 175 */ 176 int __highest_present_section_nr; 177 static void section_mark_present(struct mem_section *ms) 178 { 179 int section_nr = __section_nr(ms); 180 181 if (section_nr > __highest_present_section_nr) 182 __highest_present_section_nr = section_nr; 183 184 ms->section_mem_map |= SECTION_MARKED_PRESENT; 185 } 186 187 static inline int next_present_section_nr(int section_nr) 188 { 189 do { 190 section_nr++; 191 if (present_section_nr(section_nr)) 192 return section_nr; 193 } while ((section_nr < NR_MEM_SECTIONS) && 194 (section_nr <= __highest_present_section_nr)); 195 196 return -1; 197 } 198 #define for_each_present_section_nr(start, section_nr) \ 199 for (section_nr = next_present_section_nr(start-1); \ 200 ((section_nr >= 0) && \ 201 (section_nr < NR_MEM_SECTIONS) && \ 202 (section_nr <= __highest_present_section_nr)); \ 203 section_nr = next_present_section_nr(section_nr)) 204 205 /* Record a memory area against a node. */ 206 void __init memory_present(int nid, unsigned long start, unsigned long end) 207 { 208 unsigned long pfn; 209 210 #ifdef CONFIG_SPARSEMEM_EXTREME 211 if (unlikely(!mem_section)) { 212 unsigned long size, align; 213 214 size = sizeof(struct mem_section) * NR_SECTION_ROOTS; 215 align = 1 << (INTERNODE_CACHE_SHIFT); 216 mem_section = memblock_virt_alloc(size, align); 217 } 218 #endif 219 220 start &= PAGE_SECTION_MASK; 221 mminit_validate_memmodel_limits(&start, &end); 222 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 223 unsigned long section = pfn_to_section_nr(pfn); 224 struct mem_section *ms; 225 226 sparse_index_init(section, nid); 227 set_section_nid(section, nid); 228 229 ms = __nr_to_section(section); 230 if (!ms->section_mem_map) { 231 ms->section_mem_map = sparse_encode_early_nid(nid) | 232 SECTION_IS_ONLINE; 233 section_mark_present(ms); 234 } 235 } 236 } 237 238 /* 239 * Only used by the i386 NUMA architecures, but relatively 240 * generic code. 241 */ 242 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 243 unsigned long end_pfn) 244 { 245 unsigned long pfn; 246 unsigned long nr_pages = 0; 247 248 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 249 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 250 if (nid != early_pfn_to_nid(pfn)) 251 continue; 252 253 if (pfn_present(pfn)) 254 nr_pages += PAGES_PER_SECTION; 255 } 256 257 return nr_pages * sizeof(struct page); 258 } 259 260 /* 261 * Subtle, we encode the real pfn into the mem_map such that 262 * the identity pfn - section_mem_map will return the actual 263 * physical page frame number. 264 */ 265 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 266 { 267 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 268 } 269 270 /* 271 * Decode mem_map from the coded memmap 272 */ 273 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 274 { 275 /* mask off the extra low bits of information */ 276 coded_mem_map &= SECTION_MAP_MASK; 277 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 278 } 279 280 static int __meminit sparse_init_one_section(struct mem_section *ms, 281 unsigned long pnum, struct page *mem_map, 282 unsigned long *pageblock_bitmap) 283 { 284 if (!present_section(ms)) 285 return -EINVAL; 286 287 ms->section_mem_map &= ~SECTION_MAP_MASK; 288 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 289 SECTION_HAS_MEM_MAP; 290 ms->pageblock_flags = pageblock_bitmap; 291 292 return 1; 293 } 294 295 unsigned long usemap_size(void) 296 { 297 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 298 } 299 300 #ifdef CONFIG_MEMORY_HOTPLUG 301 static unsigned long *__kmalloc_section_usemap(void) 302 { 303 return kmalloc(usemap_size(), GFP_KERNEL); 304 } 305 #endif /* CONFIG_MEMORY_HOTPLUG */ 306 307 #ifdef CONFIG_MEMORY_HOTREMOVE 308 static unsigned long * __init 309 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 310 unsigned long size) 311 { 312 unsigned long goal, limit; 313 unsigned long *p; 314 int nid; 315 /* 316 * A page may contain usemaps for other sections preventing the 317 * page being freed and making a section unremovable while 318 * other sections referencing the usemap remain active. Similarly, 319 * a pgdat can prevent a section being removed. If section A 320 * contains a pgdat and section B contains the usemap, both 321 * sections become inter-dependent. This allocates usemaps 322 * from the same section as the pgdat where possible to avoid 323 * this problem. 324 */ 325 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 326 limit = goal + (1UL << PA_SECTION_SHIFT); 327 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 328 again: 329 p = memblock_virt_alloc_try_nid_nopanic(size, 330 SMP_CACHE_BYTES, goal, limit, 331 nid); 332 if (!p && limit) { 333 limit = 0; 334 goto again; 335 } 336 return p; 337 } 338 339 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 340 { 341 unsigned long usemap_snr, pgdat_snr; 342 static unsigned long old_usemap_snr; 343 static unsigned long old_pgdat_snr; 344 struct pglist_data *pgdat = NODE_DATA(nid); 345 int usemap_nid; 346 347 /* First call */ 348 if (!old_usemap_snr) { 349 old_usemap_snr = NR_MEM_SECTIONS; 350 old_pgdat_snr = NR_MEM_SECTIONS; 351 } 352 353 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 354 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 355 if (usemap_snr == pgdat_snr) 356 return; 357 358 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 359 /* skip redundant message */ 360 return; 361 362 old_usemap_snr = usemap_snr; 363 old_pgdat_snr = pgdat_snr; 364 365 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 366 if (usemap_nid != nid) { 367 pr_info("node %d must be removed before remove section %ld\n", 368 nid, usemap_snr); 369 return; 370 } 371 /* 372 * There is a circular dependency. 373 * Some platforms allow un-removable section because they will just 374 * gather other removable sections for dynamic partitioning. 375 * Just notify un-removable section's number here. 376 */ 377 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 378 usemap_snr, pgdat_snr, nid); 379 } 380 #else 381 static unsigned long * __init 382 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 383 unsigned long size) 384 { 385 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 386 } 387 388 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 389 { 390 } 391 #endif /* CONFIG_MEMORY_HOTREMOVE */ 392 393 static void __init sparse_early_usemaps_alloc_node(void *data, 394 unsigned long pnum_begin, 395 unsigned long pnum_end, 396 unsigned long usemap_count, int nodeid) 397 { 398 void *usemap; 399 unsigned long pnum; 400 unsigned long **usemap_map = (unsigned long **)data; 401 int size = usemap_size(); 402 403 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 404 size * usemap_count); 405 if (!usemap) { 406 pr_warn("%s: allocation failed\n", __func__); 407 return; 408 } 409 410 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 411 if (!present_section_nr(pnum)) 412 continue; 413 usemap_map[pnum] = usemap; 414 usemap += size; 415 check_usemap_section_nr(nodeid, usemap_map[pnum]); 416 } 417 } 418 419 #ifndef CONFIG_SPARSEMEM_VMEMMAP 420 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 421 { 422 struct page *map; 423 unsigned long size; 424 425 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 426 if (map) 427 return map; 428 429 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 430 map = memblock_virt_alloc_try_nid(size, 431 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 432 BOOTMEM_ALLOC_ACCESSIBLE, nid); 433 return map; 434 } 435 void __init sparse_mem_maps_populate_node(struct page **map_map, 436 unsigned long pnum_begin, 437 unsigned long pnum_end, 438 unsigned long map_count, int nodeid) 439 { 440 void *map; 441 unsigned long pnum; 442 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 443 444 map = alloc_remap(nodeid, size * map_count); 445 if (map) { 446 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 447 if (!present_section_nr(pnum)) 448 continue; 449 map_map[pnum] = map; 450 map += size; 451 } 452 return; 453 } 454 455 size = PAGE_ALIGN(size); 456 map = memblock_virt_alloc_try_nid_raw(size * map_count, 457 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 458 BOOTMEM_ALLOC_ACCESSIBLE, nodeid); 459 if (map) { 460 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 461 if (!present_section_nr(pnum)) 462 continue; 463 map_map[pnum] = map; 464 map += size; 465 } 466 return; 467 } 468 469 /* fallback */ 470 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 471 struct mem_section *ms; 472 473 if (!present_section_nr(pnum)) 474 continue; 475 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 476 if (map_map[pnum]) 477 continue; 478 ms = __nr_to_section(pnum); 479 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 480 __func__); 481 ms->section_mem_map = 0; 482 } 483 } 484 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 485 486 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 487 static void __init sparse_early_mem_maps_alloc_node(void *data, 488 unsigned long pnum_begin, 489 unsigned long pnum_end, 490 unsigned long map_count, int nodeid) 491 { 492 struct page **map_map = (struct page **)data; 493 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 494 map_count, nodeid); 495 } 496 #else 497 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 498 { 499 struct page *map; 500 struct mem_section *ms = __nr_to_section(pnum); 501 int nid = sparse_early_nid(ms); 502 503 map = sparse_mem_map_populate(pnum, nid); 504 if (map) 505 return map; 506 507 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 508 __func__); 509 ms->section_mem_map = 0; 510 return NULL; 511 } 512 #endif 513 514 void __weak __meminit vmemmap_populate_print_last(void) 515 { 516 } 517 518 /** 519 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap 520 * @map: usemap_map for pageblock flags or mmap_map for vmemmap 521 */ 522 static void __init alloc_usemap_and_memmap(void (*alloc_func) 523 (void *, unsigned long, unsigned long, 524 unsigned long, int), void *data) 525 { 526 unsigned long pnum; 527 unsigned long map_count; 528 int nodeid_begin = 0; 529 unsigned long pnum_begin = 0; 530 531 for_each_present_section_nr(0, pnum) { 532 struct mem_section *ms; 533 534 ms = __nr_to_section(pnum); 535 nodeid_begin = sparse_early_nid(ms); 536 pnum_begin = pnum; 537 break; 538 } 539 map_count = 1; 540 for_each_present_section_nr(pnum_begin + 1, pnum) { 541 struct mem_section *ms; 542 int nodeid; 543 544 ms = __nr_to_section(pnum); 545 nodeid = sparse_early_nid(ms); 546 if (nodeid == nodeid_begin) { 547 map_count++; 548 continue; 549 } 550 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 551 alloc_func(data, pnum_begin, pnum, 552 map_count, nodeid_begin); 553 /* new start, update count etc*/ 554 nodeid_begin = nodeid; 555 pnum_begin = pnum; 556 map_count = 1; 557 } 558 /* ok, last chunk */ 559 alloc_func(data, pnum_begin, NR_MEM_SECTIONS, 560 map_count, nodeid_begin); 561 } 562 563 /* 564 * Allocate the accumulated non-linear sections, allocate a mem_map 565 * for each and record the physical to section mapping. 566 */ 567 void __init sparse_init(void) 568 { 569 unsigned long pnum; 570 struct page *map; 571 unsigned long *usemap; 572 unsigned long **usemap_map; 573 int size; 574 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 575 int size2; 576 struct page **map_map; 577 #endif 578 579 /* see include/linux/mmzone.h 'struct mem_section' definition */ 580 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 581 582 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 583 set_pageblock_order(); 584 585 /* 586 * map is using big page (aka 2M in x86 64 bit) 587 * usemap is less one page (aka 24 bytes) 588 * so alloc 2M (with 2M align) and 24 bytes in turn will 589 * make next 2M slip to one more 2M later. 590 * then in big system, the memory will have a lot of holes... 591 * here try to allocate 2M pages continuously. 592 * 593 * powerpc need to call sparse_init_one_section right after each 594 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 595 */ 596 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 597 usemap_map = memblock_virt_alloc(size, 0); 598 if (!usemap_map) 599 panic("can not allocate usemap_map\n"); 600 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, 601 (void *)usemap_map); 602 603 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 604 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 605 map_map = memblock_virt_alloc(size2, 0); 606 if (!map_map) 607 panic("can not allocate map_map\n"); 608 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, 609 (void *)map_map); 610 #endif 611 612 for_each_present_section_nr(0, pnum) { 613 usemap = usemap_map[pnum]; 614 if (!usemap) 615 continue; 616 617 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 618 map = map_map[pnum]; 619 #else 620 map = sparse_early_mem_map_alloc(pnum); 621 #endif 622 if (!map) 623 continue; 624 625 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 626 usemap); 627 } 628 629 vmemmap_populate_print_last(); 630 631 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 632 memblock_free_early(__pa(map_map), size2); 633 #endif 634 memblock_free_early(__pa(usemap_map), size); 635 } 636 637 #ifdef CONFIG_MEMORY_HOTPLUG 638 639 /* Mark all memory sections within the pfn range as online */ 640 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 641 { 642 unsigned long pfn; 643 644 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 645 unsigned long section_nr = pfn_to_section_nr(pfn); 646 struct mem_section *ms; 647 648 /* onlining code should never touch invalid ranges */ 649 if (WARN_ON(!valid_section_nr(section_nr))) 650 continue; 651 652 ms = __nr_to_section(section_nr); 653 ms->section_mem_map |= SECTION_IS_ONLINE; 654 } 655 } 656 657 #ifdef CONFIG_MEMORY_HOTREMOVE 658 /* Mark all memory sections within the pfn range as online */ 659 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 660 { 661 unsigned long pfn; 662 663 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 664 unsigned long section_nr = pfn_to_section_nr(start_pfn); 665 struct mem_section *ms; 666 667 /* 668 * TODO this needs some double checking. Offlining code makes 669 * sure to check pfn_valid but those checks might be just bogus 670 */ 671 if (WARN_ON(!valid_section_nr(section_nr))) 672 continue; 673 674 ms = __nr_to_section(section_nr); 675 ms->section_mem_map &= ~SECTION_IS_ONLINE; 676 } 677 } 678 #endif 679 680 #ifdef CONFIG_SPARSEMEM_VMEMMAP 681 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 682 { 683 /* This will make the necessary allocations eventually. */ 684 return sparse_mem_map_populate(pnum, nid); 685 } 686 static void __kfree_section_memmap(struct page *memmap) 687 { 688 unsigned long start = (unsigned long)memmap; 689 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 690 691 vmemmap_free(start, end); 692 } 693 #ifdef CONFIG_MEMORY_HOTREMOVE 694 static void free_map_bootmem(struct page *memmap) 695 { 696 unsigned long start = (unsigned long)memmap; 697 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 698 699 vmemmap_free(start, end); 700 } 701 #endif /* CONFIG_MEMORY_HOTREMOVE */ 702 #else 703 static struct page *__kmalloc_section_memmap(void) 704 { 705 struct page *page, *ret; 706 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 707 708 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 709 if (page) 710 goto got_map_page; 711 712 ret = vmalloc(memmap_size); 713 if (ret) 714 goto got_map_ptr; 715 716 return NULL; 717 got_map_page: 718 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 719 got_map_ptr: 720 721 return ret; 722 } 723 724 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 725 { 726 return __kmalloc_section_memmap(); 727 } 728 729 static void __kfree_section_memmap(struct page *memmap) 730 { 731 if (is_vmalloc_addr(memmap)) 732 vfree(memmap); 733 else 734 free_pages((unsigned long)memmap, 735 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 736 } 737 738 #ifdef CONFIG_MEMORY_HOTREMOVE 739 static void free_map_bootmem(struct page *memmap) 740 { 741 unsigned long maps_section_nr, removing_section_nr, i; 742 unsigned long magic, nr_pages; 743 struct page *page = virt_to_page(memmap); 744 745 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 746 >> PAGE_SHIFT; 747 748 for (i = 0; i < nr_pages; i++, page++) { 749 magic = (unsigned long) page->freelist; 750 751 BUG_ON(magic == NODE_INFO); 752 753 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 754 removing_section_nr = page_private(page); 755 756 /* 757 * When this function is called, the removing section is 758 * logical offlined state. This means all pages are isolated 759 * from page allocator. If removing section's memmap is placed 760 * on the same section, it must not be freed. 761 * If it is freed, page allocator may allocate it which will 762 * be removed physically soon. 763 */ 764 if (maps_section_nr != removing_section_nr) 765 put_page_bootmem(page); 766 } 767 } 768 #endif /* CONFIG_MEMORY_HOTREMOVE */ 769 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 770 771 /* 772 * returns the number of sections whose mem_maps were properly 773 * set. If this is <=0, then that means that the passed-in 774 * map was not consumed and must be freed. 775 */ 776 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn) 777 { 778 unsigned long section_nr = pfn_to_section_nr(start_pfn); 779 struct mem_section *ms; 780 struct page *memmap; 781 unsigned long *usemap; 782 unsigned long flags; 783 int ret; 784 785 /* 786 * no locking for this, because it does its own 787 * plus, it does a kmalloc 788 */ 789 ret = sparse_index_init(section_nr, pgdat->node_id); 790 if (ret < 0 && ret != -EEXIST) 791 return ret; 792 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id); 793 if (!memmap) 794 return -ENOMEM; 795 usemap = __kmalloc_section_usemap(); 796 if (!usemap) { 797 __kfree_section_memmap(memmap); 798 return -ENOMEM; 799 } 800 801 pgdat_resize_lock(pgdat, &flags); 802 803 ms = __pfn_to_section(start_pfn); 804 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 805 ret = -EEXIST; 806 goto out; 807 } 808 809 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION); 810 811 section_mark_present(ms); 812 813 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 814 815 out: 816 pgdat_resize_unlock(pgdat, &flags); 817 if (ret <= 0) { 818 kfree(usemap); 819 __kfree_section_memmap(memmap); 820 } 821 return ret; 822 } 823 824 #ifdef CONFIG_MEMORY_HOTREMOVE 825 #ifdef CONFIG_MEMORY_FAILURE 826 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 827 { 828 int i; 829 830 if (!memmap) 831 return; 832 833 for (i = 0; i < nr_pages; i++) { 834 if (PageHWPoison(&memmap[i])) { 835 atomic_long_sub(1, &num_poisoned_pages); 836 ClearPageHWPoison(&memmap[i]); 837 } 838 } 839 } 840 #else 841 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 842 { 843 } 844 #endif 845 846 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 847 { 848 struct page *usemap_page; 849 850 if (!usemap) 851 return; 852 853 usemap_page = virt_to_page(usemap); 854 /* 855 * Check to see if allocation came from hot-plug-add 856 */ 857 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 858 kfree(usemap); 859 if (memmap) 860 __kfree_section_memmap(memmap); 861 return; 862 } 863 864 /* 865 * The usemap came from bootmem. This is packed with other usemaps 866 * on the section which has pgdat at boot time. Just keep it as is now. 867 */ 868 869 if (memmap) 870 free_map_bootmem(memmap); 871 } 872 873 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 874 unsigned long map_offset) 875 { 876 struct page *memmap = NULL; 877 unsigned long *usemap = NULL, flags; 878 struct pglist_data *pgdat = zone->zone_pgdat; 879 880 pgdat_resize_lock(pgdat, &flags); 881 if (ms->section_mem_map) { 882 usemap = ms->pageblock_flags; 883 memmap = sparse_decode_mem_map(ms->section_mem_map, 884 __section_nr(ms)); 885 ms->section_mem_map = 0; 886 ms->pageblock_flags = NULL; 887 } 888 pgdat_resize_unlock(pgdat, &flags); 889 890 clear_hwpoisoned_pages(memmap + map_offset, 891 PAGES_PER_SECTION - map_offset); 892 free_section_usemap(memmap, usemap); 893 } 894 #endif /* CONFIG_MEMORY_HOTREMOVE */ 895 #endif /* CONFIG_MEMORY_HOTPLUG */ 896