xref: /openbmc/linux/mm/sparse.c (revision 4a3fad70)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19 
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section	- memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available())
69 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 	else
71 		section = memblock_virt_alloc_node(array_size, nid);
72 
73 	return section;
74 }
75 
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 	struct mem_section *section;
80 
81 	if (mem_section[root])
82 		return -EEXIST;
83 
84 	section = sparse_index_alloc(nid);
85 	if (!section)
86 		return -ENOMEM;
87 
88 	mem_section[root] = section;
89 
90 	return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95 	return 0;
96 }
97 #endif
98 
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102 	unsigned long root_nr;
103 	struct mem_section *root = NULL;
104 
105 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 		if (!root)
108 			continue;
109 
110 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 		     break;
112 	}
113 
114 	VM_BUG_ON(!root);
115 
116 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121 	return (int)(ms - mem_section[0]);
122 }
123 #endif
124 
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133 	return (nid << SECTION_NID_SHIFT);
134 }
135 
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138 	return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140 
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 						unsigned long *end_pfn)
144 {
145 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146 
147 	/*
148 	 * Sanity checks - do not allow an architecture to pass
149 	 * in larger pfns than the maximum scope of sparsemem:
150 	 */
151 	if (*start_pfn > max_sparsemem_pfn) {
152 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 			*start_pfn, *end_pfn, max_sparsemem_pfn);
155 		WARN_ON_ONCE(1);
156 		*start_pfn = max_sparsemem_pfn;
157 		*end_pfn = max_sparsemem_pfn;
158 	} else if (*end_pfn > max_sparsemem_pfn) {
159 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 			*start_pfn, *end_pfn, max_sparsemem_pfn);
162 		WARN_ON_ONCE(1);
163 		*end_pfn = max_sparsemem_pfn;
164 	}
165 }
166 
167 /*
168  * There are a number of times that we loop over NR_MEM_SECTIONS,
169  * looking for section_present() on each.  But, when we have very
170  * large physical address spaces, NR_MEM_SECTIONS can also be
171  * very large which makes the loops quite long.
172  *
173  * Keeping track of this gives us an easy way to break out of
174  * those loops early.
175  */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179 	int section_nr = __section_nr(ms);
180 
181 	if (section_nr > __highest_present_section_nr)
182 		__highest_present_section_nr = section_nr;
183 
184 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186 
187 static inline int next_present_section_nr(int section_nr)
188 {
189 	do {
190 		section_nr++;
191 		if (present_section_nr(section_nr))
192 			return section_nr;
193 	} while ((section_nr < NR_MEM_SECTIONS) &&
194 		 (section_nr <= __highest_present_section_nr));
195 
196 	return -1;
197 }
198 #define for_each_present_section_nr(start, section_nr)		\
199 	for (section_nr = next_present_section_nr(start-1);	\
200 	     ((section_nr >= 0) &&				\
201 	      (section_nr < NR_MEM_SECTIONS) &&			\
202 	      (section_nr <= __highest_present_section_nr));	\
203 	     section_nr = next_present_section_nr(section_nr))
204 
205 /* Record a memory area against a node. */
206 void __init memory_present(int nid, unsigned long start, unsigned long end)
207 {
208 	unsigned long pfn;
209 
210 #ifdef CONFIG_SPARSEMEM_EXTREME
211 	if (unlikely(!mem_section)) {
212 		unsigned long size, align;
213 
214 		size = sizeof(struct mem_section) * NR_SECTION_ROOTS;
215 		align = 1 << (INTERNODE_CACHE_SHIFT);
216 		mem_section = memblock_virt_alloc(size, align);
217 	}
218 #endif
219 
220 	start &= PAGE_SECTION_MASK;
221 	mminit_validate_memmodel_limits(&start, &end);
222 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
223 		unsigned long section = pfn_to_section_nr(pfn);
224 		struct mem_section *ms;
225 
226 		sparse_index_init(section, nid);
227 		set_section_nid(section, nid);
228 
229 		ms = __nr_to_section(section);
230 		if (!ms->section_mem_map) {
231 			ms->section_mem_map = sparse_encode_early_nid(nid) |
232 							SECTION_IS_ONLINE;
233 			section_mark_present(ms);
234 		}
235 	}
236 }
237 
238 /*
239  * Only used by the i386 NUMA architecures, but relatively
240  * generic code.
241  */
242 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
243 						     unsigned long end_pfn)
244 {
245 	unsigned long pfn;
246 	unsigned long nr_pages = 0;
247 
248 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
249 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
250 		if (nid != early_pfn_to_nid(pfn))
251 			continue;
252 
253 		if (pfn_present(pfn))
254 			nr_pages += PAGES_PER_SECTION;
255 	}
256 
257 	return nr_pages * sizeof(struct page);
258 }
259 
260 /*
261  * Subtle, we encode the real pfn into the mem_map such that
262  * the identity pfn - section_mem_map will return the actual
263  * physical page frame number.
264  */
265 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
266 {
267 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
268 }
269 
270 /*
271  * Decode mem_map from the coded memmap
272  */
273 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
274 {
275 	/* mask off the extra low bits of information */
276 	coded_mem_map &= SECTION_MAP_MASK;
277 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
278 }
279 
280 static int __meminit sparse_init_one_section(struct mem_section *ms,
281 		unsigned long pnum, struct page *mem_map,
282 		unsigned long *pageblock_bitmap)
283 {
284 	if (!present_section(ms))
285 		return -EINVAL;
286 
287 	ms->section_mem_map &= ~SECTION_MAP_MASK;
288 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
289 							SECTION_HAS_MEM_MAP;
290  	ms->pageblock_flags = pageblock_bitmap;
291 
292 	return 1;
293 }
294 
295 unsigned long usemap_size(void)
296 {
297 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
298 }
299 
300 #ifdef CONFIG_MEMORY_HOTPLUG
301 static unsigned long *__kmalloc_section_usemap(void)
302 {
303 	return kmalloc(usemap_size(), GFP_KERNEL);
304 }
305 #endif /* CONFIG_MEMORY_HOTPLUG */
306 
307 #ifdef CONFIG_MEMORY_HOTREMOVE
308 static unsigned long * __init
309 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
310 					 unsigned long size)
311 {
312 	unsigned long goal, limit;
313 	unsigned long *p;
314 	int nid;
315 	/*
316 	 * A page may contain usemaps for other sections preventing the
317 	 * page being freed and making a section unremovable while
318 	 * other sections referencing the usemap remain active. Similarly,
319 	 * a pgdat can prevent a section being removed. If section A
320 	 * contains a pgdat and section B contains the usemap, both
321 	 * sections become inter-dependent. This allocates usemaps
322 	 * from the same section as the pgdat where possible to avoid
323 	 * this problem.
324 	 */
325 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
326 	limit = goal + (1UL << PA_SECTION_SHIFT);
327 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
328 again:
329 	p = memblock_virt_alloc_try_nid_nopanic(size,
330 						SMP_CACHE_BYTES, goal, limit,
331 						nid);
332 	if (!p && limit) {
333 		limit = 0;
334 		goto again;
335 	}
336 	return p;
337 }
338 
339 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
340 {
341 	unsigned long usemap_snr, pgdat_snr;
342 	static unsigned long old_usemap_snr;
343 	static unsigned long old_pgdat_snr;
344 	struct pglist_data *pgdat = NODE_DATA(nid);
345 	int usemap_nid;
346 
347 	/* First call */
348 	if (!old_usemap_snr) {
349 		old_usemap_snr = NR_MEM_SECTIONS;
350 		old_pgdat_snr = NR_MEM_SECTIONS;
351 	}
352 
353 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
354 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
355 	if (usemap_snr == pgdat_snr)
356 		return;
357 
358 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
359 		/* skip redundant message */
360 		return;
361 
362 	old_usemap_snr = usemap_snr;
363 	old_pgdat_snr = pgdat_snr;
364 
365 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
366 	if (usemap_nid != nid) {
367 		pr_info("node %d must be removed before remove section %ld\n",
368 			nid, usemap_snr);
369 		return;
370 	}
371 	/*
372 	 * There is a circular dependency.
373 	 * Some platforms allow un-removable section because they will just
374 	 * gather other removable sections for dynamic partitioning.
375 	 * Just notify un-removable section's number here.
376 	 */
377 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
378 		usemap_snr, pgdat_snr, nid);
379 }
380 #else
381 static unsigned long * __init
382 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
383 					 unsigned long size)
384 {
385 	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
386 }
387 
388 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
389 {
390 }
391 #endif /* CONFIG_MEMORY_HOTREMOVE */
392 
393 static void __init sparse_early_usemaps_alloc_node(void *data,
394 				 unsigned long pnum_begin,
395 				 unsigned long pnum_end,
396 				 unsigned long usemap_count, int nodeid)
397 {
398 	void *usemap;
399 	unsigned long pnum;
400 	unsigned long **usemap_map = (unsigned long **)data;
401 	int size = usemap_size();
402 
403 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
404 							  size * usemap_count);
405 	if (!usemap) {
406 		pr_warn("%s: allocation failed\n", __func__);
407 		return;
408 	}
409 
410 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
411 		if (!present_section_nr(pnum))
412 			continue;
413 		usemap_map[pnum] = usemap;
414 		usemap += size;
415 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
416 	}
417 }
418 
419 #ifndef CONFIG_SPARSEMEM_VMEMMAP
420 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
421 {
422 	struct page *map;
423 	unsigned long size;
424 
425 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
426 	if (map)
427 		return map;
428 
429 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
430 	map = memblock_virt_alloc_try_nid(size,
431 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
432 					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
433 	return map;
434 }
435 void __init sparse_mem_maps_populate_node(struct page **map_map,
436 					  unsigned long pnum_begin,
437 					  unsigned long pnum_end,
438 					  unsigned long map_count, int nodeid)
439 {
440 	void *map;
441 	unsigned long pnum;
442 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
443 
444 	map = alloc_remap(nodeid, size * map_count);
445 	if (map) {
446 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
447 			if (!present_section_nr(pnum))
448 				continue;
449 			map_map[pnum] = map;
450 			map += size;
451 		}
452 		return;
453 	}
454 
455 	size = PAGE_ALIGN(size);
456 	map = memblock_virt_alloc_try_nid_raw(size * map_count,
457 					      PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
458 					      BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
459 	if (map) {
460 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
461 			if (!present_section_nr(pnum))
462 				continue;
463 			map_map[pnum] = map;
464 			map += size;
465 		}
466 		return;
467 	}
468 
469 	/* fallback */
470 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
471 		struct mem_section *ms;
472 
473 		if (!present_section_nr(pnum))
474 			continue;
475 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
476 		if (map_map[pnum])
477 			continue;
478 		ms = __nr_to_section(pnum);
479 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
480 		       __func__);
481 		ms->section_mem_map = 0;
482 	}
483 }
484 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
485 
486 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
487 static void __init sparse_early_mem_maps_alloc_node(void *data,
488 				 unsigned long pnum_begin,
489 				 unsigned long pnum_end,
490 				 unsigned long map_count, int nodeid)
491 {
492 	struct page **map_map = (struct page **)data;
493 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
494 					 map_count, nodeid);
495 }
496 #else
497 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
498 {
499 	struct page *map;
500 	struct mem_section *ms = __nr_to_section(pnum);
501 	int nid = sparse_early_nid(ms);
502 
503 	map = sparse_mem_map_populate(pnum, nid);
504 	if (map)
505 		return map;
506 
507 	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
508 	       __func__);
509 	ms->section_mem_map = 0;
510 	return NULL;
511 }
512 #endif
513 
514 void __weak __meminit vmemmap_populate_print_last(void)
515 {
516 }
517 
518 /**
519  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
520  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
521  */
522 static void __init alloc_usemap_and_memmap(void (*alloc_func)
523 					(void *, unsigned long, unsigned long,
524 					unsigned long, int), void *data)
525 {
526 	unsigned long pnum;
527 	unsigned long map_count;
528 	int nodeid_begin = 0;
529 	unsigned long pnum_begin = 0;
530 
531 	for_each_present_section_nr(0, pnum) {
532 		struct mem_section *ms;
533 
534 		ms = __nr_to_section(pnum);
535 		nodeid_begin = sparse_early_nid(ms);
536 		pnum_begin = pnum;
537 		break;
538 	}
539 	map_count = 1;
540 	for_each_present_section_nr(pnum_begin + 1, pnum) {
541 		struct mem_section *ms;
542 		int nodeid;
543 
544 		ms = __nr_to_section(pnum);
545 		nodeid = sparse_early_nid(ms);
546 		if (nodeid == nodeid_begin) {
547 			map_count++;
548 			continue;
549 		}
550 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
551 		alloc_func(data, pnum_begin, pnum,
552 						map_count, nodeid_begin);
553 		/* new start, update count etc*/
554 		nodeid_begin = nodeid;
555 		pnum_begin = pnum;
556 		map_count = 1;
557 	}
558 	/* ok, last chunk */
559 	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
560 						map_count, nodeid_begin);
561 }
562 
563 /*
564  * Allocate the accumulated non-linear sections, allocate a mem_map
565  * for each and record the physical to section mapping.
566  */
567 void __init sparse_init(void)
568 {
569 	unsigned long pnum;
570 	struct page *map;
571 	unsigned long *usemap;
572 	unsigned long **usemap_map;
573 	int size;
574 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
575 	int size2;
576 	struct page **map_map;
577 #endif
578 
579 	/* see include/linux/mmzone.h 'struct mem_section' definition */
580 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
581 
582 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
583 	set_pageblock_order();
584 
585 	/*
586 	 * map is using big page (aka 2M in x86 64 bit)
587 	 * usemap is less one page (aka 24 bytes)
588 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
589 	 * make next 2M slip to one more 2M later.
590 	 * then in big system, the memory will have a lot of holes...
591 	 * here try to allocate 2M pages continuously.
592 	 *
593 	 * powerpc need to call sparse_init_one_section right after each
594 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
595 	 */
596 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
597 	usemap_map = memblock_virt_alloc(size, 0);
598 	if (!usemap_map)
599 		panic("can not allocate usemap_map\n");
600 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
601 							(void *)usemap_map);
602 
603 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
604 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
605 	map_map = memblock_virt_alloc(size2, 0);
606 	if (!map_map)
607 		panic("can not allocate map_map\n");
608 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
609 							(void *)map_map);
610 #endif
611 
612 	for_each_present_section_nr(0, pnum) {
613 		usemap = usemap_map[pnum];
614 		if (!usemap)
615 			continue;
616 
617 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
618 		map = map_map[pnum];
619 #else
620 		map = sparse_early_mem_map_alloc(pnum);
621 #endif
622 		if (!map)
623 			continue;
624 
625 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
626 								usemap);
627 	}
628 
629 	vmemmap_populate_print_last();
630 
631 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
632 	memblock_free_early(__pa(map_map), size2);
633 #endif
634 	memblock_free_early(__pa(usemap_map), size);
635 }
636 
637 #ifdef CONFIG_MEMORY_HOTPLUG
638 
639 /* Mark all memory sections within the pfn range as online */
640 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
641 {
642 	unsigned long pfn;
643 
644 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
645 		unsigned long section_nr = pfn_to_section_nr(pfn);
646 		struct mem_section *ms;
647 
648 		/* onlining code should never touch invalid ranges */
649 		if (WARN_ON(!valid_section_nr(section_nr)))
650 			continue;
651 
652 		ms = __nr_to_section(section_nr);
653 		ms->section_mem_map |= SECTION_IS_ONLINE;
654 	}
655 }
656 
657 #ifdef CONFIG_MEMORY_HOTREMOVE
658 /* Mark all memory sections within the pfn range as online */
659 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
660 {
661 	unsigned long pfn;
662 
663 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
664 		unsigned long section_nr = pfn_to_section_nr(start_pfn);
665 		struct mem_section *ms;
666 
667 		/*
668 		 * TODO this needs some double checking. Offlining code makes
669 		 * sure to check pfn_valid but those checks might be just bogus
670 		 */
671 		if (WARN_ON(!valid_section_nr(section_nr)))
672 			continue;
673 
674 		ms = __nr_to_section(section_nr);
675 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
676 	}
677 }
678 #endif
679 
680 #ifdef CONFIG_SPARSEMEM_VMEMMAP
681 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
682 {
683 	/* This will make the necessary allocations eventually. */
684 	return sparse_mem_map_populate(pnum, nid);
685 }
686 static void __kfree_section_memmap(struct page *memmap)
687 {
688 	unsigned long start = (unsigned long)memmap;
689 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
690 
691 	vmemmap_free(start, end);
692 }
693 #ifdef CONFIG_MEMORY_HOTREMOVE
694 static void free_map_bootmem(struct page *memmap)
695 {
696 	unsigned long start = (unsigned long)memmap;
697 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
698 
699 	vmemmap_free(start, end);
700 }
701 #endif /* CONFIG_MEMORY_HOTREMOVE */
702 #else
703 static struct page *__kmalloc_section_memmap(void)
704 {
705 	struct page *page, *ret;
706 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
707 
708 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
709 	if (page)
710 		goto got_map_page;
711 
712 	ret = vmalloc(memmap_size);
713 	if (ret)
714 		goto got_map_ptr;
715 
716 	return NULL;
717 got_map_page:
718 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
719 got_map_ptr:
720 
721 	return ret;
722 }
723 
724 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
725 {
726 	return __kmalloc_section_memmap();
727 }
728 
729 static void __kfree_section_memmap(struct page *memmap)
730 {
731 	if (is_vmalloc_addr(memmap))
732 		vfree(memmap);
733 	else
734 		free_pages((unsigned long)memmap,
735 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
736 }
737 
738 #ifdef CONFIG_MEMORY_HOTREMOVE
739 static void free_map_bootmem(struct page *memmap)
740 {
741 	unsigned long maps_section_nr, removing_section_nr, i;
742 	unsigned long magic, nr_pages;
743 	struct page *page = virt_to_page(memmap);
744 
745 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
746 		>> PAGE_SHIFT;
747 
748 	for (i = 0; i < nr_pages; i++, page++) {
749 		magic = (unsigned long) page->freelist;
750 
751 		BUG_ON(magic == NODE_INFO);
752 
753 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
754 		removing_section_nr = page_private(page);
755 
756 		/*
757 		 * When this function is called, the removing section is
758 		 * logical offlined state. This means all pages are isolated
759 		 * from page allocator. If removing section's memmap is placed
760 		 * on the same section, it must not be freed.
761 		 * If it is freed, page allocator may allocate it which will
762 		 * be removed physically soon.
763 		 */
764 		if (maps_section_nr != removing_section_nr)
765 			put_page_bootmem(page);
766 	}
767 }
768 #endif /* CONFIG_MEMORY_HOTREMOVE */
769 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
770 
771 /*
772  * returns the number of sections whose mem_maps were properly
773  * set.  If this is <=0, then that means that the passed-in
774  * map was not consumed and must be freed.
775  */
776 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
777 {
778 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
779 	struct mem_section *ms;
780 	struct page *memmap;
781 	unsigned long *usemap;
782 	unsigned long flags;
783 	int ret;
784 
785 	/*
786 	 * no locking for this, because it does its own
787 	 * plus, it does a kmalloc
788 	 */
789 	ret = sparse_index_init(section_nr, pgdat->node_id);
790 	if (ret < 0 && ret != -EEXIST)
791 		return ret;
792 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
793 	if (!memmap)
794 		return -ENOMEM;
795 	usemap = __kmalloc_section_usemap();
796 	if (!usemap) {
797 		__kfree_section_memmap(memmap);
798 		return -ENOMEM;
799 	}
800 
801 	pgdat_resize_lock(pgdat, &flags);
802 
803 	ms = __pfn_to_section(start_pfn);
804 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
805 		ret = -EEXIST;
806 		goto out;
807 	}
808 
809 	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
810 
811 	section_mark_present(ms);
812 
813 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
814 
815 out:
816 	pgdat_resize_unlock(pgdat, &flags);
817 	if (ret <= 0) {
818 		kfree(usemap);
819 		__kfree_section_memmap(memmap);
820 	}
821 	return ret;
822 }
823 
824 #ifdef CONFIG_MEMORY_HOTREMOVE
825 #ifdef CONFIG_MEMORY_FAILURE
826 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
827 {
828 	int i;
829 
830 	if (!memmap)
831 		return;
832 
833 	for (i = 0; i < nr_pages; i++) {
834 		if (PageHWPoison(&memmap[i])) {
835 			atomic_long_sub(1, &num_poisoned_pages);
836 			ClearPageHWPoison(&memmap[i]);
837 		}
838 	}
839 }
840 #else
841 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
842 {
843 }
844 #endif
845 
846 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
847 {
848 	struct page *usemap_page;
849 
850 	if (!usemap)
851 		return;
852 
853 	usemap_page = virt_to_page(usemap);
854 	/*
855 	 * Check to see if allocation came from hot-plug-add
856 	 */
857 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
858 		kfree(usemap);
859 		if (memmap)
860 			__kfree_section_memmap(memmap);
861 		return;
862 	}
863 
864 	/*
865 	 * The usemap came from bootmem. This is packed with other usemaps
866 	 * on the section which has pgdat at boot time. Just keep it as is now.
867 	 */
868 
869 	if (memmap)
870 		free_map_bootmem(memmap);
871 }
872 
873 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
874 		unsigned long map_offset)
875 {
876 	struct page *memmap = NULL;
877 	unsigned long *usemap = NULL, flags;
878 	struct pglist_data *pgdat = zone->zone_pgdat;
879 
880 	pgdat_resize_lock(pgdat, &flags);
881 	if (ms->section_mem_map) {
882 		usemap = ms->pageblock_flags;
883 		memmap = sparse_decode_mem_map(ms->section_mem_map,
884 						__section_nr(ms));
885 		ms->section_mem_map = 0;
886 		ms->pageblock_flags = NULL;
887 	}
888 	pgdat_resize_unlock(pgdat, &flags);
889 
890 	clear_hwpoisoned_pages(memmap + map_offset,
891 			PAGES_PER_SECTION - map_offset);
892 	free_section_usemap(memmap, usemap);
893 }
894 #endif /* CONFIG_MEMORY_HOTREMOVE */
895 #endif /* CONFIG_MEMORY_HOTPLUG */
896