1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/slab.h> 6 #include <linux/mmzone.h> 7 #include <linux/bootmem.h> 8 #include <linux/highmem.h> 9 #include <linux/module.h> 10 #include <linux/spinlock.h> 11 #include <linux/vmalloc.h> 12 #include "internal.h" 13 #include <asm/dma.h> 14 #include <asm/pgalloc.h> 15 #include <asm/pgtable.h> 16 17 /* 18 * Permanent SPARSEMEM data: 19 * 20 * 1) mem_section - memory sections, mem_map's for valid memory 21 */ 22 #ifdef CONFIG_SPARSEMEM_EXTREME 23 struct mem_section *mem_section[NR_SECTION_ROOTS] 24 ____cacheline_internodealigned_in_smp; 25 #else 26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 27 ____cacheline_internodealigned_in_smp; 28 #endif 29 EXPORT_SYMBOL(mem_section); 30 31 #ifdef NODE_NOT_IN_PAGE_FLAGS 32 /* 33 * If we did not store the node number in the page then we have to 34 * do a lookup in the section_to_node_table in order to find which 35 * node the page belongs to. 36 */ 37 #if MAX_NUMNODES <= 256 38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 39 #else 40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #endif 42 43 int page_to_nid(struct page *page) 44 { 45 return section_to_node_table[page_to_section(page)]; 46 } 47 EXPORT_SYMBOL(page_to_nid); 48 49 static void set_section_nid(unsigned long section_nr, int nid) 50 { 51 section_to_node_table[section_nr] = nid; 52 } 53 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 54 static inline void set_section_nid(unsigned long section_nr, int nid) 55 { 56 } 57 #endif 58 59 #ifdef CONFIG_SPARSEMEM_EXTREME 60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) 61 { 62 struct mem_section *section = NULL; 63 unsigned long array_size = SECTIONS_PER_ROOT * 64 sizeof(struct mem_section); 65 66 if (slab_is_available()) { 67 if (node_state(nid, N_HIGH_MEMORY)) 68 section = kmalloc_node(array_size, GFP_KERNEL, nid); 69 else 70 section = kmalloc(array_size, GFP_KERNEL); 71 } else 72 section = alloc_bootmem_node(NODE_DATA(nid), array_size); 73 74 if (section) 75 memset(section, 0, array_size); 76 77 return section; 78 } 79 80 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 81 { 82 static DEFINE_SPINLOCK(index_init_lock); 83 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 84 struct mem_section *section; 85 int ret = 0; 86 87 if (mem_section[root]) 88 return -EEXIST; 89 90 section = sparse_index_alloc(nid); 91 if (!section) 92 return -ENOMEM; 93 /* 94 * This lock keeps two different sections from 95 * reallocating for the same index 96 */ 97 spin_lock(&index_init_lock); 98 99 if (mem_section[root]) { 100 ret = -EEXIST; 101 goto out; 102 } 103 104 mem_section[root] = section; 105 out: 106 spin_unlock(&index_init_lock); 107 return ret; 108 } 109 #else /* !SPARSEMEM_EXTREME */ 110 static inline int sparse_index_init(unsigned long section_nr, int nid) 111 { 112 return 0; 113 } 114 #endif 115 116 /* 117 * Although written for the SPARSEMEM_EXTREME case, this happens 118 * to also work for the flat array case because 119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 120 */ 121 int __section_nr(struct mem_section* ms) 122 { 123 unsigned long root_nr; 124 struct mem_section* root; 125 126 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 127 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 128 if (!root) 129 continue; 130 131 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 132 break; 133 } 134 135 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 136 } 137 138 /* 139 * During early boot, before section_mem_map is used for an actual 140 * mem_map, we use section_mem_map to store the section's NUMA 141 * node. This keeps us from having to use another data structure. The 142 * node information is cleared just before we store the real mem_map. 143 */ 144 static inline unsigned long sparse_encode_early_nid(int nid) 145 { 146 return (nid << SECTION_NID_SHIFT); 147 } 148 149 static inline int sparse_early_nid(struct mem_section *section) 150 { 151 return (section->section_mem_map >> SECTION_NID_SHIFT); 152 } 153 154 /* Validate the physical addressing limitations of the model */ 155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 156 unsigned long *end_pfn) 157 { 158 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 159 160 /* 161 * Sanity checks - do not allow an architecture to pass 162 * in larger pfns than the maximum scope of sparsemem: 163 */ 164 if (*start_pfn > max_sparsemem_pfn) { 165 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 167 *start_pfn, *end_pfn, max_sparsemem_pfn); 168 WARN_ON_ONCE(1); 169 *start_pfn = max_sparsemem_pfn; 170 *end_pfn = max_sparsemem_pfn; 171 } else if (*end_pfn > max_sparsemem_pfn) { 172 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 174 *start_pfn, *end_pfn, max_sparsemem_pfn); 175 WARN_ON_ONCE(1); 176 *end_pfn = max_sparsemem_pfn; 177 } 178 } 179 180 /* Record a memory area against a node. */ 181 void __init memory_present(int nid, unsigned long start, unsigned long end) 182 { 183 unsigned long pfn; 184 185 start &= PAGE_SECTION_MASK; 186 mminit_validate_memmodel_limits(&start, &end); 187 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 188 unsigned long section = pfn_to_section_nr(pfn); 189 struct mem_section *ms; 190 191 sparse_index_init(section, nid); 192 set_section_nid(section, nid); 193 194 ms = __nr_to_section(section); 195 if (!ms->section_mem_map) 196 ms->section_mem_map = sparse_encode_early_nid(nid) | 197 SECTION_MARKED_PRESENT; 198 } 199 } 200 201 /* 202 * Only used by the i386 NUMA architecures, but relatively 203 * generic code. 204 */ 205 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 206 unsigned long end_pfn) 207 { 208 unsigned long pfn; 209 unsigned long nr_pages = 0; 210 211 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 212 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 213 if (nid != early_pfn_to_nid(pfn)) 214 continue; 215 216 if (pfn_present(pfn)) 217 nr_pages += PAGES_PER_SECTION; 218 } 219 220 return nr_pages * sizeof(struct page); 221 } 222 223 /* 224 * Subtle, we encode the real pfn into the mem_map such that 225 * the identity pfn - section_mem_map will return the actual 226 * physical page frame number. 227 */ 228 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 229 { 230 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 231 } 232 233 /* 234 * Decode mem_map from the coded memmap 235 */ 236 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 237 { 238 /* mask off the extra low bits of information */ 239 coded_mem_map &= SECTION_MAP_MASK; 240 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 241 } 242 243 static int __meminit sparse_init_one_section(struct mem_section *ms, 244 unsigned long pnum, struct page *mem_map, 245 unsigned long *pageblock_bitmap) 246 { 247 if (!present_section(ms)) 248 return -EINVAL; 249 250 ms->section_mem_map &= ~SECTION_MAP_MASK; 251 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 252 SECTION_HAS_MEM_MAP; 253 ms->pageblock_flags = pageblock_bitmap; 254 255 return 1; 256 } 257 258 unsigned long usemap_size(void) 259 { 260 unsigned long size_bytes; 261 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 262 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 263 return size_bytes; 264 } 265 266 #ifdef CONFIG_MEMORY_HOTPLUG 267 static unsigned long *__kmalloc_section_usemap(void) 268 { 269 return kmalloc(usemap_size(), GFP_KERNEL); 270 } 271 #endif /* CONFIG_MEMORY_HOTPLUG */ 272 273 #ifdef CONFIG_MEMORY_HOTREMOVE 274 static unsigned long * __init 275 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 276 unsigned long count) 277 { 278 unsigned long section_nr; 279 280 /* 281 * A page may contain usemaps for other sections preventing the 282 * page being freed and making a section unremovable while 283 * other sections referencing the usemap retmain active. Similarly, 284 * a pgdat can prevent a section being removed. If section A 285 * contains a pgdat and section B contains the usemap, both 286 * sections become inter-dependent. This allocates usemaps 287 * from the same section as the pgdat where possible to avoid 288 * this problem. 289 */ 290 section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 291 return alloc_bootmem_section(usemap_size() * count, section_nr); 292 } 293 294 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 295 { 296 unsigned long usemap_snr, pgdat_snr; 297 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 298 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 299 struct pglist_data *pgdat = NODE_DATA(nid); 300 int usemap_nid; 301 302 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 303 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 304 if (usemap_snr == pgdat_snr) 305 return; 306 307 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 308 /* skip redundant message */ 309 return; 310 311 old_usemap_snr = usemap_snr; 312 old_pgdat_snr = pgdat_snr; 313 314 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 315 if (usemap_nid != nid) { 316 printk(KERN_INFO 317 "node %d must be removed before remove section %ld\n", 318 nid, usemap_snr); 319 return; 320 } 321 /* 322 * There is a circular dependency. 323 * Some platforms allow un-removable section because they will just 324 * gather other removable sections for dynamic partitioning. 325 * Just notify un-removable section's number here. 326 */ 327 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, 328 pgdat_snr, nid); 329 printk(KERN_CONT 330 " have a circular dependency on usemap and pgdat allocations\n"); 331 } 332 #else 333 static unsigned long * __init 334 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 335 unsigned long count) 336 { 337 return NULL; 338 } 339 340 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 341 { 342 } 343 #endif /* CONFIG_MEMORY_HOTREMOVE */ 344 345 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map, 346 unsigned long pnum_begin, 347 unsigned long pnum_end, 348 unsigned long usemap_count, int nodeid) 349 { 350 void *usemap; 351 unsigned long pnum; 352 int size = usemap_size(); 353 354 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 355 usemap_count); 356 if (usemap) { 357 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 358 if (!present_section_nr(pnum)) 359 continue; 360 usemap_map[pnum] = usemap; 361 usemap += size; 362 } 363 return; 364 } 365 366 usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count); 367 if (usemap) { 368 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 369 if (!present_section_nr(pnum)) 370 continue; 371 usemap_map[pnum] = usemap; 372 usemap += size; 373 check_usemap_section_nr(nodeid, usemap_map[pnum]); 374 } 375 return; 376 } 377 378 printk(KERN_WARNING "%s: allocation failed\n", __func__); 379 } 380 381 #ifndef CONFIG_SPARSEMEM_VMEMMAP 382 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 383 { 384 struct page *map; 385 unsigned long size; 386 387 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 388 if (map) 389 return map; 390 391 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 392 map = __alloc_bootmem_node_high(NODE_DATA(nid), size, 393 PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 394 return map; 395 } 396 void __init sparse_mem_maps_populate_node(struct page **map_map, 397 unsigned long pnum_begin, 398 unsigned long pnum_end, 399 unsigned long map_count, int nodeid) 400 { 401 void *map; 402 unsigned long pnum; 403 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 404 405 map = alloc_remap(nodeid, size * map_count); 406 if (map) { 407 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 408 if (!present_section_nr(pnum)) 409 continue; 410 map_map[pnum] = map; 411 map += size; 412 } 413 return; 414 } 415 416 size = PAGE_ALIGN(size); 417 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count, 418 PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 419 if (map) { 420 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 421 if (!present_section_nr(pnum)) 422 continue; 423 map_map[pnum] = map; 424 map += size; 425 } 426 return; 427 } 428 429 /* fallback */ 430 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 431 struct mem_section *ms; 432 433 if (!present_section_nr(pnum)) 434 continue; 435 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 436 if (map_map[pnum]) 437 continue; 438 ms = __nr_to_section(pnum); 439 printk(KERN_ERR "%s: sparsemem memory map backing failed " 440 "some memory will not be available.\n", __func__); 441 ms->section_mem_map = 0; 442 } 443 } 444 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 445 446 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 447 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map, 448 unsigned long pnum_begin, 449 unsigned long pnum_end, 450 unsigned long map_count, int nodeid) 451 { 452 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 453 map_count, nodeid); 454 } 455 #else 456 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 457 { 458 struct page *map; 459 struct mem_section *ms = __nr_to_section(pnum); 460 int nid = sparse_early_nid(ms); 461 462 map = sparse_mem_map_populate(pnum, nid); 463 if (map) 464 return map; 465 466 printk(KERN_ERR "%s: sparsemem memory map backing failed " 467 "some memory will not be available.\n", __func__); 468 ms->section_mem_map = 0; 469 return NULL; 470 } 471 #endif 472 473 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) 474 { 475 } 476 477 /* 478 * Allocate the accumulated non-linear sections, allocate a mem_map 479 * for each and record the physical to section mapping. 480 */ 481 void __init sparse_init(void) 482 { 483 unsigned long pnum; 484 struct page *map; 485 unsigned long *usemap; 486 unsigned long **usemap_map; 487 int size; 488 int nodeid_begin = 0; 489 unsigned long pnum_begin = 0; 490 unsigned long usemap_count; 491 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 492 unsigned long map_count; 493 int size2; 494 struct page **map_map; 495 #endif 496 497 /* 498 * map is using big page (aka 2M in x86 64 bit) 499 * usemap is less one page (aka 24 bytes) 500 * so alloc 2M (with 2M align) and 24 bytes in turn will 501 * make next 2M slip to one more 2M later. 502 * then in big system, the memory will have a lot of holes... 503 * here try to allocate 2M pages continously. 504 * 505 * powerpc need to call sparse_init_one_section right after each 506 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 507 */ 508 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 509 usemap_map = alloc_bootmem(size); 510 if (!usemap_map) 511 panic("can not allocate usemap_map\n"); 512 513 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 514 struct mem_section *ms; 515 516 if (!present_section_nr(pnum)) 517 continue; 518 ms = __nr_to_section(pnum); 519 nodeid_begin = sparse_early_nid(ms); 520 pnum_begin = pnum; 521 break; 522 } 523 usemap_count = 1; 524 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 525 struct mem_section *ms; 526 int nodeid; 527 528 if (!present_section_nr(pnum)) 529 continue; 530 ms = __nr_to_section(pnum); 531 nodeid = sparse_early_nid(ms); 532 if (nodeid == nodeid_begin) { 533 usemap_count++; 534 continue; 535 } 536 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 537 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum, 538 usemap_count, nodeid_begin); 539 /* new start, update count etc*/ 540 nodeid_begin = nodeid; 541 pnum_begin = pnum; 542 usemap_count = 1; 543 } 544 /* ok, last chunk */ 545 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS, 546 usemap_count, nodeid_begin); 547 548 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 549 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 550 map_map = alloc_bootmem(size2); 551 if (!map_map) 552 panic("can not allocate map_map\n"); 553 554 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 555 struct mem_section *ms; 556 557 if (!present_section_nr(pnum)) 558 continue; 559 ms = __nr_to_section(pnum); 560 nodeid_begin = sparse_early_nid(ms); 561 pnum_begin = pnum; 562 break; 563 } 564 map_count = 1; 565 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 566 struct mem_section *ms; 567 int nodeid; 568 569 if (!present_section_nr(pnum)) 570 continue; 571 ms = __nr_to_section(pnum); 572 nodeid = sparse_early_nid(ms); 573 if (nodeid == nodeid_begin) { 574 map_count++; 575 continue; 576 } 577 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 578 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum, 579 map_count, nodeid_begin); 580 /* new start, update count etc*/ 581 nodeid_begin = nodeid; 582 pnum_begin = pnum; 583 map_count = 1; 584 } 585 /* ok, last chunk */ 586 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS, 587 map_count, nodeid_begin); 588 #endif 589 590 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 591 if (!present_section_nr(pnum)) 592 continue; 593 594 usemap = usemap_map[pnum]; 595 if (!usemap) 596 continue; 597 598 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 599 map = map_map[pnum]; 600 #else 601 map = sparse_early_mem_map_alloc(pnum); 602 #endif 603 if (!map) 604 continue; 605 606 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 607 usemap); 608 } 609 610 vmemmap_populate_print_last(); 611 612 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 613 free_bootmem(__pa(map_map), size2); 614 #endif 615 free_bootmem(__pa(usemap_map), size); 616 } 617 618 #ifdef CONFIG_MEMORY_HOTPLUG 619 #ifdef CONFIG_SPARSEMEM_VMEMMAP 620 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 621 unsigned long nr_pages) 622 { 623 /* This will make the necessary allocations eventually. */ 624 return sparse_mem_map_populate(pnum, nid); 625 } 626 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 627 { 628 return; /* XXX: Not implemented yet */ 629 } 630 static void free_map_bootmem(struct page *page, unsigned long nr_pages) 631 { 632 } 633 #else 634 static struct page *__kmalloc_section_memmap(unsigned long nr_pages) 635 { 636 struct page *page, *ret; 637 unsigned long memmap_size = sizeof(struct page) * nr_pages; 638 639 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 640 if (page) 641 goto got_map_page; 642 643 ret = vmalloc(memmap_size); 644 if (ret) 645 goto got_map_ptr; 646 647 return NULL; 648 got_map_page: 649 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 650 got_map_ptr: 651 memset(ret, 0, memmap_size); 652 653 return ret; 654 } 655 656 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 657 unsigned long nr_pages) 658 { 659 return __kmalloc_section_memmap(nr_pages); 660 } 661 662 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 663 { 664 if (is_vmalloc_addr(memmap)) 665 vfree(memmap); 666 else 667 free_pages((unsigned long)memmap, 668 get_order(sizeof(struct page) * nr_pages)); 669 } 670 671 static void free_map_bootmem(struct page *page, unsigned long nr_pages) 672 { 673 unsigned long maps_section_nr, removing_section_nr, i; 674 unsigned long magic; 675 676 for (i = 0; i < nr_pages; i++, page++) { 677 magic = (unsigned long) page->lru.next; 678 679 BUG_ON(magic == NODE_INFO); 680 681 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 682 removing_section_nr = page->private; 683 684 /* 685 * When this function is called, the removing section is 686 * logical offlined state. This means all pages are isolated 687 * from page allocator. If removing section's memmap is placed 688 * on the same section, it must not be freed. 689 * If it is freed, page allocator may allocate it which will 690 * be removed physically soon. 691 */ 692 if (maps_section_nr != removing_section_nr) 693 put_page_bootmem(page); 694 } 695 } 696 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 697 698 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 699 { 700 struct page *usemap_page; 701 unsigned long nr_pages; 702 703 if (!usemap) 704 return; 705 706 usemap_page = virt_to_page(usemap); 707 /* 708 * Check to see if allocation came from hot-plug-add 709 */ 710 if (PageSlab(usemap_page)) { 711 kfree(usemap); 712 if (memmap) 713 __kfree_section_memmap(memmap, PAGES_PER_SECTION); 714 return; 715 } 716 717 /* 718 * The usemap came from bootmem. This is packed with other usemaps 719 * on the section which has pgdat at boot time. Just keep it as is now. 720 */ 721 722 if (memmap) { 723 struct page *memmap_page; 724 memmap_page = virt_to_page(memmap); 725 726 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 727 >> PAGE_SHIFT; 728 729 free_map_bootmem(memmap_page, nr_pages); 730 } 731 } 732 733 /* 734 * returns the number of sections whose mem_maps were properly 735 * set. If this is <=0, then that means that the passed-in 736 * map was not consumed and must be freed. 737 */ 738 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, 739 int nr_pages) 740 { 741 unsigned long section_nr = pfn_to_section_nr(start_pfn); 742 struct pglist_data *pgdat = zone->zone_pgdat; 743 struct mem_section *ms; 744 struct page *memmap; 745 unsigned long *usemap; 746 unsigned long flags; 747 int ret; 748 749 /* 750 * no locking for this, because it does its own 751 * plus, it does a kmalloc 752 */ 753 ret = sparse_index_init(section_nr, pgdat->node_id); 754 if (ret < 0 && ret != -EEXIST) 755 return ret; 756 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); 757 if (!memmap) 758 return -ENOMEM; 759 usemap = __kmalloc_section_usemap(); 760 if (!usemap) { 761 __kfree_section_memmap(memmap, nr_pages); 762 return -ENOMEM; 763 } 764 765 pgdat_resize_lock(pgdat, &flags); 766 767 ms = __pfn_to_section(start_pfn); 768 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 769 ret = -EEXIST; 770 goto out; 771 } 772 773 ms->section_mem_map |= SECTION_MARKED_PRESENT; 774 775 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 776 777 out: 778 pgdat_resize_unlock(pgdat, &flags); 779 if (ret <= 0) { 780 kfree(usemap); 781 __kfree_section_memmap(memmap, nr_pages); 782 } 783 return ret; 784 } 785 786 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) 787 { 788 struct page *memmap = NULL; 789 unsigned long *usemap = NULL; 790 791 if (ms->section_mem_map) { 792 usemap = ms->pageblock_flags; 793 memmap = sparse_decode_mem_map(ms->section_mem_map, 794 __section_nr(ms)); 795 ms->section_mem_map = 0; 796 ms->pageblock_flags = NULL; 797 } 798 799 free_section_usemap(memmap, usemap); 800 } 801 #endif 802