xref: /openbmc/linux/mm/sparse.c (revision 3e26a691)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
13 
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18 
19 /*
20  * Permanent SPARSEMEM data:
21  *
22  * 1) mem_section	- memory sections, mem_map's for valid memory
23  */
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26 	____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available()) {
69 		if (node_state(nid, N_HIGH_MEMORY))
70 			section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 		else
72 			section = kzalloc(array_size, GFP_KERNEL);
73 	} else {
74 		section = memblock_virt_alloc_node(array_size, nid);
75 	}
76 
77 	return section;
78 }
79 
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81 {
82 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 	struct mem_section *section;
84 
85 	if (mem_section[root])
86 		return -EEXIST;
87 
88 	section = sparse_index_alloc(nid);
89 	if (!section)
90 		return -ENOMEM;
91 
92 	mem_section[root] = section;
93 
94 	return 0;
95 }
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr, int nid)
98 {
99 	return 0;
100 }
101 #endif
102 
103 /*
104  * Although written for the SPARSEMEM_EXTREME case, this happens
105  * to also work for the flat array case because
106  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
107  */
108 int __section_nr(struct mem_section* ms)
109 {
110 	unsigned long root_nr;
111 	struct mem_section* root;
112 
113 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
114 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
115 		if (!root)
116 			continue;
117 
118 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
119 		     break;
120 	}
121 
122 	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
123 
124 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
125 }
126 
127 /*
128  * During early boot, before section_mem_map is used for an actual
129  * mem_map, we use section_mem_map to store the section's NUMA
130  * node.  This keeps us from having to use another data structure.  The
131  * node information is cleared just before we store the real mem_map.
132  */
133 static inline unsigned long sparse_encode_early_nid(int nid)
134 {
135 	return (nid << SECTION_NID_SHIFT);
136 }
137 
138 static inline int sparse_early_nid(struct mem_section *section)
139 {
140 	return (section->section_mem_map >> SECTION_NID_SHIFT);
141 }
142 
143 /* Validate the physical addressing limitations of the model */
144 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
145 						unsigned long *end_pfn)
146 {
147 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
148 
149 	/*
150 	 * Sanity checks - do not allow an architecture to pass
151 	 * in larger pfns than the maximum scope of sparsemem:
152 	 */
153 	if (*start_pfn > max_sparsemem_pfn) {
154 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
155 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
156 			*start_pfn, *end_pfn, max_sparsemem_pfn);
157 		WARN_ON_ONCE(1);
158 		*start_pfn = max_sparsemem_pfn;
159 		*end_pfn = max_sparsemem_pfn;
160 	} else if (*end_pfn > max_sparsemem_pfn) {
161 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 			*start_pfn, *end_pfn, max_sparsemem_pfn);
164 		WARN_ON_ONCE(1);
165 		*end_pfn = max_sparsemem_pfn;
166 	}
167 }
168 
169 /* Record a memory area against a node. */
170 void __init memory_present(int nid, unsigned long start, unsigned long end)
171 {
172 	unsigned long pfn;
173 
174 	start &= PAGE_SECTION_MASK;
175 	mminit_validate_memmodel_limits(&start, &end);
176 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
177 		unsigned long section = pfn_to_section_nr(pfn);
178 		struct mem_section *ms;
179 
180 		sparse_index_init(section, nid);
181 		set_section_nid(section, nid);
182 
183 		ms = __nr_to_section(section);
184 		if (!ms->section_mem_map)
185 			ms->section_mem_map = sparse_encode_early_nid(nid) |
186 							SECTION_MARKED_PRESENT;
187 	}
188 }
189 
190 /*
191  * Only used by the i386 NUMA architecures, but relatively
192  * generic code.
193  */
194 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
195 						     unsigned long end_pfn)
196 {
197 	unsigned long pfn;
198 	unsigned long nr_pages = 0;
199 
200 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
201 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
202 		if (nid != early_pfn_to_nid(pfn))
203 			continue;
204 
205 		if (pfn_present(pfn))
206 			nr_pages += PAGES_PER_SECTION;
207 	}
208 
209 	return nr_pages * sizeof(struct page);
210 }
211 
212 /*
213  * Subtle, we encode the real pfn into the mem_map such that
214  * the identity pfn - section_mem_map will return the actual
215  * physical page frame number.
216  */
217 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
218 {
219 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
220 }
221 
222 /*
223  * Decode mem_map from the coded memmap
224  */
225 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
226 {
227 	/* mask off the extra low bits of information */
228 	coded_mem_map &= SECTION_MAP_MASK;
229 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
230 }
231 
232 static int __meminit sparse_init_one_section(struct mem_section *ms,
233 		unsigned long pnum, struct page *mem_map,
234 		unsigned long *pageblock_bitmap)
235 {
236 	if (!present_section(ms))
237 		return -EINVAL;
238 
239 	ms->section_mem_map &= ~SECTION_MAP_MASK;
240 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
241 							SECTION_HAS_MEM_MAP;
242  	ms->pageblock_flags = pageblock_bitmap;
243 
244 	return 1;
245 }
246 
247 unsigned long usemap_size(void)
248 {
249 	unsigned long size_bytes;
250 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
251 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
252 	return size_bytes;
253 }
254 
255 #ifdef CONFIG_MEMORY_HOTPLUG
256 static unsigned long *__kmalloc_section_usemap(void)
257 {
258 	return kmalloc(usemap_size(), GFP_KERNEL);
259 }
260 #endif /* CONFIG_MEMORY_HOTPLUG */
261 
262 #ifdef CONFIG_MEMORY_HOTREMOVE
263 static unsigned long * __init
264 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
265 					 unsigned long size)
266 {
267 	unsigned long goal, limit;
268 	unsigned long *p;
269 	int nid;
270 	/*
271 	 * A page may contain usemaps for other sections preventing the
272 	 * page being freed and making a section unremovable while
273 	 * other sections referencing the usemap remain active. Similarly,
274 	 * a pgdat can prevent a section being removed. If section A
275 	 * contains a pgdat and section B contains the usemap, both
276 	 * sections become inter-dependent. This allocates usemaps
277 	 * from the same section as the pgdat where possible to avoid
278 	 * this problem.
279 	 */
280 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
281 	limit = goal + (1UL << PA_SECTION_SHIFT);
282 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
283 again:
284 	p = memblock_virt_alloc_try_nid_nopanic(size,
285 						SMP_CACHE_BYTES, goal, limit,
286 						nid);
287 	if (!p && limit) {
288 		limit = 0;
289 		goto again;
290 	}
291 	return p;
292 }
293 
294 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295 {
296 	unsigned long usemap_snr, pgdat_snr;
297 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299 	struct pglist_data *pgdat = NODE_DATA(nid);
300 	int usemap_nid;
301 
302 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304 	if (usemap_snr == pgdat_snr)
305 		return;
306 
307 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308 		/* skip redundant message */
309 		return;
310 
311 	old_usemap_snr = usemap_snr;
312 	old_pgdat_snr = pgdat_snr;
313 
314 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315 	if (usemap_nid != nid) {
316 		pr_info("node %d must be removed before remove section %ld\n",
317 			nid, usemap_snr);
318 		return;
319 	}
320 	/*
321 	 * There is a circular dependency.
322 	 * Some platforms allow un-removable section because they will just
323 	 * gather other removable sections for dynamic partitioning.
324 	 * Just notify un-removable section's number here.
325 	 */
326 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
327 		usemap_snr, pgdat_snr, nid);
328 }
329 #else
330 static unsigned long * __init
331 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
332 					 unsigned long size)
333 {
334 	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
335 }
336 
337 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
338 {
339 }
340 #endif /* CONFIG_MEMORY_HOTREMOVE */
341 
342 static void __init sparse_early_usemaps_alloc_node(void *data,
343 				 unsigned long pnum_begin,
344 				 unsigned long pnum_end,
345 				 unsigned long usemap_count, int nodeid)
346 {
347 	void *usemap;
348 	unsigned long pnum;
349 	unsigned long **usemap_map = (unsigned long **)data;
350 	int size = usemap_size();
351 
352 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
353 							  size * usemap_count);
354 	if (!usemap) {
355 		pr_warn("%s: allocation failed\n", __func__);
356 		return;
357 	}
358 
359 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
360 		if (!present_section_nr(pnum))
361 			continue;
362 		usemap_map[pnum] = usemap;
363 		usemap += size;
364 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
365 	}
366 }
367 
368 #ifndef CONFIG_SPARSEMEM_VMEMMAP
369 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
370 {
371 	struct page *map;
372 	unsigned long size;
373 
374 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
375 	if (map)
376 		return map;
377 
378 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
379 	map = memblock_virt_alloc_try_nid(size,
380 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
381 					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
382 	return map;
383 }
384 void __init sparse_mem_maps_populate_node(struct page **map_map,
385 					  unsigned long pnum_begin,
386 					  unsigned long pnum_end,
387 					  unsigned long map_count, int nodeid)
388 {
389 	void *map;
390 	unsigned long pnum;
391 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
392 
393 	map = alloc_remap(nodeid, size * map_count);
394 	if (map) {
395 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
396 			if (!present_section_nr(pnum))
397 				continue;
398 			map_map[pnum] = map;
399 			map += size;
400 		}
401 		return;
402 	}
403 
404 	size = PAGE_ALIGN(size);
405 	map = memblock_virt_alloc_try_nid(size * map_count,
406 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
407 					  BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
408 	if (map) {
409 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
410 			if (!present_section_nr(pnum))
411 				continue;
412 			map_map[pnum] = map;
413 			map += size;
414 		}
415 		return;
416 	}
417 
418 	/* fallback */
419 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
420 		struct mem_section *ms;
421 
422 		if (!present_section_nr(pnum))
423 			continue;
424 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
425 		if (map_map[pnum])
426 			continue;
427 		ms = __nr_to_section(pnum);
428 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
429 		       __func__);
430 		ms->section_mem_map = 0;
431 	}
432 }
433 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
434 
435 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
436 static void __init sparse_early_mem_maps_alloc_node(void *data,
437 				 unsigned long pnum_begin,
438 				 unsigned long pnum_end,
439 				 unsigned long map_count, int nodeid)
440 {
441 	struct page **map_map = (struct page **)data;
442 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
443 					 map_count, nodeid);
444 }
445 #else
446 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
447 {
448 	struct page *map;
449 	struct mem_section *ms = __nr_to_section(pnum);
450 	int nid = sparse_early_nid(ms);
451 
452 	map = sparse_mem_map_populate(pnum, nid);
453 	if (map)
454 		return map;
455 
456 	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
457 	       __func__);
458 	ms->section_mem_map = 0;
459 	return NULL;
460 }
461 #endif
462 
463 void __weak __meminit vmemmap_populate_print_last(void)
464 {
465 }
466 
467 /**
468  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
469  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
470  */
471 static void __init alloc_usemap_and_memmap(void (*alloc_func)
472 					(void *, unsigned long, unsigned long,
473 					unsigned long, int), void *data)
474 {
475 	unsigned long pnum;
476 	unsigned long map_count;
477 	int nodeid_begin = 0;
478 	unsigned long pnum_begin = 0;
479 
480 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
481 		struct mem_section *ms;
482 
483 		if (!present_section_nr(pnum))
484 			continue;
485 		ms = __nr_to_section(pnum);
486 		nodeid_begin = sparse_early_nid(ms);
487 		pnum_begin = pnum;
488 		break;
489 	}
490 	map_count = 1;
491 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
492 		struct mem_section *ms;
493 		int nodeid;
494 
495 		if (!present_section_nr(pnum))
496 			continue;
497 		ms = __nr_to_section(pnum);
498 		nodeid = sparse_early_nid(ms);
499 		if (nodeid == nodeid_begin) {
500 			map_count++;
501 			continue;
502 		}
503 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
504 		alloc_func(data, pnum_begin, pnum,
505 						map_count, nodeid_begin);
506 		/* new start, update count etc*/
507 		nodeid_begin = nodeid;
508 		pnum_begin = pnum;
509 		map_count = 1;
510 	}
511 	/* ok, last chunk */
512 	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
513 						map_count, nodeid_begin);
514 }
515 
516 /*
517  * Allocate the accumulated non-linear sections, allocate a mem_map
518  * for each and record the physical to section mapping.
519  */
520 void __init sparse_init(void)
521 {
522 	unsigned long pnum;
523 	struct page *map;
524 	unsigned long *usemap;
525 	unsigned long **usemap_map;
526 	int size;
527 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
528 	int size2;
529 	struct page **map_map;
530 #endif
531 
532 	/* see include/linux/mmzone.h 'struct mem_section' definition */
533 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
534 
535 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
536 	set_pageblock_order();
537 
538 	/*
539 	 * map is using big page (aka 2M in x86 64 bit)
540 	 * usemap is less one page (aka 24 bytes)
541 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
542 	 * make next 2M slip to one more 2M later.
543 	 * then in big system, the memory will have a lot of holes...
544 	 * here try to allocate 2M pages continuously.
545 	 *
546 	 * powerpc need to call sparse_init_one_section right after each
547 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
548 	 */
549 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
550 	usemap_map = memblock_virt_alloc(size, 0);
551 	if (!usemap_map)
552 		panic("can not allocate usemap_map\n");
553 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
554 							(void *)usemap_map);
555 
556 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
557 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
558 	map_map = memblock_virt_alloc(size2, 0);
559 	if (!map_map)
560 		panic("can not allocate map_map\n");
561 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
562 							(void *)map_map);
563 #endif
564 
565 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
566 		if (!present_section_nr(pnum))
567 			continue;
568 
569 		usemap = usemap_map[pnum];
570 		if (!usemap)
571 			continue;
572 
573 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
574 		map = map_map[pnum];
575 #else
576 		map = sparse_early_mem_map_alloc(pnum);
577 #endif
578 		if (!map)
579 			continue;
580 
581 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
582 								usemap);
583 	}
584 
585 	vmemmap_populate_print_last();
586 
587 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
588 	memblock_free_early(__pa(map_map), size2);
589 #endif
590 	memblock_free_early(__pa(usemap_map), size);
591 }
592 
593 #ifdef CONFIG_MEMORY_HOTPLUG
594 #ifdef CONFIG_SPARSEMEM_VMEMMAP
595 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
596 {
597 	/* This will make the necessary allocations eventually. */
598 	return sparse_mem_map_populate(pnum, nid);
599 }
600 static void __kfree_section_memmap(struct page *memmap)
601 {
602 	unsigned long start = (unsigned long)memmap;
603 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
604 
605 	vmemmap_free(start, end);
606 }
607 #ifdef CONFIG_MEMORY_HOTREMOVE
608 static void free_map_bootmem(struct page *memmap)
609 {
610 	unsigned long start = (unsigned long)memmap;
611 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
612 
613 	vmemmap_free(start, end);
614 }
615 #endif /* CONFIG_MEMORY_HOTREMOVE */
616 #else
617 static struct page *__kmalloc_section_memmap(void)
618 {
619 	struct page *page, *ret;
620 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
621 
622 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
623 	if (page)
624 		goto got_map_page;
625 
626 	ret = vmalloc(memmap_size);
627 	if (ret)
628 		goto got_map_ptr;
629 
630 	return NULL;
631 got_map_page:
632 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
633 got_map_ptr:
634 
635 	return ret;
636 }
637 
638 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
639 {
640 	return __kmalloc_section_memmap();
641 }
642 
643 static void __kfree_section_memmap(struct page *memmap)
644 {
645 	if (is_vmalloc_addr(memmap))
646 		vfree(memmap);
647 	else
648 		free_pages((unsigned long)memmap,
649 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
650 }
651 
652 #ifdef CONFIG_MEMORY_HOTREMOVE
653 static void free_map_bootmem(struct page *memmap)
654 {
655 	unsigned long maps_section_nr, removing_section_nr, i;
656 	unsigned long magic, nr_pages;
657 	struct page *page = virt_to_page(memmap);
658 
659 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
660 		>> PAGE_SHIFT;
661 
662 	for (i = 0; i < nr_pages; i++, page++) {
663 		magic = (unsigned long) page->lru.next;
664 
665 		BUG_ON(magic == NODE_INFO);
666 
667 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
668 		removing_section_nr = page->private;
669 
670 		/*
671 		 * When this function is called, the removing section is
672 		 * logical offlined state. This means all pages are isolated
673 		 * from page allocator. If removing section's memmap is placed
674 		 * on the same section, it must not be freed.
675 		 * If it is freed, page allocator may allocate it which will
676 		 * be removed physically soon.
677 		 */
678 		if (maps_section_nr != removing_section_nr)
679 			put_page_bootmem(page);
680 	}
681 }
682 #endif /* CONFIG_MEMORY_HOTREMOVE */
683 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
684 
685 /*
686  * returns the number of sections whose mem_maps were properly
687  * set.  If this is <=0, then that means that the passed-in
688  * map was not consumed and must be freed.
689  */
690 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
691 {
692 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
693 	struct pglist_data *pgdat = zone->zone_pgdat;
694 	struct mem_section *ms;
695 	struct page *memmap;
696 	unsigned long *usemap;
697 	unsigned long flags;
698 	int ret;
699 
700 	/*
701 	 * no locking for this, because it does its own
702 	 * plus, it does a kmalloc
703 	 */
704 	ret = sparse_index_init(section_nr, pgdat->node_id);
705 	if (ret < 0 && ret != -EEXIST)
706 		return ret;
707 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
708 	if (!memmap)
709 		return -ENOMEM;
710 	usemap = __kmalloc_section_usemap();
711 	if (!usemap) {
712 		__kfree_section_memmap(memmap);
713 		return -ENOMEM;
714 	}
715 
716 	pgdat_resize_lock(pgdat, &flags);
717 
718 	ms = __pfn_to_section(start_pfn);
719 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
720 		ret = -EEXIST;
721 		goto out;
722 	}
723 
724 	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
725 
726 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
727 
728 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
729 
730 out:
731 	pgdat_resize_unlock(pgdat, &flags);
732 	if (ret <= 0) {
733 		kfree(usemap);
734 		__kfree_section_memmap(memmap);
735 	}
736 	return ret;
737 }
738 
739 #ifdef CONFIG_MEMORY_HOTREMOVE
740 #ifdef CONFIG_MEMORY_FAILURE
741 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
742 {
743 	int i;
744 
745 	if (!memmap)
746 		return;
747 
748 	for (i = 0; i < nr_pages; i++) {
749 		if (PageHWPoison(&memmap[i])) {
750 			atomic_long_sub(1, &num_poisoned_pages);
751 			ClearPageHWPoison(&memmap[i]);
752 		}
753 	}
754 }
755 #else
756 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
757 {
758 }
759 #endif
760 
761 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
762 {
763 	struct page *usemap_page;
764 
765 	if (!usemap)
766 		return;
767 
768 	usemap_page = virt_to_page(usemap);
769 	/*
770 	 * Check to see if allocation came from hot-plug-add
771 	 */
772 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
773 		kfree(usemap);
774 		if (memmap)
775 			__kfree_section_memmap(memmap);
776 		return;
777 	}
778 
779 	/*
780 	 * The usemap came from bootmem. This is packed with other usemaps
781 	 * on the section which has pgdat at boot time. Just keep it as is now.
782 	 */
783 
784 	if (memmap)
785 		free_map_bootmem(memmap);
786 }
787 
788 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
789 		unsigned long map_offset)
790 {
791 	struct page *memmap = NULL;
792 	unsigned long *usemap = NULL, flags;
793 	struct pglist_data *pgdat = zone->zone_pgdat;
794 
795 	pgdat_resize_lock(pgdat, &flags);
796 	if (ms->section_mem_map) {
797 		usemap = ms->pageblock_flags;
798 		memmap = sparse_decode_mem_map(ms->section_mem_map,
799 						__section_nr(ms));
800 		ms->section_mem_map = 0;
801 		ms->pageblock_flags = NULL;
802 	}
803 	pgdat_resize_unlock(pgdat, &flags);
804 
805 	clear_hwpoisoned_pages(memmap + map_offset,
806 			PAGES_PER_SECTION - map_offset);
807 	free_section_usemap(memmap, usemap);
808 }
809 #endif /* CONFIG_MEMORY_HOTREMOVE */
810 #endif /* CONFIG_MEMORY_HOTPLUG */
811