1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 15 #include "internal.h" 16 #include <asm/dma.h> 17 #include <asm/pgalloc.h> 18 #include <asm/pgtable.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 else 71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 72 nid); 73 74 return section; 75 } 76 77 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 78 { 79 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 80 struct mem_section *section; 81 82 if (mem_section[root]) 83 return -EEXIST; 84 85 section = sparse_index_alloc(nid); 86 if (!section) 87 return -ENOMEM; 88 89 mem_section[root] = section; 90 91 return 0; 92 } 93 #else /* !SPARSEMEM_EXTREME */ 94 static inline int sparse_index_init(unsigned long section_nr, int nid) 95 { 96 return 0; 97 } 98 #endif 99 100 #ifdef CONFIG_SPARSEMEM_EXTREME 101 int __section_nr(struct mem_section* ms) 102 { 103 unsigned long root_nr; 104 struct mem_section *root = NULL; 105 106 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 107 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 108 if (!root) 109 continue; 110 111 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 112 break; 113 } 114 115 VM_BUG_ON(!root); 116 117 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 118 } 119 #else 120 int __section_nr(struct mem_section* ms) 121 { 122 return (int)(ms - mem_section[0]); 123 } 124 #endif 125 126 /* 127 * During early boot, before section_mem_map is used for an actual 128 * mem_map, we use section_mem_map to store the section's NUMA 129 * node. This keeps us from having to use another data structure. The 130 * node information is cleared just before we store the real mem_map. 131 */ 132 static inline unsigned long sparse_encode_early_nid(int nid) 133 { 134 return (nid << SECTION_NID_SHIFT); 135 } 136 137 static inline int sparse_early_nid(struct mem_section *section) 138 { 139 return (section->section_mem_map >> SECTION_NID_SHIFT); 140 } 141 142 /* Validate the physical addressing limitations of the model */ 143 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 144 unsigned long *end_pfn) 145 { 146 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 147 148 /* 149 * Sanity checks - do not allow an architecture to pass 150 * in larger pfns than the maximum scope of sparsemem: 151 */ 152 if (*start_pfn > max_sparsemem_pfn) { 153 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 154 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 155 *start_pfn, *end_pfn, max_sparsemem_pfn); 156 WARN_ON_ONCE(1); 157 *start_pfn = max_sparsemem_pfn; 158 *end_pfn = max_sparsemem_pfn; 159 } else if (*end_pfn > max_sparsemem_pfn) { 160 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 161 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 162 *start_pfn, *end_pfn, max_sparsemem_pfn); 163 WARN_ON_ONCE(1); 164 *end_pfn = max_sparsemem_pfn; 165 } 166 } 167 168 /* 169 * There are a number of times that we loop over NR_MEM_SECTIONS, 170 * looking for section_present() on each. But, when we have very 171 * large physical address spaces, NR_MEM_SECTIONS can also be 172 * very large which makes the loops quite long. 173 * 174 * Keeping track of this gives us an easy way to break out of 175 * those loops early. 176 */ 177 int __highest_present_section_nr; 178 static void section_mark_present(struct mem_section *ms) 179 { 180 int section_nr = __section_nr(ms); 181 182 if (section_nr > __highest_present_section_nr) 183 __highest_present_section_nr = section_nr; 184 185 ms->section_mem_map |= SECTION_MARKED_PRESENT; 186 } 187 188 static inline int next_present_section_nr(int section_nr) 189 { 190 do { 191 section_nr++; 192 if (present_section_nr(section_nr)) 193 return section_nr; 194 } while ((section_nr <= __highest_present_section_nr)); 195 196 return -1; 197 } 198 #define for_each_present_section_nr(start, section_nr) \ 199 for (section_nr = next_present_section_nr(start-1); \ 200 ((section_nr >= 0) && \ 201 (section_nr <= __highest_present_section_nr)); \ 202 section_nr = next_present_section_nr(section_nr)) 203 204 static inline unsigned long first_present_section_nr(void) 205 { 206 return next_present_section_nr(-1); 207 } 208 209 /* Record a memory area against a node. */ 210 void __init memory_present(int nid, unsigned long start, unsigned long end) 211 { 212 unsigned long pfn; 213 214 #ifdef CONFIG_SPARSEMEM_EXTREME 215 if (unlikely(!mem_section)) { 216 unsigned long size, align; 217 218 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 219 align = 1 << (INTERNODE_CACHE_SHIFT); 220 mem_section = memblock_alloc(size, align); 221 } 222 #endif 223 224 start &= PAGE_SECTION_MASK; 225 mminit_validate_memmodel_limits(&start, &end); 226 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 227 unsigned long section = pfn_to_section_nr(pfn); 228 struct mem_section *ms; 229 230 sparse_index_init(section, nid); 231 set_section_nid(section, nid); 232 233 ms = __nr_to_section(section); 234 if (!ms->section_mem_map) { 235 ms->section_mem_map = sparse_encode_early_nid(nid) | 236 SECTION_IS_ONLINE; 237 section_mark_present(ms); 238 } 239 } 240 } 241 242 /* 243 * Subtle, we encode the real pfn into the mem_map such that 244 * the identity pfn - section_mem_map will return the actual 245 * physical page frame number. 246 */ 247 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 248 { 249 unsigned long coded_mem_map = 250 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 251 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 252 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 253 return coded_mem_map; 254 } 255 256 /* 257 * Decode mem_map from the coded memmap 258 */ 259 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 260 { 261 /* mask off the extra low bits of information */ 262 coded_mem_map &= SECTION_MAP_MASK; 263 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 264 } 265 266 static void __meminit sparse_init_one_section(struct mem_section *ms, 267 unsigned long pnum, struct page *mem_map, 268 unsigned long *pageblock_bitmap) 269 { 270 ms->section_mem_map &= ~SECTION_MAP_MASK; 271 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 272 SECTION_HAS_MEM_MAP; 273 ms->pageblock_flags = pageblock_bitmap; 274 } 275 276 unsigned long usemap_size(void) 277 { 278 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 279 } 280 281 #ifdef CONFIG_MEMORY_HOTPLUG 282 static unsigned long *__kmalloc_section_usemap(void) 283 { 284 return kmalloc(usemap_size(), GFP_KERNEL); 285 } 286 #endif /* CONFIG_MEMORY_HOTPLUG */ 287 288 #ifdef CONFIG_MEMORY_HOTREMOVE 289 static unsigned long * __init 290 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 291 unsigned long size) 292 { 293 unsigned long goal, limit; 294 unsigned long *p; 295 int nid; 296 /* 297 * A page may contain usemaps for other sections preventing the 298 * page being freed and making a section unremovable while 299 * other sections referencing the usemap remain active. Similarly, 300 * a pgdat can prevent a section being removed. If section A 301 * contains a pgdat and section B contains the usemap, both 302 * sections become inter-dependent. This allocates usemaps 303 * from the same section as the pgdat where possible to avoid 304 * this problem. 305 */ 306 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 307 limit = goal + (1UL << PA_SECTION_SHIFT); 308 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 309 again: 310 p = memblock_alloc_try_nid_nopanic(size, 311 SMP_CACHE_BYTES, goal, limit, 312 nid); 313 if (!p && limit) { 314 limit = 0; 315 goto again; 316 } 317 return p; 318 } 319 320 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 321 { 322 unsigned long usemap_snr, pgdat_snr; 323 static unsigned long old_usemap_snr; 324 static unsigned long old_pgdat_snr; 325 struct pglist_data *pgdat = NODE_DATA(nid); 326 int usemap_nid; 327 328 /* First call */ 329 if (!old_usemap_snr) { 330 old_usemap_snr = NR_MEM_SECTIONS; 331 old_pgdat_snr = NR_MEM_SECTIONS; 332 } 333 334 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 335 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 336 if (usemap_snr == pgdat_snr) 337 return; 338 339 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 340 /* skip redundant message */ 341 return; 342 343 old_usemap_snr = usemap_snr; 344 old_pgdat_snr = pgdat_snr; 345 346 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 347 if (usemap_nid != nid) { 348 pr_info("node %d must be removed before remove section %ld\n", 349 nid, usemap_snr); 350 return; 351 } 352 /* 353 * There is a circular dependency. 354 * Some platforms allow un-removable section because they will just 355 * gather other removable sections for dynamic partitioning. 356 * Just notify un-removable section's number here. 357 */ 358 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 359 usemap_snr, pgdat_snr, nid); 360 } 361 #else 362 static unsigned long * __init 363 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 364 unsigned long size) 365 { 366 return memblock_alloc_node_nopanic(size, pgdat->node_id); 367 } 368 369 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 370 { 371 } 372 #endif /* CONFIG_MEMORY_HOTREMOVE */ 373 374 #ifdef CONFIG_SPARSEMEM_VMEMMAP 375 static unsigned long __init section_map_size(void) 376 { 377 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 378 } 379 380 #else 381 static unsigned long __init section_map_size(void) 382 { 383 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 384 } 385 386 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid, 387 struct vmem_altmap *altmap) 388 { 389 unsigned long size = section_map_size(); 390 struct page *map = sparse_buffer_alloc(size); 391 392 if (map) 393 return map; 394 395 map = memblock_alloc_try_nid(size, 396 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 397 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 398 return map; 399 } 400 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 401 402 static void *sparsemap_buf __meminitdata; 403 static void *sparsemap_buf_end __meminitdata; 404 405 static void __init sparse_buffer_init(unsigned long size, int nid) 406 { 407 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 408 sparsemap_buf = 409 memblock_alloc_try_nid_raw(size, PAGE_SIZE, 410 __pa(MAX_DMA_ADDRESS), 411 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 412 sparsemap_buf_end = sparsemap_buf + size; 413 } 414 415 static void __init sparse_buffer_fini(void) 416 { 417 unsigned long size = sparsemap_buf_end - sparsemap_buf; 418 419 if (sparsemap_buf && size > 0) 420 memblock_free_early(__pa(sparsemap_buf), size); 421 sparsemap_buf = NULL; 422 } 423 424 void * __meminit sparse_buffer_alloc(unsigned long size) 425 { 426 void *ptr = NULL; 427 428 if (sparsemap_buf) { 429 ptr = PTR_ALIGN(sparsemap_buf, size); 430 if (ptr + size > sparsemap_buf_end) 431 ptr = NULL; 432 else 433 sparsemap_buf = ptr + size; 434 } 435 return ptr; 436 } 437 438 void __weak __meminit vmemmap_populate_print_last(void) 439 { 440 } 441 442 /* 443 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 444 * And number of present sections in this node is map_count. 445 */ 446 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 447 unsigned long pnum_end, 448 unsigned long map_count) 449 { 450 unsigned long pnum, usemap_longs, *usemap; 451 struct page *map; 452 453 usemap_longs = BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS); 454 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 455 usemap_size() * 456 map_count); 457 if (!usemap) { 458 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 459 goto failed; 460 } 461 sparse_buffer_init(map_count * section_map_size(), nid); 462 for_each_present_section_nr(pnum_begin, pnum) { 463 if (pnum >= pnum_end) 464 break; 465 466 map = sparse_mem_map_populate(pnum, nid, NULL); 467 if (!map) { 468 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 469 __func__, nid); 470 pnum_begin = pnum; 471 goto failed; 472 } 473 check_usemap_section_nr(nid, usemap); 474 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap); 475 usemap += usemap_longs; 476 } 477 sparse_buffer_fini(); 478 return; 479 failed: 480 /* We failed to allocate, mark all the following pnums as not present */ 481 for_each_present_section_nr(pnum_begin, pnum) { 482 struct mem_section *ms; 483 484 if (pnum >= pnum_end) 485 break; 486 ms = __nr_to_section(pnum); 487 ms->section_mem_map = 0; 488 } 489 } 490 491 /* 492 * Allocate the accumulated non-linear sections, allocate a mem_map 493 * for each and record the physical to section mapping. 494 */ 495 void __init sparse_init(void) 496 { 497 unsigned long pnum_begin = first_present_section_nr(); 498 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 499 unsigned long pnum_end, map_count = 1; 500 501 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 502 set_pageblock_order(); 503 504 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 505 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 506 507 if (nid == nid_begin) { 508 map_count++; 509 continue; 510 } 511 /* Init node with sections in range [pnum_begin, pnum_end) */ 512 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 513 nid_begin = nid; 514 pnum_begin = pnum_end; 515 map_count = 1; 516 } 517 /* cover the last node */ 518 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 519 vmemmap_populate_print_last(); 520 } 521 522 #ifdef CONFIG_MEMORY_HOTPLUG 523 524 /* Mark all memory sections within the pfn range as online */ 525 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 526 { 527 unsigned long pfn; 528 529 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 530 unsigned long section_nr = pfn_to_section_nr(pfn); 531 struct mem_section *ms; 532 533 /* onlining code should never touch invalid ranges */ 534 if (WARN_ON(!valid_section_nr(section_nr))) 535 continue; 536 537 ms = __nr_to_section(section_nr); 538 ms->section_mem_map |= SECTION_IS_ONLINE; 539 } 540 } 541 542 #ifdef CONFIG_MEMORY_HOTREMOVE 543 /* Mark all memory sections within the pfn range as online */ 544 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 545 { 546 unsigned long pfn; 547 548 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 549 unsigned long section_nr = pfn_to_section_nr(pfn); 550 struct mem_section *ms; 551 552 /* 553 * TODO this needs some double checking. Offlining code makes 554 * sure to check pfn_valid but those checks might be just bogus 555 */ 556 if (WARN_ON(!valid_section_nr(section_nr))) 557 continue; 558 559 ms = __nr_to_section(section_nr); 560 ms->section_mem_map &= ~SECTION_IS_ONLINE; 561 } 562 } 563 #endif 564 565 #ifdef CONFIG_SPARSEMEM_VMEMMAP 566 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 567 struct vmem_altmap *altmap) 568 { 569 /* This will make the necessary allocations eventually. */ 570 return sparse_mem_map_populate(pnum, nid, altmap); 571 } 572 static void __kfree_section_memmap(struct page *memmap, 573 struct vmem_altmap *altmap) 574 { 575 unsigned long start = (unsigned long)memmap; 576 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 577 578 vmemmap_free(start, end, altmap); 579 } 580 #ifdef CONFIG_MEMORY_HOTREMOVE 581 static void free_map_bootmem(struct page *memmap) 582 { 583 unsigned long start = (unsigned long)memmap; 584 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 585 586 vmemmap_free(start, end, NULL); 587 } 588 #endif /* CONFIG_MEMORY_HOTREMOVE */ 589 #else 590 static struct page *__kmalloc_section_memmap(void) 591 { 592 struct page *page, *ret; 593 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 594 595 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 596 if (page) 597 goto got_map_page; 598 599 ret = vmalloc(memmap_size); 600 if (ret) 601 goto got_map_ptr; 602 603 return NULL; 604 got_map_page: 605 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 606 got_map_ptr: 607 608 return ret; 609 } 610 611 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 612 struct vmem_altmap *altmap) 613 { 614 return __kmalloc_section_memmap(); 615 } 616 617 static void __kfree_section_memmap(struct page *memmap, 618 struct vmem_altmap *altmap) 619 { 620 if (is_vmalloc_addr(memmap)) 621 vfree(memmap); 622 else 623 free_pages((unsigned long)memmap, 624 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 625 } 626 627 #ifdef CONFIG_MEMORY_HOTREMOVE 628 static void free_map_bootmem(struct page *memmap) 629 { 630 unsigned long maps_section_nr, removing_section_nr, i; 631 unsigned long magic, nr_pages; 632 struct page *page = virt_to_page(memmap); 633 634 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 635 >> PAGE_SHIFT; 636 637 for (i = 0; i < nr_pages; i++, page++) { 638 magic = (unsigned long) page->freelist; 639 640 BUG_ON(magic == NODE_INFO); 641 642 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 643 removing_section_nr = page_private(page); 644 645 /* 646 * When this function is called, the removing section is 647 * logical offlined state. This means all pages are isolated 648 * from page allocator. If removing section's memmap is placed 649 * on the same section, it must not be freed. 650 * If it is freed, page allocator may allocate it which will 651 * be removed physically soon. 652 */ 653 if (maps_section_nr != removing_section_nr) 654 put_page_bootmem(page); 655 } 656 } 657 #endif /* CONFIG_MEMORY_HOTREMOVE */ 658 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 659 660 /* 661 * returns the number of sections whose mem_maps were properly 662 * set. If this is <=0, then that means that the passed-in 663 * map was not consumed and must be freed. 664 */ 665 int __meminit sparse_add_one_section(struct pglist_data *pgdat, 666 unsigned long start_pfn, struct vmem_altmap *altmap) 667 { 668 unsigned long section_nr = pfn_to_section_nr(start_pfn); 669 struct mem_section *ms; 670 struct page *memmap; 671 unsigned long *usemap; 672 unsigned long flags; 673 int ret; 674 675 /* 676 * no locking for this, because it does its own 677 * plus, it does a kmalloc 678 */ 679 ret = sparse_index_init(section_nr, pgdat->node_id); 680 if (ret < 0 && ret != -EEXIST) 681 return ret; 682 ret = 0; 683 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap); 684 if (!memmap) 685 return -ENOMEM; 686 usemap = __kmalloc_section_usemap(); 687 if (!usemap) { 688 __kfree_section_memmap(memmap, altmap); 689 return -ENOMEM; 690 } 691 692 pgdat_resize_lock(pgdat, &flags); 693 694 ms = __pfn_to_section(start_pfn); 695 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 696 ret = -EEXIST; 697 goto out; 698 } 699 700 /* 701 * Poison uninitialized struct pages in order to catch invalid flags 702 * combinations. 703 */ 704 page_init_poison(memmap, sizeof(struct page) * PAGES_PER_SECTION); 705 706 section_mark_present(ms); 707 sparse_init_one_section(ms, section_nr, memmap, usemap); 708 709 out: 710 pgdat_resize_unlock(pgdat, &flags); 711 if (ret < 0) { 712 kfree(usemap); 713 __kfree_section_memmap(memmap, altmap); 714 } 715 return ret; 716 } 717 718 #ifdef CONFIG_MEMORY_HOTREMOVE 719 #ifdef CONFIG_MEMORY_FAILURE 720 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 721 { 722 int i; 723 724 if (!memmap) 725 return; 726 727 for (i = 0; i < nr_pages; i++) { 728 if (PageHWPoison(&memmap[i])) { 729 atomic_long_sub(1, &num_poisoned_pages); 730 ClearPageHWPoison(&memmap[i]); 731 } 732 } 733 } 734 #else 735 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 736 { 737 } 738 #endif 739 740 static void free_section_usemap(struct page *memmap, unsigned long *usemap, 741 struct vmem_altmap *altmap) 742 { 743 struct page *usemap_page; 744 745 if (!usemap) 746 return; 747 748 usemap_page = virt_to_page(usemap); 749 /* 750 * Check to see if allocation came from hot-plug-add 751 */ 752 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 753 kfree(usemap); 754 if (memmap) 755 __kfree_section_memmap(memmap, altmap); 756 return; 757 } 758 759 /* 760 * The usemap came from bootmem. This is packed with other usemaps 761 * on the section which has pgdat at boot time. Just keep it as is now. 762 */ 763 764 if (memmap) 765 free_map_bootmem(memmap); 766 } 767 768 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 769 unsigned long map_offset, struct vmem_altmap *altmap) 770 { 771 struct page *memmap = NULL; 772 unsigned long *usemap = NULL, flags; 773 struct pglist_data *pgdat = zone->zone_pgdat; 774 775 pgdat_resize_lock(pgdat, &flags); 776 if (ms->section_mem_map) { 777 usemap = ms->pageblock_flags; 778 memmap = sparse_decode_mem_map(ms->section_mem_map, 779 __section_nr(ms)); 780 ms->section_mem_map = 0; 781 ms->pageblock_flags = NULL; 782 } 783 pgdat_resize_unlock(pgdat, &flags); 784 785 clear_hwpoisoned_pages(memmap + map_offset, 786 PAGES_PER_SECTION - map_offset); 787 free_section_usemap(memmap, usemap, altmap); 788 } 789 #endif /* CONFIG_MEMORY_HOTREMOVE */ 790 #endif /* CONFIG_MEMORY_HOTPLUG */ 791