xref: /openbmc/linux/mm/sparse-vmemmap.c (revision b25db383)
1 /*
2  * Virtual Memory Map support
3  *
4  * (C) 2007 sgi. Christoph Lameter.
5  *
6  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
7  * virt_to_page, page_address() to be implemented as a base offset
8  * calculation without memory access.
9  *
10  * However, virtual mappings need a page table and TLBs. Many Linux
11  * architectures already map their physical space using 1-1 mappings
12  * via TLBs. For those arches the virtual memory map is essentially
13  * for free if we use the same page size as the 1-1 mappings. In that
14  * case the overhead consists of a few additional pages that are
15  * allocated to create a view of memory for vmemmap.
16  *
17  * The architecture is expected to provide a vmemmap_populate() function
18  * to instantiate the mapping.
19  */
20 #include <linux/mm.h>
21 #include <linux/mmzone.h>
22 #include <linux/bootmem.h>
23 #include <linux/memremap.h>
24 #include <linux/highmem.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <asm/dma.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 
33 /*
34  * Allocate a block of memory to be used to back the virtual memory map
35  * or to back the page tables that are used to create the mapping.
36  * Uses the main allocators if they are available, else bootmem.
37  */
38 
39 static void * __ref __earlyonly_bootmem_alloc(int node,
40 				unsigned long size,
41 				unsigned long align,
42 				unsigned long goal)
43 {
44 	return memblock_virt_alloc_try_nid(size, align, goal,
45 					    BOOTMEM_ALLOC_ACCESSIBLE, node);
46 }
47 
48 static void *vmemmap_buf;
49 static void *vmemmap_buf_end;
50 
51 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
52 {
53 	/* If the main allocator is up use that, fallback to bootmem. */
54 	if (slab_is_available()) {
55 		struct page *page;
56 
57 		if (node_state(node, N_HIGH_MEMORY))
58 			page = alloc_pages_node(
59 				node, GFP_KERNEL | __GFP_ZERO | __GFP_RETRY_MAYFAIL,
60 				get_order(size));
61 		else
62 			page = alloc_pages(
63 				GFP_KERNEL | __GFP_ZERO | __GFP_RETRY_MAYFAIL,
64 				get_order(size));
65 		if (page)
66 			return page_address(page);
67 		return NULL;
68 	} else
69 		return __earlyonly_bootmem_alloc(node, size, size,
70 				__pa(MAX_DMA_ADDRESS));
71 }
72 
73 /* need to make sure size is all the same during early stage */
74 static void * __meminit alloc_block_buf(unsigned long size, int node)
75 {
76 	void *ptr;
77 
78 	if (!vmemmap_buf)
79 		return vmemmap_alloc_block(size, node);
80 
81 	/* take the from buf */
82 	ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
83 	if (ptr + size > vmemmap_buf_end)
84 		return vmemmap_alloc_block(size, node);
85 
86 	vmemmap_buf = ptr + size;
87 
88 	return ptr;
89 }
90 
91 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
92 {
93 	return altmap->base_pfn + altmap->reserve + altmap->alloc
94 		+ altmap->align;
95 }
96 
97 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
98 {
99 	unsigned long allocated = altmap->alloc + altmap->align;
100 
101 	if (altmap->free > allocated)
102 		return altmap->free - allocated;
103 	return 0;
104 }
105 
106 /**
107  * vmem_altmap_alloc - allocate pages from the vmem_altmap reservation
108  * @altmap - reserved page pool for the allocation
109  * @nr_pfns - size (in pages) of the allocation
110  *
111  * Allocations are aligned to the size of the request
112  */
113 static unsigned long __meminit vmem_altmap_alloc(struct vmem_altmap *altmap,
114 		unsigned long nr_pfns)
115 {
116 	unsigned long pfn = vmem_altmap_next_pfn(altmap);
117 	unsigned long nr_align;
118 
119 	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
120 	nr_align = ALIGN(pfn, nr_align) - pfn;
121 
122 	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
123 		return ULONG_MAX;
124 	altmap->alloc += nr_pfns;
125 	altmap->align += nr_align;
126 	return pfn + nr_align;
127 }
128 
129 static void * __meminit altmap_alloc_block_buf(unsigned long size,
130 		struct vmem_altmap *altmap)
131 {
132 	unsigned long pfn, nr_pfns;
133 	void *ptr;
134 
135 	if (size & ~PAGE_MASK) {
136 		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
137 				__func__, size);
138 		return NULL;
139 	}
140 
141 	nr_pfns = size >> PAGE_SHIFT;
142 	pfn = vmem_altmap_alloc(altmap, nr_pfns);
143 	if (pfn < ULONG_MAX)
144 		ptr = __va(__pfn_to_phys(pfn));
145 	else
146 		ptr = NULL;
147 	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
148 			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
149 
150 	return ptr;
151 }
152 
153 /* need to make sure size is all the same during early stage */
154 void * __meminit __vmemmap_alloc_block_buf(unsigned long size, int node,
155 		struct vmem_altmap *altmap)
156 {
157 	if (altmap)
158 		return altmap_alloc_block_buf(size, altmap);
159 	return alloc_block_buf(size, node);
160 }
161 
162 void __meminit vmemmap_verify(pte_t *pte, int node,
163 				unsigned long start, unsigned long end)
164 {
165 	unsigned long pfn = pte_pfn(*pte);
166 	int actual_node = early_pfn_to_nid(pfn);
167 
168 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
169 		pr_warn("[%lx-%lx] potential offnode page_structs\n",
170 			start, end - 1);
171 }
172 
173 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
174 {
175 	pte_t *pte = pte_offset_kernel(pmd, addr);
176 	if (pte_none(*pte)) {
177 		pte_t entry;
178 		void *p = alloc_block_buf(PAGE_SIZE, node);
179 		if (!p)
180 			return NULL;
181 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
182 		set_pte_at(&init_mm, addr, pte, entry);
183 	}
184 	return pte;
185 }
186 
187 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
188 {
189 	pmd_t *pmd = pmd_offset(pud, addr);
190 	if (pmd_none(*pmd)) {
191 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
192 		if (!p)
193 			return NULL;
194 		pmd_populate_kernel(&init_mm, pmd, p);
195 	}
196 	return pmd;
197 }
198 
199 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
200 {
201 	pud_t *pud = pud_offset(p4d, addr);
202 	if (pud_none(*pud)) {
203 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
204 		if (!p)
205 			return NULL;
206 		pud_populate(&init_mm, pud, p);
207 	}
208 	return pud;
209 }
210 
211 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
212 {
213 	p4d_t *p4d = p4d_offset(pgd, addr);
214 	if (p4d_none(*p4d)) {
215 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
216 		if (!p)
217 			return NULL;
218 		p4d_populate(&init_mm, p4d, p);
219 	}
220 	return p4d;
221 }
222 
223 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
224 {
225 	pgd_t *pgd = pgd_offset_k(addr);
226 	if (pgd_none(*pgd)) {
227 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
228 		if (!p)
229 			return NULL;
230 		pgd_populate(&init_mm, pgd, p);
231 	}
232 	return pgd;
233 }
234 
235 int __meminit vmemmap_populate_basepages(unsigned long start,
236 					 unsigned long end, int node)
237 {
238 	unsigned long addr = start;
239 	pgd_t *pgd;
240 	p4d_t *p4d;
241 	pud_t *pud;
242 	pmd_t *pmd;
243 	pte_t *pte;
244 
245 	for (; addr < end; addr += PAGE_SIZE) {
246 		pgd = vmemmap_pgd_populate(addr, node);
247 		if (!pgd)
248 			return -ENOMEM;
249 		p4d = vmemmap_p4d_populate(pgd, addr, node);
250 		if (!p4d)
251 			return -ENOMEM;
252 		pud = vmemmap_pud_populate(p4d, addr, node);
253 		if (!pud)
254 			return -ENOMEM;
255 		pmd = vmemmap_pmd_populate(pud, addr, node);
256 		if (!pmd)
257 			return -ENOMEM;
258 		pte = vmemmap_pte_populate(pmd, addr, node);
259 		if (!pte)
260 			return -ENOMEM;
261 		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
262 	}
263 
264 	return 0;
265 }
266 
267 struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
268 {
269 	unsigned long start;
270 	unsigned long end;
271 	struct page *map;
272 
273 	map = pfn_to_page(pnum * PAGES_PER_SECTION);
274 	start = (unsigned long)map;
275 	end = (unsigned long)(map + PAGES_PER_SECTION);
276 
277 	if (vmemmap_populate(start, end, nid))
278 		return NULL;
279 
280 	return map;
281 }
282 
283 void __init sparse_mem_maps_populate_node(struct page **map_map,
284 					  unsigned long pnum_begin,
285 					  unsigned long pnum_end,
286 					  unsigned long map_count, int nodeid)
287 {
288 	unsigned long pnum;
289 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
290 	void *vmemmap_buf_start;
291 
292 	size = ALIGN(size, PMD_SIZE);
293 	vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
294 			 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
295 
296 	if (vmemmap_buf_start) {
297 		vmemmap_buf = vmemmap_buf_start;
298 		vmemmap_buf_end = vmemmap_buf_start + size * map_count;
299 	}
300 
301 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
302 		struct mem_section *ms;
303 
304 		if (!present_section_nr(pnum))
305 			continue;
306 
307 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
308 		if (map_map[pnum])
309 			continue;
310 		ms = __nr_to_section(pnum);
311 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
312 		       __func__);
313 		ms->section_mem_map = 0;
314 	}
315 
316 	if (vmemmap_buf_start) {
317 		/* need to free left buf */
318 		memblock_free_early(__pa(vmemmap_buf),
319 				    vmemmap_buf_end - vmemmap_buf);
320 		vmemmap_buf = NULL;
321 		vmemmap_buf_end = NULL;
322 	}
323 }
324