xref: /openbmc/linux/mm/sparse-vmemmap.c (revision a8fc357b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/bootmem.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 #include <asm/dma.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 
34 /*
35  * Allocate a block of memory to be used to back the virtual memory map
36  * or to back the page tables that are used to create the mapping.
37  * Uses the main allocators if they are available, else bootmem.
38  */
39 
40 static void * __ref __earlyonly_bootmem_alloc(int node,
41 				unsigned long size,
42 				unsigned long align,
43 				unsigned long goal)
44 {
45 	return memblock_virt_alloc_try_nid_raw(size, align, goal,
46 					    BOOTMEM_ALLOC_ACCESSIBLE, node);
47 }
48 
49 static void *vmemmap_buf;
50 static void *vmemmap_buf_end;
51 
52 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
53 {
54 	/* If the main allocator is up use that, fallback to bootmem. */
55 	if (slab_is_available()) {
56 		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
57 		int order = get_order(size);
58 		static bool warned;
59 		struct page *page;
60 
61 		page = alloc_pages_node(node, gfp_mask, order);
62 		if (page)
63 			return page_address(page);
64 
65 		if (!warned) {
66 			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
67 				   "vmemmap alloc failure: order:%u", order);
68 			warned = true;
69 		}
70 		return NULL;
71 	} else
72 		return __earlyonly_bootmem_alloc(node, size, size,
73 				__pa(MAX_DMA_ADDRESS));
74 }
75 
76 /* need to make sure size is all the same during early stage */
77 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
78 {
79 	void *ptr;
80 
81 	if (!vmemmap_buf)
82 		return vmemmap_alloc_block(size, node);
83 
84 	/* take the from buf */
85 	ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
86 	if (ptr + size > vmemmap_buf_end)
87 		return vmemmap_alloc_block(size, node);
88 
89 	vmemmap_buf = ptr + size;
90 
91 	return ptr;
92 }
93 
94 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
95 {
96 	return altmap->base_pfn + altmap->reserve + altmap->alloc
97 		+ altmap->align;
98 }
99 
100 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
101 {
102 	unsigned long allocated = altmap->alloc + altmap->align;
103 
104 	if (altmap->free > allocated)
105 		return altmap->free - allocated;
106 	return 0;
107 }
108 
109 /**
110  * vmem_altmap_alloc - allocate pages from the vmem_altmap reservation
111  * @altmap - reserved page pool for the allocation
112  * @nr_pfns - size (in pages) of the allocation
113  *
114  * Allocations are aligned to the size of the request
115  */
116 static unsigned long __meminit vmem_altmap_alloc(struct vmem_altmap *altmap,
117 		unsigned long nr_pfns)
118 {
119 	unsigned long pfn = vmem_altmap_next_pfn(altmap);
120 	unsigned long nr_align;
121 
122 	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
123 	nr_align = ALIGN(pfn, nr_align) - pfn;
124 
125 	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
126 		return ULONG_MAX;
127 	altmap->alloc += nr_pfns;
128 	altmap->align += nr_align;
129 	return pfn + nr_align;
130 }
131 
132 void * __meminit altmap_alloc_block_buf(unsigned long size,
133 		struct vmem_altmap *altmap)
134 {
135 	unsigned long pfn, nr_pfns;
136 	void *ptr;
137 
138 	if (size & ~PAGE_MASK) {
139 		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
140 				__func__, size);
141 		return NULL;
142 	}
143 
144 	nr_pfns = size >> PAGE_SHIFT;
145 	pfn = vmem_altmap_alloc(altmap, nr_pfns);
146 	if (pfn < ULONG_MAX)
147 		ptr = __va(__pfn_to_phys(pfn));
148 	else
149 		ptr = NULL;
150 	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
151 			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
152 
153 	return ptr;
154 }
155 
156 void __meminit vmemmap_verify(pte_t *pte, int node,
157 				unsigned long start, unsigned long end)
158 {
159 	unsigned long pfn = pte_pfn(*pte);
160 	int actual_node = early_pfn_to_nid(pfn);
161 
162 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
163 		pr_warn("[%lx-%lx] potential offnode page_structs\n",
164 			start, end - 1);
165 }
166 
167 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
168 {
169 	pte_t *pte = pte_offset_kernel(pmd, addr);
170 	if (pte_none(*pte)) {
171 		pte_t entry;
172 		void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
173 		if (!p)
174 			return NULL;
175 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
176 		set_pte_at(&init_mm, addr, pte, entry);
177 	}
178 	return pte;
179 }
180 
181 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
182 {
183 	void *p = vmemmap_alloc_block(size, node);
184 
185 	if (!p)
186 		return NULL;
187 	memset(p, 0, size);
188 
189 	return p;
190 }
191 
192 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
193 {
194 	pmd_t *pmd = pmd_offset(pud, addr);
195 	if (pmd_none(*pmd)) {
196 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
197 		if (!p)
198 			return NULL;
199 		pmd_populate_kernel(&init_mm, pmd, p);
200 	}
201 	return pmd;
202 }
203 
204 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
205 {
206 	pud_t *pud = pud_offset(p4d, addr);
207 	if (pud_none(*pud)) {
208 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
209 		if (!p)
210 			return NULL;
211 		pud_populate(&init_mm, pud, p);
212 	}
213 	return pud;
214 }
215 
216 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
217 {
218 	p4d_t *p4d = p4d_offset(pgd, addr);
219 	if (p4d_none(*p4d)) {
220 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
221 		if (!p)
222 			return NULL;
223 		p4d_populate(&init_mm, p4d, p);
224 	}
225 	return p4d;
226 }
227 
228 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
229 {
230 	pgd_t *pgd = pgd_offset_k(addr);
231 	if (pgd_none(*pgd)) {
232 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
233 		if (!p)
234 			return NULL;
235 		pgd_populate(&init_mm, pgd, p);
236 	}
237 	return pgd;
238 }
239 
240 int __meminit vmemmap_populate_basepages(unsigned long start,
241 					 unsigned long end, int node)
242 {
243 	unsigned long addr = start;
244 	pgd_t *pgd;
245 	p4d_t *p4d;
246 	pud_t *pud;
247 	pmd_t *pmd;
248 	pte_t *pte;
249 
250 	for (; addr < end; addr += PAGE_SIZE) {
251 		pgd = vmemmap_pgd_populate(addr, node);
252 		if (!pgd)
253 			return -ENOMEM;
254 		p4d = vmemmap_p4d_populate(pgd, addr, node);
255 		if (!p4d)
256 			return -ENOMEM;
257 		pud = vmemmap_pud_populate(p4d, addr, node);
258 		if (!pud)
259 			return -ENOMEM;
260 		pmd = vmemmap_pmd_populate(pud, addr, node);
261 		if (!pmd)
262 			return -ENOMEM;
263 		pte = vmemmap_pte_populate(pmd, addr, node);
264 		if (!pte)
265 			return -ENOMEM;
266 		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
267 	}
268 
269 	return 0;
270 }
271 
272 struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid,
273 		struct vmem_altmap *altmap)
274 {
275 	unsigned long start;
276 	unsigned long end;
277 	struct page *map;
278 
279 	map = pfn_to_page(pnum * PAGES_PER_SECTION);
280 	start = (unsigned long)map;
281 	end = (unsigned long)(map + PAGES_PER_SECTION);
282 
283 	if (vmemmap_populate(start, end, nid, altmap))
284 		return NULL;
285 
286 	return map;
287 }
288 
289 void __init sparse_mem_maps_populate_node(struct page **map_map,
290 					  unsigned long pnum_begin,
291 					  unsigned long pnum_end,
292 					  unsigned long map_count, int nodeid)
293 {
294 	unsigned long pnum;
295 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
296 	void *vmemmap_buf_start;
297 
298 	size = ALIGN(size, PMD_SIZE);
299 	vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
300 			 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
301 
302 	if (vmemmap_buf_start) {
303 		vmemmap_buf = vmemmap_buf_start;
304 		vmemmap_buf_end = vmemmap_buf_start + size * map_count;
305 	}
306 
307 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
308 		struct mem_section *ms;
309 
310 		if (!present_section_nr(pnum))
311 			continue;
312 
313 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
314 		if (map_map[pnum])
315 			continue;
316 		ms = __nr_to_section(pnum);
317 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
318 		       __func__);
319 		ms->section_mem_map = 0;
320 	}
321 
322 	if (vmemmap_buf_start) {
323 		/* need to free left buf */
324 		memblock_free_early(__pa(vmemmap_buf),
325 				    vmemmap_buf_end - vmemmap_buf);
326 		vmemmap_buf = NULL;
327 		vmemmap_buf_end = NULL;
328 	}
329 }
330