xref: /openbmc/linux/mm/sparse-vmemmap.c (revision a5d46d9a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/bootmem_info.h>
32 
33 #include <asm/dma.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36 
37 /**
38  * struct vmemmap_remap_walk - walk vmemmap page table
39  *
40  * @remap_pte:		called for each lowest-level entry (PTE).
41  * @nr_walked:		the number of walked pte.
42  * @reuse_page:		the page which is reused for the tail vmemmap pages.
43  * @reuse_addr:		the virtual address of the @reuse_page page.
44  * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
45  *			or is mapped from.
46  */
47 struct vmemmap_remap_walk {
48 	void (*remap_pte)(pte_t *pte, unsigned long addr,
49 			  struct vmemmap_remap_walk *walk);
50 	unsigned long nr_walked;
51 	struct page *reuse_page;
52 	unsigned long reuse_addr;
53 	struct list_head *vmemmap_pages;
54 };
55 
56 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start,
57 				  struct vmemmap_remap_walk *walk)
58 {
59 	pmd_t __pmd;
60 	int i;
61 	unsigned long addr = start;
62 	struct page *page = pmd_page(*pmd);
63 	pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
64 
65 	if (!pgtable)
66 		return -ENOMEM;
67 
68 	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
69 
70 	for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
71 		pte_t entry, *pte;
72 		pgprot_t pgprot = PAGE_KERNEL;
73 
74 		entry = mk_pte(page + i, pgprot);
75 		pte = pte_offset_kernel(&__pmd, addr);
76 		set_pte_at(&init_mm, addr, pte, entry);
77 	}
78 
79 	/* Make pte visible before pmd. See comment in __pte_alloc(). */
80 	smp_wmb();
81 	pmd_populate_kernel(&init_mm, pmd, pgtable);
82 
83 	flush_tlb_kernel_range(start, start + PMD_SIZE);
84 
85 	return 0;
86 }
87 
88 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
89 			      unsigned long end,
90 			      struct vmemmap_remap_walk *walk)
91 {
92 	pte_t *pte = pte_offset_kernel(pmd, addr);
93 
94 	/*
95 	 * The reuse_page is found 'first' in table walk before we start
96 	 * remapping (which is calling @walk->remap_pte).
97 	 */
98 	if (!walk->reuse_page) {
99 		walk->reuse_page = pte_page(*pte);
100 		/*
101 		 * Because the reuse address is part of the range that we are
102 		 * walking, skip the reuse address range.
103 		 */
104 		addr += PAGE_SIZE;
105 		pte++;
106 		walk->nr_walked++;
107 	}
108 
109 	for (; addr != end; addr += PAGE_SIZE, pte++) {
110 		walk->remap_pte(pte, addr, walk);
111 		walk->nr_walked++;
112 	}
113 }
114 
115 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
116 			     unsigned long end,
117 			     struct vmemmap_remap_walk *walk)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_offset(pud, addr);
123 	do {
124 		if (pmd_leaf(*pmd)) {
125 			int ret;
126 
127 			ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK, walk);
128 			if (ret)
129 				return ret;
130 		}
131 		next = pmd_addr_end(addr, end);
132 		vmemmap_pte_range(pmd, addr, next, walk);
133 	} while (pmd++, addr = next, addr != end);
134 
135 	return 0;
136 }
137 
138 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
139 			     unsigned long end,
140 			     struct vmemmap_remap_walk *walk)
141 {
142 	pud_t *pud;
143 	unsigned long next;
144 
145 	pud = pud_offset(p4d, addr);
146 	do {
147 		int ret;
148 
149 		next = pud_addr_end(addr, end);
150 		ret = vmemmap_pmd_range(pud, addr, next, walk);
151 		if (ret)
152 			return ret;
153 	} while (pud++, addr = next, addr != end);
154 
155 	return 0;
156 }
157 
158 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
159 			     unsigned long end,
160 			     struct vmemmap_remap_walk *walk)
161 {
162 	p4d_t *p4d;
163 	unsigned long next;
164 
165 	p4d = p4d_offset(pgd, addr);
166 	do {
167 		int ret;
168 
169 		next = p4d_addr_end(addr, end);
170 		ret = vmemmap_pud_range(p4d, addr, next, walk);
171 		if (ret)
172 			return ret;
173 	} while (p4d++, addr = next, addr != end);
174 
175 	return 0;
176 }
177 
178 static int vmemmap_remap_range(unsigned long start, unsigned long end,
179 			       struct vmemmap_remap_walk *walk)
180 {
181 	unsigned long addr = start;
182 	unsigned long next;
183 	pgd_t *pgd;
184 
185 	VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
186 	VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
187 
188 	pgd = pgd_offset_k(addr);
189 	do {
190 		int ret;
191 
192 		next = pgd_addr_end(addr, end);
193 		ret = vmemmap_p4d_range(pgd, addr, next, walk);
194 		if (ret)
195 			return ret;
196 	} while (pgd++, addr = next, addr != end);
197 
198 	/*
199 	 * We only change the mapping of the vmemmap virtual address range
200 	 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
201 	 * belongs to the range.
202 	 */
203 	flush_tlb_kernel_range(start + PAGE_SIZE, end);
204 
205 	return 0;
206 }
207 
208 /*
209  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
210  * allocator or buddy allocator. If the PG_reserved flag is set, it means
211  * that it allocated from the memblock allocator, just free it via the
212  * free_bootmem_page(). Otherwise, use __free_page().
213  */
214 static inline void free_vmemmap_page(struct page *page)
215 {
216 	if (PageReserved(page))
217 		free_bootmem_page(page);
218 	else
219 		__free_page(page);
220 }
221 
222 /* Free a list of the vmemmap pages */
223 static void free_vmemmap_page_list(struct list_head *list)
224 {
225 	struct page *page, *next;
226 
227 	list_for_each_entry_safe(page, next, list, lru) {
228 		list_del(&page->lru);
229 		free_vmemmap_page(page);
230 	}
231 }
232 
233 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
234 			      struct vmemmap_remap_walk *walk)
235 {
236 	/*
237 	 * Remap the tail pages as read-only to catch illegal write operation
238 	 * to the tail pages.
239 	 */
240 	pgprot_t pgprot = PAGE_KERNEL_RO;
241 	pte_t entry = mk_pte(walk->reuse_page, pgprot);
242 	struct page *page = pte_page(*pte);
243 
244 	list_add_tail(&page->lru, walk->vmemmap_pages);
245 	set_pte_at(&init_mm, addr, pte, entry);
246 }
247 
248 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
249 				struct vmemmap_remap_walk *walk)
250 {
251 	pgprot_t pgprot = PAGE_KERNEL;
252 	struct page *page;
253 	void *to;
254 
255 	BUG_ON(pte_page(*pte) != walk->reuse_page);
256 
257 	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
258 	list_del(&page->lru);
259 	to = page_to_virt(page);
260 	copy_page(to, (void *)walk->reuse_addr);
261 
262 	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
263 }
264 
265 /**
266  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
267  *			to the page which @reuse is mapped to, then free vmemmap
268  *			which the range are mapped to.
269  * @start:	start address of the vmemmap virtual address range that we want
270  *		to remap.
271  * @end:	end address of the vmemmap virtual address range that we want to
272  *		remap.
273  * @reuse:	reuse address.
274  *
275  * Return: %0 on success, negative error code otherwise.
276  */
277 int vmemmap_remap_free(unsigned long start, unsigned long end,
278 		       unsigned long reuse)
279 {
280 	int ret;
281 	LIST_HEAD(vmemmap_pages);
282 	struct vmemmap_remap_walk walk = {
283 		.remap_pte	= vmemmap_remap_pte,
284 		.reuse_addr	= reuse,
285 		.vmemmap_pages	= &vmemmap_pages,
286 	};
287 
288 	/*
289 	 * In order to make remapping routine most efficient for the huge pages,
290 	 * the routine of vmemmap page table walking has the following rules
291 	 * (see more details from the vmemmap_pte_range()):
292 	 *
293 	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
294 	 *   should be continuous.
295 	 * - The @reuse address is part of the range [@reuse, @end) that we are
296 	 *   walking which is passed to vmemmap_remap_range().
297 	 * - The @reuse address is the first in the complete range.
298 	 *
299 	 * So we need to make sure that @start and @reuse meet the above rules.
300 	 */
301 	BUG_ON(start - reuse != PAGE_SIZE);
302 
303 	mmap_write_lock(&init_mm);
304 	ret = vmemmap_remap_range(reuse, end, &walk);
305 	mmap_write_downgrade(&init_mm);
306 
307 	if (ret && walk.nr_walked) {
308 		end = reuse + walk.nr_walked * PAGE_SIZE;
309 		/*
310 		 * vmemmap_pages contains pages from the previous
311 		 * vmemmap_remap_range call which failed.  These
312 		 * are pages which were removed from the vmemmap.
313 		 * They will be restored in the following call.
314 		 */
315 		walk = (struct vmemmap_remap_walk) {
316 			.remap_pte	= vmemmap_restore_pte,
317 			.reuse_addr	= reuse,
318 			.vmemmap_pages	= &vmemmap_pages,
319 		};
320 
321 		vmemmap_remap_range(reuse, end, &walk);
322 	}
323 	mmap_read_unlock(&init_mm);
324 
325 	free_vmemmap_page_list(&vmemmap_pages);
326 
327 	return ret;
328 }
329 
330 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
331 				   gfp_t gfp_mask, struct list_head *list)
332 {
333 	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
334 	int nid = page_to_nid((struct page *)start);
335 	struct page *page, *next;
336 
337 	while (nr_pages--) {
338 		page = alloc_pages_node(nid, gfp_mask, 0);
339 		if (!page)
340 			goto out;
341 		list_add_tail(&page->lru, list);
342 	}
343 
344 	return 0;
345 out:
346 	list_for_each_entry_safe(page, next, list, lru)
347 		__free_pages(page, 0);
348 	return -ENOMEM;
349 }
350 
351 /**
352  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
353  *			 to the page which is from the @vmemmap_pages
354  *			 respectively.
355  * @start:	start address of the vmemmap virtual address range that we want
356  *		to remap.
357  * @end:	end address of the vmemmap virtual address range that we want to
358  *		remap.
359  * @reuse:	reuse address.
360  * @gfp_mask:	GFP flag for allocating vmemmap pages.
361  *
362  * Return: %0 on success, negative error code otherwise.
363  */
364 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
365 			unsigned long reuse, gfp_t gfp_mask)
366 {
367 	LIST_HEAD(vmemmap_pages);
368 	struct vmemmap_remap_walk walk = {
369 		.remap_pte	= vmemmap_restore_pte,
370 		.reuse_addr	= reuse,
371 		.vmemmap_pages	= &vmemmap_pages,
372 	};
373 
374 	/* See the comment in the vmemmap_remap_free(). */
375 	BUG_ON(start - reuse != PAGE_SIZE);
376 
377 	if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
378 		return -ENOMEM;
379 
380 	mmap_read_lock(&init_mm);
381 	vmemmap_remap_range(reuse, end, &walk);
382 	mmap_read_unlock(&init_mm);
383 
384 	return 0;
385 }
386 
387 /*
388  * Allocate a block of memory to be used to back the virtual memory map
389  * or to back the page tables that are used to create the mapping.
390  * Uses the main allocators if they are available, else bootmem.
391  */
392 
393 static void * __ref __earlyonly_bootmem_alloc(int node,
394 				unsigned long size,
395 				unsigned long align,
396 				unsigned long goal)
397 {
398 	return memblock_alloc_try_nid_raw(size, align, goal,
399 					       MEMBLOCK_ALLOC_ACCESSIBLE, node);
400 }
401 
402 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
403 {
404 	/* If the main allocator is up use that, fallback to bootmem. */
405 	if (slab_is_available()) {
406 		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
407 		int order = get_order(size);
408 		static bool warned;
409 		struct page *page;
410 
411 		page = alloc_pages_node(node, gfp_mask, order);
412 		if (page)
413 			return page_address(page);
414 
415 		if (!warned) {
416 			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
417 				   "vmemmap alloc failure: order:%u", order);
418 			warned = true;
419 		}
420 		return NULL;
421 	} else
422 		return __earlyonly_bootmem_alloc(node, size, size,
423 				__pa(MAX_DMA_ADDRESS));
424 }
425 
426 static void * __meminit altmap_alloc_block_buf(unsigned long size,
427 					       struct vmem_altmap *altmap);
428 
429 /* need to make sure size is all the same during early stage */
430 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
431 					 struct vmem_altmap *altmap)
432 {
433 	void *ptr;
434 
435 	if (altmap)
436 		return altmap_alloc_block_buf(size, altmap);
437 
438 	ptr = sparse_buffer_alloc(size);
439 	if (!ptr)
440 		ptr = vmemmap_alloc_block(size, node);
441 	return ptr;
442 }
443 
444 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
445 {
446 	return altmap->base_pfn + altmap->reserve + altmap->alloc
447 		+ altmap->align;
448 }
449 
450 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
451 {
452 	unsigned long allocated = altmap->alloc + altmap->align;
453 
454 	if (altmap->free > allocated)
455 		return altmap->free - allocated;
456 	return 0;
457 }
458 
459 static void * __meminit altmap_alloc_block_buf(unsigned long size,
460 					       struct vmem_altmap *altmap)
461 {
462 	unsigned long pfn, nr_pfns, nr_align;
463 
464 	if (size & ~PAGE_MASK) {
465 		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
466 				__func__, size);
467 		return NULL;
468 	}
469 
470 	pfn = vmem_altmap_next_pfn(altmap);
471 	nr_pfns = size >> PAGE_SHIFT;
472 	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
473 	nr_align = ALIGN(pfn, nr_align) - pfn;
474 	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
475 		return NULL;
476 
477 	altmap->alloc += nr_pfns;
478 	altmap->align += nr_align;
479 	pfn += nr_align;
480 
481 	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
482 			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
483 	return __va(__pfn_to_phys(pfn));
484 }
485 
486 void __meminit vmemmap_verify(pte_t *pte, int node,
487 				unsigned long start, unsigned long end)
488 {
489 	unsigned long pfn = pte_pfn(*pte);
490 	int actual_node = early_pfn_to_nid(pfn);
491 
492 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
493 		pr_warn("[%lx-%lx] potential offnode page_structs\n",
494 			start, end - 1);
495 }
496 
497 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
498 				       struct vmem_altmap *altmap)
499 {
500 	pte_t *pte = pte_offset_kernel(pmd, addr);
501 	if (pte_none(*pte)) {
502 		pte_t entry;
503 		void *p;
504 
505 		p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
506 		if (!p)
507 			return NULL;
508 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
509 		set_pte_at(&init_mm, addr, pte, entry);
510 	}
511 	return pte;
512 }
513 
514 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
515 {
516 	void *p = vmemmap_alloc_block(size, node);
517 
518 	if (!p)
519 		return NULL;
520 	memset(p, 0, size);
521 
522 	return p;
523 }
524 
525 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
526 {
527 	pmd_t *pmd = pmd_offset(pud, addr);
528 	if (pmd_none(*pmd)) {
529 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
530 		if (!p)
531 			return NULL;
532 		pmd_populate_kernel(&init_mm, pmd, p);
533 	}
534 	return pmd;
535 }
536 
537 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
538 {
539 	pud_t *pud = pud_offset(p4d, addr);
540 	if (pud_none(*pud)) {
541 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
542 		if (!p)
543 			return NULL;
544 		pud_populate(&init_mm, pud, p);
545 	}
546 	return pud;
547 }
548 
549 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
550 {
551 	p4d_t *p4d = p4d_offset(pgd, addr);
552 	if (p4d_none(*p4d)) {
553 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
554 		if (!p)
555 			return NULL;
556 		p4d_populate(&init_mm, p4d, p);
557 	}
558 	return p4d;
559 }
560 
561 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
562 {
563 	pgd_t *pgd = pgd_offset_k(addr);
564 	if (pgd_none(*pgd)) {
565 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
566 		if (!p)
567 			return NULL;
568 		pgd_populate(&init_mm, pgd, p);
569 	}
570 	return pgd;
571 }
572 
573 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
574 					 int node, struct vmem_altmap *altmap)
575 {
576 	unsigned long addr = start;
577 	pgd_t *pgd;
578 	p4d_t *p4d;
579 	pud_t *pud;
580 	pmd_t *pmd;
581 	pte_t *pte;
582 
583 	for (; addr < end; addr += PAGE_SIZE) {
584 		pgd = vmemmap_pgd_populate(addr, node);
585 		if (!pgd)
586 			return -ENOMEM;
587 		p4d = vmemmap_p4d_populate(pgd, addr, node);
588 		if (!p4d)
589 			return -ENOMEM;
590 		pud = vmemmap_pud_populate(p4d, addr, node);
591 		if (!pud)
592 			return -ENOMEM;
593 		pmd = vmemmap_pmd_populate(pud, addr, node);
594 		if (!pmd)
595 			return -ENOMEM;
596 		pte = vmemmap_pte_populate(pmd, addr, node, altmap);
597 		if (!pte)
598 			return -ENOMEM;
599 		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
600 	}
601 
602 	return 0;
603 }
604 
605 struct page * __meminit __populate_section_memmap(unsigned long pfn,
606 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
607 {
608 	unsigned long start = (unsigned long) pfn_to_page(pfn);
609 	unsigned long end = start + nr_pages * sizeof(struct page);
610 
611 	if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
612 		!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
613 		return NULL;
614 
615 	if (vmemmap_populate(start, end, nid, altmap))
616 		return NULL;
617 
618 	return pfn_to_page(pfn);
619 }
620