xref: /openbmc/linux/mm/sparse-vmemmap.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 #include <asm/dma.h>
31 #include <asm/pgalloc.h>
32 
33 /*
34  * Allocate a block of memory to be used to back the virtual memory map
35  * or to back the page tables that are used to create the mapping.
36  * Uses the main allocators if they are available, else bootmem.
37  */
38 
39 static void * __ref __earlyonly_bootmem_alloc(int node,
40 				unsigned long size,
41 				unsigned long align,
42 				unsigned long goal)
43 {
44 	return memblock_alloc_try_nid_raw(size, align, goal,
45 					       MEMBLOCK_ALLOC_ACCESSIBLE, node);
46 }
47 
48 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
49 {
50 	/* If the main allocator is up use that, fallback to bootmem. */
51 	if (slab_is_available()) {
52 		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
53 		int order = get_order(size);
54 		static bool warned;
55 		struct page *page;
56 
57 		page = alloc_pages_node(node, gfp_mask, order);
58 		if (page)
59 			return page_address(page);
60 
61 		if (!warned) {
62 			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
63 				   "vmemmap alloc failure: order:%u", order);
64 			warned = true;
65 		}
66 		return NULL;
67 	} else
68 		return __earlyonly_bootmem_alloc(node, size, size,
69 				__pa(MAX_DMA_ADDRESS));
70 }
71 
72 static void * __meminit altmap_alloc_block_buf(unsigned long size,
73 					       struct vmem_altmap *altmap);
74 
75 /* need to make sure size is all the same during early stage */
76 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
77 					 struct vmem_altmap *altmap)
78 {
79 	void *ptr;
80 
81 	if (altmap)
82 		return altmap_alloc_block_buf(size, altmap);
83 
84 	ptr = sparse_buffer_alloc(size);
85 	if (!ptr)
86 		ptr = vmemmap_alloc_block(size, node);
87 	return ptr;
88 }
89 
90 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
91 {
92 	return altmap->base_pfn + altmap->reserve + altmap->alloc
93 		+ altmap->align;
94 }
95 
96 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
97 {
98 	unsigned long allocated = altmap->alloc + altmap->align;
99 
100 	if (altmap->free > allocated)
101 		return altmap->free - allocated;
102 	return 0;
103 }
104 
105 static void * __meminit altmap_alloc_block_buf(unsigned long size,
106 					       struct vmem_altmap *altmap)
107 {
108 	unsigned long pfn, nr_pfns, nr_align;
109 
110 	if (size & ~PAGE_MASK) {
111 		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
112 				__func__, size);
113 		return NULL;
114 	}
115 
116 	pfn = vmem_altmap_next_pfn(altmap);
117 	nr_pfns = size >> PAGE_SHIFT;
118 	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
119 	nr_align = ALIGN(pfn, nr_align) - pfn;
120 	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
121 		return NULL;
122 
123 	altmap->alloc += nr_pfns;
124 	altmap->align += nr_align;
125 	pfn += nr_align;
126 
127 	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
128 			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
129 	return __va(__pfn_to_phys(pfn));
130 }
131 
132 void __meminit vmemmap_verify(pte_t *pte, int node,
133 				unsigned long start, unsigned long end)
134 {
135 	unsigned long pfn = pte_pfn(*pte);
136 	int actual_node = early_pfn_to_nid(pfn);
137 
138 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
139 		pr_warn("[%lx-%lx] potential offnode page_structs\n",
140 			start, end - 1);
141 }
142 
143 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
144 				       struct vmem_altmap *altmap)
145 {
146 	pte_t *pte = pte_offset_kernel(pmd, addr);
147 	if (pte_none(*pte)) {
148 		pte_t entry;
149 		void *p;
150 
151 		p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
152 		if (!p)
153 			return NULL;
154 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
155 		set_pte_at(&init_mm, addr, pte, entry);
156 	}
157 	return pte;
158 }
159 
160 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
161 {
162 	void *p = vmemmap_alloc_block(size, node);
163 
164 	if (!p)
165 		return NULL;
166 	memset(p, 0, size);
167 
168 	return p;
169 }
170 
171 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
172 {
173 	pmd_t *pmd = pmd_offset(pud, addr);
174 	if (pmd_none(*pmd)) {
175 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
176 		if (!p)
177 			return NULL;
178 		pmd_populate_kernel(&init_mm, pmd, p);
179 	}
180 	return pmd;
181 }
182 
183 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
184 {
185 	pud_t *pud = pud_offset(p4d, addr);
186 	if (pud_none(*pud)) {
187 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
188 		if (!p)
189 			return NULL;
190 		pud_populate(&init_mm, pud, p);
191 	}
192 	return pud;
193 }
194 
195 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
196 {
197 	p4d_t *p4d = p4d_offset(pgd, addr);
198 	if (p4d_none(*p4d)) {
199 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
200 		if (!p)
201 			return NULL;
202 		p4d_populate(&init_mm, p4d, p);
203 	}
204 	return p4d;
205 }
206 
207 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
208 {
209 	pgd_t *pgd = pgd_offset_k(addr);
210 	if (pgd_none(*pgd)) {
211 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
212 		if (!p)
213 			return NULL;
214 		pgd_populate(&init_mm, pgd, p);
215 	}
216 	return pgd;
217 }
218 
219 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
220 					 int node, struct vmem_altmap *altmap)
221 {
222 	unsigned long addr = start;
223 	pgd_t *pgd;
224 	p4d_t *p4d;
225 	pud_t *pud;
226 	pmd_t *pmd;
227 	pte_t *pte;
228 
229 	for (; addr < end; addr += PAGE_SIZE) {
230 		pgd = vmemmap_pgd_populate(addr, node);
231 		if (!pgd)
232 			return -ENOMEM;
233 		p4d = vmemmap_p4d_populate(pgd, addr, node);
234 		if (!p4d)
235 			return -ENOMEM;
236 		pud = vmemmap_pud_populate(p4d, addr, node);
237 		if (!pud)
238 			return -ENOMEM;
239 		pmd = vmemmap_pmd_populate(pud, addr, node);
240 		if (!pmd)
241 			return -ENOMEM;
242 		pte = vmemmap_pte_populate(pmd, addr, node, altmap);
243 		if (!pte)
244 			return -ENOMEM;
245 		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
246 	}
247 
248 	return 0;
249 }
250 
251 struct page * __meminit __populate_section_memmap(unsigned long pfn,
252 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
253 {
254 	unsigned long start = (unsigned long) pfn_to_page(pfn);
255 	unsigned long end = start + nr_pages * sizeof(struct page);
256 
257 	if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
258 		!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
259 		return NULL;
260 
261 	if (vmemmap_populate(start, end, nid, altmap))
262 		return NULL;
263 
264 	return pfn_to_page(pfn);
265 }
266