xref: /openbmc/linux/mm/sparse-vmemmap.c (revision 2359ccdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/bootmem.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 #include <asm/dma.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 
34 /*
35  * Allocate a block of memory to be used to back the virtual memory map
36  * or to back the page tables that are used to create the mapping.
37  * Uses the main allocators if they are available, else bootmem.
38  */
39 
40 static void * __ref __earlyonly_bootmem_alloc(int node,
41 				unsigned long size,
42 				unsigned long align,
43 				unsigned long goal)
44 {
45 	return memblock_virt_alloc_try_nid_raw(size, align, goal,
46 					    BOOTMEM_ALLOC_ACCESSIBLE, node);
47 }
48 
49 static void *vmemmap_buf;
50 static void *vmemmap_buf_end;
51 
52 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
53 {
54 	/* If the main allocator is up use that, fallback to bootmem. */
55 	if (slab_is_available()) {
56 		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
57 		int order = get_order(size);
58 		static bool warned;
59 		struct page *page;
60 
61 		page = alloc_pages_node(node, gfp_mask, order);
62 		if (page)
63 			return page_address(page);
64 
65 		if (!warned) {
66 			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
67 				   "vmemmap alloc failure: order:%u", order);
68 			warned = true;
69 		}
70 		return NULL;
71 	} else
72 		return __earlyonly_bootmem_alloc(node, size, size,
73 				__pa(MAX_DMA_ADDRESS));
74 }
75 
76 /* need to make sure size is all the same during early stage */
77 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
78 {
79 	void *ptr;
80 
81 	if (!vmemmap_buf)
82 		return vmemmap_alloc_block(size, node);
83 
84 	/* take the from buf */
85 	ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
86 	if (ptr + size > vmemmap_buf_end)
87 		return vmemmap_alloc_block(size, node);
88 
89 	vmemmap_buf = ptr + size;
90 
91 	return ptr;
92 }
93 
94 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
95 {
96 	return altmap->base_pfn + altmap->reserve + altmap->alloc
97 		+ altmap->align;
98 }
99 
100 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
101 {
102 	unsigned long allocated = altmap->alloc + altmap->align;
103 
104 	if (altmap->free > allocated)
105 		return altmap->free - allocated;
106 	return 0;
107 }
108 
109 /**
110  * altmap_alloc_block_buf - allocate pages from the device page map
111  * @altmap:	device page map
112  * @size:	size (in bytes) of the allocation
113  *
114  * Allocations are aligned to the size of the request.
115  */
116 void * __meminit altmap_alloc_block_buf(unsigned long size,
117 		struct vmem_altmap *altmap)
118 {
119 	unsigned long pfn, nr_pfns, nr_align;
120 
121 	if (size & ~PAGE_MASK) {
122 		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
123 				__func__, size);
124 		return NULL;
125 	}
126 
127 	pfn = vmem_altmap_next_pfn(altmap);
128 	nr_pfns = size >> PAGE_SHIFT;
129 	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
130 	nr_align = ALIGN(pfn, nr_align) - pfn;
131 	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
132 		return NULL;
133 
134 	altmap->alloc += nr_pfns;
135 	altmap->align += nr_align;
136 	pfn += nr_align;
137 
138 	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
139 			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
140 	return __va(__pfn_to_phys(pfn));
141 }
142 
143 void __meminit vmemmap_verify(pte_t *pte, int node,
144 				unsigned long start, unsigned long end)
145 {
146 	unsigned long pfn = pte_pfn(*pte);
147 	int actual_node = early_pfn_to_nid(pfn);
148 
149 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
150 		pr_warn("[%lx-%lx] potential offnode page_structs\n",
151 			start, end - 1);
152 }
153 
154 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
155 {
156 	pte_t *pte = pte_offset_kernel(pmd, addr);
157 	if (pte_none(*pte)) {
158 		pte_t entry;
159 		void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
160 		if (!p)
161 			return NULL;
162 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
163 		set_pte_at(&init_mm, addr, pte, entry);
164 	}
165 	return pte;
166 }
167 
168 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
169 {
170 	void *p = vmemmap_alloc_block(size, node);
171 
172 	if (!p)
173 		return NULL;
174 	memset(p, 0, size);
175 
176 	return p;
177 }
178 
179 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
180 {
181 	pmd_t *pmd = pmd_offset(pud, addr);
182 	if (pmd_none(*pmd)) {
183 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
184 		if (!p)
185 			return NULL;
186 		pmd_populate_kernel(&init_mm, pmd, p);
187 	}
188 	return pmd;
189 }
190 
191 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
192 {
193 	pud_t *pud = pud_offset(p4d, addr);
194 	if (pud_none(*pud)) {
195 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
196 		if (!p)
197 			return NULL;
198 		pud_populate(&init_mm, pud, p);
199 	}
200 	return pud;
201 }
202 
203 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
204 {
205 	p4d_t *p4d = p4d_offset(pgd, addr);
206 	if (p4d_none(*p4d)) {
207 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
208 		if (!p)
209 			return NULL;
210 		p4d_populate(&init_mm, p4d, p);
211 	}
212 	return p4d;
213 }
214 
215 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
216 {
217 	pgd_t *pgd = pgd_offset_k(addr);
218 	if (pgd_none(*pgd)) {
219 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
220 		if (!p)
221 			return NULL;
222 		pgd_populate(&init_mm, pgd, p);
223 	}
224 	return pgd;
225 }
226 
227 int __meminit vmemmap_populate_basepages(unsigned long start,
228 					 unsigned long end, int node)
229 {
230 	unsigned long addr = start;
231 	pgd_t *pgd;
232 	p4d_t *p4d;
233 	pud_t *pud;
234 	pmd_t *pmd;
235 	pte_t *pte;
236 
237 	for (; addr < end; addr += PAGE_SIZE) {
238 		pgd = vmemmap_pgd_populate(addr, node);
239 		if (!pgd)
240 			return -ENOMEM;
241 		p4d = vmemmap_p4d_populate(pgd, addr, node);
242 		if (!p4d)
243 			return -ENOMEM;
244 		pud = vmemmap_pud_populate(p4d, addr, node);
245 		if (!pud)
246 			return -ENOMEM;
247 		pmd = vmemmap_pmd_populate(pud, addr, node);
248 		if (!pmd)
249 			return -ENOMEM;
250 		pte = vmemmap_pte_populate(pmd, addr, node);
251 		if (!pte)
252 			return -ENOMEM;
253 		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
254 	}
255 
256 	return 0;
257 }
258 
259 struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid,
260 		struct vmem_altmap *altmap)
261 {
262 	unsigned long start;
263 	unsigned long end;
264 	struct page *map;
265 
266 	map = pfn_to_page(pnum * PAGES_PER_SECTION);
267 	start = (unsigned long)map;
268 	end = (unsigned long)(map + PAGES_PER_SECTION);
269 
270 	if (vmemmap_populate(start, end, nid, altmap))
271 		return NULL;
272 
273 	return map;
274 }
275 
276 void __init sparse_mem_maps_populate_node(struct page **map_map,
277 					  unsigned long pnum_begin,
278 					  unsigned long pnum_end,
279 					  unsigned long map_count, int nodeid)
280 {
281 	unsigned long pnum;
282 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
283 	void *vmemmap_buf_start;
284 
285 	size = ALIGN(size, PMD_SIZE);
286 	vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
287 			 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
288 
289 	if (vmemmap_buf_start) {
290 		vmemmap_buf = vmemmap_buf_start;
291 		vmemmap_buf_end = vmemmap_buf_start + size * map_count;
292 	}
293 
294 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
295 		struct mem_section *ms;
296 
297 		if (!present_section_nr(pnum))
298 			continue;
299 
300 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
301 		if (map_map[pnum])
302 			continue;
303 		ms = __nr_to_section(pnum);
304 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
305 		       __func__);
306 		ms->section_mem_map = 0;
307 	}
308 
309 	if (vmemmap_buf_start) {
310 		/* need to free left buf */
311 		memblock_free_early(__pa(vmemmap_buf),
312 				    vmemmap_buf_end - vmemmap_buf);
313 		vmemmap_buf = NULL;
314 		vmemmap_buf_end = NULL;
315 	}
316 }
317