xref: /openbmc/linux/mm/sparse-vmemmap.c (revision 08677214)
1 /*
2  * Virtual Memory Map support
3  *
4  * (C) 2007 sgi. Christoph Lameter.
5  *
6  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
7  * virt_to_page, page_address() to be implemented as a base offset
8  * calculation without memory access.
9  *
10  * However, virtual mappings need a page table and TLBs. Many Linux
11  * architectures already map their physical space using 1-1 mappings
12  * via TLBs. For those arches the virtual memmory map is essentially
13  * for free if we use the same page size as the 1-1 mappings. In that
14  * case the overhead consists of a few additional pages that are
15  * allocated to create a view of memory for vmemmap.
16  *
17  * The architecture is expected to provide a vmemmap_populate() function
18  * to instantiate the mapping.
19  */
20 #include <linux/mm.h>
21 #include <linux/mmzone.h>
22 #include <linux/bootmem.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25 #include <linux/spinlock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sched.h>
28 #include <asm/dma.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 
32 /*
33  * Allocate a block of memory to be used to back the virtual memory map
34  * or to back the page tables that are used to create the mapping.
35  * Uses the main allocators if they are available, else bootmem.
36  */
37 
38 static void * __init_refok __earlyonly_bootmem_alloc(int node,
39 				unsigned long size,
40 				unsigned long align,
41 				unsigned long goal)
42 {
43 	return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal);
44 }
45 
46 
47 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
48 {
49 	/* If the main allocator is up use that, fallback to bootmem. */
50 	if (slab_is_available()) {
51 		struct page *page;
52 
53 		if (node_state(node, N_HIGH_MEMORY))
54 			page = alloc_pages_node(node,
55 				GFP_KERNEL | __GFP_ZERO, get_order(size));
56 		else
57 			page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
58 				get_order(size));
59 		if (page)
60 			return page_address(page);
61 		return NULL;
62 	} else
63 		return __earlyonly_bootmem_alloc(node, size, size,
64 				__pa(MAX_DMA_ADDRESS));
65 }
66 
67 void __meminit vmemmap_verify(pte_t *pte, int node,
68 				unsigned long start, unsigned long end)
69 {
70 	unsigned long pfn = pte_pfn(*pte);
71 	int actual_node = early_pfn_to_nid(pfn);
72 
73 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
74 		printk(KERN_WARNING "[%lx-%lx] potential offnode "
75 			"page_structs\n", start, end - 1);
76 }
77 
78 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
79 {
80 	pte_t *pte = pte_offset_kernel(pmd, addr);
81 	if (pte_none(*pte)) {
82 		pte_t entry;
83 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
84 		if (!p)
85 			return NULL;
86 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
87 		set_pte_at(&init_mm, addr, pte, entry);
88 	}
89 	return pte;
90 }
91 
92 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
93 {
94 	pmd_t *pmd = pmd_offset(pud, addr);
95 	if (pmd_none(*pmd)) {
96 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
97 		if (!p)
98 			return NULL;
99 		pmd_populate_kernel(&init_mm, pmd, p);
100 	}
101 	return pmd;
102 }
103 
104 pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
105 {
106 	pud_t *pud = pud_offset(pgd, addr);
107 	if (pud_none(*pud)) {
108 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
109 		if (!p)
110 			return NULL;
111 		pud_populate(&init_mm, pud, p);
112 	}
113 	return pud;
114 }
115 
116 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
117 {
118 	pgd_t *pgd = pgd_offset_k(addr);
119 	if (pgd_none(*pgd)) {
120 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
121 		if (!p)
122 			return NULL;
123 		pgd_populate(&init_mm, pgd, p);
124 	}
125 	return pgd;
126 }
127 
128 int __meminit vmemmap_populate_basepages(struct page *start_page,
129 						unsigned long size, int node)
130 {
131 	unsigned long addr = (unsigned long)start_page;
132 	unsigned long end = (unsigned long)(start_page + size);
133 	pgd_t *pgd;
134 	pud_t *pud;
135 	pmd_t *pmd;
136 	pte_t *pte;
137 
138 	for (; addr < end; addr += PAGE_SIZE) {
139 		pgd = vmemmap_pgd_populate(addr, node);
140 		if (!pgd)
141 			return -ENOMEM;
142 		pud = vmemmap_pud_populate(pgd, addr, node);
143 		if (!pud)
144 			return -ENOMEM;
145 		pmd = vmemmap_pmd_populate(pud, addr, node);
146 		if (!pmd)
147 			return -ENOMEM;
148 		pte = vmemmap_pte_populate(pmd, addr, node);
149 		if (!pte)
150 			return -ENOMEM;
151 		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
152 	}
153 
154 	return 0;
155 }
156 
157 struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
158 {
159 	struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
160 	int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);
161 	if (error)
162 		return NULL;
163 
164 	return map;
165 }
166