1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * Overloading of page flags that are otherwise used for LRU management. 97 * 98 * PageActive The slab is frozen and exempt from list processing. 99 * This means that the slab is dedicated to a purpose 100 * such as satisfying allocations for a specific 101 * processor. Objects may be freed in the slab while 102 * it is frozen but slab_free will then skip the usual 103 * list operations. It is up to the processor holding 104 * the slab to integrate the slab into the slab lists 105 * when the slab is no longer needed. 106 * 107 * One use of this flag is to mark slabs that are 108 * used for allocations. Then such a slab becomes a cpu 109 * slab. The cpu slab may be equipped with an additional 110 * freelist that allows lockless access to 111 * free objects in addition to the regular freelist 112 * that requires the slab lock. 113 * 114 * PageError Slab requires special handling due to debug 115 * options set. This moves slab handling out of 116 * the fast path and disables lockless freelists. 117 */ 118 119 static inline int kmem_cache_debug(struct kmem_cache *s) 120 { 121 #ifdef CONFIG_SLUB_DEBUG 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 123 #else 124 return 0; 125 #endif 126 } 127 128 void *fixup_red_left(struct kmem_cache *s, void *p) 129 { 130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 131 p += s->red_left_pad; 132 133 return p; 134 } 135 136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 137 { 138 #ifdef CONFIG_SLUB_CPU_PARTIAL 139 return !kmem_cache_debug(s); 140 #else 141 return false; 142 #endif 143 } 144 145 /* 146 * Issues still to be resolved: 147 * 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 149 * 150 * - Variable sizing of the per node arrays 151 */ 152 153 /* Enable to test recovery from slab corruption on boot */ 154 #undef SLUB_RESILIENCY_TEST 155 156 /* Enable to log cmpxchg failures */ 157 #undef SLUB_DEBUG_CMPXCHG 158 159 /* 160 * Mininum number of partial slabs. These will be left on the partial 161 * lists even if they are empty. kmem_cache_shrink may reclaim them. 162 */ 163 #define MIN_PARTIAL 5 164 165 /* 166 * Maximum number of desirable partial slabs. 167 * The existence of more partial slabs makes kmem_cache_shrink 168 * sort the partial list by the number of objects in use. 169 */ 170 #define MAX_PARTIAL 10 171 172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 173 SLAB_POISON | SLAB_STORE_USER) 174 175 /* 176 * These debug flags cannot use CMPXCHG because there might be consistency 177 * issues when checking or reading debug information 178 */ 179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 180 SLAB_TRACE) 181 182 183 /* 184 * Debugging flags that require metadata to be stored in the slab. These get 185 * disabled when slub_debug=O is used and a cache's min order increases with 186 * metadata. 187 */ 188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 189 190 #define OO_SHIFT 16 191 #define OO_MASK ((1 << OO_SHIFT) - 1) 192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 193 194 /* Internal SLUB flags */ 195 /* Poison object */ 196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 197 /* Use cmpxchg_double */ 198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 199 200 /* 201 * Tracking user of a slab. 202 */ 203 #define TRACK_ADDRS_COUNT 16 204 struct track { 205 unsigned long addr; /* Called from address */ 206 #ifdef CONFIG_STACKTRACE 207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 208 #endif 209 int cpu; /* Was running on cpu */ 210 int pid; /* Pid context */ 211 unsigned long when; /* When did the operation occur */ 212 }; 213 214 enum track_item { TRACK_ALLOC, TRACK_FREE }; 215 216 #ifdef CONFIG_SYSFS 217 static int sysfs_slab_add(struct kmem_cache *); 218 static int sysfs_slab_alias(struct kmem_cache *, const char *); 219 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 220 static void sysfs_slab_remove(struct kmem_cache *s); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 226 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 227 #endif 228 229 static inline void stat(const struct kmem_cache *s, enum stat_item si) 230 { 231 #ifdef CONFIG_SLUB_STATS 232 /* 233 * The rmw is racy on a preemptible kernel but this is acceptable, so 234 * avoid this_cpu_add()'s irq-disable overhead. 235 */ 236 raw_cpu_inc(s->cpu_slab->stat[si]); 237 #endif 238 } 239 240 /******************************************************************** 241 * Core slab cache functions 242 *******************************************************************/ 243 244 /* 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated 246 * with an XOR of the address where the pointer is held and a per-cache 247 * random number. 248 */ 249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 250 unsigned long ptr_addr) 251 { 252 #ifdef CONFIG_SLAB_FREELIST_HARDENED 253 /* 254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 255 * Normally, this doesn't cause any issues, as both set_freepointer() 256 * and get_freepointer() are called with a pointer with the same tag. 257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 258 * example, when __free_slub() iterates over objects in a cache, it 259 * passes untagged pointers to check_object(). check_object() in turns 260 * calls get_freepointer() with an untagged pointer, which causes the 261 * freepointer to be restored incorrectly. 262 */ 263 return (void *)((unsigned long)ptr ^ s->random ^ 264 (unsigned long)kasan_reset_tag((void *)ptr_addr)); 265 #else 266 return ptr; 267 #endif 268 } 269 270 /* Returns the freelist pointer recorded at location ptr_addr. */ 271 static inline void *freelist_dereference(const struct kmem_cache *s, 272 void *ptr_addr) 273 { 274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 275 (unsigned long)ptr_addr); 276 } 277 278 static inline void *get_freepointer(struct kmem_cache *s, void *object) 279 { 280 return freelist_dereference(s, object + s->offset); 281 } 282 283 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 284 { 285 prefetch(object + s->offset); 286 } 287 288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 289 { 290 unsigned long freepointer_addr; 291 void *p; 292 293 if (!debug_pagealloc_enabled()) 294 return get_freepointer(s, object); 295 296 freepointer_addr = (unsigned long)object + s->offset; 297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 298 return freelist_ptr(s, p, freepointer_addr); 299 } 300 301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 302 { 303 unsigned long freeptr_addr = (unsigned long)object + s->offset; 304 305 #ifdef CONFIG_SLAB_FREELIST_HARDENED 306 BUG_ON(object == fp); /* naive detection of double free or corruption */ 307 #endif 308 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 310 } 311 312 /* Loop over all objects in a slab */ 313 #define for_each_object(__p, __s, __addr, __objects) \ 314 for (__p = fixup_red_left(__s, __addr); \ 315 __p < (__addr) + (__objects) * (__s)->size; \ 316 __p += (__s)->size) 317 318 /* Determine object index from a given position */ 319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 320 { 321 return (kasan_reset_tag(p) - addr) / s->size; 322 } 323 324 static inline unsigned int order_objects(unsigned int order, unsigned int size) 325 { 326 return ((unsigned int)PAGE_SIZE << order) / size; 327 } 328 329 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 330 unsigned int size) 331 { 332 struct kmem_cache_order_objects x = { 333 (order << OO_SHIFT) + order_objects(order, size) 334 }; 335 336 return x; 337 } 338 339 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 340 { 341 return x.x >> OO_SHIFT; 342 } 343 344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 345 { 346 return x.x & OO_MASK; 347 } 348 349 /* 350 * Per slab locking using the pagelock 351 */ 352 static __always_inline void slab_lock(struct page *page) 353 { 354 VM_BUG_ON_PAGE(PageTail(page), page); 355 bit_spin_lock(PG_locked, &page->flags); 356 } 357 358 static __always_inline void slab_unlock(struct page *page) 359 { 360 VM_BUG_ON_PAGE(PageTail(page), page); 361 __bit_spin_unlock(PG_locked, &page->flags); 362 } 363 364 /* Interrupts must be disabled (for the fallback code to work right) */ 365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 366 void *freelist_old, unsigned long counters_old, 367 void *freelist_new, unsigned long counters_new, 368 const char *n) 369 { 370 VM_BUG_ON(!irqs_disabled()); 371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 373 if (s->flags & __CMPXCHG_DOUBLE) { 374 if (cmpxchg_double(&page->freelist, &page->counters, 375 freelist_old, counters_old, 376 freelist_new, counters_new)) 377 return true; 378 } else 379 #endif 380 { 381 slab_lock(page); 382 if (page->freelist == freelist_old && 383 page->counters == counters_old) { 384 page->freelist = freelist_new; 385 page->counters = counters_new; 386 slab_unlock(page); 387 return true; 388 } 389 slab_unlock(page); 390 } 391 392 cpu_relax(); 393 stat(s, CMPXCHG_DOUBLE_FAIL); 394 395 #ifdef SLUB_DEBUG_CMPXCHG 396 pr_info("%s %s: cmpxchg double redo ", n, s->name); 397 #endif 398 399 return false; 400 } 401 402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 403 void *freelist_old, unsigned long counters_old, 404 void *freelist_new, unsigned long counters_new, 405 const char *n) 406 { 407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 409 if (s->flags & __CMPXCHG_DOUBLE) { 410 if (cmpxchg_double(&page->freelist, &page->counters, 411 freelist_old, counters_old, 412 freelist_new, counters_new)) 413 return true; 414 } else 415 #endif 416 { 417 unsigned long flags; 418 419 local_irq_save(flags); 420 slab_lock(page); 421 if (page->freelist == freelist_old && 422 page->counters == counters_old) { 423 page->freelist = freelist_new; 424 page->counters = counters_new; 425 slab_unlock(page); 426 local_irq_restore(flags); 427 return true; 428 } 429 slab_unlock(page); 430 local_irq_restore(flags); 431 } 432 433 cpu_relax(); 434 stat(s, CMPXCHG_DOUBLE_FAIL); 435 436 #ifdef SLUB_DEBUG_CMPXCHG 437 pr_info("%s %s: cmpxchg double redo ", n, s->name); 438 #endif 439 440 return false; 441 } 442 443 #ifdef CONFIG_SLUB_DEBUG 444 /* 445 * Determine a map of object in use on a page. 446 * 447 * Node listlock must be held to guarantee that the page does 448 * not vanish from under us. 449 */ 450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 451 { 452 void *p; 453 void *addr = page_address(page); 454 455 for (p = page->freelist; p; p = get_freepointer(s, p)) 456 set_bit(slab_index(p, s, addr), map); 457 } 458 459 static inline unsigned int size_from_object(struct kmem_cache *s) 460 { 461 if (s->flags & SLAB_RED_ZONE) 462 return s->size - s->red_left_pad; 463 464 return s->size; 465 } 466 467 static inline void *restore_red_left(struct kmem_cache *s, void *p) 468 { 469 if (s->flags & SLAB_RED_ZONE) 470 p -= s->red_left_pad; 471 472 return p; 473 } 474 475 /* 476 * Debug settings: 477 */ 478 #if defined(CONFIG_SLUB_DEBUG_ON) 479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 480 #else 481 static slab_flags_t slub_debug; 482 #endif 483 484 static char *slub_debug_slabs; 485 static int disable_higher_order_debug; 486 487 /* 488 * slub is about to manipulate internal object metadata. This memory lies 489 * outside the range of the allocated object, so accessing it would normally 490 * be reported by kasan as a bounds error. metadata_access_enable() is used 491 * to tell kasan that these accesses are OK. 492 */ 493 static inline void metadata_access_enable(void) 494 { 495 kasan_disable_current(); 496 } 497 498 static inline void metadata_access_disable(void) 499 { 500 kasan_enable_current(); 501 } 502 503 /* 504 * Object debugging 505 */ 506 507 /* Verify that a pointer has an address that is valid within a slab page */ 508 static inline int check_valid_pointer(struct kmem_cache *s, 509 struct page *page, void *object) 510 { 511 void *base; 512 513 if (!object) 514 return 1; 515 516 base = page_address(page); 517 object = kasan_reset_tag(object); 518 object = restore_red_left(s, object); 519 if (object < base || object >= base + page->objects * s->size || 520 (object - base) % s->size) { 521 return 0; 522 } 523 524 return 1; 525 } 526 527 static void print_section(char *level, char *text, u8 *addr, 528 unsigned int length) 529 { 530 metadata_access_enable(); 531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 532 length, 1); 533 metadata_access_disable(); 534 } 535 536 static struct track *get_track(struct kmem_cache *s, void *object, 537 enum track_item alloc) 538 { 539 struct track *p; 540 541 if (s->offset) 542 p = object + s->offset + sizeof(void *); 543 else 544 p = object + s->inuse; 545 546 return p + alloc; 547 } 548 549 static void set_track(struct kmem_cache *s, void *object, 550 enum track_item alloc, unsigned long addr) 551 { 552 struct track *p = get_track(s, object, alloc); 553 554 if (addr) { 555 #ifdef CONFIG_STACKTRACE 556 unsigned int nr_entries; 557 558 metadata_access_enable(); 559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 560 metadata_access_disable(); 561 562 if (nr_entries < TRACK_ADDRS_COUNT) 563 p->addrs[nr_entries] = 0; 564 #endif 565 p->addr = addr; 566 p->cpu = smp_processor_id(); 567 p->pid = current->pid; 568 p->when = jiffies; 569 } else { 570 memset(p, 0, sizeof(struct track)); 571 } 572 } 573 574 static void init_tracking(struct kmem_cache *s, void *object) 575 { 576 if (!(s->flags & SLAB_STORE_USER)) 577 return; 578 579 set_track(s, object, TRACK_FREE, 0UL); 580 set_track(s, object, TRACK_ALLOC, 0UL); 581 } 582 583 static void print_track(const char *s, struct track *t, unsigned long pr_time) 584 { 585 if (!t->addr) 586 return; 587 588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 590 #ifdef CONFIG_STACKTRACE 591 { 592 int i; 593 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 594 if (t->addrs[i]) 595 pr_err("\t%pS\n", (void *)t->addrs[i]); 596 else 597 break; 598 } 599 #endif 600 } 601 602 static void print_tracking(struct kmem_cache *s, void *object) 603 { 604 unsigned long pr_time = jiffies; 605 if (!(s->flags & SLAB_STORE_USER)) 606 return; 607 608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 610 } 611 612 static void print_page_info(struct page *page) 613 { 614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 615 page, page->objects, page->inuse, page->freelist, page->flags); 616 617 } 618 619 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 620 { 621 struct va_format vaf; 622 va_list args; 623 624 va_start(args, fmt); 625 vaf.fmt = fmt; 626 vaf.va = &args; 627 pr_err("=============================================================================\n"); 628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 629 pr_err("-----------------------------------------------------------------------------\n\n"); 630 631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 632 va_end(args); 633 } 634 635 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 636 { 637 struct va_format vaf; 638 va_list args; 639 640 va_start(args, fmt); 641 vaf.fmt = fmt; 642 vaf.va = &args; 643 pr_err("FIX %s: %pV\n", s->name, &vaf); 644 va_end(args); 645 } 646 647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 648 { 649 unsigned int off; /* Offset of last byte */ 650 u8 *addr = page_address(page); 651 652 print_tracking(s, p); 653 654 print_page_info(page); 655 656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 657 p, p - addr, get_freepointer(s, p)); 658 659 if (s->flags & SLAB_RED_ZONE) 660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 661 s->red_left_pad); 662 else if (p > addr + 16) 663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 664 665 print_section(KERN_ERR, "Object ", p, 666 min_t(unsigned int, s->object_size, PAGE_SIZE)); 667 if (s->flags & SLAB_RED_ZONE) 668 print_section(KERN_ERR, "Redzone ", p + s->object_size, 669 s->inuse - s->object_size); 670 671 if (s->offset) 672 off = s->offset + sizeof(void *); 673 else 674 off = s->inuse; 675 676 if (s->flags & SLAB_STORE_USER) 677 off += 2 * sizeof(struct track); 678 679 off += kasan_metadata_size(s); 680 681 if (off != size_from_object(s)) 682 /* Beginning of the filler is the free pointer */ 683 print_section(KERN_ERR, "Padding ", p + off, 684 size_from_object(s) - off); 685 686 dump_stack(); 687 } 688 689 void object_err(struct kmem_cache *s, struct page *page, 690 u8 *object, char *reason) 691 { 692 slab_bug(s, "%s", reason); 693 print_trailer(s, page, object); 694 } 695 696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 697 const char *fmt, ...) 698 { 699 va_list args; 700 char buf[100]; 701 702 va_start(args, fmt); 703 vsnprintf(buf, sizeof(buf), fmt, args); 704 va_end(args); 705 slab_bug(s, "%s", buf); 706 print_page_info(page); 707 dump_stack(); 708 } 709 710 static void init_object(struct kmem_cache *s, void *object, u8 val) 711 { 712 u8 *p = object; 713 714 if (s->flags & SLAB_RED_ZONE) 715 memset(p - s->red_left_pad, val, s->red_left_pad); 716 717 if (s->flags & __OBJECT_POISON) { 718 memset(p, POISON_FREE, s->object_size - 1); 719 p[s->object_size - 1] = POISON_END; 720 } 721 722 if (s->flags & SLAB_RED_ZONE) 723 memset(p + s->object_size, val, s->inuse - s->object_size); 724 } 725 726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 727 void *from, void *to) 728 { 729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 730 memset(from, data, to - from); 731 } 732 733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 734 u8 *object, char *what, 735 u8 *start, unsigned int value, unsigned int bytes) 736 { 737 u8 *fault; 738 u8 *end; 739 740 metadata_access_enable(); 741 fault = memchr_inv(start, value, bytes); 742 metadata_access_disable(); 743 if (!fault) 744 return 1; 745 746 end = start + bytes; 747 while (end > fault && end[-1] == value) 748 end--; 749 750 slab_bug(s, "%s overwritten", what); 751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 752 fault, end - 1, fault[0], value); 753 print_trailer(s, page, object); 754 755 restore_bytes(s, what, value, fault, end); 756 return 0; 757 } 758 759 /* 760 * Object layout: 761 * 762 * object address 763 * Bytes of the object to be managed. 764 * If the freepointer may overlay the object then the free 765 * pointer is the first word of the object. 766 * 767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 768 * 0xa5 (POISON_END) 769 * 770 * object + s->object_size 771 * Padding to reach word boundary. This is also used for Redzoning. 772 * Padding is extended by another word if Redzoning is enabled and 773 * object_size == inuse. 774 * 775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 776 * 0xcc (RED_ACTIVE) for objects in use. 777 * 778 * object + s->inuse 779 * Meta data starts here. 780 * 781 * A. Free pointer (if we cannot overwrite object on free) 782 * B. Tracking data for SLAB_STORE_USER 783 * C. Padding to reach required alignment boundary or at mininum 784 * one word if debugging is on to be able to detect writes 785 * before the word boundary. 786 * 787 * Padding is done using 0x5a (POISON_INUSE) 788 * 789 * object + s->size 790 * Nothing is used beyond s->size. 791 * 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly 793 * ignored. And therefore no slab options that rely on these boundaries 794 * may be used with merged slabcaches. 795 */ 796 797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 798 { 799 unsigned long off = s->inuse; /* The end of info */ 800 801 if (s->offset) 802 /* Freepointer is placed after the object. */ 803 off += sizeof(void *); 804 805 if (s->flags & SLAB_STORE_USER) 806 /* We also have user information there */ 807 off += 2 * sizeof(struct track); 808 809 off += kasan_metadata_size(s); 810 811 if (size_from_object(s) == off) 812 return 1; 813 814 return check_bytes_and_report(s, page, p, "Object padding", 815 p + off, POISON_INUSE, size_from_object(s) - off); 816 } 817 818 /* Check the pad bytes at the end of a slab page */ 819 static int slab_pad_check(struct kmem_cache *s, struct page *page) 820 { 821 u8 *start; 822 u8 *fault; 823 u8 *end; 824 u8 *pad; 825 int length; 826 int remainder; 827 828 if (!(s->flags & SLAB_POISON)) 829 return 1; 830 831 start = page_address(page); 832 length = page_size(page); 833 end = start + length; 834 remainder = length % s->size; 835 if (!remainder) 836 return 1; 837 838 pad = end - remainder; 839 metadata_access_enable(); 840 fault = memchr_inv(pad, POISON_INUSE, remainder); 841 metadata_access_disable(); 842 if (!fault) 843 return 1; 844 while (end > fault && end[-1] == POISON_INUSE) 845 end--; 846 847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 848 print_section(KERN_ERR, "Padding ", pad, remainder); 849 850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 851 return 0; 852 } 853 854 static int check_object(struct kmem_cache *s, struct page *page, 855 void *object, u8 val) 856 { 857 u8 *p = object; 858 u8 *endobject = object + s->object_size; 859 860 if (s->flags & SLAB_RED_ZONE) { 861 if (!check_bytes_and_report(s, page, object, "Redzone", 862 object - s->red_left_pad, val, s->red_left_pad)) 863 return 0; 864 865 if (!check_bytes_and_report(s, page, object, "Redzone", 866 endobject, val, s->inuse - s->object_size)) 867 return 0; 868 } else { 869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 870 check_bytes_and_report(s, page, p, "Alignment padding", 871 endobject, POISON_INUSE, 872 s->inuse - s->object_size); 873 } 874 } 875 876 if (s->flags & SLAB_POISON) { 877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 878 (!check_bytes_and_report(s, page, p, "Poison", p, 879 POISON_FREE, s->object_size - 1) || 880 !check_bytes_and_report(s, page, p, "Poison", 881 p + s->object_size - 1, POISON_END, 1))) 882 return 0; 883 /* 884 * check_pad_bytes cleans up on its own. 885 */ 886 check_pad_bytes(s, page, p); 887 } 888 889 if (!s->offset && val == SLUB_RED_ACTIVE) 890 /* 891 * Object and freepointer overlap. Cannot check 892 * freepointer while object is allocated. 893 */ 894 return 1; 895 896 /* Check free pointer validity */ 897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 898 object_err(s, page, p, "Freepointer corrupt"); 899 /* 900 * No choice but to zap it and thus lose the remainder 901 * of the free objects in this slab. May cause 902 * another error because the object count is now wrong. 903 */ 904 set_freepointer(s, p, NULL); 905 return 0; 906 } 907 return 1; 908 } 909 910 static int check_slab(struct kmem_cache *s, struct page *page) 911 { 912 int maxobj; 913 914 VM_BUG_ON(!irqs_disabled()); 915 916 if (!PageSlab(page)) { 917 slab_err(s, page, "Not a valid slab page"); 918 return 0; 919 } 920 921 maxobj = order_objects(compound_order(page), s->size); 922 if (page->objects > maxobj) { 923 slab_err(s, page, "objects %u > max %u", 924 page->objects, maxobj); 925 return 0; 926 } 927 if (page->inuse > page->objects) { 928 slab_err(s, page, "inuse %u > max %u", 929 page->inuse, page->objects); 930 return 0; 931 } 932 /* Slab_pad_check fixes things up after itself */ 933 slab_pad_check(s, page); 934 return 1; 935 } 936 937 /* 938 * Determine if a certain object on a page is on the freelist. Must hold the 939 * slab lock to guarantee that the chains are in a consistent state. 940 */ 941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 942 { 943 int nr = 0; 944 void *fp; 945 void *object = NULL; 946 int max_objects; 947 948 fp = page->freelist; 949 while (fp && nr <= page->objects) { 950 if (fp == search) 951 return 1; 952 if (!check_valid_pointer(s, page, fp)) { 953 if (object) { 954 object_err(s, page, object, 955 "Freechain corrupt"); 956 set_freepointer(s, object, NULL); 957 } else { 958 slab_err(s, page, "Freepointer corrupt"); 959 page->freelist = NULL; 960 page->inuse = page->objects; 961 slab_fix(s, "Freelist cleared"); 962 return 0; 963 } 964 break; 965 } 966 object = fp; 967 fp = get_freepointer(s, object); 968 nr++; 969 } 970 971 max_objects = order_objects(compound_order(page), s->size); 972 if (max_objects > MAX_OBJS_PER_PAGE) 973 max_objects = MAX_OBJS_PER_PAGE; 974 975 if (page->objects != max_objects) { 976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 977 page->objects, max_objects); 978 page->objects = max_objects; 979 slab_fix(s, "Number of objects adjusted."); 980 } 981 if (page->inuse != page->objects - nr) { 982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 983 page->inuse, page->objects - nr); 984 page->inuse = page->objects - nr; 985 slab_fix(s, "Object count adjusted."); 986 } 987 return search == NULL; 988 } 989 990 static void trace(struct kmem_cache *s, struct page *page, void *object, 991 int alloc) 992 { 993 if (s->flags & SLAB_TRACE) { 994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 995 s->name, 996 alloc ? "alloc" : "free", 997 object, page->inuse, 998 page->freelist); 999 1000 if (!alloc) 1001 print_section(KERN_INFO, "Object ", (void *)object, 1002 s->object_size); 1003 1004 dump_stack(); 1005 } 1006 } 1007 1008 /* 1009 * Tracking of fully allocated slabs for debugging purposes. 1010 */ 1011 static void add_full(struct kmem_cache *s, 1012 struct kmem_cache_node *n, struct page *page) 1013 { 1014 if (!(s->flags & SLAB_STORE_USER)) 1015 return; 1016 1017 lockdep_assert_held(&n->list_lock); 1018 list_add(&page->slab_list, &n->full); 1019 } 1020 1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1022 { 1023 if (!(s->flags & SLAB_STORE_USER)) 1024 return; 1025 1026 lockdep_assert_held(&n->list_lock); 1027 list_del(&page->slab_list); 1028 } 1029 1030 /* Tracking of the number of slabs for debugging purposes */ 1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1032 { 1033 struct kmem_cache_node *n = get_node(s, node); 1034 1035 return atomic_long_read(&n->nr_slabs); 1036 } 1037 1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1039 { 1040 return atomic_long_read(&n->nr_slabs); 1041 } 1042 1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1044 { 1045 struct kmem_cache_node *n = get_node(s, node); 1046 1047 /* 1048 * May be called early in order to allocate a slab for the 1049 * kmem_cache_node structure. Solve the chicken-egg 1050 * dilemma by deferring the increment of the count during 1051 * bootstrap (see early_kmem_cache_node_alloc). 1052 */ 1053 if (likely(n)) { 1054 atomic_long_inc(&n->nr_slabs); 1055 atomic_long_add(objects, &n->total_objects); 1056 } 1057 } 1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1059 { 1060 struct kmem_cache_node *n = get_node(s, node); 1061 1062 atomic_long_dec(&n->nr_slabs); 1063 atomic_long_sub(objects, &n->total_objects); 1064 } 1065 1066 /* Object debug checks for alloc/free paths */ 1067 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1068 void *object) 1069 { 1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1071 return; 1072 1073 init_object(s, object, SLUB_RED_INACTIVE); 1074 init_tracking(s, object); 1075 } 1076 1077 static 1078 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1079 { 1080 if (!(s->flags & SLAB_POISON)) 1081 return; 1082 1083 metadata_access_enable(); 1084 memset(addr, POISON_INUSE, page_size(page)); 1085 metadata_access_disable(); 1086 } 1087 1088 static inline int alloc_consistency_checks(struct kmem_cache *s, 1089 struct page *page, void *object) 1090 { 1091 if (!check_slab(s, page)) 1092 return 0; 1093 1094 if (!check_valid_pointer(s, page, object)) { 1095 object_err(s, page, object, "Freelist Pointer check fails"); 1096 return 0; 1097 } 1098 1099 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1100 return 0; 1101 1102 return 1; 1103 } 1104 1105 static noinline int alloc_debug_processing(struct kmem_cache *s, 1106 struct page *page, 1107 void *object, unsigned long addr) 1108 { 1109 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1110 if (!alloc_consistency_checks(s, page, object)) 1111 goto bad; 1112 } 1113 1114 /* Success perform special debug activities for allocs */ 1115 if (s->flags & SLAB_STORE_USER) 1116 set_track(s, object, TRACK_ALLOC, addr); 1117 trace(s, page, object, 1); 1118 init_object(s, object, SLUB_RED_ACTIVE); 1119 return 1; 1120 1121 bad: 1122 if (PageSlab(page)) { 1123 /* 1124 * If this is a slab page then lets do the best we can 1125 * to avoid issues in the future. Marking all objects 1126 * as used avoids touching the remaining objects. 1127 */ 1128 slab_fix(s, "Marking all objects used"); 1129 page->inuse = page->objects; 1130 page->freelist = NULL; 1131 } 1132 return 0; 1133 } 1134 1135 static inline int free_consistency_checks(struct kmem_cache *s, 1136 struct page *page, void *object, unsigned long addr) 1137 { 1138 if (!check_valid_pointer(s, page, object)) { 1139 slab_err(s, page, "Invalid object pointer 0x%p", object); 1140 return 0; 1141 } 1142 1143 if (on_freelist(s, page, object)) { 1144 object_err(s, page, object, "Object already free"); 1145 return 0; 1146 } 1147 1148 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1149 return 0; 1150 1151 if (unlikely(s != page->slab_cache)) { 1152 if (!PageSlab(page)) { 1153 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1154 object); 1155 } else if (!page->slab_cache) { 1156 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1157 object); 1158 dump_stack(); 1159 } else 1160 object_err(s, page, object, 1161 "page slab pointer corrupt."); 1162 return 0; 1163 } 1164 return 1; 1165 } 1166 1167 /* Supports checking bulk free of a constructed freelist */ 1168 static noinline int free_debug_processing( 1169 struct kmem_cache *s, struct page *page, 1170 void *head, void *tail, int bulk_cnt, 1171 unsigned long addr) 1172 { 1173 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1174 void *object = head; 1175 int cnt = 0; 1176 unsigned long uninitialized_var(flags); 1177 int ret = 0; 1178 1179 spin_lock_irqsave(&n->list_lock, flags); 1180 slab_lock(page); 1181 1182 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1183 if (!check_slab(s, page)) 1184 goto out; 1185 } 1186 1187 next_object: 1188 cnt++; 1189 1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1191 if (!free_consistency_checks(s, page, object, addr)) 1192 goto out; 1193 } 1194 1195 if (s->flags & SLAB_STORE_USER) 1196 set_track(s, object, TRACK_FREE, addr); 1197 trace(s, page, object, 0); 1198 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1199 init_object(s, object, SLUB_RED_INACTIVE); 1200 1201 /* Reached end of constructed freelist yet? */ 1202 if (object != tail) { 1203 object = get_freepointer(s, object); 1204 goto next_object; 1205 } 1206 ret = 1; 1207 1208 out: 1209 if (cnt != bulk_cnt) 1210 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1211 bulk_cnt, cnt); 1212 1213 slab_unlock(page); 1214 spin_unlock_irqrestore(&n->list_lock, flags); 1215 if (!ret) 1216 slab_fix(s, "Object at 0x%p not freed", object); 1217 return ret; 1218 } 1219 1220 static int __init setup_slub_debug(char *str) 1221 { 1222 slub_debug = DEBUG_DEFAULT_FLAGS; 1223 if (*str++ != '=' || !*str) 1224 /* 1225 * No options specified. Switch on full debugging. 1226 */ 1227 goto out; 1228 1229 if (*str == ',') 1230 /* 1231 * No options but restriction on slabs. This means full 1232 * debugging for slabs matching a pattern. 1233 */ 1234 goto check_slabs; 1235 1236 slub_debug = 0; 1237 if (*str == '-') 1238 /* 1239 * Switch off all debugging measures. 1240 */ 1241 goto out; 1242 1243 /* 1244 * Determine which debug features should be switched on 1245 */ 1246 for (; *str && *str != ','; str++) { 1247 switch (tolower(*str)) { 1248 case 'f': 1249 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1250 break; 1251 case 'z': 1252 slub_debug |= SLAB_RED_ZONE; 1253 break; 1254 case 'p': 1255 slub_debug |= SLAB_POISON; 1256 break; 1257 case 'u': 1258 slub_debug |= SLAB_STORE_USER; 1259 break; 1260 case 't': 1261 slub_debug |= SLAB_TRACE; 1262 break; 1263 case 'a': 1264 slub_debug |= SLAB_FAILSLAB; 1265 break; 1266 case 'o': 1267 /* 1268 * Avoid enabling debugging on caches if its minimum 1269 * order would increase as a result. 1270 */ 1271 disable_higher_order_debug = 1; 1272 break; 1273 default: 1274 pr_err("slub_debug option '%c' unknown. skipped\n", 1275 *str); 1276 } 1277 } 1278 1279 check_slabs: 1280 if (*str == ',') 1281 slub_debug_slabs = str + 1; 1282 out: 1283 if ((static_branch_unlikely(&init_on_alloc) || 1284 static_branch_unlikely(&init_on_free)) && 1285 (slub_debug & SLAB_POISON)) 1286 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1287 return 1; 1288 } 1289 1290 __setup("slub_debug", setup_slub_debug); 1291 1292 /* 1293 * kmem_cache_flags - apply debugging options to the cache 1294 * @object_size: the size of an object without meta data 1295 * @flags: flags to set 1296 * @name: name of the cache 1297 * @ctor: constructor function 1298 * 1299 * Debug option(s) are applied to @flags. In addition to the debug 1300 * option(s), if a slab name (or multiple) is specified i.e. 1301 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1302 * then only the select slabs will receive the debug option(s). 1303 */ 1304 slab_flags_t kmem_cache_flags(unsigned int object_size, 1305 slab_flags_t flags, const char *name, 1306 void (*ctor)(void *)) 1307 { 1308 char *iter; 1309 size_t len; 1310 1311 /* If slub_debug = 0, it folds into the if conditional. */ 1312 if (!slub_debug_slabs) 1313 return flags | slub_debug; 1314 1315 len = strlen(name); 1316 iter = slub_debug_slabs; 1317 while (*iter) { 1318 char *end, *glob; 1319 size_t cmplen; 1320 1321 end = strchrnul(iter, ','); 1322 1323 glob = strnchr(iter, end - iter, '*'); 1324 if (glob) 1325 cmplen = glob - iter; 1326 else 1327 cmplen = max_t(size_t, len, (end - iter)); 1328 1329 if (!strncmp(name, iter, cmplen)) { 1330 flags |= slub_debug; 1331 break; 1332 } 1333 1334 if (!*end) 1335 break; 1336 iter = end + 1; 1337 } 1338 1339 return flags; 1340 } 1341 #else /* !CONFIG_SLUB_DEBUG */ 1342 static inline void setup_object_debug(struct kmem_cache *s, 1343 struct page *page, void *object) {} 1344 static inline 1345 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1346 1347 static inline int alloc_debug_processing(struct kmem_cache *s, 1348 struct page *page, void *object, unsigned long addr) { return 0; } 1349 1350 static inline int free_debug_processing( 1351 struct kmem_cache *s, struct page *page, 1352 void *head, void *tail, int bulk_cnt, 1353 unsigned long addr) { return 0; } 1354 1355 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1356 { return 1; } 1357 static inline int check_object(struct kmem_cache *s, struct page *page, 1358 void *object, u8 val) { return 1; } 1359 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1360 struct page *page) {} 1361 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1362 struct page *page) {} 1363 slab_flags_t kmem_cache_flags(unsigned int object_size, 1364 slab_flags_t flags, const char *name, 1365 void (*ctor)(void *)) 1366 { 1367 return flags; 1368 } 1369 #define slub_debug 0 1370 1371 #define disable_higher_order_debug 0 1372 1373 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1374 { return 0; } 1375 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1376 { return 0; } 1377 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1378 int objects) {} 1379 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1380 int objects) {} 1381 1382 #endif /* CONFIG_SLUB_DEBUG */ 1383 1384 /* 1385 * Hooks for other subsystems that check memory allocations. In a typical 1386 * production configuration these hooks all should produce no code at all. 1387 */ 1388 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1389 { 1390 ptr = kasan_kmalloc_large(ptr, size, flags); 1391 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1392 kmemleak_alloc(ptr, size, 1, flags); 1393 return ptr; 1394 } 1395 1396 static __always_inline void kfree_hook(void *x) 1397 { 1398 kmemleak_free(x); 1399 kasan_kfree_large(x, _RET_IP_); 1400 } 1401 1402 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1403 { 1404 kmemleak_free_recursive(x, s->flags); 1405 1406 /* 1407 * Trouble is that we may no longer disable interrupts in the fast path 1408 * So in order to make the debug calls that expect irqs to be 1409 * disabled we need to disable interrupts temporarily. 1410 */ 1411 #ifdef CONFIG_LOCKDEP 1412 { 1413 unsigned long flags; 1414 1415 local_irq_save(flags); 1416 debug_check_no_locks_freed(x, s->object_size); 1417 local_irq_restore(flags); 1418 } 1419 #endif 1420 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1421 debug_check_no_obj_freed(x, s->object_size); 1422 1423 /* KASAN might put x into memory quarantine, delaying its reuse */ 1424 return kasan_slab_free(s, x, _RET_IP_); 1425 } 1426 1427 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1428 void **head, void **tail) 1429 { 1430 1431 void *object; 1432 void *next = *head; 1433 void *old_tail = *tail ? *tail : *head; 1434 int rsize; 1435 1436 if (slab_want_init_on_free(s)) { 1437 void *p = NULL; 1438 1439 do { 1440 object = next; 1441 next = get_freepointer(s, object); 1442 /* 1443 * Clear the object and the metadata, but don't touch 1444 * the redzone. 1445 */ 1446 memset(object, 0, s->object_size); 1447 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1448 : 0; 1449 memset((char *)object + s->inuse, 0, 1450 s->size - s->inuse - rsize); 1451 set_freepointer(s, object, p); 1452 p = object; 1453 } while (object != old_tail); 1454 } 1455 1456 /* 1457 * Compiler cannot detect this function can be removed if slab_free_hook() 1458 * evaluates to nothing. Thus, catch all relevant config debug options here. 1459 */ 1460 #if defined(CONFIG_LOCKDEP) || \ 1461 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1462 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1463 defined(CONFIG_KASAN) 1464 1465 next = *head; 1466 1467 /* Head and tail of the reconstructed freelist */ 1468 *head = NULL; 1469 *tail = NULL; 1470 1471 do { 1472 object = next; 1473 next = get_freepointer(s, object); 1474 /* If object's reuse doesn't have to be delayed */ 1475 if (!slab_free_hook(s, object)) { 1476 /* Move object to the new freelist */ 1477 set_freepointer(s, object, *head); 1478 *head = object; 1479 if (!*tail) 1480 *tail = object; 1481 } 1482 } while (object != old_tail); 1483 1484 if (*head == *tail) 1485 *tail = NULL; 1486 1487 return *head != NULL; 1488 #else 1489 return true; 1490 #endif 1491 } 1492 1493 static void *setup_object(struct kmem_cache *s, struct page *page, 1494 void *object) 1495 { 1496 setup_object_debug(s, page, object); 1497 object = kasan_init_slab_obj(s, object); 1498 if (unlikely(s->ctor)) { 1499 kasan_unpoison_object_data(s, object); 1500 s->ctor(object); 1501 kasan_poison_object_data(s, object); 1502 } 1503 return object; 1504 } 1505 1506 /* 1507 * Slab allocation and freeing 1508 */ 1509 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1510 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1511 { 1512 struct page *page; 1513 unsigned int order = oo_order(oo); 1514 1515 if (node == NUMA_NO_NODE) 1516 page = alloc_pages(flags, order); 1517 else 1518 page = __alloc_pages_node(node, flags, order); 1519 1520 if (page && charge_slab_page(page, flags, order, s)) { 1521 __free_pages(page, order); 1522 page = NULL; 1523 } 1524 1525 return page; 1526 } 1527 1528 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1529 /* Pre-initialize the random sequence cache */ 1530 static int init_cache_random_seq(struct kmem_cache *s) 1531 { 1532 unsigned int count = oo_objects(s->oo); 1533 int err; 1534 1535 /* Bailout if already initialised */ 1536 if (s->random_seq) 1537 return 0; 1538 1539 err = cache_random_seq_create(s, count, GFP_KERNEL); 1540 if (err) { 1541 pr_err("SLUB: Unable to initialize free list for %s\n", 1542 s->name); 1543 return err; 1544 } 1545 1546 /* Transform to an offset on the set of pages */ 1547 if (s->random_seq) { 1548 unsigned int i; 1549 1550 for (i = 0; i < count; i++) 1551 s->random_seq[i] *= s->size; 1552 } 1553 return 0; 1554 } 1555 1556 /* Initialize each random sequence freelist per cache */ 1557 static void __init init_freelist_randomization(void) 1558 { 1559 struct kmem_cache *s; 1560 1561 mutex_lock(&slab_mutex); 1562 1563 list_for_each_entry(s, &slab_caches, list) 1564 init_cache_random_seq(s); 1565 1566 mutex_unlock(&slab_mutex); 1567 } 1568 1569 /* Get the next entry on the pre-computed freelist randomized */ 1570 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1571 unsigned long *pos, void *start, 1572 unsigned long page_limit, 1573 unsigned long freelist_count) 1574 { 1575 unsigned int idx; 1576 1577 /* 1578 * If the target page allocation failed, the number of objects on the 1579 * page might be smaller than the usual size defined by the cache. 1580 */ 1581 do { 1582 idx = s->random_seq[*pos]; 1583 *pos += 1; 1584 if (*pos >= freelist_count) 1585 *pos = 0; 1586 } while (unlikely(idx >= page_limit)); 1587 1588 return (char *)start + idx; 1589 } 1590 1591 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1592 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1593 { 1594 void *start; 1595 void *cur; 1596 void *next; 1597 unsigned long idx, pos, page_limit, freelist_count; 1598 1599 if (page->objects < 2 || !s->random_seq) 1600 return false; 1601 1602 freelist_count = oo_objects(s->oo); 1603 pos = get_random_int() % freelist_count; 1604 1605 page_limit = page->objects * s->size; 1606 start = fixup_red_left(s, page_address(page)); 1607 1608 /* First entry is used as the base of the freelist */ 1609 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1610 freelist_count); 1611 cur = setup_object(s, page, cur); 1612 page->freelist = cur; 1613 1614 for (idx = 1; idx < page->objects; idx++) { 1615 next = next_freelist_entry(s, page, &pos, start, page_limit, 1616 freelist_count); 1617 next = setup_object(s, page, next); 1618 set_freepointer(s, cur, next); 1619 cur = next; 1620 } 1621 set_freepointer(s, cur, NULL); 1622 1623 return true; 1624 } 1625 #else 1626 static inline int init_cache_random_seq(struct kmem_cache *s) 1627 { 1628 return 0; 1629 } 1630 static inline void init_freelist_randomization(void) { } 1631 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1632 { 1633 return false; 1634 } 1635 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1636 1637 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1638 { 1639 struct page *page; 1640 struct kmem_cache_order_objects oo = s->oo; 1641 gfp_t alloc_gfp; 1642 void *start, *p, *next; 1643 int idx; 1644 bool shuffle; 1645 1646 flags &= gfp_allowed_mask; 1647 1648 if (gfpflags_allow_blocking(flags)) 1649 local_irq_enable(); 1650 1651 flags |= s->allocflags; 1652 1653 /* 1654 * Let the initial higher-order allocation fail under memory pressure 1655 * so we fall-back to the minimum order allocation. 1656 */ 1657 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1658 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1659 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1660 1661 page = alloc_slab_page(s, alloc_gfp, node, oo); 1662 if (unlikely(!page)) { 1663 oo = s->min; 1664 alloc_gfp = flags; 1665 /* 1666 * Allocation may have failed due to fragmentation. 1667 * Try a lower order alloc if possible 1668 */ 1669 page = alloc_slab_page(s, alloc_gfp, node, oo); 1670 if (unlikely(!page)) 1671 goto out; 1672 stat(s, ORDER_FALLBACK); 1673 } 1674 1675 page->objects = oo_objects(oo); 1676 1677 page->slab_cache = s; 1678 __SetPageSlab(page); 1679 if (page_is_pfmemalloc(page)) 1680 SetPageSlabPfmemalloc(page); 1681 1682 kasan_poison_slab(page); 1683 1684 start = page_address(page); 1685 1686 setup_page_debug(s, page, start); 1687 1688 shuffle = shuffle_freelist(s, page); 1689 1690 if (!shuffle) { 1691 start = fixup_red_left(s, start); 1692 start = setup_object(s, page, start); 1693 page->freelist = start; 1694 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1695 next = p + s->size; 1696 next = setup_object(s, page, next); 1697 set_freepointer(s, p, next); 1698 p = next; 1699 } 1700 set_freepointer(s, p, NULL); 1701 } 1702 1703 page->inuse = page->objects; 1704 page->frozen = 1; 1705 1706 out: 1707 if (gfpflags_allow_blocking(flags)) 1708 local_irq_disable(); 1709 if (!page) 1710 return NULL; 1711 1712 inc_slabs_node(s, page_to_nid(page), page->objects); 1713 1714 return page; 1715 } 1716 1717 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1718 { 1719 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1720 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1721 flags &= ~GFP_SLAB_BUG_MASK; 1722 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1723 invalid_mask, &invalid_mask, flags, &flags); 1724 dump_stack(); 1725 } 1726 1727 return allocate_slab(s, 1728 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1729 } 1730 1731 static void __free_slab(struct kmem_cache *s, struct page *page) 1732 { 1733 int order = compound_order(page); 1734 int pages = 1 << order; 1735 1736 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1737 void *p; 1738 1739 slab_pad_check(s, page); 1740 for_each_object(p, s, page_address(page), 1741 page->objects) 1742 check_object(s, page, p, SLUB_RED_INACTIVE); 1743 } 1744 1745 __ClearPageSlabPfmemalloc(page); 1746 __ClearPageSlab(page); 1747 1748 page->mapping = NULL; 1749 if (current->reclaim_state) 1750 current->reclaim_state->reclaimed_slab += pages; 1751 uncharge_slab_page(page, order, s); 1752 __free_pages(page, order); 1753 } 1754 1755 static void rcu_free_slab(struct rcu_head *h) 1756 { 1757 struct page *page = container_of(h, struct page, rcu_head); 1758 1759 __free_slab(page->slab_cache, page); 1760 } 1761 1762 static void free_slab(struct kmem_cache *s, struct page *page) 1763 { 1764 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1765 call_rcu(&page->rcu_head, rcu_free_slab); 1766 } else 1767 __free_slab(s, page); 1768 } 1769 1770 static void discard_slab(struct kmem_cache *s, struct page *page) 1771 { 1772 dec_slabs_node(s, page_to_nid(page), page->objects); 1773 free_slab(s, page); 1774 } 1775 1776 /* 1777 * Management of partially allocated slabs. 1778 */ 1779 static inline void 1780 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1781 { 1782 n->nr_partial++; 1783 if (tail == DEACTIVATE_TO_TAIL) 1784 list_add_tail(&page->slab_list, &n->partial); 1785 else 1786 list_add(&page->slab_list, &n->partial); 1787 } 1788 1789 static inline void add_partial(struct kmem_cache_node *n, 1790 struct page *page, int tail) 1791 { 1792 lockdep_assert_held(&n->list_lock); 1793 __add_partial(n, page, tail); 1794 } 1795 1796 static inline void remove_partial(struct kmem_cache_node *n, 1797 struct page *page) 1798 { 1799 lockdep_assert_held(&n->list_lock); 1800 list_del(&page->slab_list); 1801 n->nr_partial--; 1802 } 1803 1804 /* 1805 * Remove slab from the partial list, freeze it and 1806 * return the pointer to the freelist. 1807 * 1808 * Returns a list of objects or NULL if it fails. 1809 */ 1810 static inline void *acquire_slab(struct kmem_cache *s, 1811 struct kmem_cache_node *n, struct page *page, 1812 int mode, int *objects) 1813 { 1814 void *freelist; 1815 unsigned long counters; 1816 struct page new; 1817 1818 lockdep_assert_held(&n->list_lock); 1819 1820 /* 1821 * Zap the freelist and set the frozen bit. 1822 * The old freelist is the list of objects for the 1823 * per cpu allocation list. 1824 */ 1825 freelist = page->freelist; 1826 counters = page->counters; 1827 new.counters = counters; 1828 *objects = new.objects - new.inuse; 1829 if (mode) { 1830 new.inuse = page->objects; 1831 new.freelist = NULL; 1832 } else { 1833 new.freelist = freelist; 1834 } 1835 1836 VM_BUG_ON(new.frozen); 1837 new.frozen = 1; 1838 1839 if (!__cmpxchg_double_slab(s, page, 1840 freelist, counters, 1841 new.freelist, new.counters, 1842 "acquire_slab")) 1843 return NULL; 1844 1845 remove_partial(n, page); 1846 WARN_ON(!freelist); 1847 return freelist; 1848 } 1849 1850 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1851 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1852 1853 /* 1854 * Try to allocate a partial slab from a specific node. 1855 */ 1856 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1857 struct kmem_cache_cpu *c, gfp_t flags) 1858 { 1859 struct page *page, *page2; 1860 void *object = NULL; 1861 unsigned int available = 0; 1862 int objects; 1863 1864 /* 1865 * Racy check. If we mistakenly see no partial slabs then we 1866 * just allocate an empty slab. If we mistakenly try to get a 1867 * partial slab and there is none available then get_partials() 1868 * will return NULL. 1869 */ 1870 if (!n || !n->nr_partial) 1871 return NULL; 1872 1873 spin_lock(&n->list_lock); 1874 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1875 void *t; 1876 1877 if (!pfmemalloc_match(page, flags)) 1878 continue; 1879 1880 t = acquire_slab(s, n, page, object == NULL, &objects); 1881 if (!t) 1882 break; 1883 1884 available += objects; 1885 if (!object) { 1886 c->page = page; 1887 stat(s, ALLOC_FROM_PARTIAL); 1888 object = t; 1889 } else { 1890 put_cpu_partial(s, page, 0); 1891 stat(s, CPU_PARTIAL_NODE); 1892 } 1893 if (!kmem_cache_has_cpu_partial(s) 1894 || available > slub_cpu_partial(s) / 2) 1895 break; 1896 1897 } 1898 spin_unlock(&n->list_lock); 1899 return object; 1900 } 1901 1902 /* 1903 * Get a page from somewhere. Search in increasing NUMA distances. 1904 */ 1905 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1906 struct kmem_cache_cpu *c) 1907 { 1908 #ifdef CONFIG_NUMA 1909 struct zonelist *zonelist; 1910 struct zoneref *z; 1911 struct zone *zone; 1912 enum zone_type high_zoneidx = gfp_zone(flags); 1913 void *object; 1914 unsigned int cpuset_mems_cookie; 1915 1916 /* 1917 * The defrag ratio allows a configuration of the tradeoffs between 1918 * inter node defragmentation and node local allocations. A lower 1919 * defrag_ratio increases the tendency to do local allocations 1920 * instead of attempting to obtain partial slabs from other nodes. 1921 * 1922 * If the defrag_ratio is set to 0 then kmalloc() always 1923 * returns node local objects. If the ratio is higher then kmalloc() 1924 * may return off node objects because partial slabs are obtained 1925 * from other nodes and filled up. 1926 * 1927 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1928 * (which makes defrag_ratio = 1000) then every (well almost) 1929 * allocation will first attempt to defrag slab caches on other nodes. 1930 * This means scanning over all nodes to look for partial slabs which 1931 * may be expensive if we do it every time we are trying to find a slab 1932 * with available objects. 1933 */ 1934 if (!s->remote_node_defrag_ratio || 1935 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1936 return NULL; 1937 1938 do { 1939 cpuset_mems_cookie = read_mems_allowed_begin(); 1940 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1941 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1942 struct kmem_cache_node *n; 1943 1944 n = get_node(s, zone_to_nid(zone)); 1945 1946 if (n && cpuset_zone_allowed(zone, flags) && 1947 n->nr_partial > s->min_partial) { 1948 object = get_partial_node(s, n, c, flags); 1949 if (object) { 1950 /* 1951 * Don't check read_mems_allowed_retry() 1952 * here - if mems_allowed was updated in 1953 * parallel, that was a harmless race 1954 * between allocation and the cpuset 1955 * update 1956 */ 1957 return object; 1958 } 1959 } 1960 } 1961 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1962 #endif /* CONFIG_NUMA */ 1963 return NULL; 1964 } 1965 1966 /* 1967 * Get a partial page, lock it and return it. 1968 */ 1969 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1970 struct kmem_cache_cpu *c) 1971 { 1972 void *object; 1973 int searchnode = node; 1974 1975 if (node == NUMA_NO_NODE) 1976 searchnode = numa_mem_id(); 1977 else if (!node_present_pages(node)) 1978 searchnode = node_to_mem_node(node); 1979 1980 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1981 if (object || node != NUMA_NO_NODE) 1982 return object; 1983 1984 return get_any_partial(s, flags, c); 1985 } 1986 1987 #ifdef CONFIG_PREEMPT 1988 /* 1989 * Calculate the next globally unique transaction for disambiguiation 1990 * during cmpxchg. The transactions start with the cpu number and are then 1991 * incremented by CONFIG_NR_CPUS. 1992 */ 1993 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1994 #else 1995 /* 1996 * No preemption supported therefore also no need to check for 1997 * different cpus. 1998 */ 1999 #define TID_STEP 1 2000 #endif 2001 2002 static inline unsigned long next_tid(unsigned long tid) 2003 { 2004 return tid + TID_STEP; 2005 } 2006 2007 #ifdef SLUB_DEBUG_CMPXCHG 2008 static inline unsigned int tid_to_cpu(unsigned long tid) 2009 { 2010 return tid % TID_STEP; 2011 } 2012 2013 static inline unsigned long tid_to_event(unsigned long tid) 2014 { 2015 return tid / TID_STEP; 2016 } 2017 #endif 2018 2019 static inline unsigned int init_tid(int cpu) 2020 { 2021 return cpu; 2022 } 2023 2024 static inline void note_cmpxchg_failure(const char *n, 2025 const struct kmem_cache *s, unsigned long tid) 2026 { 2027 #ifdef SLUB_DEBUG_CMPXCHG 2028 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2029 2030 pr_info("%s %s: cmpxchg redo ", n, s->name); 2031 2032 #ifdef CONFIG_PREEMPT 2033 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2034 pr_warn("due to cpu change %d -> %d\n", 2035 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2036 else 2037 #endif 2038 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2039 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2040 tid_to_event(tid), tid_to_event(actual_tid)); 2041 else 2042 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2043 actual_tid, tid, next_tid(tid)); 2044 #endif 2045 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2046 } 2047 2048 static void init_kmem_cache_cpus(struct kmem_cache *s) 2049 { 2050 int cpu; 2051 2052 for_each_possible_cpu(cpu) 2053 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2054 } 2055 2056 /* 2057 * Remove the cpu slab 2058 */ 2059 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2060 void *freelist, struct kmem_cache_cpu *c) 2061 { 2062 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2063 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2064 int lock = 0; 2065 enum slab_modes l = M_NONE, m = M_NONE; 2066 void *nextfree; 2067 int tail = DEACTIVATE_TO_HEAD; 2068 struct page new; 2069 struct page old; 2070 2071 if (page->freelist) { 2072 stat(s, DEACTIVATE_REMOTE_FREES); 2073 tail = DEACTIVATE_TO_TAIL; 2074 } 2075 2076 /* 2077 * Stage one: Free all available per cpu objects back 2078 * to the page freelist while it is still frozen. Leave the 2079 * last one. 2080 * 2081 * There is no need to take the list->lock because the page 2082 * is still frozen. 2083 */ 2084 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2085 void *prior; 2086 unsigned long counters; 2087 2088 do { 2089 prior = page->freelist; 2090 counters = page->counters; 2091 set_freepointer(s, freelist, prior); 2092 new.counters = counters; 2093 new.inuse--; 2094 VM_BUG_ON(!new.frozen); 2095 2096 } while (!__cmpxchg_double_slab(s, page, 2097 prior, counters, 2098 freelist, new.counters, 2099 "drain percpu freelist")); 2100 2101 freelist = nextfree; 2102 } 2103 2104 /* 2105 * Stage two: Ensure that the page is unfrozen while the 2106 * list presence reflects the actual number of objects 2107 * during unfreeze. 2108 * 2109 * We setup the list membership and then perform a cmpxchg 2110 * with the count. If there is a mismatch then the page 2111 * is not unfrozen but the page is on the wrong list. 2112 * 2113 * Then we restart the process which may have to remove 2114 * the page from the list that we just put it on again 2115 * because the number of objects in the slab may have 2116 * changed. 2117 */ 2118 redo: 2119 2120 old.freelist = page->freelist; 2121 old.counters = page->counters; 2122 VM_BUG_ON(!old.frozen); 2123 2124 /* Determine target state of the slab */ 2125 new.counters = old.counters; 2126 if (freelist) { 2127 new.inuse--; 2128 set_freepointer(s, freelist, old.freelist); 2129 new.freelist = freelist; 2130 } else 2131 new.freelist = old.freelist; 2132 2133 new.frozen = 0; 2134 2135 if (!new.inuse && n->nr_partial >= s->min_partial) 2136 m = M_FREE; 2137 else if (new.freelist) { 2138 m = M_PARTIAL; 2139 if (!lock) { 2140 lock = 1; 2141 /* 2142 * Taking the spinlock removes the possibility 2143 * that acquire_slab() will see a slab page that 2144 * is frozen 2145 */ 2146 spin_lock(&n->list_lock); 2147 } 2148 } else { 2149 m = M_FULL; 2150 if (kmem_cache_debug(s) && !lock) { 2151 lock = 1; 2152 /* 2153 * This also ensures that the scanning of full 2154 * slabs from diagnostic functions will not see 2155 * any frozen slabs. 2156 */ 2157 spin_lock(&n->list_lock); 2158 } 2159 } 2160 2161 if (l != m) { 2162 if (l == M_PARTIAL) 2163 remove_partial(n, page); 2164 else if (l == M_FULL) 2165 remove_full(s, n, page); 2166 2167 if (m == M_PARTIAL) 2168 add_partial(n, page, tail); 2169 else if (m == M_FULL) 2170 add_full(s, n, page); 2171 } 2172 2173 l = m; 2174 if (!__cmpxchg_double_slab(s, page, 2175 old.freelist, old.counters, 2176 new.freelist, new.counters, 2177 "unfreezing slab")) 2178 goto redo; 2179 2180 if (lock) 2181 spin_unlock(&n->list_lock); 2182 2183 if (m == M_PARTIAL) 2184 stat(s, tail); 2185 else if (m == M_FULL) 2186 stat(s, DEACTIVATE_FULL); 2187 else if (m == M_FREE) { 2188 stat(s, DEACTIVATE_EMPTY); 2189 discard_slab(s, page); 2190 stat(s, FREE_SLAB); 2191 } 2192 2193 c->page = NULL; 2194 c->freelist = NULL; 2195 } 2196 2197 /* 2198 * Unfreeze all the cpu partial slabs. 2199 * 2200 * This function must be called with interrupts disabled 2201 * for the cpu using c (or some other guarantee must be there 2202 * to guarantee no concurrent accesses). 2203 */ 2204 static void unfreeze_partials(struct kmem_cache *s, 2205 struct kmem_cache_cpu *c) 2206 { 2207 #ifdef CONFIG_SLUB_CPU_PARTIAL 2208 struct kmem_cache_node *n = NULL, *n2 = NULL; 2209 struct page *page, *discard_page = NULL; 2210 2211 while ((page = c->partial)) { 2212 struct page new; 2213 struct page old; 2214 2215 c->partial = page->next; 2216 2217 n2 = get_node(s, page_to_nid(page)); 2218 if (n != n2) { 2219 if (n) 2220 spin_unlock(&n->list_lock); 2221 2222 n = n2; 2223 spin_lock(&n->list_lock); 2224 } 2225 2226 do { 2227 2228 old.freelist = page->freelist; 2229 old.counters = page->counters; 2230 VM_BUG_ON(!old.frozen); 2231 2232 new.counters = old.counters; 2233 new.freelist = old.freelist; 2234 2235 new.frozen = 0; 2236 2237 } while (!__cmpxchg_double_slab(s, page, 2238 old.freelist, old.counters, 2239 new.freelist, new.counters, 2240 "unfreezing slab")); 2241 2242 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2243 page->next = discard_page; 2244 discard_page = page; 2245 } else { 2246 add_partial(n, page, DEACTIVATE_TO_TAIL); 2247 stat(s, FREE_ADD_PARTIAL); 2248 } 2249 } 2250 2251 if (n) 2252 spin_unlock(&n->list_lock); 2253 2254 while (discard_page) { 2255 page = discard_page; 2256 discard_page = discard_page->next; 2257 2258 stat(s, DEACTIVATE_EMPTY); 2259 discard_slab(s, page); 2260 stat(s, FREE_SLAB); 2261 } 2262 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2263 } 2264 2265 /* 2266 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2267 * partial page slot if available. 2268 * 2269 * If we did not find a slot then simply move all the partials to the 2270 * per node partial list. 2271 */ 2272 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2273 { 2274 #ifdef CONFIG_SLUB_CPU_PARTIAL 2275 struct page *oldpage; 2276 int pages; 2277 int pobjects; 2278 2279 preempt_disable(); 2280 do { 2281 pages = 0; 2282 pobjects = 0; 2283 oldpage = this_cpu_read(s->cpu_slab->partial); 2284 2285 if (oldpage) { 2286 pobjects = oldpage->pobjects; 2287 pages = oldpage->pages; 2288 if (drain && pobjects > s->cpu_partial) { 2289 unsigned long flags; 2290 /* 2291 * partial array is full. Move the existing 2292 * set to the per node partial list. 2293 */ 2294 local_irq_save(flags); 2295 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2296 local_irq_restore(flags); 2297 oldpage = NULL; 2298 pobjects = 0; 2299 pages = 0; 2300 stat(s, CPU_PARTIAL_DRAIN); 2301 } 2302 } 2303 2304 pages++; 2305 pobjects += page->objects - page->inuse; 2306 2307 page->pages = pages; 2308 page->pobjects = pobjects; 2309 page->next = oldpage; 2310 2311 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2312 != oldpage); 2313 if (unlikely(!s->cpu_partial)) { 2314 unsigned long flags; 2315 2316 local_irq_save(flags); 2317 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2318 local_irq_restore(flags); 2319 } 2320 preempt_enable(); 2321 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2322 } 2323 2324 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2325 { 2326 stat(s, CPUSLAB_FLUSH); 2327 deactivate_slab(s, c->page, c->freelist, c); 2328 2329 c->tid = next_tid(c->tid); 2330 } 2331 2332 /* 2333 * Flush cpu slab. 2334 * 2335 * Called from IPI handler with interrupts disabled. 2336 */ 2337 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2338 { 2339 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2340 2341 if (c->page) 2342 flush_slab(s, c); 2343 2344 unfreeze_partials(s, c); 2345 } 2346 2347 static void flush_cpu_slab(void *d) 2348 { 2349 struct kmem_cache *s = d; 2350 2351 __flush_cpu_slab(s, smp_processor_id()); 2352 } 2353 2354 static bool has_cpu_slab(int cpu, void *info) 2355 { 2356 struct kmem_cache *s = info; 2357 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2358 2359 return c->page || slub_percpu_partial(c); 2360 } 2361 2362 static void flush_all(struct kmem_cache *s) 2363 { 2364 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2365 } 2366 2367 /* 2368 * Use the cpu notifier to insure that the cpu slabs are flushed when 2369 * necessary. 2370 */ 2371 static int slub_cpu_dead(unsigned int cpu) 2372 { 2373 struct kmem_cache *s; 2374 unsigned long flags; 2375 2376 mutex_lock(&slab_mutex); 2377 list_for_each_entry(s, &slab_caches, list) { 2378 local_irq_save(flags); 2379 __flush_cpu_slab(s, cpu); 2380 local_irq_restore(flags); 2381 } 2382 mutex_unlock(&slab_mutex); 2383 return 0; 2384 } 2385 2386 /* 2387 * Check if the objects in a per cpu structure fit numa 2388 * locality expectations. 2389 */ 2390 static inline int node_match(struct page *page, int node) 2391 { 2392 #ifdef CONFIG_NUMA 2393 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2394 return 0; 2395 #endif 2396 return 1; 2397 } 2398 2399 #ifdef CONFIG_SLUB_DEBUG 2400 static int count_free(struct page *page) 2401 { 2402 return page->objects - page->inuse; 2403 } 2404 2405 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2406 { 2407 return atomic_long_read(&n->total_objects); 2408 } 2409 #endif /* CONFIG_SLUB_DEBUG */ 2410 2411 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2412 static unsigned long count_partial(struct kmem_cache_node *n, 2413 int (*get_count)(struct page *)) 2414 { 2415 unsigned long flags; 2416 unsigned long x = 0; 2417 struct page *page; 2418 2419 spin_lock_irqsave(&n->list_lock, flags); 2420 list_for_each_entry(page, &n->partial, slab_list) 2421 x += get_count(page); 2422 spin_unlock_irqrestore(&n->list_lock, flags); 2423 return x; 2424 } 2425 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2426 2427 static noinline void 2428 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2429 { 2430 #ifdef CONFIG_SLUB_DEBUG 2431 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2432 DEFAULT_RATELIMIT_BURST); 2433 int node; 2434 struct kmem_cache_node *n; 2435 2436 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2437 return; 2438 2439 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2440 nid, gfpflags, &gfpflags); 2441 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2442 s->name, s->object_size, s->size, oo_order(s->oo), 2443 oo_order(s->min)); 2444 2445 if (oo_order(s->min) > get_order(s->object_size)) 2446 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2447 s->name); 2448 2449 for_each_kmem_cache_node(s, node, n) { 2450 unsigned long nr_slabs; 2451 unsigned long nr_objs; 2452 unsigned long nr_free; 2453 2454 nr_free = count_partial(n, count_free); 2455 nr_slabs = node_nr_slabs(n); 2456 nr_objs = node_nr_objs(n); 2457 2458 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2459 node, nr_slabs, nr_objs, nr_free); 2460 } 2461 #endif 2462 } 2463 2464 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2465 int node, struct kmem_cache_cpu **pc) 2466 { 2467 void *freelist; 2468 struct kmem_cache_cpu *c = *pc; 2469 struct page *page; 2470 2471 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2472 2473 freelist = get_partial(s, flags, node, c); 2474 2475 if (freelist) 2476 return freelist; 2477 2478 page = new_slab(s, flags, node); 2479 if (page) { 2480 c = raw_cpu_ptr(s->cpu_slab); 2481 if (c->page) 2482 flush_slab(s, c); 2483 2484 /* 2485 * No other reference to the page yet so we can 2486 * muck around with it freely without cmpxchg 2487 */ 2488 freelist = page->freelist; 2489 page->freelist = NULL; 2490 2491 stat(s, ALLOC_SLAB); 2492 c->page = page; 2493 *pc = c; 2494 } 2495 2496 return freelist; 2497 } 2498 2499 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2500 { 2501 if (unlikely(PageSlabPfmemalloc(page))) 2502 return gfp_pfmemalloc_allowed(gfpflags); 2503 2504 return true; 2505 } 2506 2507 /* 2508 * Check the page->freelist of a page and either transfer the freelist to the 2509 * per cpu freelist or deactivate the page. 2510 * 2511 * The page is still frozen if the return value is not NULL. 2512 * 2513 * If this function returns NULL then the page has been unfrozen. 2514 * 2515 * This function must be called with interrupt disabled. 2516 */ 2517 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2518 { 2519 struct page new; 2520 unsigned long counters; 2521 void *freelist; 2522 2523 do { 2524 freelist = page->freelist; 2525 counters = page->counters; 2526 2527 new.counters = counters; 2528 VM_BUG_ON(!new.frozen); 2529 2530 new.inuse = page->objects; 2531 new.frozen = freelist != NULL; 2532 2533 } while (!__cmpxchg_double_slab(s, page, 2534 freelist, counters, 2535 NULL, new.counters, 2536 "get_freelist")); 2537 2538 return freelist; 2539 } 2540 2541 /* 2542 * Slow path. The lockless freelist is empty or we need to perform 2543 * debugging duties. 2544 * 2545 * Processing is still very fast if new objects have been freed to the 2546 * regular freelist. In that case we simply take over the regular freelist 2547 * as the lockless freelist and zap the regular freelist. 2548 * 2549 * If that is not working then we fall back to the partial lists. We take the 2550 * first element of the freelist as the object to allocate now and move the 2551 * rest of the freelist to the lockless freelist. 2552 * 2553 * And if we were unable to get a new slab from the partial slab lists then 2554 * we need to allocate a new slab. This is the slowest path since it involves 2555 * a call to the page allocator and the setup of a new slab. 2556 * 2557 * Version of __slab_alloc to use when we know that interrupts are 2558 * already disabled (which is the case for bulk allocation). 2559 */ 2560 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2561 unsigned long addr, struct kmem_cache_cpu *c) 2562 { 2563 void *freelist; 2564 struct page *page; 2565 2566 page = c->page; 2567 if (!page) 2568 goto new_slab; 2569 redo: 2570 2571 if (unlikely(!node_match(page, node))) { 2572 int searchnode = node; 2573 2574 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2575 searchnode = node_to_mem_node(node); 2576 2577 if (unlikely(!node_match(page, searchnode))) { 2578 stat(s, ALLOC_NODE_MISMATCH); 2579 deactivate_slab(s, page, c->freelist, c); 2580 goto new_slab; 2581 } 2582 } 2583 2584 /* 2585 * By rights, we should be searching for a slab page that was 2586 * PFMEMALLOC but right now, we are losing the pfmemalloc 2587 * information when the page leaves the per-cpu allocator 2588 */ 2589 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2590 deactivate_slab(s, page, c->freelist, c); 2591 goto new_slab; 2592 } 2593 2594 /* must check again c->freelist in case of cpu migration or IRQ */ 2595 freelist = c->freelist; 2596 if (freelist) 2597 goto load_freelist; 2598 2599 freelist = get_freelist(s, page); 2600 2601 if (!freelist) { 2602 c->page = NULL; 2603 stat(s, DEACTIVATE_BYPASS); 2604 goto new_slab; 2605 } 2606 2607 stat(s, ALLOC_REFILL); 2608 2609 load_freelist: 2610 /* 2611 * freelist is pointing to the list of objects to be used. 2612 * page is pointing to the page from which the objects are obtained. 2613 * That page must be frozen for per cpu allocations to work. 2614 */ 2615 VM_BUG_ON(!c->page->frozen); 2616 c->freelist = get_freepointer(s, freelist); 2617 c->tid = next_tid(c->tid); 2618 return freelist; 2619 2620 new_slab: 2621 2622 if (slub_percpu_partial(c)) { 2623 page = c->page = slub_percpu_partial(c); 2624 slub_set_percpu_partial(c, page); 2625 stat(s, CPU_PARTIAL_ALLOC); 2626 goto redo; 2627 } 2628 2629 freelist = new_slab_objects(s, gfpflags, node, &c); 2630 2631 if (unlikely(!freelist)) { 2632 slab_out_of_memory(s, gfpflags, node); 2633 return NULL; 2634 } 2635 2636 page = c->page; 2637 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2638 goto load_freelist; 2639 2640 /* Only entered in the debug case */ 2641 if (kmem_cache_debug(s) && 2642 !alloc_debug_processing(s, page, freelist, addr)) 2643 goto new_slab; /* Slab failed checks. Next slab needed */ 2644 2645 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2646 return freelist; 2647 } 2648 2649 /* 2650 * Another one that disabled interrupt and compensates for possible 2651 * cpu changes by refetching the per cpu area pointer. 2652 */ 2653 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2654 unsigned long addr, struct kmem_cache_cpu *c) 2655 { 2656 void *p; 2657 unsigned long flags; 2658 2659 local_irq_save(flags); 2660 #ifdef CONFIG_PREEMPT 2661 /* 2662 * We may have been preempted and rescheduled on a different 2663 * cpu before disabling interrupts. Need to reload cpu area 2664 * pointer. 2665 */ 2666 c = this_cpu_ptr(s->cpu_slab); 2667 #endif 2668 2669 p = ___slab_alloc(s, gfpflags, node, addr, c); 2670 local_irq_restore(flags); 2671 return p; 2672 } 2673 2674 /* 2675 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2676 * have the fastpath folded into their functions. So no function call 2677 * overhead for requests that can be satisfied on the fastpath. 2678 * 2679 * The fastpath works by first checking if the lockless freelist can be used. 2680 * If not then __slab_alloc is called for slow processing. 2681 * 2682 * Otherwise we can simply pick the next object from the lockless free list. 2683 */ 2684 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2685 gfp_t gfpflags, int node, unsigned long addr) 2686 { 2687 void *object; 2688 struct kmem_cache_cpu *c; 2689 struct page *page; 2690 unsigned long tid; 2691 2692 s = slab_pre_alloc_hook(s, gfpflags); 2693 if (!s) 2694 return NULL; 2695 redo: 2696 /* 2697 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2698 * enabled. We may switch back and forth between cpus while 2699 * reading from one cpu area. That does not matter as long 2700 * as we end up on the original cpu again when doing the cmpxchg. 2701 * 2702 * We should guarantee that tid and kmem_cache are retrieved on 2703 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2704 * to check if it is matched or not. 2705 */ 2706 do { 2707 tid = this_cpu_read(s->cpu_slab->tid); 2708 c = raw_cpu_ptr(s->cpu_slab); 2709 } while (IS_ENABLED(CONFIG_PREEMPT) && 2710 unlikely(tid != READ_ONCE(c->tid))); 2711 2712 /* 2713 * Irqless object alloc/free algorithm used here depends on sequence 2714 * of fetching cpu_slab's data. tid should be fetched before anything 2715 * on c to guarantee that object and page associated with previous tid 2716 * won't be used with current tid. If we fetch tid first, object and 2717 * page could be one associated with next tid and our alloc/free 2718 * request will be failed. In this case, we will retry. So, no problem. 2719 */ 2720 barrier(); 2721 2722 /* 2723 * The transaction ids are globally unique per cpu and per operation on 2724 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2725 * occurs on the right processor and that there was no operation on the 2726 * linked list in between. 2727 */ 2728 2729 object = c->freelist; 2730 page = c->page; 2731 if (unlikely(!object || !node_match(page, node))) { 2732 object = __slab_alloc(s, gfpflags, node, addr, c); 2733 stat(s, ALLOC_SLOWPATH); 2734 } else { 2735 void *next_object = get_freepointer_safe(s, object); 2736 2737 /* 2738 * The cmpxchg will only match if there was no additional 2739 * operation and if we are on the right processor. 2740 * 2741 * The cmpxchg does the following atomically (without lock 2742 * semantics!) 2743 * 1. Relocate first pointer to the current per cpu area. 2744 * 2. Verify that tid and freelist have not been changed 2745 * 3. If they were not changed replace tid and freelist 2746 * 2747 * Since this is without lock semantics the protection is only 2748 * against code executing on this cpu *not* from access by 2749 * other cpus. 2750 */ 2751 if (unlikely(!this_cpu_cmpxchg_double( 2752 s->cpu_slab->freelist, s->cpu_slab->tid, 2753 object, tid, 2754 next_object, next_tid(tid)))) { 2755 2756 note_cmpxchg_failure("slab_alloc", s, tid); 2757 goto redo; 2758 } 2759 prefetch_freepointer(s, next_object); 2760 stat(s, ALLOC_FASTPATH); 2761 } 2762 /* 2763 * If the object has been wiped upon free, make sure it's fully 2764 * initialized by zeroing out freelist pointer. 2765 */ 2766 if (unlikely(slab_want_init_on_free(s)) && object) 2767 memset(object + s->offset, 0, sizeof(void *)); 2768 2769 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2770 memset(object, 0, s->object_size); 2771 2772 slab_post_alloc_hook(s, gfpflags, 1, &object); 2773 2774 return object; 2775 } 2776 2777 static __always_inline void *slab_alloc(struct kmem_cache *s, 2778 gfp_t gfpflags, unsigned long addr) 2779 { 2780 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2781 } 2782 2783 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2784 { 2785 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2786 2787 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2788 s->size, gfpflags); 2789 2790 return ret; 2791 } 2792 EXPORT_SYMBOL(kmem_cache_alloc); 2793 2794 #ifdef CONFIG_TRACING 2795 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2796 { 2797 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2798 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2799 ret = kasan_kmalloc(s, ret, size, gfpflags); 2800 return ret; 2801 } 2802 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2803 #endif 2804 2805 #ifdef CONFIG_NUMA 2806 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2807 { 2808 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2809 2810 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2811 s->object_size, s->size, gfpflags, node); 2812 2813 return ret; 2814 } 2815 EXPORT_SYMBOL(kmem_cache_alloc_node); 2816 2817 #ifdef CONFIG_TRACING 2818 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2819 gfp_t gfpflags, 2820 int node, size_t size) 2821 { 2822 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2823 2824 trace_kmalloc_node(_RET_IP_, ret, 2825 size, s->size, gfpflags, node); 2826 2827 ret = kasan_kmalloc(s, ret, size, gfpflags); 2828 return ret; 2829 } 2830 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2831 #endif 2832 #endif /* CONFIG_NUMA */ 2833 2834 /* 2835 * Slow path handling. This may still be called frequently since objects 2836 * have a longer lifetime than the cpu slabs in most processing loads. 2837 * 2838 * So we still attempt to reduce cache line usage. Just take the slab 2839 * lock and free the item. If there is no additional partial page 2840 * handling required then we can return immediately. 2841 */ 2842 static void __slab_free(struct kmem_cache *s, struct page *page, 2843 void *head, void *tail, int cnt, 2844 unsigned long addr) 2845 2846 { 2847 void *prior; 2848 int was_frozen; 2849 struct page new; 2850 unsigned long counters; 2851 struct kmem_cache_node *n = NULL; 2852 unsigned long uninitialized_var(flags); 2853 2854 stat(s, FREE_SLOWPATH); 2855 2856 if (kmem_cache_debug(s) && 2857 !free_debug_processing(s, page, head, tail, cnt, addr)) 2858 return; 2859 2860 do { 2861 if (unlikely(n)) { 2862 spin_unlock_irqrestore(&n->list_lock, flags); 2863 n = NULL; 2864 } 2865 prior = page->freelist; 2866 counters = page->counters; 2867 set_freepointer(s, tail, prior); 2868 new.counters = counters; 2869 was_frozen = new.frozen; 2870 new.inuse -= cnt; 2871 if ((!new.inuse || !prior) && !was_frozen) { 2872 2873 if (kmem_cache_has_cpu_partial(s) && !prior) { 2874 2875 /* 2876 * Slab was on no list before and will be 2877 * partially empty 2878 * We can defer the list move and instead 2879 * freeze it. 2880 */ 2881 new.frozen = 1; 2882 2883 } else { /* Needs to be taken off a list */ 2884 2885 n = get_node(s, page_to_nid(page)); 2886 /* 2887 * Speculatively acquire the list_lock. 2888 * If the cmpxchg does not succeed then we may 2889 * drop the list_lock without any processing. 2890 * 2891 * Otherwise the list_lock will synchronize with 2892 * other processors updating the list of slabs. 2893 */ 2894 spin_lock_irqsave(&n->list_lock, flags); 2895 2896 } 2897 } 2898 2899 } while (!cmpxchg_double_slab(s, page, 2900 prior, counters, 2901 head, new.counters, 2902 "__slab_free")); 2903 2904 if (likely(!n)) { 2905 2906 /* 2907 * If we just froze the page then put it onto the 2908 * per cpu partial list. 2909 */ 2910 if (new.frozen && !was_frozen) { 2911 put_cpu_partial(s, page, 1); 2912 stat(s, CPU_PARTIAL_FREE); 2913 } 2914 /* 2915 * The list lock was not taken therefore no list 2916 * activity can be necessary. 2917 */ 2918 if (was_frozen) 2919 stat(s, FREE_FROZEN); 2920 return; 2921 } 2922 2923 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2924 goto slab_empty; 2925 2926 /* 2927 * Objects left in the slab. If it was not on the partial list before 2928 * then add it. 2929 */ 2930 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2931 remove_full(s, n, page); 2932 add_partial(n, page, DEACTIVATE_TO_TAIL); 2933 stat(s, FREE_ADD_PARTIAL); 2934 } 2935 spin_unlock_irqrestore(&n->list_lock, flags); 2936 return; 2937 2938 slab_empty: 2939 if (prior) { 2940 /* 2941 * Slab on the partial list. 2942 */ 2943 remove_partial(n, page); 2944 stat(s, FREE_REMOVE_PARTIAL); 2945 } else { 2946 /* Slab must be on the full list */ 2947 remove_full(s, n, page); 2948 } 2949 2950 spin_unlock_irqrestore(&n->list_lock, flags); 2951 stat(s, FREE_SLAB); 2952 discard_slab(s, page); 2953 } 2954 2955 /* 2956 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2957 * can perform fastpath freeing without additional function calls. 2958 * 2959 * The fastpath is only possible if we are freeing to the current cpu slab 2960 * of this processor. This typically the case if we have just allocated 2961 * the item before. 2962 * 2963 * If fastpath is not possible then fall back to __slab_free where we deal 2964 * with all sorts of special processing. 2965 * 2966 * Bulk free of a freelist with several objects (all pointing to the 2967 * same page) possible by specifying head and tail ptr, plus objects 2968 * count (cnt). Bulk free indicated by tail pointer being set. 2969 */ 2970 static __always_inline void do_slab_free(struct kmem_cache *s, 2971 struct page *page, void *head, void *tail, 2972 int cnt, unsigned long addr) 2973 { 2974 void *tail_obj = tail ? : head; 2975 struct kmem_cache_cpu *c; 2976 unsigned long tid; 2977 redo: 2978 /* 2979 * Determine the currently cpus per cpu slab. 2980 * The cpu may change afterward. However that does not matter since 2981 * data is retrieved via this pointer. If we are on the same cpu 2982 * during the cmpxchg then the free will succeed. 2983 */ 2984 do { 2985 tid = this_cpu_read(s->cpu_slab->tid); 2986 c = raw_cpu_ptr(s->cpu_slab); 2987 } while (IS_ENABLED(CONFIG_PREEMPT) && 2988 unlikely(tid != READ_ONCE(c->tid))); 2989 2990 /* Same with comment on barrier() in slab_alloc_node() */ 2991 barrier(); 2992 2993 if (likely(page == c->page)) { 2994 set_freepointer(s, tail_obj, c->freelist); 2995 2996 if (unlikely(!this_cpu_cmpxchg_double( 2997 s->cpu_slab->freelist, s->cpu_slab->tid, 2998 c->freelist, tid, 2999 head, next_tid(tid)))) { 3000 3001 note_cmpxchg_failure("slab_free", s, tid); 3002 goto redo; 3003 } 3004 stat(s, FREE_FASTPATH); 3005 } else 3006 __slab_free(s, page, head, tail_obj, cnt, addr); 3007 3008 } 3009 3010 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3011 void *head, void *tail, int cnt, 3012 unsigned long addr) 3013 { 3014 /* 3015 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3016 * to remove objects, whose reuse must be delayed. 3017 */ 3018 if (slab_free_freelist_hook(s, &head, &tail)) 3019 do_slab_free(s, page, head, tail, cnt, addr); 3020 } 3021 3022 #ifdef CONFIG_KASAN_GENERIC 3023 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3024 { 3025 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3026 } 3027 #endif 3028 3029 void kmem_cache_free(struct kmem_cache *s, void *x) 3030 { 3031 s = cache_from_obj(s, x); 3032 if (!s) 3033 return; 3034 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3035 trace_kmem_cache_free(_RET_IP_, x); 3036 } 3037 EXPORT_SYMBOL(kmem_cache_free); 3038 3039 struct detached_freelist { 3040 struct page *page; 3041 void *tail; 3042 void *freelist; 3043 int cnt; 3044 struct kmem_cache *s; 3045 }; 3046 3047 /* 3048 * This function progressively scans the array with free objects (with 3049 * a limited look ahead) and extract objects belonging to the same 3050 * page. It builds a detached freelist directly within the given 3051 * page/objects. This can happen without any need for 3052 * synchronization, because the objects are owned by running process. 3053 * The freelist is build up as a single linked list in the objects. 3054 * The idea is, that this detached freelist can then be bulk 3055 * transferred to the real freelist(s), but only requiring a single 3056 * synchronization primitive. Look ahead in the array is limited due 3057 * to performance reasons. 3058 */ 3059 static inline 3060 int build_detached_freelist(struct kmem_cache *s, size_t size, 3061 void **p, struct detached_freelist *df) 3062 { 3063 size_t first_skipped_index = 0; 3064 int lookahead = 3; 3065 void *object; 3066 struct page *page; 3067 3068 /* Always re-init detached_freelist */ 3069 df->page = NULL; 3070 3071 do { 3072 object = p[--size]; 3073 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3074 } while (!object && size); 3075 3076 if (!object) 3077 return 0; 3078 3079 page = virt_to_head_page(object); 3080 if (!s) { 3081 /* Handle kalloc'ed objects */ 3082 if (unlikely(!PageSlab(page))) { 3083 BUG_ON(!PageCompound(page)); 3084 kfree_hook(object); 3085 __free_pages(page, compound_order(page)); 3086 p[size] = NULL; /* mark object processed */ 3087 return size; 3088 } 3089 /* Derive kmem_cache from object */ 3090 df->s = page->slab_cache; 3091 } else { 3092 df->s = cache_from_obj(s, object); /* Support for memcg */ 3093 } 3094 3095 /* Start new detached freelist */ 3096 df->page = page; 3097 set_freepointer(df->s, object, NULL); 3098 df->tail = object; 3099 df->freelist = object; 3100 p[size] = NULL; /* mark object processed */ 3101 df->cnt = 1; 3102 3103 while (size) { 3104 object = p[--size]; 3105 if (!object) 3106 continue; /* Skip processed objects */ 3107 3108 /* df->page is always set at this point */ 3109 if (df->page == virt_to_head_page(object)) { 3110 /* Opportunity build freelist */ 3111 set_freepointer(df->s, object, df->freelist); 3112 df->freelist = object; 3113 df->cnt++; 3114 p[size] = NULL; /* mark object processed */ 3115 3116 continue; 3117 } 3118 3119 /* Limit look ahead search */ 3120 if (!--lookahead) 3121 break; 3122 3123 if (!first_skipped_index) 3124 first_skipped_index = size + 1; 3125 } 3126 3127 return first_skipped_index; 3128 } 3129 3130 /* Note that interrupts must be enabled when calling this function. */ 3131 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3132 { 3133 if (WARN_ON(!size)) 3134 return; 3135 3136 do { 3137 struct detached_freelist df; 3138 3139 size = build_detached_freelist(s, size, p, &df); 3140 if (!df.page) 3141 continue; 3142 3143 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3144 } while (likely(size)); 3145 } 3146 EXPORT_SYMBOL(kmem_cache_free_bulk); 3147 3148 /* Note that interrupts must be enabled when calling this function. */ 3149 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3150 void **p) 3151 { 3152 struct kmem_cache_cpu *c; 3153 int i; 3154 3155 /* memcg and kmem_cache debug support */ 3156 s = slab_pre_alloc_hook(s, flags); 3157 if (unlikely(!s)) 3158 return false; 3159 /* 3160 * Drain objects in the per cpu slab, while disabling local 3161 * IRQs, which protects against PREEMPT and interrupts 3162 * handlers invoking normal fastpath. 3163 */ 3164 local_irq_disable(); 3165 c = this_cpu_ptr(s->cpu_slab); 3166 3167 for (i = 0; i < size; i++) { 3168 void *object = c->freelist; 3169 3170 if (unlikely(!object)) { 3171 /* 3172 * Invoking slow path likely have side-effect 3173 * of re-populating per CPU c->freelist 3174 */ 3175 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3176 _RET_IP_, c); 3177 if (unlikely(!p[i])) 3178 goto error; 3179 3180 c = this_cpu_ptr(s->cpu_slab); 3181 continue; /* goto for-loop */ 3182 } 3183 c->freelist = get_freepointer(s, object); 3184 p[i] = object; 3185 } 3186 c->tid = next_tid(c->tid); 3187 local_irq_enable(); 3188 3189 /* Clear memory outside IRQ disabled fastpath loop */ 3190 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3191 int j; 3192 3193 for (j = 0; j < i; j++) 3194 memset(p[j], 0, s->object_size); 3195 } 3196 3197 /* memcg and kmem_cache debug support */ 3198 slab_post_alloc_hook(s, flags, size, p); 3199 return i; 3200 error: 3201 local_irq_enable(); 3202 slab_post_alloc_hook(s, flags, i, p); 3203 __kmem_cache_free_bulk(s, i, p); 3204 return 0; 3205 } 3206 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3207 3208 3209 /* 3210 * Object placement in a slab is made very easy because we always start at 3211 * offset 0. If we tune the size of the object to the alignment then we can 3212 * get the required alignment by putting one properly sized object after 3213 * another. 3214 * 3215 * Notice that the allocation order determines the sizes of the per cpu 3216 * caches. Each processor has always one slab available for allocations. 3217 * Increasing the allocation order reduces the number of times that slabs 3218 * must be moved on and off the partial lists and is therefore a factor in 3219 * locking overhead. 3220 */ 3221 3222 /* 3223 * Mininum / Maximum order of slab pages. This influences locking overhead 3224 * and slab fragmentation. A higher order reduces the number of partial slabs 3225 * and increases the number of allocations possible without having to 3226 * take the list_lock. 3227 */ 3228 static unsigned int slub_min_order; 3229 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3230 static unsigned int slub_min_objects; 3231 3232 /* 3233 * Calculate the order of allocation given an slab object size. 3234 * 3235 * The order of allocation has significant impact on performance and other 3236 * system components. Generally order 0 allocations should be preferred since 3237 * order 0 does not cause fragmentation in the page allocator. Larger objects 3238 * be problematic to put into order 0 slabs because there may be too much 3239 * unused space left. We go to a higher order if more than 1/16th of the slab 3240 * would be wasted. 3241 * 3242 * In order to reach satisfactory performance we must ensure that a minimum 3243 * number of objects is in one slab. Otherwise we may generate too much 3244 * activity on the partial lists which requires taking the list_lock. This is 3245 * less a concern for large slabs though which are rarely used. 3246 * 3247 * slub_max_order specifies the order where we begin to stop considering the 3248 * number of objects in a slab as critical. If we reach slub_max_order then 3249 * we try to keep the page order as low as possible. So we accept more waste 3250 * of space in favor of a small page order. 3251 * 3252 * Higher order allocations also allow the placement of more objects in a 3253 * slab and thereby reduce object handling overhead. If the user has 3254 * requested a higher mininum order then we start with that one instead of 3255 * the smallest order which will fit the object. 3256 */ 3257 static inline unsigned int slab_order(unsigned int size, 3258 unsigned int min_objects, unsigned int max_order, 3259 unsigned int fract_leftover) 3260 { 3261 unsigned int min_order = slub_min_order; 3262 unsigned int order; 3263 3264 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3265 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3266 3267 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3268 order <= max_order; order++) { 3269 3270 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3271 unsigned int rem; 3272 3273 rem = slab_size % size; 3274 3275 if (rem <= slab_size / fract_leftover) 3276 break; 3277 } 3278 3279 return order; 3280 } 3281 3282 static inline int calculate_order(unsigned int size) 3283 { 3284 unsigned int order; 3285 unsigned int min_objects; 3286 unsigned int max_objects; 3287 3288 /* 3289 * Attempt to find best configuration for a slab. This 3290 * works by first attempting to generate a layout with 3291 * the best configuration and backing off gradually. 3292 * 3293 * First we increase the acceptable waste in a slab. Then 3294 * we reduce the minimum objects required in a slab. 3295 */ 3296 min_objects = slub_min_objects; 3297 if (!min_objects) 3298 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3299 max_objects = order_objects(slub_max_order, size); 3300 min_objects = min(min_objects, max_objects); 3301 3302 while (min_objects > 1) { 3303 unsigned int fraction; 3304 3305 fraction = 16; 3306 while (fraction >= 4) { 3307 order = slab_order(size, min_objects, 3308 slub_max_order, fraction); 3309 if (order <= slub_max_order) 3310 return order; 3311 fraction /= 2; 3312 } 3313 min_objects--; 3314 } 3315 3316 /* 3317 * We were unable to place multiple objects in a slab. Now 3318 * lets see if we can place a single object there. 3319 */ 3320 order = slab_order(size, 1, slub_max_order, 1); 3321 if (order <= slub_max_order) 3322 return order; 3323 3324 /* 3325 * Doh this slab cannot be placed using slub_max_order. 3326 */ 3327 order = slab_order(size, 1, MAX_ORDER, 1); 3328 if (order < MAX_ORDER) 3329 return order; 3330 return -ENOSYS; 3331 } 3332 3333 static void 3334 init_kmem_cache_node(struct kmem_cache_node *n) 3335 { 3336 n->nr_partial = 0; 3337 spin_lock_init(&n->list_lock); 3338 INIT_LIST_HEAD(&n->partial); 3339 #ifdef CONFIG_SLUB_DEBUG 3340 atomic_long_set(&n->nr_slabs, 0); 3341 atomic_long_set(&n->total_objects, 0); 3342 INIT_LIST_HEAD(&n->full); 3343 #endif 3344 } 3345 3346 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3347 { 3348 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3349 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3350 3351 /* 3352 * Must align to double word boundary for the double cmpxchg 3353 * instructions to work; see __pcpu_double_call_return_bool(). 3354 */ 3355 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3356 2 * sizeof(void *)); 3357 3358 if (!s->cpu_slab) 3359 return 0; 3360 3361 init_kmem_cache_cpus(s); 3362 3363 return 1; 3364 } 3365 3366 static struct kmem_cache *kmem_cache_node; 3367 3368 /* 3369 * No kmalloc_node yet so do it by hand. We know that this is the first 3370 * slab on the node for this slabcache. There are no concurrent accesses 3371 * possible. 3372 * 3373 * Note that this function only works on the kmem_cache_node 3374 * when allocating for the kmem_cache_node. This is used for bootstrapping 3375 * memory on a fresh node that has no slab structures yet. 3376 */ 3377 static void early_kmem_cache_node_alloc(int node) 3378 { 3379 struct page *page; 3380 struct kmem_cache_node *n; 3381 3382 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3383 3384 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3385 3386 BUG_ON(!page); 3387 if (page_to_nid(page) != node) { 3388 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3389 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3390 } 3391 3392 n = page->freelist; 3393 BUG_ON(!n); 3394 #ifdef CONFIG_SLUB_DEBUG 3395 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3396 init_tracking(kmem_cache_node, n); 3397 #endif 3398 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3399 GFP_KERNEL); 3400 page->freelist = get_freepointer(kmem_cache_node, n); 3401 page->inuse = 1; 3402 page->frozen = 0; 3403 kmem_cache_node->node[node] = n; 3404 init_kmem_cache_node(n); 3405 inc_slabs_node(kmem_cache_node, node, page->objects); 3406 3407 /* 3408 * No locks need to be taken here as it has just been 3409 * initialized and there is no concurrent access. 3410 */ 3411 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3412 } 3413 3414 static void free_kmem_cache_nodes(struct kmem_cache *s) 3415 { 3416 int node; 3417 struct kmem_cache_node *n; 3418 3419 for_each_kmem_cache_node(s, node, n) { 3420 s->node[node] = NULL; 3421 kmem_cache_free(kmem_cache_node, n); 3422 } 3423 } 3424 3425 void __kmem_cache_release(struct kmem_cache *s) 3426 { 3427 cache_random_seq_destroy(s); 3428 free_percpu(s->cpu_slab); 3429 free_kmem_cache_nodes(s); 3430 } 3431 3432 static int init_kmem_cache_nodes(struct kmem_cache *s) 3433 { 3434 int node; 3435 3436 for_each_node_state(node, N_NORMAL_MEMORY) { 3437 struct kmem_cache_node *n; 3438 3439 if (slab_state == DOWN) { 3440 early_kmem_cache_node_alloc(node); 3441 continue; 3442 } 3443 n = kmem_cache_alloc_node(kmem_cache_node, 3444 GFP_KERNEL, node); 3445 3446 if (!n) { 3447 free_kmem_cache_nodes(s); 3448 return 0; 3449 } 3450 3451 init_kmem_cache_node(n); 3452 s->node[node] = n; 3453 } 3454 return 1; 3455 } 3456 3457 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3458 { 3459 if (min < MIN_PARTIAL) 3460 min = MIN_PARTIAL; 3461 else if (min > MAX_PARTIAL) 3462 min = MAX_PARTIAL; 3463 s->min_partial = min; 3464 } 3465 3466 static void set_cpu_partial(struct kmem_cache *s) 3467 { 3468 #ifdef CONFIG_SLUB_CPU_PARTIAL 3469 /* 3470 * cpu_partial determined the maximum number of objects kept in the 3471 * per cpu partial lists of a processor. 3472 * 3473 * Per cpu partial lists mainly contain slabs that just have one 3474 * object freed. If they are used for allocation then they can be 3475 * filled up again with minimal effort. The slab will never hit the 3476 * per node partial lists and therefore no locking will be required. 3477 * 3478 * This setting also determines 3479 * 3480 * A) The number of objects from per cpu partial slabs dumped to the 3481 * per node list when we reach the limit. 3482 * B) The number of objects in cpu partial slabs to extract from the 3483 * per node list when we run out of per cpu objects. We only fetch 3484 * 50% to keep some capacity around for frees. 3485 */ 3486 if (!kmem_cache_has_cpu_partial(s)) 3487 s->cpu_partial = 0; 3488 else if (s->size >= PAGE_SIZE) 3489 s->cpu_partial = 2; 3490 else if (s->size >= 1024) 3491 s->cpu_partial = 6; 3492 else if (s->size >= 256) 3493 s->cpu_partial = 13; 3494 else 3495 s->cpu_partial = 30; 3496 #endif 3497 } 3498 3499 /* 3500 * calculate_sizes() determines the order and the distribution of data within 3501 * a slab object. 3502 */ 3503 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3504 { 3505 slab_flags_t flags = s->flags; 3506 unsigned int size = s->object_size; 3507 unsigned int order; 3508 3509 /* 3510 * Round up object size to the next word boundary. We can only 3511 * place the free pointer at word boundaries and this determines 3512 * the possible location of the free pointer. 3513 */ 3514 size = ALIGN(size, sizeof(void *)); 3515 3516 #ifdef CONFIG_SLUB_DEBUG 3517 /* 3518 * Determine if we can poison the object itself. If the user of 3519 * the slab may touch the object after free or before allocation 3520 * then we should never poison the object itself. 3521 */ 3522 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3523 !s->ctor) 3524 s->flags |= __OBJECT_POISON; 3525 else 3526 s->flags &= ~__OBJECT_POISON; 3527 3528 3529 /* 3530 * If we are Redzoning then check if there is some space between the 3531 * end of the object and the free pointer. If not then add an 3532 * additional word to have some bytes to store Redzone information. 3533 */ 3534 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3535 size += sizeof(void *); 3536 #endif 3537 3538 /* 3539 * With that we have determined the number of bytes in actual use 3540 * by the object. This is the potential offset to the free pointer. 3541 */ 3542 s->inuse = size; 3543 3544 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3545 s->ctor)) { 3546 /* 3547 * Relocate free pointer after the object if it is not 3548 * permitted to overwrite the first word of the object on 3549 * kmem_cache_free. 3550 * 3551 * This is the case if we do RCU, have a constructor or 3552 * destructor or are poisoning the objects. 3553 */ 3554 s->offset = size; 3555 size += sizeof(void *); 3556 } 3557 3558 #ifdef CONFIG_SLUB_DEBUG 3559 if (flags & SLAB_STORE_USER) 3560 /* 3561 * Need to store information about allocs and frees after 3562 * the object. 3563 */ 3564 size += 2 * sizeof(struct track); 3565 #endif 3566 3567 kasan_cache_create(s, &size, &s->flags); 3568 #ifdef CONFIG_SLUB_DEBUG 3569 if (flags & SLAB_RED_ZONE) { 3570 /* 3571 * Add some empty padding so that we can catch 3572 * overwrites from earlier objects rather than let 3573 * tracking information or the free pointer be 3574 * corrupted if a user writes before the start 3575 * of the object. 3576 */ 3577 size += sizeof(void *); 3578 3579 s->red_left_pad = sizeof(void *); 3580 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3581 size += s->red_left_pad; 3582 } 3583 #endif 3584 3585 /* 3586 * SLUB stores one object immediately after another beginning from 3587 * offset 0. In order to align the objects we have to simply size 3588 * each object to conform to the alignment. 3589 */ 3590 size = ALIGN(size, s->align); 3591 s->size = size; 3592 if (forced_order >= 0) 3593 order = forced_order; 3594 else 3595 order = calculate_order(size); 3596 3597 if ((int)order < 0) 3598 return 0; 3599 3600 s->allocflags = 0; 3601 if (order) 3602 s->allocflags |= __GFP_COMP; 3603 3604 if (s->flags & SLAB_CACHE_DMA) 3605 s->allocflags |= GFP_DMA; 3606 3607 if (s->flags & SLAB_CACHE_DMA32) 3608 s->allocflags |= GFP_DMA32; 3609 3610 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3611 s->allocflags |= __GFP_RECLAIMABLE; 3612 3613 /* 3614 * Determine the number of objects per slab 3615 */ 3616 s->oo = oo_make(order, size); 3617 s->min = oo_make(get_order(size), size); 3618 if (oo_objects(s->oo) > oo_objects(s->max)) 3619 s->max = s->oo; 3620 3621 return !!oo_objects(s->oo); 3622 } 3623 3624 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3625 { 3626 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3627 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3628 s->random = get_random_long(); 3629 #endif 3630 3631 if (!calculate_sizes(s, -1)) 3632 goto error; 3633 if (disable_higher_order_debug) { 3634 /* 3635 * Disable debugging flags that store metadata if the min slab 3636 * order increased. 3637 */ 3638 if (get_order(s->size) > get_order(s->object_size)) { 3639 s->flags &= ~DEBUG_METADATA_FLAGS; 3640 s->offset = 0; 3641 if (!calculate_sizes(s, -1)) 3642 goto error; 3643 } 3644 } 3645 3646 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3647 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3648 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3649 /* Enable fast mode */ 3650 s->flags |= __CMPXCHG_DOUBLE; 3651 #endif 3652 3653 /* 3654 * The larger the object size is, the more pages we want on the partial 3655 * list to avoid pounding the page allocator excessively. 3656 */ 3657 set_min_partial(s, ilog2(s->size) / 2); 3658 3659 set_cpu_partial(s); 3660 3661 #ifdef CONFIG_NUMA 3662 s->remote_node_defrag_ratio = 1000; 3663 #endif 3664 3665 /* Initialize the pre-computed randomized freelist if slab is up */ 3666 if (slab_state >= UP) { 3667 if (init_cache_random_seq(s)) 3668 goto error; 3669 } 3670 3671 if (!init_kmem_cache_nodes(s)) 3672 goto error; 3673 3674 if (alloc_kmem_cache_cpus(s)) 3675 return 0; 3676 3677 free_kmem_cache_nodes(s); 3678 error: 3679 return -EINVAL; 3680 } 3681 3682 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3683 const char *text) 3684 { 3685 #ifdef CONFIG_SLUB_DEBUG 3686 void *addr = page_address(page); 3687 void *p; 3688 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); 3689 if (!map) 3690 return; 3691 slab_err(s, page, text, s->name); 3692 slab_lock(page); 3693 3694 get_map(s, page, map); 3695 for_each_object(p, s, addr, page->objects) { 3696 3697 if (!test_bit(slab_index(p, s, addr), map)) { 3698 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3699 print_tracking(s, p); 3700 } 3701 } 3702 slab_unlock(page); 3703 bitmap_free(map); 3704 #endif 3705 } 3706 3707 /* 3708 * Attempt to free all partial slabs on a node. 3709 * This is called from __kmem_cache_shutdown(). We must take list_lock 3710 * because sysfs file might still access partial list after the shutdowning. 3711 */ 3712 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3713 { 3714 LIST_HEAD(discard); 3715 struct page *page, *h; 3716 3717 BUG_ON(irqs_disabled()); 3718 spin_lock_irq(&n->list_lock); 3719 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3720 if (!page->inuse) { 3721 remove_partial(n, page); 3722 list_add(&page->slab_list, &discard); 3723 } else { 3724 list_slab_objects(s, page, 3725 "Objects remaining in %s on __kmem_cache_shutdown()"); 3726 } 3727 } 3728 spin_unlock_irq(&n->list_lock); 3729 3730 list_for_each_entry_safe(page, h, &discard, slab_list) 3731 discard_slab(s, page); 3732 } 3733 3734 bool __kmem_cache_empty(struct kmem_cache *s) 3735 { 3736 int node; 3737 struct kmem_cache_node *n; 3738 3739 for_each_kmem_cache_node(s, node, n) 3740 if (n->nr_partial || slabs_node(s, node)) 3741 return false; 3742 return true; 3743 } 3744 3745 /* 3746 * Release all resources used by a slab cache. 3747 */ 3748 int __kmem_cache_shutdown(struct kmem_cache *s) 3749 { 3750 int node; 3751 struct kmem_cache_node *n; 3752 3753 flush_all(s); 3754 /* Attempt to free all objects */ 3755 for_each_kmem_cache_node(s, node, n) { 3756 free_partial(s, n); 3757 if (n->nr_partial || slabs_node(s, node)) 3758 return 1; 3759 } 3760 sysfs_slab_remove(s); 3761 return 0; 3762 } 3763 3764 /******************************************************************** 3765 * Kmalloc subsystem 3766 *******************************************************************/ 3767 3768 static int __init setup_slub_min_order(char *str) 3769 { 3770 get_option(&str, (int *)&slub_min_order); 3771 3772 return 1; 3773 } 3774 3775 __setup("slub_min_order=", setup_slub_min_order); 3776 3777 static int __init setup_slub_max_order(char *str) 3778 { 3779 get_option(&str, (int *)&slub_max_order); 3780 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3781 3782 return 1; 3783 } 3784 3785 __setup("slub_max_order=", setup_slub_max_order); 3786 3787 static int __init setup_slub_min_objects(char *str) 3788 { 3789 get_option(&str, (int *)&slub_min_objects); 3790 3791 return 1; 3792 } 3793 3794 __setup("slub_min_objects=", setup_slub_min_objects); 3795 3796 void *__kmalloc(size_t size, gfp_t flags) 3797 { 3798 struct kmem_cache *s; 3799 void *ret; 3800 3801 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3802 return kmalloc_large(size, flags); 3803 3804 s = kmalloc_slab(size, flags); 3805 3806 if (unlikely(ZERO_OR_NULL_PTR(s))) 3807 return s; 3808 3809 ret = slab_alloc(s, flags, _RET_IP_); 3810 3811 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3812 3813 ret = kasan_kmalloc(s, ret, size, flags); 3814 3815 return ret; 3816 } 3817 EXPORT_SYMBOL(__kmalloc); 3818 3819 #ifdef CONFIG_NUMA 3820 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3821 { 3822 struct page *page; 3823 void *ptr = NULL; 3824 3825 flags |= __GFP_COMP; 3826 page = alloc_pages_node(node, flags, get_order(size)); 3827 if (page) 3828 ptr = page_address(page); 3829 3830 return kmalloc_large_node_hook(ptr, size, flags); 3831 } 3832 3833 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3834 { 3835 struct kmem_cache *s; 3836 void *ret; 3837 3838 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3839 ret = kmalloc_large_node(size, flags, node); 3840 3841 trace_kmalloc_node(_RET_IP_, ret, 3842 size, PAGE_SIZE << get_order(size), 3843 flags, node); 3844 3845 return ret; 3846 } 3847 3848 s = kmalloc_slab(size, flags); 3849 3850 if (unlikely(ZERO_OR_NULL_PTR(s))) 3851 return s; 3852 3853 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3854 3855 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3856 3857 ret = kasan_kmalloc(s, ret, size, flags); 3858 3859 return ret; 3860 } 3861 EXPORT_SYMBOL(__kmalloc_node); 3862 #endif /* CONFIG_NUMA */ 3863 3864 #ifdef CONFIG_HARDENED_USERCOPY 3865 /* 3866 * Rejects incorrectly sized objects and objects that are to be copied 3867 * to/from userspace but do not fall entirely within the containing slab 3868 * cache's usercopy region. 3869 * 3870 * Returns NULL if check passes, otherwise const char * to name of cache 3871 * to indicate an error. 3872 */ 3873 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3874 bool to_user) 3875 { 3876 struct kmem_cache *s; 3877 unsigned int offset; 3878 size_t object_size; 3879 3880 ptr = kasan_reset_tag(ptr); 3881 3882 /* Find object and usable object size. */ 3883 s = page->slab_cache; 3884 3885 /* Reject impossible pointers. */ 3886 if (ptr < page_address(page)) 3887 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3888 to_user, 0, n); 3889 3890 /* Find offset within object. */ 3891 offset = (ptr - page_address(page)) % s->size; 3892 3893 /* Adjust for redzone and reject if within the redzone. */ 3894 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3895 if (offset < s->red_left_pad) 3896 usercopy_abort("SLUB object in left red zone", 3897 s->name, to_user, offset, n); 3898 offset -= s->red_left_pad; 3899 } 3900 3901 /* Allow address range falling entirely within usercopy region. */ 3902 if (offset >= s->useroffset && 3903 offset - s->useroffset <= s->usersize && 3904 n <= s->useroffset - offset + s->usersize) 3905 return; 3906 3907 /* 3908 * If the copy is still within the allocated object, produce 3909 * a warning instead of rejecting the copy. This is intended 3910 * to be a temporary method to find any missing usercopy 3911 * whitelists. 3912 */ 3913 object_size = slab_ksize(s); 3914 if (usercopy_fallback && 3915 offset <= object_size && n <= object_size - offset) { 3916 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3917 return; 3918 } 3919 3920 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3921 } 3922 #endif /* CONFIG_HARDENED_USERCOPY */ 3923 3924 size_t __ksize(const void *object) 3925 { 3926 struct page *page; 3927 3928 if (unlikely(object == ZERO_SIZE_PTR)) 3929 return 0; 3930 3931 page = virt_to_head_page(object); 3932 3933 if (unlikely(!PageSlab(page))) { 3934 WARN_ON(!PageCompound(page)); 3935 return page_size(page); 3936 } 3937 3938 return slab_ksize(page->slab_cache); 3939 } 3940 EXPORT_SYMBOL(__ksize); 3941 3942 void kfree(const void *x) 3943 { 3944 struct page *page; 3945 void *object = (void *)x; 3946 3947 trace_kfree(_RET_IP_, x); 3948 3949 if (unlikely(ZERO_OR_NULL_PTR(x))) 3950 return; 3951 3952 page = virt_to_head_page(x); 3953 if (unlikely(!PageSlab(page))) { 3954 BUG_ON(!PageCompound(page)); 3955 kfree_hook(object); 3956 __free_pages(page, compound_order(page)); 3957 return; 3958 } 3959 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3960 } 3961 EXPORT_SYMBOL(kfree); 3962 3963 #define SHRINK_PROMOTE_MAX 32 3964 3965 /* 3966 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3967 * up most to the head of the partial lists. New allocations will then 3968 * fill those up and thus they can be removed from the partial lists. 3969 * 3970 * The slabs with the least items are placed last. This results in them 3971 * being allocated from last increasing the chance that the last objects 3972 * are freed in them. 3973 */ 3974 int __kmem_cache_shrink(struct kmem_cache *s) 3975 { 3976 int node; 3977 int i; 3978 struct kmem_cache_node *n; 3979 struct page *page; 3980 struct page *t; 3981 struct list_head discard; 3982 struct list_head promote[SHRINK_PROMOTE_MAX]; 3983 unsigned long flags; 3984 int ret = 0; 3985 3986 flush_all(s); 3987 for_each_kmem_cache_node(s, node, n) { 3988 INIT_LIST_HEAD(&discard); 3989 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3990 INIT_LIST_HEAD(promote + i); 3991 3992 spin_lock_irqsave(&n->list_lock, flags); 3993 3994 /* 3995 * Build lists of slabs to discard or promote. 3996 * 3997 * Note that concurrent frees may occur while we hold the 3998 * list_lock. page->inuse here is the upper limit. 3999 */ 4000 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4001 int free = page->objects - page->inuse; 4002 4003 /* Do not reread page->inuse */ 4004 barrier(); 4005 4006 /* We do not keep full slabs on the list */ 4007 BUG_ON(free <= 0); 4008 4009 if (free == page->objects) { 4010 list_move(&page->slab_list, &discard); 4011 n->nr_partial--; 4012 } else if (free <= SHRINK_PROMOTE_MAX) 4013 list_move(&page->slab_list, promote + free - 1); 4014 } 4015 4016 /* 4017 * Promote the slabs filled up most to the head of the 4018 * partial list. 4019 */ 4020 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4021 list_splice(promote + i, &n->partial); 4022 4023 spin_unlock_irqrestore(&n->list_lock, flags); 4024 4025 /* Release empty slabs */ 4026 list_for_each_entry_safe(page, t, &discard, slab_list) 4027 discard_slab(s, page); 4028 4029 if (slabs_node(s, node)) 4030 ret = 1; 4031 } 4032 4033 return ret; 4034 } 4035 4036 #ifdef CONFIG_MEMCG 4037 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 4038 { 4039 /* 4040 * Called with all the locks held after a sched RCU grace period. 4041 * Even if @s becomes empty after shrinking, we can't know that @s 4042 * doesn't have allocations already in-flight and thus can't 4043 * destroy @s until the associated memcg is released. 4044 * 4045 * However, let's remove the sysfs files for empty caches here. 4046 * Each cache has a lot of interface files which aren't 4047 * particularly useful for empty draining caches; otherwise, we can 4048 * easily end up with millions of unnecessary sysfs files on 4049 * systems which have a lot of memory and transient cgroups. 4050 */ 4051 if (!__kmem_cache_shrink(s)) 4052 sysfs_slab_remove(s); 4053 } 4054 4055 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4056 { 4057 /* 4058 * Disable empty slabs caching. Used to avoid pinning offline 4059 * memory cgroups by kmem pages that can be freed. 4060 */ 4061 slub_set_cpu_partial(s, 0); 4062 s->min_partial = 0; 4063 } 4064 #endif /* CONFIG_MEMCG */ 4065 4066 static int slab_mem_going_offline_callback(void *arg) 4067 { 4068 struct kmem_cache *s; 4069 4070 mutex_lock(&slab_mutex); 4071 list_for_each_entry(s, &slab_caches, list) 4072 __kmem_cache_shrink(s); 4073 mutex_unlock(&slab_mutex); 4074 4075 return 0; 4076 } 4077 4078 static void slab_mem_offline_callback(void *arg) 4079 { 4080 struct kmem_cache_node *n; 4081 struct kmem_cache *s; 4082 struct memory_notify *marg = arg; 4083 int offline_node; 4084 4085 offline_node = marg->status_change_nid_normal; 4086 4087 /* 4088 * If the node still has available memory. we need kmem_cache_node 4089 * for it yet. 4090 */ 4091 if (offline_node < 0) 4092 return; 4093 4094 mutex_lock(&slab_mutex); 4095 list_for_each_entry(s, &slab_caches, list) { 4096 n = get_node(s, offline_node); 4097 if (n) { 4098 /* 4099 * if n->nr_slabs > 0, slabs still exist on the node 4100 * that is going down. We were unable to free them, 4101 * and offline_pages() function shouldn't call this 4102 * callback. So, we must fail. 4103 */ 4104 BUG_ON(slabs_node(s, offline_node)); 4105 4106 s->node[offline_node] = NULL; 4107 kmem_cache_free(kmem_cache_node, n); 4108 } 4109 } 4110 mutex_unlock(&slab_mutex); 4111 } 4112 4113 static int slab_mem_going_online_callback(void *arg) 4114 { 4115 struct kmem_cache_node *n; 4116 struct kmem_cache *s; 4117 struct memory_notify *marg = arg; 4118 int nid = marg->status_change_nid_normal; 4119 int ret = 0; 4120 4121 /* 4122 * If the node's memory is already available, then kmem_cache_node is 4123 * already created. Nothing to do. 4124 */ 4125 if (nid < 0) 4126 return 0; 4127 4128 /* 4129 * We are bringing a node online. No memory is available yet. We must 4130 * allocate a kmem_cache_node structure in order to bring the node 4131 * online. 4132 */ 4133 mutex_lock(&slab_mutex); 4134 list_for_each_entry(s, &slab_caches, list) { 4135 /* 4136 * XXX: kmem_cache_alloc_node will fallback to other nodes 4137 * since memory is not yet available from the node that 4138 * is brought up. 4139 */ 4140 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4141 if (!n) { 4142 ret = -ENOMEM; 4143 goto out; 4144 } 4145 init_kmem_cache_node(n); 4146 s->node[nid] = n; 4147 } 4148 out: 4149 mutex_unlock(&slab_mutex); 4150 return ret; 4151 } 4152 4153 static int slab_memory_callback(struct notifier_block *self, 4154 unsigned long action, void *arg) 4155 { 4156 int ret = 0; 4157 4158 switch (action) { 4159 case MEM_GOING_ONLINE: 4160 ret = slab_mem_going_online_callback(arg); 4161 break; 4162 case MEM_GOING_OFFLINE: 4163 ret = slab_mem_going_offline_callback(arg); 4164 break; 4165 case MEM_OFFLINE: 4166 case MEM_CANCEL_ONLINE: 4167 slab_mem_offline_callback(arg); 4168 break; 4169 case MEM_ONLINE: 4170 case MEM_CANCEL_OFFLINE: 4171 break; 4172 } 4173 if (ret) 4174 ret = notifier_from_errno(ret); 4175 else 4176 ret = NOTIFY_OK; 4177 return ret; 4178 } 4179 4180 static struct notifier_block slab_memory_callback_nb = { 4181 .notifier_call = slab_memory_callback, 4182 .priority = SLAB_CALLBACK_PRI, 4183 }; 4184 4185 /******************************************************************** 4186 * Basic setup of slabs 4187 *******************************************************************/ 4188 4189 /* 4190 * Used for early kmem_cache structures that were allocated using 4191 * the page allocator. Allocate them properly then fix up the pointers 4192 * that may be pointing to the wrong kmem_cache structure. 4193 */ 4194 4195 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4196 { 4197 int node; 4198 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4199 struct kmem_cache_node *n; 4200 4201 memcpy(s, static_cache, kmem_cache->object_size); 4202 4203 /* 4204 * This runs very early, and only the boot processor is supposed to be 4205 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4206 * IPIs around. 4207 */ 4208 __flush_cpu_slab(s, smp_processor_id()); 4209 for_each_kmem_cache_node(s, node, n) { 4210 struct page *p; 4211 4212 list_for_each_entry(p, &n->partial, slab_list) 4213 p->slab_cache = s; 4214 4215 #ifdef CONFIG_SLUB_DEBUG 4216 list_for_each_entry(p, &n->full, slab_list) 4217 p->slab_cache = s; 4218 #endif 4219 } 4220 slab_init_memcg_params(s); 4221 list_add(&s->list, &slab_caches); 4222 memcg_link_cache(s, NULL); 4223 return s; 4224 } 4225 4226 void __init kmem_cache_init(void) 4227 { 4228 static __initdata struct kmem_cache boot_kmem_cache, 4229 boot_kmem_cache_node; 4230 4231 if (debug_guardpage_minorder()) 4232 slub_max_order = 0; 4233 4234 kmem_cache_node = &boot_kmem_cache_node; 4235 kmem_cache = &boot_kmem_cache; 4236 4237 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4238 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4239 4240 register_hotmemory_notifier(&slab_memory_callback_nb); 4241 4242 /* Able to allocate the per node structures */ 4243 slab_state = PARTIAL; 4244 4245 create_boot_cache(kmem_cache, "kmem_cache", 4246 offsetof(struct kmem_cache, node) + 4247 nr_node_ids * sizeof(struct kmem_cache_node *), 4248 SLAB_HWCACHE_ALIGN, 0, 0); 4249 4250 kmem_cache = bootstrap(&boot_kmem_cache); 4251 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4252 4253 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4254 setup_kmalloc_cache_index_table(); 4255 create_kmalloc_caches(0); 4256 4257 /* Setup random freelists for each cache */ 4258 init_freelist_randomization(); 4259 4260 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4261 slub_cpu_dead); 4262 4263 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4264 cache_line_size(), 4265 slub_min_order, slub_max_order, slub_min_objects, 4266 nr_cpu_ids, nr_node_ids); 4267 } 4268 4269 void __init kmem_cache_init_late(void) 4270 { 4271 } 4272 4273 struct kmem_cache * 4274 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4275 slab_flags_t flags, void (*ctor)(void *)) 4276 { 4277 struct kmem_cache *s, *c; 4278 4279 s = find_mergeable(size, align, flags, name, ctor); 4280 if (s) { 4281 s->refcount++; 4282 4283 /* 4284 * Adjust the object sizes so that we clear 4285 * the complete object on kzalloc. 4286 */ 4287 s->object_size = max(s->object_size, size); 4288 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4289 4290 for_each_memcg_cache(c, s) { 4291 c->object_size = s->object_size; 4292 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4293 } 4294 4295 if (sysfs_slab_alias(s, name)) { 4296 s->refcount--; 4297 s = NULL; 4298 } 4299 } 4300 4301 return s; 4302 } 4303 4304 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4305 { 4306 int err; 4307 4308 err = kmem_cache_open(s, flags); 4309 if (err) 4310 return err; 4311 4312 /* Mutex is not taken during early boot */ 4313 if (slab_state <= UP) 4314 return 0; 4315 4316 memcg_propagate_slab_attrs(s); 4317 err = sysfs_slab_add(s); 4318 if (err) 4319 __kmem_cache_release(s); 4320 4321 return err; 4322 } 4323 4324 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4325 { 4326 struct kmem_cache *s; 4327 void *ret; 4328 4329 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4330 return kmalloc_large(size, gfpflags); 4331 4332 s = kmalloc_slab(size, gfpflags); 4333 4334 if (unlikely(ZERO_OR_NULL_PTR(s))) 4335 return s; 4336 4337 ret = slab_alloc(s, gfpflags, caller); 4338 4339 /* Honor the call site pointer we received. */ 4340 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4341 4342 return ret; 4343 } 4344 4345 #ifdef CONFIG_NUMA 4346 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4347 int node, unsigned long caller) 4348 { 4349 struct kmem_cache *s; 4350 void *ret; 4351 4352 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4353 ret = kmalloc_large_node(size, gfpflags, node); 4354 4355 trace_kmalloc_node(caller, ret, 4356 size, PAGE_SIZE << get_order(size), 4357 gfpflags, node); 4358 4359 return ret; 4360 } 4361 4362 s = kmalloc_slab(size, gfpflags); 4363 4364 if (unlikely(ZERO_OR_NULL_PTR(s))) 4365 return s; 4366 4367 ret = slab_alloc_node(s, gfpflags, node, caller); 4368 4369 /* Honor the call site pointer we received. */ 4370 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4371 4372 return ret; 4373 } 4374 #endif 4375 4376 #ifdef CONFIG_SYSFS 4377 static int count_inuse(struct page *page) 4378 { 4379 return page->inuse; 4380 } 4381 4382 static int count_total(struct page *page) 4383 { 4384 return page->objects; 4385 } 4386 #endif 4387 4388 #ifdef CONFIG_SLUB_DEBUG 4389 static int validate_slab(struct kmem_cache *s, struct page *page, 4390 unsigned long *map) 4391 { 4392 void *p; 4393 void *addr = page_address(page); 4394 4395 if (!check_slab(s, page) || 4396 !on_freelist(s, page, NULL)) 4397 return 0; 4398 4399 /* Now we know that a valid freelist exists */ 4400 bitmap_zero(map, page->objects); 4401 4402 get_map(s, page, map); 4403 for_each_object(p, s, addr, page->objects) { 4404 if (test_bit(slab_index(p, s, addr), map)) 4405 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4406 return 0; 4407 } 4408 4409 for_each_object(p, s, addr, page->objects) 4410 if (!test_bit(slab_index(p, s, addr), map)) 4411 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4412 return 0; 4413 return 1; 4414 } 4415 4416 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4417 unsigned long *map) 4418 { 4419 slab_lock(page); 4420 validate_slab(s, page, map); 4421 slab_unlock(page); 4422 } 4423 4424 static int validate_slab_node(struct kmem_cache *s, 4425 struct kmem_cache_node *n, unsigned long *map) 4426 { 4427 unsigned long count = 0; 4428 struct page *page; 4429 unsigned long flags; 4430 4431 spin_lock_irqsave(&n->list_lock, flags); 4432 4433 list_for_each_entry(page, &n->partial, slab_list) { 4434 validate_slab_slab(s, page, map); 4435 count++; 4436 } 4437 if (count != n->nr_partial) 4438 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4439 s->name, count, n->nr_partial); 4440 4441 if (!(s->flags & SLAB_STORE_USER)) 4442 goto out; 4443 4444 list_for_each_entry(page, &n->full, slab_list) { 4445 validate_slab_slab(s, page, map); 4446 count++; 4447 } 4448 if (count != atomic_long_read(&n->nr_slabs)) 4449 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4450 s->name, count, atomic_long_read(&n->nr_slabs)); 4451 4452 out: 4453 spin_unlock_irqrestore(&n->list_lock, flags); 4454 return count; 4455 } 4456 4457 static long validate_slab_cache(struct kmem_cache *s) 4458 { 4459 int node; 4460 unsigned long count = 0; 4461 struct kmem_cache_node *n; 4462 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4463 4464 if (!map) 4465 return -ENOMEM; 4466 4467 flush_all(s); 4468 for_each_kmem_cache_node(s, node, n) 4469 count += validate_slab_node(s, n, map); 4470 bitmap_free(map); 4471 return count; 4472 } 4473 /* 4474 * Generate lists of code addresses where slabcache objects are allocated 4475 * and freed. 4476 */ 4477 4478 struct location { 4479 unsigned long count; 4480 unsigned long addr; 4481 long long sum_time; 4482 long min_time; 4483 long max_time; 4484 long min_pid; 4485 long max_pid; 4486 DECLARE_BITMAP(cpus, NR_CPUS); 4487 nodemask_t nodes; 4488 }; 4489 4490 struct loc_track { 4491 unsigned long max; 4492 unsigned long count; 4493 struct location *loc; 4494 }; 4495 4496 static void free_loc_track(struct loc_track *t) 4497 { 4498 if (t->max) 4499 free_pages((unsigned long)t->loc, 4500 get_order(sizeof(struct location) * t->max)); 4501 } 4502 4503 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4504 { 4505 struct location *l; 4506 int order; 4507 4508 order = get_order(sizeof(struct location) * max); 4509 4510 l = (void *)__get_free_pages(flags, order); 4511 if (!l) 4512 return 0; 4513 4514 if (t->count) { 4515 memcpy(l, t->loc, sizeof(struct location) * t->count); 4516 free_loc_track(t); 4517 } 4518 t->max = max; 4519 t->loc = l; 4520 return 1; 4521 } 4522 4523 static int add_location(struct loc_track *t, struct kmem_cache *s, 4524 const struct track *track) 4525 { 4526 long start, end, pos; 4527 struct location *l; 4528 unsigned long caddr; 4529 unsigned long age = jiffies - track->when; 4530 4531 start = -1; 4532 end = t->count; 4533 4534 for ( ; ; ) { 4535 pos = start + (end - start + 1) / 2; 4536 4537 /* 4538 * There is nothing at "end". If we end up there 4539 * we need to add something to before end. 4540 */ 4541 if (pos == end) 4542 break; 4543 4544 caddr = t->loc[pos].addr; 4545 if (track->addr == caddr) { 4546 4547 l = &t->loc[pos]; 4548 l->count++; 4549 if (track->when) { 4550 l->sum_time += age; 4551 if (age < l->min_time) 4552 l->min_time = age; 4553 if (age > l->max_time) 4554 l->max_time = age; 4555 4556 if (track->pid < l->min_pid) 4557 l->min_pid = track->pid; 4558 if (track->pid > l->max_pid) 4559 l->max_pid = track->pid; 4560 4561 cpumask_set_cpu(track->cpu, 4562 to_cpumask(l->cpus)); 4563 } 4564 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4565 return 1; 4566 } 4567 4568 if (track->addr < caddr) 4569 end = pos; 4570 else 4571 start = pos; 4572 } 4573 4574 /* 4575 * Not found. Insert new tracking element. 4576 */ 4577 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4578 return 0; 4579 4580 l = t->loc + pos; 4581 if (pos < t->count) 4582 memmove(l + 1, l, 4583 (t->count - pos) * sizeof(struct location)); 4584 t->count++; 4585 l->count = 1; 4586 l->addr = track->addr; 4587 l->sum_time = age; 4588 l->min_time = age; 4589 l->max_time = age; 4590 l->min_pid = track->pid; 4591 l->max_pid = track->pid; 4592 cpumask_clear(to_cpumask(l->cpus)); 4593 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4594 nodes_clear(l->nodes); 4595 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4596 return 1; 4597 } 4598 4599 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4600 struct page *page, enum track_item alloc, 4601 unsigned long *map) 4602 { 4603 void *addr = page_address(page); 4604 void *p; 4605 4606 bitmap_zero(map, page->objects); 4607 get_map(s, page, map); 4608 4609 for_each_object(p, s, addr, page->objects) 4610 if (!test_bit(slab_index(p, s, addr), map)) 4611 add_location(t, s, get_track(s, p, alloc)); 4612 } 4613 4614 static int list_locations(struct kmem_cache *s, char *buf, 4615 enum track_item alloc) 4616 { 4617 int len = 0; 4618 unsigned long i; 4619 struct loc_track t = { 0, 0, NULL }; 4620 int node; 4621 struct kmem_cache_node *n; 4622 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4623 4624 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4625 GFP_KERNEL)) { 4626 bitmap_free(map); 4627 return sprintf(buf, "Out of memory\n"); 4628 } 4629 /* Push back cpu slabs */ 4630 flush_all(s); 4631 4632 for_each_kmem_cache_node(s, node, n) { 4633 unsigned long flags; 4634 struct page *page; 4635 4636 if (!atomic_long_read(&n->nr_slabs)) 4637 continue; 4638 4639 spin_lock_irqsave(&n->list_lock, flags); 4640 list_for_each_entry(page, &n->partial, slab_list) 4641 process_slab(&t, s, page, alloc, map); 4642 list_for_each_entry(page, &n->full, slab_list) 4643 process_slab(&t, s, page, alloc, map); 4644 spin_unlock_irqrestore(&n->list_lock, flags); 4645 } 4646 4647 for (i = 0; i < t.count; i++) { 4648 struct location *l = &t.loc[i]; 4649 4650 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4651 break; 4652 len += sprintf(buf + len, "%7ld ", l->count); 4653 4654 if (l->addr) 4655 len += sprintf(buf + len, "%pS", (void *)l->addr); 4656 else 4657 len += sprintf(buf + len, "<not-available>"); 4658 4659 if (l->sum_time != l->min_time) { 4660 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4661 l->min_time, 4662 (long)div_u64(l->sum_time, l->count), 4663 l->max_time); 4664 } else 4665 len += sprintf(buf + len, " age=%ld", 4666 l->min_time); 4667 4668 if (l->min_pid != l->max_pid) 4669 len += sprintf(buf + len, " pid=%ld-%ld", 4670 l->min_pid, l->max_pid); 4671 else 4672 len += sprintf(buf + len, " pid=%ld", 4673 l->min_pid); 4674 4675 if (num_online_cpus() > 1 && 4676 !cpumask_empty(to_cpumask(l->cpus)) && 4677 len < PAGE_SIZE - 60) 4678 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4679 " cpus=%*pbl", 4680 cpumask_pr_args(to_cpumask(l->cpus))); 4681 4682 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4683 len < PAGE_SIZE - 60) 4684 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4685 " nodes=%*pbl", 4686 nodemask_pr_args(&l->nodes)); 4687 4688 len += sprintf(buf + len, "\n"); 4689 } 4690 4691 free_loc_track(&t); 4692 bitmap_free(map); 4693 if (!t.count) 4694 len += sprintf(buf, "No data\n"); 4695 return len; 4696 } 4697 #endif /* CONFIG_SLUB_DEBUG */ 4698 4699 #ifdef SLUB_RESILIENCY_TEST 4700 static void __init resiliency_test(void) 4701 { 4702 u8 *p; 4703 int type = KMALLOC_NORMAL; 4704 4705 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4706 4707 pr_err("SLUB resiliency testing\n"); 4708 pr_err("-----------------------\n"); 4709 pr_err("A. Corruption after allocation\n"); 4710 4711 p = kzalloc(16, GFP_KERNEL); 4712 p[16] = 0x12; 4713 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4714 p + 16); 4715 4716 validate_slab_cache(kmalloc_caches[type][4]); 4717 4718 /* Hmmm... The next two are dangerous */ 4719 p = kzalloc(32, GFP_KERNEL); 4720 p[32 + sizeof(void *)] = 0x34; 4721 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4722 p); 4723 pr_err("If allocated object is overwritten then not detectable\n\n"); 4724 4725 validate_slab_cache(kmalloc_caches[type][5]); 4726 p = kzalloc(64, GFP_KERNEL); 4727 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4728 *p = 0x56; 4729 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4730 p); 4731 pr_err("If allocated object is overwritten then not detectable\n\n"); 4732 validate_slab_cache(kmalloc_caches[type][6]); 4733 4734 pr_err("\nB. Corruption after free\n"); 4735 p = kzalloc(128, GFP_KERNEL); 4736 kfree(p); 4737 *p = 0x78; 4738 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4739 validate_slab_cache(kmalloc_caches[type][7]); 4740 4741 p = kzalloc(256, GFP_KERNEL); 4742 kfree(p); 4743 p[50] = 0x9a; 4744 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4745 validate_slab_cache(kmalloc_caches[type][8]); 4746 4747 p = kzalloc(512, GFP_KERNEL); 4748 kfree(p); 4749 p[512] = 0xab; 4750 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4751 validate_slab_cache(kmalloc_caches[type][9]); 4752 } 4753 #else 4754 #ifdef CONFIG_SYSFS 4755 static void resiliency_test(void) {}; 4756 #endif 4757 #endif /* SLUB_RESILIENCY_TEST */ 4758 4759 #ifdef CONFIG_SYSFS 4760 enum slab_stat_type { 4761 SL_ALL, /* All slabs */ 4762 SL_PARTIAL, /* Only partially allocated slabs */ 4763 SL_CPU, /* Only slabs used for cpu caches */ 4764 SL_OBJECTS, /* Determine allocated objects not slabs */ 4765 SL_TOTAL /* Determine object capacity not slabs */ 4766 }; 4767 4768 #define SO_ALL (1 << SL_ALL) 4769 #define SO_PARTIAL (1 << SL_PARTIAL) 4770 #define SO_CPU (1 << SL_CPU) 4771 #define SO_OBJECTS (1 << SL_OBJECTS) 4772 #define SO_TOTAL (1 << SL_TOTAL) 4773 4774 #ifdef CONFIG_MEMCG 4775 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4776 4777 static int __init setup_slub_memcg_sysfs(char *str) 4778 { 4779 int v; 4780 4781 if (get_option(&str, &v) > 0) 4782 memcg_sysfs_enabled = v; 4783 4784 return 1; 4785 } 4786 4787 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4788 #endif 4789 4790 static ssize_t show_slab_objects(struct kmem_cache *s, 4791 char *buf, unsigned long flags) 4792 { 4793 unsigned long total = 0; 4794 int node; 4795 int x; 4796 unsigned long *nodes; 4797 4798 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4799 if (!nodes) 4800 return -ENOMEM; 4801 4802 if (flags & SO_CPU) { 4803 int cpu; 4804 4805 for_each_possible_cpu(cpu) { 4806 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4807 cpu); 4808 int node; 4809 struct page *page; 4810 4811 page = READ_ONCE(c->page); 4812 if (!page) 4813 continue; 4814 4815 node = page_to_nid(page); 4816 if (flags & SO_TOTAL) 4817 x = page->objects; 4818 else if (flags & SO_OBJECTS) 4819 x = page->inuse; 4820 else 4821 x = 1; 4822 4823 total += x; 4824 nodes[node] += x; 4825 4826 page = slub_percpu_partial_read_once(c); 4827 if (page) { 4828 node = page_to_nid(page); 4829 if (flags & SO_TOTAL) 4830 WARN_ON_ONCE(1); 4831 else if (flags & SO_OBJECTS) 4832 WARN_ON_ONCE(1); 4833 else 4834 x = page->pages; 4835 total += x; 4836 nodes[node] += x; 4837 } 4838 } 4839 } 4840 4841 get_online_mems(); 4842 #ifdef CONFIG_SLUB_DEBUG 4843 if (flags & SO_ALL) { 4844 struct kmem_cache_node *n; 4845 4846 for_each_kmem_cache_node(s, node, n) { 4847 4848 if (flags & SO_TOTAL) 4849 x = atomic_long_read(&n->total_objects); 4850 else if (flags & SO_OBJECTS) 4851 x = atomic_long_read(&n->total_objects) - 4852 count_partial(n, count_free); 4853 else 4854 x = atomic_long_read(&n->nr_slabs); 4855 total += x; 4856 nodes[node] += x; 4857 } 4858 4859 } else 4860 #endif 4861 if (flags & SO_PARTIAL) { 4862 struct kmem_cache_node *n; 4863 4864 for_each_kmem_cache_node(s, node, n) { 4865 if (flags & SO_TOTAL) 4866 x = count_partial(n, count_total); 4867 else if (flags & SO_OBJECTS) 4868 x = count_partial(n, count_inuse); 4869 else 4870 x = n->nr_partial; 4871 total += x; 4872 nodes[node] += x; 4873 } 4874 } 4875 x = sprintf(buf, "%lu", total); 4876 #ifdef CONFIG_NUMA 4877 for (node = 0; node < nr_node_ids; node++) 4878 if (nodes[node]) 4879 x += sprintf(buf + x, " N%d=%lu", 4880 node, nodes[node]); 4881 #endif 4882 put_online_mems(); 4883 kfree(nodes); 4884 return x + sprintf(buf + x, "\n"); 4885 } 4886 4887 #ifdef CONFIG_SLUB_DEBUG 4888 static int any_slab_objects(struct kmem_cache *s) 4889 { 4890 int node; 4891 struct kmem_cache_node *n; 4892 4893 for_each_kmem_cache_node(s, node, n) 4894 if (atomic_long_read(&n->total_objects)) 4895 return 1; 4896 4897 return 0; 4898 } 4899 #endif 4900 4901 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4902 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4903 4904 struct slab_attribute { 4905 struct attribute attr; 4906 ssize_t (*show)(struct kmem_cache *s, char *buf); 4907 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4908 }; 4909 4910 #define SLAB_ATTR_RO(_name) \ 4911 static struct slab_attribute _name##_attr = \ 4912 __ATTR(_name, 0400, _name##_show, NULL) 4913 4914 #define SLAB_ATTR(_name) \ 4915 static struct slab_attribute _name##_attr = \ 4916 __ATTR(_name, 0600, _name##_show, _name##_store) 4917 4918 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4919 { 4920 return sprintf(buf, "%u\n", s->size); 4921 } 4922 SLAB_ATTR_RO(slab_size); 4923 4924 static ssize_t align_show(struct kmem_cache *s, char *buf) 4925 { 4926 return sprintf(buf, "%u\n", s->align); 4927 } 4928 SLAB_ATTR_RO(align); 4929 4930 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4931 { 4932 return sprintf(buf, "%u\n", s->object_size); 4933 } 4934 SLAB_ATTR_RO(object_size); 4935 4936 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4937 { 4938 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4939 } 4940 SLAB_ATTR_RO(objs_per_slab); 4941 4942 static ssize_t order_store(struct kmem_cache *s, 4943 const char *buf, size_t length) 4944 { 4945 unsigned int order; 4946 int err; 4947 4948 err = kstrtouint(buf, 10, &order); 4949 if (err) 4950 return err; 4951 4952 if (order > slub_max_order || order < slub_min_order) 4953 return -EINVAL; 4954 4955 calculate_sizes(s, order); 4956 return length; 4957 } 4958 4959 static ssize_t order_show(struct kmem_cache *s, char *buf) 4960 { 4961 return sprintf(buf, "%u\n", oo_order(s->oo)); 4962 } 4963 SLAB_ATTR(order); 4964 4965 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4966 { 4967 return sprintf(buf, "%lu\n", s->min_partial); 4968 } 4969 4970 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4971 size_t length) 4972 { 4973 unsigned long min; 4974 int err; 4975 4976 err = kstrtoul(buf, 10, &min); 4977 if (err) 4978 return err; 4979 4980 set_min_partial(s, min); 4981 return length; 4982 } 4983 SLAB_ATTR(min_partial); 4984 4985 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4986 { 4987 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4988 } 4989 4990 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4991 size_t length) 4992 { 4993 unsigned int objects; 4994 int err; 4995 4996 err = kstrtouint(buf, 10, &objects); 4997 if (err) 4998 return err; 4999 if (objects && !kmem_cache_has_cpu_partial(s)) 5000 return -EINVAL; 5001 5002 slub_set_cpu_partial(s, objects); 5003 flush_all(s); 5004 return length; 5005 } 5006 SLAB_ATTR(cpu_partial); 5007 5008 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5009 { 5010 if (!s->ctor) 5011 return 0; 5012 return sprintf(buf, "%pS\n", s->ctor); 5013 } 5014 SLAB_ATTR_RO(ctor); 5015 5016 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5017 { 5018 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5019 } 5020 SLAB_ATTR_RO(aliases); 5021 5022 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5023 { 5024 return show_slab_objects(s, buf, SO_PARTIAL); 5025 } 5026 SLAB_ATTR_RO(partial); 5027 5028 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5029 { 5030 return show_slab_objects(s, buf, SO_CPU); 5031 } 5032 SLAB_ATTR_RO(cpu_slabs); 5033 5034 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5035 { 5036 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5037 } 5038 SLAB_ATTR_RO(objects); 5039 5040 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5041 { 5042 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5043 } 5044 SLAB_ATTR_RO(objects_partial); 5045 5046 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5047 { 5048 int objects = 0; 5049 int pages = 0; 5050 int cpu; 5051 int len; 5052 5053 for_each_online_cpu(cpu) { 5054 struct page *page; 5055 5056 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5057 5058 if (page) { 5059 pages += page->pages; 5060 objects += page->pobjects; 5061 } 5062 } 5063 5064 len = sprintf(buf, "%d(%d)", objects, pages); 5065 5066 #ifdef CONFIG_SMP 5067 for_each_online_cpu(cpu) { 5068 struct page *page; 5069 5070 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5071 5072 if (page && len < PAGE_SIZE - 20) 5073 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5074 page->pobjects, page->pages); 5075 } 5076 #endif 5077 return len + sprintf(buf + len, "\n"); 5078 } 5079 SLAB_ATTR_RO(slabs_cpu_partial); 5080 5081 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5082 { 5083 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5084 } 5085 5086 static ssize_t reclaim_account_store(struct kmem_cache *s, 5087 const char *buf, size_t length) 5088 { 5089 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5090 if (buf[0] == '1') 5091 s->flags |= SLAB_RECLAIM_ACCOUNT; 5092 return length; 5093 } 5094 SLAB_ATTR(reclaim_account); 5095 5096 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5097 { 5098 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5099 } 5100 SLAB_ATTR_RO(hwcache_align); 5101 5102 #ifdef CONFIG_ZONE_DMA 5103 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5104 { 5105 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5106 } 5107 SLAB_ATTR_RO(cache_dma); 5108 #endif 5109 5110 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5111 { 5112 return sprintf(buf, "%u\n", s->usersize); 5113 } 5114 SLAB_ATTR_RO(usersize); 5115 5116 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5117 { 5118 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5119 } 5120 SLAB_ATTR_RO(destroy_by_rcu); 5121 5122 #ifdef CONFIG_SLUB_DEBUG 5123 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5124 { 5125 return show_slab_objects(s, buf, SO_ALL); 5126 } 5127 SLAB_ATTR_RO(slabs); 5128 5129 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5130 { 5131 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5132 } 5133 SLAB_ATTR_RO(total_objects); 5134 5135 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5136 { 5137 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5138 } 5139 5140 static ssize_t sanity_checks_store(struct kmem_cache *s, 5141 const char *buf, size_t length) 5142 { 5143 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5144 if (buf[0] == '1') { 5145 s->flags &= ~__CMPXCHG_DOUBLE; 5146 s->flags |= SLAB_CONSISTENCY_CHECKS; 5147 } 5148 return length; 5149 } 5150 SLAB_ATTR(sanity_checks); 5151 5152 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5153 { 5154 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5155 } 5156 5157 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5158 size_t length) 5159 { 5160 /* 5161 * Tracing a merged cache is going to give confusing results 5162 * as well as cause other issues like converting a mergeable 5163 * cache into an umergeable one. 5164 */ 5165 if (s->refcount > 1) 5166 return -EINVAL; 5167 5168 s->flags &= ~SLAB_TRACE; 5169 if (buf[0] == '1') { 5170 s->flags &= ~__CMPXCHG_DOUBLE; 5171 s->flags |= SLAB_TRACE; 5172 } 5173 return length; 5174 } 5175 SLAB_ATTR(trace); 5176 5177 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5178 { 5179 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5180 } 5181 5182 static ssize_t red_zone_store(struct kmem_cache *s, 5183 const char *buf, size_t length) 5184 { 5185 if (any_slab_objects(s)) 5186 return -EBUSY; 5187 5188 s->flags &= ~SLAB_RED_ZONE; 5189 if (buf[0] == '1') { 5190 s->flags |= SLAB_RED_ZONE; 5191 } 5192 calculate_sizes(s, -1); 5193 return length; 5194 } 5195 SLAB_ATTR(red_zone); 5196 5197 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5198 { 5199 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5200 } 5201 5202 static ssize_t poison_store(struct kmem_cache *s, 5203 const char *buf, size_t length) 5204 { 5205 if (any_slab_objects(s)) 5206 return -EBUSY; 5207 5208 s->flags &= ~SLAB_POISON; 5209 if (buf[0] == '1') { 5210 s->flags |= SLAB_POISON; 5211 } 5212 calculate_sizes(s, -1); 5213 return length; 5214 } 5215 SLAB_ATTR(poison); 5216 5217 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5218 { 5219 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5220 } 5221 5222 static ssize_t store_user_store(struct kmem_cache *s, 5223 const char *buf, size_t length) 5224 { 5225 if (any_slab_objects(s)) 5226 return -EBUSY; 5227 5228 s->flags &= ~SLAB_STORE_USER; 5229 if (buf[0] == '1') { 5230 s->flags &= ~__CMPXCHG_DOUBLE; 5231 s->flags |= SLAB_STORE_USER; 5232 } 5233 calculate_sizes(s, -1); 5234 return length; 5235 } 5236 SLAB_ATTR(store_user); 5237 5238 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5239 { 5240 return 0; 5241 } 5242 5243 static ssize_t validate_store(struct kmem_cache *s, 5244 const char *buf, size_t length) 5245 { 5246 int ret = -EINVAL; 5247 5248 if (buf[0] == '1') { 5249 ret = validate_slab_cache(s); 5250 if (ret >= 0) 5251 ret = length; 5252 } 5253 return ret; 5254 } 5255 SLAB_ATTR(validate); 5256 5257 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5258 { 5259 if (!(s->flags & SLAB_STORE_USER)) 5260 return -ENOSYS; 5261 return list_locations(s, buf, TRACK_ALLOC); 5262 } 5263 SLAB_ATTR_RO(alloc_calls); 5264 5265 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5266 { 5267 if (!(s->flags & SLAB_STORE_USER)) 5268 return -ENOSYS; 5269 return list_locations(s, buf, TRACK_FREE); 5270 } 5271 SLAB_ATTR_RO(free_calls); 5272 #endif /* CONFIG_SLUB_DEBUG */ 5273 5274 #ifdef CONFIG_FAILSLAB 5275 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5276 { 5277 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5278 } 5279 5280 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5281 size_t length) 5282 { 5283 if (s->refcount > 1) 5284 return -EINVAL; 5285 5286 s->flags &= ~SLAB_FAILSLAB; 5287 if (buf[0] == '1') 5288 s->flags |= SLAB_FAILSLAB; 5289 return length; 5290 } 5291 SLAB_ATTR(failslab); 5292 #endif 5293 5294 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5295 { 5296 return 0; 5297 } 5298 5299 static ssize_t shrink_store(struct kmem_cache *s, 5300 const char *buf, size_t length) 5301 { 5302 if (buf[0] == '1') 5303 kmem_cache_shrink_all(s); 5304 else 5305 return -EINVAL; 5306 return length; 5307 } 5308 SLAB_ATTR(shrink); 5309 5310 #ifdef CONFIG_NUMA 5311 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5312 { 5313 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5314 } 5315 5316 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5317 const char *buf, size_t length) 5318 { 5319 unsigned int ratio; 5320 int err; 5321 5322 err = kstrtouint(buf, 10, &ratio); 5323 if (err) 5324 return err; 5325 if (ratio > 100) 5326 return -ERANGE; 5327 5328 s->remote_node_defrag_ratio = ratio * 10; 5329 5330 return length; 5331 } 5332 SLAB_ATTR(remote_node_defrag_ratio); 5333 #endif 5334 5335 #ifdef CONFIG_SLUB_STATS 5336 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5337 { 5338 unsigned long sum = 0; 5339 int cpu; 5340 int len; 5341 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5342 5343 if (!data) 5344 return -ENOMEM; 5345 5346 for_each_online_cpu(cpu) { 5347 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5348 5349 data[cpu] = x; 5350 sum += x; 5351 } 5352 5353 len = sprintf(buf, "%lu", sum); 5354 5355 #ifdef CONFIG_SMP 5356 for_each_online_cpu(cpu) { 5357 if (data[cpu] && len < PAGE_SIZE - 20) 5358 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5359 } 5360 #endif 5361 kfree(data); 5362 return len + sprintf(buf + len, "\n"); 5363 } 5364 5365 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5366 { 5367 int cpu; 5368 5369 for_each_online_cpu(cpu) 5370 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5371 } 5372 5373 #define STAT_ATTR(si, text) \ 5374 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5375 { \ 5376 return show_stat(s, buf, si); \ 5377 } \ 5378 static ssize_t text##_store(struct kmem_cache *s, \ 5379 const char *buf, size_t length) \ 5380 { \ 5381 if (buf[0] != '0') \ 5382 return -EINVAL; \ 5383 clear_stat(s, si); \ 5384 return length; \ 5385 } \ 5386 SLAB_ATTR(text); \ 5387 5388 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5389 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5390 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5391 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5392 STAT_ATTR(FREE_FROZEN, free_frozen); 5393 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5394 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5395 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5396 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5397 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5398 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5399 STAT_ATTR(FREE_SLAB, free_slab); 5400 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5401 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5402 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5403 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5404 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5405 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5406 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5407 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5408 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5409 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5410 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5411 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5412 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5413 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5414 #endif /* CONFIG_SLUB_STATS */ 5415 5416 static struct attribute *slab_attrs[] = { 5417 &slab_size_attr.attr, 5418 &object_size_attr.attr, 5419 &objs_per_slab_attr.attr, 5420 &order_attr.attr, 5421 &min_partial_attr.attr, 5422 &cpu_partial_attr.attr, 5423 &objects_attr.attr, 5424 &objects_partial_attr.attr, 5425 &partial_attr.attr, 5426 &cpu_slabs_attr.attr, 5427 &ctor_attr.attr, 5428 &aliases_attr.attr, 5429 &align_attr.attr, 5430 &hwcache_align_attr.attr, 5431 &reclaim_account_attr.attr, 5432 &destroy_by_rcu_attr.attr, 5433 &shrink_attr.attr, 5434 &slabs_cpu_partial_attr.attr, 5435 #ifdef CONFIG_SLUB_DEBUG 5436 &total_objects_attr.attr, 5437 &slabs_attr.attr, 5438 &sanity_checks_attr.attr, 5439 &trace_attr.attr, 5440 &red_zone_attr.attr, 5441 &poison_attr.attr, 5442 &store_user_attr.attr, 5443 &validate_attr.attr, 5444 &alloc_calls_attr.attr, 5445 &free_calls_attr.attr, 5446 #endif 5447 #ifdef CONFIG_ZONE_DMA 5448 &cache_dma_attr.attr, 5449 #endif 5450 #ifdef CONFIG_NUMA 5451 &remote_node_defrag_ratio_attr.attr, 5452 #endif 5453 #ifdef CONFIG_SLUB_STATS 5454 &alloc_fastpath_attr.attr, 5455 &alloc_slowpath_attr.attr, 5456 &free_fastpath_attr.attr, 5457 &free_slowpath_attr.attr, 5458 &free_frozen_attr.attr, 5459 &free_add_partial_attr.attr, 5460 &free_remove_partial_attr.attr, 5461 &alloc_from_partial_attr.attr, 5462 &alloc_slab_attr.attr, 5463 &alloc_refill_attr.attr, 5464 &alloc_node_mismatch_attr.attr, 5465 &free_slab_attr.attr, 5466 &cpuslab_flush_attr.attr, 5467 &deactivate_full_attr.attr, 5468 &deactivate_empty_attr.attr, 5469 &deactivate_to_head_attr.attr, 5470 &deactivate_to_tail_attr.attr, 5471 &deactivate_remote_frees_attr.attr, 5472 &deactivate_bypass_attr.attr, 5473 &order_fallback_attr.attr, 5474 &cmpxchg_double_fail_attr.attr, 5475 &cmpxchg_double_cpu_fail_attr.attr, 5476 &cpu_partial_alloc_attr.attr, 5477 &cpu_partial_free_attr.attr, 5478 &cpu_partial_node_attr.attr, 5479 &cpu_partial_drain_attr.attr, 5480 #endif 5481 #ifdef CONFIG_FAILSLAB 5482 &failslab_attr.attr, 5483 #endif 5484 &usersize_attr.attr, 5485 5486 NULL 5487 }; 5488 5489 static const struct attribute_group slab_attr_group = { 5490 .attrs = slab_attrs, 5491 }; 5492 5493 static ssize_t slab_attr_show(struct kobject *kobj, 5494 struct attribute *attr, 5495 char *buf) 5496 { 5497 struct slab_attribute *attribute; 5498 struct kmem_cache *s; 5499 int err; 5500 5501 attribute = to_slab_attr(attr); 5502 s = to_slab(kobj); 5503 5504 if (!attribute->show) 5505 return -EIO; 5506 5507 err = attribute->show(s, buf); 5508 5509 return err; 5510 } 5511 5512 static ssize_t slab_attr_store(struct kobject *kobj, 5513 struct attribute *attr, 5514 const char *buf, size_t len) 5515 { 5516 struct slab_attribute *attribute; 5517 struct kmem_cache *s; 5518 int err; 5519 5520 attribute = to_slab_attr(attr); 5521 s = to_slab(kobj); 5522 5523 if (!attribute->store) 5524 return -EIO; 5525 5526 err = attribute->store(s, buf, len); 5527 #ifdef CONFIG_MEMCG 5528 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5529 struct kmem_cache *c; 5530 5531 mutex_lock(&slab_mutex); 5532 if (s->max_attr_size < len) 5533 s->max_attr_size = len; 5534 5535 /* 5536 * This is a best effort propagation, so this function's return 5537 * value will be determined by the parent cache only. This is 5538 * basically because not all attributes will have a well 5539 * defined semantics for rollbacks - most of the actions will 5540 * have permanent effects. 5541 * 5542 * Returning the error value of any of the children that fail 5543 * is not 100 % defined, in the sense that users seeing the 5544 * error code won't be able to know anything about the state of 5545 * the cache. 5546 * 5547 * Only returning the error code for the parent cache at least 5548 * has well defined semantics. The cache being written to 5549 * directly either failed or succeeded, in which case we loop 5550 * through the descendants with best-effort propagation. 5551 */ 5552 for_each_memcg_cache(c, s) 5553 attribute->store(c, buf, len); 5554 mutex_unlock(&slab_mutex); 5555 } 5556 #endif 5557 return err; 5558 } 5559 5560 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5561 { 5562 #ifdef CONFIG_MEMCG 5563 int i; 5564 char *buffer = NULL; 5565 struct kmem_cache *root_cache; 5566 5567 if (is_root_cache(s)) 5568 return; 5569 5570 root_cache = s->memcg_params.root_cache; 5571 5572 /* 5573 * This mean this cache had no attribute written. Therefore, no point 5574 * in copying default values around 5575 */ 5576 if (!root_cache->max_attr_size) 5577 return; 5578 5579 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5580 char mbuf[64]; 5581 char *buf; 5582 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5583 ssize_t len; 5584 5585 if (!attr || !attr->store || !attr->show) 5586 continue; 5587 5588 /* 5589 * It is really bad that we have to allocate here, so we will 5590 * do it only as a fallback. If we actually allocate, though, 5591 * we can just use the allocated buffer until the end. 5592 * 5593 * Most of the slub attributes will tend to be very small in 5594 * size, but sysfs allows buffers up to a page, so they can 5595 * theoretically happen. 5596 */ 5597 if (buffer) 5598 buf = buffer; 5599 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5600 buf = mbuf; 5601 else { 5602 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5603 if (WARN_ON(!buffer)) 5604 continue; 5605 buf = buffer; 5606 } 5607 5608 len = attr->show(root_cache, buf); 5609 if (len > 0) 5610 attr->store(s, buf, len); 5611 } 5612 5613 if (buffer) 5614 free_page((unsigned long)buffer); 5615 #endif /* CONFIG_MEMCG */ 5616 } 5617 5618 static void kmem_cache_release(struct kobject *k) 5619 { 5620 slab_kmem_cache_release(to_slab(k)); 5621 } 5622 5623 static const struct sysfs_ops slab_sysfs_ops = { 5624 .show = slab_attr_show, 5625 .store = slab_attr_store, 5626 }; 5627 5628 static struct kobj_type slab_ktype = { 5629 .sysfs_ops = &slab_sysfs_ops, 5630 .release = kmem_cache_release, 5631 }; 5632 5633 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5634 { 5635 struct kobj_type *ktype = get_ktype(kobj); 5636 5637 if (ktype == &slab_ktype) 5638 return 1; 5639 return 0; 5640 } 5641 5642 static const struct kset_uevent_ops slab_uevent_ops = { 5643 .filter = uevent_filter, 5644 }; 5645 5646 static struct kset *slab_kset; 5647 5648 static inline struct kset *cache_kset(struct kmem_cache *s) 5649 { 5650 #ifdef CONFIG_MEMCG 5651 if (!is_root_cache(s)) 5652 return s->memcg_params.root_cache->memcg_kset; 5653 #endif 5654 return slab_kset; 5655 } 5656 5657 #define ID_STR_LENGTH 64 5658 5659 /* Create a unique string id for a slab cache: 5660 * 5661 * Format :[flags-]size 5662 */ 5663 static char *create_unique_id(struct kmem_cache *s) 5664 { 5665 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5666 char *p = name; 5667 5668 BUG_ON(!name); 5669 5670 *p++ = ':'; 5671 /* 5672 * First flags affecting slabcache operations. We will only 5673 * get here for aliasable slabs so we do not need to support 5674 * too many flags. The flags here must cover all flags that 5675 * are matched during merging to guarantee that the id is 5676 * unique. 5677 */ 5678 if (s->flags & SLAB_CACHE_DMA) 5679 *p++ = 'd'; 5680 if (s->flags & SLAB_CACHE_DMA32) 5681 *p++ = 'D'; 5682 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5683 *p++ = 'a'; 5684 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5685 *p++ = 'F'; 5686 if (s->flags & SLAB_ACCOUNT) 5687 *p++ = 'A'; 5688 if (p != name + 1) 5689 *p++ = '-'; 5690 p += sprintf(p, "%07u", s->size); 5691 5692 BUG_ON(p > name + ID_STR_LENGTH - 1); 5693 return name; 5694 } 5695 5696 static void sysfs_slab_remove_workfn(struct work_struct *work) 5697 { 5698 struct kmem_cache *s = 5699 container_of(work, struct kmem_cache, kobj_remove_work); 5700 5701 if (!s->kobj.state_in_sysfs) 5702 /* 5703 * For a memcg cache, this may be called during 5704 * deactivation and again on shutdown. Remove only once. 5705 * A cache is never shut down before deactivation is 5706 * complete, so no need to worry about synchronization. 5707 */ 5708 goto out; 5709 5710 #ifdef CONFIG_MEMCG 5711 kset_unregister(s->memcg_kset); 5712 #endif 5713 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5714 out: 5715 kobject_put(&s->kobj); 5716 } 5717 5718 static int sysfs_slab_add(struct kmem_cache *s) 5719 { 5720 int err; 5721 const char *name; 5722 struct kset *kset = cache_kset(s); 5723 int unmergeable = slab_unmergeable(s); 5724 5725 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5726 5727 if (!kset) { 5728 kobject_init(&s->kobj, &slab_ktype); 5729 return 0; 5730 } 5731 5732 if (!unmergeable && disable_higher_order_debug && 5733 (slub_debug & DEBUG_METADATA_FLAGS)) 5734 unmergeable = 1; 5735 5736 if (unmergeable) { 5737 /* 5738 * Slabcache can never be merged so we can use the name proper. 5739 * This is typically the case for debug situations. In that 5740 * case we can catch duplicate names easily. 5741 */ 5742 sysfs_remove_link(&slab_kset->kobj, s->name); 5743 name = s->name; 5744 } else { 5745 /* 5746 * Create a unique name for the slab as a target 5747 * for the symlinks. 5748 */ 5749 name = create_unique_id(s); 5750 } 5751 5752 s->kobj.kset = kset; 5753 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5754 if (err) 5755 goto out; 5756 5757 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5758 if (err) 5759 goto out_del_kobj; 5760 5761 #ifdef CONFIG_MEMCG 5762 if (is_root_cache(s) && memcg_sysfs_enabled) { 5763 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5764 if (!s->memcg_kset) { 5765 err = -ENOMEM; 5766 goto out_del_kobj; 5767 } 5768 } 5769 #endif 5770 5771 kobject_uevent(&s->kobj, KOBJ_ADD); 5772 if (!unmergeable) { 5773 /* Setup first alias */ 5774 sysfs_slab_alias(s, s->name); 5775 } 5776 out: 5777 if (!unmergeable) 5778 kfree(name); 5779 return err; 5780 out_del_kobj: 5781 kobject_del(&s->kobj); 5782 goto out; 5783 } 5784 5785 static void sysfs_slab_remove(struct kmem_cache *s) 5786 { 5787 if (slab_state < FULL) 5788 /* 5789 * Sysfs has not been setup yet so no need to remove the 5790 * cache from sysfs. 5791 */ 5792 return; 5793 5794 kobject_get(&s->kobj); 5795 schedule_work(&s->kobj_remove_work); 5796 } 5797 5798 void sysfs_slab_unlink(struct kmem_cache *s) 5799 { 5800 if (slab_state >= FULL) 5801 kobject_del(&s->kobj); 5802 } 5803 5804 void sysfs_slab_release(struct kmem_cache *s) 5805 { 5806 if (slab_state >= FULL) 5807 kobject_put(&s->kobj); 5808 } 5809 5810 /* 5811 * Need to buffer aliases during bootup until sysfs becomes 5812 * available lest we lose that information. 5813 */ 5814 struct saved_alias { 5815 struct kmem_cache *s; 5816 const char *name; 5817 struct saved_alias *next; 5818 }; 5819 5820 static struct saved_alias *alias_list; 5821 5822 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5823 { 5824 struct saved_alias *al; 5825 5826 if (slab_state == FULL) { 5827 /* 5828 * If we have a leftover link then remove it. 5829 */ 5830 sysfs_remove_link(&slab_kset->kobj, name); 5831 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5832 } 5833 5834 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5835 if (!al) 5836 return -ENOMEM; 5837 5838 al->s = s; 5839 al->name = name; 5840 al->next = alias_list; 5841 alias_list = al; 5842 return 0; 5843 } 5844 5845 static int __init slab_sysfs_init(void) 5846 { 5847 struct kmem_cache *s; 5848 int err; 5849 5850 mutex_lock(&slab_mutex); 5851 5852 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5853 if (!slab_kset) { 5854 mutex_unlock(&slab_mutex); 5855 pr_err("Cannot register slab subsystem.\n"); 5856 return -ENOSYS; 5857 } 5858 5859 slab_state = FULL; 5860 5861 list_for_each_entry(s, &slab_caches, list) { 5862 err = sysfs_slab_add(s); 5863 if (err) 5864 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5865 s->name); 5866 } 5867 5868 while (alias_list) { 5869 struct saved_alias *al = alias_list; 5870 5871 alias_list = alias_list->next; 5872 err = sysfs_slab_alias(al->s, al->name); 5873 if (err) 5874 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5875 al->name); 5876 kfree(al); 5877 } 5878 5879 mutex_unlock(&slab_mutex); 5880 resiliency_test(); 5881 return 0; 5882 } 5883 5884 __initcall(slab_sysfs_init); 5885 #endif /* CONFIG_SYSFS */ 5886 5887 /* 5888 * The /proc/slabinfo ABI 5889 */ 5890 #ifdef CONFIG_SLUB_DEBUG 5891 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5892 { 5893 unsigned long nr_slabs = 0; 5894 unsigned long nr_objs = 0; 5895 unsigned long nr_free = 0; 5896 int node; 5897 struct kmem_cache_node *n; 5898 5899 for_each_kmem_cache_node(s, node, n) { 5900 nr_slabs += node_nr_slabs(n); 5901 nr_objs += node_nr_objs(n); 5902 nr_free += count_partial(n, count_free); 5903 } 5904 5905 sinfo->active_objs = nr_objs - nr_free; 5906 sinfo->num_objs = nr_objs; 5907 sinfo->active_slabs = nr_slabs; 5908 sinfo->num_slabs = nr_slabs; 5909 sinfo->objects_per_slab = oo_objects(s->oo); 5910 sinfo->cache_order = oo_order(s->oo); 5911 } 5912 5913 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5914 { 5915 } 5916 5917 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5918 size_t count, loff_t *ppos) 5919 { 5920 return -EIO; 5921 } 5922 #endif /* CONFIG_SLUB_DEBUG */ 5923