xref: /openbmc/linux/mm/slub.c (revision fcbd8037)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * Overloading of page flags that are otherwise used for LRU management.
97  *
98  * PageActive 		The slab is frozen and exempt from list processing.
99  * 			This means that the slab is dedicated to a purpose
100  * 			such as satisfying allocations for a specific
101  * 			processor. Objects may be freed in the slab while
102  * 			it is frozen but slab_free will then skip the usual
103  * 			list operations. It is up to the processor holding
104  * 			the slab to integrate the slab into the slab lists
105  * 			when the slab is no longer needed.
106  *
107  * 			One use of this flag is to mark slabs that are
108  * 			used for allocations. Then such a slab becomes a cpu
109  * 			slab. The cpu slab may be equipped with an additional
110  * 			freelist that allows lockless access to
111  * 			free objects in addition to the regular freelist
112  * 			that requires the slab lock.
113  *
114  * PageError		Slab requires special handling due to debug
115  * 			options set. This moves	slab handling out of
116  * 			the fast path and disables lockless freelists.
117  */
118 
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 	return 0;
125 #endif
126 }
127 
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 		p += s->red_left_pad;
132 
133 	return p;
134 }
135 
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 	return !kmem_cache_debug(s);
140 #else
141 	return false;
142 #endif
143 }
144 
145 /*
146  * Issues still to be resolved:
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158 
159 /*
160  * Mininum number of partial slabs. These will be left on the partial
161  * lists even if they are empty. kmem_cache_shrink may reclaim them.
162  */
163 #define MIN_PARTIAL 5
164 
165 /*
166  * Maximum number of desirable partial slabs.
167  * The existence of more partial slabs makes kmem_cache_shrink
168  * sort the partial list by the number of objects in use.
169  */
170 #define MAX_PARTIAL 10
171 
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 				SLAB_POISON | SLAB_STORE_USER)
174 
175 /*
176  * These debug flags cannot use CMPXCHG because there might be consistency
177  * issues when checking or reading debug information
178  */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 				SLAB_TRACE)
181 
182 
183 /*
184  * Debugging flags that require metadata to be stored in the slab.  These get
185  * disabled when slub_debug=O is used and a cache's min order increases with
186  * metadata.
187  */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 
190 #define OO_SHIFT	16
191 #define OO_MASK		((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193 
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
199 
200 /*
201  * Tracking user of a slab.
202  */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 	unsigned long addr;	/* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
208 #endif
209 	int cpu;		/* Was running on cpu */
210 	int pid;		/* Pid context */
211 	unsigned long when;	/* When did the operation occur */
212 };
213 
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228 
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 	/*
233 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 	 * avoid this_cpu_add()'s irq-disable overhead.
235 	 */
236 	raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239 
240 /********************************************************************
241  * 			Core slab cache functions
242  *******************************************************************/
243 
244 /*
245  * Returns freelist pointer (ptr). With hardening, this is obfuscated
246  * with an XOR of the address where the pointer is held and a per-cache
247  * random number.
248  */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 				 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 	/*
254 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 	 * Normally, this doesn't cause any issues, as both set_freepointer()
256 	 * and get_freepointer() are called with a pointer with the same tag.
257 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 	 * example, when __free_slub() iterates over objects in a cache, it
259 	 * passes untagged pointers to check_object(). check_object() in turns
260 	 * calls get_freepointer() with an untagged pointer, which causes the
261 	 * freepointer to be restored incorrectly.
262 	 */
263 	return (void *)((unsigned long)ptr ^ s->random ^
264 			(unsigned long)kasan_reset_tag((void *)ptr_addr));
265 #else
266 	return ptr;
267 #endif
268 }
269 
270 /* Returns the freelist pointer recorded at location ptr_addr. */
271 static inline void *freelist_dereference(const struct kmem_cache *s,
272 					 void *ptr_addr)
273 {
274 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 			    (unsigned long)ptr_addr);
276 }
277 
278 static inline void *get_freepointer(struct kmem_cache *s, void *object)
279 {
280 	return freelist_dereference(s, object + s->offset);
281 }
282 
283 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284 {
285 	prefetch(object + s->offset);
286 }
287 
288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289 {
290 	unsigned long freepointer_addr;
291 	void *p;
292 
293 	if (!debug_pagealloc_enabled())
294 		return get_freepointer(s, object);
295 
296 	freepointer_addr = (unsigned long)object + s->offset;
297 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 	return freelist_ptr(s, p, freepointer_addr);
299 }
300 
301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302 {
303 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
304 
305 #ifdef CONFIG_SLAB_FREELIST_HARDENED
306 	BUG_ON(object == fp); /* naive detection of double free or corruption */
307 #endif
308 
309 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 }
311 
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 	for (__p = fixup_red_left(__s, __addr); \
315 		__p < (__addr) + (__objects) * (__s)->size; \
316 		__p += (__s)->size)
317 
318 /* Determine object index from a given position */
319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
320 {
321 	return (kasan_reset_tag(p) - addr) / s->size;
322 }
323 
324 static inline unsigned int order_objects(unsigned int order, unsigned int size)
325 {
326 	return ((unsigned int)PAGE_SIZE << order) / size;
327 }
328 
329 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
330 		unsigned int size)
331 {
332 	struct kmem_cache_order_objects x = {
333 		(order << OO_SHIFT) + order_objects(order, size)
334 	};
335 
336 	return x;
337 }
338 
339 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
340 {
341 	return x.x >> OO_SHIFT;
342 }
343 
344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
345 {
346 	return x.x & OO_MASK;
347 }
348 
349 /*
350  * Per slab locking using the pagelock
351  */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 	VM_BUG_ON_PAGE(PageTail(page), page);
355 	bit_spin_lock(PG_locked, &page->flags);
356 }
357 
358 static __always_inline void slab_unlock(struct page *page)
359 {
360 	VM_BUG_ON_PAGE(PageTail(page), page);
361 	__bit_spin_unlock(PG_locked, &page->flags);
362 }
363 
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 		void *freelist_old, unsigned long counters_old,
367 		void *freelist_new, unsigned long counters_new,
368 		const char *n)
369 {
370 	VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 	if (s->flags & __CMPXCHG_DOUBLE) {
374 		if (cmpxchg_double(&page->freelist, &page->counters,
375 				   freelist_old, counters_old,
376 				   freelist_new, counters_new))
377 			return true;
378 	} else
379 #endif
380 	{
381 		slab_lock(page);
382 		if (page->freelist == freelist_old &&
383 					page->counters == counters_old) {
384 			page->freelist = freelist_new;
385 			page->counters = counters_new;
386 			slab_unlock(page);
387 			return true;
388 		}
389 		slab_unlock(page);
390 	}
391 
392 	cpu_relax();
393 	stat(s, CMPXCHG_DOUBLE_FAIL);
394 
395 #ifdef SLUB_DEBUG_CMPXCHG
396 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398 
399 	return false;
400 }
401 
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 		void *freelist_old, unsigned long counters_old,
404 		void *freelist_new, unsigned long counters_new,
405 		const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 	if (s->flags & __CMPXCHG_DOUBLE) {
410 		if (cmpxchg_double(&page->freelist, &page->counters,
411 				   freelist_old, counters_old,
412 				   freelist_new, counters_new))
413 			return true;
414 	} else
415 #endif
416 	{
417 		unsigned long flags;
418 
419 		local_irq_save(flags);
420 		slab_lock(page);
421 		if (page->freelist == freelist_old &&
422 					page->counters == counters_old) {
423 			page->freelist = freelist_new;
424 			page->counters = counters_new;
425 			slab_unlock(page);
426 			local_irq_restore(flags);
427 			return true;
428 		}
429 		slab_unlock(page);
430 		local_irq_restore(flags);
431 	}
432 
433 	cpu_relax();
434 	stat(s, CMPXCHG_DOUBLE_FAIL);
435 
436 #ifdef SLUB_DEBUG_CMPXCHG
437 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439 
440 	return false;
441 }
442 
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445  * Determine a map of object in use on a page.
446  *
447  * Node listlock must be held to guarantee that the page does
448  * not vanish from under us.
449  */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 	void *p;
453 	void *addr = page_address(page);
454 
455 	for (p = page->freelist; p; p = get_freepointer(s, p))
456 		set_bit(slab_index(p, s, addr), map);
457 }
458 
459 static inline unsigned int size_from_object(struct kmem_cache *s)
460 {
461 	if (s->flags & SLAB_RED_ZONE)
462 		return s->size - s->red_left_pad;
463 
464 	return s->size;
465 }
466 
467 static inline void *restore_red_left(struct kmem_cache *s, void *p)
468 {
469 	if (s->flags & SLAB_RED_ZONE)
470 		p -= s->red_left_pad;
471 
472 	return p;
473 }
474 
475 /*
476  * Debug settings:
477  */
478 #if defined(CONFIG_SLUB_DEBUG_ON)
479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
480 #else
481 static slab_flags_t slub_debug;
482 #endif
483 
484 static char *slub_debug_slabs;
485 static int disable_higher_order_debug;
486 
487 /*
488  * slub is about to manipulate internal object metadata.  This memory lies
489  * outside the range of the allocated object, so accessing it would normally
490  * be reported by kasan as a bounds error.  metadata_access_enable() is used
491  * to tell kasan that these accesses are OK.
492  */
493 static inline void metadata_access_enable(void)
494 {
495 	kasan_disable_current();
496 }
497 
498 static inline void metadata_access_disable(void)
499 {
500 	kasan_enable_current();
501 }
502 
503 /*
504  * Object debugging
505  */
506 
507 /* Verify that a pointer has an address that is valid within a slab page */
508 static inline int check_valid_pointer(struct kmem_cache *s,
509 				struct page *page, void *object)
510 {
511 	void *base;
512 
513 	if (!object)
514 		return 1;
515 
516 	base = page_address(page);
517 	object = kasan_reset_tag(object);
518 	object = restore_red_left(s, object);
519 	if (object < base || object >= base + page->objects * s->size ||
520 		(object - base) % s->size) {
521 		return 0;
522 	}
523 
524 	return 1;
525 }
526 
527 static void print_section(char *level, char *text, u8 *addr,
528 			  unsigned int length)
529 {
530 	metadata_access_enable();
531 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
532 			length, 1);
533 	metadata_access_disable();
534 }
535 
536 static struct track *get_track(struct kmem_cache *s, void *object,
537 	enum track_item alloc)
538 {
539 	struct track *p;
540 
541 	if (s->offset)
542 		p = object + s->offset + sizeof(void *);
543 	else
544 		p = object + s->inuse;
545 
546 	return p + alloc;
547 }
548 
549 static void set_track(struct kmem_cache *s, void *object,
550 			enum track_item alloc, unsigned long addr)
551 {
552 	struct track *p = get_track(s, object, alloc);
553 
554 	if (addr) {
555 #ifdef CONFIG_STACKTRACE
556 		unsigned int nr_entries;
557 
558 		metadata_access_enable();
559 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
560 		metadata_access_disable();
561 
562 		if (nr_entries < TRACK_ADDRS_COUNT)
563 			p->addrs[nr_entries] = 0;
564 #endif
565 		p->addr = addr;
566 		p->cpu = smp_processor_id();
567 		p->pid = current->pid;
568 		p->when = jiffies;
569 	} else {
570 		memset(p, 0, sizeof(struct track));
571 	}
572 }
573 
574 static void init_tracking(struct kmem_cache *s, void *object)
575 {
576 	if (!(s->flags & SLAB_STORE_USER))
577 		return;
578 
579 	set_track(s, object, TRACK_FREE, 0UL);
580 	set_track(s, object, TRACK_ALLOC, 0UL);
581 }
582 
583 static void print_track(const char *s, struct track *t, unsigned long pr_time)
584 {
585 	if (!t->addr)
586 		return;
587 
588 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
589 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
590 #ifdef CONFIG_STACKTRACE
591 	{
592 		int i;
593 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 			if (t->addrs[i])
595 				pr_err("\t%pS\n", (void *)t->addrs[i]);
596 			else
597 				break;
598 	}
599 #endif
600 }
601 
602 static void print_tracking(struct kmem_cache *s, void *object)
603 {
604 	unsigned long pr_time = jiffies;
605 	if (!(s->flags & SLAB_STORE_USER))
606 		return;
607 
608 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
610 }
611 
612 static void print_page_info(struct page *page)
613 {
614 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
615 	       page, page->objects, page->inuse, page->freelist, page->flags);
616 
617 }
618 
619 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620 {
621 	struct va_format vaf;
622 	va_list args;
623 
624 	va_start(args, fmt);
625 	vaf.fmt = fmt;
626 	vaf.va = &args;
627 	pr_err("=============================================================================\n");
628 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
629 	pr_err("-----------------------------------------------------------------------------\n\n");
630 
631 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
632 	va_end(args);
633 }
634 
635 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636 {
637 	struct va_format vaf;
638 	va_list args;
639 
640 	va_start(args, fmt);
641 	vaf.fmt = fmt;
642 	vaf.va = &args;
643 	pr_err("FIX %s: %pV\n", s->name, &vaf);
644 	va_end(args);
645 }
646 
647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
648 {
649 	unsigned int off;	/* Offset of last byte */
650 	u8 *addr = page_address(page);
651 
652 	print_tracking(s, p);
653 
654 	print_page_info(page);
655 
656 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 	       p, p - addr, get_freepointer(s, p));
658 
659 	if (s->flags & SLAB_RED_ZONE)
660 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 			      s->red_left_pad);
662 	else if (p > addr + 16)
663 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
664 
665 	print_section(KERN_ERR, "Object ", p,
666 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
667 	if (s->flags & SLAB_RED_ZONE)
668 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
669 			s->inuse - s->object_size);
670 
671 	if (s->offset)
672 		off = s->offset + sizeof(void *);
673 	else
674 		off = s->inuse;
675 
676 	if (s->flags & SLAB_STORE_USER)
677 		off += 2 * sizeof(struct track);
678 
679 	off += kasan_metadata_size(s);
680 
681 	if (off != size_from_object(s))
682 		/* Beginning of the filler is the free pointer */
683 		print_section(KERN_ERR, "Padding ", p + off,
684 			      size_from_object(s) - off);
685 
686 	dump_stack();
687 }
688 
689 void object_err(struct kmem_cache *s, struct page *page,
690 			u8 *object, char *reason)
691 {
692 	slab_bug(s, "%s", reason);
693 	print_trailer(s, page, object);
694 }
695 
696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
697 			const char *fmt, ...)
698 {
699 	va_list args;
700 	char buf[100];
701 
702 	va_start(args, fmt);
703 	vsnprintf(buf, sizeof(buf), fmt, args);
704 	va_end(args);
705 	slab_bug(s, "%s", buf);
706 	print_page_info(page);
707 	dump_stack();
708 }
709 
710 static void init_object(struct kmem_cache *s, void *object, u8 val)
711 {
712 	u8 *p = object;
713 
714 	if (s->flags & SLAB_RED_ZONE)
715 		memset(p - s->red_left_pad, val, s->red_left_pad);
716 
717 	if (s->flags & __OBJECT_POISON) {
718 		memset(p, POISON_FREE, s->object_size - 1);
719 		p[s->object_size - 1] = POISON_END;
720 	}
721 
722 	if (s->flags & SLAB_RED_ZONE)
723 		memset(p + s->object_size, val, s->inuse - s->object_size);
724 }
725 
726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 						void *from, void *to)
728 {
729 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 	memset(from, data, to - from);
731 }
732 
733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 			u8 *object, char *what,
735 			u8 *start, unsigned int value, unsigned int bytes)
736 {
737 	u8 *fault;
738 	u8 *end;
739 
740 	metadata_access_enable();
741 	fault = memchr_inv(start, value, bytes);
742 	metadata_access_disable();
743 	if (!fault)
744 		return 1;
745 
746 	end = start + bytes;
747 	while (end > fault && end[-1] == value)
748 		end--;
749 
750 	slab_bug(s, "%s overwritten", what);
751 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
752 					fault, end - 1, fault[0], value);
753 	print_trailer(s, page, object);
754 
755 	restore_bytes(s, what, value, fault, end);
756 	return 0;
757 }
758 
759 /*
760  * Object layout:
761  *
762  * object address
763  * 	Bytes of the object to be managed.
764  * 	If the freepointer may overlay the object then the free
765  * 	pointer is the first word of the object.
766  *
767  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
768  * 	0xa5 (POISON_END)
769  *
770  * object + s->object_size
771  * 	Padding to reach word boundary. This is also used for Redzoning.
772  * 	Padding is extended by another word if Redzoning is enabled and
773  * 	object_size == inuse.
774  *
775  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776  * 	0xcc (RED_ACTIVE) for objects in use.
777  *
778  * object + s->inuse
779  * 	Meta data starts here.
780  *
781  * 	A. Free pointer (if we cannot overwrite object on free)
782  * 	B. Tracking data for SLAB_STORE_USER
783  * 	C. Padding to reach required alignment boundary or at mininum
784  * 		one word if debugging is on to be able to detect writes
785  * 		before the word boundary.
786  *
787  *	Padding is done using 0x5a (POISON_INUSE)
788  *
789  * object + s->size
790  * 	Nothing is used beyond s->size.
791  *
792  * If slabcaches are merged then the object_size and inuse boundaries are mostly
793  * ignored. And therefore no slab options that rely on these boundaries
794  * may be used with merged slabcaches.
795  */
796 
797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798 {
799 	unsigned long off = s->inuse;	/* The end of info */
800 
801 	if (s->offset)
802 		/* Freepointer is placed after the object. */
803 		off += sizeof(void *);
804 
805 	if (s->flags & SLAB_STORE_USER)
806 		/* We also have user information there */
807 		off += 2 * sizeof(struct track);
808 
809 	off += kasan_metadata_size(s);
810 
811 	if (size_from_object(s) == off)
812 		return 1;
813 
814 	return check_bytes_and_report(s, page, p, "Object padding",
815 			p + off, POISON_INUSE, size_from_object(s) - off);
816 }
817 
818 /* Check the pad bytes at the end of a slab page */
819 static int slab_pad_check(struct kmem_cache *s, struct page *page)
820 {
821 	u8 *start;
822 	u8 *fault;
823 	u8 *end;
824 	u8 *pad;
825 	int length;
826 	int remainder;
827 
828 	if (!(s->flags & SLAB_POISON))
829 		return 1;
830 
831 	start = page_address(page);
832 	length = page_size(page);
833 	end = start + length;
834 	remainder = length % s->size;
835 	if (!remainder)
836 		return 1;
837 
838 	pad = end - remainder;
839 	metadata_access_enable();
840 	fault = memchr_inv(pad, POISON_INUSE, remainder);
841 	metadata_access_disable();
842 	if (!fault)
843 		return 1;
844 	while (end > fault && end[-1] == POISON_INUSE)
845 		end--;
846 
847 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
848 	print_section(KERN_ERR, "Padding ", pad, remainder);
849 
850 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
851 	return 0;
852 }
853 
854 static int check_object(struct kmem_cache *s, struct page *page,
855 					void *object, u8 val)
856 {
857 	u8 *p = object;
858 	u8 *endobject = object + s->object_size;
859 
860 	if (s->flags & SLAB_RED_ZONE) {
861 		if (!check_bytes_and_report(s, page, object, "Redzone",
862 			object - s->red_left_pad, val, s->red_left_pad))
863 			return 0;
864 
865 		if (!check_bytes_and_report(s, page, object, "Redzone",
866 			endobject, val, s->inuse - s->object_size))
867 			return 0;
868 	} else {
869 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
870 			check_bytes_and_report(s, page, p, "Alignment padding",
871 				endobject, POISON_INUSE,
872 				s->inuse - s->object_size);
873 		}
874 	}
875 
876 	if (s->flags & SLAB_POISON) {
877 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
878 			(!check_bytes_and_report(s, page, p, "Poison", p,
879 					POISON_FREE, s->object_size - 1) ||
880 			 !check_bytes_and_report(s, page, p, "Poison",
881 				p + s->object_size - 1, POISON_END, 1)))
882 			return 0;
883 		/*
884 		 * check_pad_bytes cleans up on its own.
885 		 */
886 		check_pad_bytes(s, page, p);
887 	}
888 
889 	if (!s->offset && val == SLUB_RED_ACTIVE)
890 		/*
891 		 * Object and freepointer overlap. Cannot check
892 		 * freepointer while object is allocated.
893 		 */
894 		return 1;
895 
896 	/* Check free pointer validity */
897 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 		object_err(s, page, p, "Freepointer corrupt");
899 		/*
900 		 * No choice but to zap it and thus lose the remainder
901 		 * of the free objects in this slab. May cause
902 		 * another error because the object count is now wrong.
903 		 */
904 		set_freepointer(s, p, NULL);
905 		return 0;
906 	}
907 	return 1;
908 }
909 
910 static int check_slab(struct kmem_cache *s, struct page *page)
911 {
912 	int maxobj;
913 
914 	VM_BUG_ON(!irqs_disabled());
915 
916 	if (!PageSlab(page)) {
917 		slab_err(s, page, "Not a valid slab page");
918 		return 0;
919 	}
920 
921 	maxobj = order_objects(compound_order(page), s->size);
922 	if (page->objects > maxobj) {
923 		slab_err(s, page, "objects %u > max %u",
924 			page->objects, maxobj);
925 		return 0;
926 	}
927 	if (page->inuse > page->objects) {
928 		slab_err(s, page, "inuse %u > max %u",
929 			page->inuse, page->objects);
930 		return 0;
931 	}
932 	/* Slab_pad_check fixes things up after itself */
933 	slab_pad_check(s, page);
934 	return 1;
935 }
936 
937 /*
938  * Determine if a certain object on a page is on the freelist. Must hold the
939  * slab lock to guarantee that the chains are in a consistent state.
940  */
941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942 {
943 	int nr = 0;
944 	void *fp;
945 	void *object = NULL;
946 	int max_objects;
947 
948 	fp = page->freelist;
949 	while (fp && nr <= page->objects) {
950 		if (fp == search)
951 			return 1;
952 		if (!check_valid_pointer(s, page, fp)) {
953 			if (object) {
954 				object_err(s, page, object,
955 					"Freechain corrupt");
956 				set_freepointer(s, object, NULL);
957 			} else {
958 				slab_err(s, page, "Freepointer corrupt");
959 				page->freelist = NULL;
960 				page->inuse = page->objects;
961 				slab_fix(s, "Freelist cleared");
962 				return 0;
963 			}
964 			break;
965 		}
966 		object = fp;
967 		fp = get_freepointer(s, object);
968 		nr++;
969 	}
970 
971 	max_objects = order_objects(compound_order(page), s->size);
972 	if (max_objects > MAX_OBJS_PER_PAGE)
973 		max_objects = MAX_OBJS_PER_PAGE;
974 
975 	if (page->objects != max_objects) {
976 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 			 page->objects, max_objects);
978 		page->objects = max_objects;
979 		slab_fix(s, "Number of objects adjusted.");
980 	}
981 	if (page->inuse != page->objects - nr) {
982 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 			 page->inuse, page->objects - nr);
984 		page->inuse = page->objects - nr;
985 		slab_fix(s, "Object count adjusted.");
986 	}
987 	return search == NULL;
988 }
989 
990 static void trace(struct kmem_cache *s, struct page *page, void *object,
991 								int alloc)
992 {
993 	if (s->flags & SLAB_TRACE) {
994 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
995 			s->name,
996 			alloc ? "alloc" : "free",
997 			object, page->inuse,
998 			page->freelist);
999 
1000 		if (!alloc)
1001 			print_section(KERN_INFO, "Object ", (void *)object,
1002 					s->object_size);
1003 
1004 		dump_stack();
1005 	}
1006 }
1007 
1008 /*
1009  * Tracking of fully allocated slabs for debugging purposes.
1010  */
1011 static void add_full(struct kmem_cache *s,
1012 	struct kmem_cache_node *n, struct page *page)
1013 {
1014 	if (!(s->flags & SLAB_STORE_USER))
1015 		return;
1016 
1017 	lockdep_assert_held(&n->list_lock);
1018 	list_add(&page->slab_list, &n->full);
1019 }
1020 
1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1022 {
1023 	if (!(s->flags & SLAB_STORE_USER))
1024 		return;
1025 
1026 	lockdep_assert_held(&n->list_lock);
1027 	list_del(&page->slab_list);
1028 }
1029 
1030 /* Tracking of the number of slabs for debugging purposes */
1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032 {
1033 	struct kmem_cache_node *n = get_node(s, node);
1034 
1035 	return atomic_long_read(&n->nr_slabs);
1036 }
1037 
1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039 {
1040 	return atomic_long_read(&n->nr_slabs);
1041 }
1042 
1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1044 {
1045 	struct kmem_cache_node *n = get_node(s, node);
1046 
1047 	/*
1048 	 * May be called early in order to allocate a slab for the
1049 	 * kmem_cache_node structure. Solve the chicken-egg
1050 	 * dilemma by deferring the increment of the count during
1051 	 * bootstrap (see early_kmem_cache_node_alloc).
1052 	 */
1053 	if (likely(n)) {
1054 		atomic_long_inc(&n->nr_slabs);
1055 		atomic_long_add(objects, &n->total_objects);
1056 	}
1057 }
1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1059 {
1060 	struct kmem_cache_node *n = get_node(s, node);
1061 
1062 	atomic_long_dec(&n->nr_slabs);
1063 	atomic_long_sub(objects, &n->total_objects);
1064 }
1065 
1066 /* Object debug checks for alloc/free paths */
1067 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 								void *object)
1069 {
1070 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 		return;
1072 
1073 	init_object(s, object, SLUB_RED_INACTIVE);
1074 	init_tracking(s, object);
1075 }
1076 
1077 static
1078 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1079 {
1080 	if (!(s->flags & SLAB_POISON))
1081 		return;
1082 
1083 	metadata_access_enable();
1084 	memset(addr, POISON_INUSE, page_size(page));
1085 	metadata_access_disable();
1086 }
1087 
1088 static inline int alloc_consistency_checks(struct kmem_cache *s,
1089 					struct page *page, void *object)
1090 {
1091 	if (!check_slab(s, page))
1092 		return 0;
1093 
1094 	if (!check_valid_pointer(s, page, object)) {
1095 		object_err(s, page, object, "Freelist Pointer check fails");
1096 		return 0;
1097 	}
1098 
1099 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1100 		return 0;
1101 
1102 	return 1;
1103 }
1104 
1105 static noinline int alloc_debug_processing(struct kmem_cache *s,
1106 					struct page *page,
1107 					void *object, unsigned long addr)
1108 {
1109 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1110 		if (!alloc_consistency_checks(s, page, object))
1111 			goto bad;
1112 	}
1113 
1114 	/* Success perform special debug activities for allocs */
1115 	if (s->flags & SLAB_STORE_USER)
1116 		set_track(s, object, TRACK_ALLOC, addr);
1117 	trace(s, page, object, 1);
1118 	init_object(s, object, SLUB_RED_ACTIVE);
1119 	return 1;
1120 
1121 bad:
1122 	if (PageSlab(page)) {
1123 		/*
1124 		 * If this is a slab page then lets do the best we can
1125 		 * to avoid issues in the future. Marking all objects
1126 		 * as used avoids touching the remaining objects.
1127 		 */
1128 		slab_fix(s, "Marking all objects used");
1129 		page->inuse = page->objects;
1130 		page->freelist = NULL;
1131 	}
1132 	return 0;
1133 }
1134 
1135 static inline int free_consistency_checks(struct kmem_cache *s,
1136 		struct page *page, void *object, unsigned long addr)
1137 {
1138 	if (!check_valid_pointer(s, page, object)) {
1139 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1140 		return 0;
1141 	}
1142 
1143 	if (on_freelist(s, page, object)) {
1144 		object_err(s, page, object, "Object already free");
1145 		return 0;
1146 	}
1147 
1148 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1149 		return 0;
1150 
1151 	if (unlikely(s != page->slab_cache)) {
1152 		if (!PageSlab(page)) {
1153 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1154 				 object);
1155 		} else if (!page->slab_cache) {
1156 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1157 			       object);
1158 			dump_stack();
1159 		} else
1160 			object_err(s, page, object,
1161 					"page slab pointer corrupt.");
1162 		return 0;
1163 	}
1164 	return 1;
1165 }
1166 
1167 /* Supports checking bulk free of a constructed freelist */
1168 static noinline int free_debug_processing(
1169 	struct kmem_cache *s, struct page *page,
1170 	void *head, void *tail, int bulk_cnt,
1171 	unsigned long addr)
1172 {
1173 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1174 	void *object = head;
1175 	int cnt = 0;
1176 	unsigned long uninitialized_var(flags);
1177 	int ret = 0;
1178 
1179 	spin_lock_irqsave(&n->list_lock, flags);
1180 	slab_lock(page);
1181 
1182 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1183 		if (!check_slab(s, page))
1184 			goto out;
1185 	}
1186 
1187 next_object:
1188 	cnt++;
1189 
1190 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 		if (!free_consistency_checks(s, page, object, addr))
1192 			goto out;
1193 	}
1194 
1195 	if (s->flags & SLAB_STORE_USER)
1196 		set_track(s, object, TRACK_FREE, addr);
1197 	trace(s, page, object, 0);
1198 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1199 	init_object(s, object, SLUB_RED_INACTIVE);
1200 
1201 	/* Reached end of constructed freelist yet? */
1202 	if (object != tail) {
1203 		object = get_freepointer(s, object);
1204 		goto next_object;
1205 	}
1206 	ret = 1;
1207 
1208 out:
1209 	if (cnt != bulk_cnt)
1210 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1211 			 bulk_cnt, cnt);
1212 
1213 	slab_unlock(page);
1214 	spin_unlock_irqrestore(&n->list_lock, flags);
1215 	if (!ret)
1216 		slab_fix(s, "Object at 0x%p not freed", object);
1217 	return ret;
1218 }
1219 
1220 static int __init setup_slub_debug(char *str)
1221 {
1222 	slub_debug = DEBUG_DEFAULT_FLAGS;
1223 	if (*str++ != '=' || !*str)
1224 		/*
1225 		 * No options specified. Switch on full debugging.
1226 		 */
1227 		goto out;
1228 
1229 	if (*str == ',')
1230 		/*
1231 		 * No options but restriction on slabs. This means full
1232 		 * debugging for slabs matching a pattern.
1233 		 */
1234 		goto check_slabs;
1235 
1236 	slub_debug = 0;
1237 	if (*str == '-')
1238 		/*
1239 		 * Switch off all debugging measures.
1240 		 */
1241 		goto out;
1242 
1243 	/*
1244 	 * Determine which debug features should be switched on
1245 	 */
1246 	for (; *str && *str != ','; str++) {
1247 		switch (tolower(*str)) {
1248 		case 'f':
1249 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1250 			break;
1251 		case 'z':
1252 			slub_debug |= SLAB_RED_ZONE;
1253 			break;
1254 		case 'p':
1255 			slub_debug |= SLAB_POISON;
1256 			break;
1257 		case 'u':
1258 			slub_debug |= SLAB_STORE_USER;
1259 			break;
1260 		case 't':
1261 			slub_debug |= SLAB_TRACE;
1262 			break;
1263 		case 'a':
1264 			slub_debug |= SLAB_FAILSLAB;
1265 			break;
1266 		case 'o':
1267 			/*
1268 			 * Avoid enabling debugging on caches if its minimum
1269 			 * order would increase as a result.
1270 			 */
1271 			disable_higher_order_debug = 1;
1272 			break;
1273 		default:
1274 			pr_err("slub_debug option '%c' unknown. skipped\n",
1275 			       *str);
1276 		}
1277 	}
1278 
1279 check_slabs:
1280 	if (*str == ',')
1281 		slub_debug_slabs = str + 1;
1282 out:
1283 	if ((static_branch_unlikely(&init_on_alloc) ||
1284 	     static_branch_unlikely(&init_on_free)) &&
1285 	    (slub_debug & SLAB_POISON))
1286 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1287 	return 1;
1288 }
1289 
1290 __setup("slub_debug", setup_slub_debug);
1291 
1292 /*
1293  * kmem_cache_flags - apply debugging options to the cache
1294  * @object_size:	the size of an object without meta data
1295  * @flags:		flags to set
1296  * @name:		name of the cache
1297  * @ctor:		constructor function
1298  *
1299  * Debug option(s) are applied to @flags. In addition to the debug
1300  * option(s), if a slab name (or multiple) is specified i.e.
1301  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1302  * then only the select slabs will receive the debug option(s).
1303  */
1304 slab_flags_t kmem_cache_flags(unsigned int object_size,
1305 	slab_flags_t flags, const char *name,
1306 	void (*ctor)(void *))
1307 {
1308 	char *iter;
1309 	size_t len;
1310 
1311 	/* If slub_debug = 0, it folds into the if conditional. */
1312 	if (!slub_debug_slabs)
1313 		return flags | slub_debug;
1314 
1315 	len = strlen(name);
1316 	iter = slub_debug_slabs;
1317 	while (*iter) {
1318 		char *end, *glob;
1319 		size_t cmplen;
1320 
1321 		end = strchrnul(iter, ',');
1322 
1323 		glob = strnchr(iter, end - iter, '*');
1324 		if (glob)
1325 			cmplen = glob - iter;
1326 		else
1327 			cmplen = max_t(size_t, len, (end - iter));
1328 
1329 		if (!strncmp(name, iter, cmplen)) {
1330 			flags |= slub_debug;
1331 			break;
1332 		}
1333 
1334 		if (!*end)
1335 			break;
1336 		iter = end + 1;
1337 	}
1338 
1339 	return flags;
1340 }
1341 #else /* !CONFIG_SLUB_DEBUG */
1342 static inline void setup_object_debug(struct kmem_cache *s,
1343 			struct page *page, void *object) {}
1344 static inline
1345 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1346 
1347 static inline int alloc_debug_processing(struct kmem_cache *s,
1348 	struct page *page, void *object, unsigned long addr) { return 0; }
1349 
1350 static inline int free_debug_processing(
1351 	struct kmem_cache *s, struct page *page,
1352 	void *head, void *tail, int bulk_cnt,
1353 	unsigned long addr) { return 0; }
1354 
1355 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1356 			{ return 1; }
1357 static inline int check_object(struct kmem_cache *s, struct page *page,
1358 			void *object, u8 val) { return 1; }
1359 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1360 					struct page *page) {}
1361 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1362 					struct page *page) {}
1363 slab_flags_t kmem_cache_flags(unsigned int object_size,
1364 	slab_flags_t flags, const char *name,
1365 	void (*ctor)(void *))
1366 {
1367 	return flags;
1368 }
1369 #define slub_debug 0
1370 
1371 #define disable_higher_order_debug 0
1372 
1373 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1374 							{ return 0; }
1375 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1376 							{ return 0; }
1377 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1378 							int objects) {}
1379 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1380 							int objects) {}
1381 
1382 #endif /* CONFIG_SLUB_DEBUG */
1383 
1384 /*
1385  * Hooks for other subsystems that check memory allocations. In a typical
1386  * production configuration these hooks all should produce no code at all.
1387  */
1388 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1389 {
1390 	ptr = kasan_kmalloc_large(ptr, size, flags);
1391 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1392 	kmemleak_alloc(ptr, size, 1, flags);
1393 	return ptr;
1394 }
1395 
1396 static __always_inline void kfree_hook(void *x)
1397 {
1398 	kmemleak_free(x);
1399 	kasan_kfree_large(x, _RET_IP_);
1400 }
1401 
1402 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1403 {
1404 	kmemleak_free_recursive(x, s->flags);
1405 
1406 	/*
1407 	 * Trouble is that we may no longer disable interrupts in the fast path
1408 	 * So in order to make the debug calls that expect irqs to be
1409 	 * disabled we need to disable interrupts temporarily.
1410 	 */
1411 #ifdef CONFIG_LOCKDEP
1412 	{
1413 		unsigned long flags;
1414 
1415 		local_irq_save(flags);
1416 		debug_check_no_locks_freed(x, s->object_size);
1417 		local_irq_restore(flags);
1418 	}
1419 #endif
1420 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1421 		debug_check_no_obj_freed(x, s->object_size);
1422 
1423 	/* KASAN might put x into memory quarantine, delaying its reuse */
1424 	return kasan_slab_free(s, x, _RET_IP_);
1425 }
1426 
1427 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1428 					   void **head, void **tail)
1429 {
1430 
1431 	void *object;
1432 	void *next = *head;
1433 	void *old_tail = *tail ? *tail : *head;
1434 	int rsize;
1435 
1436 	if (slab_want_init_on_free(s)) {
1437 		void *p = NULL;
1438 
1439 		do {
1440 			object = next;
1441 			next = get_freepointer(s, object);
1442 			/*
1443 			 * Clear the object and the metadata, but don't touch
1444 			 * the redzone.
1445 			 */
1446 			memset(object, 0, s->object_size);
1447 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1448 							   : 0;
1449 			memset((char *)object + s->inuse, 0,
1450 			       s->size - s->inuse - rsize);
1451 			set_freepointer(s, object, p);
1452 			p = object;
1453 		} while (object != old_tail);
1454 	}
1455 
1456 /*
1457  * Compiler cannot detect this function can be removed if slab_free_hook()
1458  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1459  */
1460 #if defined(CONFIG_LOCKDEP)	||		\
1461 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1462 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1463 	defined(CONFIG_KASAN)
1464 
1465 	next = *head;
1466 
1467 	/* Head and tail of the reconstructed freelist */
1468 	*head = NULL;
1469 	*tail = NULL;
1470 
1471 	do {
1472 		object = next;
1473 		next = get_freepointer(s, object);
1474 		/* If object's reuse doesn't have to be delayed */
1475 		if (!slab_free_hook(s, object)) {
1476 			/* Move object to the new freelist */
1477 			set_freepointer(s, object, *head);
1478 			*head = object;
1479 			if (!*tail)
1480 				*tail = object;
1481 		}
1482 	} while (object != old_tail);
1483 
1484 	if (*head == *tail)
1485 		*tail = NULL;
1486 
1487 	return *head != NULL;
1488 #else
1489 	return true;
1490 #endif
1491 }
1492 
1493 static void *setup_object(struct kmem_cache *s, struct page *page,
1494 				void *object)
1495 {
1496 	setup_object_debug(s, page, object);
1497 	object = kasan_init_slab_obj(s, object);
1498 	if (unlikely(s->ctor)) {
1499 		kasan_unpoison_object_data(s, object);
1500 		s->ctor(object);
1501 		kasan_poison_object_data(s, object);
1502 	}
1503 	return object;
1504 }
1505 
1506 /*
1507  * Slab allocation and freeing
1508  */
1509 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1510 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1511 {
1512 	struct page *page;
1513 	unsigned int order = oo_order(oo);
1514 
1515 	if (node == NUMA_NO_NODE)
1516 		page = alloc_pages(flags, order);
1517 	else
1518 		page = __alloc_pages_node(node, flags, order);
1519 
1520 	if (page && charge_slab_page(page, flags, order, s)) {
1521 		__free_pages(page, order);
1522 		page = NULL;
1523 	}
1524 
1525 	return page;
1526 }
1527 
1528 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1529 /* Pre-initialize the random sequence cache */
1530 static int init_cache_random_seq(struct kmem_cache *s)
1531 {
1532 	unsigned int count = oo_objects(s->oo);
1533 	int err;
1534 
1535 	/* Bailout if already initialised */
1536 	if (s->random_seq)
1537 		return 0;
1538 
1539 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1540 	if (err) {
1541 		pr_err("SLUB: Unable to initialize free list for %s\n",
1542 			s->name);
1543 		return err;
1544 	}
1545 
1546 	/* Transform to an offset on the set of pages */
1547 	if (s->random_seq) {
1548 		unsigned int i;
1549 
1550 		for (i = 0; i < count; i++)
1551 			s->random_seq[i] *= s->size;
1552 	}
1553 	return 0;
1554 }
1555 
1556 /* Initialize each random sequence freelist per cache */
1557 static void __init init_freelist_randomization(void)
1558 {
1559 	struct kmem_cache *s;
1560 
1561 	mutex_lock(&slab_mutex);
1562 
1563 	list_for_each_entry(s, &slab_caches, list)
1564 		init_cache_random_seq(s);
1565 
1566 	mutex_unlock(&slab_mutex);
1567 }
1568 
1569 /* Get the next entry on the pre-computed freelist randomized */
1570 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1571 				unsigned long *pos, void *start,
1572 				unsigned long page_limit,
1573 				unsigned long freelist_count)
1574 {
1575 	unsigned int idx;
1576 
1577 	/*
1578 	 * If the target page allocation failed, the number of objects on the
1579 	 * page might be smaller than the usual size defined by the cache.
1580 	 */
1581 	do {
1582 		idx = s->random_seq[*pos];
1583 		*pos += 1;
1584 		if (*pos >= freelist_count)
1585 			*pos = 0;
1586 	} while (unlikely(idx >= page_limit));
1587 
1588 	return (char *)start + idx;
1589 }
1590 
1591 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1592 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1593 {
1594 	void *start;
1595 	void *cur;
1596 	void *next;
1597 	unsigned long idx, pos, page_limit, freelist_count;
1598 
1599 	if (page->objects < 2 || !s->random_seq)
1600 		return false;
1601 
1602 	freelist_count = oo_objects(s->oo);
1603 	pos = get_random_int() % freelist_count;
1604 
1605 	page_limit = page->objects * s->size;
1606 	start = fixup_red_left(s, page_address(page));
1607 
1608 	/* First entry is used as the base of the freelist */
1609 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1610 				freelist_count);
1611 	cur = setup_object(s, page, cur);
1612 	page->freelist = cur;
1613 
1614 	for (idx = 1; idx < page->objects; idx++) {
1615 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1616 			freelist_count);
1617 		next = setup_object(s, page, next);
1618 		set_freepointer(s, cur, next);
1619 		cur = next;
1620 	}
1621 	set_freepointer(s, cur, NULL);
1622 
1623 	return true;
1624 }
1625 #else
1626 static inline int init_cache_random_seq(struct kmem_cache *s)
1627 {
1628 	return 0;
1629 }
1630 static inline void init_freelist_randomization(void) { }
1631 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1632 {
1633 	return false;
1634 }
1635 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1636 
1637 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1638 {
1639 	struct page *page;
1640 	struct kmem_cache_order_objects oo = s->oo;
1641 	gfp_t alloc_gfp;
1642 	void *start, *p, *next;
1643 	int idx;
1644 	bool shuffle;
1645 
1646 	flags &= gfp_allowed_mask;
1647 
1648 	if (gfpflags_allow_blocking(flags))
1649 		local_irq_enable();
1650 
1651 	flags |= s->allocflags;
1652 
1653 	/*
1654 	 * Let the initial higher-order allocation fail under memory pressure
1655 	 * so we fall-back to the minimum order allocation.
1656 	 */
1657 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1658 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1659 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1660 
1661 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1662 	if (unlikely(!page)) {
1663 		oo = s->min;
1664 		alloc_gfp = flags;
1665 		/*
1666 		 * Allocation may have failed due to fragmentation.
1667 		 * Try a lower order alloc if possible
1668 		 */
1669 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1670 		if (unlikely(!page))
1671 			goto out;
1672 		stat(s, ORDER_FALLBACK);
1673 	}
1674 
1675 	page->objects = oo_objects(oo);
1676 
1677 	page->slab_cache = s;
1678 	__SetPageSlab(page);
1679 	if (page_is_pfmemalloc(page))
1680 		SetPageSlabPfmemalloc(page);
1681 
1682 	kasan_poison_slab(page);
1683 
1684 	start = page_address(page);
1685 
1686 	setup_page_debug(s, page, start);
1687 
1688 	shuffle = shuffle_freelist(s, page);
1689 
1690 	if (!shuffle) {
1691 		start = fixup_red_left(s, start);
1692 		start = setup_object(s, page, start);
1693 		page->freelist = start;
1694 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1695 			next = p + s->size;
1696 			next = setup_object(s, page, next);
1697 			set_freepointer(s, p, next);
1698 			p = next;
1699 		}
1700 		set_freepointer(s, p, NULL);
1701 	}
1702 
1703 	page->inuse = page->objects;
1704 	page->frozen = 1;
1705 
1706 out:
1707 	if (gfpflags_allow_blocking(flags))
1708 		local_irq_disable();
1709 	if (!page)
1710 		return NULL;
1711 
1712 	inc_slabs_node(s, page_to_nid(page), page->objects);
1713 
1714 	return page;
1715 }
1716 
1717 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1718 {
1719 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1720 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1721 		flags &= ~GFP_SLAB_BUG_MASK;
1722 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1723 				invalid_mask, &invalid_mask, flags, &flags);
1724 		dump_stack();
1725 	}
1726 
1727 	return allocate_slab(s,
1728 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1729 }
1730 
1731 static void __free_slab(struct kmem_cache *s, struct page *page)
1732 {
1733 	int order = compound_order(page);
1734 	int pages = 1 << order;
1735 
1736 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1737 		void *p;
1738 
1739 		slab_pad_check(s, page);
1740 		for_each_object(p, s, page_address(page),
1741 						page->objects)
1742 			check_object(s, page, p, SLUB_RED_INACTIVE);
1743 	}
1744 
1745 	__ClearPageSlabPfmemalloc(page);
1746 	__ClearPageSlab(page);
1747 
1748 	page->mapping = NULL;
1749 	if (current->reclaim_state)
1750 		current->reclaim_state->reclaimed_slab += pages;
1751 	uncharge_slab_page(page, order, s);
1752 	__free_pages(page, order);
1753 }
1754 
1755 static void rcu_free_slab(struct rcu_head *h)
1756 {
1757 	struct page *page = container_of(h, struct page, rcu_head);
1758 
1759 	__free_slab(page->slab_cache, page);
1760 }
1761 
1762 static void free_slab(struct kmem_cache *s, struct page *page)
1763 {
1764 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1765 		call_rcu(&page->rcu_head, rcu_free_slab);
1766 	} else
1767 		__free_slab(s, page);
1768 }
1769 
1770 static void discard_slab(struct kmem_cache *s, struct page *page)
1771 {
1772 	dec_slabs_node(s, page_to_nid(page), page->objects);
1773 	free_slab(s, page);
1774 }
1775 
1776 /*
1777  * Management of partially allocated slabs.
1778  */
1779 static inline void
1780 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1781 {
1782 	n->nr_partial++;
1783 	if (tail == DEACTIVATE_TO_TAIL)
1784 		list_add_tail(&page->slab_list, &n->partial);
1785 	else
1786 		list_add(&page->slab_list, &n->partial);
1787 }
1788 
1789 static inline void add_partial(struct kmem_cache_node *n,
1790 				struct page *page, int tail)
1791 {
1792 	lockdep_assert_held(&n->list_lock);
1793 	__add_partial(n, page, tail);
1794 }
1795 
1796 static inline void remove_partial(struct kmem_cache_node *n,
1797 					struct page *page)
1798 {
1799 	lockdep_assert_held(&n->list_lock);
1800 	list_del(&page->slab_list);
1801 	n->nr_partial--;
1802 }
1803 
1804 /*
1805  * Remove slab from the partial list, freeze it and
1806  * return the pointer to the freelist.
1807  *
1808  * Returns a list of objects or NULL if it fails.
1809  */
1810 static inline void *acquire_slab(struct kmem_cache *s,
1811 		struct kmem_cache_node *n, struct page *page,
1812 		int mode, int *objects)
1813 {
1814 	void *freelist;
1815 	unsigned long counters;
1816 	struct page new;
1817 
1818 	lockdep_assert_held(&n->list_lock);
1819 
1820 	/*
1821 	 * Zap the freelist and set the frozen bit.
1822 	 * The old freelist is the list of objects for the
1823 	 * per cpu allocation list.
1824 	 */
1825 	freelist = page->freelist;
1826 	counters = page->counters;
1827 	new.counters = counters;
1828 	*objects = new.objects - new.inuse;
1829 	if (mode) {
1830 		new.inuse = page->objects;
1831 		new.freelist = NULL;
1832 	} else {
1833 		new.freelist = freelist;
1834 	}
1835 
1836 	VM_BUG_ON(new.frozen);
1837 	new.frozen = 1;
1838 
1839 	if (!__cmpxchg_double_slab(s, page,
1840 			freelist, counters,
1841 			new.freelist, new.counters,
1842 			"acquire_slab"))
1843 		return NULL;
1844 
1845 	remove_partial(n, page);
1846 	WARN_ON(!freelist);
1847 	return freelist;
1848 }
1849 
1850 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1851 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1852 
1853 /*
1854  * Try to allocate a partial slab from a specific node.
1855  */
1856 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1857 				struct kmem_cache_cpu *c, gfp_t flags)
1858 {
1859 	struct page *page, *page2;
1860 	void *object = NULL;
1861 	unsigned int available = 0;
1862 	int objects;
1863 
1864 	/*
1865 	 * Racy check. If we mistakenly see no partial slabs then we
1866 	 * just allocate an empty slab. If we mistakenly try to get a
1867 	 * partial slab and there is none available then get_partials()
1868 	 * will return NULL.
1869 	 */
1870 	if (!n || !n->nr_partial)
1871 		return NULL;
1872 
1873 	spin_lock(&n->list_lock);
1874 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1875 		void *t;
1876 
1877 		if (!pfmemalloc_match(page, flags))
1878 			continue;
1879 
1880 		t = acquire_slab(s, n, page, object == NULL, &objects);
1881 		if (!t)
1882 			break;
1883 
1884 		available += objects;
1885 		if (!object) {
1886 			c->page = page;
1887 			stat(s, ALLOC_FROM_PARTIAL);
1888 			object = t;
1889 		} else {
1890 			put_cpu_partial(s, page, 0);
1891 			stat(s, CPU_PARTIAL_NODE);
1892 		}
1893 		if (!kmem_cache_has_cpu_partial(s)
1894 			|| available > slub_cpu_partial(s) / 2)
1895 			break;
1896 
1897 	}
1898 	spin_unlock(&n->list_lock);
1899 	return object;
1900 }
1901 
1902 /*
1903  * Get a page from somewhere. Search in increasing NUMA distances.
1904  */
1905 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1906 		struct kmem_cache_cpu *c)
1907 {
1908 #ifdef CONFIG_NUMA
1909 	struct zonelist *zonelist;
1910 	struct zoneref *z;
1911 	struct zone *zone;
1912 	enum zone_type high_zoneidx = gfp_zone(flags);
1913 	void *object;
1914 	unsigned int cpuset_mems_cookie;
1915 
1916 	/*
1917 	 * The defrag ratio allows a configuration of the tradeoffs between
1918 	 * inter node defragmentation and node local allocations. A lower
1919 	 * defrag_ratio increases the tendency to do local allocations
1920 	 * instead of attempting to obtain partial slabs from other nodes.
1921 	 *
1922 	 * If the defrag_ratio is set to 0 then kmalloc() always
1923 	 * returns node local objects. If the ratio is higher then kmalloc()
1924 	 * may return off node objects because partial slabs are obtained
1925 	 * from other nodes and filled up.
1926 	 *
1927 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1928 	 * (which makes defrag_ratio = 1000) then every (well almost)
1929 	 * allocation will first attempt to defrag slab caches on other nodes.
1930 	 * This means scanning over all nodes to look for partial slabs which
1931 	 * may be expensive if we do it every time we are trying to find a slab
1932 	 * with available objects.
1933 	 */
1934 	if (!s->remote_node_defrag_ratio ||
1935 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1936 		return NULL;
1937 
1938 	do {
1939 		cpuset_mems_cookie = read_mems_allowed_begin();
1940 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1941 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1942 			struct kmem_cache_node *n;
1943 
1944 			n = get_node(s, zone_to_nid(zone));
1945 
1946 			if (n && cpuset_zone_allowed(zone, flags) &&
1947 					n->nr_partial > s->min_partial) {
1948 				object = get_partial_node(s, n, c, flags);
1949 				if (object) {
1950 					/*
1951 					 * Don't check read_mems_allowed_retry()
1952 					 * here - if mems_allowed was updated in
1953 					 * parallel, that was a harmless race
1954 					 * between allocation and the cpuset
1955 					 * update
1956 					 */
1957 					return object;
1958 				}
1959 			}
1960 		}
1961 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1962 #endif	/* CONFIG_NUMA */
1963 	return NULL;
1964 }
1965 
1966 /*
1967  * Get a partial page, lock it and return it.
1968  */
1969 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1970 		struct kmem_cache_cpu *c)
1971 {
1972 	void *object;
1973 	int searchnode = node;
1974 
1975 	if (node == NUMA_NO_NODE)
1976 		searchnode = numa_mem_id();
1977 	else if (!node_present_pages(node))
1978 		searchnode = node_to_mem_node(node);
1979 
1980 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1981 	if (object || node != NUMA_NO_NODE)
1982 		return object;
1983 
1984 	return get_any_partial(s, flags, c);
1985 }
1986 
1987 #ifdef CONFIG_PREEMPT
1988 /*
1989  * Calculate the next globally unique transaction for disambiguiation
1990  * during cmpxchg. The transactions start with the cpu number and are then
1991  * incremented by CONFIG_NR_CPUS.
1992  */
1993 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1994 #else
1995 /*
1996  * No preemption supported therefore also no need to check for
1997  * different cpus.
1998  */
1999 #define TID_STEP 1
2000 #endif
2001 
2002 static inline unsigned long next_tid(unsigned long tid)
2003 {
2004 	return tid + TID_STEP;
2005 }
2006 
2007 #ifdef SLUB_DEBUG_CMPXCHG
2008 static inline unsigned int tid_to_cpu(unsigned long tid)
2009 {
2010 	return tid % TID_STEP;
2011 }
2012 
2013 static inline unsigned long tid_to_event(unsigned long tid)
2014 {
2015 	return tid / TID_STEP;
2016 }
2017 #endif
2018 
2019 static inline unsigned int init_tid(int cpu)
2020 {
2021 	return cpu;
2022 }
2023 
2024 static inline void note_cmpxchg_failure(const char *n,
2025 		const struct kmem_cache *s, unsigned long tid)
2026 {
2027 #ifdef SLUB_DEBUG_CMPXCHG
2028 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2029 
2030 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2031 
2032 #ifdef CONFIG_PREEMPT
2033 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2034 		pr_warn("due to cpu change %d -> %d\n",
2035 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2036 	else
2037 #endif
2038 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2039 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2040 			tid_to_event(tid), tid_to_event(actual_tid));
2041 	else
2042 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2043 			actual_tid, tid, next_tid(tid));
2044 #endif
2045 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2046 }
2047 
2048 static void init_kmem_cache_cpus(struct kmem_cache *s)
2049 {
2050 	int cpu;
2051 
2052 	for_each_possible_cpu(cpu)
2053 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2054 }
2055 
2056 /*
2057  * Remove the cpu slab
2058  */
2059 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2060 				void *freelist, struct kmem_cache_cpu *c)
2061 {
2062 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2063 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2064 	int lock = 0;
2065 	enum slab_modes l = M_NONE, m = M_NONE;
2066 	void *nextfree;
2067 	int tail = DEACTIVATE_TO_HEAD;
2068 	struct page new;
2069 	struct page old;
2070 
2071 	if (page->freelist) {
2072 		stat(s, DEACTIVATE_REMOTE_FREES);
2073 		tail = DEACTIVATE_TO_TAIL;
2074 	}
2075 
2076 	/*
2077 	 * Stage one: Free all available per cpu objects back
2078 	 * to the page freelist while it is still frozen. Leave the
2079 	 * last one.
2080 	 *
2081 	 * There is no need to take the list->lock because the page
2082 	 * is still frozen.
2083 	 */
2084 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2085 		void *prior;
2086 		unsigned long counters;
2087 
2088 		do {
2089 			prior = page->freelist;
2090 			counters = page->counters;
2091 			set_freepointer(s, freelist, prior);
2092 			new.counters = counters;
2093 			new.inuse--;
2094 			VM_BUG_ON(!new.frozen);
2095 
2096 		} while (!__cmpxchg_double_slab(s, page,
2097 			prior, counters,
2098 			freelist, new.counters,
2099 			"drain percpu freelist"));
2100 
2101 		freelist = nextfree;
2102 	}
2103 
2104 	/*
2105 	 * Stage two: Ensure that the page is unfrozen while the
2106 	 * list presence reflects the actual number of objects
2107 	 * during unfreeze.
2108 	 *
2109 	 * We setup the list membership and then perform a cmpxchg
2110 	 * with the count. If there is a mismatch then the page
2111 	 * is not unfrozen but the page is on the wrong list.
2112 	 *
2113 	 * Then we restart the process which may have to remove
2114 	 * the page from the list that we just put it on again
2115 	 * because the number of objects in the slab may have
2116 	 * changed.
2117 	 */
2118 redo:
2119 
2120 	old.freelist = page->freelist;
2121 	old.counters = page->counters;
2122 	VM_BUG_ON(!old.frozen);
2123 
2124 	/* Determine target state of the slab */
2125 	new.counters = old.counters;
2126 	if (freelist) {
2127 		new.inuse--;
2128 		set_freepointer(s, freelist, old.freelist);
2129 		new.freelist = freelist;
2130 	} else
2131 		new.freelist = old.freelist;
2132 
2133 	new.frozen = 0;
2134 
2135 	if (!new.inuse && n->nr_partial >= s->min_partial)
2136 		m = M_FREE;
2137 	else if (new.freelist) {
2138 		m = M_PARTIAL;
2139 		if (!lock) {
2140 			lock = 1;
2141 			/*
2142 			 * Taking the spinlock removes the possibility
2143 			 * that acquire_slab() will see a slab page that
2144 			 * is frozen
2145 			 */
2146 			spin_lock(&n->list_lock);
2147 		}
2148 	} else {
2149 		m = M_FULL;
2150 		if (kmem_cache_debug(s) && !lock) {
2151 			lock = 1;
2152 			/*
2153 			 * This also ensures that the scanning of full
2154 			 * slabs from diagnostic functions will not see
2155 			 * any frozen slabs.
2156 			 */
2157 			spin_lock(&n->list_lock);
2158 		}
2159 	}
2160 
2161 	if (l != m) {
2162 		if (l == M_PARTIAL)
2163 			remove_partial(n, page);
2164 		else if (l == M_FULL)
2165 			remove_full(s, n, page);
2166 
2167 		if (m == M_PARTIAL)
2168 			add_partial(n, page, tail);
2169 		else if (m == M_FULL)
2170 			add_full(s, n, page);
2171 	}
2172 
2173 	l = m;
2174 	if (!__cmpxchg_double_slab(s, page,
2175 				old.freelist, old.counters,
2176 				new.freelist, new.counters,
2177 				"unfreezing slab"))
2178 		goto redo;
2179 
2180 	if (lock)
2181 		spin_unlock(&n->list_lock);
2182 
2183 	if (m == M_PARTIAL)
2184 		stat(s, tail);
2185 	else if (m == M_FULL)
2186 		stat(s, DEACTIVATE_FULL);
2187 	else if (m == M_FREE) {
2188 		stat(s, DEACTIVATE_EMPTY);
2189 		discard_slab(s, page);
2190 		stat(s, FREE_SLAB);
2191 	}
2192 
2193 	c->page = NULL;
2194 	c->freelist = NULL;
2195 }
2196 
2197 /*
2198  * Unfreeze all the cpu partial slabs.
2199  *
2200  * This function must be called with interrupts disabled
2201  * for the cpu using c (or some other guarantee must be there
2202  * to guarantee no concurrent accesses).
2203  */
2204 static void unfreeze_partials(struct kmem_cache *s,
2205 		struct kmem_cache_cpu *c)
2206 {
2207 #ifdef CONFIG_SLUB_CPU_PARTIAL
2208 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2209 	struct page *page, *discard_page = NULL;
2210 
2211 	while ((page = c->partial)) {
2212 		struct page new;
2213 		struct page old;
2214 
2215 		c->partial = page->next;
2216 
2217 		n2 = get_node(s, page_to_nid(page));
2218 		if (n != n2) {
2219 			if (n)
2220 				spin_unlock(&n->list_lock);
2221 
2222 			n = n2;
2223 			spin_lock(&n->list_lock);
2224 		}
2225 
2226 		do {
2227 
2228 			old.freelist = page->freelist;
2229 			old.counters = page->counters;
2230 			VM_BUG_ON(!old.frozen);
2231 
2232 			new.counters = old.counters;
2233 			new.freelist = old.freelist;
2234 
2235 			new.frozen = 0;
2236 
2237 		} while (!__cmpxchg_double_slab(s, page,
2238 				old.freelist, old.counters,
2239 				new.freelist, new.counters,
2240 				"unfreezing slab"));
2241 
2242 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2243 			page->next = discard_page;
2244 			discard_page = page;
2245 		} else {
2246 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2247 			stat(s, FREE_ADD_PARTIAL);
2248 		}
2249 	}
2250 
2251 	if (n)
2252 		spin_unlock(&n->list_lock);
2253 
2254 	while (discard_page) {
2255 		page = discard_page;
2256 		discard_page = discard_page->next;
2257 
2258 		stat(s, DEACTIVATE_EMPTY);
2259 		discard_slab(s, page);
2260 		stat(s, FREE_SLAB);
2261 	}
2262 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2263 }
2264 
2265 /*
2266  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2267  * partial page slot if available.
2268  *
2269  * If we did not find a slot then simply move all the partials to the
2270  * per node partial list.
2271  */
2272 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2273 {
2274 #ifdef CONFIG_SLUB_CPU_PARTIAL
2275 	struct page *oldpage;
2276 	int pages;
2277 	int pobjects;
2278 
2279 	preempt_disable();
2280 	do {
2281 		pages = 0;
2282 		pobjects = 0;
2283 		oldpage = this_cpu_read(s->cpu_slab->partial);
2284 
2285 		if (oldpage) {
2286 			pobjects = oldpage->pobjects;
2287 			pages = oldpage->pages;
2288 			if (drain && pobjects > s->cpu_partial) {
2289 				unsigned long flags;
2290 				/*
2291 				 * partial array is full. Move the existing
2292 				 * set to the per node partial list.
2293 				 */
2294 				local_irq_save(flags);
2295 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2296 				local_irq_restore(flags);
2297 				oldpage = NULL;
2298 				pobjects = 0;
2299 				pages = 0;
2300 				stat(s, CPU_PARTIAL_DRAIN);
2301 			}
2302 		}
2303 
2304 		pages++;
2305 		pobjects += page->objects - page->inuse;
2306 
2307 		page->pages = pages;
2308 		page->pobjects = pobjects;
2309 		page->next = oldpage;
2310 
2311 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2312 								!= oldpage);
2313 	if (unlikely(!s->cpu_partial)) {
2314 		unsigned long flags;
2315 
2316 		local_irq_save(flags);
2317 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2318 		local_irq_restore(flags);
2319 	}
2320 	preempt_enable();
2321 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2322 }
2323 
2324 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2325 {
2326 	stat(s, CPUSLAB_FLUSH);
2327 	deactivate_slab(s, c->page, c->freelist, c);
2328 
2329 	c->tid = next_tid(c->tid);
2330 }
2331 
2332 /*
2333  * Flush cpu slab.
2334  *
2335  * Called from IPI handler with interrupts disabled.
2336  */
2337 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2338 {
2339 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2340 
2341 	if (c->page)
2342 		flush_slab(s, c);
2343 
2344 	unfreeze_partials(s, c);
2345 }
2346 
2347 static void flush_cpu_slab(void *d)
2348 {
2349 	struct kmem_cache *s = d;
2350 
2351 	__flush_cpu_slab(s, smp_processor_id());
2352 }
2353 
2354 static bool has_cpu_slab(int cpu, void *info)
2355 {
2356 	struct kmem_cache *s = info;
2357 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2358 
2359 	return c->page || slub_percpu_partial(c);
2360 }
2361 
2362 static void flush_all(struct kmem_cache *s)
2363 {
2364 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2365 }
2366 
2367 /*
2368  * Use the cpu notifier to insure that the cpu slabs are flushed when
2369  * necessary.
2370  */
2371 static int slub_cpu_dead(unsigned int cpu)
2372 {
2373 	struct kmem_cache *s;
2374 	unsigned long flags;
2375 
2376 	mutex_lock(&slab_mutex);
2377 	list_for_each_entry(s, &slab_caches, list) {
2378 		local_irq_save(flags);
2379 		__flush_cpu_slab(s, cpu);
2380 		local_irq_restore(flags);
2381 	}
2382 	mutex_unlock(&slab_mutex);
2383 	return 0;
2384 }
2385 
2386 /*
2387  * Check if the objects in a per cpu structure fit numa
2388  * locality expectations.
2389  */
2390 static inline int node_match(struct page *page, int node)
2391 {
2392 #ifdef CONFIG_NUMA
2393 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2394 		return 0;
2395 #endif
2396 	return 1;
2397 }
2398 
2399 #ifdef CONFIG_SLUB_DEBUG
2400 static int count_free(struct page *page)
2401 {
2402 	return page->objects - page->inuse;
2403 }
2404 
2405 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2406 {
2407 	return atomic_long_read(&n->total_objects);
2408 }
2409 #endif /* CONFIG_SLUB_DEBUG */
2410 
2411 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2412 static unsigned long count_partial(struct kmem_cache_node *n,
2413 					int (*get_count)(struct page *))
2414 {
2415 	unsigned long flags;
2416 	unsigned long x = 0;
2417 	struct page *page;
2418 
2419 	spin_lock_irqsave(&n->list_lock, flags);
2420 	list_for_each_entry(page, &n->partial, slab_list)
2421 		x += get_count(page);
2422 	spin_unlock_irqrestore(&n->list_lock, flags);
2423 	return x;
2424 }
2425 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2426 
2427 static noinline void
2428 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2429 {
2430 #ifdef CONFIG_SLUB_DEBUG
2431 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2432 				      DEFAULT_RATELIMIT_BURST);
2433 	int node;
2434 	struct kmem_cache_node *n;
2435 
2436 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2437 		return;
2438 
2439 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2440 		nid, gfpflags, &gfpflags);
2441 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2442 		s->name, s->object_size, s->size, oo_order(s->oo),
2443 		oo_order(s->min));
2444 
2445 	if (oo_order(s->min) > get_order(s->object_size))
2446 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2447 			s->name);
2448 
2449 	for_each_kmem_cache_node(s, node, n) {
2450 		unsigned long nr_slabs;
2451 		unsigned long nr_objs;
2452 		unsigned long nr_free;
2453 
2454 		nr_free  = count_partial(n, count_free);
2455 		nr_slabs = node_nr_slabs(n);
2456 		nr_objs  = node_nr_objs(n);
2457 
2458 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2459 			node, nr_slabs, nr_objs, nr_free);
2460 	}
2461 #endif
2462 }
2463 
2464 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2465 			int node, struct kmem_cache_cpu **pc)
2466 {
2467 	void *freelist;
2468 	struct kmem_cache_cpu *c = *pc;
2469 	struct page *page;
2470 
2471 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2472 
2473 	freelist = get_partial(s, flags, node, c);
2474 
2475 	if (freelist)
2476 		return freelist;
2477 
2478 	page = new_slab(s, flags, node);
2479 	if (page) {
2480 		c = raw_cpu_ptr(s->cpu_slab);
2481 		if (c->page)
2482 			flush_slab(s, c);
2483 
2484 		/*
2485 		 * No other reference to the page yet so we can
2486 		 * muck around with it freely without cmpxchg
2487 		 */
2488 		freelist = page->freelist;
2489 		page->freelist = NULL;
2490 
2491 		stat(s, ALLOC_SLAB);
2492 		c->page = page;
2493 		*pc = c;
2494 	}
2495 
2496 	return freelist;
2497 }
2498 
2499 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2500 {
2501 	if (unlikely(PageSlabPfmemalloc(page)))
2502 		return gfp_pfmemalloc_allowed(gfpflags);
2503 
2504 	return true;
2505 }
2506 
2507 /*
2508  * Check the page->freelist of a page and either transfer the freelist to the
2509  * per cpu freelist or deactivate the page.
2510  *
2511  * The page is still frozen if the return value is not NULL.
2512  *
2513  * If this function returns NULL then the page has been unfrozen.
2514  *
2515  * This function must be called with interrupt disabled.
2516  */
2517 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2518 {
2519 	struct page new;
2520 	unsigned long counters;
2521 	void *freelist;
2522 
2523 	do {
2524 		freelist = page->freelist;
2525 		counters = page->counters;
2526 
2527 		new.counters = counters;
2528 		VM_BUG_ON(!new.frozen);
2529 
2530 		new.inuse = page->objects;
2531 		new.frozen = freelist != NULL;
2532 
2533 	} while (!__cmpxchg_double_slab(s, page,
2534 		freelist, counters,
2535 		NULL, new.counters,
2536 		"get_freelist"));
2537 
2538 	return freelist;
2539 }
2540 
2541 /*
2542  * Slow path. The lockless freelist is empty or we need to perform
2543  * debugging duties.
2544  *
2545  * Processing is still very fast if new objects have been freed to the
2546  * regular freelist. In that case we simply take over the regular freelist
2547  * as the lockless freelist and zap the regular freelist.
2548  *
2549  * If that is not working then we fall back to the partial lists. We take the
2550  * first element of the freelist as the object to allocate now and move the
2551  * rest of the freelist to the lockless freelist.
2552  *
2553  * And if we were unable to get a new slab from the partial slab lists then
2554  * we need to allocate a new slab. This is the slowest path since it involves
2555  * a call to the page allocator and the setup of a new slab.
2556  *
2557  * Version of __slab_alloc to use when we know that interrupts are
2558  * already disabled (which is the case for bulk allocation).
2559  */
2560 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2561 			  unsigned long addr, struct kmem_cache_cpu *c)
2562 {
2563 	void *freelist;
2564 	struct page *page;
2565 
2566 	page = c->page;
2567 	if (!page)
2568 		goto new_slab;
2569 redo:
2570 
2571 	if (unlikely(!node_match(page, node))) {
2572 		int searchnode = node;
2573 
2574 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2575 			searchnode = node_to_mem_node(node);
2576 
2577 		if (unlikely(!node_match(page, searchnode))) {
2578 			stat(s, ALLOC_NODE_MISMATCH);
2579 			deactivate_slab(s, page, c->freelist, c);
2580 			goto new_slab;
2581 		}
2582 	}
2583 
2584 	/*
2585 	 * By rights, we should be searching for a slab page that was
2586 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2587 	 * information when the page leaves the per-cpu allocator
2588 	 */
2589 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2590 		deactivate_slab(s, page, c->freelist, c);
2591 		goto new_slab;
2592 	}
2593 
2594 	/* must check again c->freelist in case of cpu migration or IRQ */
2595 	freelist = c->freelist;
2596 	if (freelist)
2597 		goto load_freelist;
2598 
2599 	freelist = get_freelist(s, page);
2600 
2601 	if (!freelist) {
2602 		c->page = NULL;
2603 		stat(s, DEACTIVATE_BYPASS);
2604 		goto new_slab;
2605 	}
2606 
2607 	stat(s, ALLOC_REFILL);
2608 
2609 load_freelist:
2610 	/*
2611 	 * freelist is pointing to the list of objects to be used.
2612 	 * page is pointing to the page from which the objects are obtained.
2613 	 * That page must be frozen for per cpu allocations to work.
2614 	 */
2615 	VM_BUG_ON(!c->page->frozen);
2616 	c->freelist = get_freepointer(s, freelist);
2617 	c->tid = next_tid(c->tid);
2618 	return freelist;
2619 
2620 new_slab:
2621 
2622 	if (slub_percpu_partial(c)) {
2623 		page = c->page = slub_percpu_partial(c);
2624 		slub_set_percpu_partial(c, page);
2625 		stat(s, CPU_PARTIAL_ALLOC);
2626 		goto redo;
2627 	}
2628 
2629 	freelist = new_slab_objects(s, gfpflags, node, &c);
2630 
2631 	if (unlikely(!freelist)) {
2632 		slab_out_of_memory(s, gfpflags, node);
2633 		return NULL;
2634 	}
2635 
2636 	page = c->page;
2637 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2638 		goto load_freelist;
2639 
2640 	/* Only entered in the debug case */
2641 	if (kmem_cache_debug(s) &&
2642 			!alloc_debug_processing(s, page, freelist, addr))
2643 		goto new_slab;	/* Slab failed checks. Next slab needed */
2644 
2645 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2646 	return freelist;
2647 }
2648 
2649 /*
2650  * Another one that disabled interrupt and compensates for possible
2651  * cpu changes by refetching the per cpu area pointer.
2652  */
2653 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2654 			  unsigned long addr, struct kmem_cache_cpu *c)
2655 {
2656 	void *p;
2657 	unsigned long flags;
2658 
2659 	local_irq_save(flags);
2660 #ifdef CONFIG_PREEMPT
2661 	/*
2662 	 * We may have been preempted and rescheduled on a different
2663 	 * cpu before disabling interrupts. Need to reload cpu area
2664 	 * pointer.
2665 	 */
2666 	c = this_cpu_ptr(s->cpu_slab);
2667 #endif
2668 
2669 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2670 	local_irq_restore(flags);
2671 	return p;
2672 }
2673 
2674 /*
2675  * If the object has been wiped upon free, make sure it's fully initialized by
2676  * zeroing out freelist pointer.
2677  */
2678 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2679 						   void *obj)
2680 {
2681 	if (unlikely(slab_want_init_on_free(s)) && obj)
2682 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2683 }
2684 
2685 /*
2686  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2687  * have the fastpath folded into their functions. So no function call
2688  * overhead for requests that can be satisfied on the fastpath.
2689  *
2690  * The fastpath works by first checking if the lockless freelist can be used.
2691  * If not then __slab_alloc is called for slow processing.
2692  *
2693  * Otherwise we can simply pick the next object from the lockless free list.
2694  */
2695 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2696 		gfp_t gfpflags, int node, unsigned long addr)
2697 {
2698 	void *object;
2699 	struct kmem_cache_cpu *c;
2700 	struct page *page;
2701 	unsigned long tid;
2702 
2703 	s = slab_pre_alloc_hook(s, gfpflags);
2704 	if (!s)
2705 		return NULL;
2706 redo:
2707 	/*
2708 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2709 	 * enabled. We may switch back and forth between cpus while
2710 	 * reading from one cpu area. That does not matter as long
2711 	 * as we end up on the original cpu again when doing the cmpxchg.
2712 	 *
2713 	 * We should guarantee that tid and kmem_cache are retrieved on
2714 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2715 	 * to check if it is matched or not.
2716 	 */
2717 	do {
2718 		tid = this_cpu_read(s->cpu_slab->tid);
2719 		c = raw_cpu_ptr(s->cpu_slab);
2720 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2721 		 unlikely(tid != READ_ONCE(c->tid)));
2722 
2723 	/*
2724 	 * Irqless object alloc/free algorithm used here depends on sequence
2725 	 * of fetching cpu_slab's data. tid should be fetched before anything
2726 	 * on c to guarantee that object and page associated with previous tid
2727 	 * won't be used with current tid. If we fetch tid first, object and
2728 	 * page could be one associated with next tid and our alloc/free
2729 	 * request will be failed. In this case, we will retry. So, no problem.
2730 	 */
2731 	barrier();
2732 
2733 	/*
2734 	 * The transaction ids are globally unique per cpu and per operation on
2735 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2736 	 * occurs on the right processor and that there was no operation on the
2737 	 * linked list in between.
2738 	 */
2739 
2740 	object = c->freelist;
2741 	page = c->page;
2742 	if (unlikely(!object || !node_match(page, node))) {
2743 		object = __slab_alloc(s, gfpflags, node, addr, c);
2744 		stat(s, ALLOC_SLOWPATH);
2745 	} else {
2746 		void *next_object = get_freepointer_safe(s, object);
2747 
2748 		/*
2749 		 * The cmpxchg will only match if there was no additional
2750 		 * operation and if we are on the right processor.
2751 		 *
2752 		 * The cmpxchg does the following atomically (without lock
2753 		 * semantics!)
2754 		 * 1. Relocate first pointer to the current per cpu area.
2755 		 * 2. Verify that tid and freelist have not been changed
2756 		 * 3. If they were not changed replace tid and freelist
2757 		 *
2758 		 * Since this is without lock semantics the protection is only
2759 		 * against code executing on this cpu *not* from access by
2760 		 * other cpus.
2761 		 */
2762 		if (unlikely(!this_cpu_cmpxchg_double(
2763 				s->cpu_slab->freelist, s->cpu_slab->tid,
2764 				object, tid,
2765 				next_object, next_tid(tid)))) {
2766 
2767 			note_cmpxchg_failure("slab_alloc", s, tid);
2768 			goto redo;
2769 		}
2770 		prefetch_freepointer(s, next_object);
2771 		stat(s, ALLOC_FASTPATH);
2772 	}
2773 
2774 	maybe_wipe_obj_freeptr(s, object);
2775 
2776 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2777 		memset(object, 0, s->object_size);
2778 
2779 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2780 
2781 	return object;
2782 }
2783 
2784 static __always_inline void *slab_alloc(struct kmem_cache *s,
2785 		gfp_t gfpflags, unsigned long addr)
2786 {
2787 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2788 }
2789 
2790 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2791 {
2792 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2793 
2794 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2795 				s->size, gfpflags);
2796 
2797 	return ret;
2798 }
2799 EXPORT_SYMBOL(kmem_cache_alloc);
2800 
2801 #ifdef CONFIG_TRACING
2802 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2803 {
2804 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2805 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2806 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2807 	return ret;
2808 }
2809 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2810 #endif
2811 
2812 #ifdef CONFIG_NUMA
2813 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2814 {
2815 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2816 
2817 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2818 				    s->object_size, s->size, gfpflags, node);
2819 
2820 	return ret;
2821 }
2822 EXPORT_SYMBOL(kmem_cache_alloc_node);
2823 
2824 #ifdef CONFIG_TRACING
2825 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2826 				    gfp_t gfpflags,
2827 				    int node, size_t size)
2828 {
2829 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2830 
2831 	trace_kmalloc_node(_RET_IP_, ret,
2832 			   size, s->size, gfpflags, node);
2833 
2834 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2835 	return ret;
2836 }
2837 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2838 #endif
2839 #endif	/* CONFIG_NUMA */
2840 
2841 /*
2842  * Slow path handling. This may still be called frequently since objects
2843  * have a longer lifetime than the cpu slabs in most processing loads.
2844  *
2845  * So we still attempt to reduce cache line usage. Just take the slab
2846  * lock and free the item. If there is no additional partial page
2847  * handling required then we can return immediately.
2848  */
2849 static void __slab_free(struct kmem_cache *s, struct page *page,
2850 			void *head, void *tail, int cnt,
2851 			unsigned long addr)
2852 
2853 {
2854 	void *prior;
2855 	int was_frozen;
2856 	struct page new;
2857 	unsigned long counters;
2858 	struct kmem_cache_node *n = NULL;
2859 	unsigned long uninitialized_var(flags);
2860 
2861 	stat(s, FREE_SLOWPATH);
2862 
2863 	if (kmem_cache_debug(s) &&
2864 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2865 		return;
2866 
2867 	do {
2868 		if (unlikely(n)) {
2869 			spin_unlock_irqrestore(&n->list_lock, flags);
2870 			n = NULL;
2871 		}
2872 		prior = page->freelist;
2873 		counters = page->counters;
2874 		set_freepointer(s, tail, prior);
2875 		new.counters = counters;
2876 		was_frozen = new.frozen;
2877 		new.inuse -= cnt;
2878 		if ((!new.inuse || !prior) && !was_frozen) {
2879 
2880 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2881 
2882 				/*
2883 				 * Slab was on no list before and will be
2884 				 * partially empty
2885 				 * We can defer the list move and instead
2886 				 * freeze it.
2887 				 */
2888 				new.frozen = 1;
2889 
2890 			} else { /* Needs to be taken off a list */
2891 
2892 				n = get_node(s, page_to_nid(page));
2893 				/*
2894 				 * Speculatively acquire the list_lock.
2895 				 * If the cmpxchg does not succeed then we may
2896 				 * drop the list_lock without any processing.
2897 				 *
2898 				 * Otherwise the list_lock will synchronize with
2899 				 * other processors updating the list of slabs.
2900 				 */
2901 				spin_lock_irqsave(&n->list_lock, flags);
2902 
2903 			}
2904 		}
2905 
2906 	} while (!cmpxchg_double_slab(s, page,
2907 		prior, counters,
2908 		head, new.counters,
2909 		"__slab_free"));
2910 
2911 	if (likely(!n)) {
2912 
2913 		/*
2914 		 * If we just froze the page then put it onto the
2915 		 * per cpu partial list.
2916 		 */
2917 		if (new.frozen && !was_frozen) {
2918 			put_cpu_partial(s, page, 1);
2919 			stat(s, CPU_PARTIAL_FREE);
2920 		}
2921 		/*
2922 		 * The list lock was not taken therefore no list
2923 		 * activity can be necessary.
2924 		 */
2925 		if (was_frozen)
2926 			stat(s, FREE_FROZEN);
2927 		return;
2928 	}
2929 
2930 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2931 		goto slab_empty;
2932 
2933 	/*
2934 	 * Objects left in the slab. If it was not on the partial list before
2935 	 * then add it.
2936 	 */
2937 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2938 		remove_full(s, n, page);
2939 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2940 		stat(s, FREE_ADD_PARTIAL);
2941 	}
2942 	spin_unlock_irqrestore(&n->list_lock, flags);
2943 	return;
2944 
2945 slab_empty:
2946 	if (prior) {
2947 		/*
2948 		 * Slab on the partial list.
2949 		 */
2950 		remove_partial(n, page);
2951 		stat(s, FREE_REMOVE_PARTIAL);
2952 	} else {
2953 		/* Slab must be on the full list */
2954 		remove_full(s, n, page);
2955 	}
2956 
2957 	spin_unlock_irqrestore(&n->list_lock, flags);
2958 	stat(s, FREE_SLAB);
2959 	discard_slab(s, page);
2960 }
2961 
2962 /*
2963  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2964  * can perform fastpath freeing without additional function calls.
2965  *
2966  * The fastpath is only possible if we are freeing to the current cpu slab
2967  * of this processor. This typically the case if we have just allocated
2968  * the item before.
2969  *
2970  * If fastpath is not possible then fall back to __slab_free where we deal
2971  * with all sorts of special processing.
2972  *
2973  * Bulk free of a freelist with several objects (all pointing to the
2974  * same page) possible by specifying head and tail ptr, plus objects
2975  * count (cnt). Bulk free indicated by tail pointer being set.
2976  */
2977 static __always_inline void do_slab_free(struct kmem_cache *s,
2978 				struct page *page, void *head, void *tail,
2979 				int cnt, unsigned long addr)
2980 {
2981 	void *tail_obj = tail ? : head;
2982 	struct kmem_cache_cpu *c;
2983 	unsigned long tid;
2984 redo:
2985 	/*
2986 	 * Determine the currently cpus per cpu slab.
2987 	 * The cpu may change afterward. However that does not matter since
2988 	 * data is retrieved via this pointer. If we are on the same cpu
2989 	 * during the cmpxchg then the free will succeed.
2990 	 */
2991 	do {
2992 		tid = this_cpu_read(s->cpu_slab->tid);
2993 		c = raw_cpu_ptr(s->cpu_slab);
2994 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2995 		 unlikely(tid != READ_ONCE(c->tid)));
2996 
2997 	/* Same with comment on barrier() in slab_alloc_node() */
2998 	barrier();
2999 
3000 	if (likely(page == c->page)) {
3001 		set_freepointer(s, tail_obj, c->freelist);
3002 
3003 		if (unlikely(!this_cpu_cmpxchg_double(
3004 				s->cpu_slab->freelist, s->cpu_slab->tid,
3005 				c->freelist, tid,
3006 				head, next_tid(tid)))) {
3007 
3008 			note_cmpxchg_failure("slab_free", s, tid);
3009 			goto redo;
3010 		}
3011 		stat(s, FREE_FASTPATH);
3012 	} else
3013 		__slab_free(s, page, head, tail_obj, cnt, addr);
3014 
3015 }
3016 
3017 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3018 				      void *head, void *tail, int cnt,
3019 				      unsigned long addr)
3020 {
3021 	/*
3022 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3023 	 * to remove objects, whose reuse must be delayed.
3024 	 */
3025 	if (slab_free_freelist_hook(s, &head, &tail))
3026 		do_slab_free(s, page, head, tail, cnt, addr);
3027 }
3028 
3029 #ifdef CONFIG_KASAN_GENERIC
3030 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3031 {
3032 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3033 }
3034 #endif
3035 
3036 void kmem_cache_free(struct kmem_cache *s, void *x)
3037 {
3038 	s = cache_from_obj(s, x);
3039 	if (!s)
3040 		return;
3041 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3042 	trace_kmem_cache_free(_RET_IP_, x);
3043 }
3044 EXPORT_SYMBOL(kmem_cache_free);
3045 
3046 struct detached_freelist {
3047 	struct page *page;
3048 	void *tail;
3049 	void *freelist;
3050 	int cnt;
3051 	struct kmem_cache *s;
3052 };
3053 
3054 /*
3055  * This function progressively scans the array with free objects (with
3056  * a limited look ahead) and extract objects belonging to the same
3057  * page.  It builds a detached freelist directly within the given
3058  * page/objects.  This can happen without any need for
3059  * synchronization, because the objects are owned by running process.
3060  * The freelist is build up as a single linked list in the objects.
3061  * The idea is, that this detached freelist can then be bulk
3062  * transferred to the real freelist(s), but only requiring a single
3063  * synchronization primitive.  Look ahead in the array is limited due
3064  * to performance reasons.
3065  */
3066 static inline
3067 int build_detached_freelist(struct kmem_cache *s, size_t size,
3068 			    void **p, struct detached_freelist *df)
3069 {
3070 	size_t first_skipped_index = 0;
3071 	int lookahead = 3;
3072 	void *object;
3073 	struct page *page;
3074 
3075 	/* Always re-init detached_freelist */
3076 	df->page = NULL;
3077 
3078 	do {
3079 		object = p[--size];
3080 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3081 	} while (!object && size);
3082 
3083 	if (!object)
3084 		return 0;
3085 
3086 	page = virt_to_head_page(object);
3087 	if (!s) {
3088 		/* Handle kalloc'ed objects */
3089 		if (unlikely(!PageSlab(page))) {
3090 			BUG_ON(!PageCompound(page));
3091 			kfree_hook(object);
3092 			__free_pages(page, compound_order(page));
3093 			p[size] = NULL; /* mark object processed */
3094 			return size;
3095 		}
3096 		/* Derive kmem_cache from object */
3097 		df->s = page->slab_cache;
3098 	} else {
3099 		df->s = cache_from_obj(s, object); /* Support for memcg */
3100 	}
3101 
3102 	/* Start new detached freelist */
3103 	df->page = page;
3104 	set_freepointer(df->s, object, NULL);
3105 	df->tail = object;
3106 	df->freelist = object;
3107 	p[size] = NULL; /* mark object processed */
3108 	df->cnt = 1;
3109 
3110 	while (size) {
3111 		object = p[--size];
3112 		if (!object)
3113 			continue; /* Skip processed objects */
3114 
3115 		/* df->page is always set at this point */
3116 		if (df->page == virt_to_head_page(object)) {
3117 			/* Opportunity build freelist */
3118 			set_freepointer(df->s, object, df->freelist);
3119 			df->freelist = object;
3120 			df->cnt++;
3121 			p[size] = NULL; /* mark object processed */
3122 
3123 			continue;
3124 		}
3125 
3126 		/* Limit look ahead search */
3127 		if (!--lookahead)
3128 			break;
3129 
3130 		if (!first_skipped_index)
3131 			first_skipped_index = size + 1;
3132 	}
3133 
3134 	return first_skipped_index;
3135 }
3136 
3137 /* Note that interrupts must be enabled when calling this function. */
3138 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3139 {
3140 	if (WARN_ON(!size))
3141 		return;
3142 
3143 	do {
3144 		struct detached_freelist df;
3145 
3146 		size = build_detached_freelist(s, size, p, &df);
3147 		if (!df.page)
3148 			continue;
3149 
3150 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3151 	} while (likely(size));
3152 }
3153 EXPORT_SYMBOL(kmem_cache_free_bulk);
3154 
3155 /* Note that interrupts must be enabled when calling this function. */
3156 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3157 			  void **p)
3158 {
3159 	struct kmem_cache_cpu *c;
3160 	int i;
3161 
3162 	/* memcg and kmem_cache debug support */
3163 	s = slab_pre_alloc_hook(s, flags);
3164 	if (unlikely(!s))
3165 		return false;
3166 	/*
3167 	 * Drain objects in the per cpu slab, while disabling local
3168 	 * IRQs, which protects against PREEMPT and interrupts
3169 	 * handlers invoking normal fastpath.
3170 	 */
3171 	local_irq_disable();
3172 	c = this_cpu_ptr(s->cpu_slab);
3173 
3174 	for (i = 0; i < size; i++) {
3175 		void *object = c->freelist;
3176 
3177 		if (unlikely(!object)) {
3178 			/*
3179 			 * Invoking slow path likely have side-effect
3180 			 * of re-populating per CPU c->freelist
3181 			 */
3182 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3183 					    _RET_IP_, c);
3184 			if (unlikely(!p[i]))
3185 				goto error;
3186 
3187 			c = this_cpu_ptr(s->cpu_slab);
3188 			maybe_wipe_obj_freeptr(s, p[i]);
3189 
3190 			continue; /* goto for-loop */
3191 		}
3192 		c->freelist = get_freepointer(s, object);
3193 		p[i] = object;
3194 		maybe_wipe_obj_freeptr(s, p[i]);
3195 	}
3196 	c->tid = next_tid(c->tid);
3197 	local_irq_enable();
3198 
3199 	/* Clear memory outside IRQ disabled fastpath loop */
3200 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3201 		int j;
3202 
3203 		for (j = 0; j < i; j++)
3204 			memset(p[j], 0, s->object_size);
3205 	}
3206 
3207 	/* memcg and kmem_cache debug support */
3208 	slab_post_alloc_hook(s, flags, size, p);
3209 	return i;
3210 error:
3211 	local_irq_enable();
3212 	slab_post_alloc_hook(s, flags, i, p);
3213 	__kmem_cache_free_bulk(s, i, p);
3214 	return 0;
3215 }
3216 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3217 
3218 
3219 /*
3220  * Object placement in a slab is made very easy because we always start at
3221  * offset 0. If we tune the size of the object to the alignment then we can
3222  * get the required alignment by putting one properly sized object after
3223  * another.
3224  *
3225  * Notice that the allocation order determines the sizes of the per cpu
3226  * caches. Each processor has always one slab available for allocations.
3227  * Increasing the allocation order reduces the number of times that slabs
3228  * must be moved on and off the partial lists and is therefore a factor in
3229  * locking overhead.
3230  */
3231 
3232 /*
3233  * Mininum / Maximum order of slab pages. This influences locking overhead
3234  * and slab fragmentation. A higher order reduces the number of partial slabs
3235  * and increases the number of allocations possible without having to
3236  * take the list_lock.
3237  */
3238 static unsigned int slub_min_order;
3239 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3240 static unsigned int slub_min_objects;
3241 
3242 /*
3243  * Calculate the order of allocation given an slab object size.
3244  *
3245  * The order of allocation has significant impact on performance and other
3246  * system components. Generally order 0 allocations should be preferred since
3247  * order 0 does not cause fragmentation in the page allocator. Larger objects
3248  * be problematic to put into order 0 slabs because there may be too much
3249  * unused space left. We go to a higher order if more than 1/16th of the slab
3250  * would be wasted.
3251  *
3252  * In order to reach satisfactory performance we must ensure that a minimum
3253  * number of objects is in one slab. Otherwise we may generate too much
3254  * activity on the partial lists which requires taking the list_lock. This is
3255  * less a concern for large slabs though which are rarely used.
3256  *
3257  * slub_max_order specifies the order where we begin to stop considering the
3258  * number of objects in a slab as critical. If we reach slub_max_order then
3259  * we try to keep the page order as low as possible. So we accept more waste
3260  * of space in favor of a small page order.
3261  *
3262  * Higher order allocations also allow the placement of more objects in a
3263  * slab and thereby reduce object handling overhead. If the user has
3264  * requested a higher mininum order then we start with that one instead of
3265  * the smallest order which will fit the object.
3266  */
3267 static inline unsigned int slab_order(unsigned int size,
3268 		unsigned int min_objects, unsigned int max_order,
3269 		unsigned int fract_leftover)
3270 {
3271 	unsigned int min_order = slub_min_order;
3272 	unsigned int order;
3273 
3274 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3275 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3276 
3277 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3278 			order <= max_order; order++) {
3279 
3280 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3281 		unsigned int rem;
3282 
3283 		rem = slab_size % size;
3284 
3285 		if (rem <= slab_size / fract_leftover)
3286 			break;
3287 	}
3288 
3289 	return order;
3290 }
3291 
3292 static inline int calculate_order(unsigned int size)
3293 {
3294 	unsigned int order;
3295 	unsigned int min_objects;
3296 	unsigned int max_objects;
3297 
3298 	/*
3299 	 * Attempt to find best configuration for a slab. This
3300 	 * works by first attempting to generate a layout with
3301 	 * the best configuration and backing off gradually.
3302 	 *
3303 	 * First we increase the acceptable waste in a slab. Then
3304 	 * we reduce the minimum objects required in a slab.
3305 	 */
3306 	min_objects = slub_min_objects;
3307 	if (!min_objects)
3308 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3309 	max_objects = order_objects(slub_max_order, size);
3310 	min_objects = min(min_objects, max_objects);
3311 
3312 	while (min_objects > 1) {
3313 		unsigned int fraction;
3314 
3315 		fraction = 16;
3316 		while (fraction >= 4) {
3317 			order = slab_order(size, min_objects,
3318 					slub_max_order, fraction);
3319 			if (order <= slub_max_order)
3320 				return order;
3321 			fraction /= 2;
3322 		}
3323 		min_objects--;
3324 	}
3325 
3326 	/*
3327 	 * We were unable to place multiple objects in a slab. Now
3328 	 * lets see if we can place a single object there.
3329 	 */
3330 	order = slab_order(size, 1, slub_max_order, 1);
3331 	if (order <= slub_max_order)
3332 		return order;
3333 
3334 	/*
3335 	 * Doh this slab cannot be placed using slub_max_order.
3336 	 */
3337 	order = slab_order(size, 1, MAX_ORDER, 1);
3338 	if (order < MAX_ORDER)
3339 		return order;
3340 	return -ENOSYS;
3341 }
3342 
3343 static void
3344 init_kmem_cache_node(struct kmem_cache_node *n)
3345 {
3346 	n->nr_partial = 0;
3347 	spin_lock_init(&n->list_lock);
3348 	INIT_LIST_HEAD(&n->partial);
3349 #ifdef CONFIG_SLUB_DEBUG
3350 	atomic_long_set(&n->nr_slabs, 0);
3351 	atomic_long_set(&n->total_objects, 0);
3352 	INIT_LIST_HEAD(&n->full);
3353 #endif
3354 }
3355 
3356 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3357 {
3358 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3359 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3360 
3361 	/*
3362 	 * Must align to double word boundary for the double cmpxchg
3363 	 * instructions to work; see __pcpu_double_call_return_bool().
3364 	 */
3365 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3366 				     2 * sizeof(void *));
3367 
3368 	if (!s->cpu_slab)
3369 		return 0;
3370 
3371 	init_kmem_cache_cpus(s);
3372 
3373 	return 1;
3374 }
3375 
3376 static struct kmem_cache *kmem_cache_node;
3377 
3378 /*
3379  * No kmalloc_node yet so do it by hand. We know that this is the first
3380  * slab on the node for this slabcache. There are no concurrent accesses
3381  * possible.
3382  *
3383  * Note that this function only works on the kmem_cache_node
3384  * when allocating for the kmem_cache_node. This is used for bootstrapping
3385  * memory on a fresh node that has no slab structures yet.
3386  */
3387 static void early_kmem_cache_node_alloc(int node)
3388 {
3389 	struct page *page;
3390 	struct kmem_cache_node *n;
3391 
3392 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3393 
3394 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3395 
3396 	BUG_ON(!page);
3397 	if (page_to_nid(page) != node) {
3398 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3399 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3400 	}
3401 
3402 	n = page->freelist;
3403 	BUG_ON(!n);
3404 #ifdef CONFIG_SLUB_DEBUG
3405 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3406 	init_tracking(kmem_cache_node, n);
3407 #endif
3408 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3409 		      GFP_KERNEL);
3410 	page->freelist = get_freepointer(kmem_cache_node, n);
3411 	page->inuse = 1;
3412 	page->frozen = 0;
3413 	kmem_cache_node->node[node] = n;
3414 	init_kmem_cache_node(n);
3415 	inc_slabs_node(kmem_cache_node, node, page->objects);
3416 
3417 	/*
3418 	 * No locks need to be taken here as it has just been
3419 	 * initialized and there is no concurrent access.
3420 	 */
3421 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3422 }
3423 
3424 static void free_kmem_cache_nodes(struct kmem_cache *s)
3425 {
3426 	int node;
3427 	struct kmem_cache_node *n;
3428 
3429 	for_each_kmem_cache_node(s, node, n) {
3430 		s->node[node] = NULL;
3431 		kmem_cache_free(kmem_cache_node, n);
3432 	}
3433 }
3434 
3435 void __kmem_cache_release(struct kmem_cache *s)
3436 {
3437 	cache_random_seq_destroy(s);
3438 	free_percpu(s->cpu_slab);
3439 	free_kmem_cache_nodes(s);
3440 }
3441 
3442 static int init_kmem_cache_nodes(struct kmem_cache *s)
3443 {
3444 	int node;
3445 
3446 	for_each_node_state(node, N_NORMAL_MEMORY) {
3447 		struct kmem_cache_node *n;
3448 
3449 		if (slab_state == DOWN) {
3450 			early_kmem_cache_node_alloc(node);
3451 			continue;
3452 		}
3453 		n = kmem_cache_alloc_node(kmem_cache_node,
3454 						GFP_KERNEL, node);
3455 
3456 		if (!n) {
3457 			free_kmem_cache_nodes(s);
3458 			return 0;
3459 		}
3460 
3461 		init_kmem_cache_node(n);
3462 		s->node[node] = n;
3463 	}
3464 	return 1;
3465 }
3466 
3467 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3468 {
3469 	if (min < MIN_PARTIAL)
3470 		min = MIN_PARTIAL;
3471 	else if (min > MAX_PARTIAL)
3472 		min = MAX_PARTIAL;
3473 	s->min_partial = min;
3474 }
3475 
3476 static void set_cpu_partial(struct kmem_cache *s)
3477 {
3478 #ifdef CONFIG_SLUB_CPU_PARTIAL
3479 	/*
3480 	 * cpu_partial determined the maximum number of objects kept in the
3481 	 * per cpu partial lists of a processor.
3482 	 *
3483 	 * Per cpu partial lists mainly contain slabs that just have one
3484 	 * object freed. If they are used for allocation then they can be
3485 	 * filled up again with minimal effort. The slab will never hit the
3486 	 * per node partial lists and therefore no locking will be required.
3487 	 *
3488 	 * This setting also determines
3489 	 *
3490 	 * A) The number of objects from per cpu partial slabs dumped to the
3491 	 *    per node list when we reach the limit.
3492 	 * B) The number of objects in cpu partial slabs to extract from the
3493 	 *    per node list when we run out of per cpu objects. We only fetch
3494 	 *    50% to keep some capacity around for frees.
3495 	 */
3496 	if (!kmem_cache_has_cpu_partial(s))
3497 		s->cpu_partial = 0;
3498 	else if (s->size >= PAGE_SIZE)
3499 		s->cpu_partial = 2;
3500 	else if (s->size >= 1024)
3501 		s->cpu_partial = 6;
3502 	else if (s->size >= 256)
3503 		s->cpu_partial = 13;
3504 	else
3505 		s->cpu_partial = 30;
3506 #endif
3507 }
3508 
3509 /*
3510  * calculate_sizes() determines the order and the distribution of data within
3511  * a slab object.
3512  */
3513 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3514 {
3515 	slab_flags_t flags = s->flags;
3516 	unsigned int size = s->object_size;
3517 	unsigned int order;
3518 
3519 	/*
3520 	 * Round up object size to the next word boundary. We can only
3521 	 * place the free pointer at word boundaries and this determines
3522 	 * the possible location of the free pointer.
3523 	 */
3524 	size = ALIGN(size, sizeof(void *));
3525 
3526 #ifdef CONFIG_SLUB_DEBUG
3527 	/*
3528 	 * Determine if we can poison the object itself. If the user of
3529 	 * the slab may touch the object after free or before allocation
3530 	 * then we should never poison the object itself.
3531 	 */
3532 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3533 			!s->ctor)
3534 		s->flags |= __OBJECT_POISON;
3535 	else
3536 		s->flags &= ~__OBJECT_POISON;
3537 
3538 
3539 	/*
3540 	 * If we are Redzoning then check if there is some space between the
3541 	 * end of the object and the free pointer. If not then add an
3542 	 * additional word to have some bytes to store Redzone information.
3543 	 */
3544 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3545 		size += sizeof(void *);
3546 #endif
3547 
3548 	/*
3549 	 * With that we have determined the number of bytes in actual use
3550 	 * by the object. This is the potential offset to the free pointer.
3551 	 */
3552 	s->inuse = size;
3553 
3554 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3555 		s->ctor)) {
3556 		/*
3557 		 * Relocate free pointer after the object if it is not
3558 		 * permitted to overwrite the first word of the object on
3559 		 * kmem_cache_free.
3560 		 *
3561 		 * This is the case if we do RCU, have a constructor or
3562 		 * destructor or are poisoning the objects.
3563 		 */
3564 		s->offset = size;
3565 		size += sizeof(void *);
3566 	}
3567 
3568 #ifdef CONFIG_SLUB_DEBUG
3569 	if (flags & SLAB_STORE_USER)
3570 		/*
3571 		 * Need to store information about allocs and frees after
3572 		 * the object.
3573 		 */
3574 		size += 2 * sizeof(struct track);
3575 #endif
3576 
3577 	kasan_cache_create(s, &size, &s->flags);
3578 #ifdef CONFIG_SLUB_DEBUG
3579 	if (flags & SLAB_RED_ZONE) {
3580 		/*
3581 		 * Add some empty padding so that we can catch
3582 		 * overwrites from earlier objects rather than let
3583 		 * tracking information or the free pointer be
3584 		 * corrupted if a user writes before the start
3585 		 * of the object.
3586 		 */
3587 		size += sizeof(void *);
3588 
3589 		s->red_left_pad = sizeof(void *);
3590 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3591 		size += s->red_left_pad;
3592 	}
3593 #endif
3594 
3595 	/*
3596 	 * SLUB stores one object immediately after another beginning from
3597 	 * offset 0. In order to align the objects we have to simply size
3598 	 * each object to conform to the alignment.
3599 	 */
3600 	size = ALIGN(size, s->align);
3601 	s->size = size;
3602 	if (forced_order >= 0)
3603 		order = forced_order;
3604 	else
3605 		order = calculate_order(size);
3606 
3607 	if ((int)order < 0)
3608 		return 0;
3609 
3610 	s->allocflags = 0;
3611 	if (order)
3612 		s->allocflags |= __GFP_COMP;
3613 
3614 	if (s->flags & SLAB_CACHE_DMA)
3615 		s->allocflags |= GFP_DMA;
3616 
3617 	if (s->flags & SLAB_CACHE_DMA32)
3618 		s->allocflags |= GFP_DMA32;
3619 
3620 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3621 		s->allocflags |= __GFP_RECLAIMABLE;
3622 
3623 	/*
3624 	 * Determine the number of objects per slab
3625 	 */
3626 	s->oo = oo_make(order, size);
3627 	s->min = oo_make(get_order(size), size);
3628 	if (oo_objects(s->oo) > oo_objects(s->max))
3629 		s->max = s->oo;
3630 
3631 	return !!oo_objects(s->oo);
3632 }
3633 
3634 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3635 {
3636 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3637 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3638 	s->random = get_random_long();
3639 #endif
3640 
3641 	if (!calculate_sizes(s, -1))
3642 		goto error;
3643 	if (disable_higher_order_debug) {
3644 		/*
3645 		 * Disable debugging flags that store metadata if the min slab
3646 		 * order increased.
3647 		 */
3648 		if (get_order(s->size) > get_order(s->object_size)) {
3649 			s->flags &= ~DEBUG_METADATA_FLAGS;
3650 			s->offset = 0;
3651 			if (!calculate_sizes(s, -1))
3652 				goto error;
3653 		}
3654 	}
3655 
3656 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3657     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3658 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3659 		/* Enable fast mode */
3660 		s->flags |= __CMPXCHG_DOUBLE;
3661 #endif
3662 
3663 	/*
3664 	 * The larger the object size is, the more pages we want on the partial
3665 	 * list to avoid pounding the page allocator excessively.
3666 	 */
3667 	set_min_partial(s, ilog2(s->size) / 2);
3668 
3669 	set_cpu_partial(s);
3670 
3671 #ifdef CONFIG_NUMA
3672 	s->remote_node_defrag_ratio = 1000;
3673 #endif
3674 
3675 	/* Initialize the pre-computed randomized freelist if slab is up */
3676 	if (slab_state >= UP) {
3677 		if (init_cache_random_seq(s))
3678 			goto error;
3679 	}
3680 
3681 	if (!init_kmem_cache_nodes(s))
3682 		goto error;
3683 
3684 	if (alloc_kmem_cache_cpus(s))
3685 		return 0;
3686 
3687 	free_kmem_cache_nodes(s);
3688 error:
3689 	return -EINVAL;
3690 }
3691 
3692 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3693 							const char *text)
3694 {
3695 #ifdef CONFIG_SLUB_DEBUG
3696 	void *addr = page_address(page);
3697 	void *p;
3698 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3699 	if (!map)
3700 		return;
3701 	slab_err(s, page, text, s->name);
3702 	slab_lock(page);
3703 
3704 	get_map(s, page, map);
3705 	for_each_object(p, s, addr, page->objects) {
3706 
3707 		if (!test_bit(slab_index(p, s, addr), map)) {
3708 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3709 			print_tracking(s, p);
3710 		}
3711 	}
3712 	slab_unlock(page);
3713 	bitmap_free(map);
3714 #endif
3715 }
3716 
3717 /*
3718  * Attempt to free all partial slabs on a node.
3719  * This is called from __kmem_cache_shutdown(). We must take list_lock
3720  * because sysfs file might still access partial list after the shutdowning.
3721  */
3722 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3723 {
3724 	LIST_HEAD(discard);
3725 	struct page *page, *h;
3726 
3727 	BUG_ON(irqs_disabled());
3728 	spin_lock_irq(&n->list_lock);
3729 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3730 		if (!page->inuse) {
3731 			remove_partial(n, page);
3732 			list_add(&page->slab_list, &discard);
3733 		} else {
3734 			list_slab_objects(s, page,
3735 			"Objects remaining in %s on __kmem_cache_shutdown()");
3736 		}
3737 	}
3738 	spin_unlock_irq(&n->list_lock);
3739 
3740 	list_for_each_entry_safe(page, h, &discard, slab_list)
3741 		discard_slab(s, page);
3742 }
3743 
3744 bool __kmem_cache_empty(struct kmem_cache *s)
3745 {
3746 	int node;
3747 	struct kmem_cache_node *n;
3748 
3749 	for_each_kmem_cache_node(s, node, n)
3750 		if (n->nr_partial || slabs_node(s, node))
3751 			return false;
3752 	return true;
3753 }
3754 
3755 /*
3756  * Release all resources used by a slab cache.
3757  */
3758 int __kmem_cache_shutdown(struct kmem_cache *s)
3759 {
3760 	int node;
3761 	struct kmem_cache_node *n;
3762 
3763 	flush_all(s);
3764 	/* Attempt to free all objects */
3765 	for_each_kmem_cache_node(s, node, n) {
3766 		free_partial(s, n);
3767 		if (n->nr_partial || slabs_node(s, node))
3768 			return 1;
3769 	}
3770 	sysfs_slab_remove(s);
3771 	return 0;
3772 }
3773 
3774 /********************************************************************
3775  *		Kmalloc subsystem
3776  *******************************************************************/
3777 
3778 static int __init setup_slub_min_order(char *str)
3779 {
3780 	get_option(&str, (int *)&slub_min_order);
3781 
3782 	return 1;
3783 }
3784 
3785 __setup("slub_min_order=", setup_slub_min_order);
3786 
3787 static int __init setup_slub_max_order(char *str)
3788 {
3789 	get_option(&str, (int *)&slub_max_order);
3790 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3791 
3792 	return 1;
3793 }
3794 
3795 __setup("slub_max_order=", setup_slub_max_order);
3796 
3797 static int __init setup_slub_min_objects(char *str)
3798 {
3799 	get_option(&str, (int *)&slub_min_objects);
3800 
3801 	return 1;
3802 }
3803 
3804 __setup("slub_min_objects=", setup_slub_min_objects);
3805 
3806 void *__kmalloc(size_t size, gfp_t flags)
3807 {
3808 	struct kmem_cache *s;
3809 	void *ret;
3810 
3811 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3812 		return kmalloc_large(size, flags);
3813 
3814 	s = kmalloc_slab(size, flags);
3815 
3816 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3817 		return s;
3818 
3819 	ret = slab_alloc(s, flags, _RET_IP_);
3820 
3821 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3822 
3823 	ret = kasan_kmalloc(s, ret, size, flags);
3824 
3825 	return ret;
3826 }
3827 EXPORT_SYMBOL(__kmalloc);
3828 
3829 #ifdef CONFIG_NUMA
3830 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3831 {
3832 	struct page *page;
3833 	void *ptr = NULL;
3834 	unsigned int order = get_order(size);
3835 
3836 	flags |= __GFP_COMP;
3837 	page = alloc_pages_node(node, flags, order);
3838 	if (page) {
3839 		ptr = page_address(page);
3840 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3841 				    1 << order);
3842 	}
3843 
3844 	return kmalloc_large_node_hook(ptr, size, flags);
3845 }
3846 
3847 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3848 {
3849 	struct kmem_cache *s;
3850 	void *ret;
3851 
3852 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3853 		ret = kmalloc_large_node(size, flags, node);
3854 
3855 		trace_kmalloc_node(_RET_IP_, ret,
3856 				   size, PAGE_SIZE << get_order(size),
3857 				   flags, node);
3858 
3859 		return ret;
3860 	}
3861 
3862 	s = kmalloc_slab(size, flags);
3863 
3864 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3865 		return s;
3866 
3867 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3868 
3869 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3870 
3871 	ret = kasan_kmalloc(s, ret, size, flags);
3872 
3873 	return ret;
3874 }
3875 EXPORT_SYMBOL(__kmalloc_node);
3876 #endif	/* CONFIG_NUMA */
3877 
3878 #ifdef CONFIG_HARDENED_USERCOPY
3879 /*
3880  * Rejects incorrectly sized objects and objects that are to be copied
3881  * to/from userspace but do not fall entirely within the containing slab
3882  * cache's usercopy region.
3883  *
3884  * Returns NULL if check passes, otherwise const char * to name of cache
3885  * to indicate an error.
3886  */
3887 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3888 			 bool to_user)
3889 {
3890 	struct kmem_cache *s;
3891 	unsigned int offset;
3892 	size_t object_size;
3893 
3894 	ptr = kasan_reset_tag(ptr);
3895 
3896 	/* Find object and usable object size. */
3897 	s = page->slab_cache;
3898 
3899 	/* Reject impossible pointers. */
3900 	if (ptr < page_address(page))
3901 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3902 			       to_user, 0, n);
3903 
3904 	/* Find offset within object. */
3905 	offset = (ptr - page_address(page)) % s->size;
3906 
3907 	/* Adjust for redzone and reject if within the redzone. */
3908 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3909 		if (offset < s->red_left_pad)
3910 			usercopy_abort("SLUB object in left red zone",
3911 				       s->name, to_user, offset, n);
3912 		offset -= s->red_left_pad;
3913 	}
3914 
3915 	/* Allow address range falling entirely within usercopy region. */
3916 	if (offset >= s->useroffset &&
3917 	    offset - s->useroffset <= s->usersize &&
3918 	    n <= s->useroffset - offset + s->usersize)
3919 		return;
3920 
3921 	/*
3922 	 * If the copy is still within the allocated object, produce
3923 	 * a warning instead of rejecting the copy. This is intended
3924 	 * to be a temporary method to find any missing usercopy
3925 	 * whitelists.
3926 	 */
3927 	object_size = slab_ksize(s);
3928 	if (usercopy_fallback &&
3929 	    offset <= object_size && n <= object_size - offset) {
3930 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3931 		return;
3932 	}
3933 
3934 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3935 }
3936 #endif /* CONFIG_HARDENED_USERCOPY */
3937 
3938 size_t __ksize(const void *object)
3939 {
3940 	struct page *page;
3941 
3942 	if (unlikely(object == ZERO_SIZE_PTR))
3943 		return 0;
3944 
3945 	page = virt_to_head_page(object);
3946 
3947 	if (unlikely(!PageSlab(page))) {
3948 		WARN_ON(!PageCompound(page));
3949 		return page_size(page);
3950 	}
3951 
3952 	return slab_ksize(page->slab_cache);
3953 }
3954 EXPORT_SYMBOL(__ksize);
3955 
3956 void kfree(const void *x)
3957 {
3958 	struct page *page;
3959 	void *object = (void *)x;
3960 
3961 	trace_kfree(_RET_IP_, x);
3962 
3963 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3964 		return;
3965 
3966 	page = virt_to_head_page(x);
3967 	if (unlikely(!PageSlab(page))) {
3968 		unsigned int order = compound_order(page);
3969 
3970 		BUG_ON(!PageCompound(page));
3971 		kfree_hook(object);
3972 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3973 				    -(1 << order));
3974 		__free_pages(page, order);
3975 		return;
3976 	}
3977 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3978 }
3979 EXPORT_SYMBOL(kfree);
3980 
3981 #define SHRINK_PROMOTE_MAX 32
3982 
3983 /*
3984  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3985  * up most to the head of the partial lists. New allocations will then
3986  * fill those up and thus they can be removed from the partial lists.
3987  *
3988  * The slabs with the least items are placed last. This results in them
3989  * being allocated from last increasing the chance that the last objects
3990  * are freed in them.
3991  */
3992 int __kmem_cache_shrink(struct kmem_cache *s)
3993 {
3994 	int node;
3995 	int i;
3996 	struct kmem_cache_node *n;
3997 	struct page *page;
3998 	struct page *t;
3999 	struct list_head discard;
4000 	struct list_head promote[SHRINK_PROMOTE_MAX];
4001 	unsigned long flags;
4002 	int ret = 0;
4003 
4004 	flush_all(s);
4005 	for_each_kmem_cache_node(s, node, n) {
4006 		INIT_LIST_HEAD(&discard);
4007 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4008 			INIT_LIST_HEAD(promote + i);
4009 
4010 		spin_lock_irqsave(&n->list_lock, flags);
4011 
4012 		/*
4013 		 * Build lists of slabs to discard or promote.
4014 		 *
4015 		 * Note that concurrent frees may occur while we hold the
4016 		 * list_lock. page->inuse here is the upper limit.
4017 		 */
4018 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4019 			int free = page->objects - page->inuse;
4020 
4021 			/* Do not reread page->inuse */
4022 			barrier();
4023 
4024 			/* We do not keep full slabs on the list */
4025 			BUG_ON(free <= 0);
4026 
4027 			if (free == page->objects) {
4028 				list_move(&page->slab_list, &discard);
4029 				n->nr_partial--;
4030 			} else if (free <= SHRINK_PROMOTE_MAX)
4031 				list_move(&page->slab_list, promote + free - 1);
4032 		}
4033 
4034 		/*
4035 		 * Promote the slabs filled up most to the head of the
4036 		 * partial list.
4037 		 */
4038 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4039 			list_splice(promote + i, &n->partial);
4040 
4041 		spin_unlock_irqrestore(&n->list_lock, flags);
4042 
4043 		/* Release empty slabs */
4044 		list_for_each_entry_safe(page, t, &discard, slab_list)
4045 			discard_slab(s, page);
4046 
4047 		if (slabs_node(s, node))
4048 			ret = 1;
4049 	}
4050 
4051 	return ret;
4052 }
4053 
4054 #ifdef CONFIG_MEMCG
4055 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4056 {
4057 	/*
4058 	 * Called with all the locks held after a sched RCU grace period.
4059 	 * Even if @s becomes empty after shrinking, we can't know that @s
4060 	 * doesn't have allocations already in-flight and thus can't
4061 	 * destroy @s until the associated memcg is released.
4062 	 *
4063 	 * However, let's remove the sysfs files for empty caches here.
4064 	 * Each cache has a lot of interface files which aren't
4065 	 * particularly useful for empty draining caches; otherwise, we can
4066 	 * easily end up with millions of unnecessary sysfs files on
4067 	 * systems which have a lot of memory and transient cgroups.
4068 	 */
4069 	if (!__kmem_cache_shrink(s))
4070 		sysfs_slab_remove(s);
4071 }
4072 
4073 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4074 {
4075 	/*
4076 	 * Disable empty slabs caching. Used to avoid pinning offline
4077 	 * memory cgroups by kmem pages that can be freed.
4078 	 */
4079 	slub_set_cpu_partial(s, 0);
4080 	s->min_partial = 0;
4081 }
4082 #endif	/* CONFIG_MEMCG */
4083 
4084 static int slab_mem_going_offline_callback(void *arg)
4085 {
4086 	struct kmem_cache *s;
4087 
4088 	mutex_lock(&slab_mutex);
4089 	list_for_each_entry(s, &slab_caches, list)
4090 		__kmem_cache_shrink(s);
4091 	mutex_unlock(&slab_mutex);
4092 
4093 	return 0;
4094 }
4095 
4096 static void slab_mem_offline_callback(void *arg)
4097 {
4098 	struct kmem_cache_node *n;
4099 	struct kmem_cache *s;
4100 	struct memory_notify *marg = arg;
4101 	int offline_node;
4102 
4103 	offline_node = marg->status_change_nid_normal;
4104 
4105 	/*
4106 	 * If the node still has available memory. we need kmem_cache_node
4107 	 * for it yet.
4108 	 */
4109 	if (offline_node < 0)
4110 		return;
4111 
4112 	mutex_lock(&slab_mutex);
4113 	list_for_each_entry(s, &slab_caches, list) {
4114 		n = get_node(s, offline_node);
4115 		if (n) {
4116 			/*
4117 			 * if n->nr_slabs > 0, slabs still exist on the node
4118 			 * that is going down. We were unable to free them,
4119 			 * and offline_pages() function shouldn't call this
4120 			 * callback. So, we must fail.
4121 			 */
4122 			BUG_ON(slabs_node(s, offline_node));
4123 
4124 			s->node[offline_node] = NULL;
4125 			kmem_cache_free(kmem_cache_node, n);
4126 		}
4127 	}
4128 	mutex_unlock(&slab_mutex);
4129 }
4130 
4131 static int slab_mem_going_online_callback(void *arg)
4132 {
4133 	struct kmem_cache_node *n;
4134 	struct kmem_cache *s;
4135 	struct memory_notify *marg = arg;
4136 	int nid = marg->status_change_nid_normal;
4137 	int ret = 0;
4138 
4139 	/*
4140 	 * If the node's memory is already available, then kmem_cache_node is
4141 	 * already created. Nothing to do.
4142 	 */
4143 	if (nid < 0)
4144 		return 0;
4145 
4146 	/*
4147 	 * We are bringing a node online. No memory is available yet. We must
4148 	 * allocate a kmem_cache_node structure in order to bring the node
4149 	 * online.
4150 	 */
4151 	mutex_lock(&slab_mutex);
4152 	list_for_each_entry(s, &slab_caches, list) {
4153 		/*
4154 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4155 		 *      since memory is not yet available from the node that
4156 		 *      is brought up.
4157 		 */
4158 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4159 		if (!n) {
4160 			ret = -ENOMEM;
4161 			goto out;
4162 		}
4163 		init_kmem_cache_node(n);
4164 		s->node[nid] = n;
4165 	}
4166 out:
4167 	mutex_unlock(&slab_mutex);
4168 	return ret;
4169 }
4170 
4171 static int slab_memory_callback(struct notifier_block *self,
4172 				unsigned long action, void *arg)
4173 {
4174 	int ret = 0;
4175 
4176 	switch (action) {
4177 	case MEM_GOING_ONLINE:
4178 		ret = slab_mem_going_online_callback(arg);
4179 		break;
4180 	case MEM_GOING_OFFLINE:
4181 		ret = slab_mem_going_offline_callback(arg);
4182 		break;
4183 	case MEM_OFFLINE:
4184 	case MEM_CANCEL_ONLINE:
4185 		slab_mem_offline_callback(arg);
4186 		break;
4187 	case MEM_ONLINE:
4188 	case MEM_CANCEL_OFFLINE:
4189 		break;
4190 	}
4191 	if (ret)
4192 		ret = notifier_from_errno(ret);
4193 	else
4194 		ret = NOTIFY_OK;
4195 	return ret;
4196 }
4197 
4198 static struct notifier_block slab_memory_callback_nb = {
4199 	.notifier_call = slab_memory_callback,
4200 	.priority = SLAB_CALLBACK_PRI,
4201 };
4202 
4203 /********************************************************************
4204  *			Basic setup of slabs
4205  *******************************************************************/
4206 
4207 /*
4208  * Used for early kmem_cache structures that were allocated using
4209  * the page allocator. Allocate them properly then fix up the pointers
4210  * that may be pointing to the wrong kmem_cache structure.
4211  */
4212 
4213 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4214 {
4215 	int node;
4216 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4217 	struct kmem_cache_node *n;
4218 
4219 	memcpy(s, static_cache, kmem_cache->object_size);
4220 
4221 	/*
4222 	 * This runs very early, and only the boot processor is supposed to be
4223 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4224 	 * IPIs around.
4225 	 */
4226 	__flush_cpu_slab(s, smp_processor_id());
4227 	for_each_kmem_cache_node(s, node, n) {
4228 		struct page *p;
4229 
4230 		list_for_each_entry(p, &n->partial, slab_list)
4231 			p->slab_cache = s;
4232 
4233 #ifdef CONFIG_SLUB_DEBUG
4234 		list_for_each_entry(p, &n->full, slab_list)
4235 			p->slab_cache = s;
4236 #endif
4237 	}
4238 	slab_init_memcg_params(s);
4239 	list_add(&s->list, &slab_caches);
4240 	memcg_link_cache(s, NULL);
4241 	return s;
4242 }
4243 
4244 void __init kmem_cache_init(void)
4245 {
4246 	static __initdata struct kmem_cache boot_kmem_cache,
4247 		boot_kmem_cache_node;
4248 
4249 	if (debug_guardpage_minorder())
4250 		slub_max_order = 0;
4251 
4252 	kmem_cache_node = &boot_kmem_cache_node;
4253 	kmem_cache = &boot_kmem_cache;
4254 
4255 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4256 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4257 
4258 	register_hotmemory_notifier(&slab_memory_callback_nb);
4259 
4260 	/* Able to allocate the per node structures */
4261 	slab_state = PARTIAL;
4262 
4263 	create_boot_cache(kmem_cache, "kmem_cache",
4264 			offsetof(struct kmem_cache, node) +
4265 				nr_node_ids * sizeof(struct kmem_cache_node *),
4266 		       SLAB_HWCACHE_ALIGN, 0, 0);
4267 
4268 	kmem_cache = bootstrap(&boot_kmem_cache);
4269 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4270 
4271 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4272 	setup_kmalloc_cache_index_table();
4273 	create_kmalloc_caches(0);
4274 
4275 	/* Setup random freelists for each cache */
4276 	init_freelist_randomization();
4277 
4278 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4279 				  slub_cpu_dead);
4280 
4281 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4282 		cache_line_size(),
4283 		slub_min_order, slub_max_order, slub_min_objects,
4284 		nr_cpu_ids, nr_node_ids);
4285 }
4286 
4287 void __init kmem_cache_init_late(void)
4288 {
4289 }
4290 
4291 struct kmem_cache *
4292 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4293 		   slab_flags_t flags, void (*ctor)(void *))
4294 {
4295 	struct kmem_cache *s, *c;
4296 
4297 	s = find_mergeable(size, align, flags, name, ctor);
4298 	if (s) {
4299 		s->refcount++;
4300 
4301 		/*
4302 		 * Adjust the object sizes so that we clear
4303 		 * the complete object on kzalloc.
4304 		 */
4305 		s->object_size = max(s->object_size, size);
4306 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4307 
4308 		for_each_memcg_cache(c, s) {
4309 			c->object_size = s->object_size;
4310 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4311 		}
4312 
4313 		if (sysfs_slab_alias(s, name)) {
4314 			s->refcount--;
4315 			s = NULL;
4316 		}
4317 	}
4318 
4319 	return s;
4320 }
4321 
4322 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4323 {
4324 	int err;
4325 
4326 	err = kmem_cache_open(s, flags);
4327 	if (err)
4328 		return err;
4329 
4330 	/* Mutex is not taken during early boot */
4331 	if (slab_state <= UP)
4332 		return 0;
4333 
4334 	memcg_propagate_slab_attrs(s);
4335 	err = sysfs_slab_add(s);
4336 	if (err)
4337 		__kmem_cache_release(s);
4338 
4339 	return err;
4340 }
4341 
4342 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4343 {
4344 	struct kmem_cache *s;
4345 	void *ret;
4346 
4347 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4348 		return kmalloc_large(size, gfpflags);
4349 
4350 	s = kmalloc_slab(size, gfpflags);
4351 
4352 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4353 		return s;
4354 
4355 	ret = slab_alloc(s, gfpflags, caller);
4356 
4357 	/* Honor the call site pointer we received. */
4358 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4359 
4360 	return ret;
4361 }
4362 
4363 #ifdef CONFIG_NUMA
4364 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4365 					int node, unsigned long caller)
4366 {
4367 	struct kmem_cache *s;
4368 	void *ret;
4369 
4370 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4371 		ret = kmalloc_large_node(size, gfpflags, node);
4372 
4373 		trace_kmalloc_node(caller, ret,
4374 				   size, PAGE_SIZE << get_order(size),
4375 				   gfpflags, node);
4376 
4377 		return ret;
4378 	}
4379 
4380 	s = kmalloc_slab(size, gfpflags);
4381 
4382 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4383 		return s;
4384 
4385 	ret = slab_alloc_node(s, gfpflags, node, caller);
4386 
4387 	/* Honor the call site pointer we received. */
4388 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4389 
4390 	return ret;
4391 }
4392 #endif
4393 
4394 #ifdef CONFIG_SYSFS
4395 static int count_inuse(struct page *page)
4396 {
4397 	return page->inuse;
4398 }
4399 
4400 static int count_total(struct page *page)
4401 {
4402 	return page->objects;
4403 }
4404 #endif
4405 
4406 #ifdef CONFIG_SLUB_DEBUG
4407 static int validate_slab(struct kmem_cache *s, struct page *page,
4408 						unsigned long *map)
4409 {
4410 	void *p;
4411 	void *addr = page_address(page);
4412 
4413 	if (!check_slab(s, page) ||
4414 			!on_freelist(s, page, NULL))
4415 		return 0;
4416 
4417 	/* Now we know that a valid freelist exists */
4418 	bitmap_zero(map, page->objects);
4419 
4420 	get_map(s, page, map);
4421 	for_each_object(p, s, addr, page->objects) {
4422 		if (test_bit(slab_index(p, s, addr), map))
4423 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4424 				return 0;
4425 	}
4426 
4427 	for_each_object(p, s, addr, page->objects)
4428 		if (!test_bit(slab_index(p, s, addr), map))
4429 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4430 				return 0;
4431 	return 1;
4432 }
4433 
4434 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4435 						unsigned long *map)
4436 {
4437 	slab_lock(page);
4438 	validate_slab(s, page, map);
4439 	slab_unlock(page);
4440 }
4441 
4442 static int validate_slab_node(struct kmem_cache *s,
4443 		struct kmem_cache_node *n, unsigned long *map)
4444 {
4445 	unsigned long count = 0;
4446 	struct page *page;
4447 	unsigned long flags;
4448 
4449 	spin_lock_irqsave(&n->list_lock, flags);
4450 
4451 	list_for_each_entry(page, &n->partial, slab_list) {
4452 		validate_slab_slab(s, page, map);
4453 		count++;
4454 	}
4455 	if (count != n->nr_partial)
4456 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4457 		       s->name, count, n->nr_partial);
4458 
4459 	if (!(s->flags & SLAB_STORE_USER))
4460 		goto out;
4461 
4462 	list_for_each_entry(page, &n->full, slab_list) {
4463 		validate_slab_slab(s, page, map);
4464 		count++;
4465 	}
4466 	if (count != atomic_long_read(&n->nr_slabs))
4467 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4468 		       s->name, count, atomic_long_read(&n->nr_slabs));
4469 
4470 out:
4471 	spin_unlock_irqrestore(&n->list_lock, flags);
4472 	return count;
4473 }
4474 
4475 static long validate_slab_cache(struct kmem_cache *s)
4476 {
4477 	int node;
4478 	unsigned long count = 0;
4479 	struct kmem_cache_node *n;
4480 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4481 
4482 	if (!map)
4483 		return -ENOMEM;
4484 
4485 	flush_all(s);
4486 	for_each_kmem_cache_node(s, node, n)
4487 		count += validate_slab_node(s, n, map);
4488 	bitmap_free(map);
4489 	return count;
4490 }
4491 /*
4492  * Generate lists of code addresses where slabcache objects are allocated
4493  * and freed.
4494  */
4495 
4496 struct location {
4497 	unsigned long count;
4498 	unsigned long addr;
4499 	long long sum_time;
4500 	long min_time;
4501 	long max_time;
4502 	long min_pid;
4503 	long max_pid;
4504 	DECLARE_BITMAP(cpus, NR_CPUS);
4505 	nodemask_t nodes;
4506 };
4507 
4508 struct loc_track {
4509 	unsigned long max;
4510 	unsigned long count;
4511 	struct location *loc;
4512 };
4513 
4514 static void free_loc_track(struct loc_track *t)
4515 {
4516 	if (t->max)
4517 		free_pages((unsigned long)t->loc,
4518 			get_order(sizeof(struct location) * t->max));
4519 }
4520 
4521 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4522 {
4523 	struct location *l;
4524 	int order;
4525 
4526 	order = get_order(sizeof(struct location) * max);
4527 
4528 	l = (void *)__get_free_pages(flags, order);
4529 	if (!l)
4530 		return 0;
4531 
4532 	if (t->count) {
4533 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4534 		free_loc_track(t);
4535 	}
4536 	t->max = max;
4537 	t->loc = l;
4538 	return 1;
4539 }
4540 
4541 static int add_location(struct loc_track *t, struct kmem_cache *s,
4542 				const struct track *track)
4543 {
4544 	long start, end, pos;
4545 	struct location *l;
4546 	unsigned long caddr;
4547 	unsigned long age = jiffies - track->when;
4548 
4549 	start = -1;
4550 	end = t->count;
4551 
4552 	for ( ; ; ) {
4553 		pos = start + (end - start + 1) / 2;
4554 
4555 		/*
4556 		 * There is nothing at "end". If we end up there
4557 		 * we need to add something to before end.
4558 		 */
4559 		if (pos == end)
4560 			break;
4561 
4562 		caddr = t->loc[pos].addr;
4563 		if (track->addr == caddr) {
4564 
4565 			l = &t->loc[pos];
4566 			l->count++;
4567 			if (track->when) {
4568 				l->sum_time += age;
4569 				if (age < l->min_time)
4570 					l->min_time = age;
4571 				if (age > l->max_time)
4572 					l->max_time = age;
4573 
4574 				if (track->pid < l->min_pid)
4575 					l->min_pid = track->pid;
4576 				if (track->pid > l->max_pid)
4577 					l->max_pid = track->pid;
4578 
4579 				cpumask_set_cpu(track->cpu,
4580 						to_cpumask(l->cpus));
4581 			}
4582 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4583 			return 1;
4584 		}
4585 
4586 		if (track->addr < caddr)
4587 			end = pos;
4588 		else
4589 			start = pos;
4590 	}
4591 
4592 	/*
4593 	 * Not found. Insert new tracking element.
4594 	 */
4595 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4596 		return 0;
4597 
4598 	l = t->loc + pos;
4599 	if (pos < t->count)
4600 		memmove(l + 1, l,
4601 			(t->count - pos) * sizeof(struct location));
4602 	t->count++;
4603 	l->count = 1;
4604 	l->addr = track->addr;
4605 	l->sum_time = age;
4606 	l->min_time = age;
4607 	l->max_time = age;
4608 	l->min_pid = track->pid;
4609 	l->max_pid = track->pid;
4610 	cpumask_clear(to_cpumask(l->cpus));
4611 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4612 	nodes_clear(l->nodes);
4613 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4614 	return 1;
4615 }
4616 
4617 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4618 		struct page *page, enum track_item alloc,
4619 		unsigned long *map)
4620 {
4621 	void *addr = page_address(page);
4622 	void *p;
4623 
4624 	bitmap_zero(map, page->objects);
4625 	get_map(s, page, map);
4626 
4627 	for_each_object(p, s, addr, page->objects)
4628 		if (!test_bit(slab_index(p, s, addr), map))
4629 			add_location(t, s, get_track(s, p, alloc));
4630 }
4631 
4632 static int list_locations(struct kmem_cache *s, char *buf,
4633 					enum track_item alloc)
4634 {
4635 	int len = 0;
4636 	unsigned long i;
4637 	struct loc_track t = { 0, 0, NULL };
4638 	int node;
4639 	struct kmem_cache_node *n;
4640 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4641 
4642 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4643 				     GFP_KERNEL)) {
4644 		bitmap_free(map);
4645 		return sprintf(buf, "Out of memory\n");
4646 	}
4647 	/* Push back cpu slabs */
4648 	flush_all(s);
4649 
4650 	for_each_kmem_cache_node(s, node, n) {
4651 		unsigned long flags;
4652 		struct page *page;
4653 
4654 		if (!atomic_long_read(&n->nr_slabs))
4655 			continue;
4656 
4657 		spin_lock_irqsave(&n->list_lock, flags);
4658 		list_for_each_entry(page, &n->partial, slab_list)
4659 			process_slab(&t, s, page, alloc, map);
4660 		list_for_each_entry(page, &n->full, slab_list)
4661 			process_slab(&t, s, page, alloc, map);
4662 		spin_unlock_irqrestore(&n->list_lock, flags);
4663 	}
4664 
4665 	for (i = 0; i < t.count; i++) {
4666 		struct location *l = &t.loc[i];
4667 
4668 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4669 			break;
4670 		len += sprintf(buf + len, "%7ld ", l->count);
4671 
4672 		if (l->addr)
4673 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4674 		else
4675 			len += sprintf(buf + len, "<not-available>");
4676 
4677 		if (l->sum_time != l->min_time) {
4678 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4679 				l->min_time,
4680 				(long)div_u64(l->sum_time, l->count),
4681 				l->max_time);
4682 		} else
4683 			len += sprintf(buf + len, " age=%ld",
4684 				l->min_time);
4685 
4686 		if (l->min_pid != l->max_pid)
4687 			len += sprintf(buf + len, " pid=%ld-%ld",
4688 				l->min_pid, l->max_pid);
4689 		else
4690 			len += sprintf(buf + len, " pid=%ld",
4691 				l->min_pid);
4692 
4693 		if (num_online_cpus() > 1 &&
4694 				!cpumask_empty(to_cpumask(l->cpus)) &&
4695 				len < PAGE_SIZE - 60)
4696 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4697 					 " cpus=%*pbl",
4698 					 cpumask_pr_args(to_cpumask(l->cpus)));
4699 
4700 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4701 				len < PAGE_SIZE - 60)
4702 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4703 					 " nodes=%*pbl",
4704 					 nodemask_pr_args(&l->nodes));
4705 
4706 		len += sprintf(buf + len, "\n");
4707 	}
4708 
4709 	free_loc_track(&t);
4710 	bitmap_free(map);
4711 	if (!t.count)
4712 		len += sprintf(buf, "No data\n");
4713 	return len;
4714 }
4715 #endif	/* CONFIG_SLUB_DEBUG */
4716 
4717 #ifdef SLUB_RESILIENCY_TEST
4718 static void __init resiliency_test(void)
4719 {
4720 	u8 *p;
4721 	int type = KMALLOC_NORMAL;
4722 
4723 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4724 
4725 	pr_err("SLUB resiliency testing\n");
4726 	pr_err("-----------------------\n");
4727 	pr_err("A. Corruption after allocation\n");
4728 
4729 	p = kzalloc(16, GFP_KERNEL);
4730 	p[16] = 0x12;
4731 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4732 	       p + 16);
4733 
4734 	validate_slab_cache(kmalloc_caches[type][4]);
4735 
4736 	/* Hmmm... The next two are dangerous */
4737 	p = kzalloc(32, GFP_KERNEL);
4738 	p[32 + sizeof(void *)] = 0x34;
4739 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4740 	       p);
4741 	pr_err("If allocated object is overwritten then not detectable\n\n");
4742 
4743 	validate_slab_cache(kmalloc_caches[type][5]);
4744 	p = kzalloc(64, GFP_KERNEL);
4745 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4746 	*p = 0x56;
4747 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4748 	       p);
4749 	pr_err("If allocated object is overwritten then not detectable\n\n");
4750 	validate_slab_cache(kmalloc_caches[type][6]);
4751 
4752 	pr_err("\nB. Corruption after free\n");
4753 	p = kzalloc(128, GFP_KERNEL);
4754 	kfree(p);
4755 	*p = 0x78;
4756 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4757 	validate_slab_cache(kmalloc_caches[type][7]);
4758 
4759 	p = kzalloc(256, GFP_KERNEL);
4760 	kfree(p);
4761 	p[50] = 0x9a;
4762 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4763 	validate_slab_cache(kmalloc_caches[type][8]);
4764 
4765 	p = kzalloc(512, GFP_KERNEL);
4766 	kfree(p);
4767 	p[512] = 0xab;
4768 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4769 	validate_slab_cache(kmalloc_caches[type][9]);
4770 }
4771 #else
4772 #ifdef CONFIG_SYSFS
4773 static void resiliency_test(void) {};
4774 #endif
4775 #endif	/* SLUB_RESILIENCY_TEST */
4776 
4777 #ifdef CONFIG_SYSFS
4778 enum slab_stat_type {
4779 	SL_ALL,			/* All slabs */
4780 	SL_PARTIAL,		/* Only partially allocated slabs */
4781 	SL_CPU,			/* Only slabs used for cpu caches */
4782 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4783 	SL_TOTAL		/* Determine object capacity not slabs */
4784 };
4785 
4786 #define SO_ALL		(1 << SL_ALL)
4787 #define SO_PARTIAL	(1 << SL_PARTIAL)
4788 #define SO_CPU		(1 << SL_CPU)
4789 #define SO_OBJECTS	(1 << SL_OBJECTS)
4790 #define SO_TOTAL	(1 << SL_TOTAL)
4791 
4792 #ifdef CONFIG_MEMCG
4793 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4794 
4795 static int __init setup_slub_memcg_sysfs(char *str)
4796 {
4797 	int v;
4798 
4799 	if (get_option(&str, &v) > 0)
4800 		memcg_sysfs_enabled = v;
4801 
4802 	return 1;
4803 }
4804 
4805 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4806 #endif
4807 
4808 static ssize_t show_slab_objects(struct kmem_cache *s,
4809 			    char *buf, unsigned long flags)
4810 {
4811 	unsigned long total = 0;
4812 	int node;
4813 	int x;
4814 	unsigned long *nodes;
4815 
4816 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4817 	if (!nodes)
4818 		return -ENOMEM;
4819 
4820 	if (flags & SO_CPU) {
4821 		int cpu;
4822 
4823 		for_each_possible_cpu(cpu) {
4824 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4825 							       cpu);
4826 			int node;
4827 			struct page *page;
4828 
4829 			page = READ_ONCE(c->page);
4830 			if (!page)
4831 				continue;
4832 
4833 			node = page_to_nid(page);
4834 			if (flags & SO_TOTAL)
4835 				x = page->objects;
4836 			else if (flags & SO_OBJECTS)
4837 				x = page->inuse;
4838 			else
4839 				x = 1;
4840 
4841 			total += x;
4842 			nodes[node] += x;
4843 
4844 			page = slub_percpu_partial_read_once(c);
4845 			if (page) {
4846 				node = page_to_nid(page);
4847 				if (flags & SO_TOTAL)
4848 					WARN_ON_ONCE(1);
4849 				else if (flags & SO_OBJECTS)
4850 					WARN_ON_ONCE(1);
4851 				else
4852 					x = page->pages;
4853 				total += x;
4854 				nodes[node] += x;
4855 			}
4856 		}
4857 	}
4858 
4859 	/*
4860 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4861 	 * already held which will conflict with an existing lock order:
4862 	 *
4863 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4864 	 *
4865 	 * We don't really need mem_hotplug_lock (to hold off
4866 	 * slab_mem_going_offline_callback) here because slab's memory hot
4867 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4868 	 */
4869 
4870 #ifdef CONFIG_SLUB_DEBUG
4871 	if (flags & SO_ALL) {
4872 		struct kmem_cache_node *n;
4873 
4874 		for_each_kmem_cache_node(s, node, n) {
4875 
4876 			if (flags & SO_TOTAL)
4877 				x = atomic_long_read(&n->total_objects);
4878 			else if (flags & SO_OBJECTS)
4879 				x = atomic_long_read(&n->total_objects) -
4880 					count_partial(n, count_free);
4881 			else
4882 				x = atomic_long_read(&n->nr_slabs);
4883 			total += x;
4884 			nodes[node] += x;
4885 		}
4886 
4887 	} else
4888 #endif
4889 	if (flags & SO_PARTIAL) {
4890 		struct kmem_cache_node *n;
4891 
4892 		for_each_kmem_cache_node(s, node, n) {
4893 			if (flags & SO_TOTAL)
4894 				x = count_partial(n, count_total);
4895 			else if (flags & SO_OBJECTS)
4896 				x = count_partial(n, count_inuse);
4897 			else
4898 				x = n->nr_partial;
4899 			total += x;
4900 			nodes[node] += x;
4901 		}
4902 	}
4903 	x = sprintf(buf, "%lu", total);
4904 #ifdef CONFIG_NUMA
4905 	for (node = 0; node < nr_node_ids; node++)
4906 		if (nodes[node])
4907 			x += sprintf(buf + x, " N%d=%lu",
4908 					node, nodes[node]);
4909 #endif
4910 	kfree(nodes);
4911 	return x + sprintf(buf + x, "\n");
4912 }
4913 
4914 #ifdef CONFIG_SLUB_DEBUG
4915 static int any_slab_objects(struct kmem_cache *s)
4916 {
4917 	int node;
4918 	struct kmem_cache_node *n;
4919 
4920 	for_each_kmem_cache_node(s, node, n)
4921 		if (atomic_long_read(&n->total_objects))
4922 			return 1;
4923 
4924 	return 0;
4925 }
4926 #endif
4927 
4928 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4929 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4930 
4931 struct slab_attribute {
4932 	struct attribute attr;
4933 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4934 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4935 };
4936 
4937 #define SLAB_ATTR_RO(_name) \
4938 	static struct slab_attribute _name##_attr = \
4939 	__ATTR(_name, 0400, _name##_show, NULL)
4940 
4941 #define SLAB_ATTR(_name) \
4942 	static struct slab_attribute _name##_attr =  \
4943 	__ATTR(_name, 0600, _name##_show, _name##_store)
4944 
4945 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4946 {
4947 	return sprintf(buf, "%u\n", s->size);
4948 }
4949 SLAB_ATTR_RO(slab_size);
4950 
4951 static ssize_t align_show(struct kmem_cache *s, char *buf)
4952 {
4953 	return sprintf(buf, "%u\n", s->align);
4954 }
4955 SLAB_ATTR_RO(align);
4956 
4957 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4958 {
4959 	return sprintf(buf, "%u\n", s->object_size);
4960 }
4961 SLAB_ATTR_RO(object_size);
4962 
4963 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4964 {
4965 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4966 }
4967 SLAB_ATTR_RO(objs_per_slab);
4968 
4969 static ssize_t order_store(struct kmem_cache *s,
4970 				const char *buf, size_t length)
4971 {
4972 	unsigned int order;
4973 	int err;
4974 
4975 	err = kstrtouint(buf, 10, &order);
4976 	if (err)
4977 		return err;
4978 
4979 	if (order > slub_max_order || order < slub_min_order)
4980 		return -EINVAL;
4981 
4982 	calculate_sizes(s, order);
4983 	return length;
4984 }
4985 
4986 static ssize_t order_show(struct kmem_cache *s, char *buf)
4987 {
4988 	return sprintf(buf, "%u\n", oo_order(s->oo));
4989 }
4990 SLAB_ATTR(order);
4991 
4992 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4993 {
4994 	return sprintf(buf, "%lu\n", s->min_partial);
4995 }
4996 
4997 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4998 				 size_t length)
4999 {
5000 	unsigned long min;
5001 	int err;
5002 
5003 	err = kstrtoul(buf, 10, &min);
5004 	if (err)
5005 		return err;
5006 
5007 	set_min_partial(s, min);
5008 	return length;
5009 }
5010 SLAB_ATTR(min_partial);
5011 
5012 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5013 {
5014 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5015 }
5016 
5017 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5018 				 size_t length)
5019 {
5020 	unsigned int objects;
5021 	int err;
5022 
5023 	err = kstrtouint(buf, 10, &objects);
5024 	if (err)
5025 		return err;
5026 	if (objects && !kmem_cache_has_cpu_partial(s))
5027 		return -EINVAL;
5028 
5029 	slub_set_cpu_partial(s, objects);
5030 	flush_all(s);
5031 	return length;
5032 }
5033 SLAB_ATTR(cpu_partial);
5034 
5035 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5036 {
5037 	if (!s->ctor)
5038 		return 0;
5039 	return sprintf(buf, "%pS\n", s->ctor);
5040 }
5041 SLAB_ATTR_RO(ctor);
5042 
5043 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5044 {
5045 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5046 }
5047 SLAB_ATTR_RO(aliases);
5048 
5049 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5050 {
5051 	return show_slab_objects(s, buf, SO_PARTIAL);
5052 }
5053 SLAB_ATTR_RO(partial);
5054 
5055 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5056 {
5057 	return show_slab_objects(s, buf, SO_CPU);
5058 }
5059 SLAB_ATTR_RO(cpu_slabs);
5060 
5061 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5062 {
5063 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5064 }
5065 SLAB_ATTR_RO(objects);
5066 
5067 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5068 {
5069 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5070 }
5071 SLAB_ATTR_RO(objects_partial);
5072 
5073 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5074 {
5075 	int objects = 0;
5076 	int pages = 0;
5077 	int cpu;
5078 	int len;
5079 
5080 	for_each_online_cpu(cpu) {
5081 		struct page *page;
5082 
5083 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5084 
5085 		if (page) {
5086 			pages += page->pages;
5087 			objects += page->pobjects;
5088 		}
5089 	}
5090 
5091 	len = sprintf(buf, "%d(%d)", objects, pages);
5092 
5093 #ifdef CONFIG_SMP
5094 	for_each_online_cpu(cpu) {
5095 		struct page *page;
5096 
5097 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5098 
5099 		if (page && len < PAGE_SIZE - 20)
5100 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5101 				page->pobjects, page->pages);
5102 	}
5103 #endif
5104 	return len + sprintf(buf + len, "\n");
5105 }
5106 SLAB_ATTR_RO(slabs_cpu_partial);
5107 
5108 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5109 {
5110 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5111 }
5112 
5113 static ssize_t reclaim_account_store(struct kmem_cache *s,
5114 				const char *buf, size_t length)
5115 {
5116 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5117 	if (buf[0] == '1')
5118 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5119 	return length;
5120 }
5121 SLAB_ATTR(reclaim_account);
5122 
5123 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5124 {
5125 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5126 }
5127 SLAB_ATTR_RO(hwcache_align);
5128 
5129 #ifdef CONFIG_ZONE_DMA
5130 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5131 {
5132 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5133 }
5134 SLAB_ATTR_RO(cache_dma);
5135 #endif
5136 
5137 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5138 {
5139 	return sprintf(buf, "%u\n", s->usersize);
5140 }
5141 SLAB_ATTR_RO(usersize);
5142 
5143 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5144 {
5145 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5146 }
5147 SLAB_ATTR_RO(destroy_by_rcu);
5148 
5149 #ifdef CONFIG_SLUB_DEBUG
5150 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5151 {
5152 	return show_slab_objects(s, buf, SO_ALL);
5153 }
5154 SLAB_ATTR_RO(slabs);
5155 
5156 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5157 {
5158 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5159 }
5160 SLAB_ATTR_RO(total_objects);
5161 
5162 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5163 {
5164 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5165 }
5166 
5167 static ssize_t sanity_checks_store(struct kmem_cache *s,
5168 				const char *buf, size_t length)
5169 {
5170 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5171 	if (buf[0] == '1') {
5172 		s->flags &= ~__CMPXCHG_DOUBLE;
5173 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5174 	}
5175 	return length;
5176 }
5177 SLAB_ATTR(sanity_checks);
5178 
5179 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5180 {
5181 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5182 }
5183 
5184 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5185 							size_t length)
5186 {
5187 	/*
5188 	 * Tracing a merged cache is going to give confusing results
5189 	 * as well as cause other issues like converting a mergeable
5190 	 * cache into an umergeable one.
5191 	 */
5192 	if (s->refcount > 1)
5193 		return -EINVAL;
5194 
5195 	s->flags &= ~SLAB_TRACE;
5196 	if (buf[0] == '1') {
5197 		s->flags &= ~__CMPXCHG_DOUBLE;
5198 		s->flags |= SLAB_TRACE;
5199 	}
5200 	return length;
5201 }
5202 SLAB_ATTR(trace);
5203 
5204 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5205 {
5206 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5207 }
5208 
5209 static ssize_t red_zone_store(struct kmem_cache *s,
5210 				const char *buf, size_t length)
5211 {
5212 	if (any_slab_objects(s))
5213 		return -EBUSY;
5214 
5215 	s->flags &= ~SLAB_RED_ZONE;
5216 	if (buf[0] == '1') {
5217 		s->flags |= SLAB_RED_ZONE;
5218 	}
5219 	calculate_sizes(s, -1);
5220 	return length;
5221 }
5222 SLAB_ATTR(red_zone);
5223 
5224 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5225 {
5226 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5227 }
5228 
5229 static ssize_t poison_store(struct kmem_cache *s,
5230 				const char *buf, size_t length)
5231 {
5232 	if (any_slab_objects(s))
5233 		return -EBUSY;
5234 
5235 	s->flags &= ~SLAB_POISON;
5236 	if (buf[0] == '1') {
5237 		s->flags |= SLAB_POISON;
5238 	}
5239 	calculate_sizes(s, -1);
5240 	return length;
5241 }
5242 SLAB_ATTR(poison);
5243 
5244 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5245 {
5246 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5247 }
5248 
5249 static ssize_t store_user_store(struct kmem_cache *s,
5250 				const char *buf, size_t length)
5251 {
5252 	if (any_slab_objects(s))
5253 		return -EBUSY;
5254 
5255 	s->flags &= ~SLAB_STORE_USER;
5256 	if (buf[0] == '1') {
5257 		s->flags &= ~__CMPXCHG_DOUBLE;
5258 		s->flags |= SLAB_STORE_USER;
5259 	}
5260 	calculate_sizes(s, -1);
5261 	return length;
5262 }
5263 SLAB_ATTR(store_user);
5264 
5265 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5266 {
5267 	return 0;
5268 }
5269 
5270 static ssize_t validate_store(struct kmem_cache *s,
5271 			const char *buf, size_t length)
5272 {
5273 	int ret = -EINVAL;
5274 
5275 	if (buf[0] == '1') {
5276 		ret = validate_slab_cache(s);
5277 		if (ret >= 0)
5278 			ret = length;
5279 	}
5280 	return ret;
5281 }
5282 SLAB_ATTR(validate);
5283 
5284 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5285 {
5286 	if (!(s->flags & SLAB_STORE_USER))
5287 		return -ENOSYS;
5288 	return list_locations(s, buf, TRACK_ALLOC);
5289 }
5290 SLAB_ATTR_RO(alloc_calls);
5291 
5292 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5293 {
5294 	if (!(s->flags & SLAB_STORE_USER))
5295 		return -ENOSYS;
5296 	return list_locations(s, buf, TRACK_FREE);
5297 }
5298 SLAB_ATTR_RO(free_calls);
5299 #endif /* CONFIG_SLUB_DEBUG */
5300 
5301 #ifdef CONFIG_FAILSLAB
5302 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5303 {
5304 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5305 }
5306 
5307 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5308 							size_t length)
5309 {
5310 	if (s->refcount > 1)
5311 		return -EINVAL;
5312 
5313 	s->flags &= ~SLAB_FAILSLAB;
5314 	if (buf[0] == '1')
5315 		s->flags |= SLAB_FAILSLAB;
5316 	return length;
5317 }
5318 SLAB_ATTR(failslab);
5319 #endif
5320 
5321 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5322 {
5323 	return 0;
5324 }
5325 
5326 static ssize_t shrink_store(struct kmem_cache *s,
5327 			const char *buf, size_t length)
5328 {
5329 	if (buf[0] == '1')
5330 		kmem_cache_shrink_all(s);
5331 	else
5332 		return -EINVAL;
5333 	return length;
5334 }
5335 SLAB_ATTR(shrink);
5336 
5337 #ifdef CONFIG_NUMA
5338 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5339 {
5340 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5341 }
5342 
5343 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5344 				const char *buf, size_t length)
5345 {
5346 	unsigned int ratio;
5347 	int err;
5348 
5349 	err = kstrtouint(buf, 10, &ratio);
5350 	if (err)
5351 		return err;
5352 	if (ratio > 100)
5353 		return -ERANGE;
5354 
5355 	s->remote_node_defrag_ratio = ratio * 10;
5356 
5357 	return length;
5358 }
5359 SLAB_ATTR(remote_node_defrag_ratio);
5360 #endif
5361 
5362 #ifdef CONFIG_SLUB_STATS
5363 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5364 {
5365 	unsigned long sum  = 0;
5366 	int cpu;
5367 	int len;
5368 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5369 
5370 	if (!data)
5371 		return -ENOMEM;
5372 
5373 	for_each_online_cpu(cpu) {
5374 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5375 
5376 		data[cpu] = x;
5377 		sum += x;
5378 	}
5379 
5380 	len = sprintf(buf, "%lu", sum);
5381 
5382 #ifdef CONFIG_SMP
5383 	for_each_online_cpu(cpu) {
5384 		if (data[cpu] && len < PAGE_SIZE - 20)
5385 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5386 	}
5387 #endif
5388 	kfree(data);
5389 	return len + sprintf(buf + len, "\n");
5390 }
5391 
5392 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5393 {
5394 	int cpu;
5395 
5396 	for_each_online_cpu(cpu)
5397 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5398 }
5399 
5400 #define STAT_ATTR(si, text) 					\
5401 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5402 {								\
5403 	return show_stat(s, buf, si);				\
5404 }								\
5405 static ssize_t text##_store(struct kmem_cache *s,		\
5406 				const char *buf, size_t length)	\
5407 {								\
5408 	if (buf[0] != '0')					\
5409 		return -EINVAL;					\
5410 	clear_stat(s, si);					\
5411 	return length;						\
5412 }								\
5413 SLAB_ATTR(text);						\
5414 
5415 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5416 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5417 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5418 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5419 STAT_ATTR(FREE_FROZEN, free_frozen);
5420 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5421 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5422 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5423 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5424 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5425 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5426 STAT_ATTR(FREE_SLAB, free_slab);
5427 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5428 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5429 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5430 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5431 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5432 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5433 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5434 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5435 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5436 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5437 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5438 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5439 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5440 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5441 #endif	/* CONFIG_SLUB_STATS */
5442 
5443 static struct attribute *slab_attrs[] = {
5444 	&slab_size_attr.attr,
5445 	&object_size_attr.attr,
5446 	&objs_per_slab_attr.attr,
5447 	&order_attr.attr,
5448 	&min_partial_attr.attr,
5449 	&cpu_partial_attr.attr,
5450 	&objects_attr.attr,
5451 	&objects_partial_attr.attr,
5452 	&partial_attr.attr,
5453 	&cpu_slabs_attr.attr,
5454 	&ctor_attr.attr,
5455 	&aliases_attr.attr,
5456 	&align_attr.attr,
5457 	&hwcache_align_attr.attr,
5458 	&reclaim_account_attr.attr,
5459 	&destroy_by_rcu_attr.attr,
5460 	&shrink_attr.attr,
5461 	&slabs_cpu_partial_attr.attr,
5462 #ifdef CONFIG_SLUB_DEBUG
5463 	&total_objects_attr.attr,
5464 	&slabs_attr.attr,
5465 	&sanity_checks_attr.attr,
5466 	&trace_attr.attr,
5467 	&red_zone_attr.attr,
5468 	&poison_attr.attr,
5469 	&store_user_attr.attr,
5470 	&validate_attr.attr,
5471 	&alloc_calls_attr.attr,
5472 	&free_calls_attr.attr,
5473 #endif
5474 #ifdef CONFIG_ZONE_DMA
5475 	&cache_dma_attr.attr,
5476 #endif
5477 #ifdef CONFIG_NUMA
5478 	&remote_node_defrag_ratio_attr.attr,
5479 #endif
5480 #ifdef CONFIG_SLUB_STATS
5481 	&alloc_fastpath_attr.attr,
5482 	&alloc_slowpath_attr.attr,
5483 	&free_fastpath_attr.attr,
5484 	&free_slowpath_attr.attr,
5485 	&free_frozen_attr.attr,
5486 	&free_add_partial_attr.attr,
5487 	&free_remove_partial_attr.attr,
5488 	&alloc_from_partial_attr.attr,
5489 	&alloc_slab_attr.attr,
5490 	&alloc_refill_attr.attr,
5491 	&alloc_node_mismatch_attr.attr,
5492 	&free_slab_attr.attr,
5493 	&cpuslab_flush_attr.attr,
5494 	&deactivate_full_attr.attr,
5495 	&deactivate_empty_attr.attr,
5496 	&deactivate_to_head_attr.attr,
5497 	&deactivate_to_tail_attr.attr,
5498 	&deactivate_remote_frees_attr.attr,
5499 	&deactivate_bypass_attr.attr,
5500 	&order_fallback_attr.attr,
5501 	&cmpxchg_double_fail_attr.attr,
5502 	&cmpxchg_double_cpu_fail_attr.attr,
5503 	&cpu_partial_alloc_attr.attr,
5504 	&cpu_partial_free_attr.attr,
5505 	&cpu_partial_node_attr.attr,
5506 	&cpu_partial_drain_attr.attr,
5507 #endif
5508 #ifdef CONFIG_FAILSLAB
5509 	&failslab_attr.attr,
5510 #endif
5511 	&usersize_attr.attr,
5512 
5513 	NULL
5514 };
5515 
5516 static const struct attribute_group slab_attr_group = {
5517 	.attrs = slab_attrs,
5518 };
5519 
5520 static ssize_t slab_attr_show(struct kobject *kobj,
5521 				struct attribute *attr,
5522 				char *buf)
5523 {
5524 	struct slab_attribute *attribute;
5525 	struct kmem_cache *s;
5526 	int err;
5527 
5528 	attribute = to_slab_attr(attr);
5529 	s = to_slab(kobj);
5530 
5531 	if (!attribute->show)
5532 		return -EIO;
5533 
5534 	err = attribute->show(s, buf);
5535 
5536 	return err;
5537 }
5538 
5539 static ssize_t slab_attr_store(struct kobject *kobj,
5540 				struct attribute *attr,
5541 				const char *buf, size_t len)
5542 {
5543 	struct slab_attribute *attribute;
5544 	struct kmem_cache *s;
5545 	int err;
5546 
5547 	attribute = to_slab_attr(attr);
5548 	s = to_slab(kobj);
5549 
5550 	if (!attribute->store)
5551 		return -EIO;
5552 
5553 	err = attribute->store(s, buf, len);
5554 #ifdef CONFIG_MEMCG
5555 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5556 		struct kmem_cache *c;
5557 
5558 		mutex_lock(&slab_mutex);
5559 		if (s->max_attr_size < len)
5560 			s->max_attr_size = len;
5561 
5562 		/*
5563 		 * This is a best effort propagation, so this function's return
5564 		 * value will be determined by the parent cache only. This is
5565 		 * basically because not all attributes will have a well
5566 		 * defined semantics for rollbacks - most of the actions will
5567 		 * have permanent effects.
5568 		 *
5569 		 * Returning the error value of any of the children that fail
5570 		 * is not 100 % defined, in the sense that users seeing the
5571 		 * error code won't be able to know anything about the state of
5572 		 * the cache.
5573 		 *
5574 		 * Only returning the error code for the parent cache at least
5575 		 * has well defined semantics. The cache being written to
5576 		 * directly either failed or succeeded, in which case we loop
5577 		 * through the descendants with best-effort propagation.
5578 		 */
5579 		for_each_memcg_cache(c, s)
5580 			attribute->store(c, buf, len);
5581 		mutex_unlock(&slab_mutex);
5582 	}
5583 #endif
5584 	return err;
5585 }
5586 
5587 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5588 {
5589 #ifdef CONFIG_MEMCG
5590 	int i;
5591 	char *buffer = NULL;
5592 	struct kmem_cache *root_cache;
5593 
5594 	if (is_root_cache(s))
5595 		return;
5596 
5597 	root_cache = s->memcg_params.root_cache;
5598 
5599 	/*
5600 	 * This mean this cache had no attribute written. Therefore, no point
5601 	 * in copying default values around
5602 	 */
5603 	if (!root_cache->max_attr_size)
5604 		return;
5605 
5606 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5607 		char mbuf[64];
5608 		char *buf;
5609 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5610 		ssize_t len;
5611 
5612 		if (!attr || !attr->store || !attr->show)
5613 			continue;
5614 
5615 		/*
5616 		 * It is really bad that we have to allocate here, so we will
5617 		 * do it only as a fallback. If we actually allocate, though,
5618 		 * we can just use the allocated buffer until the end.
5619 		 *
5620 		 * Most of the slub attributes will tend to be very small in
5621 		 * size, but sysfs allows buffers up to a page, so they can
5622 		 * theoretically happen.
5623 		 */
5624 		if (buffer)
5625 			buf = buffer;
5626 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5627 			buf = mbuf;
5628 		else {
5629 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5630 			if (WARN_ON(!buffer))
5631 				continue;
5632 			buf = buffer;
5633 		}
5634 
5635 		len = attr->show(root_cache, buf);
5636 		if (len > 0)
5637 			attr->store(s, buf, len);
5638 	}
5639 
5640 	if (buffer)
5641 		free_page((unsigned long)buffer);
5642 #endif	/* CONFIG_MEMCG */
5643 }
5644 
5645 static void kmem_cache_release(struct kobject *k)
5646 {
5647 	slab_kmem_cache_release(to_slab(k));
5648 }
5649 
5650 static const struct sysfs_ops slab_sysfs_ops = {
5651 	.show = slab_attr_show,
5652 	.store = slab_attr_store,
5653 };
5654 
5655 static struct kobj_type slab_ktype = {
5656 	.sysfs_ops = &slab_sysfs_ops,
5657 	.release = kmem_cache_release,
5658 };
5659 
5660 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5661 {
5662 	struct kobj_type *ktype = get_ktype(kobj);
5663 
5664 	if (ktype == &slab_ktype)
5665 		return 1;
5666 	return 0;
5667 }
5668 
5669 static const struct kset_uevent_ops slab_uevent_ops = {
5670 	.filter = uevent_filter,
5671 };
5672 
5673 static struct kset *slab_kset;
5674 
5675 static inline struct kset *cache_kset(struct kmem_cache *s)
5676 {
5677 #ifdef CONFIG_MEMCG
5678 	if (!is_root_cache(s))
5679 		return s->memcg_params.root_cache->memcg_kset;
5680 #endif
5681 	return slab_kset;
5682 }
5683 
5684 #define ID_STR_LENGTH 64
5685 
5686 /* Create a unique string id for a slab cache:
5687  *
5688  * Format	:[flags-]size
5689  */
5690 static char *create_unique_id(struct kmem_cache *s)
5691 {
5692 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5693 	char *p = name;
5694 
5695 	BUG_ON(!name);
5696 
5697 	*p++ = ':';
5698 	/*
5699 	 * First flags affecting slabcache operations. We will only
5700 	 * get here for aliasable slabs so we do not need to support
5701 	 * too many flags. The flags here must cover all flags that
5702 	 * are matched during merging to guarantee that the id is
5703 	 * unique.
5704 	 */
5705 	if (s->flags & SLAB_CACHE_DMA)
5706 		*p++ = 'd';
5707 	if (s->flags & SLAB_CACHE_DMA32)
5708 		*p++ = 'D';
5709 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5710 		*p++ = 'a';
5711 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5712 		*p++ = 'F';
5713 	if (s->flags & SLAB_ACCOUNT)
5714 		*p++ = 'A';
5715 	if (p != name + 1)
5716 		*p++ = '-';
5717 	p += sprintf(p, "%07u", s->size);
5718 
5719 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5720 	return name;
5721 }
5722 
5723 static void sysfs_slab_remove_workfn(struct work_struct *work)
5724 {
5725 	struct kmem_cache *s =
5726 		container_of(work, struct kmem_cache, kobj_remove_work);
5727 
5728 	if (!s->kobj.state_in_sysfs)
5729 		/*
5730 		 * For a memcg cache, this may be called during
5731 		 * deactivation and again on shutdown.  Remove only once.
5732 		 * A cache is never shut down before deactivation is
5733 		 * complete, so no need to worry about synchronization.
5734 		 */
5735 		goto out;
5736 
5737 #ifdef CONFIG_MEMCG
5738 	kset_unregister(s->memcg_kset);
5739 #endif
5740 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5741 out:
5742 	kobject_put(&s->kobj);
5743 }
5744 
5745 static int sysfs_slab_add(struct kmem_cache *s)
5746 {
5747 	int err;
5748 	const char *name;
5749 	struct kset *kset = cache_kset(s);
5750 	int unmergeable = slab_unmergeable(s);
5751 
5752 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5753 
5754 	if (!kset) {
5755 		kobject_init(&s->kobj, &slab_ktype);
5756 		return 0;
5757 	}
5758 
5759 	if (!unmergeable && disable_higher_order_debug &&
5760 			(slub_debug & DEBUG_METADATA_FLAGS))
5761 		unmergeable = 1;
5762 
5763 	if (unmergeable) {
5764 		/*
5765 		 * Slabcache can never be merged so we can use the name proper.
5766 		 * This is typically the case for debug situations. In that
5767 		 * case we can catch duplicate names easily.
5768 		 */
5769 		sysfs_remove_link(&slab_kset->kobj, s->name);
5770 		name = s->name;
5771 	} else {
5772 		/*
5773 		 * Create a unique name for the slab as a target
5774 		 * for the symlinks.
5775 		 */
5776 		name = create_unique_id(s);
5777 	}
5778 
5779 	s->kobj.kset = kset;
5780 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5781 	if (err)
5782 		goto out;
5783 
5784 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5785 	if (err)
5786 		goto out_del_kobj;
5787 
5788 #ifdef CONFIG_MEMCG
5789 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5790 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5791 		if (!s->memcg_kset) {
5792 			err = -ENOMEM;
5793 			goto out_del_kobj;
5794 		}
5795 	}
5796 #endif
5797 
5798 	kobject_uevent(&s->kobj, KOBJ_ADD);
5799 	if (!unmergeable) {
5800 		/* Setup first alias */
5801 		sysfs_slab_alias(s, s->name);
5802 	}
5803 out:
5804 	if (!unmergeable)
5805 		kfree(name);
5806 	return err;
5807 out_del_kobj:
5808 	kobject_del(&s->kobj);
5809 	goto out;
5810 }
5811 
5812 static void sysfs_slab_remove(struct kmem_cache *s)
5813 {
5814 	if (slab_state < FULL)
5815 		/*
5816 		 * Sysfs has not been setup yet so no need to remove the
5817 		 * cache from sysfs.
5818 		 */
5819 		return;
5820 
5821 	kobject_get(&s->kobj);
5822 	schedule_work(&s->kobj_remove_work);
5823 }
5824 
5825 void sysfs_slab_unlink(struct kmem_cache *s)
5826 {
5827 	if (slab_state >= FULL)
5828 		kobject_del(&s->kobj);
5829 }
5830 
5831 void sysfs_slab_release(struct kmem_cache *s)
5832 {
5833 	if (slab_state >= FULL)
5834 		kobject_put(&s->kobj);
5835 }
5836 
5837 /*
5838  * Need to buffer aliases during bootup until sysfs becomes
5839  * available lest we lose that information.
5840  */
5841 struct saved_alias {
5842 	struct kmem_cache *s;
5843 	const char *name;
5844 	struct saved_alias *next;
5845 };
5846 
5847 static struct saved_alias *alias_list;
5848 
5849 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5850 {
5851 	struct saved_alias *al;
5852 
5853 	if (slab_state == FULL) {
5854 		/*
5855 		 * If we have a leftover link then remove it.
5856 		 */
5857 		sysfs_remove_link(&slab_kset->kobj, name);
5858 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5859 	}
5860 
5861 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5862 	if (!al)
5863 		return -ENOMEM;
5864 
5865 	al->s = s;
5866 	al->name = name;
5867 	al->next = alias_list;
5868 	alias_list = al;
5869 	return 0;
5870 }
5871 
5872 static int __init slab_sysfs_init(void)
5873 {
5874 	struct kmem_cache *s;
5875 	int err;
5876 
5877 	mutex_lock(&slab_mutex);
5878 
5879 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5880 	if (!slab_kset) {
5881 		mutex_unlock(&slab_mutex);
5882 		pr_err("Cannot register slab subsystem.\n");
5883 		return -ENOSYS;
5884 	}
5885 
5886 	slab_state = FULL;
5887 
5888 	list_for_each_entry(s, &slab_caches, list) {
5889 		err = sysfs_slab_add(s);
5890 		if (err)
5891 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5892 			       s->name);
5893 	}
5894 
5895 	while (alias_list) {
5896 		struct saved_alias *al = alias_list;
5897 
5898 		alias_list = alias_list->next;
5899 		err = sysfs_slab_alias(al->s, al->name);
5900 		if (err)
5901 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5902 			       al->name);
5903 		kfree(al);
5904 	}
5905 
5906 	mutex_unlock(&slab_mutex);
5907 	resiliency_test();
5908 	return 0;
5909 }
5910 
5911 __initcall(slab_sysfs_init);
5912 #endif /* CONFIG_SYSFS */
5913 
5914 /*
5915  * The /proc/slabinfo ABI
5916  */
5917 #ifdef CONFIG_SLUB_DEBUG
5918 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5919 {
5920 	unsigned long nr_slabs = 0;
5921 	unsigned long nr_objs = 0;
5922 	unsigned long nr_free = 0;
5923 	int node;
5924 	struct kmem_cache_node *n;
5925 
5926 	for_each_kmem_cache_node(s, node, n) {
5927 		nr_slabs += node_nr_slabs(n);
5928 		nr_objs += node_nr_objs(n);
5929 		nr_free += count_partial(n, count_free);
5930 	}
5931 
5932 	sinfo->active_objs = nr_objs - nr_free;
5933 	sinfo->num_objs = nr_objs;
5934 	sinfo->active_slabs = nr_slabs;
5935 	sinfo->num_slabs = nr_slabs;
5936 	sinfo->objects_per_slab = oo_objects(s->oo);
5937 	sinfo->cache_order = oo_order(s->oo);
5938 }
5939 
5940 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5941 {
5942 }
5943 
5944 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5945 		       size_t count, loff_t *ppos)
5946 {
5947 	return -EIO;
5948 }
5949 #endif /* CONFIG_SLUB_DEBUG */
5950