1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * page->frozen The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 void *fixup_red_left(struct kmem_cache *s, void *p) 127 { 128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 129 p += s->red_left_pad; 130 131 return p; 132 } 133 134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 135 { 136 #ifdef CONFIG_SLUB_CPU_PARTIAL 137 return !kmem_cache_debug(s); 138 #else 139 return false; 140 #endif 141 } 142 143 /* 144 * Issues still to be resolved: 145 * 146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 147 * 148 * - Variable sizing of the per node arrays 149 */ 150 151 /* Enable to test recovery from slab corruption on boot */ 152 #undef SLUB_RESILIENCY_TEST 153 154 /* Enable to log cmpxchg failures */ 155 #undef SLUB_DEBUG_CMPXCHG 156 157 /* 158 * Mininum number of partial slabs. These will be left on the partial 159 * lists even if they are empty. kmem_cache_shrink may reclaim them. 160 */ 161 #define MIN_PARTIAL 5 162 163 /* 164 * Maximum number of desirable partial slabs. 165 * The existence of more partial slabs makes kmem_cache_shrink 166 * sort the partial list by the number of objects in use. 167 */ 168 #define MAX_PARTIAL 10 169 170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 171 SLAB_POISON | SLAB_STORE_USER) 172 173 /* 174 * These debug flags cannot use CMPXCHG because there might be consistency 175 * issues when checking or reading debug information 176 */ 177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 178 SLAB_TRACE) 179 180 181 /* 182 * Debugging flags that require metadata to be stored in the slab. These get 183 * disabled when slub_debug=O is used and a cache's min order increases with 184 * metadata. 185 */ 186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 187 188 #define OO_SHIFT 16 189 #define OO_MASK ((1 << OO_SHIFT) - 1) 190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 191 192 /* Internal SLUB flags */ 193 /* Poison object */ 194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 195 /* Use cmpxchg_double */ 196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 197 198 /* 199 * Tracking user of a slab. 200 */ 201 #define TRACK_ADDRS_COUNT 16 202 struct track { 203 unsigned long addr; /* Called from address */ 204 #ifdef CONFIG_STACKTRACE 205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 206 #endif 207 int cpu; /* Was running on cpu */ 208 int pid; /* Pid context */ 209 unsigned long when; /* When did the operation occur */ 210 }; 211 212 enum track_item { TRACK_ALLOC, TRACK_FREE }; 213 214 #ifdef CONFIG_SYSFS 215 static int sysfs_slab_add(struct kmem_cache *); 216 static int sysfs_slab_alias(struct kmem_cache *, const char *); 217 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 218 static void sysfs_slab_remove(struct kmem_cache *s); 219 #else 220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 222 { return 0; } 223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 224 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 225 #endif 226 227 static inline void stat(const struct kmem_cache *s, enum stat_item si) 228 { 229 #ifdef CONFIG_SLUB_STATS 230 /* 231 * The rmw is racy on a preemptible kernel but this is acceptable, so 232 * avoid this_cpu_add()'s irq-disable overhead. 233 */ 234 raw_cpu_inc(s->cpu_slab->stat[si]); 235 #endif 236 } 237 238 /******************************************************************** 239 * Core slab cache functions 240 *******************************************************************/ 241 242 /* 243 * Returns freelist pointer (ptr). With hardening, this is obfuscated 244 * with an XOR of the address where the pointer is held and a per-cache 245 * random number. 246 */ 247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 248 unsigned long ptr_addr) 249 { 250 #ifdef CONFIG_SLAB_FREELIST_HARDENED 251 /* 252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 253 * Normally, this doesn't cause any issues, as both set_freepointer() 254 * and get_freepointer() are called with a pointer with the same tag. 255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 256 * example, when __free_slub() iterates over objects in a cache, it 257 * passes untagged pointers to check_object(). check_object() in turns 258 * calls get_freepointer() with an untagged pointer, which causes the 259 * freepointer to be restored incorrectly. 260 */ 261 return (void *)((unsigned long)ptr ^ s->random ^ 262 (unsigned long)kasan_reset_tag((void *)ptr_addr)); 263 #else 264 return ptr; 265 #endif 266 } 267 268 /* Returns the freelist pointer recorded at location ptr_addr. */ 269 static inline void *freelist_dereference(const struct kmem_cache *s, 270 void *ptr_addr) 271 { 272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 273 (unsigned long)ptr_addr); 274 } 275 276 static inline void *get_freepointer(struct kmem_cache *s, void *object) 277 { 278 return freelist_dereference(s, object + s->offset); 279 } 280 281 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 282 { 283 prefetch(object + s->offset); 284 } 285 286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 287 { 288 unsigned long freepointer_addr; 289 void *p; 290 291 if (!debug_pagealloc_enabled_static()) 292 return get_freepointer(s, object); 293 294 freepointer_addr = (unsigned long)object + s->offset; 295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 296 return freelist_ptr(s, p, freepointer_addr); 297 } 298 299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 300 { 301 unsigned long freeptr_addr = (unsigned long)object + s->offset; 302 303 #ifdef CONFIG_SLAB_FREELIST_HARDENED 304 BUG_ON(object == fp); /* naive detection of double free or corruption */ 305 #endif 306 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 308 } 309 310 /* Loop over all objects in a slab */ 311 #define for_each_object(__p, __s, __addr, __objects) \ 312 for (__p = fixup_red_left(__s, __addr); \ 313 __p < (__addr) + (__objects) * (__s)->size; \ 314 __p += (__s)->size) 315 316 /* Determine object index from a given position */ 317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 318 { 319 return (kasan_reset_tag(p) - addr) / s->size; 320 } 321 322 static inline unsigned int order_objects(unsigned int order, unsigned int size) 323 { 324 return ((unsigned int)PAGE_SIZE << order) / size; 325 } 326 327 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 328 unsigned int size) 329 { 330 struct kmem_cache_order_objects x = { 331 (order << OO_SHIFT) + order_objects(order, size) 332 }; 333 334 return x; 335 } 336 337 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 338 { 339 return x.x >> OO_SHIFT; 340 } 341 342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 343 { 344 return x.x & OO_MASK; 345 } 346 347 /* 348 * Per slab locking using the pagelock 349 */ 350 static __always_inline void slab_lock(struct page *page) 351 { 352 VM_BUG_ON_PAGE(PageTail(page), page); 353 bit_spin_lock(PG_locked, &page->flags); 354 } 355 356 static __always_inline void slab_unlock(struct page *page) 357 { 358 VM_BUG_ON_PAGE(PageTail(page), page); 359 __bit_spin_unlock(PG_locked, &page->flags); 360 } 361 362 /* Interrupts must be disabled (for the fallback code to work right) */ 363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 364 void *freelist_old, unsigned long counters_old, 365 void *freelist_new, unsigned long counters_new, 366 const char *n) 367 { 368 VM_BUG_ON(!irqs_disabled()); 369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 371 if (s->flags & __CMPXCHG_DOUBLE) { 372 if (cmpxchg_double(&page->freelist, &page->counters, 373 freelist_old, counters_old, 374 freelist_new, counters_new)) 375 return true; 376 } else 377 #endif 378 { 379 slab_lock(page); 380 if (page->freelist == freelist_old && 381 page->counters == counters_old) { 382 page->freelist = freelist_new; 383 page->counters = counters_new; 384 slab_unlock(page); 385 return true; 386 } 387 slab_unlock(page); 388 } 389 390 cpu_relax(); 391 stat(s, CMPXCHG_DOUBLE_FAIL); 392 393 #ifdef SLUB_DEBUG_CMPXCHG 394 pr_info("%s %s: cmpxchg double redo ", n, s->name); 395 #endif 396 397 return false; 398 } 399 400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 401 void *freelist_old, unsigned long counters_old, 402 void *freelist_new, unsigned long counters_new, 403 const char *n) 404 { 405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 407 if (s->flags & __CMPXCHG_DOUBLE) { 408 if (cmpxchg_double(&page->freelist, &page->counters, 409 freelist_old, counters_old, 410 freelist_new, counters_new)) 411 return true; 412 } else 413 #endif 414 { 415 unsigned long flags; 416 417 local_irq_save(flags); 418 slab_lock(page); 419 if (page->freelist == freelist_old && 420 page->counters == counters_old) { 421 page->freelist = freelist_new; 422 page->counters = counters_new; 423 slab_unlock(page); 424 local_irq_restore(flags); 425 return true; 426 } 427 slab_unlock(page); 428 local_irq_restore(flags); 429 } 430 431 cpu_relax(); 432 stat(s, CMPXCHG_DOUBLE_FAIL); 433 434 #ifdef SLUB_DEBUG_CMPXCHG 435 pr_info("%s %s: cmpxchg double redo ", n, s->name); 436 #endif 437 438 return false; 439 } 440 441 #ifdef CONFIG_SLUB_DEBUG 442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 443 static DEFINE_SPINLOCK(object_map_lock); 444 445 /* 446 * Determine a map of object in use on a page. 447 * 448 * Node listlock must be held to guarantee that the page does 449 * not vanish from under us. 450 */ 451 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 452 { 453 void *p; 454 void *addr = page_address(page); 455 456 VM_BUG_ON(!irqs_disabled()); 457 458 spin_lock(&object_map_lock); 459 460 bitmap_zero(object_map, page->objects); 461 462 for (p = page->freelist; p; p = get_freepointer(s, p)) 463 set_bit(slab_index(p, s, addr), object_map); 464 465 return object_map; 466 } 467 468 static void put_map(unsigned long *map) 469 { 470 VM_BUG_ON(map != object_map); 471 lockdep_assert_held(&object_map_lock); 472 473 spin_unlock(&object_map_lock); 474 } 475 476 static inline unsigned int size_from_object(struct kmem_cache *s) 477 { 478 if (s->flags & SLAB_RED_ZONE) 479 return s->size - s->red_left_pad; 480 481 return s->size; 482 } 483 484 static inline void *restore_red_left(struct kmem_cache *s, void *p) 485 { 486 if (s->flags & SLAB_RED_ZONE) 487 p -= s->red_left_pad; 488 489 return p; 490 } 491 492 /* 493 * Debug settings: 494 */ 495 #if defined(CONFIG_SLUB_DEBUG_ON) 496 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 497 #else 498 static slab_flags_t slub_debug; 499 #endif 500 501 static char *slub_debug_slabs; 502 static int disable_higher_order_debug; 503 504 /* 505 * slub is about to manipulate internal object metadata. This memory lies 506 * outside the range of the allocated object, so accessing it would normally 507 * be reported by kasan as a bounds error. metadata_access_enable() is used 508 * to tell kasan that these accesses are OK. 509 */ 510 static inline void metadata_access_enable(void) 511 { 512 kasan_disable_current(); 513 } 514 515 static inline void metadata_access_disable(void) 516 { 517 kasan_enable_current(); 518 } 519 520 /* 521 * Object debugging 522 */ 523 524 /* Verify that a pointer has an address that is valid within a slab page */ 525 static inline int check_valid_pointer(struct kmem_cache *s, 526 struct page *page, void *object) 527 { 528 void *base; 529 530 if (!object) 531 return 1; 532 533 base = page_address(page); 534 object = kasan_reset_tag(object); 535 object = restore_red_left(s, object); 536 if (object < base || object >= base + page->objects * s->size || 537 (object - base) % s->size) { 538 return 0; 539 } 540 541 return 1; 542 } 543 544 static void print_section(char *level, char *text, u8 *addr, 545 unsigned int length) 546 { 547 metadata_access_enable(); 548 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 549 length, 1); 550 metadata_access_disable(); 551 } 552 553 static struct track *get_track(struct kmem_cache *s, void *object, 554 enum track_item alloc) 555 { 556 struct track *p; 557 558 if (s->offset) 559 p = object + s->offset + sizeof(void *); 560 else 561 p = object + s->inuse; 562 563 return p + alloc; 564 } 565 566 static void set_track(struct kmem_cache *s, void *object, 567 enum track_item alloc, unsigned long addr) 568 { 569 struct track *p = get_track(s, object, alloc); 570 571 if (addr) { 572 #ifdef CONFIG_STACKTRACE 573 unsigned int nr_entries; 574 575 metadata_access_enable(); 576 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 577 metadata_access_disable(); 578 579 if (nr_entries < TRACK_ADDRS_COUNT) 580 p->addrs[nr_entries] = 0; 581 #endif 582 p->addr = addr; 583 p->cpu = smp_processor_id(); 584 p->pid = current->pid; 585 p->when = jiffies; 586 } else { 587 memset(p, 0, sizeof(struct track)); 588 } 589 } 590 591 static void init_tracking(struct kmem_cache *s, void *object) 592 { 593 if (!(s->flags & SLAB_STORE_USER)) 594 return; 595 596 set_track(s, object, TRACK_FREE, 0UL); 597 set_track(s, object, TRACK_ALLOC, 0UL); 598 } 599 600 static void print_track(const char *s, struct track *t, unsigned long pr_time) 601 { 602 if (!t->addr) 603 return; 604 605 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 606 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 607 #ifdef CONFIG_STACKTRACE 608 { 609 int i; 610 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 611 if (t->addrs[i]) 612 pr_err("\t%pS\n", (void *)t->addrs[i]); 613 else 614 break; 615 } 616 #endif 617 } 618 619 static void print_tracking(struct kmem_cache *s, void *object) 620 { 621 unsigned long pr_time = jiffies; 622 if (!(s->flags & SLAB_STORE_USER)) 623 return; 624 625 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 626 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 627 } 628 629 static void print_page_info(struct page *page) 630 { 631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 632 page, page->objects, page->inuse, page->freelist, page->flags); 633 634 } 635 636 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 637 { 638 struct va_format vaf; 639 va_list args; 640 641 va_start(args, fmt); 642 vaf.fmt = fmt; 643 vaf.va = &args; 644 pr_err("=============================================================================\n"); 645 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 646 pr_err("-----------------------------------------------------------------------------\n\n"); 647 648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 649 va_end(args); 650 } 651 652 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 653 { 654 struct va_format vaf; 655 va_list args; 656 657 va_start(args, fmt); 658 vaf.fmt = fmt; 659 vaf.va = &args; 660 pr_err("FIX %s: %pV\n", s->name, &vaf); 661 va_end(args); 662 } 663 664 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 665 { 666 unsigned int off; /* Offset of last byte */ 667 u8 *addr = page_address(page); 668 669 print_tracking(s, p); 670 671 print_page_info(page); 672 673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 674 p, p - addr, get_freepointer(s, p)); 675 676 if (s->flags & SLAB_RED_ZONE) 677 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 678 s->red_left_pad); 679 else if (p > addr + 16) 680 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 681 682 print_section(KERN_ERR, "Object ", p, 683 min_t(unsigned int, s->object_size, PAGE_SIZE)); 684 if (s->flags & SLAB_RED_ZONE) 685 print_section(KERN_ERR, "Redzone ", p + s->object_size, 686 s->inuse - s->object_size); 687 688 if (s->offset) 689 off = s->offset + sizeof(void *); 690 else 691 off = s->inuse; 692 693 if (s->flags & SLAB_STORE_USER) 694 off += 2 * sizeof(struct track); 695 696 off += kasan_metadata_size(s); 697 698 if (off != size_from_object(s)) 699 /* Beginning of the filler is the free pointer */ 700 print_section(KERN_ERR, "Padding ", p + off, 701 size_from_object(s) - off); 702 703 dump_stack(); 704 } 705 706 void object_err(struct kmem_cache *s, struct page *page, 707 u8 *object, char *reason) 708 { 709 slab_bug(s, "%s", reason); 710 print_trailer(s, page, object); 711 } 712 713 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 714 const char *fmt, ...) 715 { 716 va_list args; 717 char buf[100]; 718 719 va_start(args, fmt); 720 vsnprintf(buf, sizeof(buf), fmt, args); 721 va_end(args); 722 slab_bug(s, "%s", buf); 723 print_page_info(page); 724 dump_stack(); 725 } 726 727 static void init_object(struct kmem_cache *s, void *object, u8 val) 728 { 729 u8 *p = object; 730 731 if (s->flags & SLAB_RED_ZONE) 732 memset(p - s->red_left_pad, val, s->red_left_pad); 733 734 if (s->flags & __OBJECT_POISON) { 735 memset(p, POISON_FREE, s->object_size - 1); 736 p[s->object_size - 1] = POISON_END; 737 } 738 739 if (s->flags & SLAB_RED_ZONE) 740 memset(p + s->object_size, val, s->inuse - s->object_size); 741 } 742 743 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 744 void *from, void *to) 745 { 746 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 747 memset(from, data, to - from); 748 } 749 750 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 751 u8 *object, char *what, 752 u8 *start, unsigned int value, unsigned int bytes) 753 { 754 u8 *fault; 755 u8 *end; 756 u8 *addr = page_address(page); 757 758 metadata_access_enable(); 759 fault = memchr_inv(start, value, bytes); 760 metadata_access_disable(); 761 if (!fault) 762 return 1; 763 764 end = start + bytes; 765 while (end > fault && end[-1] == value) 766 end--; 767 768 slab_bug(s, "%s overwritten", what); 769 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 770 fault, end - 1, fault - addr, 771 fault[0], value); 772 print_trailer(s, page, object); 773 774 restore_bytes(s, what, value, fault, end); 775 return 0; 776 } 777 778 /* 779 * Object layout: 780 * 781 * object address 782 * Bytes of the object to be managed. 783 * If the freepointer may overlay the object then the free 784 * pointer is the first word of the object. 785 * 786 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 787 * 0xa5 (POISON_END) 788 * 789 * object + s->object_size 790 * Padding to reach word boundary. This is also used for Redzoning. 791 * Padding is extended by another word if Redzoning is enabled and 792 * object_size == inuse. 793 * 794 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 795 * 0xcc (RED_ACTIVE) for objects in use. 796 * 797 * object + s->inuse 798 * Meta data starts here. 799 * 800 * A. Free pointer (if we cannot overwrite object on free) 801 * B. Tracking data for SLAB_STORE_USER 802 * C. Padding to reach required alignment boundary or at mininum 803 * one word if debugging is on to be able to detect writes 804 * before the word boundary. 805 * 806 * Padding is done using 0x5a (POISON_INUSE) 807 * 808 * object + s->size 809 * Nothing is used beyond s->size. 810 * 811 * If slabcaches are merged then the object_size and inuse boundaries are mostly 812 * ignored. And therefore no slab options that rely on these boundaries 813 * may be used with merged slabcaches. 814 */ 815 816 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 817 { 818 unsigned long off = s->inuse; /* The end of info */ 819 820 if (s->offset) 821 /* Freepointer is placed after the object. */ 822 off += sizeof(void *); 823 824 if (s->flags & SLAB_STORE_USER) 825 /* We also have user information there */ 826 off += 2 * sizeof(struct track); 827 828 off += kasan_metadata_size(s); 829 830 if (size_from_object(s) == off) 831 return 1; 832 833 return check_bytes_and_report(s, page, p, "Object padding", 834 p + off, POISON_INUSE, size_from_object(s) - off); 835 } 836 837 /* Check the pad bytes at the end of a slab page */ 838 static int slab_pad_check(struct kmem_cache *s, struct page *page) 839 { 840 u8 *start; 841 u8 *fault; 842 u8 *end; 843 u8 *pad; 844 int length; 845 int remainder; 846 847 if (!(s->flags & SLAB_POISON)) 848 return 1; 849 850 start = page_address(page); 851 length = page_size(page); 852 end = start + length; 853 remainder = length % s->size; 854 if (!remainder) 855 return 1; 856 857 pad = end - remainder; 858 metadata_access_enable(); 859 fault = memchr_inv(pad, POISON_INUSE, remainder); 860 metadata_access_disable(); 861 if (!fault) 862 return 1; 863 while (end > fault && end[-1] == POISON_INUSE) 864 end--; 865 866 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 867 fault, end - 1, fault - start); 868 print_section(KERN_ERR, "Padding ", pad, remainder); 869 870 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 871 return 0; 872 } 873 874 static int check_object(struct kmem_cache *s, struct page *page, 875 void *object, u8 val) 876 { 877 u8 *p = object; 878 u8 *endobject = object + s->object_size; 879 880 if (s->flags & SLAB_RED_ZONE) { 881 if (!check_bytes_and_report(s, page, object, "Redzone", 882 object - s->red_left_pad, val, s->red_left_pad)) 883 return 0; 884 885 if (!check_bytes_and_report(s, page, object, "Redzone", 886 endobject, val, s->inuse - s->object_size)) 887 return 0; 888 } else { 889 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 890 check_bytes_and_report(s, page, p, "Alignment padding", 891 endobject, POISON_INUSE, 892 s->inuse - s->object_size); 893 } 894 } 895 896 if (s->flags & SLAB_POISON) { 897 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 898 (!check_bytes_and_report(s, page, p, "Poison", p, 899 POISON_FREE, s->object_size - 1) || 900 !check_bytes_and_report(s, page, p, "Poison", 901 p + s->object_size - 1, POISON_END, 1))) 902 return 0; 903 /* 904 * check_pad_bytes cleans up on its own. 905 */ 906 check_pad_bytes(s, page, p); 907 } 908 909 if (!s->offset && val == SLUB_RED_ACTIVE) 910 /* 911 * Object and freepointer overlap. Cannot check 912 * freepointer while object is allocated. 913 */ 914 return 1; 915 916 /* Check free pointer validity */ 917 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 918 object_err(s, page, p, "Freepointer corrupt"); 919 /* 920 * No choice but to zap it and thus lose the remainder 921 * of the free objects in this slab. May cause 922 * another error because the object count is now wrong. 923 */ 924 set_freepointer(s, p, NULL); 925 return 0; 926 } 927 return 1; 928 } 929 930 static int check_slab(struct kmem_cache *s, struct page *page) 931 { 932 int maxobj; 933 934 VM_BUG_ON(!irqs_disabled()); 935 936 if (!PageSlab(page)) { 937 slab_err(s, page, "Not a valid slab page"); 938 return 0; 939 } 940 941 maxobj = order_objects(compound_order(page), s->size); 942 if (page->objects > maxobj) { 943 slab_err(s, page, "objects %u > max %u", 944 page->objects, maxobj); 945 return 0; 946 } 947 if (page->inuse > page->objects) { 948 slab_err(s, page, "inuse %u > max %u", 949 page->inuse, page->objects); 950 return 0; 951 } 952 /* Slab_pad_check fixes things up after itself */ 953 slab_pad_check(s, page); 954 return 1; 955 } 956 957 /* 958 * Determine if a certain object on a page is on the freelist. Must hold the 959 * slab lock to guarantee that the chains are in a consistent state. 960 */ 961 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 962 { 963 int nr = 0; 964 void *fp; 965 void *object = NULL; 966 int max_objects; 967 968 fp = page->freelist; 969 while (fp && nr <= page->objects) { 970 if (fp == search) 971 return 1; 972 if (!check_valid_pointer(s, page, fp)) { 973 if (object) { 974 object_err(s, page, object, 975 "Freechain corrupt"); 976 set_freepointer(s, object, NULL); 977 } else { 978 slab_err(s, page, "Freepointer corrupt"); 979 page->freelist = NULL; 980 page->inuse = page->objects; 981 slab_fix(s, "Freelist cleared"); 982 return 0; 983 } 984 break; 985 } 986 object = fp; 987 fp = get_freepointer(s, object); 988 nr++; 989 } 990 991 max_objects = order_objects(compound_order(page), s->size); 992 if (max_objects > MAX_OBJS_PER_PAGE) 993 max_objects = MAX_OBJS_PER_PAGE; 994 995 if (page->objects != max_objects) { 996 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 997 page->objects, max_objects); 998 page->objects = max_objects; 999 slab_fix(s, "Number of objects adjusted."); 1000 } 1001 if (page->inuse != page->objects - nr) { 1002 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1003 page->inuse, page->objects - nr); 1004 page->inuse = page->objects - nr; 1005 slab_fix(s, "Object count adjusted."); 1006 } 1007 return search == NULL; 1008 } 1009 1010 static void trace(struct kmem_cache *s, struct page *page, void *object, 1011 int alloc) 1012 { 1013 if (s->flags & SLAB_TRACE) { 1014 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1015 s->name, 1016 alloc ? "alloc" : "free", 1017 object, page->inuse, 1018 page->freelist); 1019 1020 if (!alloc) 1021 print_section(KERN_INFO, "Object ", (void *)object, 1022 s->object_size); 1023 1024 dump_stack(); 1025 } 1026 } 1027 1028 /* 1029 * Tracking of fully allocated slabs for debugging purposes. 1030 */ 1031 static void add_full(struct kmem_cache *s, 1032 struct kmem_cache_node *n, struct page *page) 1033 { 1034 if (!(s->flags & SLAB_STORE_USER)) 1035 return; 1036 1037 lockdep_assert_held(&n->list_lock); 1038 list_add(&page->slab_list, &n->full); 1039 } 1040 1041 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1042 { 1043 if (!(s->flags & SLAB_STORE_USER)) 1044 return; 1045 1046 lockdep_assert_held(&n->list_lock); 1047 list_del(&page->slab_list); 1048 } 1049 1050 /* Tracking of the number of slabs for debugging purposes */ 1051 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1052 { 1053 struct kmem_cache_node *n = get_node(s, node); 1054 1055 return atomic_long_read(&n->nr_slabs); 1056 } 1057 1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1059 { 1060 return atomic_long_read(&n->nr_slabs); 1061 } 1062 1063 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1064 { 1065 struct kmem_cache_node *n = get_node(s, node); 1066 1067 /* 1068 * May be called early in order to allocate a slab for the 1069 * kmem_cache_node structure. Solve the chicken-egg 1070 * dilemma by deferring the increment of the count during 1071 * bootstrap (see early_kmem_cache_node_alloc). 1072 */ 1073 if (likely(n)) { 1074 atomic_long_inc(&n->nr_slabs); 1075 atomic_long_add(objects, &n->total_objects); 1076 } 1077 } 1078 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1079 { 1080 struct kmem_cache_node *n = get_node(s, node); 1081 1082 atomic_long_dec(&n->nr_slabs); 1083 atomic_long_sub(objects, &n->total_objects); 1084 } 1085 1086 /* Object debug checks for alloc/free paths */ 1087 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1088 void *object) 1089 { 1090 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1091 return; 1092 1093 init_object(s, object, SLUB_RED_INACTIVE); 1094 init_tracking(s, object); 1095 } 1096 1097 static 1098 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1099 { 1100 if (!(s->flags & SLAB_POISON)) 1101 return; 1102 1103 metadata_access_enable(); 1104 memset(addr, POISON_INUSE, page_size(page)); 1105 metadata_access_disable(); 1106 } 1107 1108 static inline int alloc_consistency_checks(struct kmem_cache *s, 1109 struct page *page, void *object) 1110 { 1111 if (!check_slab(s, page)) 1112 return 0; 1113 1114 if (!check_valid_pointer(s, page, object)) { 1115 object_err(s, page, object, "Freelist Pointer check fails"); 1116 return 0; 1117 } 1118 1119 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1120 return 0; 1121 1122 return 1; 1123 } 1124 1125 static noinline int alloc_debug_processing(struct kmem_cache *s, 1126 struct page *page, 1127 void *object, unsigned long addr) 1128 { 1129 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1130 if (!alloc_consistency_checks(s, page, object)) 1131 goto bad; 1132 } 1133 1134 /* Success perform special debug activities for allocs */ 1135 if (s->flags & SLAB_STORE_USER) 1136 set_track(s, object, TRACK_ALLOC, addr); 1137 trace(s, page, object, 1); 1138 init_object(s, object, SLUB_RED_ACTIVE); 1139 return 1; 1140 1141 bad: 1142 if (PageSlab(page)) { 1143 /* 1144 * If this is a slab page then lets do the best we can 1145 * to avoid issues in the future. Marking all objects 1146 * as used avoids touching the remaining objects. 1147 */ 1148 slab_fix(s, "Marking all objects used"); 1149 page->inuse = page->objects; 1150 page->freelist = NULL; 1151 } 1152 return 0; 1153 } 1154 1155 static inline int free_consistency_checks(struct kmem_cache *s, 1156 struct page *page, void *object, unsigned long addr) 1157 { 1158 if (!check_valid_pointer(s, page, object)) { 1159 slab_err(s, page, "Invalid object pointer 0x%p", object); 1160 return 0; 1161 } 1162 1163 if (on_freelist(s, page, object)) { 1164 object_err(s, page, object, "Object already free"); 1165 return 0; 1166 } 1167 1168 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1169 return 0; 1170 1171 if (unlikely(s != page->slab_cache)) { 1172 if (!PageSlab(page)) { 1173 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1174 object); 1175 } else if (!page->slab_cache) { 1176 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1177 object); 1178 dump_stack(); 1179 } else 1180 object_err(s, page, object, 1181 "page slab pointer corrupt."); 1182 return 0; 1183 } 1184 return 1; 1185 } 1186 1187 /* Supports checking bulk free of a constructed freelist */ 1188 static noinline int free_debug_processing( 1189 struct kmem_cache *s, struct page *page, 1190 void *head, void *tail, int bulk_cnt, 1191 unsigned long addr) 1192 { 1193 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1194 void *object = head; 1195 int cnt = 0; 1196 unsigned long uninitialized_var(flags); 1197 int ret = 0; 1198 1199 spin_lock_irqsave(&n->list_lock, flags); 1200 slab_lock(page); 1201 1202 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1203 if (!check_slab(s, page)) 1204 goto out; 1205 } 1206 1207 next_object: 1208 cnt++; 1209 1210 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1211 if (!free_consistency_checks(s, page, object, addr)) 1212 goto out; 1213 } 1214 1215 if (s->flags & SLAB_STORE_USER) 1216 set_track(s, object, TRACK_FREE, addr); 1217 trace(s, page, object, 0); 1218 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1219 init_object(s, object, SLUB_RED_INACTIVE); 1220 1221 /* Reached end of constructed freelist yet? */ 1222 if (object != tail) { 1223 object = get_freepointer(s, object); 1224 goto next_object; 1225 } 1226 ret = 1; 1227 1228 out: 1229 if (cnt != bulk_cnt) 1230 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1231 bulk_cnt, cnt); 1232 1233 slab_unlock(page); 1234 spin_unlock_irqrestore(&n->list_lock, flags); 1235 if (!ret) 1236 slab_fix(s, "Object at 0x%p not freed", object); 1237 return ret; 1238 } 1239 1240 static int __init setup_slub_debug(char *str) 1241 { 1242 slub_debug = DEBUG_DEFAULT_FLAGS; 1243 if (*str++ != '=' || !*str) 1244 /* 1245 * No options specified. Switch on full debugging. 1246 */ 1247 goto out; 1248 1249 if (*str == ',') 1250 /* 1251 * No options but restriction on slabs. This means full 1252 * debugging for slabs matching a pattern. 1253 */ 1254 goto check_slabs; 1255 1256 slub_debug = 0; 1257 if (*str == '-') 1258 /* 1259 * Switch off all debugging measures. 1260 */ 1261 goto out; 1262 1263 /* 1264 * Determine which debug features should be switched on 1265 */ 1266 for (; *str && *str != ','; str++) { 1267 switch (tolower(*str)) { 1268 case 'f': 1269 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1270 break; 1271 case 'z': 1272 slub_debug |= SLAB_RED_ZONE; 1273 break; 1274 case 'p': 1275 slub_debug |= SLAB_POISON; 1276 break; 1277 case 'u': 1278 slub_debug |= SLAB_STORE_USER; 1279 break; 1280 case 't': 1281 slub_debug |= SLAB_TRACE; 1282 break; 1283 case 'a': 1284 slub_debug |= SLAB_FAILSLAB; 1285 break; 1286 case 'o': 1287 /* 1288 * Avoid enabling debugging on caches if its minimum 1289 * order would increase as a result. 1290 */ 1291 disable_higher_order_debug = 1; 1292 break; 1293 default: 1294 pr_err("slub_debug option '%c' unknown. skipped\n", 1295 *str); 1296 } 1297 } 1298 1299 check_slabs: 1300 if (*str == ',') 1301 slub_debug_slabs = str + 1; 1302 out: 1303 if ((static_branch_unlikely(&init_on_alloc) || 1304 static_branch_unlikely(&init_on_free)) && 1305 (slub_debug & SLAB_POISON)) 1306 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1307 return 1; 1308 } 1309 1310 __setup("slub_debug", setup_slub_debug); 1311 1312 /* 1313 * kmem_cache_flags - apply debugging options to the cache 1314 * @object_size: the size of an object without meta data 1315 * @flags: flags to set 1316 * @name: name of the cache 1317 * @ctor: constructor function 1318 * 1319 * Debug option(s) are applied to @flags. In addition to the debug 1320 * option(s), if a slab name (or multiple) is specified i.e. 1321 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1322 * then only the select slabs will receive the debug option(s). 1323 */ 1324 slab_flags_t kmem_cache_flags(unsigned int object_size, 1325 slab_flags_t flags, const char *name, 1326 void (*ctor)(void *)) 1327 { 1328 char *iter; 1329 size_t len; 1330 1331 /* If slub_debug = 0, it folds into the if conditional. */ 1332 if (!slub_debug_slabs) 1333 return flags | slub_debug; 1334 1335 len = strlen(name); 1336 iter = slub_debug_slabs; 1337 while (*iter) { 1338 char *end, *glob; 1339 size_t cmplen; 1340 1341 end = strchrnul(iter, ','); 1342 1343 glob = strnchr(iter, end - iter, '*'); 1344 if (glob) 1345 cmplen = glob - iter; 1346 else 1347 cmplen = max_t(size_t, len, (end - iter)); 1348 1349 if (!strncmp(name, iter, cmplen)) { 1350 flags |= slub_debug; 1351 break; 1352 } 1353 1354 if (!*end) 1355 break; 1356 iter = end + 1; 1357 } 1358 1359 return flags; 1360 } 1361 #else /* !CONFIG_SLUB_DEBUG */ 1362 static inline void setup_object_debug(struct kmem_cache *s, 1363 struct page *page, void *object) {} 1364 static inline 1365 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1366 1367 static inline int alloc_debug_processing(struct kmem_cache *s, 1368 struct page *page, void *object, unsigned long addr) { return 0; } 1369 1370 static inline int free_debug_processing( 1371 struct kmem_cache *s, struct page *page, 1372 void *head, void *tail, int bulk_cnt, 1373 unsigned long addr) { return 0; } 1374 1375 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1376 { return 1; } 1377 static inline int check_object(struct kmem_cache *s, struct page *page, 1378 void *object, u8 val) { return 1; } 1379 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1380 struct page *page) {} 1381 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1382 struct page *page) {} 1383 slab_flags_t kmem_cache_flags(unsigned int object_size, 1384 slab_flags_t flags, const char *name, 1385 void (*ctor)(void *)) 1386 { 1387 return flags; 1388 } 1389 #define slub_debug 0 1390 1391 #define disable_higher_order_debug 0 1392 1393 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1394 { return 0; } 1395 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1396 { return 0; } 1397 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1398 int objects) {} 1399 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1400 int objects) {} 1401 1402 #endif /* CONFIG_SLUB_DEBUG */ 1403 1404 /* 1405 * Hooks for other subsystems that check memory allocations. In a typical 1406 * production configuration these hooks all should produce no code at all. 1407 */ 1408 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1409 { 1410 ptr = kasan_kmalloc_large(ptr, size, flags); 1411 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1412 kmemleak_alloc(ptr, size, 1, flags); 1413 return ptr; 1414 } 1415 1416 static __always_inline void kfree_hook(void *x) 1417 { 1418 kmemleak_free(x); 1419 kasan_kfree_large(x, _RET_IP_); 1420 } 1421 1422 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1423 { 1424 kmemleak_free_recursive(x, s->flags); 1425 1426 /* 1427 * Trouble is that we may no longer disable interrupts in the fast path 1428 * So in order to make the debug calls that expect irqs to be 1429 * disabled we need to disable interrupts temporarily. 1430 */ 1431 #ifdef CONFIG_LOCKDEP 1432 { 1433 unsigned long flags; 1434 1435 local_irq_save(flags); 1436 debug_check_no_locks_freed(x, s->object_size); 1437 local_irq_restore(flags); 1438 } 1439 #endif 1440 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1441 debug_check_no_obj_freed(x, s->object_size); 1442 1443 /* KASAN might put x into memory quarantine, delaying its reuse */ 1444 return kasan_slab_free(s, x, _RET_IP_); 1445 } 1446 1447 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1448 void **head, void **tail) 1449 { 1450 1451 void *object; 1452 void *next = *head; 1453 void *old_tail = *tail ? *tail : *head; 1454 int rsize; 1455 1456 /* Head and tail of the reconstructed freelist */ 1457 *head = NULL; 1458 *tail = NULL; 1459 1460 do { 1461 object = next; 1462 next = get_freepointer(s, object); 1463 1464 if (slab_want_init_on_free(s)) { 1465 /* 1466 * Clear the object and the metadata, but don't touch 1467 * the redzone. 1468 */ 1469 memset(object, 0, s->object_size); 1470 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1471 : 0; 1472 memset((char *)object + s->inuse, 0, 1473 s->size - s->inuse - rsize); 1474 1475 } 1476 /* If object's reuse doesn't have to be delayed */ 1477 if (!slab_free_hook(s, object)) { 1478 /* Move object to the new freelist */ 1479 set_freepointer(s, object, *head); 1480 *head = object; 1481 if (!*tail) 1482 *tail = object; 1483 } 1484 } while (object != old_tail); 1485 1486 if (*head == *tail) 1487 *tail = NULL; 1488 1489 return *head != NULL; 1490 } 1491 1492 static void *setup_object(struct kmem_cache *s, struct page *page, 1493 void *object) 1494 { 1495 setup_object_debug(s, page, object); 1496 object = kasan_init_slab_obj(s, object); 1497 if (unlikely(s->ctor)) { 1498 kasan_unpoison_object_data(s, object); 1499 s->ctor(object); 1500 kasan_poison_object_data(s, object); 1501 } 1502 return object; 1503 } 1504 1505 /* 1506 * Slab allocation and freeing 1507 */ 1508 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1509 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1510 { 1511 struct page *page; 1512 unsigned int order = oo_order(oo); 1513 1514 if (node == NUMA_NO_NODE) 1515 page = alloc_pages(flags, order); 1516 else 1517 page = __alloc_pages_node(node, flags, order); 1518 1519 if (page && charge_slab_page(page, flags, order, s)) { 1520 __free_pages(page, order); 1521 page = NULL; 1522 } 1523 1524 return page; 1525 } 1526 1527 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1528 /* Pre-initialize the random sequence cache */ 1529 static int init_cache_random_seq(struct kmem_cache *s) 1530 { 1531 unsigned int count = oo_objects(s->oo); 1532 int err; 1533 1534 /* Bailout if already initialised */ 1535 if (s->random_seq) 1536 return 0; 1537 1538 err = cache_random_seq_create(s, count, GFP_KERNEL); 1539 if (err) { 1540 pr_err("SLUB: Unable to initialize free list for %s\n", 1541 s->name); 1542 return err; 1543 } 1544 1545 /* Transform to an offset on the set of pages */ 1546 if (s->random_seq) { 1547 unsigned int i; 1548 1549 for (i = 0; i < count; i++) 1550 s->random_seq[i] *= s->size; 1551 } 1552 return 0; 1553 } 1554 1555 /* Initialize each random sequence freelist per cache */ 1556 static void __init init_freelist_randomization(void) 1557 { 1558 struct kmem_cache *s; 1559 1560 mutex_lock(&slab_mutex); 1561 1562 list_for_each_entry(s, &slab_caches, list) 1563 init_cache_random_seq(s); 1564 1565 mutex_unlock(&slab_mutex); 1566 } 1567 1568 /* Get the next entry on the pre-computed freelist randomized */ 1569 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1570 unsigned long *pos, void *start, 1571 unsigned long page_limit, 1572 unsigned long freelist_count) 1573 { 1574 unsigned int idx; 1575 1576 /* 1577 * If the target page allocation failed, the number of objects on the 1578 * page might be smaller than the usual size defined by the cache. 1579 */ 1580 do { 1581 idx = s->random_seq[*pos]; 1582 *pos += 1; 1583 if (*pos >= freelist_count) 1584 *pos = 0; 1585 } while (unlikely(idx >= page_limit)); 1586 1587 return (char *)start + idx; 1588 } 1589 1590 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1591 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1592 { 1593 void *start; 1594 void *cur; 1595 void *next; 1596 unsigned long idx, pos, page_limit, freelist_count; 1597 1598 if (page->objects < 2 || !s->random_seq) 1599 return false; 1600 1601 freelist_count = oo_objects(s->oo); 1602 pos = get_random_int() % freelist_count; 1603 1604 page_limit = page->objects * s->size; 1605 start = fixup_red_left(s, page_address(page)); 1606 1607 /* First entry is used as the base of the freelist */ 1608 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1609 freelist_count); 1610 cur = setup_object(s, page, cur); 1611 page->freelist = cur; 1612 1613 for (idx = 1; idx < page->objects; idx++) { 1614 next = next_freelist_entry(s, page, &pos, start, page_limit, 1615 freelist_count); 1616 next = setup_object(s, page, next); 1617 set_freepointer(s, cur, next); 1618 cur = next; 1619 } 1620 set_freepointer(s, cur, NULL); 1621 1622 return true; 1623 } 1624 #else 1625 static inline int init_cache_random_seq(struct kmem_cache *s) 1626 { 1627 return 0; 1628 } 1629 static inline void init_freelist_randomization(void) { } 1630 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1631 { 1632 return false; 1633 } 1634 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1635 1636 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1637 { 1638 struct page *page; 1639 struct kmem_cache_order_objects oo = s->oo; 1640 gfp_t alloc_gfp; 1641 void *start, *p, *next; 1642 int idx; 1643 bool shuffle; 1644 1645 flags &= gfp_allowed_mask; 1646 1647 if (gfpflags_allow_blocking(flags)) 1648 local_irq_enable(); 1649 1650 flags |= s->allocflags; 1651 1652 /* 1653 * Let the initial higher-order allocation fail under memory pressure 1654 * so we fall-back to the minimum order allocation. 1655 */ 1656 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1657 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1658 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1659 1660 page = alloc_slab_page(s, alloc_gfp, node, oo); 1661 if (unlikely(!page)) { 1662 oo = s->min; 1663 alloc_gfp = flags; 1664 /* 1665 * Allocation may have failed due to fragmentation. 1666 * Try a lower order alloc if possible 1667 */ 1668 page = alloc_slab_page(s, alloc_gfp, node, oo); 1669 if (unlikely(!page)) 1670 goto out; 1671 stat(s, ORDER_FALLBACK); 1672 } 1673 1674 page->objects = oo_objects(oo); 1675 1676 page->slab_cache = s; 1677 __SetPageSlab(page); 1678 if (page_is_pfmemalloc(page)) 1679 SetPageSlabPfmemalloc(page); 1680 1681 kasan_poison_slab(page); 1682 1683 start = page_address(page); 1684 1685 setup_page_debug(s, page, start); 1686 1687 shuffle = shuffle_freelist(s, page); 1688 1689 if (!shuffle) { 1690 start = fixup_red_left(s, start); 1691 start = setup_object(s, page, start); 1692 page->freelist = start; 1693 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1694 next = p + s->size; 1695 next = setup_object(s, page, next); 1696 set_freepointer(s, p, next); 1697 p = next; 1698 } 1699 set_freepointer(s, p, NULL); 1700 } 1701 1702 page->inuse = page->objects; 1703 page->frozen = 1; 1704 1705 out: 1706 if (gfpflags_allow_blocking(flags)) 1707 local_irq_disable(); 1708 if (!page) 1709 return NULL; 1710 1711 inc_slabs_node(s, page_to_nid(page), page->objects); 1712 1713 return page; 1714 } 1715 1716 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1717 { 1718 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1719 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1720 flags &= ~GFP_SLAB_BUG_MASK; 1721 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1722 invalid_mask, &invalid_mask, flags, &flags); 1723 dump_stack(); 1724 } 1725 1726 return allocate_slab(s, 1727 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1728 } 1729 1730 static void __free_slab(struct kmem_cache *s, struct page *page) 1731 { 1732 int order = compound_order(page); 1733 int pages = 1 << order; 1734 1735 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1736 void *p; 1737 1738 slab_pad_check(s, page); 1739 for_each_object(p, s, page_address(page), 1740 page->objects) 1741 check_object(s, page, p, SLUB_RED_INACTIVE); 1742 } 1743 1744 __ClearPageSlabPfmemalloc(page); 1745 __ClearPageSlab(page); 1746 1747 page->mapping = NULL; 1748 if (current->reclaim_state) 1749 current->reclaim_state->reclaimed_slab += pages; 1750 uncharge_slab_page(page, order, s); 1751 __free_pages(page, order); 1752 } 1753 1754 static void rcu_free_slab(struct rcu_head *h) 1755 { 1756 struct page *page = container_of(h, struct page, rcu_head); 1757 1758 __free_slab(page->slab_cache, page); 1759 } 1760 1761 static void free_slab(struct kmem_cache *s, struct page *page) 1762 { 1763 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1764 call_rcu(&page->rcu_head, rcu_free_slab); 1765 } else 1766 __free_slab(s, page); 1767 } 1768 1769 static void discard_slab(struct kmem_cache *s, struct page *page) 1770 { 1771 dec_slabs_node(s, page_to_nid(page), page->objects); 1772 free_slab(s, page); 1773 } 1774 1775 /* 1776 * Management of partially allocated slabs. 1777 */ 1778 static inline void 1779 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1780 { 1781 n->nr_partial++; 1782 if (tail == DEACTIVATE_TO_TAIL) 1783 list_add_tail(&page->slab_list, &n->partial); 1784 else 1785 list_add(&page->slab_list, &n->partial); 1786 } 1787 1788 static inline void add_partial(struct kmem_cache_node *n, 1789 struct page *page, int tail) 1790 { 1791 lockdep_assert_held(&n->list_lock); 1792 __add_partial(n, page, tail); 1793 } 1794 1795 static inline void remove_partial(struct kmem_cache_node *n, 1796 struct page *page) 1797 { 1798 lockdep_assert_held(&n->list_lock); 1799 list_del(&page->slab_list); 1800 n->nr_partial--; 1801 } 1802 1803 /* 1804 * Remove slab from the partial list, freeze it and 1805 * return the pointer to the freelist. 1806 * 1807 * Returns a list of objects or NULL if it fails. 1808 */ 1809 static inline void *acquire_slab(struct kmem_cache *s, 1810 struct kmem_cache_node *n, struct page *page, 1811 int mode, int *objects) 1812 { 1813 void *freelist; 1814 unsigned long counters; 1815 struct page new; 1816 1817 lockdep_assert_held(&n->list_lock); 1818 1819 /* 1820 * Zap the freelist and set the frozen bit. 1821 * The old freelist is the list of objects for the 1822 * per cpu allocation list. 1823 */ 1824 freelist = page->freelist; 1825 counters = page->counters; 1826 new.counters = counters; 1827 *objects = new.objects - new.inuse; 1828 if (mode) { 1829 new.inuse = page->objects; 1830 new.freelist = NULL; 1831 } else { 1832 new.freelist = freelist; 1833 } 1834 1835 VM_BUG_ON(new.frozen); 1836 new.frozen = 1; 1837 1838 if (!__cmpxchg_double_slab(s, page, 1839 freelist, counters, 1840 new.freelist, new.counters, 1841 "acquire_slab")) 1842 return NULL; 1843 1844 remove_partial(n, page); 1845 WARN_ON(!freelist); 1846 return freelist; 1847 } 1848 1849 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1850 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1851 1852 /* 1853 * Try to allocate a partial slab from a specific node. 1854 */ 1855 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1856 struct kmem_cache_cpu *c, gfp_t flags) 1857 { 1858 struct page *page, *page2; 1859 void *object = NULL; 1860 unsigned int available = 0; 1861 int objects; 1862 1863 /* 1864 * Racy check. If we mistakenly see no partial slabs then we 1865 * just allocate an empty slab. If we mistakenly try to get a 1866 * partial slab and there is none available then get_partials() 1867 * will return NULL. 1868 */ 1869 if (!n || !n->nr_partial) 1870 return NULL; 1871 1872 spin_lock(&n->list_lock); 1873 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1874 void *t; 1875 1876 if (!pfmemalloc_match(page, flags)) 1877 continue; 1878 1879 t = acquire_slab(s, n, page, object == NULL, &objects); 1880 if (!t) 1881 break; 1882 1883 available += objects; 1884 if (!object) { 1885 c->page = page; 1886 stat(s, ALLOC_FROM_PARTIAL); 1887 object = t; 1888 } else { 1889 put_cpu_partial(s, page, 0); 1890 stat(s, CPU_PARTIAL_NODE); 1891 } 1892 if (!kmem_cache_has_cpu_partial(s) 1893 || available > slub_cpu_partial(s) / 2) 1894 break; 1895 1896 } 1897 spin_unlock(&n->list_lock); 1898 return object; 1899 } 1900 1901 /* 1902 * Get a page from somewhere. Search in increasing NUMA distances. 1903 */ 1904 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1905 struct kmem_cache_cpu *c) 1906 { 1907 #ifdef CONFIG_NUMA 1908 struct zonelist *zonelist; 1909 struct zoneref *z; 1910 struct zone *zone; 1911 enum zone_type high_zoneidx = gfp_zone(flags); 1912 void *object; 1913 unsigned int cpuset_mems_cookie; 1914 1915 /* 1916 * The defrag ratio allows a configuration of the tradeoffs between 1917 * inter node defragmentation and node local allocations. A lower 1918 * defrag_ratio increases the tendency to do local allocations 1919 * instead of attempting to obtain partial slabs from other nodes. 1920 * 1921 * If the defrag_ratio is set to 0 then kmalloc() always 1922 * returns node local objects. If the ratio is higher then kmalloc() 1923 * may return off node objects because partial slabs are obtained 1924 * from other nodes and filled up. 1925 * 1926 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1927 * (which makes defrag_ratio = 1000) then every (well almost) 1928 * allocation will first attempt to defrag slab caches on other nodes. 1929 * This means scanning over all nodes to look for partial slabs which 1930 * may be expensive if we do it every time we are trying to find a slab 1931 * with available objects. 1932 */ 1933 if (!s->remote_node_defrag_ratio || 1934 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1935 return NULL; 1936 1937 do { 1938 cpuset_mems_cookie = read_mems_allowed_begin(); 1939 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1940 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1941 struct kmem_cache_node *n; 1942 1943 n = get_node(s, zone_to_nid(zone)); 1944 1945 if (n && cpuset_zone_allowed(zone, flags) && 1946 n->nr_partial > s->min_partial) { 1947 object = get_partial_node(s, n, c, flags); 1948 if (object) { 1949 /* 1950 * Don't check read_mems_allowed_retry() 1951 * here - if mems_allowed was updated in 1952 * parallel, that was a harmless race 1953 * between allocation and the cpuset 1954 * update 1955 */ 1956 return object; 1957 } 1958 } 1959 } 1960 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1961 #endif /* CONFIG_NUMA */ 1962 return NULL; 1963 } 1964 1965 /* 1966 * Get a partial page, lock it and return it. 1967 */ 1968 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1969 struct kmem_cache_cpu *c) 1970 { 1971 void *object; 1972 int searchnode = node; 1973 1974 if (node == NUMA_NO_NODE) 1975 searchnode = numa_mem_id(); 1976 else if (!node_present_pages(node)) 1977 searchnode = node_to_mem_node(node); 1978 1979 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1980 if (object || node != NUMA_NO_NODE) 1981 return object; 1982 1983 return get_any_partial(s, flags, c); 1984 } 1985 1986 #ifdef CONFIG_PREEMPTION 1987 /* 1988 * Calculate the next globally unique transaction for disambiguiation 1989 * during cmpxchg. The transactions start with the cpu number and are then 1990 * incremented by CONFIG_NR_CPUS. 1991 */ 1992 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1993 #else 1994 /* 1995 * No preemption supported therefore also no need to check for 1996 * different cpus. 1997 */ 1998 #define TID_STEP 1 1999 #endif 2000 2001 static inline unsigned long next_tid(unsigned long tid) 2002 { 2003 return tid + TID_STEP; 2004 } 2005 2006 #ifdef SLUB_DEBUG_CMPXCHG 2007 static inline unsigned int tid_to_cpu(unsigned long tid) 2008 { 2009 return tid % TID_STEP; 2010 } 2011 2012 static inline unsigned long tid_to_event(unsigned long tid) 2013 { 2014 return tid / TID_STEP; 2015 } 2016 #endif 2017 2018 static inline unsigned int init_tid(int cpu) 2019 { 2020 return cpu; 2021 } 2022 2023 static inline void note_cmpxchg_failure(const char *n, 2024 const struct kmem_cache *s, unsigned long tid) 2025 { 2026 #ifdef SLUB_DEBUG_CMPXCHG 2027 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2028 2029 pr_info("%s %s: cmpxchg redo ", n, s->name); 2030 2031 #ifdef CONFIG_PREEMPTION 2032 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2033 pr_warn("due to cpu change %d -> %d\n", 2034 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2035 else 2036 #endif 2037 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2038 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2039 tid_to_event(tid), tid_to_event(actual_tid)); 2040 else 2041 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2042 actual_tid, tid, next_tid(tid)); 2043 #endif 2044 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2045 } 2046 2047 static void init_kmem_cache_cpus(struct kmem_cache *s) 2048 { 2049 int cpu; 2050 2051 for_each_possible_cpu(cpu) 2052 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2053 } 2054 2055 /* 2056 * Remove the cpu slab 2057 */ 2058 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2059 void *freelist, struct kmem_cache_cpu *c) 2060 { 2061 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2062 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2063 int lock = 0; 2064 enum slab_modes l = M_NONE, m = M_NONE; 2065 void *nextfree; 2066 int tail = DEACTIVATE_TO_HEAD; 2067 struct page new; 2068 struct page old; 2069 2070 if (page->freelist) { 2071 stat(s, DEACTIVATE_REMOTE_FREES); 2072 tail = DEACTIVATE_TO_TAIL; 2073 } 2074 2075 /* 2076 * Stage one: Free all available per cpu objects back 2077 * to the page freelist while it is still frozen. Leave the 2078 * last one. 2079 * 2080 * There is no need to take the list->lock because the page 2081 * is still frozen. 2082 */ 2083 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2084 void *prior; 2085 unsigned long counters; 2086 2087 do { 2088 prior = page->freelist; 2089 counters = page->counters; 2090 set_freepointer(s, freelist, prior); 2091 new.counters = counters; 2092 new.inuse--; 2093 VM_BUG_ON(!new.frozen); 2094 2095 } while (!__cmpxchg_double_slab(s, page, 2096 prior, counters, 2097 freelist, new.counters, 2098 "drain percpu freelist")); 2099 2100 freelist = nextfree; 2101 } 2102 2103 /* 2104 * Stage two: Ensure that the page is unfrozen while the 2105 * list presence reflects the actual number of objects 2106 * during unfreeze. 2107 * 2108 * We setup the list membership and then perform a cmpxchg 2109 * with the count. If there is a mismatch then the page 2110 * is not unfrozen but the page is on the wrong list. 2111 * 2112 * Then we restart the process which may have to remove 2113 * the page from the list that we just put it on again 2114 * because the number of objects in the slab may have 2115 * changed. 2116 */ 2117 redo: 2118 2119 old.freelist = page->freelist; 2120 old.counters = page->counters; 2121 VM_BUG_ON(!old.frozen); 2122 2123 /* Determine target state of the slab */ 2124 new.counters = old.counters; 2125 if (freelist) { 2126 new.inuse--; 2127 set_freepointer(s, freelist, old.freelist); 2128 new.freelist = freelist; 2129 } else 2130 new.freelist = old.freelist; 2131 2132 new.frozen = 0; 2133 2134 if (!new.inuse && n->nr_partial >= s->min_partial) 2135 m = M_FREE; 2136 else if (new.freelist) { 2137 m = M_PARTIAL; 2138 if (!lock) { 2139 lock = 1; 2140 /* 2141 * Taking the spinlock removes the possibility 2142 * that acquire_slab() will see a slab page that 2143 * is frozen 2144 */ 2145 spin_lock(&n->list_lock); 2146 } 2147 } else { 2148 m = M_FULL; 2149 if (kmem_cache_debug(s) && !lock) { 2150 lock = 1; 2151 /* 2152 * This also ensures that the scanning of full 2153 * slabs from diagnostic functions will not see 2154 * any frozen slabs. 2155 */ 2156 spin_lock(&n->list_lock); 2157 } 2158 } 2159 2160 if (l != m) { 2161 if (l == M_PARTIAL) 2162 remove_partial(n, page); 2163 else if (l == M_FULL) 2164 remove_full(s, n, page); 2165 2166 if (m == M_PARTIAL) 2167 add_partial(n, page, tail); 2168 else if (m == M_FULL) 2169 add_full(s, n, page); 2170 } 2171 2172 l = m; 2173 if (!__cmpxchg_double_slab(s, page, 2174 old.freelist, old.counters, 2175 new.freelist, new.counters, 2176 "unfreezing slab")) 2177 goto redo; 2178 2179 if (lock) 2180 spin_unlock(&n->list_lock); 2181 2182 if (m == M_PARTIAL) 2183 stat(s, tail); 2184 else if (m == M_FULL) 2185 stat(s, DEACTIVATE_FULL); 2186 else if (m == M_FREE) { 2187 stat(s, DEACTIVATE_EMPTY); 2188 discard_slab(s, page); 2189 stat(s, FREE_SLAB); 2190 } 2191 2192 c->page = NULL; 2193 c->freelist = NULL; 2194 } 2195 2196 /* 2197 * Unfreeze all the cpu partial slabs. 2198 * 2199 * This function must be called with interrupts disabled 2200 * for the cpu using c (or some other guarantee must be there 2201 * to guarantee no concurrent accesses). 2202 */ 2203 static void unfreeze_partials(struct kmem_cache *s, 2204 struct kmem_cache_cpu *c) 2205 { 2206 #ifdef CONFIG_SLUB_CPU_PARTIAL 2207 struct kmem_cache_node *n = NULL, *n2 = NULL; 2208 struct page *page, *discard_page = NULL; 2209 2210 while ((page = c->partial)) { 2211 struct page new; 2212 struct page old; 2213 2214 c->partial = page->next; 2215 2216 n2 = get_node(s, page_to_nid(page)); 2217 if (n != n2) { 2218 if (n) 2219 spin_unlock(&n->list_lock); 2220 2221 n = n2; 2222 spin_lock(&n->list_lock); 2223 } 2224 2225 do { 2226 2227 old.freelist = page->freelist; 2228 old.counters = page->counters; 2229 VM_BUG_ON(!old.frozen); 2230 2231 new.counters = old.counters; 2232 new.freelist = old.freelist; 2233 2234 new.frozen = 0; 2235 2236 } while (!__cmpxchg_double_slab(s, page, 2237 old.freelist, old.counters, 2238 new.freelist, new.counters, 2239 "unfreezing slab")); 2240 2241 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2242 page->next = discard_page; 2243 discard_page = page; 2244 } else { 2245 add_partial(n, page, DEACTIVATE_TO_TAIL); 2246 stat(s, FREE_ADD_PARTIAL); 2247 } 2248 } 2249 2250 if (n) 2251 spin_unlock(&n->list_lock); 2252 2253 while (discard_page) { 2254 page = discard_page; 2255 discard_page = discard_page->next; 2256 2257 stat(s, DEACTIVATE_EMPTY); 2258 discard_slab(s, page); 2259 stat(s, FREE_SLAB); 2260 } 2261 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2262 } 2263 2264 /* 2265 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2266 * partial page slot if available. 2267 * 2268 * If we did not find a slot then simply move all the partials to the 2269 * per node partial list. 2270 */ 2271 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2272 { 2273 #ifdef CONFIG_SLUB_CPU_PARTIAL 2274 struct page *oldpage; 2275 int pages; 2276 int pobjects; 2277 2278 preempt_disable(); 2279 do { 2280 pages = 0; 2281 pobjects = 0; 2282 oldpage = this_cpu_read(s->cpu_slab->partial); 2283 2284 if (oldpage) { 2285 pobjects = oldpage->pobjects; 2286 pages = oldpage->pages; 2287 if (drain && pobjects > s->cpu_partial) { 2288 unsigned long flags; 2289 /* 2290 * partial array is full. Move the existing 2291 * set to the per node partial list. 2292 */ 2293 local_irq_save(flags); 2294 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2295 local_irq_restore(flags); 2296 oldpage = NULL; 2297 pobjects = 0; 2298 pages = 0; 2299 stat(s, CPU_PARTIAL_DRAIN); 2300 } 2301 } 2302 2303 pages++; 2304 pobjects += page->objects - page->inuse; 2305 2306 page->pages = pages; 2307 page->pobjects = pobjects; 2308 page->next = oldpage; 2309 2310 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2311 != oldpage); 2312 if (unlikely(!s->cpu_partial)) { 2313 unsigned long flags; 2314 2315 local_irq_save(flags); 2316 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2317 local_irq_restore(flags); 2318 } 2319 preempt_enable(); 2320 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2321 } 2322 2323 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2324 { 2325 stat(s, CPUSLAB_FLUSH); 2326 deactivate_slab(s, c->page, c->freelist, c); 2327 2328 c->tid = next_tid(c->tid); 2329 } 2330 2331 /* 2332 * Flush cpu slab. 2333 * 2334 * Called from IPI handler with interrupts disabled. 2335 */ 2336 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2337 { 2338 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2339 2340 if (c->page) 2341 flush_slab(s, c); 2342 2343 unfreeze_partials(s, c); 2344 } 2345 2346 static void flush_cpu_slab(void *d) 2347 { 2348 struct kmem_cache *s = d; 2349 2350 __flush_cpu_slab(s, smp_processor_id()); 2351 } 2352 2353 static bool has_cpu_slab(int cpu, void *info) 2354 { 2355 struct kmem_cache *s = info; 2356 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2357 2358 return c->page || slub_percpu_partial(c); 2359 } 2360 2361 static void flush_all(struct kmem_cache *s) 2362 { 2363 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); 2364 } 2365 2366 /* 2367 * Use the cpu notifier to insure that the cpu slabs are flushed when 2368 * necessary. 2369 */ 2370 static int slub_cpu_dead(unsigned int cpu) 2371 { 2372 struct kmem_cache *s; 2373 unsigned long flags; 2374 2375 mutex_lock(&slab_mutex); 2376 list_for_each_entry(s, &slab_caches, list) { 2377 local_irq_save(flags); 2378 __flush_cpu_slab(s, cpu); 2379 local_irq_restore(flags); 2380 } 2381 mutex_unlock(&slab_mutex); 2382 return 0; 2383 } 2384 2385 /* 2386 * Check if the objects in a per cpu structure fit numa 2387 * locality expectations. 2388 */ 2389 static inline int node_match(struct page *page, int node) 2390 { 2391 #ifdef CONFIG_NUMA 2392 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2393 return 0; 2394 #endif 2395 return 1; 2396 } 2397 2398 #ifdef CONFIG_SLUB_DEBUG 2399 static int count_free(struct page *page) 2400 { 2401 return page->objects - page->inuse; 2402 } 2403 2404 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2405 { 2406 return atomic_long_read(&n->total_objects); 2407 } 2408 #endif /* CONFIG_SLUB_DEBUG */ 2409 2410 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2411 static unsigned long count_partial(struct kmem_cache_node *n, 2412 int (*get_count)(struct page *)) 2413 { 2414 unsigned long flags; 2415 unsigned long x = 0; 2416 struct page *page; 2417 2418 spin_lock_irqsave(&n->list_lock, flags); 2419 list_for_each_entry(page, &n->partial, slab_list) 2420 x += get_count(page); 2421 spin_unlock_irqrestore(&n->list_lock, flags); 2422 return x; 2423 } 2424 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2425 2426 static noinline void 2427 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2428 { 2429 #ifdef CONFIG_SLUB_DEBUG 2430 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2431 DEFAULT_RATELIMIT_BURST); 2432 int node; 2433 struct kmem_cache_node *n; 2434 2435 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2436 return; 2437 2438 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2439 nid, gfpflags, &gfpflags); 2440 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2441 s->name, s->object_size, s->size, oo_order(s->oo), 2442 oo_order(s->min)); 2443 2444 if (oo_order(s->min) > get_order(s->object_size)) 2445 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2446 s->name); 2447 2448 for_each_kmem_cache_node(s, node, n) { 2449 unsigned long nr_slabs; 2450 unsigned long nr_objs; 2451 unsigned long nr_free; 2452 2453 nr_free = count_partial(n, count_free); 2454 nr_slabs = node_nr_slabs(n); 2455 nr_objs = node_nr_objs(n); 2456 2457 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2458 node, nr_slabs, nr_objs, nr_free); 2459 } 2460 #endif 2461 } 2462 2463 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2464 int node, struct kmem_cache_cpu **pc) 2465 { 2466 void *freelist; 2467 struct kmem_cache_cpu *c = *pc; 2468 struct page *page; 2469 2470 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2471 2472 freelist = get_partial(s, flags, node, c); 2473 2474 if (freelist) 2475 return freelist; 2476 2477 page = new_slab(s, flags, node); 2478 if (page) { 2479 c = raw_cpu_ptr(s->cpu_slab); 2480 if (c->page) 2481 flush_slab(s, c); 2482 2483 /* 2484 * No other reference to the page yet so we can 2485 * muck around with it freely without cmpxchg 2486 */ 2487 freelist = page->freelist; 2488 page->freelist = NULL; 2489 2490 stat(s, ALLOC_SLAB); 2491 c->page = page; 2492 *pc = c; 2493 } 2494 2495 return freelist; 2496 } 2497 2498 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2499 { 2500 if (unlikely(PageSlabPfmemalloc(page))) 2501 return gfp_pfmemalloc_allowed(gfpflags); 2502 2503 return true; 2504 } 2505 2506 /* 2507 * Check the page->freelist of a page and either transfer the freelist to the 2508 * per cpu freelist or deactivate the page. 2509 * 2510 * The page is still frozen if the return value is not NULL. 2511 * 2512 * If this function returns NULL then the page has been unfrozen. 2513 * 2514 * This function must be called with interrupt disabled. 2515 */ 2516 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2517 { 2518 struct page new; 2519 unsigned long counters; 2520 void *freelist; 2521 2522 do { 2523 freelist = page->freelist; 2524 counters = page->counters; 2525 2526 new.counters = counters; 2527 VM_BUG_ON(!new.frozen); 2528 2529 new.inuse = page->objects; 2530 new.frozen = freelist != NULL; 2531 2532 } while (!__cmpxchg_double_slab(s, page, 2533 freelist, counters, 2534 NULL, new.counters, 2535 "get_freelist")); 2536 2537 return freelist; 2538 } 2539 2540 /* 2541 * Slow path. The lockless freelist is empty or we need to perform 2542 * debugging duties. 2543 * 2544 * Processing is still very fast if new objects have been freed to the 2545 * regular freelist. In that case we simply take over the regular freelist 2546 * as the lockless freelist and zap the regular freelist. 2547 * 2548 * If that is not working then we fall back to the partial lists. We take the 2549 * first element of the freelist as the object to allocate now and move the 2550 * rest of the freelist to the lockless freelist. 2551 * 2552 * And if we were unable to get a new slab from the partial slab lists then 2553 * we need to allocate a new slab. This is the slowest path since it involves 2554 * a call to the page allocator and the setup of a new slab. 2555 * 2556 * Version of __slab_alloc to use when we know that interrupts are 2557 * already disabled (which is the case for bulk allocation). 2558 */ 2559 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2560 unsigned long addr, struct kmem_cache_cpu *c) 2561 { 2562 void *freelist; 2563 struct page *page; 2564 2565 page = c->page; 2566 if (!page) 2567 goto new_slab; 2568 redo: 2569 2570 if (unlikely(!node_match(page, node))) { 2571 int searchnode = node; 2572 2573 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2574 searchnode = node_to_mem_node(node); 2575 2576 if (unlikely(!node_match(page, searchnode))) { 2577 stat(s, ALLOC_NODE_MISMATCH); 2578 deactivate_slab(s, page, c->freelist, c); 2579 goto new_slab; 2580 } 2581 } 2582 2583 /* 2584 * By rights, we should be searching for a slab page that was 2585 * PFMEMALLOC but right now, we are losing the pfmemalloc 2586 * information when the page leaves the per-cpu allocator 2587 */ 2588 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2589 deactivate_slab(s, page, c->freelist, c); 2590 goto new_slab; 2591 } 2592 2593 /* must check again c->freelist in case of cpu migration or IRQ */ 2594 freelist = c->freelist; 2595 if (freelist) 2596 goto load_freelist; 2597 2598 freelist = get_freelist(s, page); 2599 2600 if (!freelist) { 2601 c->page = NULL; 2602 stat(s, DEACTIVATE_BYPASS); 2603 goto new_slab; 2604 } 2605 2606 stat(s, ALLOC_REFILL); 2607 2608 load_freelist: 2609 /* 2610 * freelist is pointing to the list of objects to be used. 2611 * page is pointing to the page from which the objects are obtained. 2612 * That page must be frozen for per cpu allocations to work. 2613 */ 2614 VM_BUG_ON(!c->page->frozen); 2615 c->freelist = get_freepointer(s, freelist); 2616 c->tid = next_tid(c->tid); 2617 return freelist; 2618 2619 new_slab: 2620 2621 if (slub_percpu_partial(c)) { 2622 page = c->page = slub_percpu_partial(c); 2623 slub_set_percpu_partial(c, page); 2624 stat(s, CPU_PARTIAL_ALLOC); 2625 goto redo; 2626 } 2627 2628 freelist = new_slab_objects(s, gfpflags, node, &c); 2629 2630 if (unlikely(!freelist)) { 2631 slab_out_of_memory(s, gfpflags, node); 2632 return NULL; 2633 } 2634 2635 page = c->page; 2636 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2637 goto load_freelist; 2638 2639 /* Only entered in the debug case */ 2640 if (kmem_cache_debug(s) && 2641 !alloc_debug_processing(s, page, freelist, addr)) 2642 goto new_slab; /* Slab failed checks. Next slab needed */ 2643 2644 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2645 return freelist; 2646 } 2647 2648 /* 2649 * Another one that disabled interrupt and compensates for possible 2650 * cpu changes by refetching the per cpu area pointer. 2651 */ 2652 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2653 unsigned long addr, struct kmem_cache_cpu *c) 2654 { 2655 void *p; 2656 unsigned long flags; 2657 2658 local_irq_save(flags); 2659 #ifdef CONFIG_PREEMPTION 2660 /* 2661 * We may have been preempted and rescheduled on a different 2662 * cpu before disabling interrupts. Need to reload cpu area 2663 * pointer. 2664 */ 2665 c = this_cpu_ptr(s->cpu_slab); 2666 #endif 2667 2668 p = ___slab_alloc(s, gfpflags, node, addr, c); 2669 local_irq_restore(flags); 2670 return p; 2671 } 2672 2673 /* 2674 * If the object has been wiped upon free, make sure it's fully initialized by 2675 * zeroing out freelist pointer. 2676 */ 2677 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2678 void *obj) 2679 { 2680 if (unlikely(slab_want_init_on_free(s)) && obj) 2681 memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); 2682 } 2683 2684 /* 2685 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2686 * have the fastpath folded into their functions. So no function call 2687 * overhead for requests that can be satisfied on the fastpath. 2688 * 2689 * The fastpath works by first checking if the lockless freelist can be used. 2690 * If not then __slab_alloc is called for slow processing. 2691 * 2692 * Otherwise we can simply pick the next object from the lockless free list. 2693 */ 2694 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2695 gfp_t gfpflags, int node, unsigned long addr) 2696 { 2697 void *object; 2698 struct kmem_cache_cpu *c; 2699 struct page *page; 2700 unsigned long tid; 2701 2702 s = slab_pre_alloc_hook(s, gfpflags); 2703 if (!s) 2704 return NULL; 2705 redo: 2706 /* 2707 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2708 * enabled. We may switch back and forth between cpus while 2709 * reading from one cpu area. That does not matter as long 2710 * as we end up on the original cpu again when doing the cmpxchg. 2711 * 2712 * We should guarantee that tid and kmem_cache are retrieved on 2713 * the same cpu. It could be different if CONFIG_PREEMPTION so we need 2714 * to check if it is matched or not. 2715 */ 2716 do { 2717 tid = this_cpu_read(s->cpu_slab->tid); 2718 c = raw_cpu_ptr(s->cpu_slab); 2719 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2720 unlikely(tid != READ_ONCE(c->tid))); 2721 2722 /* 2723 * Irqless object alloc/free algorithm used here depends on sequence 2724 * of fetching cpu_slab's data. tid should be fetched before anything 2725 * on c to guarantee that object and page associated with previous tid 2726 * won't be used with current tid. If we fetch tid first, object and 2727 * page could be one associated with next tid and our alloc/free 2728 * request will be failed. In this case, we will retry. So, no problem. 2729 */ 2730 barrier(); 2731 2732 /* 2733 * The transaction ids are globally unique per cpu and per operation on 2734 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2735 * occurs on the right processor and that there was no operation on the 2736 * linked list in between. 2737 */ 2738 2739 object = c->freelist; 2740 page = c->page; 2741 if (unlikely(!object || !node_match(page, node))) { 2742 object = __slab_alloc(s, gfpflags, node, addr, c); 2743 stat(s, ALLOC_SLOWPATH); 2744 } else { 2745 void *next_object = get_freepointer_safe(s, object); 2746 2747 /* 2748 * The cmpxchg will only match if there was no additional 2749 * operation and if we are on the right processor. 2750 * 2751 * The cmpxchg does the following atomically (without lock 2752 * semantics!) 2753 * 1. Relocate first pointer to the current per cpu area. 2754 * 2. Verify that tid and freelist have not been changed 2755 * 3. If they were not changed replace tid and freelist 2756 * 2757 * Since this is without lock semantics the protection is only 2758 * against code executing on this cpu *not* from access by 2759 * other cpus. 2760 */ 2761 if (unlikely(!this_cpu_cmpxchg_double( 2762 s->cpu_slab->freelist, s->cpu_slab->tid, 2763 object, tid, 2764 next_object, next_tid(tid)))) { 2765 2766 note_cmpxchg_failure("slab_alloc", s, tid); 2767 goto redo; 2768 } 2769 prefetch_freepointer(s, next_object); 2770 stat(s, ALLOC_FASTPATH); 2771 } 2772 2773 maybe_wipe_obj_freeptr(s, object); 2774 2775 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2776 memset(object, 0, s->object_size); 2777 2778 slab_post_alloc_hook(s, gfpflags, 1, &object); 2779 2780 return object; 2781 } 2782 2783 static __always_inline void *slab_alloc(struct kmem_cache *s, 2784 gfp_t gfpflags, unsigned long addr) 2785 { 2786 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2787 } 2788 2789 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2790 { 2791 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2792 2793 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2794 s->size, gfpflags); 2795 2796 return ret; 2797 } 2798 EXPORT_SYMBOL(kmem_cache_alloc); 2799 2800 #ifdef CONFIG_TRACING 2801 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2802 { 2803 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2804 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2805 ret = kasan_kmalloc(s, ret, size, gfpflags); 2806 return ret; 2807 } 2808 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2809 #endif 2810 2811 #ifdef CONFIG_NUMA 2812 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2813 { 2814 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2815 2816 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2817 s->object_size, s->size, gfpflags, node); 2818 2819 return ret; 2820 } 2821 EXPORT_SYMBOL(kmem_cache_alloc_node); 2822 2823 #ifdef CONFIG_TRACING 2824 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2825 gfp_t gfpflags, 2826 int node, size_t size) 2827 { 2828 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2829 2830 trace_kmalloc_node(_RET_IP_, ret, 2831 size, s->size, gfpflags, node); 2832 2833 ret = kasan_kmalloc(s, ret, size, gfpflags); 2834 return ret; 2835 } 2836 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2837 #endif 2838 #endif /* CONFIG_NUMA */ 2839 2840 /* 2841 * Slow path handling. This may still be called frequently since objects 2842 * have a longer lifetime than the cpu slabs in most processing loads. 2843 * 2844 * So we still attempt to reduce cache line usage. Just take the slab 2845 * lock and free the item. If there is no additional partial page 2846 * handling required then we can return immediately. 2847 */ 2848 static void __slab_free(struct kmem_cache *s, struct page *page, 2849 void *head, void *tail, int cnt, 2850 unsigned long addr) 2851 2852 { 2853 void *prior; 2854 int was_frozen; 2855 struct page new; 2856 unsigned long counters; 2857 struct kmem_cache_node *n = NULL; 2858 unsigned long uninitialized_var(flags); 2859 2860 stat(s, FREE_SLOWPATH); 2861 2862 if (kmem_cache_debug(s) && 2863 !free_debug_processing(s, page, head, tail, cnt, addr)) 2864 return; 2865 2866 do { 2867 if (unlikely(n)) { 2868 spin_unlock_irqrestore(&n->list_lock, flags); 2869 n = NULL; 2870 } 2871 prior = page->freelist; 2872 counters = page->counters; 2873 set_freepointer(s, tail, prior); 2874 new.counters = counters; 2875 was_frozen = new.frozen; 2876 new.inuse -= cnt; 2877 if ((!new.inuse || !prior) && !was_frozen) { 2878 2879 if (kmem_cache_has_cpu_partial(s) && !prior) { 2880 2881 /* 2882 * Slab was on no list before and will be 2883 * partially empty 2884 * We can defer the list move and instead 2885 * freeze it. 2886 */ 2887 new.frozen = 1; 2888 2889 } else { /* Needs to be taken off a list */ 2890 2891 n = get_node(s, page_to_nid(page)); 2892 /* 2893 * Speculatively acquire the list_lock. 2894 * If the cmpxchg does not succeed then we may 2895 * drop the list_lock without any processing. 2896 * 2897 * Otherwise the list_lock will synchronize with 2898 * other processors updating the list of slabs. 2899 */ 2900 spin_lock_irqsave(&n->list_lock, flags); 2901 2902 } 2903 } 2904 2905 } while (!cmpxchg_double_slab(s, page, 2906 prior, counters, 2907 head, new.counters, 2908 "__slab_free")); 2909 2910 if (likely(!n)) { 2911 2912 /* 2913 * If we just froze the page then put it onto the 2914 * per cpu partial list. 2915 */ 2916 if (new.frozen && !was_frozen) { 2917 put_cpu_partial(s, page, 1); 2918 stat(s, CPU_PARTIAL_FREE); 2919 } 2920 /* 2921 * The list lock was not taken therefore no list 2922 * activity can be necessary. 2923 */ 2924 if (was_frozen) 2925 stat(s, FREE_FROZEN); 2926 return; 2927 } 2928 2929 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2930 goto slab_empty; 2931 2932 /* 2933 * Objects left in the slab. If it was not on the partial list before 2934 * then add it. 2935 */ 2936 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2937 remove_full(s, n, page); 2938 add_partial(n, page, DEACTIVATE_TO_TAIL); 2939 stat(s, FREE_ADD_PARTIAL); 2940 } 2941 spin_unlock_irqrestore(&n->list_lock, flags); 2942 return; 2943 2944 slab_empty: 2945 if (prior) { 2946 /* 2947 * Slab on the partial list. 2948 */ 2949 remove_partial(n, page); 2950 stat(s, FREE_REMOVE_PARTIAL); 2951 } else { 2952 /* Slab must be on the full list */ 2953 remove_full(s, n, page); 2954 } 2955 2956 spin_unlock_irqrestore(&n->list_lock, flags); 2957 stat(s, FREE_SLAB); 2958 discard_slab(s, page); 2959 } 2960 2961 /* 2962 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2963 * can perform fastpath freeing without additional function calls. 2964 * 2965 * The fastpath is only possible if we are freeing to the current cpu slab 2966 * of this processor. This typically the case if we have just allocated 2967 * the item before. 2968 * 2969 * If fastpath is not possible then fall back to __slab_free where we deal 2970 * with all sorts of special processing. 2971 * 2972 * Bulk free of a freelist with several objects (all pointing to the 2973 * same page) possible by specifying head and tail ptr, plus objects 2974 * count (cnt). Bulk free indicated by tail pointer being set. 2975 */ 2976 static __always_inline void do_slab_free(struct kmem_cache *s, 2977 struct page *page, void *head, void *tail, 2978 int cnt, unsigned long addr) 2979 { 2980 void *tail_obj = tail ? : head; 2981 struct kmem_cache_cpu *c; 2982 unsigned long tid; 2983 redo: 2984 /* 2985 * Determine the currently cpus per cpu slab. 2986 * The cpu may change afterward. However that does not matter since 2987 * data is retrieved via this pointer. If we are on the same cpu 2988 * during the cmpxchg then the free will succeed. 2989 */ 2990 do { 2991 tid = this_cpu_read(s->cpu_slab->tid); 2992 c = raw_cpu_ptr(s->cpu_slab); 2993 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2994 unlikely(tid != READ_ONCE(c->tid))); 2995 2996 /* Same with comment on barrier() in slab_alloc_node() */ 2997 barrier(); 2998 2999 if (likely(page == c->page)) { 3000 set_freepointer(s, tail_obj, c->freelist); 3001 3002 if (unlikely(!this_cpu_cmpxchg_double( 3003 s->cpu_slab->freelist, s->cpu_slab->tid, 3004 c->freelist, tid, 3005 head, next_tid(tid)))) { 3006 3007 note_cmpxchg_failure("slab_free", s, tid); 3008 goto redo; 3009 } 3010 stat(s, FREE_FASTPATH); 3011 } else 3012 __slab_free(s, page, head, tail_obj, cnt, addr); 3013 3014 } 3015 3016 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3017 void *head, void *tail, int cnt, 3018 unsigned long addr) 3019 { 3020 /* 3021 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3022 * to remove objects, whose reuse must be delayed. 3023 */ 3024 if (slab_free_freelist_hook(s, &head, &tail)) 3025 do_slab_free(s, page, head, tail, cnt, addr); 3026 } 3027 3028 #ifdef CONFIG_KASAN_GENERIC 3029 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3030 { 3031 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3032 } 3033 #endif 3034 3035 void kmem_cache_free(struct kmem_cache *s, void *x) 3036 { 3037 s = cache_from_obj(s, x); 3038 if (!s) 3039 return; 3040 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3041 trace_kmem_cache_free(_RET_IP_, x); 3042 } 3043 EXPORT_SYMBOL(kmem_cache_free); 3044 3045 struct detached_freelist { 3046 struct page *page; 3047 void *tail; 3048 void *freelist; 3049 int cnt; 3050 struct kmem_cache *s; 3051 }; 3052 3053 /* 3054 * This function progressively scans the array with free objects (with 3055 * a limited look ahead) and extract objects belonging to the same 3056 * page. It builds a detached freelist directly within the given 3057 * page/objects. This can happen without any need for 3058 * synchronization, because the objects are owned by running process. 3059 * The freelist is build up as a single linked list in the objects. 3060 * The idea is, that this detached freelist can then be bulk 3061 * transferred to the real freelist(s), but only requiring a single 3062 * synchronization primitive. Look ahead in the array is limited due 3063 * to performance reasons. 3064 */ 3065 static inline 3066 int build_detached_freelist(struct kmem_cache *s, size_t size, 3067 void **p, struct detached_freelist *df) 3068 { 3069 size_t first_skipped_index = 0; 3070 int lookahead = 3; 3071 void *object; 3072 struct page *page; 3073 3074 /* Always re-init detached_freelist */ 3075 df->page = NULL; 3076 3077 do { 3078 object = p[--size]; 3079 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3080 } while (!object && size); 3081 3082 if (!object) 3083 return 0; 3084 3085 page = virt_to_head_page(object); 3086 if (!s) { 3087 /* Handle kalloc'ed objects */ 3088 if (unlikely(!PageSlab(page))) { 3089 BUG_ON(!PageCompound(page)); 3090 kfree_hook(object); 3091 __free_pages(page, compound_order(page)); 3092 p[size] = NULL; /* mark object processed */ 3093 return size; 3094 } 3095 /* Derive kmem_cache from object */ 3096 df->s = page->slab_cache; 3097 } else { 3098 df->s = cache_from_obj(s, object); /* Support for memcg */ 3099 } 3100 3101 /* Start new detached freelist */ 3102 df->page = page; 3103 set_freepointer(df->s, object, NULL); 3104 df->tail = object; 3105 df->freelist = object; 3106 p[size] = NULL; /* mark object processed */ 3107 df->cnt = 1; 3108 3109 while (size) { 3110 object = p[--size]; 3111 if (!object) 3112 continue; /* Skip processed objects */ 3113 3114 /* df->page is always set at this point */ 3115 if (df->page == virt_to_head_page(object)) { 3116 /* Opportunity build freelist */ 3117 set_freepointer(df->s, object, df->freelist); 3118 df->freelist = object; 3119 df->cnt++; 3120 p[size] = NULL; /* mark object processed */ 3121 3122 continue; 3123 } 3124 3125 /* Limit look ahead search */ 3126 if (!--lookahead) 3127 break; 3128 3129 if (!first_skipped_index) 3130 first_skipped_index = size + 1; 3131 } 3132 3133 return first_skipped_index; 3134 } 3135 3136 /* Note that interrupts must be enabled when calling this function. */ 3137 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3138 { 3139 if (WARN_ON(!size)) 3140 return; 3141 3142 do { 3143 struct detached_freelist df; 3144 3145 size = build_detached_freelist(s, size, p, &df); 3146 if (!df.page) 3147 continue; 3148 3149 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3150 } while (likely(size)); 3151 } 3152 EXPORT_SYMBOL(kmem_cache_free_bulk); 3153 3154 /* Note that interrupts must be enabled when calling this function. */ 3155 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3156 void **p) 3157 { 3158 struct kmem_cache_cpu *c; 3159 int i; 3160 3161 /* memcg and kmem_cache debug support */ 3162 s = slab_pre_alloc_hook(s, flags); 3163 if (unlikely(!s)) 3164 return false; 3165 /* 3166 * Drain objects in the per cpu slab, while disabling local 3167 * IRQs, which protects against PREEMPT and interrupts 3168 * handlers invoking normal fastpath. 3169 */ 3170 local_irq_disable(); 3171 c = this_cpu_ptr(s->cpu_slab); 3172 3173 for (i = 0; i < size; i++) { 3174 void *object = c->freelist; 3175 3176 if (unlikely(!object)) { 3177 /* 3178 * Invoking slow path likely have side-effect 3179 * of re-populating per CPU c->freelist 3180 */ 3181 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3182 _RET_IP_, c); 3183 if (unlikely(!p[i])) 3184 goto error; 3185 3186 c = this_cpu_ptr(s->cpu_slab); 3187 maybe_wipe_obj_freeptr(s, p[i]); 3188 3189 continue; /* goto for-loop */ 3190 } 3191 c->freelist = get_freepointer(s, object); 3192 p[i] = object; 3193 maybe_wipe_obj_freeptr(s, p[i]); 3194 } 3195 c->tid = next_tid(c->tid); 3196 local_irq_enable(); 3197 3198 /* Clear memory outside IRQ disabled fastpath loop */ 3199 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3200 int j; 3201 3202 for (j = 0; j < i; j++) 3203 memset(p[j], 0, s->object_size); 3204 } 3205 3206 /* memcg and kmem_cache debug support */ 3207 slab_post_alloc_hook(s, flags, size, p); 3208 return i; 3209 error: 3210 local_irq_enable(); 3211 slab_post_alloc_hook(s, flags, i, p); 3212 __kmem_cache_free_bulk(s, i, p); 3213 return 0; 3214 } 3215 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3216 3217 3218 /* 3219 * Object placement in a slab is made very easy because we always start at 3220 * offset 0. If we tune the size of the object to the alignment then we can 3221 * get the required alignment by putting one properly sized object after 3222 * another. 3223 * 3224 * Notice that the allocation order determines the sizes of the per cpu 3225 * caches. Each processor has always one slab available for allocations. 3226 * Increasing the allocation order reduces the number of times that slabs 3227 * must be moved on and off the partial lists and is therefore a factor in 3228 * locking overhead. 3229 */ 3230 3231 /* 3232 * Mininum / Maximum order of slab pages. This influences locking overhead 3233 * and slab fragmentation. A higher order reduces the number of partial slabs 3234 * and increases the number of allocations possible without having to 3235 * take the list_lock. 3236 */ 3237 static unsigned int slub_min_order; 3238 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3239 static unsigned int slub_min_objects; 3240 3241 /* 3242 * Calculate the order of allocation given an slab object size. 3243 * 3244 * The order of allocation has significant impact on performance and other 3245 * system components. Generally order 0 allocations should be preferred since 3246 * order 0 does not cause fragmentation in the page allocator. Larger objects 3247 * be problematic to put into order 0 slabs because there may be too much 3248 * unused space left. We go to a higher order if more than 1/16th of the slab 3249 * would be wasted. 3250 * 3251 * In order to reach satisfactory performance we must ensure that a minimum 3252 * number of objects is in one slab. Otherwise we may generate too much 3253 * activity on the partial lists which requires taking the list_lock. This is 3254 * less a concern for large slabs though which are rarely used. 3255 * 3256 * slub_max_order specifies the order where we begin to stop considering the 3257 * number of objects in a slab as critical. If we reach slub_max_order then 3258 * we try to keep the page order as low as possible. So we accept more waste 3259 * of space in favor of a small page order. 3260 * 3261 * Higher order allocations also allow the placement of more objects in a 3262 * slab and thereby reduce object handling overhead. If the user has 3263 * requested a higher mininum order then we start with that one instead of 3264 * the smallest order which will fit the object. 3265 */ 3266 static inline unsigned int slab_order(unsigned int size, 3267 unsigned int min_objects, unsigned int max_order, 3268 unsigned int fract_leftover) 3269 { 3270 unsigned int min_order = slub_min_order; 3271 unsigned int order; 3272 3273 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3274 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3275 3276 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3277 order <= max_order; order++) { 3278 3279 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3280 unsigned int rem; 3281 3282 rem = slab_size % size; 3283 3284 if (rem <= slab_size / fract_leftover) 3285 break; 3286 } 3287 3288 return order; 3289 } 3290 3291 static inline int calculate_order(unsigned int size) 3292 { 3293 unsigned int order; 3294 unsigned int min_objects; 3295 unsigned int max_objects; 3296 3297 /* 3298 * Attempt to find best configuration for a slab. This 3299 * works by first attempting to generate a layout with 3300 * the best configuration and backing off gradually. 3301 * 3302 * First we increase the acceptable waste in a slab. Then 3303 * we reduce the minimum objects required in a slab. 3304 */ 3305 min_objects = slub_min_objects; 3306 if (!min_objects) 3307 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3308 max_objects = order_objects(slub_max_order, size); 3309 min_objects = min(min_objects, max_objects); 3310 3311 while (min_objects > 1) { 3312 unsigned int fraction; 3313 3314 fraction = 16; 3315 while (fraction >= 4) { 3316 order = slab_order(size, min_objects, 3317 slub_max_order, fraction); 3318 if (order <= slub_max_order) 3319 return order; 3320 fraction /= 2; 3321 } 3322 min_objects--; 3323 } 3324 3325 /* 3326 * We were unable to place multiple objects in a slab. Now 3327 * lets see if we can place a single object there. 3328 */ 3329 order = slab_order(size, 1, slub_max_order, 1); 3330 if (order <= slub_max_order) 3331 return order; 3332 3333 /* 3334 * Doh this slab cannot be placed using slub_max_order. 3335 */ 3336 order = slab_order(size, 1, MAX_ORDER, 1); 3337 if (order < MAX_ORDER) 3338 return order; 3339 return -ENOSYS; 3340 } 3341 3342 static void 3343 init_kmem_cache_node(struct kmem_cache_node *n) 3344 { 3345 n->nr_partial = 0; 3346 spin_lock_init(&n->list_lock); 3347 INIT_LIST_HEAD(&n->partial); 3348 #ifdef CONFIG_SLUB_DEBUG 3349 atomic_long_set(&n->nr_slabs, 0); 3350 atomic_long_set(&n->total_objects, 0); 3351 INIT_LIST_HEAD(&n->full); 3352 #endif 3353 } 3354 3355 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3356 { 3357 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3358 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3359 3360 /* 3361 * Must align to double word boundary for the double cmpxchg 3362 * instructions to work; see __pcpu_double_call_return_bool(). 3363 */ 3364 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3365 2 * sizeof(void *)); 3366 3367 if (!s->cpu_slab) 3368 return 0; 3369 3370 init_kmem_cache_cpus(s); 3371 3372 return 1; 3373 } 3374 3375 static struct kmem_cache *kmem_cache_node; 3376 3377 /* 3378 * No kmalloc_node yet so do it by hand. We know that this is the first 3379 * slab on the node for this slabcache. There are no concurrent accesses 3380 * possible. 3381 * 3382 * Note that this function only works on the kmem_cache_node 3383 * when allocating for the kmem_cache_node. This is used for bootstrapping 3384 * memory on a fresh node that has no slab structures yet. 3385 */ 3386 static void early_kmem_cache_node_alloc(int node) 3387 { 3388 struct page *page; 3389 struct kmem_cache_node *n; 3390 3391 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3392 3393 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3394 3395 BUG_ON(!page); 3396 if (page_to_nid(page) != node) { 3397 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3398 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3399 } 3400 3401 n = page->freelist; 3402 BUG_ON(!n); 3403 #ifdef CONFIG_SLUB_DEBUG 3404 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3405 init_tracking(kmem_cache_node, n); 3406 #endif 3407 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3408 GFP_KERNEL); 3409 page->freelist = get_freepointer(kmem_cache_node, n); 3410 page->inuse = 1; 3411 page->frozen = 0; 3412 kmem_cache_node->node[node] = n; 3413 init_kmem_cache_node(n); 3414 inc_slabs_node(kmem_cache_node, node, page->objects); 3415 3416 /* 3417 * No locks need to be taken here as it has just been 3418 * initialized and there is no concurrent access. 3419 */ 3420 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3421 } 3422 3423 static void free_kmem_cache_nodes(struct kmem_cache *s) 3424 { 3425 int node; 3426 struct kmem_cache_node *n; 3427 3428 for_each_kmem_cache_node(s, node, n) { 3429 s->node[node] = NULL; 3430 kmem_cache_free(kmem_cache_node, n); 3431 } 3432 } 3433 3434 void __kmem_cache_release(struct kmem_cache *s) 3435 { 3436 cache_random_seq_destroy(s); 3437 free_percpu(s->cpu_slab); 3438 free_kmem_cache_nodes(s); 3439 } 3440 3441 static int init_kmem_cache_nodes(struct kmem_cache *s) 3442 { 3443 int node; 3444 3445 for_each_node_state(node, N_NORMAL_MEMORY) { 3446 struct kmem_cache_node *n; 3447 3448 if (slab_state == DOWN) { 3449 early_kmem_cache_node_alloc(node); 3450 continue; 3451 } 3452 n = kmem_cache_alloc_node(kmem_cache_node, 3453 GFP_KERNEL, node); 3454 3455 if (!n) { 3456 free_kmem_cache_nodes(s); 3457 return 0; 3458 } 3459 3460 init_kmem_cache_node(n); 3461 s->node[node] = n; 3462 } 3463 return 1; 3464 } 3465 3466 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3467 { 3468 if (min < MIN_PARTIAL) 3469 min = MIN_PARTIAL; 3470 else if (min > MAX_PARTIAL) 3471 min = MAX_PARTIAL; 3472 s->min_partial = min; 3473 } 3474 3475 static void set_cpu_partial(struct kmem_cache *s) 3476 { 3477 #ifdef CONFIG_SLUB_CPU_PARTIAL 3478 /* 3479 * cpu_partial determined the maximum number of objects kept in the 3480 * per cpu partial lists of a processor. 3481 * 3482 * Per cpu partial lists mainly contain slabs that just have one 3483 * object freed. If they are used for allocation then they can be 3484 * filled up again with minimal effort. The slab will never hit the 3485 * per node partial lists and therefore no locking will be required. 3486 * 3487 * This setting also determines 3488 * 3489 * A) The number of objects from per cpu partial slabs dumped to the 3490 * per node list when we reach the limit. 3491 * B) The number of objects in cpu partial slabs to extract from the 3492 * per node list when we run out of per cpu objects. We only fetch 3493 * 50% to keep some capacity around for frees. 3494 */ 3495 if (!kmem_cache_has_cpu_partial(s)) 3496 s->cpu_partial = 0; 3497 else if (s->size >= PAGE_SIZE) 3498 s->cpu_partial = 2; 3499 else if (s->size >= 1024) 3500 s->cpu_partial = 6; 3501 else if (s->size >= 256) 3502 s->cpu_partial = 13; 3503 else 3504 s->cpu_partial = 30; 3505 #endif 3506 } 3507 3508 /* 3509 * calculate_sizes() determines the order and the distribution of data within 3510 * a slab object. 3511 */ 3512 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3513 { 3514 slab_flags_t flags = s->flags; 3515 unsigned int size = s->object_size; 3516 unsigned int order; 3517 3518 /* 3519 * Round up object size to the next word boundary. We can only 3520 * place the free pointer at word boundaries and this determines 3521 * the possible location of the free pointer. 3522 */ 3523 size = ALIGN(size, sizeof(void *)); 3524 3525 #ifdef CONFIG_SLUB_DEBUG 3526 /* 3527 * Determine if we can poison the object itself. If the user of 3528 * the slab may touch the object after free or before allocation 3529 * then we should never poison the object itself. 3530 */ 3531 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3532 !s->ctor) 3533 s->flags |= __OBJECT_POISON; 3534 else 3535 s->flags &= ~__OBJECT_POISON; 3536 3537 3538 /* 3539 * If we are Redzoning then check if there is some space between the 3540 * end of the object and the free pointer. If not then add an 3541 * additional word to have some bytes to store Redzone information. 3542 */ 3543 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3544 size += sizeof(void *); 3545 #endif 3546 3547 /* 3548 * With that we have determined the number of bytes in actual use 3549 * by the object. This is the potential offset to the free pointer. 3550 */ 3551 s->inuse = size; 3552 3553 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3554 s->ctor)) { 3555 /* 3556 * Relocate free pointer after the object if it is not 3557 * permitted to overwrite the first word of the object on 3558 * kmem_cache_free. 3559 * 3560 * This is the case if we do RCU, have a constructor or 3561 * destructor or are poisoning the objects. 3562 */ 3563 s->offset = size; 3564 size += sizeof(void *); 3565 } 3566 3567 #ifdef CONFIG_SLUB_DEBUG 3568 if (flags & SLAB_STORE_USER) 3569 /* 3570 * Need to store information about allocs and frees after 3571 * the object. 3572 */ 3573 size += 2 * sizeof(struct track); 3574 #endif 3575 3576 kasan_cache_create(s, &size, &s->flags); 3577 #ifdef CONFIG_SLUB_DEBUG 3578 if (flags & SLAB_RED_ZONE) { 3579 /* 3580 * Add some empty padding so that we can catch 3581 * overwrites from earlier objects rather than let 3582 * tracking information or the free pointer be 3583 * corrupted if a user writes before the start 3584 * of the object. 3585 */ 3586 size += sizeof(void *); 3587 3588 s->red_left_pad = sizeof(void *); 3589 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3590 size += s->red_left_pad; 3591 } 3592 #endif 3593 3594 /* 3595 * SLUB stores one object immediately after another beginning from 3596 * offset 0. In order to align the objects we have to simply size 3597 * each object to conform to the alignment. 3598 */ 3599 size = ALIGN(size, s->align); 3600 s->size = size; 3601 if (forced_order >= 0) 3602 order = forced_order; 3603 else 3604 order = calculate_order(size); 3605 3606 if ((int)order < 0) 3607 return 0; 3608 3609 s->allocflags = 0; 3610 if (order) 3611 s->allocflags |= __GFP_COMP; 3612 3613 if (s->flags & SLAB_CACHE_DMA) 3614 s->allocflags |= GFP_DMA; 3615 3616 if (s->flags & SLAB_CACHE_DMA32) 3617 s->allocflags |= GFP_DMA32; 3618 3619 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3620 s->allocflags |= __GFP_RECLAIMABLE; 3621 3622 /* 3623 * Determine the number of objects per slab 3624 */ 3625 s->oo = oo_make(order, size); 3626 s->min = oo_make(get_order(size), size); 3627 if (oo_objects(s->oo) > oo_objects(s->max)) 3628 s->max = s->oo; 3629 3630 return !!oo_objects(s->oo); 3631 } 3632 3633 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3634 { 3635 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3636 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3637 s->random = get_random_long(); 3638 #endif 3639 3640 if (!calculate_sizes(s, -1)) 3641 goto error; 3642 if (disable_higher_order_debug) { 3643 /* 3644 * Disable debugging flags that store metadata if the min slab 3645 * order increased. 3646 */ 3647 if (get_order(s->size) > get_order(s->object_size)) { 3648 s->flags &= ~DEBUG_METADATA_FLAGS; 3649 s->offset = 0; 3650 if (!calculate_sizes(s, -1)) 3651 goto error; 3652 } 3653 } 3654 3655 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3656 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3657 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3658 /* Enable fast mode */ 3659 s->flags |= __CMPXCHG_DOUBLE; 3660 #endif 3661 3662 /* 3663 * The larger the object size is, the more pages we want on the partial 3664 * list to avoid pounding the page allocator excessively. 3665 */ 3666 set_min_partial(s, ilog2(s->size) / 2); 3667 3668 set_cpu_partial(s); 3669 3670 #ifdef CONFIG_NUMA 3671 s->remote_node_defrag_ratio = 1000; 3672 #endif 3673 3674 /* Initialize the pre-computed randomized freelist if slab is up */ 3675 if (slab_state >= UP) { 3676 if (init_cache_random_seq(s)) 3677 goto error; 3678 } 3679 3680 if (!init_kmem_cache_nodes(s)) 3681 goto error; 3682 3683 if (alloc_kmem_cache_cpus(s)) 3684 return 0; 3685 3686 free_kmem_cache_nodes(s); 3687 error: 3688 return -EINVAL; 3689 } 3690 3691 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3692 const char *text) 3693 { 3694 #ifdef CONFIG_SLUB_DEBUG 3695 void *addr = page_address(page); 3696 void *p; 3697 unsigned long *map; 3698 3699 slab_err(s, page, text, s->name); 3700 slab_lock(page); 3701 3702 map = get_map(s, page); 3703 for_each_object(p, s, addr, page->objects) { 3704 3705 if (!test_bit(slab_index(p, s, addr), map)) { 3706 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3707 print_tracking(s, p); 3708 } 3709 } 3710 put_map(map); 3711 3712 slab_unlock(page); 3713 #endif 3714 } 3715 3716 /* 3717 * Attempt to free all partial slabs on a node. 3718 * This is called from __kmem_cache_shutdown(). We must take list_lock 3719 * because sysfs file might still access partial list after the shutdowning. 3720 */ 3721 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3722 { 3723 LIST_HEAD(discard); 3724 struct page *page, *h; 3725 3726 BUG_ON(irqs_disabled()); 3727 spin_lock_irq(&n->list_lock); 3728 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3729 if (!page->inuse) { 3730 remove_partial(n, page); 3731 list_add(&page->slab_list, &discard); 3732 } else { 3733 list_slab_objects(s, page, 3734 "Objects remaining in %s on __kmem_cache_shutdown()"); 3735 } 3736 } 3737 spin_unlock_irq(&n->list_lock); 3738 3739 list_for_each_entry_safe(page, h, &discard, slab_list) 3740 discard_slab(s, page); 3741 } 3742 3743 bool __kmem_cache_empty(struct kmem_cache *s) 3744 { 3745 int node; 3746 struct kmem_cache_node *n; 3747 3748 for_each_kmem_cache_node(s, node, n) 3749 if (n->nr_partial || slabs_node(s, node)) 3750 return false; 3751 return true; 3752 } 3753 3754 /* 3755 * Release all resources used by a slab cache. 3756 */ 3757 int __kmem_cache_shutdown(struct kmem_cache *s) 3758 { 3759 int node; 3760 struct kmem_cache_node *n; 3761 3762 flush_all(s); 3763 /* Attempt to free all objects */ 3764 for_each_kmem_cache_node(s, node, n) { 3765 free_partial(s, n); 3766 if (n->nr_partial || slabs_node(s, node)) 3767 return 1; 3768 } 3769 sysfs_slab_remove(s); 3770 return 0; 3771 } 3772 3773 /******************************************************************** 3774 * Kmalloc subsystem 3775 *******************************************************************/ 3776 3777 static int __init setup_slub_min_order(char *str) 3778 { 3779 get_option(&str, (int *)&slub_min_order); 3780 3781 return 1; 3782 } 3783 3784 __setup("slub_min_order=", setup_slub_min_order); 3785 3786 static int __init setup_slub_max_order(char *str) 3787 { 3788 get_option(&str, (int *)&slub_max_order); 3789 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3790 3791 return 1; 3792 } 3793 3794 __setup("slub_max_order=", setup_slub_max_order); 3795 3796 static int __init setup_slub_min_objects(char *str) 3797 { 3798 get_option(&str, (int *)&slub_min_objects); 3799 3800 return 1; 3801 } 3802 3803 __setup("slub_min_objects=", setup_slub_min_objects); 3804 3805 void *__kmalloc(size_t size, gfp_t flags) 3806 { 3807 struct kmem_cache *s; 3808 void *ret; 3809 3810 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3811 return kmalloc_large(size, flags); 3812 3813 s = kmalloc_slab(size, flags); 3814 3815 if (unlikely(ZERO_OR_NULL_PTR(s))) 3816 return s; 3817 3818 ret = slab_alloc(s, flags, _RET_IP_); 3819 3820 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3821 3822 ret = kasan_kmalloc(s, ret, size, flags); 3823 3824 return ret; 3825 } 3826 EXPORT_SYMBOL(__kmalloc); 3827 3828 #ifdef CONFIG_NUMA 3829 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3830 { 3831 struct page *page; 3832 void *ptr = NULL; 3833 unsigned int order = get_order(size); 3834 3835 flags |= __GFP_COMP; 3836 page = alloc_pages_node(node, flags, order); 3837 if (page) { 3838 ptr = page_address(page); 3839 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3840 1 << order); 3841 } 3842 3843 return kmalloc_large_node_hook(ptr, size, flags); 3844 } 3845 3846 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3847 { 3848 struct kmem_cache *s; 3849 void *ret; 3850 3851 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3852 ret = kmalloc_large_node(size, flags, node); 3853 3854 trace_kmalloc_node(_RET_IP_, ret, 3855 size, PAGE_SIZE << get_order(size), 3856 flags, node); 3857 3858 return ret; 3859 } 3860 3861 s = kmalloc_slab(size, flags); 3862 3863 if (unlikely(ZERO_OR_NULL_PTR(s))) 3864 return s; 3865 3866 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3867 3868 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3869 3870 ret = kasan_kmalloc(s, ret, size, flags); 3871 3872 return ret; 3873 } 3874 EXPORT_SYMBOL(__kmalloc_node); 3875 #endif /* CONFIG_NUMA */ 3876 3877 #ifdef CONFIG_HARDENED_USERCOPY 3878 /* 3879 * Rejects incorrectly sized objects and objects that are to be copied 3880 * to/from userspace but do not fall entirely within the containing slab 3881 * cache's usercopy region. 3882 * 3883 * Returns NULL if check passes, otherwise const char * to name of cache 3884 * to indicate an error. 3885 */ 3886 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3887 bool to_user) 3888 { 3889 struct kmem_cache *s; 3890 unsigned int offset; 3891 size_t object_size; 3892 3893 ptr = kasan_reset_tag(ptr); 3894 3895 /* Find object and usable object size. */ 3896 s = page->slab_cache; 3897 3898 /* Reject impossible pointers. */ 3899 if (ptr < page_address(page)) 3900 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3901 to_user, 0, n); 3902 3903 /* Find offset within object. */ 3904 offset = (ptr - page_address(page)) % s->size; 3905 3906 /* Adjust for redzone and reject if within the redzone. */ 3907 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3908 if (offset < s->red_left_pad) 3909 usercopy_abort("SLUB object in left red zone", 3910 s->name, to_user, offset, n); 3911 offset -= s->red_left_pad; 3912 } 3913 3914 /* Allow address range falling entirely within usercopy region. */ 3915 if (offset >= s->useroffset && 3916 offset - s->useroffset <= s->usersize && 3917 n <= s->useroffset - offset + s->usersize) 3918 return; 3919 3920 /* 3921 * If the copy is still within the allocated object, produce 3922 * a warning instead of rejecting the copy. This is intended 3923 * to be a temporary method to find any missing usercopy 3924 * whitelists. 3925 */ 3926 object_size = slab_ksize(s); 3927 if (usercopy_fallback && 3928 offset <= object_size && n <= object_size - offset) { 3929 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3930 return; 3931 } 3932 3933 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3934 } 3935 #endif /* CONFIG_HARDENED_USERCOPY */ 3936 3937 size_t __ksize(const void *object) 3938 { 3939 struct page *page; 3940 3941 if (unlikely(object == ZERO_SIZE_PTR)) 3942 return 0; 3943 3944 page = virt_to_head_page(object); 3945 3946 if (unlikely(!PageSlab(page))) { 3947 WARN_ON(!PageCompound(page)); 3948 return page_size(page); 3949 } 3950 3951 return slab_ksize(page->slab_cache); 3952 } 3953 EXPORT_SYMBOL(__ksize); 3954 3955 void kfree(const void *x) 3956 { 3957 struct page *page; 3958 void *object = (void *)x; 3959 3960 trace_kfree(_RET_IP_, x); 3961 3962 if (unlikely(ZERO_OR_NULL_PTR(x))) 3963 return; 3964 3965 page = virt_to_head_page(x); 3966 if (unlikely(!PageSlab(page))) { 3967 unsigned int order = compound_order(page); 3968 3969 BUG_ON(!PageCompound(page)); 3970 kfree_hook(object); 3971 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3972 -(1 << order)); 3973 __free_pages(page, order); 3974 return; 3975 } 3976 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3977 } 3978 EXPORT_SYMBOL(kfree); 3979 3980 #define SHRINK_PROMOTE_MAX 32 3981 3982 /* 3983 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3984 * up most to the head of the partial lists. New allocations will then 3985 * fill those up and thus they can be removed from the partial lists. 3986 * 3987 * The slabs with the least items are placed last. This results in them 3988 * being allocated from last increasing the chance that the last objects 3989 * are freed in them. 3990 */ 3991 int __kmem_cache_shrink(struct kmem_cache *s) 3992 { 3993 int node; 3994 int i; 3995 struct kmem_cache_node *n; 3996 struct page *page; 3997 struct page *t; 3998 struct list_head discard; 3999 struct list_head promote[SHRINK_PROMOTE_MAX]; 4000 unsigned long flags; 4001 int ret = 0; 4002 4003 flush_all(s); 4004 for_each_kmem_cache_node(s, node, n) { 4005 INIT_LIST_HEAD(&discard); 4006 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4007 INIT_LIST_HEAD(promote + i); 4008 4009 spin_lock_irqsave(&n->list_lock, flags); 4010 4011 /* 4012 * Build lists of slabs to discard or promote. 4013 * 4014 * Note that concurrent frees may occur while we hold the 4015 * list_lock. page->inuse here is the upper limit. 4016 */ 4017 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4018 int free = page->objects - page->inuse; 4019 4020 /* Do not reread page->inuse */ 4021 barrier(); 4022 4023 /* We do not keep full slabs on the list */ 4024 BUG_ON(free <= 0); 4025 4026 if (free == page->objects) { 4027 list_move(&page->slab_list, &discard); 4028 n->nr_partial--; 4029 } else if (free <= SHRINK_PROMOTE_MAX) 4030 list_move(&page->slab_list, promote + free - 1); 4031 } 4032 4033 /* 4034 * Promote the slabs filled up most to the head of the 4035 * partial list. 4036 */ 4037 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4038 list_splice(promote + i, &n->partial); 4039 4040 spin_unlock_irqrestore(&n->list_lock, flags); 4041 4042 /* Release empty slabs */ 4043 list_for_each_entry_safe(page, t, &discard, slab_list) 4044 discard_slab(s, page); 4045 4046 if (slabs_node(s, node)) 4047 ret = 1; 4048 } 4049 4050 return ret; 4051 } 4052 4053 #ifdef CONFIG_MEMCG 4054 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 4055 { 4056 /* 4057 * Called with all the locks held after a sched RCU grace period. 4058 * Even if @s becomes empty after shrinking, we can't know that @s 4059 * doesn't have allocations already in-flight and thus can't 4060 * destroy @s until the associated memcg is released. 4061 * 4062 * However, let's remove the sysfs files for empty caches here. 4063 * Each cache has a lot of interface files which aren't 4064 * particularly useful for empty draining caches; otherwise, we can 4065 * easily end up with millions of unnecessary sysfs files on 4066 * systems which have a lot of memory and transient cgroups. 4067 */ 4068 if (!__kmem_cache_shrink(s)) 4069 sysfs_slab_remove(s); 4070 } 4071 4072 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4073 { 4074 /* 4075 * Disable empty slabs caching. Used to avoid pinning offline 4076 * memory cgroups by kmem pages that can be freed. 4077 */ 4078 slub_set_cpu_partial(s, 0); 4079 s->min_partial = 0; 4080 } 4081 #endif /* CONFIG_MEMCG */ 4082 4083 static int slab_mem_going_offline_callback(void *arg) 4084 { 4085 struct kmem_cache *s; 4086 4087 mutex_lock(&slab_mutex); 4088 list_for_each_entry(s, &slab_caches, list) 4089 __kmem_cache_shrink(s); 4090 mutex_unlock(&slab_mutex); 4091 4092 return 0; 4093 } 4094 4095 static void slab_mem_offline_callback(void *arg) 4096 { 4097 struct kmem_cache_node *n; 4098 struct kmem_cache *s; 4099 struct memory_notify *marg = arg; 4100 int offline_node; 4101 4102 offline_node = marg->status_change_nid_normal; 4103 4104 /* 4105 * If the node still has available memory. we need kmem_cache_node 4106 * for it yet. 4107 */ 4108 if (offline_node < 0) 4109 return; 4110 4111 mutex_lock(&slab_mutex); 4112 list_for_each_entry(s, &slab_caches, list) { 4113 n = get_node(s, offline_node); 4114 if (n) { 4115 /* 4116 * if n->nr_slabs > 0, slabs still exist on the node 4117 * that is going down. We were unable to free them, 4118 * and offline_pages() function shouldn't call this 4119 * callback. So, we must fail. 4120 */ 4121 BUG_ON(slabs_node(s, offline_node)); 4122 4123 s->node[offline_node] = NULL; 4124 kmem_cache_free(kmem_cache_node, n); 4125 } 4126 } 4127 mutex_unlock(&slab_mutex); 4128 } 4129 4130 static int slab_mem_going_online_callback(void *arg) 4131 { 4132 struct kmem_cache_node *n; 4133 struct kmem_cache *s; 4134 struct memory_notify *marg = arg; 4135 int nid = marg->status_change_nid_normal; 4136 int ret = 0; 4137 4138 /* 4139 * If the node's memory is already available, then kmem_cache_node is 4140 * already created. Nothing to do. 4141 */ 4142 if (nid < 0) 4143 return 0; 4144 4145 /* 4146 * We are bringing a node online. No memory is available yet. We must 4147 * allocate a kmem_cache_node structure in order to bring the node 4148 * online. 4149 */ 4150 mutex_lock(&slab_mutex); 4151 list_for_each_entry(s, &slab_caches, list) { 4152 /* 4153 * XXX: kmem_cache_alloc_node will fallback to other nodes 4154 * since memory is not yet available from the node that 4155 * is brought up. 4156 */ 4157 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4158 if (!n) { 4159 ret = -ENOMEM; 4160 goto out; 4161 } 4162 init_kmem_cache_node(n); 4163 s->node[nid] = n; 4164 } 4165 out: 4166 mutex_unlock(&slab_mutex); 4167 return ret; 4168 } 4169 4170 static int slab_memory_callback(struct notifier_block *self, 4171 unsigned long action, void *arg) 4172 { 4173 int ret = 0; 4174 4175 switch (action) { 4176 case MEM_GOING_ONLINE: 4177 ret = slab_mem_going_online_callback(arg); 4178 break; 4179 case MEM_GOING_OFFLINE: 4180 ret = slab_mem_going_offline_callback(arg); 4181 break; 4182 case MEM_OFFLINE: 4183 case MEM_CANCEL_ONLINE: 4184 slab_mem_offline_callback(arg); 4185 break; 4186 case MEM_ONLINE: 4187 case MEM_CANCEL_OFFLINE: 4188 break; 4189 } 4190 if (ret) 4191 ret = notifier_from_errno(ret); 4192 else 4193 ret = NOTIFY_OK; 4194 return ret; 4195 } 4196 4197 static struct notifier_block slab_memory_callback_nb = { 4198 .notifier_call = slab_memory_callback, 4199 .priority = SLAB_CALLBACK_PRI, 4200 }; 4201 4202 /******************************************************************** 4203 * Basic setup of slabs 4204 *******************************************************************/ 4205 4206 /* 4207 * Used for early kmem_cache structures that were allocated using 4208 * the page allocator. Allocate them properly then fix up the pointers 4209 * that may be pointing to the wrong kmem_cache structure. 4210 */ 4211 4212 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4213 { 4214 int node; 4215 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4216 struct kmem_cache_node *n; 4217 4218 memcpy(s, static_cache, kmem_cache->object_size); 4219 4220 /* 4221 * This runs very early, and only the boot processor is supposed to be 4222 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4223 * IPIs around. 4224 */ 4225 __flush_cpu_slab(s, smp_processor_id()); 4226 for_each_kmem_cache_node(s, node, n) { 4227 struct page *p; 4228 4229 list_for_each_entry(p, &n->partial, slab_list) 4230 p->slab_cache = s; 4231 4232 #ifdef CONFIG_SLUB_DEBUG 4233 list_for_each_entry(p, &n->full, slab_list) 4234 p->slab_cache = s; 4235 #endif 4236 } 4237 slab_init_memcg_params(s); 4238 list_add(&s->list, &slab_caches); 4239 memcg_link_cache(s, NULL); 4240 return s; 4241 } 4242 4243 void __init kmem_cache_init(void) 4244 { 4245 static __initdata struct kmem_cache boot_kmem_cache, 4246 boot_kmem_cache_node; 4247 4248 if (debug_guardpage_minorder()) 4249 slub_max_order = 0; 4250 4251 kmem_cache_node = &boot_kmem_cache_node; 4252 kmem_cache = &boot_kmem_cache; 4253 4254 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4255 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4256 4257 register_hotmemory_notifier(&slab_memory_callback_nb); 4258 4259 /* Able to allocate the per node structures */ 4260 slab_state = PARTIAL; 4261 4262 create_boot_cache(kmem_cache, "kmem_cache", 4263 offsetof(struct kmem_cache, node) + 4264 nr_node_ids * sizeof(struct kmem_cache_node *), 4265 SLAB_HWCACHE_ALIGN, 0, 0); 4266 4267 kmem_cache = bootstrap(&boot_kmem_cache); 4268 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4269 4270 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4271 setup_kmalloc_cache_index_table(); 4272 create_kmalloc_caches(0); 4273 4274 /* Setup random freelists for each cache */ 4275 init_freelist_randomization(); 4276 4277 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4278 slub_cpu_dead); 4279 4280 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4281 cache_line_size(), 4282 slub_min_order, slub_max_order, slub_min_objects, 4283 nr_cpu_ids, nr_node_ids); 4284 } 4285 4286 void __init kmem_cache_init_late(void) 4287 { 4288 } 4289 4290 struct kmem_cache * 4291 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4292 slab_flags_t flags, void (*ctor)(void *)) 4293 { 4294 struct kmem_cache *s, *c; 4295 4296 s = find_mergeable(size, align, flags, name, ctor); 4297 if (s) { 4298 s->refcount++; 4299 4300 /* 4301 * Adjust the object sizes so that we clear 4302 * the complete object on kzalloc. 4303 */ 4304 s->object_size = max(s->object_size, size); 4305 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4306 4307 for_each_memcg_cache(c, s) { 4308 c->object_size = s->object_size; 4309 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4310 } 4311 4312 if (sysfs_slab_alias(s, name)) { 4313 s->refcount--; 4314 s = NULL; 4315 } 4316 } 4317 4318 return s; 4319 } 4320 4321 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4322 { 4323 int err; 4324 4325 err = kmem_cache_open(s, flags); 4326 if (err) 4327 return err; 4328 4329 /* Mutex is not taken during early boot */ 4330 if (slab_state <= UP) 4331 return 0; 4332 4333 memcg_propagate_slab_attrs(s); 4334 err = sysfs_slab_add(s); 4335 if (err) 4336 __kmem_cache_release(s); 4337 4338 return err; 4339 } 4340 4341 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4342 { 4343 struct kmem_cache *s; 4344 void *ret; 4345 4346 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4347 return kmalloc_large(size, gfpflags); 4348 4349 s = kmalloc_slab(size, gfpflags); 4350 4351 if (unlikely(ZERO_OR_NULL_PTR(s))) 4352 return s; 4353 4354 ret = slab_alloc(s, gfpflags, caller); 4355 4356 /* Honor the call site pointer we received. */ 4357 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4358 4359 return ret; 4360 } 4361 4362 #ifdef CONFIG_NUMA 4363 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4364 int node, unsigned long caller) 4365 { 4366 struct kmem_cache *s; 4367 void *ret; 4368 4369 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4370 ret = kmalloc_large_node(size, gfpflags, node); 4371 4372 trace_kmalloc_node(caller, ret, 4373 size, PAGE_SIZE << get_order(size), 4374 gfpflags, node); 4375 4376 return ret; 4377 } 4378 4379 s = kmalloc_slab(size, gfpflags); 4380 4381 if (unlikely(ZERO_OR_NULL_PTR(s))) 4382 return s; 4383 4384 ret = slab_alloc_node(s, gfpflags, node, caller); 4385 4386 /* Honor the call site pointer we received. */ 4387 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4388 4389 return ret; 4390 } 4391 #endif 4392 4393 #ifdef CONFIG_SYSFS 4394 static int count_inuse(struct page *page) 4395 { 4396 return page->inuse; 4397 } 4398 4399 static int count_total(struct page *page) 4400 { 4401 return page->objects; 4402 } 4403 #endif 4404 4405 #ifdef CONFIG_SLUB_DEBUG 4406 static void validate_slab(struct kmem_cache *s, struct page *page) 4407 { 4408 void *p; 4409 void *addr = page_address(page); 4410 unsigned long *map; 4411 4412 slab_lock(page); 4413 4414 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4415 goto unlock; 4416 4417 /* Now we know that a valid freelist exists */ 4418 map = get_map(s, page); 4419 for_each_object(p, s, addr, page->objects) { 4420 u8 val = test_bit(slab_index(p, s, addr), map) ? 4421 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4422 4423 if (!check_object(s, page, p, val)) 4424 break; 4425 } 4426 put_map(map); 4427 unlock: 4428 slab_unlock(page); 4429 } 4430 4431 static int validate_slab_node(struct kmem_cache *s, 4432 struct kmem_cache_node *n) 4433 { 4434 unsigned long count = 0; 4435 struct page *page; 4436 unsigned long flags; 4437 4438 spin_lock_irqsave(&n->list_lock, flags); 4439 4440 list_for_each_entry(page, &n->partial, slab_list) { 4441 validate_slab(s, page); 4442 count++; 4443 } 4444 if (count != n->nr_partial) 4445 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4446 s->name, count, n->nr_partial); 4447 4448 if (!(s->flags & SLAB_STORE_USER)) 4449 goto out; 4450 4451 list_for_each_entry(page, &n->full, slab_list) { 4452 validate_slab(s, page); 4453 count++; 4454 } 4455 if (count != atomic_long_read(&n->nr_slabs)) 4456 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4457 s->name, count, atomic_long_read(&n->nr_slabs)); 4458 4459 out: 4460 spin_unlock_irqrestore(&n->list_lock, flags); 4461 return count; 4462 } 4463 4464 static long validate_slab_cache(struct kmem_cache *s) 4465 { 4466 int node; 4467 unsigned long count = 0; 4468 struct kmem_cache_node *n; 4469 4470 flush_all(s); 4471 for_each_kmem_cache_node(s, node, n) 4472 count += validate_slab_node(s, n); 4473 4474 return count; 4475 } 4476 /* 4477 * Generate lists of code addresses where slabcache objects are allocated 4478 * and freed. 4479 */ 4480 4481 struct location { 4482 unsigned long count; 4483 unsigned long addr; 4484 long long sum_time; 4485 long min_time; 4486 long max_time; 4487 long min_pid; 4488 long max_pid; 4489 DECLARE_BITMAP(cpus, NR_CPUS); 4490 nodemask_t nodes; 4491 }; 4492 4493 struct loc_track { 4494 unsigned long max; 4495 unsigned long count; 4496 struct location *loc; 4497 }; 4498 4499 static void free_loc_track(struct loc_track *t) 4500 { 4501 if (t->max) 4502 free_pages((unsigned long)t->loc, 4503 get_order(sizeof(struct location) * t->max)); 4504 } 4505 4506 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4507 { 4508 struct location *l; 4509 int order; 4510 4511 order = get_order(sizeof(struct location) * max); 4512 4513 l = (void *)__get_free_pages(flags, order); 4514 if (!l) 4515 return 0; 4516 4517 if (t->count) { 4518 memcpy(l, t->loc, sizeof(struct location) * t->count); 4519 free_loc_track(t); 4520 } 4521 t->max = max; 4522 t->loc = l; 4523 return 1; 4524 } 4525 4526 static int add_location(struct loc_track *t, struct kmem_cache *s, 4527 const struct track *track) 4528 { 4529 long start, end, pos; 4530 struct location *l; 4531 unsigned long caddr; 4532 unsigned long age = jiffies - track->when; 4533 4534 start = -1; 4535 end = t->count; 4536 4537 for ( ; ; ) { 4538 pos = start + (end - start + 1) / 2; 4539 4540 /* 4541 * There is nothing at "end". If we end up there 4542 * we need to add something to before end. 4543 */ 4544 if (pos == end) 4545 break; 4546 4547 caddr = t->loc[pos].addr; 4548 if (track->addr == caddr) { 4549 4550 l = &t->loc[pos]; 4551 l->count++; 4552 if (track->when) { 4553 l->sum_time += age; 4554 if (age < l->min_time) 4555 l->min_time = age; 4556 if (age > l->max_time) 4557 l->max_time = age; 4558 4559 if (track->pid < l->min_pid) 4560 l->min_pid = track->pid; 4561 if (track->pid > l->max_pid) 4562 l->max_pid = track->pid; 4563 4564 cpumask_set_cpu(track->cpu, 4565 to_cpumask(l->cpus)); 4566 } 4567 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4568 return 1; 4569 } 4570 4571 if (track->addr < caddr) 4572 end = pos; 4573 else 4574 start = pos; 4575 } 4576 4577 /* 4578 * Not found. Insert new tracking element. 4579 */ 4580 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4581 return 0; 4582 4583 l = t->loc + pos; 4584 if (pos < t->count) 4585 memmove(l + 1, l, 4586 (t->count - pos) * sizeof(struct location)); 4587 t->count++; 4588 l->count = 1; 4589 l->addr = track->addr; 4590 l->sum_time = age; 4591 l->min_time = age; 4592 l->max_time = age; 4593 l->min_pid = track->pid; 4594 l->max_pid = track->pid; 4595 cpumask_clear(to_cpumask(l->cpus)); 4596 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4597 nodes_clear(l->nodes); 4598 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4599 return 1; 4600 } 4601 4602 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4603 struct page *page, enum track_item alloc) 4604 { 4605 void *addr = page_address(page); 4606 void *p; 4607 unsigned long *map; 4608 4609 map = get_map(s, page); 4610 for_each_object(p, s, addr, page->objects) 4611 if (!test_bit(slab_index(p, s, addr), map)) 4612 add_location(t, s, get_track(s, p, alloc)); 4613 put_map(map); 4614 } 4615 4616 static int list_locations(struct kmem_cache *s, char *buf, 4617 enum track_item alloc) 4618 { 4619 int len = 0; 4620 unsigned long i; 4621 struct loc_track t = { 0, 0, NULL }; 4622 int node; 4623 struct kmem_cache_node *n; 4624 4625 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4626 GFP_KERNEL)) { 4627 return sprintf(buf, "Out of memory\n"); 4628 } 4629 /* Push back cpu slabs */ 4630 flush_all(s); 4631 4632 for_each_kmem_cache_node(s, node, n) { 4633 unsigned long flags; 4634 struct page *page; 4635 4636 if (!atomic_long_read(&n->nr_slabs)) 4637 continue; 4638 4639 spin_lock_irqsave(&n->list_lock, flags); 4640 list_for_each_entry(page, &n->partial, slab_list) 4641 process_slab(&t, s, page, alloc); 4642 list_for_each_entry(page, &n->full, slab_list) 4643 process_slab(&t, s, page, alloc); 4644 spin_unlock_irqrestore(&n->list_lock, flags); 4645 } 4646 4647 for (i = 0; i < t.count; i++) { 4648 struct location *l = &t.loc[i]; 4649 4650 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4651 break; 4652 len += sprintf(buf + len, "%7ld ", l->count); 4653 4654 if (l->addr) 4655 len += sprintf(buf + len, "%pS", (void *)l->addr); 4656 else 4657 len += sprintf(buf + len, "<not-available>"); 4658 4659 if (l->sum_time != l->min_time) { 4660 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4661 l->min_time, 4662 (long)div_u64(l->sum_time, l->count), 4663 l->max_time); 4664 } else 4665 len += sprintf(buf + len, " age=%ld", 4666 l->min_time); 4667 4668 if (l->min_pid != l->max_pid) 4669 len += sprintf(buf + len, " pid=%ld-%ld", 4670 l->min_pid, l->max_pid); 4671 else 4672 len += sprintf(buf + len, " pid=%ld", 4673 l->min_pid); 4674 4675 if (num_online_cpus() > 1 && 4676 !cpumask_empty(to_cpumask(l->cpus)) && 4677 len < PAGE_SIZE - 60) 4678 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4679 " cpus=%*pbl", 4680 cpumask_pr_args(to_cpumask(l->cpus))); 4681 4682 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4683 len < PAGE_SIZE - 60) 4684 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4685 " nodes=%*pbl", 4686 nodemask_pr_args(&l->nodes)); 4687 4688 len += sprintf(buf + len, "\n"); 4689 } 4690 4691 free_loc_track(&t); 4692 if (!t.count) 4693 len += sprintf(buf, "No data\n"); 4694 return len; 4695 } 4696 #endif /* CONFIG_SLUB_DEBUG */ 4697 4698 #ifdef SLUB_RESILIENCY_TEST 4699 static void __init resiliency_test(void) 4700 { 4701 u8 *p; 4702 int type = KMALLOC_NORMAL; 4703 4704 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4705 4706 pr_err("SLUB resiliency testing\n"); 4707 pr_err("-----------------------\n"); 4708 pr_err("A. Corruption after allocation\n"); 4709 4710 p = kzalloc(16, GFP_KERNEL); 4711 p[16] = 0x12; 4712 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4713 p + 16); 4714 4715 validate_slab_cache(kmalloc_caches[type][4]); 4716 4717 /* Hmmm... The next two are dangerous */ 4718 p = kzalloc(32, GFP_KERNEL); 4719 p[32 + sizeof(void *)] = 0x34; 4720 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4721 p); 4722 pr_err("If allocated object is overwritten then not detectable\n\n"); 4723 4724 validate_slab_cache(kmalloc_caches[type][5]); 4725 p = kzalloc(64, GFP_KERNEL); 4726 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4727 *p = 0x56; 4728 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4729 p); 4730 pr_err("If allocated object is overwritten then not detectable\n\n"); 4731 validate_slab_cache(kmalloc_caches[type][6]); 4732 4733 pr_err("\nB. Corruption after free\n"); 4734 p = kzalloc(128, GFP_KERNEL); 4735 kfree(p); 4736 *p = 0x78; 4737 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4738 validate_slab_cache(kmalloc_caches[type][7]); 4739 4740 p = kzalloc(256, GFP_KERNEL); 4741 kfree(p); 4742 p[50] = 0x9a; 4743 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4744 validate_slab_cache(kmalloc_caches[type][8]); 4745 4746 p = kzalloc(512, GFP_KERNEL); 4747 kfree(p); 4748 p[512] = 0xab; 4749 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4750 validate_slab_cache(kmalloc_caches[type][9]); 4751 } 4752 #else 4753 #ifdef CONFIG_SYSFS 4754 static void resiliency_test(void) {}; 4755 #endif 4756 #endif /* SLUB_RESILIENCY_TEST */ 4757 4758 #ifdef CONFIG_SYSFS 4759 enum slab_stat_type { 4760 SL_ALL, /* All slabs */ 4761 SL_PARTIAL, /* Only partially allocated slabs */ 4762 SL_CPU, /* Only slabs used for cpu caches */ 4763 SL_OBJECTS, /* Determine allocated objects not slabs */ 4764 SL_TOTAL /* Determine object capacity not slabs */ 4765 }; 4766 4767 #define SO_ALL (1 << SL_ALL) 4768 #define SO_PARTIAL (1 << SL_PARTIAL) 4769 #define SO_CPU (1 << SL_CPU) 4770 #define SO_OBJECTS (1 << SL_OBJECTS) 4771 #define SO_TOTAL (1 << SL_TOTAL) 4772 4773 #ifdef CONFIG_MEMCG 4774 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4775 4776 static int __init setup_slub_memcg_sysfs(char *str) 4777 { 4778 int v; 4779 4780 if (get_option(&str, &v) > 0) 4781 memcg_sysfs_enabled = v; 4782 4783 return 1; 4784 } 4785 4786 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4787 #endif 4788 4789 static ssize_t show_slab_objects(struct kmem_cache *s, 4790 char *buf, unsigned long flags) 4791 { 4792 unsigned long total = 0; 4793 int node; 4794 int x; 4795 unsigned long *nodes; 4796 4797 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4798 if (!nodes) 4799 return -ENOMEM; 4800 4801 if (flags & SO_CPU) { 4802 int cpu; 4803 4804 for_each_possible_cpu(cpu) { 4805 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4806 cpu); 4807 int node; 4808 struct page *page; 4809 4810 page = READ_ONCE(c->page); 4811 if (!page) 4812 continue; 4813 4814 node = page_to_nid(page); 4815 if (flags & SO_TOTAL) 4816 x = page->objects; 4817 else if (flags & SO_OBJECTS) 4818 x = page->inuse; 4819 else 4820 x = 1; 4821 4822 total += x; 4823 nodes[node] += x; 4824 4825 page = slub_percpu_partial_read_once(c); 4826 if (page) { 4827 node = page_to_nid(page); 4828 if (flags & SO_TOTAL) 4829 WARN_ON_ONCE(1); 4830 else if (flags & SO_OBJECTS) 4831 WARN_ON_ONCE(1); 4832 else 4833 x = page->pages; 4834 total += x; 4835 nodes[node] += x; 4836 } 4837 } 4838 } 4839 4840 /* 4841 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 4842 * already held which will conflict with an existing lock order: 4843 * 4844 * mem_hotplug_lock->slab_mutex->kernfs_mutex 4845 * 4846 * We don't really need mem_hotplug_lock (to hold off 4847 * slab_mem_going_offline_callback) here because slab's memory hot 4848 * unplug code doesn't destroy the kmem_cache->node[] data. 4849 */ 4850 4851 #ifdef CONFIG_SLUB_DEBUG 4852 if (flags & SO_ALL) { 4853 struct kmem_cache_node *n; 4854 4855 for_each_kmem_cache_node(s, node, n) { 4856 4857 if (flags & SO_TOTAL) 4858 x = atomic_long_read(&n->total_objects); 4859 else if (flags & SO_OBJECTS) 4860 x = atomic_long_read(&n->total_objects) - 4861 count_partial(n, count_free); 4862 else 4863 x = atomic_long_read(&n->nr_slabs); 4864 total += x; 4865 nodes[node] += x; 4866 } 4867 4868 } else 4869 #endif 4870 if (flags & SO_PARTIAL) { 4871 struct kmem_cache_node *n; 4872 4873 for_each_kmem_cache_node(s, node, n) { 4874 if (flags & SO_TOTAL) 4875 x = count_partial(n, count_total); 4876 else if (flags & SO_OBJECTS) 4877 x = count_partial(n, count_inuse); 4878 else 4879 x = n->nr_partial; 4880 total += x; 4881 nodes[node] += x; 4882 } 4883 } 4884 x = sprintf(buf, "%lu", total); 4885 #ifdef CONFIG_NUMA 4886 for (node = 0; node < nr_node_ids; node++) 4887 if (nodes[node]) 4888 x += sprintf(buf + x, " N%d=%lu", 4889 node, nodes[node]); 4890 #endif 4891 kfree(nodes); 4892 return x + sprintf(buf + x, "\n"); 4893 } 4894 4895 #ifdef CONFIG_SLUB_DEBUG 4896 static int any_slab_objects(struct kmem_cache *s) 4897 { 4898 int node; 4899 struct kmem_cache_node *n; 4900 4901 for_each_kmem_cache_node(s, node, n) 4902 if (atomic_long_read(&n->total_objects)) 4903 return 1; 4904 4905 return 0; 4906 } 4907 #endif 4908 4909 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4910 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4911 4912 struct slab_attribute { 4913 struct attribute attr; 4914 ssize_t (*show)(struct kmem_cache *s, char *buf); 4915 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4916 }; 4917 4918 #define SLAB_ATTR_RO(_name) \ 4919 static struct slab_attribute _name##_attr = \ 4920 __ATTR(_name, 0400, _name##_show, NULL) 4921 4922 #define SLAB_ATTR(_name) \ 4923 static struct slab_attribute _name##_attr = \ 4924 __ATTR(_name, 0600, _name##_show, _name##_store) 4925 4926 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4927 { 4928 return sprintf(buf, "%u\n", s->size); 4929 } 4930 SLAB_ATTR_RO(slab_size); 4931 4932 static ssize_t align_show(struct kmem_cache *s, char *buf) 4933 { 4934 return sprintf(buf, "%u\n", s->align); 4935 } 4936 SLAB_ATTR_RO(align); 4937 4938 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4939 { 4940 return sprintf(buf, "%u\n", s->object_size); 4941 } 4942 SLAB_ATTR_RO(object_size); 4943 4944 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4945 { 4946 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4947 } 4948 SLAB_ATTR_RO(objs_per_slab); 4949 4950 static ssize_t order_store(struct kmem_cache *s, 4951 const char *buf, size_t length) 4952 { 4953 unsigned int order; 4954 int err; 4955 4956 err = kstrtouint(buf, 10, &order); 4957 if (err) 4958 return err; 4959 4960 if (order > slub_max_order || order < slub_min_order) 4961 return -EINVAL; 4962 4963 calculate_sizes(s, order); 4964 return length; 4965 } 4966 4967 static ssize_t order_show(struct kmem_cache *s, char *buf) 4968 { 4969 return sprintf(buf, "%u\n", oo_order(s->oo)); 4970 } 4971 SLAB_ATTR(order); 4972 4973 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4974 { 4975 return sprintf(buf, "%lu\n", s->min_partial); 4976 } 4977 4978 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4979 size_t length) 4980 { 4981 unsigned long min; 4982 int err; 4983 4984 err = kstrtoul(buf, 10, &min); 4985 if (err) 4986 return err; 4987 4988 set_min_partial(s, min); 4989 return length; 4990 } 4991 SLAB_ATTR(min_partial); 4992 4993 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4994 { 4995 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4996 } 4997 4998 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4999 size_t length) 5000 { 5001 unsigned int objects; 5002 int err; 5003 5004 err = kstrtouint(buf, 10, &objects); 5005 if (err) 5006 return err; 5007 if (objects && !kmem_cache_has_cpu_partial(s)) 5008 return -EINVAL; 5009 5010 slub_set_cpu_partial(s, objects); 5011 flush_all(s); 5012 return length; 5013 } 5014 SLAB_ATTR(cpu_partial); 5015 5016 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5017 { 5018 if (!s->ctor) 5019 return 0; 5020 return sprintf(buf, "%pS\n", s->ctor); 5021 } 5022 SLAB_ATTR_RO(ctor); 5023 5024 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5025 { 5026 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5027 } 5028 SLAB_ATTR_RO(aliases); 5029 5030 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5031 { 5032 return show_slab_objects(s, buf, SO_PARTIAL); 5033 } 5034 SLAB_ATTR_RO(partial); 5035 5036 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5037 { 5038 return show_slab_objects(s, buf, SO_CPU); 5039 } 5040 SLAB_ATTR_RO(cpu_slabs); 5041 5042 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5043 { 5044 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5045 } 5046 SLAB_ATTR_RO(objects); 5047 5048 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5049 { 5050 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5051 } 5052 SLAB_ATTR_RO(objects_partial); 5053 5054 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5055 { 5056 int objects = 0; 5057 int pages = 0; 5058 int cpu; 5059 int len; 5060 5061 for_each_online_cpu(cpu) { 5062 struct page *page; 5063 5064 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5065 5066 if (page) { 5067 pages += page->pages; 5068 objects += page->pobjects; 5069 } 5070 } 5071 5072 len = sprintf(buf, "%d(%d)", objects, pages); 5073 5074 #ifdef CONFIG_SMP 5075 for_each_online_cpu(cpu) { 5076 struct page *page; 5077 5078 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5079 5080 if (page && len < PAGE_SIZE - 20) 5081 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5082 page->pobjects, page->pages); 5083 } 5084 #endif 5085 return len + sprintf(buf + len, "\n"); 5086 } 5087 SLAB_ATTR_RO(slabs_cpu_partial); 5088 5089 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5090 { 5091 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5092 } 5093 5094 static ssize_t reclaim_account_store(struct kmem_cache *s, 5095 const char *buf, size_t length) 5096 { 5097 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5098 if (buf[0] == '1') 5099 s->flags |= SLAB_RECLAIM_ACCOUNT; 5100 return length; 5101 } 5102 SLAB_ATTR(reclaim_account); 5103 5104 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5105 { 5106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5107 } 5108 SLAB_ATTR_RO(hwcache_align); 5109 5110 #ifdef CONFIG_ZONE_DMA 5111 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5112 { 5113 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5114 } 5115 SLAB_ATTR_RO(cache_dma); 5116 #endif 5117 5118 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5119 { 5120 return sprintf(buf, "%u\n", s->usersize); 5121 } 5122 SLAB_ATTR_RO(usersize); 5123 5124 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5125 { 5126 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5127 } 5128 SLAB_ATTR_RO(destroy_by_rcu); 5129 5130 #ifdef CONFIG_SLUB_DEBUG 5131 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5132 { 5133 return show_slab_objects(s, buf, SO_ALL); 5134 } 5135 SLAB_ATTR_RO(slabs); 5136 5137 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5138 { 5139 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5140 } 5141 SLAB_ATTR_RO(total_objects); 5142 5143 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5144 { 5145 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5146 } 5147 5148 static ssize_t sanity_checks_store(struct kmem_cache *s, 5149 const char *buf, size_t length) 5150 { 5151 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5152 if (buf[0] == '1') { 5153 s->flags &= ~__CMPXCHG_DOUBLE; 5154 s->flags |= SLAB_CONSISTENCY_CHECKS; 5155 } 5156 return length; 5157 } 5158 SLAB_ATTR(sanity_checks); 5159 5160 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5161 { 5162 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5163 } 5164 5165 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5166 size_t length) 5167 { 5168 /* 5169 * Tracing a merged cache is going to give confusing results 5170 * as well as cause other issues like converting a mergeable 5171 * cache into an umergeable one. 5172 */ 5173 if (s->refcount > 1) 5174 return -EINVAL; 5175 5176 s->flags &= ~SLAB_TRACE; 5177 if (buf[0] == '1') { 5178 s->flags &= ~__CMPXCHG_DOUBLE; 5179 s->flags |= SLAB_TRACE; 5180 } 5181 return length; 5182 } 5183 SLAB_ATTR(trace); 5184 5185 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5186 { 5187 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5188 } 5189 5190 static ssize_t red_zone_store(struct kmem_cache *s, 5191 const char *buf, size_t length) 5192 { 5193 if (any_slab_objects(s)) 5194 return -EBUSY; 5195 5196 s->flags &= ~SLAB_RED_ZONE; 5197 if (buf[0] == '1') { 5198 s->flags |= SLAB_RED_ZONE; 5199 } 5200 calculate_sizes(s, -1); 5201 return length; 5202 } 5203 SLAB_ATTR(red_zone); 5204 5205 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5206 { 5207 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5208 } 5209 5210 static ssize_t poison_store(struct kmem_cache *s, 5211 const char *buf, size_t length) 5212 { 5213 if (any_slab_objects(s)) 5214 return -EBUSY; 5215 5216 s->flags &= ~SLAB_POISON; 5217 if (buf[0] == '1') { 5218 s->flags |= SLAB_POISON; 5219 } 5220 calculate_sizes(s, -1); 5221 return length; 5222 } 5223 SLAB_ATTR(poison); 5224 5225 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5226 { 5227 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5228 } 5229 5230 static ssize_t store_user_store(struct kmem_cache *s, 5231 const char *buf, size_t length) 5232 { 5233 if (any_slab_objects(s)) 5234 return -EBUSY; 5235 5236 s->flags &= ~SLAB_STORE_USER; 5237 if (buf[0] == '1') { 5238 s->flags &= ~__CMPXCHG_DOUBLE; 5239 s->flags |= SLAB_STORE_USER; 5240 } 5241 calculate_sizes(s, -1); 5242 return length; 5243 } 5244 SLAB_ATTR(store_user); 5245 5246 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5247 { 5248 return 0; 5249 } 5250 5251 static ssize_t validate_store(struct kmem_cache *s, 5252 const char *buf, size_t length) 5253 { 5254 int ret = -EINVAL; 5255 5256 if (buf[0] == '1') { 5257 ret = validate_slab_cache(s); 5258 if (ret >= 0) 5259 ret = length; 5260 } 5261 return ret; 5262 } 5263 SLAB_ATTR(validate); 5264 5265 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5266 { 5267 if (!(s->flags & SLAB_STORE_USER)) 5268 return -ENOSYS; 5269 return list_locations(s, buf, TRACK_ALLOC); 5270 } 5271 SLAB_ATTR_RO(alloc_calls); 5272 5273 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5274 { 5275 if (!(s->flags & SLAB_STORE_USER)) 5276 return -ENOSYS; 5277 return list_locations(s, buf, TRACK_FREE); 5278 } 5279 SLAB_ATTR_RO(free_calls); 5280 #endif /* CONFIG_SLUB_DEBUG */ 5281 5282 #ifdef CONFIG_FAILSLAB 5283 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5284 { 5285 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5286 } 5287 5288 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5289 size_t length) 5290 { 5291 if (s->refcount > 1) 5292 return -EINVAL; 5293 5294 s->flags &= ~SLAB_FAILSLAB; 5295 if (buf[0] == '1') 5296 s->flags |= SLAB_FAILSLAB; 5297 return length; 5298 } 5299 SLAB_ATTR(failslab); 5300 #endif 5301 5302 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5303 { 5304 return 0; 5305 } 5306 5307 static ssize_t shrink_store(struct kmem_cache *s, 5308 const char *buf, size_t length) 5309 { 5310 if (buf[0] == '1') 5311 kmem_cache_shrink_all(s); 5312 else 5313 return -EINVAL; 5314 return length; 5315 } 5316 SLAB_ATTR(shrink); 5317 5318 #ifdef CONFIG_NUMA 5319 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5320 { 5321 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5322 } 5323 5324 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5325 const char *buf, size_t length) 5326 { 5327 unsigned int ratio; 5328 int err; 5329 5330 err = kstrtouint(buf, 10, &ratio); 5331 if (err) 5332 return err; 5333 if (ratio > 100) 5334 return -ERANGE; 5335 5336 s->remote_node_defrag_ratio = ratio * 10; 5337 5338 return length; 5339 } 5340 SLAB_ATTR(remote_node_defrag_ratio); 5341 #endif 5342 5343 #ifdef CONFIG_SLUB_STATS 5344 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5345 { 5346 unsigned long sum = 0; 5347 int cpu; 5348 int len; 5349 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5350 5351 if (!data) 5352 return -ENOMEM; 5353 5354 for_each_online_cpu(cpu) { 5355 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5356 5357 data[cpu] = x; 5358 sum += x; 5359 } 5360 5361 len = sprintf(buf, "%lu", sum); 5362 5363 #ifdef CONFIG_SMP 5364 for_each_online_cpu(cpu) { 5365 if (data[cpu] && len < PAGE_SIZE - 20) 5366 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5367 } 5368 #endif 5369 kfree(data); 5370 return len + sprintf(buf + len, "\n"); 5371 } 5372 5373 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5374 { 5375 int cpu; 5376 5377 for_each_online_cpu(cpu) 5378 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5379 } 5380 5381 #define STAT_ATTR(si, text) \ 5382 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5383 { \ 5384 return show_stat(s, buf, si); \ 5385 } \ 5386 static ssize_t text##_store(struct kmem_cache *s, \ 5387 const char *buf, size_t length) \ 5388 { \ 5389 if (buf[0] != '0') \ 5390 return -EINVAL; \ 5391 clear_stat(s, si); \ 5392 return length; \ 5393 } \ 5394 SLAB_ATTR(text); \ 5395 5396 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5397 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5398 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5399 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5400 STAT_ATTR(FREE_FROZEN, free_frozen); 5401 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5402 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5403 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5404 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5405 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5406 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5407 STAT_ATTR(FREE_SLAB, free_slab); 5408 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5409 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5410 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5411 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5412 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5413 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5414 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5415 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5416 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5417 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5418 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5419 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5420 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5421 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5422 #endif /* CONFIG_SLUB_STATS */ 5423 5424 static struct attribute *slab_attrs[] = { 5425 &slab_size_attr.attr, 5426 &object_size_attr.attr, 5427 &objs_per_slab_attr.attr, 5428 &order_attr.attr, 5429 &min_partial_attr.attr, 5430 &cpu_partial_attr.attr, 5431 &objects_attr.attr, 5432 &objects_partial_attr.attr, 5433 &partial_attr.attr, 5434 &cpu_slabs_attr.attr, 5435 &ctor_attr.attr, 5436 &aliases_attr.attr, 5437 &align_attr.attr, 5438 &hwcache_align_attr.attr, 5439 &reclaim_account_attr.attr, 5440 &destroy_by_rcu_attr.attr, 5441 &shrink_attr.attr, 5442 &slabs_cpu_partial_attr.attr, 5443 #ifdef CONFIG_SLUB_DEBUG 5444 &total_objects_attr.attr, 5445 &slabs_attr.attr, 5446 &sanity_checks_attr.attr, 5447 &trace_attr.attr, 5448 &red_zone_attr.attr, 5449 &poison_attr.attr, 5450 &store_user_attr.attr, 5451 &validate_attr.attr, 5452 &alloc_calls_attr.attr, 5453 &free_calls_attr.attr, 5454 #endif 5455 #ifdef CONFIG_ZONE_DMA 5456 &cache_dma_attr.attr, 5457 #endif 5458 #ifdef CONFIG_NUMA 5459 &remote_node_defrag_ratio_attr.attr, 5460 #endif 5461 #ifdef CONFIG_SLUB_STATS 5462 &alloc_fastpath_attr.attr, 5463 &alloc_slowpath_attr.attr, 5464 &free_fastpath_attr.attr, 5465 &free_slowpath_attr.attr, 5466 &free_frozen_attr.attr, 5467 &free_add_partial_attr.attr, 5468 &free_remove_partial_attr.attr, 5469 &alloc_from_partial_attr.attr, 5470 &alloc_slab_attr.attr, 5471 &alloc_refill_attr.attr, 5472 &alloc_node_mismatch_attr.attr, 5473 &free_slab_attr.attr, 5474 &cpuslab_flush_attr.attr, 5475 &deactivate_full_attr.attr, 5476 &deactivate_empty_attr.attr, 5477 &deactivate_to_head_attr.attr, 5478 &deactivate_to_tail_attr.attr, 5479 &deactivate_remote_frees_attr.attr, 5480 &deactivate_bypass_attr.attr, 5481 &order_fallback_attr.attr, 5482 &cmpxchg_double_fail_attr.attr, 5483 &cmpxchg_double_cpu_fail_attr.attr, 5484 &cpu_partial_alloc_attr.attr, 5485 &cpu_partial_free_attr.attr, 5486 &cpu_partial_node_attr.attr, 5487 &cpu_partial_drain_attr.attr, 5488 #endif 5489 #ifdef CONFIG_FAILSLAB 5490 &failslab_attr.attr, 5491 #endif 5492 &usersize_attr.attr, 5493 5494 NULL 5495 }; 5496 5497 static const struct attribute_group slab_attr_group = { 5498 .attrs = slab_attrs, 5499 }; 5500 5501 static ssize_t slab_attr_show(struct kobject *kobj, 5502 struct attribute *attr, 5503 char *buf) 5504 { 5505 struct slab_attribute *attribute; 5506 struct kmem_cache *s; 5507 int err; 5508 5509 attribute = to_slab_attr(attr); 5510 s = to_slab(kobj); 5511 5512 if (!attribute->show) 5513 return -EIO; 5514 5515 err = attribute->show(s, buf); 5516 5517 return err; 5518 } 5519 5520 static ssize_t slab_attr_store(struct kobject *kobj, 5521 struct attribute *attr, 5522 const char *buf, size_t len) 5523 { 5524 struct slab_attribute *attribute; 5525 struct kmem_cache *s; 5526 int err; 5527 5528 attribute = to_slab_attr(attr); 5529 s = to_slab(kobj); 5530 5531 if (!attribute->store) 5532 return -EIO; 5533 5534 err = attribute->store(s, buf, len); 5535 #ifdef CONFIG_MEMCG 5536 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5537 struct kmem_cache *c; 5538 5539 mutex_lock(&slab_mutex); 5540 if (s->max_attr_size < len) 5541 s->max_attr_size = len; 5542 5543 /* 5544 * This is a best effort propagation, so this function's return 5545 * value will be determined by the parent cache only. This is 5546 * basically because not all attributes will have a well 5547 * defined semantics for rollbacks - most of the actions will 5548 * have permanent effects. 5549 * 5550 * Returning the error value of any of the children that fail 5551 * is not 100 % defined, in the sense that users seeing the 5552 * error code won't be able to know anything about the state of 5553 * the cache. 5554 * 5555 * Only returning the error code for the parent cache at least 5556 * has well defined semantics. The cache being written to 5557 * directly either failed or succeeded, in which case we loop 5558 * through the descendants with best-effort propagation. 5559 */ 5560 for_each_memcg_cache(c, s) 5561 attribute->store(c, buf, len); 5562 mutex_unlock(&slab_mutex); 5563 } 5564 #endif 5565 return err; 5566 } 5567 5568 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5569 { 5570 #ifdef CONFIG_MEMCG 5571 int i; 5572 char *buffer = NULL; 5573 struct kmem_cache *root_cache; 5574 5575 if (is_root_cache(s)) 5576 return; 5577 5578 root_cache = s->memcg_params.root_cache; 5579 5580 /* 5581 * This mean this cache had no attribute written. Therefore, no point 5582 * in copying default values around 5583 */ 5584 if (!root_cache->max_attr_size) 5585 return; 5586 5587 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5588 char mbuf[64]; 5589 char *buf; 5590 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5591 ssize_t len; 5592 5593 if (!attr || !attr->store || !attr->show) 5594 continue; 5595 5596 /* 5597 * It is really bad that we have to allocate here, so we will 5598 * do it only as a fallback. If we actually allocate, though, 5599 * we can just use the allocated buffer until the end. 5600 * 5601 * Most of the slub attributes will tend to be very small in 5602 * size, but sysfs allows buffers up to a page, so they can 5603 * theoretically happen. 5604 */ 5605 if (buffer) 5606 buf = buffer; 5607 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5608 buf = mbuf; 5609 else { 5610 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5611 if (WARN_ON(!buffer)) 5612 continue; 5613 buf = buffer; 5614 } 5615 5616 len = attr->show(root_cache, buf); 5617 if (len > 0) 5618 attr->store(s, buf, len); 5619 } 5620 5621 if (buffer) 5622 free_page((unsigned long)buffer); 5623 #endif /* CONFIG_MEMCG */ 5624 } 5625 5626 static void kmem_cache_release(struct kobject *k) 5627 { 5628 slab_kmem_cache_release(to_slab(k)); 5629 } 5630 5631 static const struct sysfs_ops slab_sysfs_ops = { 5632 .show = slab_attr_show, 5633 .store = slab_attr_store, 5634 }; 5635 5636 static struct kobj_type slab_ktype = { 5637 .sysfs_ops = &slab_sysfs_ops, 5638 .release = kmem_cache_release, 5639 }; 5640 5641 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5642 { 5643 struct kobj_type *ktype = get_ktype(kobj); 5644 5645 if (ktype == &slab_ktype) 5646 return 1; 5647 return 0; 5648 } 5649 5650 static const struct kset_uevent_ops slab_uevent_ops = { 5651 .filter = uevent_filter, 5652 }; 5653 5654 static struct kset *slab_kset; 5655 5656 static inline struct kset *cache_kset(struct kmem_cache *s) 5657 { 5658 #ifdef CONFIG_MEMCG 5659 if (!is_root_cache(s)) 5660 return s->memcg_params.root_cache->memcg_kset; 5661 #endif 5662 return slab_kset; 5663 } 5664 5665 #define ID_STR_LENGTH 64 5666 5667 /* Create a unique string id for a slab cache: 5668 * 5669 * Format :[flags-]size 5670 */ 5671 static char *create_unique_id(struct kmem_cache *s) 5672 { 5673 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5674 char *p = name; 5675 5676 BUG_ON(!name); 5677 5678 *p++ = ':'; 5679 /* 5680 * First flags affecting slabcache operations. We will only 5681 * get here for aliasable slabs so we do not need to support 5682 * too many flags. The flags here must cover all flags that 5683 * are matched during merging to guarantee that the id is 5684 * unique. 5685 */ 5686 if (s->flags & SLAB_CACHE_DMA) 5687 *p++ = 'd'; 5688 if (s->flags & SLAB_CACHE_DMA32) 5689 *p++ = 'D'; 5690 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5691 *p++ = 'a'; 5692 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5693 *p++ = 'F'; 5694 if (s->flags & SLAB_ACCOUNT) 5695 *p++ = 'A'; 5696 if (p != name + 1) 5697 *p++ = '-'; 5698 p += sprintf(p, "%07u", s->size); 5699 5700 BUG_ON(p > name + ID_STR_LENGTH - 1); 5701 return name; 5702 } 5703 5704 static void sysfs_slab_remove_workfn(struct work_struct *work) 5705 { 5706 struct kmem_cache *s = 5707 container_of(work, struct kmem_cache, kobj_remove_work); 5708 5709 if (!s->kobj.state_in_sysfs) 5710 /* 5711 * For a memcg cache, this may be called during 5712 * deactivation and again on shutdown. Remove only once. 5713 * A cache is never shut down before deactivation is 5714 * complete, so no need to worry about synchronization. 5715 */ 5716 goto out; 5717 5718 #ifdef CONFIG_MEMCG 5719 kset_unregister(s->memcg_kset); 5720 #endif 5721 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5722 out: 5723 kobject_put(&s->kobj); 5724 } 5725 5726 static int sysfs_slab_add(struct kmem_cache *s) 5727 { 5728 int err; 5729 const char *name; 5730 struct kset *kset = cache_kset(s); 5731 int unmergeable = slab_unmergeable(s); 5732 5733 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5734 5735 if (!kset) { 5736 kobject_init(&s->kobj, &slab_ktype); 5737 return 0; 5738 } 5739 5740 if (!unmergeable && disable_higher_order_debug && 5741 (slub_debug & DEBUG_METADATA_FLAGS)) 5742 unmergeable = 1; 5743 5744 if (unmergeable) { 5745 /* 5746 * Slabcache can never be merged so we can use the name proper. 5747 * This is typically the case for debug situations. In that 5748 * case we can catch duplicate names easily. 5749 */ 5750 sysfs_remove_link(&slab_kset->kobj, s->name); 5751 name = s->name; 5752 } else { 5753 /* 5754 * Create a unique name for the slab as a target 5755 * for the symlinks. 5756 */ 5757 name = create_unique_id(s); 5758 } 5759 5760 s->kobj.kset = kset; 5761 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5762 if (err) 5763 goto out; 5764 5765 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5766 if (err) 5767 goto out_del_kobj; 5768 5769 #ifdef CONFIG_MEMCG 5770 if (is_root_cache(s) && memcg_sysfs_enabled) { 5771 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5772 if (!s->memcg_kset) { 5773 err = -ENOMEM; 5774 goto out_del_kobj; 5775 } 5776 } 5777 #endif 5778 5779 kobject_uevent(&s->kobj, KOBJ_ADD); 5780 if (!unmergeable) { 5781 /* Setup first alias */ 5782 sysfs_slab_alias(s, s->name); 5783 } 5784 out: 5785 if (!unmergeable) 5786 kfree(name); 5787 return err; 5788 out_del_kobj: 5789 kobject_del(&s->kobj); 5790 goto out; 5791 } 5792 5793 static void sysfs_slab_remove(struct kmem_cache *s) 5794 { 5795 if (slab_state < FULL) 5796 /* 5797 * Sysfs has not been setup yet so no need to remove the 5798 * cache from sysfs. 5799 */ 5800 return; 5801 5802 kobject_get(&s->kobj); 5803 schedule_work(&s->kobj_remove_work); 5804 } 5805 5806 void sysfs_slab_unlink(struct kmem_cache *s) 5807 { 5808 if (slab_state >= FULL) 5809 kobject_del(&s->kobj); 5810 } 5811 5812 void sysfs_slab_release(struct kmem_cache *s) 5813 { 5814 if (slab_state >= FULL) 5815 kobject_put(&s->kobj); 5816 } 5817 5818 /* 5819 * Need to buffer aliases during bootup until sysfs becomes 5820 * available lest we lose that information. 5821 */ 5822 struct saved_alias { 5823 struct kmem_cache *s; 5824 const char *name; 5825 struct saved_alias *next; 5826 }; 5827 5828 static struct saved_alias *alias_list; 5829 5830 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5831 { 5832 struct saved_alias *al; 5833 5834 if (slab_state == FULL) { 5835 /* 5836 * If we have a leftover link then remove it. 5837 */ 5838 sysfs_remove_link(&slab_kset->kobj, name); 5839 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5840 } 5841 5842 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5843 if (!al) 5844 return -ENOMEM; 5845 5846 al->s = s; 5847 al->name = name; 5848 al->next = alias_list; 5849 alias_list = al; 5850 return 0; 5851 } 5852 5853 static int __init slab_sysfs_init(void) 5854 { 5855 struct kmem_cache *s; 5856 int err; 5857 5858 mutex_lock(&slab_mutex); 5859 5860 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5861 if (!slab_kset) { 5862 mutex_unlock(&slab_mutex); 5863 pr_err("Cannot register slab subsystem.\n"); 5864 return -ENOSYS; 5865 } 5866 5867 slab_state = FULL; 5868 5869 list_for_each_entry(s, &slab_caches, list) { 5870 err = sysfs_slab_add(s); 5871 if (err) 5872 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5873 s->name); 5874 } 5875 5876 while (alias_list) { 5877 struct saved_alias *al = alias_list; 5878 5879 alias_list = alias_list->next; 5880 err = sysfs_slab_alias(al->s, al->name); 5881 if (err) 5882 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5883 al->name); 5884 kfree(al); 5885 } 5886 5887 mutex_unlock(&slab_mutex); 5888 resiliency_test(); 5889 return 0; 5890 } 5891 5892 __initcall(slab_sysfs_init); 5893 #endif /* CONFIG_SYSFS */ 5894 5895 /* 5896 * The /proc/slabinfo ABI 5897 */ 5898 #ifdef CONFIG_SLUB_DEBUG 5899 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5900 { 5901 unsigned long nr_slabs = 0; 5902 unsigned long nr_objs = 0; 5903 unsigned long nr_free = 0; 5904 int node; 5905 struct kmem_cache_node *n; 5906 5907 for_each_kmem_cache_node(s, node, n) { 5908 nr_slabs += node_nr_slabs(n); 5909 nr_objs += node_nr_objs(n); 5910 nr_free += count_partial(n, count_free); 5911 } 5912 5913 sinfo->active_objs = nr_objs - nr_free; 5914 sinfo->num_objs = nr_objs; 5915 sinfo->active_slabs = nr_slabs; 5916 sinfo->num_slabs = nr_slabs; 5917 sinfo->objects_per_slab = oo_objects(s->oo); 5918 sinfo->cache_order = oo_order(s->oo); 5919 } 5920 5921 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5922 { 5923 } 5924 5925 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5926 size_t count, loff_t *ppos) 5927 { 5928 return -EIO; 5929 } 5930 #endif /* CONFIG_SLUB_DEBUG */ 5931