1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 void *fixup_red_left(struct kmem_cache *s, void *p) 128 { 129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 130 p += s->red_left_pad; 131 132 return p; 133 } 134 135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 136 { 137 #ifdef CONFIG_SLUB_CPU_PARTIAL 138 return !kmem_cache_debug(s); 139 #else 140 return false; 141 #endif 142 } 143 144 /* 145 * Issues still to be resolved: 146 * 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 148 * 149 * - Variable sizing of the per node arrays 150 */ 151 152 /* Enable to test recovery from slab corruption on boot */ 153 #undef SLUB_RESILIENCY_TEST 154 155 /* Enable to log cmpxchg failures */ 156 #undef SLUB_DEBUG_CMPXCHG 157 158 /* 159 * Mininum number of partial slabs. These will be left on the partial 160 * lists even if they are empty. kmem_cache_shrink may reclaim them. 161 */ 162 #define MIN_PARTIAL 5 163 164 /* 165 * Maximum number of desirable partial slabs. 166 * The existence of more partial slabs makes kmem_cache_shrink 167 * sort the partial list by the number of objects in use. 168 */ 169 #define MAX_PARTIAL 10 170 171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 172 SLAB_POISON | SLAB_STORE_USER) 173 174 /* 175 * These debug flags cannot use CMPXCHG because there might be consistency 176 * issues when checking or reading debug information 177 */ 178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 179 SLAB_TRACE) 180 181 182 /* 183 * Debugging flags that require metadata to be stored in the slab. These get 184 * disabled when slub_debug=O is used and a cache's min order increases with 185 * metadata. 186 */ 187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 188 189 #define OO_SHIFT 16 190 #define OO_MASK ((1 << OO_SHIFT) - 1) 191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 192 193 /* Internal SLUB flags */ 194 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 196 197 /* 198 * Tracking user of a slab. 199 */ 200 #define TRACK_ADDRS_COUNT 16 201 struct track { 202 unsigned long addr; /* Called from address */ 203 #ifdef CONFIG_STACKTRACE 204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 205 #endif 206 int cpu; /* Was running on cpu */ 207 int pid; /* Pid context */ 208 unsigned long when; /* When did the operation occur */ 209 }; 210 211 enum track_item { TRACK_ALLOC, TRACK_FREE }; 212 213 #ifdef CONFIG_SYSFS 214 static int sysfs_slab_add(struct kmem_cache *); 215 static int sysfs_slab_alias(struct kmem_cache *, const char *); 216 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 217 static void sysfs_slab_remove(struct kmem_cache *s); 218 #else 219 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 220 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 221 { return 0; } 222 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 223 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 224 #endif 225 226 static inline void stat(const struct kmem_cache *s, enum stat_item si) 227 { 228 #ifdef CONFIG_SLUB_STATS 229 /* 230 * The rmw is racy on a preemptible kernel but this is acceptable, so 231 * avoid this_cpu_add()'s irq-disable overhead. 232 */ 233 raw_cpu_inc(s->cpu_slab->stat[si]); 234 #endif 235 } 236 237 /******************************************************************** 238 * Core slab cache functions 239 *******************************************************************/ 240 241 static inline void *get_freepointer(struct kmem_cache *s, void *object) 242 { 243 return *(void **)(object + s->offset); 244 } 245 246 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 247 { 248 prefetch(object + s->offset); 249 } 250 251 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 252 { 253 void *p; 254 255 if (!debug_pagealloc_enabled()) 256 return get_freepointer(s, object); 257 258 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 259 return p; 260 } 261 262 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 263 { 264 *(void **)(object + s->offset) = fp; 265 } 266 267 /* Loop over all objects in a slab */ 268 #define for_each_object(__p, __s, __addr, __objects) \ 269 for (__p = fixup_red_left(__s, __addr); \ 270 __p < (__addr) + (__objects) * (__s)->size; \ 271 __p += (__s)->size) 272 273 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 274 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 275 __idx <= __objects; \ 276 __p += (__s)->size, __idx++) 277 278 /* Determine object index from a given position */ 279 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 280 { 281 return (p - addr) / s->size; 282 } 283 284 static inline int order_objects(int order, unsigned long size, int reserved) 285 { 286 return ((PAGE_SIZE << order) - reserved) / size; 287 } 288 289 static inline struct kmem_cache_order_objects oo_make(int order, 290 unsigned long size, int reserved) 291 { 292 struct kmem_cache_order_objects x = { 293 (order << OO_SHIFT) + order_objects(order, size, reserved) 294 }; 295 296 return x; 297 } 298 299 static inline int oo_order(struct kmem_cache_order_objects x) 300 { 301 return x.x >> OO_SHIFT; 302 } 303 304 static inline int oo_objects(struct kmem_cache_order_objects x) 305 { 306 return x.x & OO_MASK; 307 } 308 309 /* 310 * Per slab locking using the pagelock 311 */ 312 static __always_inline void slab_lock(struct page *page) 313 { 314 VM_BUG_ON_PAGE(PageTail(page), page); 315 bit_spin_lock(PG_locked, &page->flags); 316 } 317 318 static __always_inline void slab_unlock(struct page *page) 319 { 320 VM_BUG_ON_PAGE(PageTail(page), page); 321 __bit_spin_unlock(PG_locked, &page->flags); 322 } 323 324 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 325 { 326 struct page tmp; 327 tmp.counters = counters_new; 328 /* 329 * page->counters can cover frozen/inuse/objects as well 330 * as page->_refcount. If we assign to ->counters directly 331 * we run the risk of losing updates to page->_refcount, so 332 * be careful and only assign to the fields we need. 333 */ 334 page->frozen = tmp.frozen; 335 page->inuse = tmp.inuse; 336 page->objects = tmp.objects; 337 } 338 339 /* Interrupts must be disabled (for the fallback code to work right) */ 340 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 341 void *freelist_old, unsigned long counters_old, 342 void *freelist_new, unsigned long counters_new, 343 const char *n) 344 { 345 VM_BUG_ON(!irqs_disabled()); 346 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 347 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 348 if (s->flags & __CMPXCHG_DOUBLE) { 349 if (cmpxchg_double(&page->freelist, &page->counters, 350 freelist_old, counters_old, 351 freelist_new, counters_new)) 352 return true; 353 } else 354 #endif 355 { 356 slab_lock(page); 357 if (page->freelist == freelist_old && 358 page->counters == counters_old) { 359 page->freelist = freelist_new; 360 set_page_slub_counters(page, counters_new); 361 slab_unlock(page); 362 return true; 363 } 364 slab_unlock(page); 365 } 366 367 cpu_relax(); 368 stat(s, CMPXCHG_DOUBLE_FAIL); 369 370 #ifdef SLUB_DEBUG_CMPXCHG 371 pr_info("%s %s: cmpxchg double redo ", n, s->name); 372 #endif 373 374 return false; 375 } 376 377 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 378 void *freelist_old, unsigned long counters_old, 379 void *freelist_new, unsigned long counters_new, 380 const char *n) 381 { 382 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 384 if (s->flags & __CMPXCHG_DOUBLE) { 385 if (cmpxchg_double(&page->freelist, &page->counters, 386 freelist_old, counters_old, 387 freelist_new, counters_new)) 388 return true; 389 } else 390 #endif 391 { 392 unsigned long flags; 393 394 local_irq_save(flags); 395 slab_lock(page); 396 if (page->freelist == freelist_old && 397 page->counters == counters_old) { 398 page->freelist = freelist_new; 399 set_page_slub_counters(page, counters_new); 400 slab_unlock(page); 401 local_irq_restore(flags); 402 return true; 403 } 404 slab_unlock(page); 405 local_irq_restore(flags); 406 } 407 408 cpu_relax(); 409 stat(s, CMPXCHG_DOUBLE_FAIL); 410 411 #ifdef SLUB_DEBUG_CMPXCHG 412 pr_info("%s %s: cmpxchg double redo ", n, s->name); 413 #endif 414 415 return false; 416 } 417 418 #ifdef CONFIG_SLUB_DEBUG 419 /* 420 * Determine a map of object in use on a page. 421 * 422 * Node listlock must be held to guarantee that the page does 423 * not vanish from under us. 424 */ 425 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 426 { 427 void *p; 428 void *addr = page_address(page); 429 430 for (p = page->freelist; p; p = get_freepointer(s, p)) 431 set_bit(slab_index(p, s, addr), map); 432 } 433 434 static inline int size_from_object(struct kmem_cache *s) 435 { 436 if (s->flags & SLAB_RED_ZONE) 437 return s->size - s->red_left_pad; 438 439 return s->size; 440 } 441 442 static inline void *restore_red_left(struct kmem_cache *s, void *p) 443 { 444 if (s->flags & SLAB_RED_ZONE) 445 p -= s->red_left_pad; 446 447 return p; 448 } 449 450 /* 451 * Debug settings: 452 */ 453 #if defined(CONFIG_SLUB_DEBUG_ON) 454 static int slub_debug = DEBUG_DEFAULT_FLAGS; 455 #else 456 static int slub_debug; 457 #endif 458 459 static char *slub_debug_slabs; 460 static int disable_higher_order_debug; 461 462 /* 463 * slub is about to manipulate internal object metadata. This memory lies 464 * outside the range of the allocated object, so accessing it would normally 465 * be reported by kasan as a bounds error. metadata_access_enable() is used 466 * to tell kasan that these accesses are OK. 467 */ 468 static inline void metadata_access_enable(void) 469 { 470 kasan_disable_current(); 471 } 472 473 static inline void metadata_access_disable(void) 474 { 475 kasan_enable_current(); 476 } 477 478 /* 479 * Object debugging 480 */ 481 482 /* Verify that a pointer has an address that is valid within a slab page */ 483 static inline int check_valid_pointer(struct kmem_cache *s, 484 struct page *page, void *object) 485 { 486 void *base; 487 488 if (!object) 489 return 1; 490 491 base = page_address(page); 492 object = restore_red_left(s, object); 493 if (object < base || object >= base + page->objects * s->size || 494 (object - base) % s->size) { 495 return 0; 496 } 497 498 return 1; 499 } 500 501 static void print_section(char *level, char *text, u8 *addr, 502 unsigned int length) 503 { 504 metadata_access_enable(); 505 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 506 length, 1); 507 metadata_access_disable(); 508 } 509 510 static struct track *get_track(struct kmem_cache *s, void *object, 511 enum track_item alloc) 512 { 513 struct track *p; 514 515 if (s->offset) 516 p = object + s->offset + sizeof(void *); 517 else 518 p = object + s->inuse; 519 520 return p + alloc; 521 } 522 523 static void set_track(struct kmem_cache *s, void *object, 524 enum track_item alloc, unsigned long addr) 525 { 526 struct track *p = get_track(s, object, alloc); 527 528 if (addr) { 529 #ifdef CONFIG_STACKTRACE 530 struct stack_trace trace; 531 int i; 532 533 trace.nr_entries = 0; 534 trace.max_entries = TRACK_ADDRS_COUNT; 535 trace.entries = p->addrs; 536 trace.skip = 3; 537 metadata_access_enable(); 538 save_stack_trace(&trace); 539 metadata_access_disable(); 540 541 /* See rant in lockdep.c */ 542 if (trace.nr_entries != 0 && 543 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 544 trace.nr_entries--; 545 546 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 547 p->addrs[i] = 0; 548 #endif 549 p->addr = addr; 550 p->cpu = smp_processor_id(); 551 p->pid = current->pid; 552 p->when = jiffies; 553 } else 554 memset(p, 0, sizeof(struct track)); 555 } 556 557 static void init_tracking(struct kmem_cache *s, void *object) 558 { 559 if (!(s->flags & SLAB_STORE_USER)) 560 return; 561 562 set_track(s, object, TRACK_FREE, 0UL); 563 set_track(s, object, TRACK_ALLOC, 0UL); 564 } 565 566 static void print_track(const char *s, struct track *t) 567 { 568 if (!t->addr) 569 return; 570 571 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 572 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 573 #ifdef CONFIG_STACKTRACE 574 { 575 int i; 576 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 577 if (t->addrs[i]) 578 pr_err("\t%pS\n", (void *)t->addrs[i]); 579 else 580 break; 581 } 582 #endif 583 } 584 585 static void print_tracking(struct kmem_cache *s, void *object) 586 { 587 if (!(s->flags & SLAB_STORE_USER)) 588 return; 589 590 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 591 print_track("Freed", get_track(s, object, TRACK_FREE)); 592 } 593 594 static void print_page_info(struct page *page) 595 { 596 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 597 page, page->objects, page->inuse, page->freelist, page->flags); 598 599 } 600 601 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 602 { 603 struct va_format vaf; 604 va_list args; 605 606 va_start(args, fmt); 607 vaf.fmt = fmt; 608 vaf.va = &args; 609 pr_err("=============================================================================\n"); 610 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 611 pr_err("-----------------------------------------------------------------------------\n\n"); 612 613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 614 va_end(args); 615 } 616 617 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 618 { 619 struct va_format vaf; 620 va_list args; 621 622 va_start(args, fmt); 623 vaf.fmt = fmt; 624 vaf.va = &args; 625 pr_err("FIX %s: %pV\n", s->name, &vaf); 626 va_end(args); 627 } 628 629 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 630 { 631 unsigned int off; /* Offset of last byte */ 632 u8 *addr = page_address(page); 633 634 print_tracking(s, p); 635 636 print_page_info(page); 637 638 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 639 p, p - addr, get_freepointer(s, p)); 640 641 if (s->flags & SLAB_RED_ZONE) 642 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 643 s->red_left_pad); 644 else if (p > addr + 16) 645 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 646 647 print_section(KERN_ERR, "Object ", p, 648 min_t(unsigned long, s->object_size, PAGE_SIZE)); 649 if (s->flags & SLAB_RED_ZONE) 650 print_section(KERN_ERR, "Redzone ", p + s->object_size, 651 s->inuse - s->object_size); 652 653 if (s->offset) 654 off = s->offset + sizeof(void *); 655 else 656 off = s->inuse; 657 658 if (s->flags & SLAB_STORE_USER) 659 off += 2 * sizeof(struct track); 660 661 off += kasan_metadata_size(s); 662 663 if (off != size_from_object(s)) 664 /* Beginning of the filler is the free pointer */ 665 print_section(KERN_ERR, "Padding ", p + off, 666 size_from_object(s) - off); 667 668 dump_stack(); 669 } 670 671 void object_err(struct kmem_cache *s, struct page *page, 672 u8 *object, char *reason) 673 { 674 slab_bug(s, "%s", reason); 675 print_trailer(s, page, object); 676 } 677 678 static void slab_err(struct kmem_cache *s, struct page *page, 679 const char *fmt, ...) 680 { 681 va_list args; 682 char buf[100]; 683 684 va_start(args, fmt); 685 vsnprintf(buf, sizeof(buf), fmt, args); 686 va_end(args); 687 slab_bug(s, "%s", buf); 688 print_page_info(page); 689 dump_stack(); 690 } 691 692 static void init_object(struct kmem_cache *s, void *object, u8 val) 693 { 694 u8 *p = object; 695 696 if (s->flags & SLAB_RED_ZONE) 697 memset(p - s->red_left_pad, val, s->red_left_pad); 698 699 if (s->flags & __OBJECT_POISON) { 700 memset(p, POISON_FREE, s->object_size - 1); 701 p[s->object_size - 1] = POISON_END; 702 } 703 704 if (s->flags & SLAB_RED_ZONE) 705 memset(p + s->object_size, val, s->inuse - s->object_size); 706 } 707 708 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 709 void *from, void *to) 710 { 711 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 712 memset(from, data, to - from); 713 } 714 715 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 716 u8 *object, char *what, 717 u8 *start, unsigned int value, unsigned int bytes) 718 { 719 u8 *fault; 720 u8 *end; 721 722 metadata_access_enable(); 723 fault = memchr_inv(start, value, bytes); 724 metadata_access_disable(); 725 if (!fault) 726 return 1; 727 728 end = start + bytes; 729 while (end > fault && end[-1] == value) 730 end--; 731 732 slab_bug(s, "%s overwritten", what); 733 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 734 fault, end - 1, fault[0], value); 735 print_trailer(s, page, object); 736 737 restore_bytes(s, what, value, fault, end); 738 return 0; 739 } 740 741 /* 742 * Object layout: 743 * 744 * object address 745 * Bytes of the object to be managed. 746 * If the freepointer may overlay the object then the free 747 * pointer is the first word of the object. 748 * 749 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 750 * 0xa5 (POISON_END) 751 * 752 * object + s->object_size 753 * Padding to reach word boundary. This is also used for Redzoning. 754 * Padding is extended by another word if Redzoning is enabled and 755 * object_size == inuse. 756 * 757 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 758 * 0xcc (RED_ACTIVE) for objects in use. 759 * 760 * object + s->inuse 761 * Meta data starts here. 762 * 763 * A. Free pointer (if we cannot overwrite object on free) 764 * B. Tracking data for SLAB_STORE_USER 765 * C. Padding to reach required alignment boundary or at mininum 766 * one word if debugging is on to be able to detect writes 767 * before the word boundary. 768 * 769 * Padding is done using 0x5a (POISON_INUSE) 770 * 771 * object + s->size 772 * Nothing is used beyond s->size. 773 * 774 * If slabcaches are merged then the object_size and inuse boundaries are mostly 775 * ignored. And therefore no slab options that rely on these boundaries 776 * may be used with merged slabcaches. 777 */ 778 779 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 780 { 781 unsigned long off = s->inuse; /* The end of info */ 782 783 if (s->offset) 784 /* Freepointer is placed after the object. */ 785 off += sizeof(void *); 786 787 if (s->flags & SLAB_STORE_USER) 788 /* We also have user information there */ 789 off += 2 * sizeof(struct track); 790 791 off += kasan_metadata_size(s); 792 793 if (size_from_object(s) == off) 794 return 1; 795 796 return check_bytes_and_report(s, page, p, "Object padding", 797 p + off, POISON_INUSE, size_from_object(s) - off); 798 } 799 800 /* Check the pad bytes at the end of a slab page */ 801 static int slab_pad_check(struct kmem_cache *s, struct page *page) 802 { 803 u8 *start; 804 u8 *fault; 805 u8 *end; 806 int length; 807 int remainder; 808 809 if (!(s->flags & SLAB_POISON)) 810 return 1; 811 812 start = page_address(page); 813 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 814 end = start + length; 815 remainder = length % s->size; 816 if (!remainder) 817 return 1; 818 819 metadata_access_enable(); 820 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 821 metadata_access_disable(); 822 if (!fault) 823 return 1; 824 while (end > fault && end[-1] == POISON_INUSE) 825 end--; 826 827 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 828 print_section(KERN_ERR, "Padding ", end - remainder, remainder); 829 830 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 831 return 0; 832 } 833 834 static int check_object(struct kmem_cache *s, struct page *page, 835 void *object, u8 val) 836 { 837 u8 *p = object; 838 u8 *endobject = object + s->object_size; 839 840 if (s->flags & SLAB_RED_ZONE) { 841 if (!check_bytes_and_report(s, page, object, "Redzone", 842 object - s->red_left_pad, val, s->red_left_pad)) 843 return 0; 844 845 if (!check_bytes_and_report(s, page, object, "Redzone", 846 endobject, val, s->inuse - s->object_size)) 847 return 0; 848 } else { 849 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 850 check_bytes_and_report(s, page, p, "Alignment padding", 851 endobject, POISON_INUSE, 852 s->inuse - s->object_size); 853 } 854 } 855 856 if (s->flags & SLAB_POISON) { 857 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 858 (!check_bytes_and_report(s, page, p, "Poison", p, 859 POISON_FREE, s->object_size - 1) || 860 !check_bytes_and_report(s, page, p, "Poison", 861 p + s->object_size - 1, POISON_END, 1))) 862 return 0; 863 /* 864 * check_pad_bytes cleans up on its own. 865 */ 866 check_pad_bytes(s, page, p); 867 } 868 869 if (!s->offset && val == SLUB_RED_ACTIVE) 870 /* 871 * Object and freepointer overlap. Cannot check 872 * freepointer while object is allocated. 873 */ 874 return 1; 875 876 /* Check free pointer validity */ 877 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 878 object_err(s, page, p, "Freepointer corrupt"); 879 /* 880 * No choice but to zap it and thus lose the remainder 881 * of the free objects in this slab. May cause 882 * another error because the object count is now wrong. 883 */ 884 set_freepointer(s, p, NULL); 885 return 0; 886 } 887 return 1; 888 } 889 890 static int check_slab(struct kmem_cache *s, struct page *page) 891 { 892 int maxobj; 893 894 VM_BUG_ON(!irqs_disabled()); 895 896 if (!PageSlab(page)) { 897 slab_err(s, page, "Not a valid slab page"); 898 return 0; 899 } 900 901 maxobj = order_objects(compound_order(page), s->size, s->reserved); 902 if (page->objects > maxobj) { 903 slab_err(s, page, "objects %u > max %u", 904 page->objects, maxobj); 905 return 0; 906 } 907 if (page->inuse > page->objects) { 908 slab_err(s, page, "inuse %u > max %u", 909 page->inuse, page->objects); 910 return 0; 911 } 912 /* Slab_pad_check fixes things up after itself */ 913 slab_pad_check(s, page); 914 return 1; 915 } 916 917 /* 918 * Determine if a certain object on a page is on the freelist. Must hold the 919 * slab lock to guarantee that the chains are in a consistent state. 920 */ 921 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 922 { 923 int nr = 0; 924 void *fp; 925 void *object = NULL; 926 int max_objects; 927 928 fp = page->freelist; 929 while (fp && nr <= page->objects) { 930 if (fp == search) 931 return 1; 932 if (!check_valid_pointer(s, page, fp)) { 933 if (object) { 934 object_err(s, page, object, 935 "Freechain corrupt"); 936 set_freepointer(s, object, NULL); 937 } else { 938 slab_err(s, page, "Freepointer corrupt"); 939 page->freelist = NULL; 940 page->inuse = page->objects; 941 slab_fix(s, "Freelist cleared"); 942 return 0; 943 } 944 break; 945 } 946 object = fp; 947 fp = get_freepointer(s, object); 948 nr++; 949 } 950 951 max_objects = order_objects(compound_order(page), s->size, s->reserved); 952 if (max_objects > MAX_OBJS_PER_PAGE) 953 max_objects = MAX_OBJS_PER_PAGE; 954 955 if (page->objects != max_objects) { 956 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 957 page->objects, max_objects); 958 page->objects = max_objects; 959 slab_fix(s, "Number of objects adjusted."); 960 } 961 if (page->inuse != page->objects - nr) { 962 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 963 page->inuse, page->objects - nr); 964 page->inuse = page->objects - nr; 965 slab_fix(s, "Object count adjusted."); 966 } 967 return search == NULL; 968 } 969 970 static void trace(struct kmem_cache *s, struct page *page, void *object, 971 int alloc) 972 { 973 if (s->flags & SLAB_TRACE) { 974 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 975 s->name, 976 alloc ? "alloc" : "free", 977 object, page->inuse, 978 page->freelist); 979 980 if (!alloc) 981 print_section(KERN_INFO, "Object ", (void *)object, 982 s->object_size); 983 984 dump_stack(); 985 } 986 } 987 988 /* 989 * Tracking of fully allocated slabs for debugging purposes. 990 */ 991 static void add_full(struct kmem_cache *s, 992 struct kmem_cache_node *n, struct page *page) 993 { 994 if (!(s->flags & SLAB_STORE_USER)) 995 return; 996 997 lockdep_assert_held(&n->list_lock); 998 list_add(&page->lru, &n->full); 999 } 1000 1001 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1002 { 1003 if (!(s->flags & SLAB_STORE_USER)) 1004 return; 1005 1006 lockdep_assert_held(&n->list_lock); 1007 list_del(&page->lru); 1008 } 1009 1010 /* Tracking of the number of slabs for debugging purposes */ 1011 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1012 { 1013 struct kmem_cache_node *n = get_node(s, node); 1014 1015 return atomic_long_read(&n->nr_slabs); 1016 } 1017 1018 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1019 { 1020 return atomic_long_read(&n->nr_slabs); 1021 } 1022 1023 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1024 { 1025 struct kmem_cache_node *n = get_node(s, node); 1026 1027 /* 1028 * May be called early in order to allocate a slab for the 1029 * kmem_cache_node structure. Solve the chicken-egg 1030 * dilemma by deferring the increment of the count during 1031 * bootstrap (see early_kmem_cache_node_alloc). 1032 */ 1033 if (likely(n)) { 1034 atomic_long_inc(&n->nr_slabs); 1035 atomic_long_add(objects, &n->total_objects); 1036 } 1037 } 1038 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1039 { 1040 struct kmem_cache_node *n = get_node(s, node); 1041 1042 atomic_long_dec(&n->nr_slabs); 1043 atomic_long_sub(objects, &n->total_objects); 1044 } 1045 1046 /* Object debug checks for alloc/free paths */ 1047 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1048 void *object) 1049 { 1050 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1051 return; 1052 1053 init_object(s, object, SLUB_RED_INACTIVE); 1054 init_tracking(s, object); 1055 } 1056 1057 static inline int alloc_consistency_checks(struct kmem_cache *s, 1058 struct page *page, 1059 void *object, unsigned long addr) 1060 { 1061 if (!check_slab(s, page)) 1062 return 0; 1063 1064 if (!check_valid_pointer(s, page, object)) { 1065 object_err(s, page, object, "Freelist Pointer check fails"); 1066 return 0; 1067 } 1068 1069 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1070 return 0; 1071 1072 return 1; 1073 } 1074 1075 static noinline int alloc_debug_processing(struct kmem_cache *s, 1076 struct page *page, 1077 void *object, unsigned long addr) 1078 { 1079 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1080 if (!alloc_consistency_checks(s, page, object, addr)) 1081 goto bad; 1082 } 1083 1084 /* Success perform special debug activities for allocs */ 1085 if (s->flags & SLAB_STORE_USER) 1086 set_track(s, object, TRACK_ALLOC, addr); 1087 trace(s, page, object, 1); 1088 init_object(s, object, SLUB_RED_ACTIVE); 1089 return 1; 1090 1091 bad: 1092 if (PageSlab(page)) { 1093 /* 1094 * If this is a slab page then lets do the best we can 1095 * to avoid issues in the future. Marking all objects 1096 * as used avoids touching the remaining objects. 1097 */ 1098 slab_fix(s, "Marking all objects used"); 1099 page->inuse = page->objects; 1100 page->freelist = NULL; 1101 } 1102 return 0; 1103 } 1104 1105 static inline int free_consistency_checks(struct kmem_cache *s, 1106 struct page *page, void *object, unsigned long addr) 1107 { 1108 if (!check_valid_pointer(s, page, object)) { 1109 slab_err(s, page, "Invalid object pointer 0x%p", object); 1110 return 0; 1111 } 1112 1113 if (on_freelist(s, page, object)) { 1114 object_err(s, page, object, "Object already free"); 1115 return 0; 1116 } 1117 1118 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1119 return 0; 1120 1121 if (unlikely(s != page->slab_cache)) { 1122 if (!PageSlab(page)) { 1123 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1124 object); 1125 } else if (!page->slab_cache) { 1126 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1127 object); 1128 dump_stack(); 1129 } else 1130 object_err(s, page, object, 1131 "page slab pointer corrupt."); 1132 return 0; 1133 } 1134 return 1; 1135 } 1136 1137 /* Supports checking bulk free of a constructed freelist */ 1138 static noinline int free_debug_processing( 1139 struct kmem_cache *s, struct page *page, 1140 void *head, void *tail, int bulk_cnt, 1141 unsigned long addr) 1142 { 1143 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1144 void *object = head; 1145 int cnt = 0; 1146 unsigned long uninitialized_var(flags); 1147 int ret = 0; 1148 1149 spin_lock_irqsave(&n->list_lock, flags); 1150 slab_lock(page); 1151 1152 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1153 if (!check_slab(s, page)) 1154 goto out; 1155 } 1156 1157 next_object: 1158 cnt++; 1159 1160 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1161 if (!free_consistency_checks(s, page, object, addr)) 1162 goto out; 1163 } 1164 1165 if (s->flags & SLAB_STORE_USER) 1166 set_track(s, object, TRACK_FREE, addr); 1167 trace(s, page, object, 0); 1168 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1169 init_object(s, object, SLUB_RED_INACTIVE); 1170 1171 /* Reached end of constructed freelist yet? */ 1172 if (object != tail) { 1173 object = get_freepointer(s, object); 1174 goto next_object; 1175 } 1176 ret = 1; 1177 1178 out: 1179 if (cnt != bulk_cnt) 1180 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1181 bulk_cnt, cnt); 1182 1183 slab_unlock(page); 1184 spin_unlock_irqrestore(&n->list_lock, flags); 1185 if (!ret) 1186 slab_fix(s, "Object at 0x%p not freed", object); 1187 return ret; 1188 } 1189 1190 static int __init setup_slub_debug(char *str) 1191 { 1192 slub_debug = DEBUG_DEFAULT_FLAGS; 1193 if (*str++ != '=' || !*str) 1194 /* 1195 * No options specified. Switch on full debugging. 1196 */ 1197 goto out; 1198 1199 if (*str == ',') 1200 /* 1201 * No options but restriction on slabs. This means full 1202 * debugging for slabs matching a pattern. 1203 */ 1204 goto check_slabs; 1205 1206 slub_debug = 0; 1207 if (*str == '-') 1208 /* 1209 * Switch off all debugging measures. 1210 */ 1211 goto out; 1212 1213 /* 1214 * Determine which debug features should be switched on 1215 */ 1216 for (; *str && *str != ','; str++) { 1217 switch (tolower(*str)) { 1218 case 'f': 1219 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1220 break; 1221 case 'z': 1222 slub_debug |= SLAB_RED_ZONE; 1223 break; 1224 case 'p': 1225 slub_debug |= SLAB_POISON; 1226 break; 1227 case 'u': 1228 slub_debug |= SLAB_STORE_USER; 1229 break; 1230 case 't': 1231 slub_debug |= SLAB_TRACE; 1232 break; 1233 case 'a': 1234 slub_debug |= SLAB_FAILSLAB; 1235 break; 1236 case 'o': 1237 /* 1238 * Avoid enabling debugging on caches if its minimum 1239 * order would increase as a result. 1240 */ 1241 disable_higher_order_debug = 1; 1242 break; 1243 default: 1244 pr_err("slub_debug option '%c' unknown. skipped\n", 1245 *str); 1246 } 1247 } 1248 1249 check_slabs: 1250 if (*str == ',') 1251 slub_debug_slabs = str + 1; 1252 out: 1253 return 1; 1254 } 1255 1256 __setup("slub_debug", setup_slub_debug); 1257 1258 unsigned long kmem_cache_flags(unsigned long object_size, 1259 unsigned long flags, const char *name, 1260 void (*ctor)(void *)) 1261 { 1262 /* 1263 * Enable debugging if selected on the kernel commandline. 1264 */ 1265 if (slub_debug && (!slub_debug_slabs || (name && 1266 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1267 flags |= slub_debug; 1268 1269 return flags; 1270 } 1271 #else /* !CONFIG_SLUB_DEBUG */ 1272 static inline void setup_object_debug(struct kmem_cache *s, 1273 struct page *page, void *object) {} 1274 1275 static inline int alloc_debug_processing(struct kmem_cache *s, 1276 struct page *page, void *object, unsigned long addr) { return 0; } 1277 1278 static inline int free_debug_processing( 1279 struct kmem_cache *s, struct page *page, 1280 void *head, void *tail, int bulk_cnt, 1281 unsigned long addr) { return 0; } 1282 1283 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1284 { return 1; } 1285 static inline int check_object(struct kmem_cache *s, struct page *page, 1286 void *object, u8 val) { return 1; } 1287 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1288 struct page *page) {} 1289 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1290 struct page *page) {} 1291 unsigned long kmem_cache_flags(unsigned long object_size, 1292 unsigned long flags, const char *name, 1293 void (*ctor)(void *)) 1294 { 1295 return flags; 1296 } 1297 #define slub_debug 0 1298 1299 #define disable_higher_order_debug 0 1300 1301 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1302 { return 0; } 1303 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1304 { return 0; } 1305 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1306 int objects) {} 1307 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1308 int objects) {} 1309 1310 #endif /* CONFIG_SLUB_DEBUG */ 1311 1312 /* 1313 * Hooks for other subsystems that check memory allocations. In a typical 1314 * production configuration these hooks all should produce no code at all. 1315 */ 1316 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1317 { 1318 kmemleak_alloc(ptr, size, 1, flags); 1319 kasan_kmalloc_large(ptr, size, flags); 1320 } 1321 1322 static inline void kfree_hook(const void *x) 1323 { 1324 kmemleak_free(x); 1325 kasan_kfree_large(x); 1326 } 1327 1328 static inline void *slab_free_hook(struct kmem_cache *s, void *x) 1329 { 1330 void *freeptr; 1331 1332 kmemleak_free_recursive(x, s->flags); 1333 1334 /* 1335 * Trouble is that we may no longer disable interrupts in the fast path 1336 * So in order to make the debug calls that expect irqs to be 1337 * disabled we need to disable interrupts temporarily. 1338 */ 1339 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1340 { 1341 unsigned long flags; 1342 1343 local_irq_save(flags); 1344 kmemcheck_slab_free(s, x, s->object_size); 1345 debug_check_no_locks_freed(x, s->object_size); 1346 local_irq_restore(flags); 1347 } 1348 #endif 1349 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1350 debug_check_no_obj_freed(x, s->object_size); 1351 1352 freeptr = get_freepointer(s, x); 1353 /* 1354 * kasan_slab_free() may put x into memory quarantine, delaying its 1355 * reuse. In this case the object's freelist pointer is changed. 1356 */ 1357 kasan_slab_free(s, x); 1358 return freeptr; 1359 } 1360 1361 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1362 void *head, void *tail) 1363 { 1364 /* 1365 * Compiler cannot detect this function can be removed if slab_free_hook() 1366 * evaluates to nothing. Thus, catch all relevant config debug options here. 1367 */ 1368 #if defined(CONFIG_KMEMCHECK) || \ 1369 defined(CONFIG_LOCKDEP) || \ 1370 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1371 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1372 defined(CONFIG_KASAN) 1373 1374 void *object = head; 1375 void *tail_obj = tail ? : head; 1376 void *freeptr; 1377 1378 do { 1379 freeptr = slab_free_hook(s, object); 1380 } while ((object != tail_obj) && (object = freeptr)); 1381 #endif 1382 } 1383 1384 static void setup_object(struct kmem_cache *s, struct page *page, 1385 void *object) 1386 { 1387 setup_object_debug(s, page, object); 1388 kasan_init_slab_obj(s, object); 1389 if (unlikely(s->ctor)) { 1390 kasan_unpoison_object_data(s, object); 1391 s->ctor(object); 1392 kasan_poison_object_data(s, object); 1393 } 1394 } 1395 1396 /* 1397 * Slab allocation and freeing 1398 */ 1399 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1400 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1401 { 1402 struct page *page; 1403 int order = oo_order(oo); 1404 1405 flags |= __GFP_NOTRACK; 1406 1407 if (node == NUMA_NO_NODE) 1408 page = alloc_pages(flags, order); 1409 else 1410 page = __alloc_pages_node(node, flags, order); 1411 1412 if (page && memcg_charge_slab(page, flags, order, s)) { 1413 __free_pages(page, order); 1414 page = NULL; 1415 } 1416 1417 return page; 1418 } 1419 1420 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1421 /* Pre-initialize the random sequence cache */ 1422 static int init_cache_random_seq(struct kmem_cache *s) 1423 { 1424 int err; 1425 unsigned long i, count = oo_objects(s->oo); 1426 1427 /* Bailout if already initialised */ 1428 if (s->random_seq) 1429 return 0; 1430 1431 err = cache_random_seq_create(s, count, GFP_KERNEL); 1432 if (err) { 1433 pr_err("SLUB: Unable to initialize free list for %s\n", 1434 s->name); 1435 return err; 1436 } 1437 1438 /* Transform to an offset on the set of pages */ 1439 if (s->random_seq) { 1440 for (i = 0; i < count; i++) 1441 s->random_seq[i] *= s->size; 1442 } 1443 return 0; 1444 } 1445 1446 /* Initialize each random sequence freelist per cache */ 1447 static void __init init_freelist_randomization(void) 1448 { 1449 struct kmem_cache *s; 1450 1451 mutex_lock(&slab_mutex); 1452 1453 list_for_each_entry(s, &slab_caches, list) 1454 init_cache_random_seq(s); 1455 1456 mutex_unlock(&slab_mutex); 1457 } 1458 1459 /* Get the next entry on the pre-computed freelist randomized */ 1460 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1461 unsigned long *pos, void *start, 1462 unsigned long page_limit, 1463 unsigned long freelist_count) 1464 { 1465 unsigned int idx; 1466 1467 /* 1468 * If the target page allocation failed, the number of objects on the 1469 * page might be smaller than the usual size defined by the cache. 1470 */ 1471 do { 1472 idx = s->random_seq[*pos]; 1473 *pos += 1; 1474 if (*pos >= freelist_count) 1475 *pos = 0; 1476 } while (unlikely(idx >= page_limit)); 1477 1478 return (char *)start + idx; 1479 } 1480 1481 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1482 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1483 { 1484 void *start; 1485 void *cur; 1486 void *next; 1487 unsigned long idx, pos, page_limit, freelist_count; 1488 1489 if (page->objects < 2 || !s->random_seq) 1490 return false; 1491 1492 freelist_count = oo_objects(s->oo); 1493 pos = get_random_int() % freelist_count; 1494 1495 page_limit = page->objects * s->size; 1496 start = fixup_red_left(s, page_address(page)); 1497 1498 /* First entry is used as the base of the freelist */ 1499 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1500 freelist_count); 1501 page->freelist = cur; 1502 1503 for (idx = 1; idx < page->objects; idx++) { 1504 setup_object(s, page, cur); 1505 next = next_freelist_entry(s, page, &pos, start, page_limit, 1506 freelist_count); 1507 set_freepointer(s, cur, next); 1508 cur = next; 1509 } 1510 setup_object(s, page, cur); 1511 set_freepointer(s, cur, NULL); 1512 1513 return true; 1514 } 1515 #else 1516 static inline int init_cache_random_seq(struct kmem_cache *s) 1517 { 1518 return 0; 1519 } 1520 static inline void init_freelist_randomization(void) { } 1521 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1522 { 1523 return false; 1524 } 1525 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1526 1527 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1528 { 1529 struct page *page; 1530 struct kmem_cache_order_objects oo = s->oo; 1531 gfp_t alloc_gfp; 1532 void *start, *p; 1533 int idx, order; 1534 bool shuffle; 1535 1536 flags &= gfp_allowed_mask; 1537 1538 if (gfpflags_allow_blocking(flags)) 1539 local_irq_enable(); 1540 1541 flags |= s->allocflags; 1542 1543 /* 1544 * Let the initial higher-order allocation fail under memory pressure 1545 * so we fall-back to the minimum order allocation. 1546 */ 1547 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1548 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1549 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1550 1551 page = alloc_slab_page(s, alloc_gfp, node, oo); 1552 if (unlikely(!page)) { 1553 oo = s->min; 1554 alloc_gfp = flags; 1555 /* 1556 * Allocation may have failed due to fragmentation. 1557 * Try a lower order alloc if possible 1558 */ 1559 page = alloc_slab_page(s, alloc_gfp, node, oo); 1560 if (unlikely(!page)) 1561 goto out; 1562 stat(s, ORDER_FALLBACK); 1563 } 1564 1565 if (kmemcheck_enabled && 1566 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1567 int pages = 1 << oo_order(oo); 1568 1569 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1570 1571 /* 1572 * Objects from caches that have a constructor don't get 1573 * cleared when they're allocated, so we need to do it here. 1574 */ 1575 if (s->ctor) 1576 kmemcheck_mark_uninitialized_pages(page, pages); 1577 else 1578 kmemcheck_mark_unallocated_pages(page, pages); 1579 } 1580 1581 page->objects = oo_objects(oo); 1582 1583 order = compound_order(page); 1584 page->slab_cache = s; 1585 __SetPageSlab(page); 1586 if (page_is_pfmemalloc(page)) 1587 SetPageSlabPfmemalloc(page); 1588 1589 start = page_address(page); 1590 1591 if (unlikely(s->flags & SLAB_POISON)) 1592 memset(start, POISON_INUSE, PAGE_SIZE << order); 1593 1594 kasan_poison_slab(page); 1595 1596 shuffle = shuffle_freelist(s, page); 1597 1598 if (!shuffle) { 1599 for_each_object_idx(p, idx, s, start, page->objects) { 1600 setup_object(s, page, p); 1601 if (likely(idx < page->objects)) 1602 set_freepointer(s, p, p + s->size); 1603 else 1604 set_freepointer(s, p, NULL); 1605 } 1606 page->freelist = fixup_red_left(s, start); 1607 } 1608 1609 page->inuse = page->objects; 1610 page->frozen = 1; 1611 1612 out: 1613 if (gfpflags_allow_blocking(flags)) 1614 local_irq_disable(); 1615 if (!page) 1616 return NULL; 1617 1618 mod_zone_page_state(page_zone(page), 1619 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1620 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1621 1 << oo_order(oo)); 1622 1623 inc_slabs_node(s, page_to_nid(page), page->objects); 1624 1625 return page; 1626 } 1627 1628 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1629 { 1630 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1631 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1632 flags &= ~GFP_SLAB_BUG_MASK; 1633 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1634 invalid_mask, &invalid_mask, flags, &flags); 1635 dump_stack(); 1636 } 1637 1638 return allocate_slab(s, 1639 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1640 } 1641 1642 static void __free_slab(struct kmem_cache *s, struct page *page) 1643 { 1644 int order = compound_order(page); 1645 int pages = 1 << order; 1646 1647 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1648 void *p; 1649 1650 slab_pad_check(s, page); 1651 for_each_object(p, s, page_address(page), 1652 page->objects) 1653 check_object(s, page, p, SLUB_RED_INACTIVE); 1654 } 1655 1656 kmemcheck_free_shadow(page, compound_order(page)); 1657 1658 mod_zone_page_state(page_zone(page), 1659 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1660 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1661 -pages); 1662 1663 __ClearPageSlabPfmemalloc(page); 1664 __ClearPageSlab(page); 1665 1666 page_mapcount_reset(page); 1667 if (current->reclaim_state) 1668 current->reclaim_state->reclaimed_slab += pages; 1669 memcg_uncharge_slab(page, order, s); 1670 __free_pages(page, order); 1671 } 1672 1673 #define need_reserve_slab_rcu \ 1674 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1675 1676 static void rcu_free_slab(struct rcu_head *h) 1677 { 1678 struct page *page; 1679 1680 if (need_reserve_slab_rcu) 1681 page = virt_to_head_page(h); 1682 else 1683 page = container_of((struct list_head *)h, struct page, lru); 1684 1685 __free_slab(page->slab_cache, page); 1686 } 1687 1688 static void free_slab(struct kmem_cache *s, struct page *page) 1689 { 1690 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1691 struct rcu_head *head; 1692 1693 if (need_reserve_slab_rcu) { 1694 int order = compound_order(page); 1695 int offset = (PAGE_SIZE << order) - s->reserved; 1696 1697 VM_BUG_ON(s->reserved != sizeof(*head)); 1698 head = page_address(page) + offset; 1699 } else { 1700 head = &page->rcu_head; 1701 } 1702 1703 call_rcu(head, rcu_free_slab); 1704 } else 1705 __free_slab(s, page); 1706 } 1707 1708 static void discard_slab(struct kmem_cache *s, struct page *page) 1709 { 1710 dec_slabs_node(s, page_to_nid(page), page->objects); 1711 free_slab(s, page); 1712 } 1713 1714 /* 1715 * Management of partially allocated slabs. 1716 */ 1717 static inline void 1718 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1719 { 1720 n->nr_partial++; 1721 if (tail == DEACTIVATE_TO_TAIL) 1722 list_add_tail(&page->lru, &n->partial); 1723 else 1724 list_add(&page->lru, &n->partial); 1725 } 1726 1727 static inline void add_partial(struct kmem_cache_node *n, 1728 struct page *page, int tail) 1729 { 1730 lockdep_assert_held(&n->list_lock); 1731 __add_partial(n, page, tail); 1732 } 1733 1734 static inline void remove_partial(struct kmem_cache_node *n, 1735 struct page *page) 1736 { 1737 lockdep_assert_held(&n->list_lock); 1738 list_del(&page->lru); 1739 n->nr_partial--; 1740 } 1741 1742 /* 1743 * Remove slab from the partial list, freeze it and 1744 * return the pointer to the freelist. 1745 * 1746 * Returns a list of objects or NULL if it fails. 1747 */ 1748 static inline void *acquire_slab(struct kmem_cache *s, 1749 struct kmem_cache_node *n, struct page *page, 1750 int mode, int *objects) 1751 { 1752 void *freelist; 1753 unsigned long counters; 1754 struct page new; 1755 1756 lockdep_assert_held(&n->list_lock); 1757 1758 /* 1759 * Zap the freelist and set the frozen bit. 1760 * The old freelist is the list of objects for the 1761 * per cpu allocation list. 1762 */ 1763 freelist = page->freelist; 1764 counters = page->counters; 1765 new.counters = counters; 1766 *objects = new.objects - new.inuse; 1767 if (mode) { 1768 new.inuse = page->objects; 1769 new.freelist = NULL; 1770 } else { 1771 new.freelist = freelist; 1772 } 1773 1774 VM_BUG_ON(new.frozen); 1775 new.frozen = 1; 1776 1777 if (!__cmpxchg_double_slab(s, page, 1778 freelist, counters, 1779 new.freelist, new.counters, 1780 "acquire_slab")) 1781 return NULL; 1782 1783 remove_partial(n, page); 1784 WARN_ON(!freelist); 1785 return freelist; 1786 } 1787 1788 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1789 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1790 1791 /* 1792 * Try to allocate a partial slab from a specific node. 1793 */ 1794 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1795 struct kmem_cache_cpu *c, gfp_t flags) 1796 { 1797 struct page *page, *page2; 1798 void *object = NULL; 1799 int available = 0; 1800 int objects; 1801 1802 /* 1803 * Racy check. If we mistakenly see no partial slabs then we 1804 * just allocate an empty slab. If we mistakenly try to get a 1805 * partial slab and there is none available then get_partials() 1806 * will return NULL. 1807 */ 1808 if (!n || !n->nr_partial) 1809 return NULL; 1810 1811 spin_lock(&n->list_lock); 1812 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1813 void *t; 1814 1815 if (!pfmemalloc_match(page, flags)) 1816 continue; 1817 1818 t = acquire_slab(s, n, page, object == NULL, &objects); 1819 if (!t) 1820 break; 1821 1822 available += objects; 1823 if (!object) { 1824 c->page = page; 1825 stat(s, ALLOC_FROM_PARTIAL); 1826 object = t; 1827 } else { 1828 put_cpu_partial(s, page, 0); 1829 stat(s, CPU_PARTIAL_NODE); 1830 } 1831 if (!kmem_cache_has_cpu_partial(s) 1832 || available > s->cpu_partial / 2) 1833 break; 1834 1835 } 1836 spin_unlock(&n->list_lock); 1837 return object; 1838 } 1839 1840 /* 1841 * Get a page from somewhere. Search in increasing NUMA distances. 1842 */ 1843 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1844 struct kmem_cache_cpu *c) 1845 { 1846 #ifdef CONFIG_NUMA 1847 struct zonelist *zonelist; 1848 struct zoneref *z; 1849 struct zone *zone; 1850 enum zone_type high_zoneidx = gfp_zone(flags); 1851 void *object; 1852 unsigned int cpuset_mems_cookie; 1853 1854 /* 1855 * The defrag ratio allows a configuration of the tradeoffs between 1856 * inter node defragmentation and node local allocations. A lower 1857 * defrag_ratio increases the tendency to do local allocations 1858 * instead of attempting to obtain partial slabs from other nodes. 1859 * 1860 * If the defrag_ratio is set to 0 then kmalloc() always 1861 * returns node local objects. If the ratio is higher then kmalloc() 1862 * may return off node objects because partial slabs are obtained 1863 * from other nodes and filled up. 1864 * 1865 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1866 * (which makes defrag_ratio = 1000) then every (well almost) 1867 * allocation will first attempt to defrag slab caches on other nodes. 1868 * This means scanning over all nodes to look for partial slabs which 1869 * may be expensive if we do it every time we are trying to find a slab 1870 * with available objects. 1871 */ 1872 if (!s->remote_node_defrag_ratio || 1873 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1874 return NULL; 1875 1876 do { 1877 cpuset_mems_cookie = read_mems_allowed_begin(); 1878 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1879 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1880 struct kmem_cache_node *n; 1881 1882 n = get_node(s, zone_to_nid(zone)); 1883 1884 if (n && cpuset_zone_allowed(zone, flags) && 1885 n->nr_partial > s->min_partial) { 1886 object = get_partial_node(s, n, c, flags); 1887 if (object) { 1888 /* 1889 * Don't check read_mems_allowed_retry() 1890 * here - if mems_allowed was updated in 1891 * parallel, that was a harmless race 1892 * between allocation and the cpuset 1893 * update 1894 */ 1895 return object; 1896 } 1897 } 1898 } 1899 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1900 #endif 1901 return NULL; 1902 } 1903 1904 /* 1905 * Get a partial page, lock it and return it. 1906 */ 1907 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1908 struct kmem_cache_cpu *c) 1909 { 1910 void *object; 1911 int searchnode = node; 1912 1913 if (node == NUMA_NO_NODE) 1914 searchnode = numa_mem_id(); 1915 else if (!node_present_pages(node)) 1916 searchnode = node_to_mem_node(node); 1917 1918 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1919 if (object || node != NUMA_NO_NODE) 1920 return object; 1921 1922 return get_any_partial(s, flags, c); 1923 } 1924 1925 #ifdef CONFIG_PREEMPT 1926 /* 1927 * Calculate the next globally unique transaction for disambiguiation 1928 * during cmpxchg. The transactions start with the cpu number and are then 1929 * incremented by CONFIG_NR_CPUS. 1930 */ 1931 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1932 #else 1933 /* 1934 * No preemption supported therefore also no need to check for 1935 * different cpus. 1936 */ 1937 #define TID_STEP 1 1938 #endif 1939 1940 static inline unsigned long next_tid(unsigned long tid) 1941 { 1942 return tid + TID_STEP; 1943 } 1944 1945 static inline unsigned int tid_to_cpu(unsigned long tid) 1946 { 1947 return tid % TID_STEP; 1948 } 1949 1950 static inline unsigned long tid_to_event(unsigned long tid) 1951 { 1952 return tid / TID_STEP; 1953 } 1954 1955 static inline unsigned int init_tid(int cpu) 1956 { 1957 return cpu; 1958 } 1959 1960 static inline void note_cmpxchg_failure(const char *n, 1961 const struct kmem_cache *s, unsigned long tid) 1962 { 1963 #ifdef SLUB_DEBUG_CMPXCHG 1964 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1965 1966 pr_info("%s %s: cmpxchg redo ", n, s->name); 1967 1968 #ifdef CONFIG_PREEMPT 1969 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1970 pr_warn("due to cpu change %d -> %d\n", 1971 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1972 else 1973 #endif 1974 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1975 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1976 tid_to_event(tid), tid_to_event(actual_tid)); 1977 else 1978 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1979 actual_tid, tid, next_tid(tid)); 1980 #endif 1981 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1982 } 1983 1984 static void init_kmem_cache_cpus(struct kmem_cache *s) 1985 { 1986 int cpu; 1987 1988 for_each_possible_cpu(cpu) 1989 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1990 } 1991 1992 /* 1993 * Remove the cpu slab 1994 */ 1995 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1996 void *freelist) 1997 { 1998 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1999 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2000 int lock = 0; 2001 enum slab_modes l = M_NONE, m = M_NONE; 2002 void *nextfree; 2003 int tail = DEACTIVATE_TO_HEAD; 2004 struct page new; 2005 struct page old; 2006 2007 if (page->freelist) { 2008 stat(s, DEACTIVATE_REMOTE_FREES); 2009 tail = DEACTIVATE_TO_TAIL; 2010 } 2011 2012 /* 2013 * Stage one: Free all available per cpu objects back 2014 * to the page freelist while it is still frozen. Leave the 2015 * last one. 2016 * 2017 * There is no need to take the list->lock because the page 2018 * is still frozen. 2019 */ 2020 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2021 void *prior; 2022 unsigned long counters; 2023 2024 do { 2025 prior = page->freelist; 2026 counters = page->counters; 2027 set_freepointer(s, freelist, prior); 2028 new.counters = counters; 2029 new.inuse--; 2030 VM_BUG_ON(!new.frozen); 2031 2032 } while (!__cmpxchg_double_slab(s, page, 2033 prior, counters, 2034 freelist, new.counters, 2035 "drain percpu freelist")); 2036 2037 freelist = nextfree; 2038 } 2039 2040 /* 2041 * Stage two: Ensure that the page is unfrozen while the 2042 * list presence reflects the actual number of objects 2043 * during unfreeze. 2044 * 2045 * We setup the list membership and then perform a cmpxchg 2046 * with the count. If there is a mismatch then the page 2047 * is not unfrozen but the page is on the wrong list. 2048 * 2049 * Then we restart the process which may have to remove 2050 * the page from the list that we just put it on again 2051 * because the number of objects in the slab may have 2052 * changed. 2053 */ 2054 redo: 2055 2056 old.freelist = page->freelist; 2057 old.counters = page->counters; 2058 VM_BUG_ON(!old.frozen); 2059 2060 /* Determine target state of the slab */ 2061 new.counters = old.counters; 2062 if (freelist) { 2063 new.inuse--; 2064 set_freepointer(s, freelist, old.freelist); 2065 new.freelist = freelist; 2066 } else 2067 new.freelist = old.freelist; 2068 2069 new.frozen = 0; 2070 2071 if (!new.inuse && n->nr_partial >= s->min_partial) 2072 m = M_FREE; 2073 else if (new.freelist) { 2074 m = M_PARTIAL; 2075 if (!lock) { 2076 lock = 1; 2077 /* 2078 * Taking the spinlock removes the possiblity 2079 * that acquire_slab() will see a slab page that 2080 * is frozen 2081 */ 2082 spin_lock(&n->list_lock); 2083 } 2084 } else { 2085 m = M_FULL; 2086 if (kmem_cache_debug(s) && !lock) { 2087 lock = 1; 2088 /* 2089 * This also ensures that the scanning of full 2090 * slabs from diagnostic functions will not see 2091 * any frozen slabs. 2092 */ 2093 spin_lock(&n->list_lock); 2094 } 2095 } 2096 2097 if (l != m) { 2098 2099 if (l == M_PARTIAL) 2100 2101 remove_partial(n, page); 2102 2103 else if (l == M_FULL) 2104 2105 remove_full(s, n, page); 2106 2107 if (m == M_PARTIAL) { 2108 2109 add_partial(n, page, tail); 2110 stat(s, tail); 2111 2112 } else if (m == M_FULL) { 2113 2114 stat(s, DEACTIVATE_FULL); 2115 add_full(s, n, page); 2116 2117 } 2118 } 2119 2120 l = m; 2121 if (!__cmpxchg_double_slab(s, page, 2122 old.freelist, old.counters, 2123 new.freelist, new.counters, 2124 "unfreezing slab")) 2125 goto redo; 2126 2127 if (lock) 2128 spin_unlock(&n->list_lock); 2129 2130 if (m == M_FREE) { 2131 stat(s, DEACTIVATE_EMPTY); 2132 discard_slab(s, page); 2133 stat(s, FREE_SLAB); 2134 } 2135 } 2136 2137 /* 2138 * Unfreeze all the cpu partial slabs. 2139 * 2140 * This function must be called with interrupts disabled 2141 * for the cpu using c (or some other guarantee must be there 2142 * to guarantee no concurrent accesses). 2143 */ 2144 static void unfreeze_partials(struct kmem_cache *s, 2145 struct kmem_cache_cpu *c) 2146 { 2147 #ifdef CONFIG_SLUB_CPU_PARTIAL 2148 struct kmem_cache_node *n = NULL, *n2 = NULL; 2149 struct page *page, *discard_page = NULL; 2150 2151 while ((page = c->partial)) { 2152 struct page new; 2153 struct page old; 2154 2155 c->partial = page->next; 2156 2157 n2 = get_node(s, page_to_nid(page)); 2158 if (n != n2) { 2159 if (n) 2160 spin_unlock(&n->list_lock); 2161 2162 n = n2; 2163 spin_lock(&n->list_lock); 2164 } 2165 2166 do { 2167 2168 old.freelist = page->freelist; 2169 old.counters = page->counters; 2170 VM_BUG_ON(!old.frozen); 2171 2172 new.counters = old.counters; 2173 new.freelist = old.freelist; 2174 2175 new.frozen = 0; 2176 2177 } while (!__cmpxchg_double_slab(s, page, 2178 old.freelist, old.counters, 2179 new.freelist, new.counters, 2180 "unfreezing slab")); 2181 2182 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2183 page->next = discard_page; 2184 discard_page = page; 2185 } else { 2186 add_partial(n, page, DEACTIVATE_TO_TAIL); 2187 stat(s, FREE_ADD_PARTIAL); 2188 } 2189 } 2190 2191 if (n) 2192 spin_unlock(&n->list_lock); 2193 2194 while (discard_page) { 2195 page = discard_page; 2196 discard_page = discard_page->next; 2197 2198 stat(s, DEACTIVATE_EMPTY); 2199 discard_slab(s, page); 2200 stat(s, FREE_SLAB); 2201 } 2202 #endif 2203 } 2204 2205 /* 2206 * Put a page that was just frozen (in __slab_free) into a partial page 2207 * slot if available. This is done without interrupts disabled and without 2208 * preemption disabled. The cmpxchg is racy and may put the partial page 2209 * onto a random cpus partial slot. 2210 * 2211 * If we did not find a slot then simply move all the partials to the 2212 * per node partial list. 2213 */ 2214 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2215 { 2216 #ifdef CONFIG_SLUB_CPU_PARTIAL 2217 struct page *oldpage; 2218 int pages; 2219 int pobjects; 2220 2221 preempt_disable(); 2222 do { 2223 pages = 0; 2224 pobjects = 0; 2225 oldpage = this_cpu_read(s->cpu_slab->partial); 2226 2227 if (oldpage) { 2228 pobjects = oldpage->pobjects; 2229 pages = oldpage->pages; 2230 if (drain && pobjects > s->cpu_partial) { 2231 unsigned long flags; 2232 /* 2233 * partial array is full. Move the existing 2234 * set to the per node partial list. 2235 */ 2236 local_irq_save(flags); 2237 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2238 local_irq_restore(flags); 2239 oldpage = NULL; 2240 pobjects = 0; 2241 pages = 0; 2242 stat(s, CPU_PARTIAL_DRAIN); 2243 } 2244 } 2245 2246 pages++; 2247 pobjects += page->objects - page->inuse; 2248 2249 page->pages = pages; 2250 page->pobjects = pobjects; 2251 page->next = oldpage; 2252 2253 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2254 != oldpage); 2255 if (unlikely(!s->cpu_partial)) { 2256 unsigned long flags; 2257 2258 local_irq_save(flags); 2259 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2260 local_irq_restore(flags); 2261 } 2262 preempt_enable(); 2263 #endif 2264 } 2265 2266 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2267 { 2268 stat(s, CPUSLAB_FLUSH); 2269 deactivate_slab(s, c->page, c->freelist); 2270 2271 c->tid = next_tid(c->tid); 2272 c->page = NULL; 2273 c->freelist = NULL; 2274 } 2275 2276 /* 2277 * Flush cpu slab. 2278 * 2279 * Called from IPI handler with interrupts disabled. 2280 */ 2281 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2282 { 2283 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2284 2285 if (likely(c)) { 2286 if (c->page) 2287 flush_slab(s, c); 2288 2289 unfreeze_partials(s, c); 2290 } 2291 } 2292 2293 static void flush_cpu_slab(void *d) 2294 { 2295 struct kmem_cache *s = d; 2296 2297 __flush_cpu_slab(s, smp_processor_id()); 2298 } 2299 2300 static bool has_cpu_slab(int cpu, void *info) 2301 { 2302 struct kmem_cache *s = info; 2303 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2304 2305 return c->page || c->partial; 2306 } 2307 2308 static void flush_all(struct kmem_cache *s) 2309 { 2310 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2311 } 2312 2313 /* 2314 * Use the cpu notifier to insure that the cpu slabs are flushed when 2315 * necessary. 2316 */ 2317 static int slub_cpu_dead(unsigned int cpu) 2318 { 2319 struct kmem_cache *s; 2320 unsigned long flags; 2321 2322 mutex_lock(&slab_mutex); 2323 list_for_each_entry(s, &slab_caches, list) { 2324 local_irq_save(flags); 2325 __flush_cpu_slab(s, cpu); 2326 local_irq_restore(flags); 2327 } 2328 mutex_unlock(&slab_mutex); 2329 return 0; 2330 } 2331 2332 /* 2333 * Check if the objects in a per cpu structure fit numa 2334 * locality expectations. 2335 */ 2336 static inline int node_match(struct page *page, int node) 2337 { 2338 #ifdef CONFIG_NUMA 2339 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2340 return 0; 2341 #endif 2342 return 1; 2343 } 2344 2345 #ifdef CONFIG_SLUB_DEBUG 2346 static int count_free(struct page *page) 2347 { 2348 return page->objects - page->inuse; 2349 } 2350 2351 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2352 { 2353 return atomic_long_read(&n->total_objects); 2354 } 2355 #endif /* CONFIG_SLUB_DEBUG */ 2356 2357 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2358 static unsigned long count_partial(struct kmem_cache_node *n, 2359 int (*get_count)(struct page *)) 2360 { 2361 unsigned long flags; 2362 unsigned long x = 0; 2363 struct page *page; 2364 2365 spin_lock_irqsave(&n->list_lock, flags); 2366 list_for_each_entry(page, &n->partial, lru) 2367 x += get_count(page); 2368 spin_unlock_irqrestore(&n->list_lock, flags); 2369 return x; 2370 } 2371 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2372 2373 static noinline void 2374 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2375 { 2376 #ifdef CONFIG_SLUB_DEBUG 2377 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2378 DEFAULT_RATELIMIT_BURST); 2379 int node; 2380 struct kmem_cache_node *n; 2381 2382 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2383 return; 2384 2385 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2386 nid, gfpflags, &gfpflags); 2387 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2388 s->name, s->object_size, s->size, oo_order(s->oo), 2389 oo_order(s->min)); 2390 2391 if (oo_order(s->min) > get_order(s->object_size)) 2392 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2393 s->name); 2394 2395 for_each_kmem_cache_node(s, node, n) { 2396 unsigned long nr_slabs; 2397 unsigned long nr_objs; 2398 unsigned long nr_free; 2399 2400 nr_free = count_partial(n, count_free); 2401 nr_slabs = node_nr_slabs(n); 2402 nr_objs = node_nr_objs(n); 2403 2404 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2405 node, nr_slabs, nr_objs, nr_free); 2406 } 2407 #endif 2408 } 2409 2410 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2411 int node, struct kmem_cache_cpu **pc) 2412 { 2413 void *freelist; 2414 struct kmem_cache_cpu *c = *pc; 2415 struct page *page; 2416 2417 freelist = get_partial(s, flags, node, c); 2418 2419 if (freelist) 2420 return freelist; 2421 2422 page = new_slab(s, flags, node); 2423 if (page) { 2424 c = raw_cpu_ptr(s->cpu_slab); 2425 if (c->page) 2426 flush_slab(s, c); 2427 2428 /* 2429 * No other reference to the page yet so we can 2430 * muck around with it freely without cmpxchg 2431 */ 2432 freelist = page->freelist; 2433 page->freelist = NULL; 2434 2435 stat(s, ALLOC_SLAB); 2436 c->page = page; 2437 *pc = c; 2438 } else 2439 freelist = NULL; 2440 2441 return freelist; 2442 } 2443 2444 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2445 { 2446 if (unlikely(PageSlabPfmemalloc(page))) 2447 return gfp_pfmemalloc_allowed(gfpflags); 2448 2449 return true; 2450 } 2451 2452 /* 2453 * Check the page->freelist of a page and either transfer the freelist to the 2454 * per cpu freelist or deactivate the page. 2455 * 2456 * The page is still frozen if the return value is not NULL. 2457 * 2458 * If this function returns NULL then the page has been unfrozen. 2459 * 2460 * This function must be called with interrupt disabled. 2461 */ 2462 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2463 { 2464 struct page new; 2465 unsigned long counters; 2466 void *freelist; 2467 2468 do { 2469 freelist = page->freelist; 2470 counters = page->counters; 2471 2472 new.counters = counters; 2473 VM_BUG_ON(!new.frozen); 2474 2475 new.inuse = page->objects; 2476 new.frozen = freelist != NULL; 2477 2478 } while (!__cmpxchg_double_slab(s, page, 2479 freelist, counters, 2480 NULL, new.counters, 2481 "get_freelist")); 2482 2483 return freelist; 2484 } 2485 2486 /* 2487 * Slow path. The lockless freelist is empty or we need to perform 2488 * debugging duties. 2489 * 2490 * Processing is still very fast if new objects have been freed to the 2491 * regular freelist. In that case we simply take over the regular freelist 2492 * as the lockless freelist and zap the regular freelist. 2493 * 2494 * If that is not working then we fall back to the partial lists. We take the 2495 * first element of the freelist as the object to allocate now and move the 2496 * rest of the freelist to the lockless freelist. 2497 * 2498 * And if we were unable to get a new slab from the partial slab lists then 2499 * we need to allocate a new slab. This is the slowest path since it involves 2500 * a call to the page allocator and the setup of a new slab. 2501 * 2502 * Version of __slab_alloc to use when we know that interrupts are 2503 * already disabled (which is the case for bulk allocation). 2504 */ 2505 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2506 unsigned long addr, struct kmem_cache_cpu *c) 2507 { 2508 void *freelist; 2509 struct page *page; 2510 2511 page = c->page; 2512 if (!page) 2513 goto new_slab; 2514 redo: 2515 2516 if (unlikely(!node_match(page, node))) { 2517 int searchnode = node; 2518 2519 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2520 searchnode = node_to_mem_node(node); 2521 2522 if (unlikely(!node_match(page, searchnode))) { 2523 stat(s, ALLOC_NODE_MISMATCH); 2524 deactivate_slab(s, page, c->freelist); 2525 c->page = NULL; 2526 c->freelist = NULL; 2527 goto new_slab; 2528 } 2529 } 2530 2531 /* 2532 * By rights, we should be searching for a slab page that was 2533 * PFMEMALLOC but right now, we are losing the pfmemalloc 2534 * information when the page leaves the per-cpu allocator 2535 */ 2536 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2537 deactivate_slab(s, page, c->freelist); 2538 c->page = NULL; 2539 c->freelist = NULL; 2540 goto new_slab; 2541 } 2542 2543 /* must check again c->freelist in case of cpu migration or IRQ */ 2544 freelist = c->freelist; 2545 if (freelist) 2546 goto load_freelist; 2547 2548 freelist = get_freelist(s, page); 2549 2550 if (!freelist) { 2551 c->page = NULL; 2552 stat(s, DEACTIVATE_BYPASS); 2553 goto new_slab; 2554 } 2555 2556 stat(s, ALLOC_REFILL); 2557 2558 load_freelist: 2559 /* 2560 * freelist is pointing to the list of objects to be used. 2561 * page is pointing to the page from which the objects are obtained. 2562 * That page must be frozen for per cpu allocations to work. 2563 */ 2564 VM_BUG_ON(!c->page->frozen); 2565 c->freelist = get_freepointer(s, freelist); 2566 c->tid = next_tid(c->tid); 2567 return freelist; 2568 2569 new_slab: 2570 2571 if (c->partial) { 2572 page = c->page = c->partial; 2573 c->partial = page->next; 2574 stat(s, CPU_PARTIAL_ALLOC); 2575 c->freelist = NULL; 2576 goto redo; 2577 } 2578 2579 freelist = new_slab_objects(s, gfpflags, node, &c); 2580 2581 if (unlikely(!freelist)) { 2582 slab_out_of_memory(s, gfpflags, node); 2583 return NULL; 2584 } 2585 2586 page = c->page; 2587 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2588 goto load_freelist; 2589 2590 /* Only entered in the debug case */ 2591 if (kmem_cache_debug(s) && 2592 !alloc_debug_processing(s, page, freelist, addr)) 2593 goto new_slab; /* Slab failed checks. Next slab needed */ 2594 2595 deactivate_slab(s, page, get_freepointer(s, freelist)); 2596 c->page = NULL; 2597 c->freelist = NULL; 2598 return freelist; 2599 } 2600 2601 /* 2602 * Another one that disabled interrupt and compensates for possible 2603 * cpu changes by refetching the per cpu area pointer. 2604 */ 2605 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2606 unsigned long addr, struct kmem_cache_cpu *c) 2607 { 2608 void *p; 2609 unsigned long flags; 2610 2611 local_irq_save(flags); 2612 #ifdef CONFIG_PREEMPT 2613 /* 2614 * We may have been preempted and rescheduled on a different 2615 * cpu before disabling interrupts. Need to reload cpu area 2616 * pointer. 2617 */ 2618 c = this_cpu_ptr(s->cpu_slab); 2619 #endif 2620 2621 p = ___slab_alloc(s, gfpflags, node, addr, c); 2622 local_irq_restore(flags); 2623 return p; 2624 } 2625 2626 /* 2627 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2628 * have the fastpath folded into their functions. So no function call 2629 * overhead for requests that can be satisfied on the fastpath. 2630 * 2631 * The fastpath works by first checking if the lockless freelist can be used. 2632 * If not then __slab_alloc is called for slow processing. 2633 * 2634 * Otherwise we can simply pick the next object from the lockless free list. 2635 */ 2636 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2637 gfp_t gfpflags, int node, unsigned long addr) 2638 { 2639 void *object; 2640 struct kmem_cache_cpu *c; 2641 struct page *page; 2642 unsigned long tid; 2643 2644 s = slab_pre_alloc_hook(s, gfpflags); 2645 if (!s) 2646 return NULL; 2647 redo: 2648 /* 2649 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2650 * enabled. We may switch back and forth between cpus while 2651 * reading from one cpu area. That does not matter as long 2652 * as we end up on the original cpu again when doing the cmpxchg. 2653 * 2654 * We should guarantee that tid and kmem_cache are retrieved on 2655 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2656 * to check if it is matched or not. 2657 */ 2658 do { 2659 tid = this_cpu_read(s->cpu_slab->tid); 2660 c = raw_cpu_ptr(s->cpu_slab); 2661 } while (IS_ENABLED(CONFIG_PREEMPT) && 2662 unlikely(tid != READ_ONCE(c->tid))); 2663 2664 /* 2665 * Irqless object alloc/free algorithm used here depends on sequence 2666 * of fetching cpu_slab's data. tid should be fetched before anything 2667 * on c to guarantee that object and page associated with previous tid 2668 * won't be used with current tid. If we fetch tid first, object and 2669 * page could be one associated with next tid and our alloc/free 2670 * request will be failed. In this case, we will retry. So, no problem. 2671 */ 2672 barrier(); 2673 2674 /* 2675 * The transaction ids are globally unique per cpu and per operation on 2676 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2677 * occurs on the right processor and that there was no operation on the 2678 * linked list in between. 2679 */ 2680 2681 object = c->freelist; 2682 page = c->page; 2683 if (unlikely(!object || !node_match(page, node))) { 2684 object = __slab_alloc(s, gfpflags, node, addr, c); 2685 stat(s, ALLOC_SLOWPATH); 2686 } else { 2687 void *next_object = get_freepointer_safe(s, object); 2688 2689 /* 2690 * The cmpxchg will only match if there was no additional 2691 * operation and if we are on the right processor. 2692 * 2693 * The cmpxchg does the following atomically (without lock 2694 * semantics!) 2695 * 1. Relocate first pointer to the current per cpu area. 2696 * 2. Verify that tid and freelist have not been changed 2697 * 3. If they were not changed replace tid and freelist 2698 * 2699 * Since this is without lock semantics the protection is only 2700 * against code executing on this cpu *not* from access by 2701 * other cpus. 2702 */ 2703 if (unlikely(!this_cpu_cmpxchg_double( 2704 s->cpu_slab->freelist, s->cpu_slab->tid, 2705 object, tid, 2706 next_object, next_tid(tid)))) { 2707 2708 note_cmpxchg_failure("slab_alloc", s, tid); 2709 goto redo; 2710 } 2711 prefetch_freepointer(s, next_object); 2712 stat(s, ALLOC_FASTPATH); 2713 } 2714 2715 if (unlikely(gfpflags & __GFP_ZERO) && object) 2716 memset(object, 0, s->object_size); 2717 2718 slab_post_alloc_hook(s, gfpflags, 1, &object); 2719 2720 return object; 2721 } 2722 2723 static __always_inline void *slab_alloc(struct kmem_cache *s, 2724 gfp_t gfpflags, unsigned long addr) 2725 { 2726 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2727 } 2728 2729 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2730 { 2731 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2732 2733 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2734 s->size, gfpflags); 2735 2736 return ret; 2737 } 2738 EXPORT_SYMBOL(kmem_cache_alloc); 2739 2740 #ifdef CONFIG_TRACING 2741 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2742 { 2743 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2744 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2745 kasan_kmalloc(s, ret, size, gfpflags); 2746 return ret; 2747 } 2748 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2749 #endif 2750 2751 #ifdef CONFIG_NUMA 2752 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2753 { 2754 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2755 2756 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2757 s->object_size, s->size, gfpflags, node); 2758 2759 return ret; 2760 } 2761 EXPORT_SYMBOL(kmem_cache_alloc_node); 2762 2763 #ifdef CONFIG_TRACING 2764 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2765 gfp_t gfpflags, 2766 int node, size_t size) 2767 { 2768 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2769 2770 trace_kmalloc_node(_RET_IP_, ret, 2771 size, s->size, gfpflags, node); 2772 2773 kasan_kmalloc(s, ret, size, gfpflags); 2774 return ret; 2775 } 2776 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2777 #endif 2778 #endif 2779 2780 /* 2781 * Slow path handling. This may still be called frequently since objects 2782 * have a longer lifetime than the cpu slabs in most processing loads. 2783 * 2784 * So we still attempt to reduce cache line usage. Just take the slab 2785 * lock and free the item. If there is no additional partial page 2786 * handling required then we can return immediately. 2787 */ 2788 static void __slab_free(struct kmem_cache *s, struct page *page, 2789 void *head, void *tail, int cnt, 2790 unsigned long addr) 2791 2792 { 2793 void *prior; 2794 int was_frozen; 2795 struct page new; 2796 unsigned long counters; 2797 struct kmem_cache_node *n = NULL; 2798 unsigned long uninitialized_var(flags); 2799 2800 stat(s, FREE_SLOWPATH); 2801 2802 if (kmem_cache_debug(s) && 2803 !free_debug_processing(s, page, head, tail, cnt, addr)) 2804 return; 2805 2806 do { 2807 if (unlikely(n)) { 2808 spin_unlock_irqrestore(&n->list_lock, flags); 2809 n = NULL; 2810 } 2811 prior = page->freelist; 2812 counters = page->counters; 2813 set_freepointer(s, tail, prior); 2814 new.counters = counters; 2815 was_frozen = new.frozen; 2816 new.inuse -= cnt; 2817 if ((!new.inuse || !prior) && !was_frozen) { 2818 2819 if (kmem_cache_has_cpu_partial(s) && !prior) { 2820 2821 /* 2822 * Slab was on no list before and will be 2823 * partially empty 2824 * We can defer the list move and instead 2825 * freeze it. 2826 */ 2827 new.frozen = 1; 2828 2829 } else { /* Needs to be taken off a list */ 2830 2831 n = get_node(s, page_to_nid(page)); 2832 /* 2833 * Speculatively acquire the list_lock. 2834 * If the cmpxchg does not succeed then we may 2835 * drop the list_lock without any processing. 2836 * 2837 * Otherwise the list_lock will synchronize with 2838 * other processors updating the list of slabs. 2839 */ 2840 spin_lock_irqsave(&n->list_lock, flags); 2841 2842 } 2843 } 2844 2845 } while (!cmpxchg_double_slab(s, page, 2846 prior, counters, 2847 head, new.counters, 2848 "__slab_free")); 2849 2850 if (likely(!n)) { 2851 2852 /* 2853 * If we just froze the page then put it onto the 2854 * per cpu partial list. 2855 */ 2856 if (new.frozen && !was_frozen) { 2857 put_cpu_partial(s, page, 1); 2858 stat(s, CPU_PARTIAL_FREE); 2859 } 2860 /* 2861 * The list lock was not taken therefore no list 2862 * activity can be necessary. 2863 */ 2864 if (was_frozen) 2865 stat(s, FREE_FROZEN); 2866 return; 2867 } 2868 2869 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2870 goto slab_empty; 2871 2872 /* 2873 * Objects left in the slab. If it was not on the partial list before 2874 * then add it. 2875 */ 2876 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2877 if (kmem_cache_debug(s)) 2878 remove_full(s, n, page); 2879 add_partial(n, page, DEACTIVATE_TO_TAIL); 2880 stat(s, FREE_ADD_PARTIAL); 2881 } 2882 spin_unlock_irqrestore(&n->list_lock, flags); 2883 return; 2884 2885 slab_empty: 2886 if (prior) { 2887 /* 2888 * Slab on the partial list. 2889 */ 2890 remove_partial(n, page); 2891 stat(s, FREE_REMOVE_PARTIAL); 2892 } else { 2893 /* Slab must be on the full list */ 2894 remove_full(s, n, page); 2895 } 2896 2897 spin_unlock_irqrestore(&n->list_lock, flags); 2898 stat(s, FREE_SLAB); 2899 discard_slab(s, page); 2900 } 2901 2902 /* 2903 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2904 * can perform fastpath freeing without additional function calls. 2905 * 2906 * The fastpath is only possible if we are freeing to the current cpu slab 2907 * of this processor. This typically the case if we have just allocated 2908 * the item before. 2909 * 2910 * If fastpath is not possible then fall back to __slab_free where we deal 2911 * with all sorts of special processing. 2912 * 2913 * Bulk free of a freelist with several objects (all pointing to the 2914 * same page) possible by specifying head and tail ptr, plus objects 2915 * count (cnt). Bulk free indicated by tail pointer being set. 2916 */ 2917 static __always_inline void do_slab_free(struct kmem_cache *s, 2918 struct page *page, void *head, void *tail, 2919 int cnt, unsigned long addr) 2920 { 2921 void *tail_obj = tail ? : head; 2922 struct kmem_cache_cpu *c; 2923 unsigned long tid; 2924 redo: 2925 /* 2926 * Determine the currently cpus per cpu slab. 2927 * The cpu may change afterward. However that does not matter since 2928 * data is retrieved via this pointer. If we are on the same cpu 2929 * during the cmpxchg then the free will succeed. 2930 */ 2931 do { 2932 tid = this_cpu_read(s->cpu_slab->tid); 2933 c = raw_cpu_ptr(s->cpu_slab); 2934 } while (IS_ENABLED(CONFIG_PREEMPT) && 2935 unlikely(tid != READ_ONCE(c->tid))); 2936 2937 /* Same with comment on barrier() in slab_alloc_node() */ 2938 barrier(); 2939 2940 if (likely(page == c->page)) { 2941 set_freepointer(s, tail_obj, c->freelist); 2942 2943 if (unlikely(!this_cpu_cmpxchg_double( 2944 s->cpu_slab->freelist, s->cpu_slab->tid, 2945 c->freelist, tid, 2946 head, next_tid(tid)))) { 2947 2948 note_cmpxchg_failure("slab_free", s, tid); 2949 goto redo; 2950 } 2951 stat(s, FREE_FASTPATH); 2952 } else 2953 __slab_free(s, page, head, tail_obj, cnt, addr); 2954 2955 } 2956 2957 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2958 void *head, void *tail, int cnt, 2959 unsigned long addr) 2960 { 2961 slab_free_freelist_hook(s, head, tail); 2962 /* 2963 * slab_free_freelist_hook() could have put the items into quarantine. 2964 * If so, no need to free them. 2965 */ 2966 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU)) 2967 return; 2968 do_slab_free(s, page, head, tail, cnt, addr); 2969 } 2970 2971 #ifdef CONFIG_KASAN 2972 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2973 { 2974 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2975 } 2976 #endif 2977 2978 void kmem_cache_free(struct kmem_cache *s, void *x) 2979 { 2980 s = cache_from_obj(s, x); 2981 if (!s) 2982 return; 2983 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2984 trace_kmem_cache_free(_RET_IP_, x); 2985 } 2986 EXPORT_SYMBOL(kmem_cache_free); 2987 2988 struct detached_freelist { 2989 struct page *page; 2990 void *tail; 2991 void *freelist; 2992 int cnt; 2993 struct kmem_cache *s; 2994 }; 2995 2996 /* 2997 * This function progressively scans the array with free objects (with 2998 * a limited look ahead) and extract objects belonging to the same 2999 * page. It builds a detached freelist directly within the given 3000 * page/objects. This can happen without any need for 3001 * synchronization, because the objects are owned by running process. 3002 * The freelist is build up as a single linked list in the objects. 3003 * The idea is, that this detached freelist can then be bulk 3004 * transferred to the real freelist(s), but only requiring a single 3005 * synchronization primitive. Look ahead in the array is limited due 3006 * to performance reasons. 3007 */ 3008 static inline 3009 int build_detached_freelist(struct kmem_cache *s, size_t size, 3010 void **p, struct detached_freelist *df) 3011 { 3012 size_t first_skipped_index = 0; 3013 int lookahead = 3; 3014 void *object; 3015 struct page *page; 3016 3017 /* Always re-init detached_freelist */ 3018 df->page = NULL; 3019 3020 do { 3021 object = p[--size]; 3022 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3023 } while (!object && size); 3024 3025 if (!object) 3026 return 0; 3027 3028 page = virt_to_head_page(object); 3029 if (!s) { 3030 /* Handle kalloc'ed objects */ 3031 if (unlikely(!PageSlab(page))) { 3032 BUG_ON(!PageCompound(page)); 3033 kfree_hook(object); 3034 __free_pages(page, compound_order(page)); 3035 p[size] = NULL; /* mark object processed */ 3036 return size; 3037 } 3038 /* Derive kmem_cache from object */ 3039 df->s = page->slab_cache; 3040 } else { 3041 df->s = cache_from_obj(s, object); /* Support for memcg */ 3042 } 3043 3044 /* Start new detached freelist */ 3045 df->page = page; 3046 set_freepointer(df->s, object, NULL); 3047 df->tail = object; 3048 df->freelist = object; 3049 p[size] = NULL; /* mark object processed */ 3050 df->cnt = 1; 3051 3052 while (size) { 3053 object = p[--size]; 3054 if (!object) 3055 continue; /* Skip processed objects */ 3056 3057 /* df->page is always set at this point */ 3058 if (df->page == virt_to_head_page(object)) { 3059 /* Opportunity build freelist */ 3060 set_freepointer(df->s, object, df->freelist); 3061 df->freelist = object; 3062 df->cnt++; 3063 p[size] = NULL; /* mark object processed */ 3064 3065 continue; 3066 } 3067 3068 /* Limit look ahead search */ 3069 if (!--lookahead) 3070 break; 3071 3072 if (!first_skipped_index) 3073 first_skipped_index = size + 1; 3074 } 3075 3076 return first_skipped_index; 3077 } 3078 3079 /* Note that interrupts must be enabled when calling this function. */ 3080 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3081 { 3082 if (WARN_ON(!size)) 3083 return; 3084 3085 do { 3086 struct detached_freelist df; 3087 3088 size = build_detached_freelist(s, size, p, &df); 3089 if (!df.page) 3090 continue; 3091 3092 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3093 } while (likely(size)); 3094 } 3095 EXPORT_SYMBOL(kmem_cache_free_bulk); 3096 3097 /* Note that interrupts must be enabled when calling this function. */ 3098 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3099 void **p) 3100 { 3101 struct kmem_cache_cpu *c; 3102 int i; 3103 3104 /* memcg and kmem_cache debug support */ 3105 s = slab_pre_alloc_hook(s, flags); 3106 if (unlikely(!s)) 3107 return false; 3108 /* 3109 * Drain objects in the per cpu slab, while disabling local 3110 * IRQs, which protects against PREEMPT and interrupts 3111 * handlers invoking normal fastpath. 3112 */ 3113 local_irq_disable(); 3114 c = this_cpu_ptr(s->cpu_slab); 3115 3116 for (i = 0; i < size; i++) { 3117 void *object = c->freelist; 3118 3119 if (unlikely(!object)) { 3120 /* 3121 * Invoking slow path likely have side-effect 3122 * of re-populating per CPU c->freelist 3123 */ 3124 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3125 _RET_IP_, c); 3126 if (unlikely(!p[i])) 3127 goto error; 3128 3129 c = this_cpu_ptr(s->cpu_slab); 3130 continue; /* goto for-loop */ 3131 } 3132 c->freelist = get_freepointer(s, object); 3133 p[i] = object; 3134 } 3135 c->tid = next_tid(c->tid); 3136 local_irq_enable(); 3137 3138 /* Clear memory outside IRQ disabled fastpath loop */ 3139 if (unlikely(flags & __GFP_ZERO)) { 3140 int j; 3141 3142 for (j = 0; j < i; j++) 3143 memset(p[j], 0, s->object_size); 3144 } 3145 3146 /* memcg and kmem_cache debug support */ 3147 slab_post_alloc_hook(s, flags, size, p); 3148 return i; 3149 error: 3150 local_irq_enable(); 3151 slab_post_alloc_hook(s, flags, i, p); 3152 __kmem_cache_free_bulk(s, i, p); 3153 return 0; 3154 } 3155 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3156 3157 3158 /* 3159 * Object placement in a slab is made very easy because we always start at 3160 * offset 0. If we tune the size of the object to the alignment then we can 3161 * get the required alignment by putting one properly sized object after 3162 * another. 3163 * 3164 * Notice that the allocation order determines the sizes of the per cpu 3165 * caches. Each processor has always one slab available for allocations. 3166 * Increasing the allocation order reduces the number of times that slabs 3167 * must be moved on and off the partial lists and is therefore a factor in 3168 * locking overhead. 3169 */ 3170 3171 /* 3172 * Mininum / Maximum order of slab pages. This influences locking overhead 3173 * and slab fragmentation. A higher order reduces the number of partial slabs 3174 * and increases the number of allocations possible without having to 3175 * take the list_lock. 3176 */ 3177 static int slub_min_order; 3178 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3179 static int slub_min_objects; 3180 3181 /* 3182 * Calculate the order of allocation given an slab object size. 3183 * 3184 * The order of allocation has significant impact on performance and other 3185 * system components. Generally order 0 allocations should be preferred since 3186 * order 0 does not cause fragmentation in the page allocator. Larger objects 3187 * be problematic to put into order 0 slabs because there may be too much 3188 * unused space left. We go to a higher order if more than 1/16th of the slab 3189 * would be wasted. 3190 * 3191 * In order to reach satisfactory performance we must ensure that a minimum 3192 * number of objects is in one slab. Otherwise we may generate too much 3193 * activity on the partial lists which requires taking the list_lock. This is 3194 * less a concern for large slabs though which are rarely used. 3195 * 3196 * slub_max_order specifies the order where we begin to stop considering the 3197 * number of objects in a slab as critical. If we reach slub_max_order then 3198 * we try to keep the page order as low as possible. So we accept more waste 3199 * of space in favor of a small page order. 3200 * 3201 * Higher order allocations also allow the placement of more objects in a 3202 * slab and thereby reduce object handling overhead. If the user has 3203 * requested a higher mininum order then we start with that one instead of 3204 * the smallest order which will fit the object. 3205 */ 3206 static inline int slab_order(int size, int min_objects, 3207 int max_order, int fract_leftover, int reserved) 3208 { 3209 int order; 3210 int rem; 3211 int min_order = slub_min_order; 3212 3213 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3214 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3215 3216 for (order = max(min_order, get_order(min_objects * size + reserved)); 3217 order <= max_order; order++) { 3218 3219 unsigned long slab_size = PAGE_SIZE << order; 3220 3221 rem = (slab_size - reserved) % size; 3222 3223 if (rem <= slab_size / fract_leftover) 3224 break; 3225 } 3226 3227 return order; 3228 } 3229 3230 static inline int calculate_order(int size, int reserved) 3231 { 3232 int order; 3233 int min_objects; 3234 int fraction; 3235 int max_objects; 3236 3237 /* 3238 * Attempt to find best configuration for a slab. This 3239 * works by first attempting to generate a layout with 3240 * the best configuration and backing off gradually. 3241 * 3242 * First we increase the acceptable waste in a slab. Then 3243 * we reduce the minimum objects required in a slab. 3244 */ 3245 min_objects = slub_min_objects; 3246 if (!min_objects) 3247 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3248 max_objects = order_objects(slub_max_order, size, reserved); 3249 min_objects = min(min_objects, max_objects); 3250 3251 while (min_objects > 1) { 3252 fraction = 16; 3253 while (fraction >= 4) { 3254 order = slab_order(size, min_objects, 3255 slub_max_order, fraction, reserved); 3256 if (order <= slub_max_order) 3257 return order; 3258 fraction /= 2; 3259 } 3260 min_objects--; 3261 } 3262 3263 /* 3264 * We were unable to place multiple objects in a slab. Now 3265 * lets see if we can place a single object there. 3266 */ 3267 order = slab_order(size, 1, slub_max_order, 1, reserved); 3268 if (order <= slub_max_order) 3269 return order; 3270 3271 /* 3272 * Doh this slab cannot be placed using slub_max_order. 3273 */ 3274 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3275 if (order < MAX_ORDER) 3276 return order; 3277 return -ENOSYS; 3278 } 3279 3280 static void 3281 init_kmem_cache_node(struct kmem_cache_node *n) 3282 { 3283 n->nr_partial = 0; 3284 spin_lock_init(&n->list_lock); 3285 INIT_LIST_HEAD(&n->partial); 3286 #ifdef CONFIG_SLUB_DEBUG 3287 atomic_long_set(&n->nr_slabs, 0); 3288 atomic_long_set(&n->total_objects, 0); 3289 INIT_LIST_HEAD(&n->full); 3290 #endif 3291 } 3292 3293 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3294 { 3295 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3296 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3297 3298 /* 3299 * Must align to double word boundary for the double cmpxchg 3300 * instructions to work; see __pcpu_double_call_return_bool(). 3301 */ 3302 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3303 2 * sizeof(void *)); 3304 3305 if (!s->cpu_slab) 3306 return 0; 3307 3308 init_kmem_cache_cpus(s); 3309 3310 return 1; 3311 } 3312 3313 static struct kmem_cache *kmem_cache_node; 3314 3315 /* 3316 * No kmalloc_node yet so do it by hand. We know that this is the first 3317 * slab on the node for this slabcache. There are no concurrent accesses 3318 * possible. 3319 * 3320 * Note that this function only works on the kmem_cache_node 3321 * when allocating for the kmem_cache_node. This is used for bootstrapping 3322 * memory on a fresh node that has no slab structures yet. 3323 */ 3324 static void early_kmem_cache_node_alloc(int node) 3325 { 3326 struct page *page; 3327 struct kmem_cache_node *n; 3328 3329 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3330 3331 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3332 3333 BUG_ON(!page); 3334 if (page_to_nid(page) != node) { 3335 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3336 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3337 } 3338 3339 n = page->freelist; 3340 BUG_ON(!n); 3341 page->freelist = get_freepointer(kmem_cache_node, n); 3342 page->inuse = 1; 3343 page->frozen = 0; 3344 kmem_cache_node->node[node] = n; 3345 #ifdef CONFIG_SLUB_DEBUG 3346 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3347 init_tracking(kmem_cache_node, n); 3348 #endif 3349 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3350 GFP_KERNEL); 3351 init_kmem_cache_node(n); 3352 inc_slabs_node(kmem_cache_node, node, page->objects); 3353 3354 /* 3355 * No locks need to be taken here as it has just been 3356 * initialized and there is no concurrent access. 3357 */ 3358 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3359 } 3360 3361 static void free_kmem_cache_nodes(struct kmem_cache *s) 3362 { 3363 int node; 3364 struct kmem_cache_node *n; 3365 3366 for_each_kmem_cache_node(s, node, n) { 3367 kmem_cache_free(kmem_cache_node, n); 3368 s->node[node] = NULL; 3369 } 3370 } 3371 3372 void __kmem_cache_release(struct kmem_cache *s) 3373 { 3374 cache_random_seq_destroy(s); 3375 free_percpu(s->cpu_slab); 3376 free_kmem_cache_nodes(s); 3377 } 3378 3379 static int init_kmem_cache_nodes(struct kmem_cache *s) 3380 { 3381 int node; 3382 3383 for_each_node_state(node, N_NORMAL_MEMORY) { 3384 struct kmem_cache_node *n; 3385 3386 if (slab_state == DOWN) { 3387 early_kmem_cache_node_alloc(node); 3388 continue; 3389 } 3390 n = kmem_cache_alloc_node(kmem_cache_node, 3391 GFP_KERNEL, node); 3392 3393 if (!n) { 3394 free_kmem_cache_nodes(s); 3395 return 0; 3396 } 3397 3398 s->node[node] = n; 3399 init_kmem_cache_node(n); 3400 } 3401 return 1; 3402 } 3403 3404 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3405 { 3406 if (min < MIN_PARTIAL) 3407 min = MIN_PARTIAL; 3408 else if (min > MAX_PARTIAL) 3409 min = MAX_PARTIAL; 3410 s->min_partial = min; 3411 } 3412 3413 /* 3414 * calculate_sizes() determines the order and the distribution of data within 3415 * a slab object. 3416 */ 3417 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3418 { 3419 unsigned long flags = s->flags; 3420 size_t size = s->object_size; 3421 int order; 3422 3423 /* 3424 * Round up object size to the next word boundary. We can only 3425 * place the free pointer at word boundaries and this determines 3426 * the possible location of the free pointer. 3427 */ 3428 size = ALIGN(size, sizeof(void *)); 3429 3430 #ifdef CONFIG_SLUB_DEBUG 3431 /* 3432 * Determine if we can poison the object itself. If the user of 3433 * the slab may touch the object after free or before allocation 3434 * then we should never poison the object itself. 3435 */ 3436 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3437 !s->ctor) 3438 s->flags |= __OBJECT_POISON; 3439 else 3440 s->flags &= ~__OBJECT_POISON; 3441 3442 3443 /* 3444 * If we are Redzoning then check if there is some space between the 3445 * end of the object and the free pointer. If not then add an 3446 * additional word to have some bytes to store Redzone information. 3447 */ 3448 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3449 size += sizeof(void *); 3450 #endif 3451 3452 /* 3453 * With that we have determined the number of bytes in actual use 3454 * by the object. This is the potential offset to the free pointer. 3455 */ 3456 s->inuse = size; 3457 3458 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3459 s->ctor)) { 3460 /* 3461 * Relocate free pointer after the object if it is not 3462 * permitted to overwrite the first word of the object on 3463 * kmem_cache_free. 3464 * 3465 * This is the case if we do RCU, have a constructor or 3466 * destructor or are poisoning the objects. 3467 */ 3468 s->offset = size; 3469 size += sizeof(void *); 3470 } 3471 3472 #ifdef CONFIG_SLUB_DEBUG 3473 if (flags & SLAB_STORE_USER) 3474 /* 3475 * Need to store information about allocs and frees after 3476 * the object. 3477 */ 3478 size += 2 * sizeof(struct track); 3479 #endif 3480 3481 kasan_cache_create(s, &size, &s->flags); 3482 #ifdef CONFIG_SLUB_DEBUG 3483 if (flags & SLAB_RED_ZONE) { 3484 /* 3485 * Add some empty padding so that we can catch 3486 * overwrites from earlier objects rather than let 3487 * tracking information or the free pointer be 3488 * corrupted if a user writes before the start 3489 * of the object. 3490 */ 3491 size += sizeof(void *); 3492 3493 s->red_left_pad = sizeof(void *); 3494 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3495 size += s->red_left_pad; 3496 } 3497 #endif 3498 3499 /* 3500 * SLUB stores one object immediately after another beginning from 3501 * offset 0. In order to align the objects we have to simply size 3502 * each object to conform to the alignment. 3503 */ 3504 size = ALIGN(size, s->align); 3505 s->size = size; 3506 if (forced_order >= 0) 3507 order = forced_order; 3508 else 3509 order = calculate_order(size, s->reserved); 3510 3511 if (order < 0) 3512 return 0; 3513 3514 s->allocflags = 0; 3515 if (order) 3516 s->allocflags |= __GFP_COMP; 3517 3518 if (s->flags & SLAB_CACHE_DMA) 3519 s->allocflags |= GFP_DMA; 3520 3521 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3522 s->allocflags |= __GFP_RECLAIMABLE; 3523 3524 /* 3525 * Determine the number of objects per slab 3526 */ 3527 s->oo = oo_make(order, size, s->reserved); 3528 s->min = oo_make(get_order(size), size, s->reserved); 3529 if (oo_objects(s->oo) > oo_objects(s->max)) 3530 s->max = s->oo; 3531 3532 return !!oo_objects(s->oo); 3533 } 3534 3535 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3536 { 3537 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3538 s->reserved = 0; 3539 3540 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU)) 3541 s->reserved = sizeof(struct rcu_head); 3542 3543 if (!calculate_sizes(s, -1)) 3544 goto error; 3545 if (disable_higher_order_debug) { 3546 /* 3547 * Disable debugging flags that store metadata if the min slab 3548 * order increased. 3549 */ 3550 if (get_order(s->size) > get_order(s->object_size)) { 3551 s->flags &= ~DEBUG_METADATA_FLAGS; 3552 s->offset = 0; 3553 if (!calculate_sizes(s, -1)) 3554 goto error; 3555 } 3556 } 3557 3558 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3559 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3560 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3561 /* Enable fast mode */ 3562 s->flags |= __CMPXCHG_DOUBLE; 3563 #endif 3564 3565 /* 3566 * The larger the object size is, the more pages we want on the partial 3567 * list to avoid pounding the page allocator excessively. 3568 */ 3569 set_min_partial(s, ilog2(s->size) / 2); 3570 3571 /* 3572 * cpu_partial determined the maximum number of objects kept in the 3573 * per cpu partial lists of a processor. 3574 * 3575 * Per cpu partial lists mainly contain slabs that just have one 3576 * object freed. If they are used for allocation then they can be 3577 * filled up again with minimal effort. The slab will never hit the 3578 * per node partial lists and therefore no locking will be required. 3579 * 3580 * This setting also determines 3581 * 3582 * A) The number of objects from per cpu partial slabs dumped to the 3583 * per node list when we reach the limit. 3584 * B) The number of objects in cpu partial slabs to extract from the 3585 * per node list when we run out of per cpu objects. We only fetch 3586 * 50% to keep some capacity around for frees. 3587 */ 3588 if (!kmem_cache_has_cpu_partial(s)) 3589 s->cpu_partial = 0; 3590 else if (s->size >= PAGE_SIZE) 3591 s->cpu_partial = 2; 3592 else if (s->size >= 1024) 3593 s->cpu_partial = 6; 3594 else if (s->size >= 256) 3595 s->cpu_partial = 13; 3596 else 3597 s->cpu_partial = 30; 3598 3599 #ifdef CONFIG_NUMA 3600 s->remote_node_defrag_ratio = 1000; 3601 #endif 3602 3603 /* Initialize the pre-computed randomized freelist if slab is up */ 3604 if (slab_state >= UP) { 3605 if (init_cache_random_seq(s)) 3606 goto error; 3607 } 3608 3609 if (!init_kmem_cache_nodes(s)) 3610 goto error; 3611 3612 if (alloc_kmem_cache_cpus(s)) 3613 return 0; 3614 3615 free_kmem_cache_nodes(s); 3616 error: 3617 if (flags & SLAB_PANIC) 3618 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n", 3619 s->name, (unsigned long)s->size, s->size, 3620 oo_order(s->oo), s->offset, flags); 3621 return -EINVAL; 3622 } 3623 3624 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3625 const char *text) 3626 { 3627 #ifdef CONFIG_SLUB_DEBUG 3628 void *addr = page_address(page); 3629 void *p; 3630 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3631 sizeof(long), GFP_ATOMIC); 3632 if (!map) 3633 return; 3634 slab_err(s, page, text, s->name); 3635 slab_lock(page); 3636 3637 get_map(s, page, map); 3638 for_each_object(p, s, addr, page->objects) { 3639 3640 if (!test_bit(slab_index(p, s, addr), map)) { 3641 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3642 print_tracking(s, p); 3643 } 3644 } 3645 slab_unlock(page); 3646 kfree(map); 3647 #endif 3648 } 3649 3650 /* 3651 * Attempt to free all partial slabs on a node. 3652 * This is called from __kmem_cache_shutdown(). We must take list_lock 3653 * because sysfs file might still access partial list after the shutdowning. 3654 */ 3655 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3656 { 3657 LIST_HEAD(discard); 3658 struct page *page, *h; 3659 3660 BUG_ON(irqs_disabled()); 3661 spin_lock_irq(&n->list_lock); 3662 list_for_each_entry_safe(page, h, &n->partial, lru) { 3663 if (!page->inuse) { 3664 remove_partial(n, page); 3665 list_add(&page->lru, &discard); 3666 } else { 3667 list_slab_objects(s, page, 3668 "Objects remaining in %s on __kmem_cache_shutdown()"); 3669 } 3670 } 3671 spin_unlock_irq(&n->list_lock); 3672 3673 list_for_each_entry_safe(page, h, &discard, lru) 3674 discard_slab(s, page); 3675 } 3676 3677 /* 3678 * Release all resources used by a slab cache. 3679 */ 3680 int __kmem_cache_shutdown(struct kmem_cache *s) 3681 { 3682 int node; 3683 struct kmem_cache_node *n; 3684 3685 flush_all(s); 3686 /* Attempt to free all objects */ 3687 for_each_kmem_cache_node(s, node, n) { 3688 free_partial(s, n); 3689 if (n->nr_partial || slabs_node(s, node)) 3690 return 1; 3691 } 3692 sysfs_slab_remove(s); 3693 return 0; 3694 } 3695 3696 /******************************************************************** 3697 * Kmalloc subsystem 3698 *******************************************************************/ 3699 3700 static int __init setup_slub_min_order(char *str) 3701 { 3702 get_option(&str, &slub_min_order); 3703 3704 return 1; 3705 } 3706 3707 __setup("slub_min_order=", setup_slub_min_order); 3708 3709 static int __init setup_slub_max_order(char *str) 3710 { 3711 get_option(&str, &slub_max_order); 3712 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3713 3714 return 1; 3715 } 3716 3717 __setup("slub_max_order=", setup_slub_max_order); 3718 3719 static int __init setup_slub_min_objects(char *str) 3720 { 3721 get_option(&str, &slub_min_objects); 3722 3723 return 1; 3724 } 3725 3726 __setup("slub_min_objects=", setup_slub_min_objects); 3727 3728 void *__kmalloc(size_t size, gfp_t flags) 3729 { 3730 struct kmem_cache *s; 3731 void *ret; 3732 3733 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3734 return kmalloc_large(size, flags); 3735 3736 s = kmalloc_slab(size, flags); 3737 3738 if (unlikely(ZERO_OR_NULL_PTR(s))) 3739 return s; 3740 3741 ret = slab_alloc(s, flags, _RET_IP_); 3742 3743 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3744 3745 kasan_kmalloc(s, ret, size, flags); 3746 3747 return ret; 3748 } 3749 EXPORT_SYMBOL(__kmalloc); 3750 3751 #ifdef CONFIG_NUMA 3752 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3753 { 3754 struct page *page; 3755 void *ptr = NULL; 3756 3757 flags |= __GFP_COMP | __GFP_NOTRACK; 3758 page = alloc_pages_node(node, flags, get_order(size)); 3759 if (page) 3760 ptr = page_address(page); 3761 3762 kmalloc_large_node_hook(ptr, size, flags); 3763 return ptr; 3764 } 3765 3766 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3767 { 3768 struct kmem_cache *s; 3769 void *ret; 3770 3771 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3772 ret = kmalloc_large_node(size, flags, node); 3773 3774 trace_kmalloc_node(_RET_IP_, ret, 3775 size, PAGE_SIZE << get_order(size), 3776 flags, node); 3777 3778 return ret; 3779 } 3780 3781 s = kmalloc_slab(size, flags); 3782 3783 if (unlikely(ZERO_OR_NULL_PTR(s))) 3784 return s; 3785 3786 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3787 3788 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3789 3790 kasan_kmalloc(s, ret, size, flags); 3791 3792 return ret; 3793 } 3794 EXPORT_SYMBOL(__kmalloc_node); 3795 #endif 3796 3797 #ifdef CONFIG_HARDENED_USERCOPY 3798 /* 3799 * Rejects objects that are incorrectly sized. 3800 * 3801 * Returns NULL if check passes, otherwise const char * to name of cache 3802 * to indicate an error. 3803 */ 3804 const char *__check_heap_object(const void *ptr, unsigned long n, 3805 struct page *page) 3806 { 3807 struct kmem_cache *s; 3808 unsigned long offset; 3809 size_t object_size; 3810 3811 /* Find object and usable object size. */ 3812 s = page->slab_cache; 3813 object_size = slab_ksize(s); 3814 3815 /* Reject impossible pointers. */ 3816 if (ptr < page_address(page)) 3817 return s->name; 3818 3819 /* Find offset within object. */ 3820 offset = (ptr - page_address(page)) % s->size; 3821 3822 /* Adjust for redzone and reject if within the redzone. */ 3823 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3824 if (offset < s->red_left_pad) 3825 return s->name; 3826 offset -= s->red_left_pad; 3827 } 3828 3829 /* Allow address range falling entirely within object size. */ 3830 if (offset <= object_size && n <= object_size - offset) 3831 return NULL; 3832 3833 return s->name; 3834 } 3835 #endif /* CONFIG_HARDENED_USERCOPY */ 3836 3837 static size_t __ksize(const void *object) 3838 { 3839 struct page *page; 3840 3841 if (unlikely(object == ZERO_SIZE_PTR)) 3842 return 0; 3843 3844 page = virt_to_head_page(object); 3845 3846 if (unlikely(!PageSlab(page))) { 3847 WARN_ON(!PageCompound(page)); 3848 return PAGE_SIZE << compound_order(page); 3849 } 3850 3851 return slab_ksize(page->slab_cache); 3852 } 3853 3854 size_t ksize(const void *object) 3855 { 3856 size_t size = __ksize(object); 3857 /* We assume that ksize callers could use whole allocated area, 3858 * so we need to unpoison this area. 3859 */ 3860 kasan_unpoison_shadow(object, size); 3861 return size; 3862 } 3863 EXPORT_SYMBOL(ksize); 3864 3865 void kfree(const void *x) 3866 { 3867 struct page *page; 3868 void *object = (void *)x; 3869 3870 trace_kfree(_RET_IP_, x); 3871 3872 if (unlikely(ZERO_OR_NULL_PTR(x))) 3873 return; 3874 3875 page = virt_to_head_page(x); 3876 if (unlikely(!PageSlab(page))) { 3877 BUG_ON(!PageCompound(page)); 3878 kfree_hook(x); 3879 __free_pages(page, compound_order(page)); 3880 return; 3881 } 3882 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3883 } 3884 EXPORT_SYMBOL(kfree); 3885 3886 #define SHRINK_PROMOTE_MAX 32 3887 3888 /* 3889 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3890 * up most to the head of the partial lists. New allocations will then 3891 * fill those up and thus they can be removed from the partial lists. 3892 * 3893 * The slabs with the least items are placed last. This results in them 3894 * being allocated from last increasing the chance that the last objects 3895 * are freed in them. 3896 */ 3897 int __kmem_cache_shrink(struct kmem_cache *s) 3898 { 3899 int node; 3900 int i; 3901 struct kmem_cache_node *n; 3902 struct page *page; 3903 struct page *t; 3904 struct list_head discard; 3905 struct list_head promote[SHRINK_PROMOTE_MAX]; 3906 unsigned long flags; 3907 int ret = 0; 3908 3909 flush_all(s); 3910 for_each_kmem_cache_node(s, node, n) { 3911 INIT_LIST_HEAD(&discard); 3912 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3913 INIT_LIST_HEAD(promote + i); 3914 3915 spin_lock_irqsave(&n->list_lock, flags); 3916 3917 /* 3918 * Build lists of slabs to discard or promote. 3919 * 3920 * Note that concurrent frees may occur while we hold the 3921 * list_lock. page->inuse here is the upper limit. 3922 */ 3923 list_for_each_entry_safe(page, t, &n->partial, lru) { 3924 int free = page->objects - page->inuse; 3925 3926 /* Do not reread page->inuse */ 3927 barrier(); 3928 3929 /* We do not keep full slabs on the list */ 3930 BUG_ON(free <= 0); 3931 3932 if (free == page->objects) { 3933 list_move(&page->lru, &discard); 3934 n->nr_partial--; 3935 } else if (free <= SHRINK_PROMOTE_MAX) 3936 list_move(&page->lru, promote + free - 1); 3937 } 3938 3939 /* 3940 * Promote the slabs filled up most to the head of the 3941 * partial list. 3942 */ 3943 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3944 list_splice(promote + i, &n->partial); 3945 3946 spin_unlock_irqrestore(&n->list_lock, flags); 3947 3948 /* Release empty slabs */ 3949 list_for_each_entry_safe(page, t, &discard, lru) 3950 discard_slab(s, page); 3951 3952 if (slabs_node(s, node)) 3953 ret = 1; 3954 } 3955 3956 return ret; 3957 } 3958 3959 #ifdef CONFIG_MEMCG 3960 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 3961 { 3962 /* 3963 * Called with all the locks held after a sched RCU grace period. 3964 * Even if @s becomes empty after shrinking, we can't know that @s 3965 * doesn't have allocations already in-flight and thus can't 3966 * destroy @s until the associated memcg is released. 3967 * 3968 * However, let's remove the sysfs files for empty caches here. 3969 * Each cache has a lot of interface files which aren't 3970 * particularly useful for empty draining caches; otherwise, we can 3971 * easily end up with millions of unnecessary sysfs files on 3972 * systems which have a lot of memory and transient cgroups. 3973 */ 3974 if (!__kmem_cache_shrink(s)) 3975 sysfs_slab_remove(s); 3976 } 3977 3978 void __kmemcg_cache_deactivate(struct kmem_cache *s) 3979 { 3980 /* 3981 * Disable empty slabs caching. Used to avoid pinning offline 3982 * memory cgroups by kmem pages that can be freed. 3983 */ 3984 s->cpu_partial = 0; 3985 s->min_partial = 0; 3986 3987 /* 3988 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 3989 * we have to make sure the change is visible before shrinking. 3990 */ 3991 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 3992 } 3993 #endif 3994 3995 static int slab_mem_going_offline_callback(void *arg) 3996 { 3997 struct kmem_cache *s; 3998 3999 mutex_lock(&slab_mutex); 4000 list_for_each_entry(s, &slab_caches, list) 4001 __kmem_cache_shrink(s); 4002 mutex_unlock(&slab_mutex); 4003 4004 return 0; 4005 } 4006 4007 static void slab_mem_offline_callback(void *arg) 4008 { 4009 struct kmem_cache_node *n; 4010 struct kmem_cache *s; 4011 struct memory_notify *marg = arg; 4012 int offline_node; 4013 4014 offline_node = marg->status_change_nid_normal; 4015 4016 /* 4017 * If the node still has available memory. we need kmem_cache_node 4018 * for it yet. 4019 */ 4020 if (offline_node < 0) 4021 return; 4022 4023 mutex_lock(&slab_mutex); 4024 list_for_each_entry(s, &slab_caches, list) { 4025 n = get_node(s, offline_node); 4026 if (n) { 4027 /* 4028 * if n->nr_slabs > 0, slabs still exist on the node 4029 * that is going down. We were unable to free them, 4030 * and offline_pages() function shouldn't call this 4031 * callback. So, we must fail. 4032 */ 4033 BUG_ON(slabs_node(s, offline_node)); 4034 4035 s->node[offline_node] = NULL; 4036 kmem_cache_free(kmem_cache_node, n); 4037 } 4038 } 4039 mutex_unlock(&slab_mutex); 4040 } 4041 4042 static int slab_mem_going_online_callback(void *arg) 4043 { 4044 struct kmem_cache_node *n; 4045 struct kmem_cache *s; 4046 struct memory_notify *marg = arg; 4047 int nid = marg->status_change_nid_normal; 4048 int ret = 0; 4049 4050 /* 4051 * If the node's memory is already available, then kmem_cache_node is 4052 * already created. Nothing to do. 4053 */ 4054 if (nid < 0) 4055 return 0; 4056 4057 /* 4058 * We are bringing a node online. No memory is available yet. We must 4059 * allocate a kmem_cache_node structure in order to bring the node 4060 * online. 4061 */ 4062 mutex_lock(&slab_mutex); 4063 list_for_each_entry(s, &slab_caches, list) { 4064 /* 4065 * XXX: kmem_cache_alloc_node will fallback to other nodes 4066 * since memory is not yet available from the node that 4067 * is brought up. 4068 */ 4069 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4070 if (!n) { 4071 ret = -ENOMEM; 4072 goto out; 4073 } 4074 init_kmem_cache_node(n); 4075 s->node[nid] = n; 4076 } 4077 out: 4078 mutex_unlock(&slab_mutex); 4079 return ret; 4080 } 4081 4082 static int slab_memory_callback(struct notifier_block *self, 4083 unsigned long action, void *arg) 4084 { 4085 int ret = 0; 4086 4087 switch (action) { 4088 case MEM_GOING_ONLINE: 4089 ret = slab_mem_going_online_callback(arg); 4090 break; 4091 case MEM_GOING_OFFLINE: 4092 ret = slab_mem_going_offline_callback(arg); 4093 break; 4094 case MEM_OFFLINE: 4095 case MEM_CANCEL_ONLINE: 4096 slab_mem_offline_callback(arg); 4097 break; 4098 case MEM_ONLINE: 4099 case MEM_CANCEL_OFFLINE: 4100 break; 4101 } 4102 if (ret) 4103 ret = notifier_from_errno(ret); 4104 else 4105 ret = NOTIFY_OK; 4106 return ret; 4107 } 4108 4109 static struct notifier_block slab_memory_callback_nb = { 4110 .notifier_call = slab_memory_callback, 4111 .priority = SLAB_CALLBACK_PRI, 4112 }; 4113 4114 /******************************************************************** 4115 * Basic setup of slabs 4116 *******************************************************************/ 4117 4118 /* 4119 * Used for early kmem_cache structures that were allocated using 4120 * the page allocator. Allocate them properly then fix up the pointers 4121 * that may be pointing to the wrong kmem_cache structure. 4122 */ 4123 4124 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4125 { 4126 int node; 4127 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4128 struct kmem_cache_node *n; 4129 4130 memcpy(s, static_cache, kmem_cache->object_size); 4131 4132 /* 4133 * This runs very early, and only the boot processor is supposed to be 4134 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4135 * IPIs around. 4136 */ 4137 __flush_cpu_slab(s, smp_processor_id()); 4138 for_each_kmem_cache_node(s, node, n) { 4139 struct page *p; 4140 4141 list_for_each_entry(p, &n->partial, lru) 4142 p->slab_cache = s; 4143 4144 #ifdef CONFIG_SLUB_DEBUG 4145 list_for_each_entry(p, &n->full, lru) 4146 p->slab_cache = s; 4147 #endif 4148 } 4149 slab_init_memcg_params(s); 4150 list_add(&s->list, &slab_caches); 4151 memcg_link_cache(s); 4152 return s; 4153 } 4154 4155 void __init kmem_cache_init(void) 4156 { 4157 static __initdata struct kmem_cache boot_kmem_cache, 4158 boot_kmem_cache_node; 4159 4160 if (debug_guardpage_minorder()) 4161 slub_max_order = 0; 4162 4163 kmem_cache_node = &boot_kmem_cache_node; 4164 kmem_cache = &boot_kmem_cache; 4165 4166 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4167 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 4168 4169 register_hotmemory_notifier(&slab_memory_callback_nb); 4170 4171 /* Able to allocate the per node structures */ 4172 slab_state = PARTIAL; 4173 4174 create_boot_cache(kmem_cache, "kmem_cache", 4175 offsetof(struct kmem_cache, node) + 4176 nr_node_ids * sizeof(struct kmem_cache_node *), 4177 SLAB_HWCACHE_ALIGN); 4178 4179 kmem_cache = bootstrap(&boot_kmem_cache); 4180 4181 /* 4182 * Allocate kmem_cache_node properly from the kmem_cache slab. 4183 * kmem_cache_node is separately allocated so no need to 4184 * update any list pointers. 4185 */ 4186 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4187 4188 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4189 setup_kmalloc_cache_index_table(); 4190 create_kmalloc_caches(0); 4191 4192 /* Setup random freelists for each cache */ 4193 init_freelist_randomization(); 4194 4195 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4196 slub_cpu_dead); 4197 4198 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 4199 cache_line_size(), 4200 slub_min_order, slub_max_order, slub_min_objects, 4201 nr_cpu_ids, nr_node_ids); 4202 } 4203 4204 void __init kmem_cache_init_late(void) 4205 { 4206 } 4207 4208 struct kmem_cache * 4209 __kmem_cache_alias(const char *name, size_t size, size_t align, 4210 unsigned long flags, void (*ctor)(void *)) 4211 { 4212 struct kmem_cache *s, *c; 4213 4214 s = find_mergeable(size, align, flags, name, ctor); 4215 if (s) { 4216 s->refcount++; 4217 4218 /* 4219 * Adjust the object sizes so that we clear 4220 * the complete object on kzalloc. 4221 */ 4222 s->object_size = max(s->object_size, (int)size); 4223 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 4224 4225 for_each_memcg_cache(c, s) { 4226 c->object_size = s->object_size; 4227 c->inuse = max_t(int, c->inuse, 4228 ALIGN(size, sizeof(void *))); 4229 } 4230 4231 if (sysfs_slab_alias(s, name)) { 4232 s->refcount--; 4233 s = NULL; 4234 } 4235 } 4236 4237 return s; 4238 } 4239 4240 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 4241 { 4242 int err; 4243 4244 err = kmem_cache_open(s, flags); 4245 if (err) 4246 return err; 4247 4248 /* Mutex is not taken during early boot */ 4249 if (slab_state <= UP) 4250 return 0; 4251 4252 memcg_propagate_slab_attrs(s); 4253 err = sysfs_slab_add(s); 4254 if (err) 4255 __kmem_cache_release(s); 4256 4257 return err; 4258 } 4259 4260 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4261 { 4262 struct kmem_cache *s; 4263 void *ret; 4264 4265 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4266 return kmalloc_large(size, gfpflags); 4267 4268 s = kmalloc_slab(size, gfpflags); 4269 4270 if (unlikely(ZERO_OR_NULL_PTR(s))) 4271 return s; 4272 4273 ret = slab_alloc(s, gfpflags, caller); 4274 4275 /* Honor the call site pointer we received. */ 4276 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4277 4278 return ret; 4279 } 4280 4281 #ifdef CONFIG_NUMA 4282 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4283 int node, unsigned long caller) 4284 { 4285 struct kmem_cache *s; 4286 void *ret; 4287 4288 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4289 ret = kmalloc_large_node(size, gfpflags, node); 4290 4291 trace_kmalloc_node(caller, ret, 4292 size, PAGE_SIZE << get_order(size), 4293 gfpflags, node); 4294 4295 return ret; 4296 } 4297 4298 s = kmalloc_slab(size, gfpflags); 4299 4300 if (unlikely(ZERO_OR_NULL_PTR(s))) 4301 return s; 4302 4303 ret = slab_alloc_node(s, gfpflags, node, caller); 4304 4305 /* Honor the call site pointer we received. */ 4306 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4307 4308 return ret; 4309 } 4310 #endif 4311 4312 #ifdef CONFIG_SYSFS 4313 static int count_inuse(struct page *page) 4314 { 4315 return page->inuse; 4316 } 4317 4318 static int count_total(struct page *page) 4319 { 4320 return page->objects; 4321 } 4322 #endif 4323 4324 #ifdef CONFIG_SLUB_DEBUG 4325 static int validate_slab(struct kmem_cache *s, struct page *page, 4326 unsigned long *map) 4327 { 4328 void *p; 4329 void *addr = page_address(page); 4330 4331 if (!check_slab(s, page) || 4332 !on_freelist(s, page, NULL)) 4333 return 0; 4334 4335 /* Now we know that a valid freelist exists */ 4336 bitmap_zero(map, page->objects); 4337 4338 get_map(s, page, map); 4339 for_each_object(p, s, addr, page->objects) { 4340 if (test_bit(slab_index(p, s, addr), map)) 4341 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4342 return 0; 4343 } 4344 4345 for_each_object(p, s, addr, page->objects) 4346 if (!test_bit(slab_index(p, s, addr), map)) 4347 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4348 return 0; 4349 return 1; 4350 } 4351 4352 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4353 unsigned long *map) 4354 { 4355 slab_lock(page); 4356 validate_slab(s, page, map); 4357 slab_unlock(page); 4358 } 4359 4360 static int validate_slab_node(struct kmem_cache *s, 4361 struct kmem_cache_node *n, unsigned long *map) 4362 { 4363 unsigned long count = 0; 4364 struct page *page; 4365 unsigned long flags; 4366 4367 spin_lock_irqsave(&n->list_lock, flags); 4368 4369 list_for_each_entry(page, &n->partial, lru) { 4370 validate_slab_slab(s, page, map); 4371 count++; 4372 } 4373 if (count != n->nr_partial) 4374 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4375 s->name, count, n->nr_partial); 4376 4377 if (!(s->flags & SLAB_STORE_USER)) 4378 goto out; 4379 4380 list_for_each_entry(page, &n->full, lru) { 4381 validate_slab_slab(s, page, map); 4382 count++; 4383 } 4384 if (count != atomic_long_read(&n->nr_slabs)) 4385 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4386 s->name, count, atomic_long_read(&n->nr_slabs)); 4387 4388 out: 4389 spin_unlock_irqrestore(&n->list_lock, flags); 4390 return count; 4391 } 4392 4393 static long validate_slab_cache(struct kmem_cache *s) 4394 { 4395 int node; 4396 unsigned long count = 0; 4397 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4398 sizeof(unsigned long), GFP_KERNEL); 4399 struct kmem_cache_node *n; 4400 4401 if (!map) 4402 return -ENOMEM; 4403 4404 flush_all(s); 4405 for_each_kmem_cache_node(s, node, n) 4406 count += validate_slab_node(s, n, map); 4407 kfree(map); 4408 return count; 4409 } 4410 /* 4411 * Generate lists of code addresses where slabcache objects are allocated 4412 * and freed. 4413 */ 4414 4415 struct location { 4416 unsigned long count; 4417 unsigned long addr; 4418 long long sum_time; 4419 long min_time; 4420 long max_time; 4421 long min_pid; 4422 long max_pid; 4423 DECLARE_BITMAP(cpus, NR_CPUS); 4424 nodemask_t nodes; 4425 }; 4426 4427 struct loc_track { 4428 unsigned long max; 4429 unsigned long count; 4430 struct location *loc; 4431 }; 4432 4433 static void free_loc_track(struct loc_track *t) 4434 { 4435 if (t->max) 4436 free_pages((unsigned long)t->loc, 4437 get_order(sizeof(struct location) * t->max)); 4438 } 4439 4440 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4441 { 4442 struct location *l; 4443 int order; 4444 4445 order = get_order(sizeof(struct location) * max); 4446 4447 l = (void *)__get_free_pages(flags, order); 4448 if (!l) 4449 return 0; 4450 4451 if (t->count) { 4452 memcpy(l, t->loc, sizeof(struct location) * t->count); 4453 free_loc_track(t); 4454 } 4455 t->max = max; 4456 t->loc = l; 4457 return 1; 4458 } 4459 4460 static int add_location(struct loc_track *t, struct kmem_cache *s, 4461 const struct track *track) 4462 { 4463 long start, end, pos; 4464 struct location *l; 4465 unsigned long caddr; 4466 unsigned long age = jiffies - track->when; 4467 4468 start = -1; 4469 end = t->count; 4470 4471 for ( ; ; ) { 4472 pos = start + (end - start + 1) / 2; 4473 4474 /* 4475 * There is nothing at "end". If we end up there 4476 * we need to add something to before end. 4477 */ 4478 if (pos == end) 4479 break; 4480 4481 caddr = t->loc[pos].addr; 4482 if (track->addr == caddr) { 4483 4484 l = &t->loc[pos]; 4485 l->count++; 4486 if (track->when) { 4487 l->sum_time += age; 4488 if (age < l->min_time) 4489 l->min_time = age; 4490 if (age > l->max_time) 4491 l->max_time = age; 4492 4493 if (track->pid < l->min_pid) 4494 l->min_pid = track->pid; 4495 if (track->pid > l->max_pid) 4496 l->max_pid = track->pid; 4497 4498 cpumask_set_cpu(track->cpu, 4499 to_cpumask(l->cpus)); 4500 } 4501 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4502 return 1; 4503 } 4504 4505 if (track->addr < caddr) 4506 end = pos; 4507 else 4508 start = pos; 4509 } 4510 4511 /* 4512 * Not found. Insert new tracking element. 4513 */ 4514 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4515 return 0; 4516 4517 l = t->loc + pos; 4518 if (pos < t->count) 4519 memmove(l + 1, l, 4520 (t->count - pos) * sizeof(struct location)); 4521 t->count++; 4522 l->count = 1; 4523 l->addr = track->addr; 4524 l->sum_time = age; 4525 l->min_time = age; 4526 l->max_time = age; 4527 l->min_pid = track->pid; 4528 l->max_pid = track->pid; 4529 cpumask_clear(to_cpumask(l->cpus)); 4530 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4531 nodes_clear(l->nodes); 4532 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4533 return 1; 4534 } 4535 4536 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4537 struct page *page, enum track_item alloc, 4538 unsigned long *map) 4539 { 4540 void *addr = page_address(page); 4541 void *p; 4542 4543 bitmap_zero(map, page->objects); 4544 get_map(s, page, map); 4545 4546 for_each_object(p, s, addr, page->objects) 4547 if (!test_bit(slab_index(p, s, addr), map)) 4548 add_location(t, s, get_track(s, p, alloc)); 4549 } 4550 4551 static int list_locations(struct kmem_cache *s, char *buf, 4552 enum track_item alloc) 4553 { 4554 int len = 0; 4555 unsigned long i; 4556 struct loc_track t = { 0, 0, NULL }; 4557 int node; 4558 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4559 sizeof(unsigned long), GFP_KERNEL); 4560 struct kmem_cache_node *n; 4561 4562 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4563 GFP_TEMPORARY)) { 4564 kfree(map); 4565 return sprintf(buf, "Out of memory\n"); 4566 } 4567 /* Push back cpu slabs */ 4568 flush_all(s); 4569 4570 for_each_kmem_cache_node(s, node, n) { 4571 unsigned long flags; 4572 struct page *page; 4573 4574 if (!atomic_long_read(&n->nr_slabs)) 4575 continue; 4576 4577 spin_lock_irqsave(&n->list_lock, flags); 4578 list_for_each_entry(page, &n->partial, lru) 4579 process_slab(&t, s, page, alloc, map); 4580 list_for_each_entry(page, &n->full, lru) 4581 process_slab(&t, s, page, alloc, map); 4582 spin_unlock_irqrestore(&n->list_lock, flags); 4583 } 4584 4585 for (i = 0; i < t.count; i++) { 4586 struct location *l = &t.loc[i]; 4587 4588 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4589 break; 4590 len += sprintf(buf + len, "%7ld ", l->count); 4591 4592 if (l->addr) 4593 len += sprintf(buf + len, "%pS", (void *)l->addr); 4594 else 4595 len += sprintf(buf + len, "<not-available>"); 4596 4597 if (l->sum_time != l->min_time) { 4598 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4599 l->min_time, 4600 (long)div_u64(l->sum_time, l->count), 4601 l->max_time); 4602 } else 4603 len += sprintf(buf + len, " age=%ld", 4604 l->min_time); 4605 4606 if (l->min_pid != l->max_pid) 4607 len += sprintf(buf + len, " pid=%ld-%ld", 4608 l->min_pid, l->max_pid); 4609 else 4610 len += sprintf(buf + len, " pid=%ld", 4611 l->min_pid); 4612 4613 if (num_online_cpus() > 1 && 4614 !cpumask_empty(to_cpumask(l->cpus)) && 4615 len < PAGE_SIZE - 60) 4616 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4617 " cpus=%*pbl", 4618 cpumask_pr_args(to_cpumask(l->cpus))); 4619 4620 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4621 len < PAGE_SIZE - 60) 4622 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4623 " nodes=%*pbl", 4624 nodemask_pr_args(&l->nodes)); 4625 4626 len += sprintf(buf + len, "\n"); 4627 } 4628 4629 free_loc_track(&t); 4630 kfree(map); 4631 if (!t.count) 4632 len += sprintf(buf, "No data\n"); 4633 return len; 4634 } 4635 #endif 4636 4637 #ifdef SLUB_RESILIENCY_TEST 4638 static void __init resiliency_test(void) 4639 { 4640 u8 *p; 4641 4642 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4643 4644 pr_err("SLUB resiliency testing\n"); 4645 pr_err("-----------------------\n"); 4646 pr_err("A. Corruption after allocation\n"); 4647 4648 p = kzalloc(16, GFP_KERNEL); 4649 p[16] = 0x12; 4650 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4651 p + 16); 4652 4653 validate_slab_cache(kmalloc_caches[4]); 4654 4655 /* Hmmm... The next two are dangerous */ 4656 p = kzalloc(32, GFP_KERNEL); 4657 p[32 + sizeof(void *)] = 0x34; 4658 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4659 p); 4660 pr_err("If allocated object is overwritten then not detectable\n\n"); 4661 4662 validate_slab_cache(kmalloc_caches[5]); 4663 p = kzalloc(64, GFP_KERNEL); 4664 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4665 *p = 0x56; 4666 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4667 p); 4668 pr_err("If allocated object is overwritten then not detectable\n\n"); 4669 validate_slab_cache(kmalloc_caches[6]); 4670 4671 pr_err("\nB. Corruption after free\n"); 4672 p = kzalloc(128, GFP_KERNEL); 4673 kfree(p); 4674 *p = 0x78; 4675 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4676 validate_slab_cache(kmalloc_caches[7]); 4677 4678 p = kzalloc(256, GFP_KERNEL); 4679 kfree(p); 4680 p[50] = 0x9a; 4681 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4682 validate_slab_cache(kmalloc_caches[8]); 4683 4684 p = kzalloc(512, GFP_KERNEL); 4685 kfree(p); 4686 p[512] = 0xab; 4687 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4688 validate_slab_cache(kmalloc_caches[9]); 4689 } 4690 #else 4691 #ifdef CONFIG_SYSFS 4692 static void resiliency_test(void) {}; 4693 #endif 4694 #endif 4695 4696 #ifdef CONFIG_SYSFS 4697 enum slab_stat_type { 4698 SL_ALL, /* All slabs */ 4699 SL_PARTIAL, /* Only partially allocated slabs */ 4700 SL_CPU, /* Only slabs used for cpu caches */ 4701 SL_OBJECTS, /* Determine allocated objects not slabs */ 4702 SL_TOTAL /* Determine object capacity not slabs */ 4703 }; 4704 4705 #define SO_ALL (1 << SL_ALL) 4706 #define SO_PARTIAL (1 << SL_PARTIAL) 4707 #define SO_CPU (1 << SL_CPU) 4708 #define SO_OBJECTS (1 << SL_OBJECTS) 4709 #define SO_TOTAL (1 << SL_TOTAL) 4710 4711 #ifdef CONFIG_MEMCG 4712 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4713 4714 static int __init setup_slub_memcg_sysfs(char *str) 4715 { 4716 int v; 4717 4718 if (get_option(&str, &v) > 0) 4719 memcg_sysfs_enabled = v; 4720 4721 return 1; 4722 } 4723 4724 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4725 #endif 4726 4727 static ssize_t show_slab_objects(struct kmem_cache *s, 4728 char *buf, unsigned long flags) 4729 { 4730 unsigned long total = 0; 4731 int node; 4732 int x; 4733 unsigned long *nodes; 4734 4735 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4736 if (!nodes) 4737 return -ENOMEM; 4738 4739 if (flags & SO_CPU) { 4740 int cpu; 4741 4742 for_each_possible_cpu(cpu) { 4743 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4744 cpu); 4745 int node; 4746 struct page *page; 4747 4748 page = READ_ONCE(c->page); 4749 if (!page) 4750 continue; 4751 4752 node = page_to_nid(page); 4753 if (flags & SO_TOTAL) 4754 x = page->objects; 4755 else if (flags & SO_OBJECTS) 4756 x = page->inuse; 4757 else 4758 x = 1; 4759 4760 total += x; 4761 nodes[node] += x; 4762 4763 page = READ_ONCE(c->partial); 4764 if (page) { 4765 node = page_to_nid(page); 4766 if (flags & SO_TOTAL) 4767 WARN_ON_ONCE(1); 4768 else if (flags & SO_OBJECTS) 4769 WARN_ON_ONCE(1); 4770 else 4771 x = page->pages; 4772 total += x; 4773 nodes[node] += x; 4774 } 4775 } 4776 } 4777 4778 get_online_mems(); 4779 #ifdef CONFIG_SLUB_DEBUG 4780 if (flags & SO_ALL) { 4781 struct kmem_cache_node *n; 4782 4783 for_each_kmem_cache_node(s, node, n) { 4784 4785 if (flags & SO_TOTAL) 4786 x = atomic_long_read(&n->total_objects); 4787 else if (flags & SO_OBJECTS) 4788 x = atomic_long_read(&n->total_objects) - 4789 count_partial(n, count_free); 4790 else 4791 x = atomic_long_read(&n->nr_slabs); 4792 total += x; 4793 nodes[node] += x; 4794 } 4795 4796 } else 4797 #endif 4798 if (flags & SO_PARTIAL) { 4799 struct kmem_cache_node *n; 4800 4801 for_each_kmem_cache_node(s, node, n) { 4802 if (flags & SO_TOTAL) 4803 x = count_partial(n, count_total); 4804 else if (flags & SO_OBJECTS) 4805 x = count_partial(n, count_inuse); 4806 else 4807 x = n->nr_partial; 4808 total += x; 4809 nodes[node] += x; 4810 } 4811 } 4812 x = sprintf(buf, "%lu", total); 4813 #ifdef CONFIG_NUMA 4814 for (node = 0; node < nr_node_ids; node++) 4815 if (nodes[node]) 4816 x += sprintf(buf + x, " N%d=%lu", 4817 node, nodes[node]); 4818 #endif 4819 put_online_mems(); 4820 kfree(nodes); 4821 return x + sprintf(buf + x, "\n"); 4822 } 4823 4824 #ifdef CONFIG_SLUB_DEBUG 4825 static int any_slab_objects(struct kmem_cache *s) 4826 { 4827 int node; 4828 struct kmem_cache_node *n; 4829 4830 for_each_kmem_cache_node(s, node, n) 4831 if (atomic_long_read(&n->total_objects)) 4832 return 1; 4833 4834 return 0; 4835 } 4836 #endif 4837 4838 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4839 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4840 4841 struct slab_attribute { 4842 struct attribute attr; 4843 ssize_t (*show)(struct kmem_cache *s, char *buf); 4844 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4845 }; 4846 4847 #define SLAB_ATTR_RO(_name) \ 4848 static struct slab_attribute _name##_attr = \ 4849 __ATTR(_name, 0400, _name##_show, NULL) 4850 4851 #define SLAB_ATTR(_name) \ 4852 static struct slab_attribute _name##_attr = \ 4853 __ATTR(_name, 0600, _name##_show, _name##_store) 4854 4855 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4856 { 4857 return sprintf(buf, "%d\n", s->size); 4858 } 4859 SLAB_ATTR_RO(slab_size); 4860 4861 static ssize_t align_show(struct kmem_cache *s, char *buf) 4862 { 4863 return sprintf(buf, "%d\n", s->align); 4864 } 4865 SLAB_ATTR_RO(align); 4866 4867 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4868 { 4869 return sprintf(buf, "%d\n", s->object_size); 4870 } 4871 SLAB_ATTR_RO(object_size); 4872 4873 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4874 { 4875 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4876 } 4877 SLAB_ATTR_RO(objs_per_slab); 4878 4879 static ssize_t order_store(struct kmem_cache *s, 4880 const char *buf, size_t length) 4881 { 4882 unsigned long order; 4883 int err; 4884 4885 err = kstrtoul(buf, 10, &order); 4886 if (err) 4887 return err; 4888 4889 if (order > slub_max_order || order < slub_min_order) 4890 return -EINVAL; 4891 4892 calculate_sizes(s, order); 4893 return length; 4894 } 4895 4896 static ssize_t order_show(struct kmem_cache *s, char *buf) 4897 { 4898 return sprintf(buf, "%d\n", oo_order(s->oo)); 4899 } 4900 SLAB_ATTR(order); 4901 4902 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4903 { 4904 return sprintf(buf, "%lu\n", s->min_partial); 4905 } 4906 4907 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4908 size_t length) 4909 { 4910 unsigned long min; 4911 int err; 4912 4913 err = kstrtoul(buf, 10, &min); 4914 if (err) 4915 return err; 4916 4917 set_min_partial(s, min); 4918 return length; 4919 } 4920 SLAB_ATTR(min_partial); 4921 4922 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4923 { 4924 return sprintf(buf, "%u\n", s->cpu_partial); 4925 } 4926 4927 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4928 size_t length) 4929 { 4930 unsigned long objects; 4931 int err; 4932 4933 err = kstrtoul(buf, 10, &objects); 4934 if (err) 4935 return err; 4936 if (objects && !kmem_cache_has_cpu_partial(s)) 4937 return -EINVAL; 4938 4939 s->cpu_partial = objects; 4940 flush_all(s); 4941 return length; 4942 } 4943 SLAB_ATTR(cpu_partial); 4944 4945 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4946 { 4947 if (!s->ctor) 4948 return 0; 4949 return sprintf(buf, "%pS\n", s->ctor); 4950 } 4951 SLAB_ATTR_RO(ctor); 4952 4953 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4954 { 4955 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4956 } 4957 SLAB_ATTR_RO(aliases); 4958 4959 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4960 { 4961 return show_slab_objects(s, buf, SO_PARTIAL); 4962 } 4963 SLAB_ATTR_RO(partial); 4964 4965 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4966 { 4967 return show_slab_objects(s, buf, SO_CPU); 4968 } 4969 SLAB_ATTR_RO(cpu_slabs); 4970 4971 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4972 { 4973 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4974 } 4975 SLAB_ATTR_RO(objects); 4976 4977 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4978 { 4979 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4980 } 4981 SLAB_ATTR_RO(objects_partial); 4982 4983 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4984 { 4985 int objects = 0; 4986 int pages = 0; 4987 int cpu; 4988 int len; 4989 4990 for_each_online_cpu(cpu) { 4991 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4992 4993 if (page) { 4994 pages += page->pages; 4995 objects += page->pobjects; 4996 } 4997 } 4998 4999 len = sprintf(buf, "%d(%d)", objects, pages); 5000 5001 #ifdef CONFIG_SMP 5002 for_each_online_cpu(cpu) { 5003 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 5004 5005 if (page && len < PAGE_SIZE - 20) 5006 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5007 page->pobjects, page->pages); 5008 } 5009 #endif 5010 return len + sprintf(buf + len, "\n"); 5011 } 5012 SLAB_ATTR_RO(slabs_cpu_partial); 5013 5014 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5015 { 5016 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5017 } 5018 5019 static ssize_t reclaim_account_store(struct kmem_cache *s, 5020 const char *buf, size_t length) 5021 { 5022 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5023 if (buf[0] == '1') 5024 s->flags |= SLAB_RECLAIM_ACCOUNT; 5025 return length; 5026 } 5027 SLAB_ATTR(reclaim_account); 5028 5029 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5030 { 5031 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5032 } 5033 SLAB_ATTR_RO(hwcache_align); 5034 5035 #ifdef CONFIG_ZONE_DMA 5036 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5037 { 5038 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5039 } 5040 SLAB_ATTR_RO(cache_dma); 5041 #endif 5042 5043 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5044 { 5045 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5046 } 5047 SLAB_ATTR_RO(destroy_by_rcu); 5048 5049 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 5050 { 5051 return sprintf(buf, "%d\n", s->reserved); 5052 } 5053 SLAB_ATTR_RO(reserved); 5054 5055 #ifdef CONFIG_SLUB_DEBUG 5056 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5057 { 5058 return show_slab_objects(s, buf, SO_ALL); 5059 } 5060 SLAB_ATTR_RO(slabs); 5061 5062 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5063 { 5064 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5065 } 5066 SLAB_ATTR_RO(total_objects); 5067 5068 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5069 { 5070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5071 } 5072 5073 static ssize_t sanity_checks_store(struct kmem_cache *s, 5074 const char *buf, size_t length) 5075 { 5076 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5077 if (buf[0] == '1') { 5078 s->flags &= ~__CMPXCHG_DOUBLE; 5079 s->flags |= SLAB_CONSISTENCY_CHECKS; 5080 } 5081 return length; 5082 } 5083 SLAB_ATTR(sanity_checks); 5084 5085 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5086 { 5087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5088 } 5089 5090 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5091 size_t length) 5092 { 5093 /* 5094 * Tracing a merged cache is going to give confusing results 5095 * as well as cause other issues like converting a mergeable 5096 * cache into an umergeable one. 5097 */ 5098 if (s->refcount > 1) 5099 return -EINVAL; 5100 5101 s->flags &= ~SLAB_TRACE; 5102 if (buf[0] == '1') { 5103 s->flags &= ~__CMPXCHG_DOUBLE; 5104 s->flags |= SLAB_TRACE; 5105 } 5106 return length; 5107 } 5108 SLAB_ATTR(trace); 5109 5110 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5111 { 5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5113 } 5114 5115 static ssize_t red_zone_store(struct kmem_cache *s, 5116 const char *buf, size_t length) 5117 { 5118 if (any_slab_objects(s)) 5119 return -EBUSY; 5120 5121 s->flags &= ~SLAB_RED_ZONE; 5122 if (buf[0] == '1') { 5123 s->flags |= SLAB_RED_ZONE; 5124 } 5125 calculate_sizes(s, -1); 5126 return length; 5127 } 5128 SLAB_ATTR(red_zone); 5129 5130 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5131 { 5132 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5133 } 5134 5135 static ssize_t poison_store(struct kmem_cache *s, 5136 const char *buf, size_t length) 5137 { 5138 if (any_slab_objects(s)) 5139 return -EBUSY; 5140 5141 s->flags &= ~SLAB_POISON; 5142 if (buf[0] == '1') { 5143 s->flags |= SLAB_POISON; 5144 } 5145 calculate_sizes(s, -1); 5146 return length; 5147 } 5148 SLAB_ATTR(poison); 5149 5150 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5151 { 5152 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5153 } 5154 5155 static ssize_t store_user_store(struct kmem_cache *s, 5156 const char *buf, size_t length) 5157 { 5158 if (any_slab_objects(s)) 5159 return -EBUSY; 5160 5161 s->flags &= ~SLAB_STORE_USER; 5162 if (buf[0] == '1') { 5163 s->flags &= ~__CMPXCHG_DOUBLE; 5164 s->flags |= SLAB_STORE_USER; 5165 } 5166 calculate_sizes(s, -1); 5167 return length; 5168 } 5169 SLAB_ATTR(store_user); 5170 5171 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5172 { 5173 return 0; 5174 } 5175 5176 static ssize_t validate_store(struct kmem_cache *s, 5177 const char *buf, size_t length) 5178 { 5179 int ret = -EINVAL; 5180 5181 if (buf[0] == '1') { 5182 ret = validate_slab_cache(s); 5183 if (ret >= 0) 5184 ret = length; 5185 } 5186 return ret; 5187 } 5188 SLAB_ATTR(validate); 5189 5190 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5191 { 5192 if (!(s->flags & SLAB_STORE_USER)) 5193 return -ENOSYS; 5194 return list_locations(s, buf, TRACK_ALLOC); 5195 } 5196 SLAB_ATTR_RO(alloc_calls); 5197 5198 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5199 { 5200 if (!(s->flags & SLAB_STORE_USER)) 5201 return -ENOSYS; 5202 return list_locations(s, buf, TRACK_FREE); 5203 } 5204 SLAB_ATTR_RO(free_calls); 5205 #endif /* CONFIG_SLUB_DEBUG */ 5206 5207 #ifdef CONFIG_FAILSLAB 5208 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5209 { 5210 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5211 } 5212 5213 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5214 size_t length) 5215 { 5216 if (s->refcount > 1) 5217 return -EINVAL; 5218 5219 s->flags &= ~SLAB_FAILSLAB; 5220 if (buf[0] == '1') 5221 s->flags |= SLAB_FAILSLAB; 5222 return length; 5223 } 5224 SLAB_ATTR(failslab); 5225 #endif 5226 5227 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5228 { 5229 return 0; 5230 } 5231 5232 static ssize_t shrink_store(struct kmem_cache *s, 5233 const char *buf, size_t length) 5234 { 5235 if (buf[0] == '1') 5236 kmem_cache_shrink(s); 5237 else 5238 return -EINVAL; 5239 return length; 5240 } 5241 SLAB_ATTR(shrink); 5242 5243 #ifdef CONFIG_NUMA 5244 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5245 { 5246 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 5247 } 5248 5249 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5250 const char *buf, size_t length) 5251 { 5252 unsigned long ratio; 5253 int err; 5254 5255 err = kstrtoul(buf, 10, &ratio); 5256 if (err) 5257 return err; 5258 5259 if (ratio <= 100) 5260 s->remote_node_defrag_ratio = ratio * 10; 5261 5262 return length; 5263 } 5264 SLAB_ATTR(remote_node_defrag_ratio); 5265 #endif 5266 5267 #ifdef CONFIG_SLUB_STATS 5268 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5269 { 5270 unsigned long sum = 0; 5271 int cpu; 5272 int len; 5273 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5274 5275 if (!data) 5276 return -ENOMEM; 5277 5278 for_each_online_cpu(cpu) { 5279 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5280 5281 data[cpu] = x; 5282 sum += x; 5283 } 5284 5285 len = sprintf(buf, "%lu", sum); 5286 5287 #ifdef CONFIG_SMP 5288 for_each_online_cpu(cpu) { 5289 if (data[cpu] && len < PAGE_SIZE - 20) 5290 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5291 } 5292 #endif 5293 kfree(data); 5294 return len + sprintf(buf + len, "\n"); 5295 } 5296 5297 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5298 { 5299 int cpu; 5300 5301 for_each_online_cpu(cpu) 5302 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5303 } 5304 5305 #define STAT_ATTR(si, text) \ 5306 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5307 { \ 5308 return show_stat(s, buf, si); \ 5309 } \ 5310 static ssize_t text##_store(struct kmem_cache *s, \ 5311 const char *buf, size_t length) \ 5312 { \ 5313 if (buf[0] != '0') \ 5314 return -EINVAL; \ 5315 clear_stat(s, si); \ 5316 return length; \ 5317 } \ 5318 SLAB_ATTR(text); \ 5319 5320 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5321 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5322 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5323 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5324 STAT_ATTR(FREE_FROZEN, free_frozen); 5325 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5326 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5327 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5328 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5329 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5330 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5331 STAT_ATTR(FREE_SLAB, free_slab); 5332 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5333 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5334 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5335 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5336 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5337 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5338 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5339 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5340 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5341 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5342 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5343 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5344 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5345 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5346 #endif 5347 5348 static struct attribute *slab_attrs[] = { 5349 &slab_size_attr.attr, 5350 &object_size_attr.attr, 5351 &objs_per_slab_attr.attr, 5352 &order_attr.attr, 5353 &min_partial_attr.attr, 5354 &cpu_partial_attr.attr, 5355 &objects_attr.attr, 5356 &objects_partial_attr.attr, 5357 &partial_attr.attr, 5358 &cpu_slabs_attr.attr, 5359 &ctor_attr.attr, 5360 &aliases_attr.attr, 5361 &align_attr.attr, 5362 &hwcache_align_attr.attr, 5363 &reclaim_account_attr.attr, 5364 &destroy_by_rcu_attr.attr, 5365 &shrink_attr.attr, 5366 &reserved_attr.attr, 5367 &slabs_cpu_partial_attr.attr, 5368 #ifdef CONFIG_SLUB_DEBUG 5369 &total_objects_attr.attr, 5370 &slabs_attr.attr, 5371 &sanity_checks_attr.attr, 5372 &trace_attr.attr, 5373 &red_zone_attr.attr, 5374 &poison_attr.attr, 5375 &store_user_attr.attr, 5376 &validate_attr.attr, 5377 &alloc_calls_attr.attr, 5378 &free_calls_attr.attr, 5379 #endif 5380 #ifdef CONFIG_ZONE_DMA 5381 &cache_dma_attr.attr, 5382 #endif 5383 #ifdef CONFIG_NUMA 5384 &remote_node_defrag_ratio_attr.attr, 5385 #endif 5386 #ifdef CONFIG_SLUB_STATS 5387 &alloc_fastpath_attr.attr, 5388 &alloc_slowpath_attr.attr, 5389 &free_fastpath_attr.attr, 5390 &free_slowpath_attr.attr, 5391 &free_frozen_attr.attr, 5392 &free_add_partial_attr.attr, 5393 &free_remove_partial_attr.attr, 5394 &alloc_from_partial_attr.attr, 5395 &alloc_slab_attr.attr, 5396 &alloc_refill_attr.attr, 5397 &alloc_node_mismatch_attr.attr, 5398 &free_slab_attr.attr, 5399 &cpuslab_flush_attr.attr, 5400 &deactivate_full_attr.attr, 5401 &deactivate_empty_attr.attr, 5402 &deactivate_to_head_attr.attr, 5403 &deactivate_to_tail_attr.attr, 5404 &deactivate_remote_frees_attr.attr, 5405 &deactivate_bypass_attr.attr, 5406 &order_fallback_attr.attr, 5407 &cmpxchg_double_fail_attr.attr, 5408 &cmpxchg_double_cpu_fail_attr.attr, 5409 &cpu_partial_alloc_attr.attr, 5410 &cpu_partial_free_attr.attr, 5411 &cpu_partial_node_attr.attr, 5412 &cpu_partial_drain_attr.attr, 5413 #endif 5414 #ifdef CONFIG_FAILSLAB 5415 &failslab_attr.attr, 5416 #endif 5417 5418 NULL 5419 }; 5420 5421 static struct attribute_group slab_attr_group = { 5422 .attrs = slab_attrs, 5423 }; 5424 5425 static ssize_t slab_attr_show(struct kobject *kobj, 5426 struct attribute *attr, 5427 char *buf) 5428 { 5429 struct slab_attribute *attribute; 5430 struct kmem_cache *s; 5431 int err; 5432 5433 attribute = to_slab_attr(attr); 5434 s = to_slab(kobj); 5435 5436 if (!attribute->show) 5437 return -EIO; 5438 5439 err = attribute->show(s, buf); 5440 5441 return err; 5442 } 5443 5444 static ssize_t slab_attr_store(struct kobject *kobj, 5445 struct attribute *attr, 5446 const char *buf, size_t len) 5447 { 5448 struct slab_attribute *attribute; 5449 struct kmem_cache *s; 5450 int err; 5451 5452 attribute = to_slab_attr(attr); 5453 s = to_slab(kobj); 5454 5455 if (!attribute->store) 5456 return -EIO; 5457 5458 err = attribute->store(s, buf, len); 5459 #ifdef CONFIG_MEMCG 5460 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5461 struct kmem_cache *c; 5462 5463 mutex_lock(&slab_mutex); 5464 if (s->max_attr_size < len) 5465 s->max_attr_size = len; 5466 5467 /* 5468 * This is a best effort propagation, so this function's return 5469 * value will be determined by the parent cache only. This is 5470 * basically because not all attributes will have a well 5471 * defined semantics for rollbacks - most of the actions will 5472 * have permanent effects. 5473 * 5474 * Returning the error value of any of the children that fail 5475 * is not 100 % defined, in the sense that users seeing the 5476 * error code won't be able to know anything about the state of 5477 * the cache. 5478 * 5479 * Only returning the error code for the parent cache at least 5480 * has well defined semantics. The cache being written to 5481 * directly either failed or succeeded, in which case we loop 5482 * through the descendants with best-effort propagation. 5483 */ 5484 for_each_memcg_cache(c, s) 5485 attribute->store(c, buf, len); 5486 mutex_unlock(&slab_mutex); 5487 } 5488 #endif 5489 return err; 5490 } 5491 5492 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5493 { 5494 #ifdef CONFIG_MEMCG 5495 int i; 5496 char *buffer = NULL; 5497 struct kmem_cache *root_cache; 5498 5499 if (is_root_cache(s)) 5500 return; 5501 5502 root_cache = s->memcg_params.root_cache; 5503 5504 /* 5505 * This mean this cache had no attribute written. Therefore, no point 5506 * in copying default values around 5507 */ 5508 if (!root_cache->max_attr_size) 5509 return; 5510 5511 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5512 char mbuf[64]; 5513 char *buf; 5514 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5515 ssize_t len; 5516 5517 if (!attr || !attr->store || !attr->show) 5518 continue; 5519 5520 /* 5521 * It is really bad that we have to allocate here, so we will 5522 * do it only as a fallback. If we actually allocate, though, 5523 * we can just use the allocated buffer until the end. 5524 * 5525 * Most of the slub attributes will tend to be very small in 5526 * size, but sysfs allows buffers up to a page, so they can 5527 * theoretically happen. 5528 */ 5529 if (buffer) 5530 buf = buffer; 5531 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5532 buf = mbuf; 5533 else { 5534 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5535 if (WARN_ON(!buffer)) 5536 continue; 5537 buf = buffer; 5538 } 5539 5540 len = attr->show(root_cache, buf); 5541 if (len > 0) 5542 attr->store(s, buf, len); 5543 } 5544 5545 if (buffer) 5546 free_page((unsigned long)buffer); 5547 #endif 5548 } 5549 5550 static void kmem_cache_release(struct kobject *k) 5551 { 5552 slab_kmem_cache_release(to_slab(k)); 5553 } 5554 5555 static const struct sysfs_ops slab_sysfs_ops = { 5556 .show = slab_attr_show, 5557 .store = slab_attr_store, 5558 }; 5559 5560 static struct kobj_type slab_ktype = { 5561 .sysfs_ops = &slab_sysfs_ops, 5562 .release = kmem_cache_release, 5563 }; 5564 5565 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5566 { 5567 struct kobj_type *ktype = get_ktype(kobj); 5568 5569 if (ktype == &slab_ktype) 5570 return 1; 5571 return 0; 5572 } 5573 5574 static const struct kset_uevent_ops slab_uevent_ops = { 5575 .filter = uevent_filter, 5576 }; 5577 5578 static struct kset *slab_kset; 5579 5580 static inline struct kset *cache_kset(struct kmem_cache *s) 5581 { 5582 #ifdef CONFIG_MEMCG 5583 if (!is_root_cache(s)) 5584 return s->memcg_params.root_cache->memcg_kset; 5585 #endif 5586 return slab_kset; 5587 } 5588 5589 #define ID_STR_LENGTH 64 5590 5591 /* Create a unique string id for a slab cache: 5592 * 5593 * Format :[flags-]size 5594 */ 5595 static char *create_unique_id(struct kmem_cache *s) 5596 { 5597 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5598 char *p = name; 5599 5600 BUG_ON(!name); 5601 5602 *p++ = ':'; 5603 /* 5604 * First flags affecting slabcache operations. We will only 5605 * get here for aliasable slabs so we do not need to support 5606 * too many flags. The flags here must cover all flags that 5607 * are matched during merging to guarantee that the id is 5608 * unique. 5609 */ 5610 if (s->flags & SLAB_CACHE_DMA) 5611 *p++ = 'd'; 5612 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5613 *p++ = 'a'; 5614 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5615 *p++ = 'F'; 5616 if (!(s->flags & SLAB_NOTRACK)) 5617 *p++ = 't'; 5618 if (s->flags & SLAB_ACCOUNT) 5619 *p++ = 'A'; 5620 if (p != name + 1) 5621 *p++ = '-'; 5622 p += sprintf(p, "%07d", s->size); 5623 5624 BUG_ON(p > name + ID_STR_LENGTH - 1); 5625 return name; 5626 } 5627 5628 static int sysfs_slab_add(struct kmem_cache *s) 5629 { 5630 int err; 5631 const char *name; 5632 struct kset *kset = cache_kset(s); 5633 int unmergeable = slab_unmergeable(s); 5634 5635 if (!kset) { 5636 kobject_init(&s->kobj, &slab_ktype); 5637 return 0; 5638 } 5639 5640 if (unmergeable) { 5641 /* 5642 * Slabcache can never be merged so we can use the name proper. 5643 * This is typically the case for debug situations. In that 5644 * case we can catch duplicate names easily. 5645 */ 5646 sysfs_remove_link(&slab_kset->kobj, s->name); 5647 name = s->name; 5648 } else { 5649 /* 5650 * Create a unique name for the slab as a target 5651 * for the symlinks. 5652 */ 5653 name = create_unique_id(s); 5654 } 5655 5656 s->kobj.kset = kset; 5657 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5658 if (err) 5659 goto out; 5660 5661 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5662 if (err) 5663 goto out_del_kobj; 5664 5665 #ifdef CONFIG_MEMCG 5666 if (is_root_cache(s) && memcg_sysfs_enabled) { 5667 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5668 if (!s->memcg_kset) { 5669 err = -ENOMEM; 5670 goto out_del_kobj; 5671 } 5672 } 5673 #endif 5674 5675 kobject_uevent(&s->kobj, KOBJ_ADD); 5676 if (!unmergeable) { 5677 /* Setup first alias */ 5678 sysfs_slab_alias(s, s->name); 5679 } 5680 out: 5681 if (!unmergeable) 5682 kfree(name); 5683 return err; 5684 out_del_kobj: 5685 kobject_del(&s->kobj); 5686 goto out; 5687 } 5688 5689 static void sysfs_slab_remove(struct kmem_cache *s) 5690 { 5691 if (slab_state < FULL) 5692 /* 5693 * Sysfs has not been setup yet so no need to remove the 5694 * cache from sysfs. 5695 */ 5696 return; 5697 5698 if (!s->kobj.state_in_sysfs) 5699 /* 5700 * For a memcg cache, this may be called during 5701 * deactivation and again on shutdown. Remove only once. 5702 * A cache is never shut down before deactivation is 5703 * complete, so no need to worry about synchronization. 5704 */ 5705 return; 5706 5707 #ifdef CONFIG_MEMCG 5708 kset_unregister(s->memcg_kset); 5709 #endif 5710 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5711 kobject_del(&s->kobj); 5712 } 5713 5714 void sysfs_slab_release(struct kmem_cache *s) 5715 { 5716 if (slab_state >= FULL) 5717 kobject_put(&s->kobj); 5718 } 5719 5720 /* 5721 * Need to buffer aliases during bootup until sysfs becomes 5722 * available lest we lose that information. 5723 */ 5724 struct saved_alias { 5725 struct kmem_cache *s; 5726 const char *name; 5727 struct saved_alias *next; 5728 }; 5729 5730 static struct saved_alias *alias_list; 5731 5732 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5733 { 5734 struct saved_alias *al; 5735 5736 if (slab_state == FULL) { 5737 /* 5738 * If we have a leftover link then remove it. 5739 */ 5740 sysfs_remove_link(&slab_kset->kobj, name); 5741 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5742 } 5743 5744 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5745 if (!al) 5746 return -ENOMEM; 5747 5748 al->s = s; 5749 al->name = name; 5750 al->next = alias_list; 5751 alias_list = al; 5752 return 0; 5753 } 5754 5755 static int __init slab_sysfs_init(void) 5756 { 5757 struct kmem_cache *s; 5758 int err; 5759 5760 mutex_lock(&slab_mutex); 5761 5762 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5763 if (!slab_kset) { 5764 mutex_unlock(&slab_mutex); 5765 pr_err("Cannot register slab subsystem.\n"); 5766 return -ENOSYS; 5767 } 5768 5769 slab_state = FULL; 5770 5771 list_for_each_entry(s, &slab_caches, list) { 5772 err = sysfs_slab_add(s); 5773 if (err) 5774 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5775 s->name); 5776 } 5777 5778 while (alias_list) { 5779 struct saved_alias *al = alias_list; 5780 5781 alias_list = alias_list->next; 5782 err = sysfs_slab_alias(al->s, al->name); 5783 if (err) 5784 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5785 al->name); 5786 kfree(al); 5787 } 5788 5789 mutex_unlock(&slab_mutex); 5790 resiliency_test(); 5791 return 0; 5792 } 5793 5794 __initcall(slab_sysfs_init); 5795 #endif /* CONFIG_SYSFS */ 5796 5797 /* 5798 * The /proc/slabinfo ABI 5799 */ 5800 #ifdef CONFIG_SLABINFO 5801 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5802 { 5803 unsigned long nr_slabs = 0; 5804 unsigned long nr_objs = 0; 5805 unsigned long nr_free = 0; 5806 int node; 5807 struct kmem_cache_node *n; 5808 5809 for_each_kmem_cache_node(s, node, n) { 5810 nr_slabs += node_nr_slabs(n); 5811 nr_objs += node_nr_objs(n); 5812 nr_free += count_partial(n, count_free); 5813 } 5814 5815 sinfo->active_objs = nr_objs - nr_free; 5816 sinfo->num_objs = nr_objs; 5817 sinfo->active_slabs = nr_slabs; 5818 sinfo->num_slabs = nr_slabs; 5819 sinfo->objects_per_slab = oo_objects(s->oo); 5820 sinfo->cache_order = oo_order(s->oo); 5821 } 5822 5823 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5824 { 5825 } 5826 5827 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5828 size_t count, loff_t *ppos) 5829 { 5830 return -EIO; 5831 } 5832 #endif /* CONFIG_SLABINFO */ 5833