1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kmemcheck.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 37 #include <trace/events/kmem.h> 38 39 #include "internal.h" 40 41 /* 42 * Lock order: 43 * 1. slab_mutex (Global Mutex) 44 * 2. node->list_lock 45 * 3. slab_lock(page) (Only on some arches and for debugging) 46 * 47 * slab_mutex 48 * 49 * The role of the slab_mutex is to protect the list of all the slabs 50 * and to synchronize major metadata changes to slab cache structures. 51 * 52 * The slab_lock is only used for debugging and on arches that do not 53 * have the ability to do a cmpxchg_double. It only protects the second 54 * double word in the page struct. Meaning 55 * A. page->freelist -> List of object free in a page 56 * B. page->counters -> Counters of objects 57 * C. page->frozen -> frozen state 58 * 59 * If a slab is frozen then it is exempt from list management. It is not 60 * on any list. The processor that froze the slab is the one who can 61 * perform list operations on the page. Other processors may put objects 62 * onto the freelist but the processor that froze the slab is the only 63 * one that can retrieve the objects from the page's freelist. 64 * 65 * The list_lock protects the partial and full list on each node and 66 * the partial slab counter. If taken then no new slabs may be added or 67 * removed from the lists nor make the number of partial slabs be modified. 68 * (Note that the total number of slabs is an atomic value that may be 69 * modified without taking the list lock). 70 * 71 * The list_lock is a centralized lock and thus we avoid taking it as 72 * much as possible. As long as SLUB does not have to handle partial 73 * slabs, operations can continue without any centralized lock. F.e. 74 * allocating a long series of objects that fill up slabs does not require 75 * the list lock. 76 * Interrupts are disabled during allocation and deallocation in order to 77 * make the slab allocator safe to use in the context of an irq. In addition 78 * interrupts are disabled to ensure that the processor does not change 79 * while handling per_cpu slabs, due to kernel preemption. 80 * 81 * SLUB assigns one slab for allocation to each processor. 82 * Allocations only occur from these slabs called cpu slabs. 83 * 84 * Slabs with free elements are kept on a partial list and during regular 85 * operations no list for full slabs is used. If an object in a full slab is 86 * freed then the slab will show up again on the partial lists. 87 * We track full slabs for debugging purposes though because otherwise we 88 * cannot scan all objects. 89 * 90 * Slabs are freed when they become empty. Teardown and setup is 91 * minimal so we rely on the page allocators per cpu caches for 92 * fast frees and allocs. 93 * 94 * Overloading of page flags that are otherwise used for LRU management. 95 * 96 * PageActive The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * PageError Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 127 { 128 #ifdef CONFIG_SLUB_CPU_PARTIAL 129 return !kmem_cache_debug(s); 130 #else 131 return false; 132 #endif 133 } 134 135 /* 136 * Issues still to be resolved: 137 * 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 139 * 140 * - Variable sizing of the per node arrays 141 */ 142 143 /* Enable to test recovery from slab corruption on boot */ 144 #undef SLUB_RESILIENCY_TEST 145 146 /* Enable to log cmpxchg failures */ 147 #undef SLUB_DEBUG_CMPXCHG 148 149 /* 150 * Mininum number of partial slabs. These will be left on the partial 151 * lists even if they are empty. kmem_cache_shrink may reclaim them. 152 */ 153 #define MIN_PARTIAL 5 154 155 /* 156 * Maximum number of desirable partial slabs. 157 * The existence of more partial slabs makes kmem_cache_shrink 158 * sort the partial list by the number of objects in use. 159 */ 160 #define MAX_PARTIAL 10 161 162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 163 SLAB_POISON | SLAB_STORE_USER) 164 165 /* 166 * Debugging flags that require metadata to be stored in the slab. These get 167 * disabled when slub_debug=O is used and a cache's min order increases with 168 * metadata. 169 */ 170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 171 172 /* 173 * Set of flags that will prevent slab merging 174 */ 175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 177 SLAB_FAILSLAB) 178 179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 180 SLAB_CACHE_DMA | SLAB_NOTRACK) 181 182 #define OO_SHIFT 16 183 #define OO_MASK ((1 << OO_SHIFT) - 1) 184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 185 186 /* Internal SLUB flags */ 187 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 189 190 #ifdef CONFIG_SMP 191 static struct notifier_block slab_notifier; 192 #endif 193 194 /* 195 * Tracking user of a slab. 196 */ 197 #define TRACK_ADDRS_COUNT 16 198 struct track { 199 unsigned long addr; /* Called from address */ 200 #ifdef CONFIG_STACKTRACE 201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 202 #endif 203 int cpu; /* Was running on cpu */ 204 int pid; /* Pid context */ 205 unsigned long when; /* When did the operation occur */ 206 }; 207 208 enum track_item { TRACK_ALLOC, TRACK_FREE }; 209 210 #ifdef CONFIG_SYSFS 211 static int sysfs_slab_add(struct kmem_cache *); 212 static int sysfs_slab_alias(struct kmem_cache *, const char *); 213 static void sysfs_slab_remove(struct kmem_cache *); 214 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 215 #else 216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 218 { return 0; } 219 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 220 221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 222 #endif 223 224 static inline void stat(const struct kmem_cache *s, enum stat_item si) 225 { 226 #ifdef CONFIG_SLUB_STATS 227 __this_cpu_inc(s->cpu_slab->stat[si]); 228 #endif 229 } 230 231 /******************************************************************** 232 * Core slab cache functions 233 *******************************************************************/ 234 235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 236 { 237 return s->node[node]; 238 } 239 240 /* Verify that a pointer has an address that is valid within a slab page */ 241 static inline int check_valid_pointer(struct kmem_cache *s, 242 struct page *page, const void *object) 243 { 244 void *base; 245 246 if (!object) 247 return 1; 248 249 base = page_address(page); 250 if (object < base || object >= base + page->objects * s->size || 251 (object - base) % s->size) { 252 return 0; 253 } 254 255 return 1; 256 } 257 258 static inline void *get_freepointer(struct kmem_cache *s, void *object) 259 { 260 return *(void **)(object + s->offset); 261 } 262 263 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 264 { 265 prefetch(object + s->offset); 266 } 267 268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 269 { 270 void *p; 271 272 #ifdef CONFIG_DEBUG_PAGEALLOC 273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 274 #else 275 p = get_freepointer(s, object); 276 #endif 277 return p; 278 } 279 280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 281 { 282 *(void **)(object + s->offset) = fp; 283 } 284 285 /* Loop over all objects in a slab */ 286 #define for_each_object(__p, __s, __addr, __objects) \ 287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 288 __p += (__s)->size) 289 290 /* Determine object index from a given position */ 291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 292 { 293 return (p - addr) / s->size; 294 } 295 296 static inline size_t slab_ksize(const struct kmem_cache *s) 297 { 298 #ifdef CONFIG_SLUB_DEBUG 299 /* 300 * Debugging requires use of the padding between object 301 * and whatever may come after it. 302 */ 303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 304 return s->object_size; 305 306 #endif 307 /* 308 * If we have the need to store the freelist pointer 309 * back there or track user information then we can 310 * only use the space before that information. 311 */ 312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 313 return s->inuse; 314 /* 315 * Else we can use all the padding etc for the allocation 316 */ 317 return s->size; 318 } 319 320 static inline int order_objects(int order, unsigned long size, int reserved) 321 { 322 return ((PAGE_SIZE << order) - reserved) / size; 323 } 324 325 static inline struct kmem_cache_order_objects oo_make(int order, 326 unsigned long size, int reserved) 327 { 328 struct kmem_cache_order_objects x = { 329 (order << OO_SHIFT) + order_objects(order, size, reserved) 330 }; 331 332 return x; 333 } 334 335 static inline int oo_order(struct kmem_cache_order_objects x) 336 { 337 return x.x >> OO_SHIFT; 338 } 339 340 static inline int oo_objects(struct kmem_cache_order_objects x) 341 { 342 return x.x & OO_MASK; 343 } 344 345 /* 346 * Per slab locking using the pagelock 347 */ 348 static __always_inline void slab_lock(struct page *page) 349 { 350 bit_spin_lock(PG_locked, &page->flags); 351 } 352 353 static __always_inline void slab_unlock(struct page *page) 354 { 355 __bit_spin_unlock(PG_locked, &page->flags); 356 } 357 358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 359 { 360 struct page tmp; 361 tmp.counters = counters_new; 362 /* 363 * page->counters can cover frozen/inuse/objects as well 364 * as page->_count. If we assign to ->counters directly 365 * we run the risk of losing updates to page->_count, so 366 * be careful and only assign to the fields we need. 367 */ 368 page->frozen = tmp.frozen; 369 page->inuse = tmp.inuse; 370 page->objects = tmp.objects; 371 } 372 373 /* Interrupts must be disabled (for the fallback code to work right) */ 374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 375 void *freelist_old, unsigned long counters_old, 376 void *freelist_new, unsigned long counters_new, 377 const char *n) 378 { 379 VM_BUG_ON(!irqs_disabled()); 380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 382 if (s->flags & __CMPXCHG_DOUBLE) { 383 if (cmpxchg_double(&page->freelist, &page->counters, 384 freelist_old, counters_old, 385 freelist_new, counters_new)) 386 return 1; 387 } else 388 #endif 389 { 390 slab_lock(page); 391 if (page->freelist == freelist_old && 392 page->counters == counters_old) { 393 page->freelist = freelist_new; 394 set_page_slub_counters(page, counters_new); 395 slab_unlock(page); 396 return 1; 397 } 398 slab_unlock(page); 399 } 400 401 cpu_relax(); 402 stat(s, CMPXCHG_DOUBLE_FAIL); 403 404 #ifdef SLUB_DEBUG_CMPXCHG 405 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 406 #endif 407 408 return 0; 409 } 410 411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 412 void *freelist_old, unsigned long counters_old, 413 void *freelist_new, unsigned long counters_new, 414 const char *n) 415 { 416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 418 if (s->flags & __CMPXCHG_DOUBLE) { 419 if (cmpxchg_double(&page->freelist, &page->counters, 420 freelist_old, counters_old, 421 freelist_new, counters_new)) 422 return 1; 423 } else 424 #endif 425 { 426 unsigned long flags; 427 428 local_irq_save(flags); 429 slab_lock(page); 430 if (page->freelist == freelist_old && 431 page->counters == counters_old) { 432 page->freelist = freelist_new; 433 set_page_slub_counters(page, counters_new); 434 slab_unlock(page); 435 local_irq_restore(flags); 436 return 1; 437 } 438 slab_unlock(page); 439 local_irq_restore(flags); 440 } 441 442 cpu_relax(); 443 stat(s, CMPXCHG_DOUBLE_FAIL); 444 445 #ifdef SLUB_DEBUG_CMPXCHG 446 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 447 #endif 448 449 return 0; 450 } 451 452 #ifdef CONFIG_SLUB_DEBUG 453 /* 454 * Determine a map of object in use on a page. 455 * 456 * Node listlock must be held to guarantee that the page does 457 * not vanish from under us. 458 */ 459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 460 { 461 void *p; 462 void *addr = page_address(page); 463 464 for (p = page->freelist; p; p = get_freepointer(s, p)) 465 set_bit(slab_index(p, s, addr), map); 466 } 467 468 /* 469 * Debug settings: 470 */ 471 #ifdef CONFIG_SLUB_DEBUG_ON 472 static int slub_debug = DEBUG_DEFAULT_FLAGS; 473 #else 474 static int slub_debug; 475 #endif 476 477 static char *slub_debug_slabs; 478 static int disable_higher_order_debug; 479 480 /* 481 * Object debugging 482 */ 483 static void print_section(char *text, u8 *addr, unsigned int length) 484 { 485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 486 length, 1); 487 } 488 489 static struct track *get_track(struct kmem_cache *s, void *object, 490 enum track_item alloc) 491 { 492 struct track *p; 493 494 if (s->offset) 495 p = object + s->offset + sizeof(void *); 496 else 497 p = object + s->inuse; 498 499 return p + alloc; 500 } 501 502 static void set_track(struct kmem_cache *s, void *object, 503 enum track_item alloc, unsigned long addr) 504 { 505 struct track *p = get_track(s, object, alloc); 506 507 if (addr) { 508 #ifdef CONFIG_STACKTRACE 509 struct stack_trace trace; 510 int i; 511 512 trace.nr_entries = 0; 513 trace.max_entries = TRACK_ADDRS_COUNT; 514 trace.entries = p->addrs; 515 trace.skip = 3; 516 save_stack_trace(&trace); 517 518 /* See rant in lockdep.c */ 519 if (trace.nr_entries != 0 && 520 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 521 trace.nr_entries--; 522 523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 524 p->addrs[i] = 0; 525 #endif 526 p->addr = addr; 527 p->cpu = smp_processor_id(); 528 p->pid = current->pid; 529 p->when = jiffies; 530 } else 531 memset(p, 0, sizeof(struct track)); 532 } 533 534 static void init_tracking(struct kmem_cache *s, void *object) 535 { 536 if (!(s->flags & SLAB_STORE_USER)) 537 return; 538 539 set_track(s, object, TRACK_FREE, 0UL); 540 set_track(s, object, TRACK_ALLOC, 0UL); 541 } 542 543 static void print_track(const char *s, struct track *t) 544 { 545 if (!t->addr) 546 return; 547 548 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 550 #ifdef CONFIG_STACKTRACE 551 { 552 int i; 553 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 554 if (t->addrs[i]) 555 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 556 else 557 break; 558 } 559 #endif 560 } 561 562 static void print_tracking(struct kmem_cache *s, void *object) 563 { 564 if (!(s->flags & SLAB_STORE_USER)) 565 return; 566 567 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 568 print_track("Freed", get_track(s, object, TRACK_FREE)); 569 } 570 571 static void print_page_info(struct page *page) 572 { 573 printk(KERN_ERR 574 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 575 page, page->objects, page->inuse, page->freelist, page->flags); 576 577 } 578 579 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 580 { 581 va_list args; 582 char buf[100]; 583 584 va_start(args, fmt); 585 vsnprintf(buf, sizeof(buf), fmt, args); 586 va_end(args); 587 printk(KERN_ERR "========================================" 588 "=====================================\n"); 589 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); 590 printk(KERN_ERR "----------------------------------------" 591 "-------------------------------------\n\n"); 592 593 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 594 } 595 596 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 597 { 598 va_list args; 599 char buf[100]; 600 601 va_start(args, fmt); 602 vsnprintf(buf, sizeof(buf), fmt, args); 603 va_end(args); 604 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 605 } 606 607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 608 { 609 unsigned int off; /* Offset of last byte */ 610 u8 *addr = page_address(page); 611 612 print_tracking(s, p); 613 614 print_page_info(page); 615 616 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 617 p, p - addr, get_freepointer(s, p)); 618 619 if (p > addr + 16) 620 print_section("Bytes b4 ", p - 16, 16); 621 622 print_section("Object ", p, min_t(unsigned long, s->object_size, 623 PAGE_SIZE)); 624 if (s->flags & SLAB_RED_ZONE) 625 print_section("Redzone ", p + s->object_size, 626 s->inuse - s->object_size); 627 628 if (s->offset) 629 off = s->offset + sizeof(void *); 630 else 631 off = s->inuse; 632 633 if (s->flags & SLAB_STORE_USER) 634 off += 2 * sizeof(struct track); 635 636 if (off != s->size) 637 /* Beginning of the filler is the free pointer */ 638 print_section("Padding ", p + off, s->size - off); 639 640 dump_stack(); 641 } 642 643 static void object_err(struct kmem_cache *s, struct page *page, 644 u8 *object, char *reason) 645 { 646 slab_bug(s, "%s", reason); 647 print_trailer(s, page, object); 648 } 649 650 static void slab_err(struct kmem_cache *s, struct page *page, 651 const char *fmt, ...) 652 { 653 va_list args; 654 char buf[100]; 655 656 va_start(args, fmt); 657 vsnprintf(buf, sizeof(buf), fmt, args); 658 va_end(args); 659 slab_bug(s, "%s", buf); 660 print_page_info(page); 661 dump_stack(); 662 } 663 664 static void init_object(struct kmem_cache *s, void *object, u8 val) 665 { 666 u8 *p = object; 667 668 if (s->flags & __OBJECT_POISON) { 669 memset(p, POISON_FREE, s->object_size - 1); 670 p[s->object_size - 1] = POISON_END; 671 } 672 673 if (s->flags & SLAB_RED_ZONE) 674 memset(p + s->object_size, val, s->inuse - s->object_size); 675 } 676 677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 678 void *from, void *to) 679 { 680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 681 memset(from, data, to - from); 682 } 683 684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 685 u8 *object, char *what, 686 u8 *start, unsigned int value, unsigned int bytes) 687 { 688 u8 *fault; 689 u8 *end; 690 691 fault = memchr_inv(start, value, bytes); 692 if (!fault) 693 return 1; 694 695 end = start + bytes; 696 while (end > fault && end[-1] == value) 697 end--; 698 699 slab_bug(s, "%s overwritten", what); 700 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 701 fault, end - 1, fault[0], value); 702 print_trailer(s, page, object); 703 704 restore_bytes(s, what, value, fault, end); 705 return 0; 706 } 707 708 /* 709 * Object layout: 710 * 711 * object address 712 * Bytes of the object to be managed. 713 * If the freepointer may overlay the object then the free 714 * pointer is the first word of the object. 715 * 716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 717 * 0xa5 (POISON_END) 718 * 719 * object + s->object_size 720 * Padding to reach word boundary. This is also used for Redzoning. 721 * Padding is extended by another word if Redzoning is enabled and 722 * object_size == inuse. 723 * 724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 725 * 0xcc (RED_ACTIVE) for objects in use. 726 * 727 * object + s->inuse 728 * Meta data starts here. 729 * 730 * A. Free pointer (if we cannot overwrite object on free) 731 * B. Tracking data for SLAB_STORE_USER 732 * C. Padding to reach required alignment boundary or at mininum 733 * one word if debugging is on to be able to detect writes 734 * before the word boundary. 735 * 736 * Padding is done using 0x5a (POISON_INUSE) 737 * 738 * object + s->size 739 * Nothing is used beyond s->size. 740 * 741 * If slabcaches are merged then the object_size and inuse boundaries are mostly 742 * ignored. And therefore no slab options that rely on these boundaries 743 * may be used with merged slabcaches. 744 */ 745 746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 747 { 748 unsigned long off = s->inuse; /* The end of info */ 749 750 if (s->offset) 751 /* Freepointer is placed after the object. */ 752 off += sizeof(void *); 753 754 if (s->flags & SLAB_STORE_USER) 755 /* We also have user information there */ 756 off += 2 * sizeof(struct track); 757 758 if (s->size == off) 759 return 1; 760 761 return check_bytes_and_report(s, page, p, "Object padding", 762 p + off, POISON_INUSE, s->size - off); 763 } 764 765 /* Check the pad bytes at the end of a slab page */ 766 static int slab_pad_check(struct kmem_cache *s, struct page *page) 767 { 768 u8 *start; 769 u8 *fault; 770 u8 *end; 771 int length; 772 int remainder; 773 774 if (!(s->flags & SLAB_POISON)) 775 return 1; 776 777 start = page_address(page); 778 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 779 end = start + length; 780 remainder = length % s->size; 781 if (!remainder) 782 return 1; 783 784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 785 if (!fault) 786 return 1; 787 while (end > fault && end[-1] == POISON_INUSE) 788 end--; 789 790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 791 print_section("Padding ", end - remainder, remainder); 792 793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 794 return 0; 795 } 796 797 static int check_object(struct kmem_cache *s, struct page *page, 798 void *object, u8 val) 799 { 800 u8 *p = object; 801 u8 *endobject = object + s->object_size; 802 803 if (s->flags & SLAB_RED_ZONE) { 804 if (!check_bytes_and_report(s, page, object, "Redzone", 805 endobject, val, s->inuse - s->object_size)) 806 return 0; 807 } else { 808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 809 check_bytes_and_report(s, page, p, "Alignment padding", 810 endobject, POISON_INUSE, 811 s->inuse - s->object_size); 812 } 813 } 814 815 if (s->flags & SLAB_POISON) { 816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 817 (!check_bytes_and_report(s, page, p, "Poison", p, 818 POISON_FREE, s->object_size - 1) || 819 !check_bytes_and_report(s, page, p, "Poison", 820 p + s->object_size - 1, POISON_END, 1))) 821 return 0; 822 /* 823 * check_pad_bytes cleans up on its own. 824 */ 825 check_pad_bytes(s, page, p); 826 } 827 828 if (!s->offset && val == SLUB_RED_ACTIVE) 829 /* 830 * Object and freepointer overlap. Cannot check 831 * freepointer while object is allocated. 832 */ 833 return 1; 834 835 /* Check free pointer validity */ 836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 837 object_err(s, page, p, "Freepointer corrupt"); 838 /* 839 * No choice but to zap it and thus lose the remainder 840 * of the free objects in this slab. May cause 841 * another error because the object count is now wrong. 842 */ 843 set_freepointer(s, p, NULL); 844 return 0; 845 } 846 return 1; 847 } 848 849 static int check_slab(struct kmem_cache *s, struct page *page) 850 { 851 int maxobj; 852 853 VM_BUG_ON(!irqs_disabled()); 854 855 if (!PageSlab(page)) { 856 slab_err(s, page, "Not a valid slab page"); 857 return 0; 858 } 859 860 maxobj = order_objects(compound_order(page), s->size, s->reserved); 861 if (page->objects > maxobj) { 862 slab_err(s, page, "objects %u > max %u", 863 s->name, page->objects, maxobj); 864 return 0; 865 } 866 if (page->inuse > page->objects) { 867 slab_err(s, page, "inuse %u > max %u", 868 s->name, page->inuse, page->objects); 869 return 0; 870 } 871 /* Slab_pad_check fixes things up after itself */ 872 slab_pad_check(s, page); 873 return 1; 874 } 875 876 /* 877 * Determine if a certain object on a page is on the freelist. Must hold the 878 * slab lock to guarantee that the chains are in a consistent state. 879 */ 880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 881 { 882 int nr = 0; 883 void *fp; 884 void *object = NULL; 885 unsigned long max_objects; 886 887 fp = page->freelist; 888 while (fp && nr <= page->objects) { 889 if (fp == search) 890 return 1; 891 if (!check_valid_pointer(s, page, fp)) { 892 if (object) { 893 object_err(s, page, object, 894 "Freechain corrupt"); 895 set_freepointer(s, object, NULL); 896 } else { 897 slab_err(s, page, "Freepointer corrupt"); 898 page->freelist = NULL; 899 page->inuse = page->objects; 900 slab_fix(s, "Freelist cleared"); 901 return 0; 902 } 903 break; 904 } 905 object = fp; 906 fp = get_freepointer(s, object); 907 nr++; 908 } 909 910 max_objects = order_objects(compound_order(page), s->size, s->reserved); 911 if (max_objects > MAX_OBJS_PER_PAGE) 912 max_objects = MAX_OBJS_PER_PAGE; 913 914 if (page->objects != max_objects) { 915 slab_err(s, page, "Wrong number of objects. Found %d but " 916 "should be %d", page->objects, max_objects); 917 page->objects = max_objects; 918 slab_fix(s, "Number of objects adjusted."); 919 } 920 if (page->inuse != page->objects - nr) { 921 slab_err(s, page, "Wrong object count. Counter is %d but " 922 "counted were %d", page->inuse, page->objects - nr); 923 page->inuse = page->objects - nr; 924 slab_fix(s, "Object count adjusted."); 925 } 926 return search == NULL; 927 } 928 929 static void trace(struct kmem_cache *s, struct page *page, void *object, 930 int alloc) 931 { 932 if (s->flags & SLAB_TRACE) { 933 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 934 s->name, 935 alloc ? "alloc" : "free", 936 object, page->inuse, 937 page->freelist); 938 939 if (!alloc) 940 print_section("Object ", (void *)object, 941 s->object_size); 942 943 dump_stack(); 944 } 945 } 946 947 /* 948 * Hooks for other subsystems that check memory allocations. In a typical 949 * production configuration these hooks all should produce no code at all. 950 */ 951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 952 { 953 kmemleak_alloc(ptr, size, 1, flags); 954 } 955 956 static inline void kfree_hook(const void *x) 957 { 958 kmemleak_free(x); 959 } 960 961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 962 { 963 flags &= gfp_allowed_mask; 964 lockdep_trace_alloc(flags); 965 might_sleep_if(flags & __GFP_WAIT); 966 967 return should_failslab(s->object_size, flags, s->flags); 968 } 969 970 static inline void slab_post_alloc_hook(struct kmem_cache *s, 971 gfp_t flags, void *object) 972 { 973 flags &= gfp_allowed_mask; 974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 976 } 977 978 static inline void slab_free_hook(struct kmem_cache *s, void *x) 979 { 980 kmemleak_free_recursive(x, s->flags); 981 982 /* 983 * Trouble is that we may no longer disable interrupts in the fast path 984 * So in order to make the debug calls that expect irqs to be 985 * disabled we need to disable interrupts temporarily. 986 */ 987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 988 { 989 unsigned long flags; 990 991 local_irq_save(flags); 992 kmemcheck_slab_free(s, x, s->object_size); 993 debug_check_no_locks_freed(x, s->object_size); 994 local_irq_restore(flags); 995 } 996 #endif 997 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 998 debug_check_no_obj_freed(x, s->object_size); 999 } 1000 1001 /* 1002 * Tracking of fully allocated slabs for debugging purposes. 1003 */ 1004 static void add_full(struct kmem_cache *s, 1005 struct kmem_cache_node *n, struct page *page) 1006 { 1007 if (!(s->flags & SLAB_STORE_USER)) 1008 return; 1009 1010 lockdep_assert_held(&n->list_lock); 1011 list_add(&page->lru, &n->full); 1012 } 1013 1014 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1015 { 1016 if (!(s->flags & SLAB_STORE_USER)) 1017 return; 1018 1019 lockdep_assert_held(&n->list_lock); 1020 list_del(&page->lru); 1021 } 1022 1023 /* Tracking of the number of slabs for debugging purposes */ 1024 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1025 { 1026 struct kmem_cache_node *n = get_node(s, node); 1027 1028 return atomic_long_read(&n->nr_slabs); 1029 } 1030 1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1032 { 1033 return atomic_long_read(&n->nr_slabs); 1034 } 1035 1036 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1037 { 1038 struct kmem_cache_node *n = get_node(s, node); 1039 1040 /* 1041 * May be called early in order to allocate a slab for the 1042 * kmem_cache_node structure. Solve the chicken-egg 1043 * dilemma by deferring the increment of the count during 1044 * bootstrap (see early_kmem_cache_node_alloc). 1045 */ 1046 if (likely(n)) { 1047 atomic_long_inc(&n->nr_slabs); 1048 atomic_long_add(objects, &n->total_objects); 1049 } 1050 } 1051 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1052 { 1053 struct kmem_cache_node *n = get_node(s, node); 1054 1055 atomic_long_dec(&n->nr_slabs); 1056 atomic_long_sub(objects, &n->total_objects); 1057 } 1058 1059 /* Object debug checks for alloc/free paths */ 1060 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1061 void *object) 1062 { 1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1064 return; 1065 1066 init_object(s, object, SLUB_RED_INACTIVE); 1067 init_tracking(s, object); 1068 } 1069 1070 static noinline int alloc_debug_processing(struct kmem_cache *s, 1071 struct page *page, 1072 void *object, unsigned long addr) 1073 { 1074 if (!check_slab(s, page)) 1075 goto bad; 1076 1077 if (!check_valid_pointer(s, page, object)) { 1078 object_err(s, page, object, "Freelist Pointer check fails"); 1079 goto bad; 1080 } 1081 1082 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1083 goto bad; 1084 1085 /* Success perform special debug activities for allocs */ 1086 if (s->flags & SLAB_STORE_USER) 1087 set_track(s, object, TRACK_ALLOC, addr); 1088 trace(s, page, object, 1); 1089 init_object(s, object, SLUB_RED_ACTIVE); 1090 return 1; 1091 1092 bad: 1093 if (PageSlab(page)) { 1094 /* 1095 * If this is a slab page then lets do the best we can 1096 * to avoid issues in the future. Marking all objects 1097 * as used avoids touching the remaining objects. 1098 */ 1099 slab_fix(s, "Marking all objects used"); 1100 page->inuse = page->objects; 1101 page->freelist = NULL; 1102 } 1103 return 0; 1104 } 1105 1106 static noinline struct kmem_cache_node *free_debug_processing( 1107 struct kmem_cache *s, struct page *page, void *object, 1108 unsigned long addr, unsigned long *flags) 1109 { 1110 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1111 1112 spin_lock_irqsave(&n->list_lock, *flags); 1113 slab_lock(page); 1114 1115 if (!check_slab(s, page)) 1116 goto fail; 1117 1118 if (!check_valid_pointer(s, page, object)) { 1119 slab_err(s, page, "Invalid object pointer 0x%p", object); 1120 goto fail; 1121 } 1122 1123 if (on_freelist(s, page, object)) { 1124 object_err(s, page, object, "Object already free"); 1125 goto fail; 1126 } 1127 1128 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1129 goto out; 1130 1131 if (unlikely(s != page->slab_cache)) { 1132 if (!PageSlab(page)) { 1133 slab_err(s, page, "Attempt to free object(0x%p) " 1134 "outside of slab", object); 1135 } else if (!page->slab_cache) { 1136 printk(KERN_ERR 1137 "SLUB <none>: no slab for object 0x%p.\n", 1138 object); 1139 dump_stack(); 1140 } else 1141 object_err(s, page, object, 1142 "page slab pointer corrupt."); 1143 goto fail; 1144 } 1145 1146 if (s->flags & SLAB_STORE_USER) 1147 set_track(s, object, TRACK_FREE, addr); 1148 trace(s, page, object, 0); 1149 init_object(s, object, SLUB_RED_INACTIVE); 1150 out: 1151 slab_unlock(page); 1152 /* 1153 * Keep node_lock to preserve integrity 1154 * until the object is actually freed 1155 */ 1156 return n; 1157 1158 fail: 1159 slab_unlock(page); 1160 spin_unlock_irqrestore(&n->list_lock, *flags); 1161 slab_fix(s, "Object at 0x%p not freed", object); 1162 return NULL; 1163 } 1164 1165 static int __init setup_slub_debug(char *str) 1166 { 1167 slub_debug = DEBUG_DEFAULT_FLAGS; 1168 if (*str++ != '=' || !*str) 1169 /* 1170 * No options specified. Switch on full debugging. 1171 */ 1172 goto out; 1173 1174 if (*str == ',') 1175 /* 1176 * No options but restriction on slabs. This means full 1177 * debugging for slabs matching a pattern. 1178 */ 1179 goto check_slabs; 1180 1181 if (tolower(*str) == 'o') { 1182 /* 1183 * Avoid enabling debugging on caches if its minimum order 1184 * would increase as a result. 1185 */ 1186 disable_higher_order_debug = 1; 1187 goto out; 1188 } 1189 1190 slub_debug = 0; 1191 if (*str == '-') 1192 /* 1193 * Switch off all debugging measures. 1194 */ 1195 goto out; 1196 1197 /* 1198 * Determine which debug features should be switched on 1199 */ 1200 for (; *str && *str != ','; str++) { 1201 switch (tolower(*str)) { 1202 case 'f': 1203 slub_debug |= SLAB_DEBUG_FREE; 1204 break; 1205 case 'z': 1206 slub_debug |= SLAB_RED_ZONE; 1207 break; 1208 case 'p': 1209 slub_debug |= SLAB_POISON; 1210 break; 1211 case 'u': 1212 slub_debug |= SLAB_STORE_USER; 1213 break; 1214 case 't': 1215 slub_debug |= SLAB_TRACE; 1216 break; 1217 case 'a': 1218 slub_debug |= SLAB_FAILSLAB; 1219 break; 1220 default: 1221 printk(KERN_ERR "slub_debug option '%c' " 1222 "unknown. skipped\n", *str); 1223 } 1224 } 1225 1226 check_slabs: 1227 if (*str == ',') 1228 slub_debug_slabs = str + 1; 1229 out: 1230 return 1; 1231 } 1232 1233 __setup("slub_debug", setup_slub_debug); 1234 1235 static unsigned long kmem_cache_flags(unsigned long object_size, 1236 unsigned long flags, const char *name, 1237 void (*ctor)(void *)) 1238 { 1239 /* 1240 * Enable debugging if selected on the kernel commandline. 1241 */ 1242 if (slub_debug && (!slub_debug_slabs || (name && 1243 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1244 flags |= slub_debug; 1245 1246 return flags; 1247 } 1248 #else 1249 static inline void setup_object_debug(struct kmem_cache *s, 1250 struct page *page, void *object) {} 1251 1252 static inline int alloc_debug_processing(struct kmem_cache *s, 1253 struct page *page, void *object, unsigned long addr) { return 0; } 1254 1255 static inline struct kmem_cache_node *free_debug_processing( 1256 struct kmem_cache *s, struct page *page, void *object, 1257 unsigned long addr, unsigned long *flags) { return NULL; } 1258 1259 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1260 { return 1; } 1261 static inline int check_object(struct kmem_cache *s, struct page *page, 1262 void *object, u8 val) { return 1; } 1263 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1264 struct page *page) {} 1265 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1266 struct page *page) {} 1267 static inline unsigned long kmem_cache_flags(unsigned long object_size, 1268 unsigned long flags, const char *name, 1269 void (*ctor)(void *)) 1270 { 1271 return flags; 1272 } 1273 #define slub_debug 0 1274 1275 #define disable_higher_order_debug 0 1276 1277 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1278 { return 0; } 1279 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1280 { return 0; } 1281 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1282 int objects) {} 1283 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1284 int objects) {} 1285 1286 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1287 { 1288 kmemleak_alloc(ptr, size, 1, flags); 1289 } 1290 1291 static inline void kfree_hook(const void *x) 1292 { 1293 kmemleak_free(x); 1294 } 1295 1296 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1297 { return 0; } 1298 1299 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1300 void *object) 1301 { 1302 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, 1303 flags & gfp_allowed_mask); 1304 } 1305 1306 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1307 { 1308 kmemleak_free_recursive(x, s->flags); 1309 } 1310 1311 #endif /* CONFIG_SLUB_DEBUG */ 1312 1313 /* 1314 * Slab allocation and freeing 1315 */ 1316 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1317 struct kmem_cache_order_objects oo) 1318 { 1319 int order = oo_order(oo); 1320 1321 flags |= __GFP_NOTRACK; 1322 1323 if (node == NUMA_NO_NODE) 1324 return alloc_pages(flags, order); 1325 else 1326 return alloc_pages_exact_node(node, flags, order); 1327 } 1328 1329 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1330 { 1331 struct page *page; 1332 struct kmem_cache_order_objects oo = s->oo; 1333 gfp_t alloc_gfp; 1334 1335 flags &= gfp_allowed_mask; 1336 1337 if (flags & __GFP_WAIT) 1338 local_irq_enable(); 1339 1340 flags |= s->allocflags; 1341 1342 /* 1343 * Let the initial higher-order allocation fail under memory pressure 1344 * so we fall-back to the minimum order allocation. 1345 */ 1346 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1347 1348 page = alloc_slab_page(alloc_gfp, node, oo); 1349 if (unlikely(!page)) { 1350 oo = s->min; 1351 /* 1352 * Allocation may have failed due to fragmentation. 1353 * Try a lower order alloc if possible 1354 */ 1355 page = alloc_slab_page(flags, node, oo); 1356 1357 if (page) 1358 stat(s, ORDER_FALLBACK); 1359 } 1360 1361 if (kmemcheck_enabled && page 1362 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1363 int pages = 1 << oo_order(oo); 1364 1365 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1366 1367 /* 1368 * Objects from caches that have a constructor don't get 1369 * cleared when they're allocated, so we need to do it here. 1370 */ 1371 if (s->ctor) 1372 kmemcheck_mark_uninitialized_pages(page, pages); 1373 else 1374 kmemcheck_mark_unallocated_pages(page, pages); 1375 } 1376 1377 if (flags & __GFP_WAIT) 1378 local_irq_disable(); 1379 if (!page) 1380 return NULL; 1381 1382 page->objects = oo_objects(oo); 1383 mod_zone_page_state(page_zone(page), 1384 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1385 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1386 1 << oo_order(oo)); 1387 1388 return page; 1389 } 1390 1391 static void setup_object(struct kmem_cache *s, struct page *page, 1392 void *object) 1393 { 1394 setup_object_debug(s, page, object); 1395 if (unlikely(s->ctor)) 1396 s->ctor(object); 1397 } 1398 1399 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1400 { 1401 struct page *page; 1402 void *start; 1403 void *last; 1404 void *p; 1405 int order; 1406 1407 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1408 1409 page = allocate_slab(s, 1410 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1411 if (!page) 1412 goto out; 1413 1414 order = compound_order(page); 1415 inc_slabs_node(s, page_to_nid(page), page->objects); 1416 memcg_bind_pages(s, order); 1417 page->slab_cache = s; 1418 __SetPageSlab(page); 1419 if (page->pfmemalloc) 1420 SetPageSlabPfmemalloc(page); 1421 1422 start = page_address(page); 1423 1424 if (unlikely(s->flags & SLAB_POISON)) 1425 memset(start, POISON_INUSE, PAGE_SIZE << order); 1426 1427 last = start; 1428 for_each_object(p, s, start, page->objects) { 1429 setup_object(s, page, last); 1430 set_freepointer(s, last, p); 1431 last = p; 1432 } 1433 setup_object(s, page, last); 1434 set_freepointer(s, last, NULL); 1435 1436 page->freelist = start; 1437 page->inuse = page->objects; 1438 page->frozen = 1; 1439 out: 1440 return page; 1441 } 1442 1443 static void __free_slab(struct kmem_cache *s, struct page *page) 1444 { 1445 int order = compound_order(page); 1446 int pages = 1 << order; 1447 1448 if (kmem_cache_debug(s)) { 1449 void *p; 1450 1451 slab_pad_check(s, page); 1452 for_each_object(p, s, page_address(page), 1453 page->objects) 1454 check_object(s, page, p, SLUB_RED_INACTIVE); 1455 } 1456 1457 kmemcheck_free_shadow(page, compound_order(page)); 1458 1459 mod_zone_page_state(page_zone(page), 1460 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1461 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1462 -pages); 1463 1464 __ClearPageSlabPfmemalloc(page); 1465 __ClearPageSlab(page); 1466 1467 memcg_release_pages(s, order); 1468 page_mapcount_reset(page); 1469 if (current->reclaim_state) 1470 current->reclaim_state->reclaimed_slab += pages; 1471 __free_memcg_kmem_pages(page, order); 1472 } 1473 1474 #define need_reserve_slab_rcu \ 1475 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1476 1477 static void rcu_free_slab(struct rcu_head *h) 1478 { 1479 struct page *page; 1480 1481 if (need_reserve_slab_rcu) 1482 page = virt_to_head_page(h); 1483 else 1484 page = container_of((struct list_head *)h, struct page, lru); 1485 1486 __free_slab(page->slab_cache, page); 1487 } 1488 1489 static void free_slab(struct kmem_cache *s, struct page *page) 1490 { 1491 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1492 struct rcu_head *head; 1493 1494 if (need_reserve_slab_rcu) { 1495 int order = compound_order(page); 1496 int offset = (PAGE_SIZE << order) - s->reserved; 1497 1498 VM_BUG_ON(s->reserved != sizeof(*head)); 1499 head = page_address(page) + offset; 1500 } else { 1501 /* 1502 * RCU free overloads the RCU head over the LRU 1503 */ 1504 head = (void *)&page->lru; 1505 } 1506 1507 call_rcu(head, rcu_free_slab); 1508 } else 1509 __free_slab(s, page); 1510 } 1511 1512 static void discard_slab(struct kmem_cache *s, struct page *page) 1513 { 1514 dec_slabs_node(s, page_to_nid(page), page->objects); 1515 free_slab(s, page); 1516 } 1517 1518 /* 1519 * Management of partially allocated slabs. 1520 */ 1521 static inline void 1522 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1523 { 1524 n->nr_partial++; 1525 if (tail == DEACTIVATE_TO_TAIL) 1526 list_add_tail(&page->lru, &n->partial); 1527 else 1528 list_add(&page->lru, &n->partial); 1529 } 1530 1531 static inline void add_partial(struct kmem_cache_node *n, 1532 struct page *page, int tail) 1533 { 1534 lockdep_assert_held(&n->list_lock); 1535 __add_partial(n, page, tail); 1536 } 1537 1538 static inline void 1539 __remove_partial(struct kmem_cache_node *n, struct page *page) 1540 { 1541 list_del(&page->lru); 1542 n->nr_partial--; 1543 } 1544 1545 static inline void remove_partial(struct kmem_cache_node *n, 1546 struct page *page) 1547 { 1548 lockdep_assert_held(&n->list_lock); 1549 __remove_partial(n, page); 1550 } 1551 1552 /* 1553 * Remove slab from the partial list, freeze it and 1554 * return the pointer to the freelist. 1555 * 1556 * Returns a list of objects or NULL if it fails. 1557 */ 1558 static inline void *acquire_slab(struct kmem_cache *s, 1559 struct kmem_cache_node *n, struct page *page, 1560 int mode, int *objects) 1561 { 1562 void *freelist; 1563 unsigned long counters; 1564 struct page new; 1565 1566 lockdep_assert_held(&n->list_lock); 1567 1568 /* 1569 * Zap the freelist and set the frozen bit. 1570 * The old freelist is the list of objects for the 1571 * per cpu allocation list. 1572 */ 1573 freelist = page->freelist; 1574 counters = page->counters; 1575 new.counters = counters; 1576 *objects = new.objects - new.inuse; 1577 if (mode) { 1578 new.inuse = page->objects; 1579 new.freelist = NULL; 1580 } else { 1581 new.freelist = freelist; 1582 } 1583 1584 VM_BUG_ON(new.frozen); 1585 new.frozen = 1; 1586 1587 if (!__cmpxchg_double_slab(s, page, 1588 freelist, counters, 1589 new.freelist, new.counters, 1590 "acquire_slab")) 1591 return NULL; 1592 1593 remove_partial(n, page); 1594 WARN_ON(!freelist); 1595 return freelist; 1596 } 1597 1598 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1599 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1600 1601 /* 1602 * Try to allocate a partial slab from a specific node. 1603 */ 1604 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1605 struct kmem_cache_cpu *c, gfp_t flags) 1606 { 1607 struct page *page, *page2; 1608 void *object = NULL; 1609 int available = 0; 1610 int objects; 1611 1612 /* 1613 * Racy check. If we mistakenly see no partial slabs then we 1614 * just allocate an empty slab. If we mistakenly try to get a 1615 * partial slab and there is none available then get_partials() 1616 * will return NULL. 1617 */ 1618 if (!n || !n->nr_partial) 1619 return NULL; 1620 1621 spin_lock(&n->list_lock); 1622 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1623 void *t; 1624 1625 if (!pfmemalloc_match(page, flags)) 1626 continue; 1627 1628 t = acquire_slab(s, n, page, object == NULL, &objects); 1629 if (!t) 1630 break; 1631 1632 available += objects; 1633 if (!object) { 1634 c->page = page; 1635 stat(s, ALLOC_FROM_PARTIAL); 1636 object = t; 1637 } else { 1638 put_cpu_partial(s, page, 0); 1639 stat(s, CPU_PARTIAL_NODE); 1640 } 1641 if (!kmem_cache_has_cpu_partial(s) 1642 || available > s->cpu_partial / 2) 1643 break; 1644 1645 } 1646 spin_unlock(&n->list_lock); 1647 return object; 1648 } 1649 1650 /* 1651 * Get a page from somewhere. Search in increasing NUMA distances. 1652 */ 1653 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1654 struct kmem_cache_cpu *c) 1655 { 1656 #ifdef CONFIG_NUMA 1657 struct zonelist *zonelist; 1658 struct zoneref *z; 1659 struct zone *zone; 1660 enum zone_type high_zoneidx = gfp_zone(flags); 1661 void *object; 1662 unsigned int cpuset_mems_cookie; 1663 1664 /* 1665 * The defrag ratio allows a configuration of the tradeoffs between 1666 * inter node defragmentation and node local allocations. A lower 1667 * defrag_ratio increases the tendency to do local allocations 1668 * instead of attempting to obtain partial slabs from other nodes. 1669 * 1670 * If the defrag_ratio is set to 0 then kmalloc() always 1671 * returns node local objects. If the ratio is higher then kmalloc() 1672 * may return off node objects because partial slabs are obtained 1673 * from other nodes and filled up. 1674 * 1675 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1676 * defrag_ratio = 1000) then every (well almost) allocation will 1677 * first attempt to defrag slab caches on other nodes. This means 1678 * scanning over all nodes to look for partial slabs which may be 1679 * expensive if we do it every time we are trying to find a slab 1680 * with available objects. 1681 */ 1682 if (!s->remote_node_defrag_ratio || 1683 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1684 return NULL; 1685 1686 do { 1687 cpuset_mems_cookie = get_mems_allowed(); 1688 zonelist = node_zonelist(slab_node(), flags); 1689 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1690 struct kmem_cache_node *n; 1691 1692 n = get_node(s, zone_to_nid(zone)); 1693 1694 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1695 n->nr_partial > s->min_partial) { 1696 object = get_partial_node(s, n, c, flags); 1697 if (object) { 1698 /* 1699 * Return the object even if 1700 * put_mems_allowed indicated that 1701 * the cpuset mems_allowed was 1702 * updated in parallel. It's a 1703 * harmless race between the alloc 1704 * and the cpuset update. 1705 */ 1706 put_mems_allowed(cpuset_mems_cookie); 1707 return object; 1708 } 1709 } 1710 } 1711 } while (!put_mems_allowed(cpuset_mems_cookie)); 1712 #endif 1713 return NULL; 1714 } 1715 1716 /* 1717 * Get a partial page, lock it and return it. 1718 */ 1719 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1720 struct kmem_cache_cpu *c) 1721 { 1722 void *object; 1723 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1724 1725 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1726 if (object || node != NUMA_NO_NODE) 1727 return object; 1728 1729 return get_any_partial(s, flags, c); 1730 } 1731 1732 #ifdef CONFIG_PREEMPT 1733 /* 1734 * Calculate the next globally unique transaction for disambiguiation 1735 * during cmpxchg. The transactions start with the cpu number and are then 1736 * incremented by CONFIG_NR_CPUS. 1737 */ 1738 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1739 #else 1740 /* 1741 * No preemption supported therefore also no need to check for 1742 * different cpus. 1743 */ 1744 #define TID_STEP 1 1745 #endif 1746 1747 static inline unsigned long next_tid(unsigned long tid) 1748 { 1749 return tid + TID_STEP; 1750 } 1751 1752 static inline unsigned int tid_to_cpu(unsigned long tid) 1753 { 1754 return tid % TID_STEP; 1755 } 1756 1757 static inline unsigned long tid_to_event(unsigned long tid) 1758 { 1759 return tid / TID_STEP; 1760 } 1761 1762 static inline unsigned int init_tid(int cpu) 1763 { 1764 return cpu; 1765 } 1766 1767 static inline void note_cmpxchg_failure(const char *n, 1768 const struct kmem_cache *s, unsigned long tid) 1769 { 1770 #ifdef SLUB_DEBUG_CMPXCHG 1771 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1772 1773 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1774 1775 #ifdef CONFIG_PREEMPT 1776 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1777 printk("due to cpu change %d -> %d\n", 1778 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1779 else 1780 #endif 1781 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1782 printk("due to cpu running other code. Event %ld->%ld\n", 1783 tid_to_event(tid), tid_to_event(actual_tid)); 1784 else 1785 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1786 actual_tid, tid, next_tid(tid)); 1787 #endif 1788 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1789 } 1790 1791 static void init_kmem_cache_cpus(struct kmem_cache *s) 1792 { 1793 int cpu; 1794 1795 for_each_possible_cpu(cpu) 1796 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1797 } 1798 1799 /* 1800 * Remove the cpu slab 1801 */ 1802 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1803 void *freelist) 1804 { 1805 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1806 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1807 int lock = 0; 1808 enum slab_modes l = M_NONE, m = M_NONE; 1809 void *nextfree; 1810 int tail = DEACTIVATE_TO_HEAD; 1811 struct page new; 1812 struct page old; 1813 1814 if (page->freelist) { 1815 stat(s, DEACTIVATE_REMOTE_FREES); 1816 tail = DEACTIVATE_TO_TAIL; 1817 } 1818 1819 /* 1820 * Stage one: Free all available per cpu objects back 1821 * to the page freelist while it is still frozen. Leave the 1822 * last one. 1823 * 1824 * There is no need to take the list->lock because the page 1825 * is still frozen. 1826 */ 1827 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1828 void *prior; 1829 unsigned long counters; 1830 1831 do { 1832 prior = page->freelist; 1833 counters = page->counters; 1834 set_freepointer(s, freelist, prior); 1835 new.counters = counters; 1836 new.inuse--; 1837 VM_BUG_ON(!new.frozen); 1838 1839 } while (!__cmpxchg_double_slab(s, page, 1840 prior, counters, 1841 freelist, new.counters, 1842 "drain percpu freelist")); 1843 1844 freelist = nextfree; 1845 } 1846 1847 /* 1848 * Stage two: Ensure that the page is unfrozen while the 1849 * list presence reflects the actual number of objects 1850 * during unfreeze. 1851 * 1852 * We setup the list membership and then perform a cmpxchg 1853 * with the count. If there is a mismatch then the page 1854 * is not unfrozen but the page is on the wrong list. 1855 * 1856 * Then we restart the process which may have to remove 1857 * the page from the list that we just put it on again 1858 * because the number of objects in the slab may have 1859 * changed. 1860 */ 1861 redo: 1862 1863 old.freelist = page->freelist; 1864 old.counters = page->counters; 1865 VM_BUG_ON(!old.frozen); 1866 1867 /* Determine target state of the slab */ 1868 new.counters = old.counters; 1869 if (freelist) { 1870 new.inuse--; 1871 set_freepointer(s, freelist, old.freelist); 1872 new.freelist = freelist; 1873 } else 1874 new.freelist = old.freelist; 1875 1876 new.frozen = 0; 1877 1878 if (!new.inuse && n->nr_partial > s->min_partial) 1879 m = M_FREE; 1880 else if (new.freelist) { 1881 m = M_PARTIAL; 1882 if (!lock) { 1883 lock = 1; 1884 /* 1885 * Taking the spinlock removes the possiblity 1886 * that acquire_slab() will see a slab page that 1887 * is frozen 1888 */ 1889 spin_lock(&n->list_lock); 1890 } 1891 } else { 1892 m = M_FULL; 1893 if (kmem_cache_debug(s) && !lock) { 1894 lock = 1; 1895 /* 1896 * This also ensures that the scanning of full 1897 * slabs from diagnostic functions will not see 1898 * any frozen slabs. 1899 */ 1900 spin_lock(&n->list_lock); 1901 } 1902 } 1903 1904 if (l != m) { 1905 1906 if (l == M_PARTIAL) 1907 1908 remove_partial(n, page); 1909 1910 else if (l == M_FULL) 1911 1912 remove_full(s, n, page); 1913 1914 if (m == M_PARTIAL) { 1915 1916 add_partial(n, page, tail); 1917 stat(s, tail); 1918 1919 } else if (m == M_FULL) { 1920 1921 stat(s, DEACTIVATE_FULL); 1922 add_full(s, n, page); 1923 1924 } 1925 } 1926 1927 l = m; 1928 if (!__cmpxchg_double_slab(s, page, 1929 old.freelist, old.counters, 1930 new.freelist, new.counters, 1931 "unfreezing slab")) 1932 goto redo; 1933 1934 if (lock) 1935 spin_unlock(&n->list_lock); 1936 1937 if (m == M_FREE) { 1938 stat(s, DEACTIVATE_EMPTY); 1939 discard_slab(s, page); 1940 stat(s, FREE_SLAB); 1941 } 1942 } 1943 1944 /* 1945 * Unfreeze all the cpu partial slabs. 1946 * 1947 * This function must be called with interrupts disabled 1948 * for the cpu using c (or some other guarantee must be there 1949 * to guarantee no concurrent accesses). 1950 */ 1951 static void unfreeze_partials(struct kmem_cache *s, 1952 struct kmem_cache_cpu *c) 1953 { 1954 #ifdef CONFIG_SLUB_CPU_PARTIAL 1955 struct kmem_cache_node *n = NULL, *n2 = NULL; 1956 struct page *page, *discard_page = NULL; 1957 1958 while ((page = c->partial)) { 1959 struct page new; 1960 struct page old; 1961 1962 c->partial = page->next; 1963 1964 n2 = get_node(s, page_to_nid(page)); 1965 if (n != n2) { 1966 if (n) 1967 spin_unlock(&n->list_lock); 1968 1969 n = n2; 1970 spin_lock(&n->list_lock); 1971 } 1972 1973 do { 1974 1975 old.freelist = page->freelist; 1976 old.counters = page->counters; 1977 VM_BUG_ON(!old.frozen); 1978 1979 new.counters = old.counters; 1980 new.freelist = old.freelist; 1981 1982 new.frozen = 0; 1983 1984 } while (!__cmpxchg_double_slab(s, page, 1985 old.freelist, old.counters, 1986 new.freelist, new.counters, 1987 "unfreezing slab")); 1988 1989 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { 1990 page->next = discard_page; 1991 discard_page = page; 1992 } else { 1993 add_partial(n, page, DEACTIVATE_TO_TAIL); 1994 stat(s, FREE_ADD_PARTIAL); 1995 } 1996 } 1997 1998 if (n) 1999 spin_unlock(&n->list_lock); 2000 2001 while (discard_page) { 2002 page = discard_page; 2003 discard_page = discard_page->next; 2004 2005 stat(s, DEACTIVATE_EMPTY); 2006 discard_slab(s, page); 2007 stat(s, FREE_SLAB); 2008 } 2009 #endif 2010 } 2011 2012 /* 2013 * Put a page that was just frozen (in __slab_free) into a partial page 2014 * slot if available. This is done without interrupts disabled and without 2015 * preemption disabled. The cmpxchg is racy and may put the partial page 2016 * onto a random cpus partial slot. 2017 * 2018 * If we did not find a slot then simply move all the partials to the 2019 * per node partial list. 2020 */ 2021 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2022 { 2023 #ifdef CONFIG_SLUB_CPU_PARTIAL 2024 struct page *oldpage; 2025 int pages; 2026 int pobjects; 2027 2028 do { 2029 pages = 0; 2030 pobjects = 0; 2031 oldpage = this_cpu_read(s->cpu_slab->partial); 2032 2033 if (oldpage) { 2034 pobjects = oldpage->pobjects; 2035 pages = oldpage->pages; 2036 if (drain && pobjects > s->cpu_partial) { 2037 unsigned long flags; 2038 /* 2039 * partial array is full. Move the existing 2040 * set to the per node partial list. 2041 */ 2042 local_irq_save(flags); 2043 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2044 local_irq_restore(flags); 2045 oldpage = NULL; 2046 pobjects = 0; 2047 pages = 0; 2048 stat(s, CPU_PARTIAL_DRAIN); 2049 } 2050 } 2051 2052 pages++; 2053 pobjects += page->objects - page->inuse; 2054 2055 page->pages = pages; 2056 page->pobjects = pobjects; 2057 page->next = oldpage; 2058 2059 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2060 != oldpage); 2061 #endif 2062 } 2063 2064 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2065 { 2066 stat(s, CPUSLAB_FLUSH); 2067 deactivate_slab(s, c->page, c->freelist); 2068 2069 c->tid = next_tid(c->tid); 2070 c->page = NULL; 2071 c->freelist = NULL; 2072 } 2073 2074 /* 2075 * Flush cpu slab. 2076 * 2077 * Called from IPI handler with interrupts disabled. 2078 */ 2079 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2080 { 2081 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2082 2083 if (likely(c)) { 2084 if (c->page) 2085 flush_slab(s, c); 2086 2087 unfreeze_partials(s, c); 2088 } 2089 } 2090 2091 static void flush_cpu_slab(void *d) 2092 { 2093 struct kmem_cache *s = d; 2094 2095 __flush_cpu_slab(s, smp_processor_id()); 2096 } 2097 2098 static bool has_cpu_slab(int cpu, void *info) 2099 { 2100 struct kmem_cache *s = info; 2101 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2102 2103 return c->page || c->partial; 2104 } 2105 2106 static void flush_all(struct kmem_cache *s) 2107 { 2108 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2109 } 2110 2111 /* 2112 * Check if the objects in a per cpu structure fit numa 2113 * locality expectations. 2114 */ 2115 static inline int node_match(struct page *page, int node) 2116 { 2117 #ifdef CONFIG_NUMA 2118 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2119 return 0; 2120 #endif 2121 return 1; 2122 } 2123 2124 static int count_free(struct page *page) 2125 { 2126 return page->objects - page->inuse; 2127 } 2128 2129 static unsigned long count_partial(struct kmem_cache_node *n, 2130 int (*get_count)(struct page *)) 2131 { 2132 unsigned long flags; 2133 unsigned long x = 0; 2134 struct page *page; 2135 2136 spin_lock_irqsave(&n->list_lock, flags); 2137 list_for_each_entry(page, &n->partial, lru) 2138 x += get_count(page); 2139 spin_unlock_irqrestore(&n->list_lock, flags); 2140 return x; 2141 } 2142 2143 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2144 { 2145 #ifdef CONFIG_SLUB_DEBUG 2146 return atomic_long_read(&n->total_objects); 2147 #else 2148 return 0; 2149 #endif 2150 } 2151 2152 static noinline void 2153 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2154 { 2155 int node; 2156 2157 printk(KERN_WARNING 2158 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2159 nid, gfpflags); 2160 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2161 "default order: %d, min order: %d\n", s->name, s->object_size, 2162 s->size, oo_order(s->oo), oo_order(s->min)); 2163 2164 if (oo_order(s->min) > get_order(s->object_size)) 2165 printk(KERN_WARNING " %s debugging increased min order, use " 2166 "slub_debug=O to disable.\n", s->name); 2167 2168 for_each_online_node(node) { 2169 struct kmem_cache_node *n = get_node(s, node); 2170 unsigned long nr_slabs; 2171 unsigned long nr_objs; 2172 unsigned long nr_free; 2173 2174 if (!n) 2175 continue; 2176 2177 nr_free = count_partial(n, count_free); 2178 nr_slabs = node_nr_slabs(n); 2179 nr_objs = node_nr_objs(n); 2180 2181 printk(KERN_WARNING 2182 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2183 node, nr_slabs, nr_objs, nr_free); 2184 } 2185 } 2186 2187 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2188 int node, struct kmem_cache_cpu **pc) 2189 { 2190 void *freelist; 2191 struct kmem_cache_cpu *c = *pc; 2192 struct page *page; 2193 2194 freelist = get_partial(s, flags, node, c); 2195 2196 if (freelist) 2197 return freelist; 2198 2199 page = new_slab(s, flags, node); 2200 if (page) { 2201 c = __this_cpu_ptr(s->cpu_slab); 2202 if (c->page) 2203 flush_slab(s, c); 2204 2205 /* 2206 * No other reference to the page yet so we can 2207 * muck around with it freely without cmpxchg 2208 */ 2209 freelist = page->freelist; 2210 page->freelist = NULL; 2211 2212 stat(s, ALLOC_SLAB); 2213 c->page = page; 2214 *pc = c; 2215 } else 2216 freelist = NULL; 2217 2218 return freelist; 2219 } 2220 2221 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2222 { 2223 if (unlikely(PageSlabPfmemalloc(page))) 2224 return gfp_pfmemalloc_allowed(gfpflags); 2225 2226 return true; 2227 } 2228 2229 /* 2230 * Check the page->freelist of a page and either transfer the freelist to the 2231 * per cpu freelist or deactivate the page. 2232 * 2233 * The page is still frozen if the return value is not NULL. 2234 * 2235 * If this function returns NULL then the page has been unfrozen. 2236 * 2237 * This function must be called with interrupt disabled. 2238 */ 2239 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2240 { 2241 struct page new; 2242 unsigned long counters; 2243 void *freelist; 2244 2245 do { 2246 freelist = page->freelist; 2247 counters = page->counters; 2248 2249 new.counters = counters; 2250 VM_BUG_ON(!new.frozen); 2251 2252 new.inuse = page->objects; 2253 new.frozen = freelist != NULL; 2254 2255 } while (!__cmpxchg_double_slab(s, page, 2256 freelist, counters, 2257 NULL, new.counters, 2258 "get_freelist")); 2259 2260 return freelist; 2261 } 2262 2263 /* 2264 * Slow path. The lockless freelist is empty or we need to perform 2265 * debugging duties. 2266 * 2267 * Processing is still very fast if new objects have been freed to the 2268 * regular freelist. In that case we simply take over the regular freelist 2269 * as the lockless freelist and zap the regular freelist. 2270 * 2271 * If that is not working then we fall back to the partial lists. We take the 2272 * first element of the freelist as the object to allocate now and move the 2273 * rest of the freelist to the lockless freelist. 2274 * 2275 * And if we were unable to get a new slab from the partial slab lists then 2276 * we need to allocate a new slab. This is the slowest path since it involves 2277 * a call to the page allocator and the setup of a new slab. 2278 */ 2279 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2280 unsigned long addr, struct kmem_cache_cpu *c) 2281 { 2282 void *freelist; 2283 struct page *page; 2284 unsigned long flags; 2285 2286 local_irq_save(flags); 2287 #ifdef CONFIG_PREEMPT 2288 /* 2289 * We may have been preempted and rescheduled on a different 2290 * cpu before disabling interrupts. Need to reload cpu area 2291 * pointer. 2292 */ 2293 c = this_cpu_ptr(s->cpu_slab); 2294 #endif 2295 2296 page = c->page; 2297 if (!page) 2298 goto new_slab; 2299 redo: 2300 2301 if (unlikely(!node_match(page, node))) { 2302 stat(s, ALLOC_NODE_MISMATCH); 2303 deactivate_slab(s, page, c->freelist); 2304 c->page = NULL; 2305 c->freelist = NULL; 2306 goto new_slab; 2307 } 2308 2309 /* 2310 * By rights, we should be searching for a slab page that was 2311 * PFMEMALLOC but right now, we are losing the pfmemalloc 2312 * information when the page leaves the per-cpu allocator 2313 */ 2314 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2315 deactivate_slab(s, page, c->freelist); 2316 c->page = NULL; 2317 c->freelist = NULL; 2318 goto new_slab; 2319 } 2320 2321 /* must check again c->freelist in case of cpu migration or IRQ */ 2322 freelist = c->freelist; 2323 if (freelist) 2324 goto load_freelist; 2325 2326 stat(s, ALLOC_SLOWPATH); 2327 2328 freelist = get_freelist(s, page); 2329 2330 if (!freelist) { 2331 c->page = NULL; 2332 stat(s, DEACTIVATE_BYPASS); 2333 goto new_slab; 2334 } 2335 2336 stat(s, ALLOC_REFILL); 2337 2338 load_freelist: 2339 /* 2340 * freelist is pointing to the list of objects to be used. 2341 * page is pointing to the page from which the objects are obtained. 2342 * That page must be frozen for per cpu allocations to work. 2343 */ 2344 VM_BUG_ON(!c->page->frozen); 2345 c->freelist = get_freepointer(s, freelist); 2346 c->tid = next_tid(c->tid); 2347 local_irq_restore(flags); 2348 return freelist; 2349 2350 new_slab: 2351 2352 if (c->partial) { 2353 page = c->page = c->partial; 2354 c->partial = page->next; 2355 stat(s, CPU_PARTIAL_ALLOC); 2356 c->freelist = NULL; 2357 goto redo; 2358 } 2359 2360 freelist = new_slab_objects(s, gfpflags, node, &c); 2361 2362 if (unlikely(!freelist)) { 2363 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2364 slab_out_of_memory(s, gfpflags, node); 2365 2366 local_irq_restore(flags); 2367 return NULL; 2368 } 2369 2370 page = c->page; 2371 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2372 goto load_freelist; 2373 2374 /* Only entered in the debug case */ 2375 if (kmem_cache_debug(s) && 2376 !alloc_debug_processing(s, page, freelist, addr)) 2377 goto new_slab; /* Slab failed checks. Next slab needed */ 2378 2379 deactivate_slab(s, page, get_freepointer(s, freelist)); 2380 c->page = NULL; 2381 c->freelist = NULL; 2382 local_irq_restore(flags); 2383 return freelist; 2384 } 2385 2386 /* 2387 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2388 * have the fastpath folded into their functions. So no function call 2389 * overhead for requests that can be satisfied on the fastpath. 2390 * 2391 * The fastpath works by first checking if the lockless freelist can be used. 2392 * If not then __slab_alloc is called for slow processing. 2393 * 2394 * Otherwise we can simply pick the next object from the lockless free list. 2395 */ 2396 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2397 gfp_t gfpflags, int node, unsigned long addr) 2398 { 2399 void **object; 2400 struct kmem_cache_cpu *c; 2401 struct page *page; 2402 unsigned long tid; 2403 2404 if (slab_pre_alloc_hook(s, gfpflags)) 2405 return NULL; 2406 2407 s = memcg_kmem_get_cache(s, gfpflags); 2408 redo: 2409 /* 2410 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2411 * enabled. We may switch back and forth between cpus while 2412 * reading from one cpu area. That does not matter as long 2413 * as we end up on the original cpu again when doing the cmpxchg. 2414 * 2415 * Preemption is disabled for the retrieval of the tid because that 2416 * must occur from the current processor. We cannot allow rescheduling 2417 * on a different processor between the determination of the pointer 2418 * and the retrieval of the tid. 2419 */ 2420 preempt_disable(); 2421 c = __this_cpu_ptr(s->cpu_slab); 2422 2423 /* 2424 * The transaction ids are globally unique per cpu and per operation on 2425 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2426 * occurs on the right processor and that there was no operation on the 2427 * linked list in between. 2428 */ 2429 tid = c->tid; 2430 preempt_enable(); 2431 2432 object = c->freelist; 2433 page = c->page; 2434 if (unlikely(!object || !node_match(page, node))) 2435 object = __slab_alloc(s, gfpflags, node, addr, c); 2436 2437 else { 2438 void *next_object = get_freepointer_safe(s, object); 2439 2440 /* 2441 * The cmpxchg will only match if there was no additional 2442 * operation and if we are on the right processor. 2443 * 2444 * The cmpxchg does the following atomically (without lock 2445 * semantics!) 2446 * 1. Relocate first pointer to the current per cpu area. 2447 * 2. Verify that tid and freelist have not been changed 2448 * 3. If they were not changed replace tid and freelist 2449 * 2450 * Since this is without lock semantics the protection is only 2451 * against code executing on this cpu *not* from access by 2452 * other cpus. 2453 */ 2454 if (unlikely(!this_cpu_cmpxchg_double( 2455 s->cpu_slab->freelist, s->cpu_slab->tid, 2456 object, tid, 2457 next_object, next_tid(tid)))) { 2458 2459 note_cmpxchg_failure("slab_alloc", s, tid); 2460 goto redo; 2461 } 2462 prefetch_freepointer(s, next_object); 2463 stat(s, ALLOC_FASTPATH); 2464 } 2465 2466 if (unlikely(gfpflags & __GFP_ZERO) && object) 2467 memset(object, 0, s->object_size); 2468 2469 slab_post_alloc_hook(s, gfpflags, object); 2470 2471 return object; 2472 } 2473 2474 static __always_inline void *slab_alloc(struct kmem_cache *s, 2475 gfp_t gfpflags, unsigned long addr) 2476 { 2477 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2478 } 2479 2480 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2481 { 2482 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2483 2484 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2485 s->size, gfpflags); 2486 2487 return ret; 2488 } 2489 EXPORT_SYMBOL(kmem_cache_alloc); 2490 2491 #ifdef CONFIG_TRACING 2492 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2493 { 2494 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2495 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2496 return ret; 2497 } 2498 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2499 #endif 2500 2501 #ifdef CONFIG_NUMA 2502 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2503 { 2504 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2505 2506 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2507 s->object_size, s->size, gfpflags, node); 2508 2509 return ret; 2510 } 2511 EXPORT_SYMBOL(kmem_cache_alloc_node); 2512 2513 #ifdef CONFIG_TRACING 2514 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2515 gfp_t gfpflags, 2516 int node, size_t size) 2517 { 2518 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2519 2520 trace_kmalloc_node(_RET_IP_, ret, 2521 size, s->size, gfpflags, node); 2522 return ret; 2523 } 2524 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2525 #endif 2526 #endif 2527 2528 /* 2529 * Slow patch handling. This may still be called frequently since objects 2530 * have a longer lifetime than the cpu slabs in most processing loads. 2531 * 2532 * So we still attempt to reduce cache line usage. Just take the slab 2533 * lock and free the item. If there is no additional partial page 2534 * handling required then we can return immediately. 2535 */ 2536 static void __slab_free(struct kmem_cache *s, struct page *page, 2537 void *x, unsigned long addr) 2538 { 2539 void *prior; 2540 void **object = (void *)x; 2541 int was_frozen; 2542 struct page new; 2543 unsigned long counters; 2544 struct kmem_cache_node *n = NULL; 2545 unsigned long uninitialized_var(flags); 2546 2547 stat(s, FREE_SLOWPATH); 2548 2549 if (kmem_cache_debug(s) && 2550 !(n = free_debug_processing(s, page, x, addr, &flags))) 2551 return; 2552 2553 do { 2554 if (unlikely(n)) { 2555 spin_unlock_irqrestore(&n->list_lock, flags); 2556 n = NULL; 2557 } 2558 prior = page->freelist; 2559 counters = page->counters; 2560 set_freepointer(s, object, prior); 2561 new.counters = counters; 2562 was_frozen = new.frozen; 2563 new.inuse--; 2564 if ((!new.inuse || !prior) && !was_frozen) { 2565 2566 if (kmem_cache_has_cpu_partial(s) && !prior) { 2567 2568 /* 2569 * Slab was on no list before and will be 2570 * partially empty 2571 * We can defer the list move and instead 2572 * freeze it. 2573 */ 2574 new.frozen = 1; 2575 2576 } else { /* Needs to be taken off a list */ 2577 2578 n = get_node(s, page_to_nid(page)); 2579 /* 2580 * Speculatively acquire the list_lock. 2581 * If the cmpxchg does not succeed then we may 2582 * drop the list_lock without any processing. 2583 * 2584 * Otherwise the list_lock will synchronize with 2585 * other processors updating the list of slabs. 2586 */ 2587 spin_lock_irqsave(&n->list_lock, flags); 2588 2589 } 2590 } 2591 2592 } while (!cmpxchg_double_slab(s, page, 2593 prior, counters, 2594 object, new.counters, 2595 "__slab_free")); 2596 2597 if (likely(!n)) { 2598 2599 /* 2600 * If we just froze the page then put it onto the 2601 * per cpu partial list. 2602 */ 2603 if (new.frozen && !was_frozen) { 2604 put_cpu_partial(s, page, 1); 2605 stat(s, CPU_PARTIAL_FREE); 2606 } 2607 /* 2608 * The list lock was not taken therefore no list 2609 * activity can be necessary. 2610 */ 2611 if (was_frozen) 2612 stat(s, FREE_FROZEN); 2613 return; 2614 } 2615 2616 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) 2617 goto slab_empty; 2618 2619 /* 2620 * Objects left in the slab. If it was not on the partial list before 2621 * then add it. 2622 */ 2623 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2624 if (kmem_cache_debug(s)) 2625 remove_full(s, n, page); 2626 add_partial(n, page, DEACTIVATE_TO_TAIL); 2627 stat(s, FREE_ADD_PARTIAL); 2628 } 2629 spin_unlock_irqrestore(&n->list_lock, flags); 2630 return; 2631 2632 slab_empty: 2633 if (prior) { 2634 /* 2635 * Slab on the partial list. 2636 */ 2637 remove_partial(n, page); 2638 stat(s, FREE_REMOVE_PARTIAL); 2639 } else { 2640 /* Slab must be on the full list */ 2641 remove_full(s, n, page); 2642 } 2643 2644 spin_unlock_irqrestore(&n->list_lock, flags); 2645 stat(s, FREE_SLAB); 2646 discard_slab(s, page); 2647 } 2648 2649 /* 2650 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2651 * can perform fastpath freeing without additional function calls. 2652 * 2653 * The fastpath is only possible if we are freeing to the current cpu slab 2654 * of this processor. This typically the case if we have just allocated 2655 * the item before. 2656 * 2657 * If fastpath is not possible then fall back to __slab_free where we deal 2658 * with all sorts of special processing. 2659 */ 2660 static __always_inline void slab_free(struct kmem_cache *s, 2661 struct page *page, void *x, unsigned long addr) 2662 { 2663 void **object = (void *)x; 2664 struct kmem_cache_cpu *c; 2665 unsigned long tid; 2666 2667 slab_free_hook(s, x); 2668 2669 redo: 2670 /* 2671 * Determine the currently cpus per cpu slab. 2672 * The cpu may change afterward. However that does not matter since 2673 * data is retrieved via this pointer. If we are on the same cpu 2674 * during the cmpxchg then the free will succedd. 2675 */ 2676 preempt_disable(); 2677 c = __this_cpu_ptr(s->cpu_slab); 2678 2679 tid = c->tid; 2680 preempt_enable(); 2681 2682 if (likely(page == c->page)) { 2683 set_freepointer(s, object, c->freelist); 2684 2685 if (unlikely(!this_cpu_cmpxchg_double( 2686 s->cpu_slab->freelist, s->cpu_slab->tid, 2687 c->freelist, tid, 2688 object, next_tid(tid)))) { 2689 2690 note_cmpxchg_failure("slab_free", s, tid); 2691 goto redo; 2692 } 2693 stat(s, FREE_FASTPATH); 2694 } else 2695 __slab_free(s, page, x, addr); 2696 2697 } 2698 2699 void kmem_cache_free(struct kmem_cache *s, void *x) 2700 { 2701 s = cache_from_obj(s, x); 2702 if (!s) 2703 return; 2704 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2705 trace_kmem_cache_free(_RET_IP_, x); 2706 } 2707 EXPORT_SYMBOL(kmem_cache_free); 2708 2709 /* 2710 * Object placement in a slab is made very easy because we always start at 2711 * offset 0. If we tune the size of the object to the alignment then we can 2712 * get the required alignment by putting one properly sized object after 2713 * another. 2714 * 2715 * Notice that the allocation order determines the sizes of the per cpu 2716 * caches. Each processor has always one slab available for allocations. 2717 * Increasing the allocation order reduces the number of times that slabs 2718 * must be moved on and off the partial lists and is therefore a factor in 2719 * locking overhead. 2720 */ 2721 2722 /* 2723 * Mininum / Maximum order of slab pages. This influences locking overhead 2724 * and slab fragmentation. A higher order reduces the number of partial slabs 2725 * and increases the number of allocations possible without having to 2726 * take the list_lock. 2727 */ 2728 static int slub_min_order; 2729 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2730 static int slub_min_objects; 2731 2732 /* 2733 * Merge control. If this is set then no merging of slab caches will occur. 2734 * (Could be removed. This was introduced to pacify the merge skeptics.) 2735 */ 2736 static int slub_nomerge; 2737 2738 /* 2739 * Calculate the order of allocation given an slab object size. 2740 * 2741 * The order of allocation has significant impact on performance and other 2742 * system components. Generally order 0 allocations should be preferred since 2743 * order 0 does not cause fragmentation in the page allocator. Larger objects 2744 * be problematic to put into order 0 slabs because there may be too much 2745 * unused space left. We go to a higher order if more than 1/16th of the slab 2746 * would be wasted. 2747 * 2748 * In order to reach satisfactory performance we must ensure that a minimum 2749 * number of objects is in one slab. Otherwise we may generate too much 2750 * activity on the partial lists which requires taking the list_lock. This is 2751 * less a concern for large slabs though which are rarely used. 2752 * 2753 * slub_max_order specifies the order where we begin to stop considering the 2754 * number of objects in a slab as critical. If we reach slub_max_order then 2755 * we try to keep the page order as low as possible. So we accept more waste 2756 * of space in favor of a small page order. 2757 * 2758 * Higher order allocations also allow the placement of more objects in a 2759 * slab and thereby reduce object handling overhead. If the user has 2760 * requested a higher mininum order then we start with that one instead of 2761 * the smallest order which will fit the object. 2762 */ 2763 static inline int slab_order(int size, int min_objects, 2764 int max_order, int fract_leftover, int reserved) 2765 { 2766 int order; 2767 int rem; 2768 int min_order = slub_min_order; 2769 2770 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2771 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2772 2773 for (order = max(min_order, 2774 fls(min_objects * size - 1) - PAGE_SHIFT); 2775 order <= max_order; order++) { 2776 2777 unsigned long slab_size = PAGE_SIZE << order; 2778 2779 if (slab_size < min_objects * size + reserved) 2780 continue; 2781 2782 rem = (slab_size - reserved) % size; 2783 2784 if (rem <= slab_size / fract_leftover) 2785 break; 2786 2787 } 2788 2789 return order; 2790 } 2791 2792 static inline int calculate_order(int size, int reserved) 2793 { 2794 int order; 2795 int min_objects; 2796 int fraction; 2797 int max_objects; 2798 2799 /* 2800 * Attempt to find best configuration for a slab. This 2801 * works by first attempting to generate a layout with 2802 * the best configuration and backing off gradually. 2803 * 2804 * First we reduce the acceptable waste in a slab. Then 2805 * we reduce the minimum objects required in a slab. 2806 */ 2807 min_objects = slub_min_objects; 2808 if (!min_objects) 2809 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2810 max_objects = order_objects(slub_max_order, size, reserved); 2811 min_objects = min(min_objects, max_objects); 2812 2813 while (min_objects > 1) { 2814 fraction = 16; 2815 while (fraction >= 4) { 2816 order = slab_order(size, min_objects, 2817 slub_max_order, fraction, reserved); 2818 if (order <= slub_max_order) 2819 return order; 2820 fraction /= 2; 2821 } 2822 min_objects--; 2823 } 2824 2825 /* 2826 * We were unable to place multiple objects in a slab. Now 2827 * lets see if we can place a single object there. 2828 */ 2829 order = slab_order(size, 1, slub_max_order, 1, reserved); 2830 if (order <= slub_max_order) 2831 return order; 2832 2833 /* 2834 * Doh this slab cannot be placed using slub_max_order. 2835 */ 2836 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2837 if (order < MAX_ORDER) 2838 return order; 2839 return -ENOSYS; 2840 } 2841 2842 static void 2843 init_kmem_cache_node(struct kmem_cache_node *n) 2844 { 2845 n->nr_partial = 0; 2846 spin_lock_init(&n->list_lock); 2847 INIT_LIST_HEAD(&n->partial); 2848 #ifdef CONFIG_SLUB_DEBUG 2849 atomic_long_set(&n->nr_slabs, 0); 2850 atomic_long_set(&n->total_objects, 0); 2851 INIT_LIST_HEAD(&n->full); 2852 #endif 2853 } 2854 2855 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2856 { 2857 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2858 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2859 2860 /* 2861 * Must align to double word boundary for the double cmpxchg 2862 * instructions to work; see __pcpu_double_call_return_bool(). 2863 */ 2864 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2865 2 * sizeof(void *)); 2866 2867 if (!s->cpu_slab) 2868 return 0; 2869 2870 init_kmem_cache_cpus(s); 2871 2872 return 1; 2873 } 2874 2875 static struct kmem_cache *kmem_cache_node; 2876 2877 /* 2878 * No kmalloc_node yet so do it by hand. We know that this is the first 2879 * slab on the node for this slabcache. There are no concurrent accesses 2880 * possible. 2881 * 2882 * Note that this function only works on the kmem_cache_node 2883 * when allocating for the kmem_cache_node. This is used for bootstrapping 2884 * memory on a fresh node that has no slab structures yet. 2885 */ 2886 static void early_kmem_cache_node_alloc(int node) 2887 { 2888 struct page *page; 2889 struct kmem_cache_node *n; 2890 2891 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2892 2893 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2894 2895 BUG_ON(!page); 2896 if (page_to_nid(page) != node) { 2897 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2898 "node %d\n", node); 2899 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2900 "in order to be able to continue\n"); 2901 } 2902 2903 n = page->freelist; 2904 BUG_ON(!n); 2905 page->freelist = get_freepointer(kmem_cache_node, n); 2906 page->inuse = 1; 2907 page->frozen = 0; 2908 kmem_cache_node->node[node] = n; 2909 #ifdef CONFIG_SLUB_DEBUG 2910 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2911 init_tracking(kmem_cache_node, n); 2912 #endif 2913 init_kmem_cache_node(n); 2914 inc_slabs_node(kmem_cache_node, node, page->objects); 2915 2916 /* 2917 * No locks need to be taken here as it has just been 2918 * initialized and there is no concurrent access. 2919 */ 2920 __add_partial(n, page, DEACTIVATE_TO_HEAD); 2921 } 2922 2923 static void free_kmem_cache_nodes(struct kmem_cache *s) 2924 { 2925 int node; 2926 2927 for_each_node_state(node, N_NORMAL_MEMORY) { 2928 struct kmem_cache_node *n = s->node[node]; 2929 2930 if (n) 2931 kmem_cache_free(kmem_cache_node, n); 2932 2933 s->node[node] = NULL; 2934 } 2935 } 2936 2937 static int init_kmem_cache_nodes(struct kmem_cache *s) 2938 { 2939 int node; 2940 2941 for_each_node_state(node, N_NORMAL_MEMORY) { 2942 struct kmem_cache_node *n; 2943 2944 if (slab_state == DOWN) { 2945 early_kmem_cache_node_alloc(node); 2946 continue; 2947 } 2948 n = kmem_cache_alloc_node(kmem_cache_node, 2949 GFP_KERNEL, node); 2950 2951 if (!n) { 2952 free_kmem_cache_nodes(s); 2953 return 0; 2954 } 2955 2956 s->node[node] = n; 2957 init_kmem_cache_node(n); 2958 } 2959 return 1; 2960 } 2961 2962 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2963 { 2964 if (min < MIN_PARTIAL) 2965 min = MIN_PARTIAL; 2966 else if (min > MAX_PARTIAL) 2967 min = MAX_PARTIAL; 2968 s->min_partial = min; 2969 } 2970 2971 /* 2972 * calculate_sizes() determines the order and the distribution of data within 2973 * a slab object. 2974 */ 2975 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2976 { 2977 unsigned long flags = s->flags; 2978 unsigned long size = s->object_size; 2979 int order; 2980 2981 /* 2982 * Round up object size to the next word boundary. We can only 2983 * place the free pointer at word boundaries and this determines 2984 * the possible location of the free pointer. 2985 */ 2986 size = ALIGN(size, sizeof(void *)); 2987 2988 #ifdef CONFIG_SLUB_DEBUG 2989 /* 2990 * Determine if we can poison the object itself. If the user of 2991 * the slab may touch the object after free or before allocation 2992 * then we should never poison the object itself. 2993 */ 2994 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2995 !s->ctor) 2996 s->flags |= __OBJECT_POISON; 2997 else 2998 s->flags &= ~__OBJECT_POISON; 2999 3000 3001 /* 3002 * If we are Redzoning then check if there is some space between the 3003 * end of the object and the free pointer. If not then add an 3004 * additional word to have some bytes to store Redzone information. 3005 */ 3006 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3007 size += sizeof(void *); 3008 #endif 3009 3010 /* 3011 * With that we have determined the number of bytes in actual use 3012 * by the object. This is the potential offset to the free pointer. 3013 */ 3014 s->inuse = size; 3015 3016 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3017 s->ctor)) { 3018 /* 3019 * Relocate free pointer after the object if it is not 3020 * permitted to overwrite the first word of the object on 3021 * kmem_cache_free. 3022 * 3023 * This is the case if we do RCU, have a constructor or 3024 * destructor or are poisoning the objects. 3025 */ 3026 s->offset = size; 3027 size += sizeof(void *); 3028 } 3029 3030 #ifdef CONFIG_SLUB_DEBUG 3031 if (flags & SLAB_STORE_USER) 3032 /* 3033 * Need to store information about allocs and frees after 3034 * the object. 3035 */ 3036 size += 2 * sizeof(struct track); 3037 3038 if (flags & SLAB_RED_ZONE) 3039 /* 3040 * Add some empty padding so that we can catch 3041 * overwrites from earlier objects rather than let 3042 * tracking information or the free pointer be 3043 * corrupted if a user writes before the start 3044 * of the object. 3045 */ 3046 size += sizeof(void *); 3047 #endif 3048 3049 /* 3050 * SLUB stores one object immediately after another beginning from 3051 * offset 0. In order to align the objects we have to simply size 3052 * each object to conform to the alignment. 3053 */ 3054 size = ALIGN(size, s->align); 3055 s->size = size; 3056 if (forced_order >= 0) 3057 order = forced_order; 3058 else 3059 order = calculate_order(size, s->reserved); 3060 3061 if (order < 0) 3062 return 0; 3063 3064 s->allocflags = 0; 3065 if (order) 3066 s->allocflags |= __GFP_COMP; 3067 3068 if (s->flags & SLAB_CACHE_DMA) 3069 s->allocflags |= GFP_DMA; 3070 3071 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3072 s->allocflags |= __GFP_RECLAIMABLE; 3073 3074 /* 3075 * Determine the number of objects per slab 3076 */ 3077 s->oo = oo_make(order, size, s->reserved); 3078 s->min = oo_make(get_order(size), size, s->reserved); 3079 if (oo_objects(s->oo) > oo_objects(s->max)) 3080 s->max = s->oo; 3081 3082 return !!oo_objects(s->oo); 3083 } 3084 3085 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3086 { 3087 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3088 s->reserved = 0; 3089 3090 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3091 s->reserved = sizeof(struct rcu_head); 3092 3093 if (!calculate_sizes(s, -1)) 3094 goto error; 3095 if (disable_higher_order_debug) { 3096 /* 3097 * Disable debugging flags that store metadata if the min slab 3098 * order increased. 3099 */ 3100 if (get_order(s->size) > get_order(s->object_size)) { 3101 s->flags &= ~DEBUG_METADATA_FLAGS; 3102 s->offset = 0; 3103 if (!calculate_sizes(s, -1)) 3104 goto error; 3105 } 3106 } 3107 3108 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3109 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3110 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3111 /* Enable fast mode */ 3112 s->flags |= __CMPXCHG_DOUBLE; 3113 #endif 3114 3115 /* 3116 * The larger the object size is, the more pages we want on the partial 3117 * list to avoid pounding the page allocator excessively. 3118 */ 3119 set_min_partial(s, ilog2(s->size) / 2); 3120 3121 /* 3122 * cpu_partial determined the maximum number of objects kept in the 3123 * per cpu partial lists of a processor. 3124 * 3125 * Per cpu partial lists mainly contain slabs that just have one 3126 * object freed. If they are used for allocation then they can be 3127 * filled up again with minimal effort. The slab will never hit the 3128 * per node partial lists and therefore no locking will be required. 3129 * 3130 * This setting also determines 3131 * 3132 * A) The number of objects from per cpu partial slabs dumped to the 3133 * per node list when we reach the limit. 3134 * B) The number of objects in cpu partial slabs to extract from the 3135 * per node list when we run out of per cpu objects. We only fetch 3136 * 50% to keep some capacity around for frees. 3137 */ 3138 if (!kmem_cache_has_cpu_partial(s)) 3139 s->cpu_partial = 0; 3140 else if (s->size >= PAGE_SIZE) 3141 s->cpu_partial = 2; 3142 else if (s->size >= 1024) 3143 s->cpu_partial = 6; 3144 else if (s->size >= 256) 3145 s->cpu_partial = 13; 3146 else 3147 s->cpu_partial = 30; 3148 3149 #ifdef CONFIG_NUMA 3150 s->remote_node_defrag_ratio = 1000; 3151 #endif 3152 if (!init_kmem_cache_nodes(s)) 3153 goto error; 3154 3155 if (alloc_kmem_cache_cpus(s)) 3156 return 0; 3157 3158 free_kmem_cache_nodes(s); 3159 error: 3160 if (flags & SLAB_PANIC) 3161 panic("Cannot create slab %s size=%lu realsize=%u " 3162 "order=%u offset=%u flags=%lx\n", 3163 s->name, (unsigned long)s->size, s->size, 3164 oo_order(s->oo), s->offset, flags); 3165 return -EINVAL; 3166 } 3167 3168 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3169 const char *text) 3170 { 3171 #ifdef CONFIG_SLUB_DEBUG 3172 void *addr = page_address(page); 3173 void *p; 3174 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3175 sizeof(long), GFP_ATOMIC); 3176 if (!map) 3177 return; 3178 slab_err(s, page, text, s->name); 3179 slab_lock(page); 3180 3181 get_map(s, page, map); 3182 for_each_object(p, s, addr, page->objects) { 3183 3184 if (!test_bit(slab_index(p, s, addr), map)) { 3185 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3186 p, p - addr); 3187 print_tracking(s, p); 3188 } 3189 } 3190 slab_unlock(page); 3191 kfree(map); 3192 #endif 3193 } 3194 3195 /* 3196 * Attempt to free all partial slabs on a node. 3197 * This is called from kmem_cache_close(). We must be the last thread 3198 * using the cache and therefore we do not need to lock anymore. 3199 */ 3200 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3201 { 3202 struct page *page, *h; 3203 3204 list_for_each_entry_safe(page, h, &n->partial, lru) { 3205 if (!page->inuse) { 3206 __remove_partial(n, page); 3207 discard_slab(s, page); 3208 } else { 3209 list_slab_objects(s, page, 3210 "Objects remaining in %s on kmem_cache_close()"); 3211 } 3212 } 3213 } 3214 3215 /* 3216 * Release all resources used by a slab cache. 3217 */ 3218 static inline int kmem_cache_close(struct kmem_cache *s) 3219 { 3220 int node; 3221 3222 flush_all(s); 3223 /* Attempt to free all objects */ 3224 for_each_node_state(node, N_NORMAL_MEMORY) { 3225 struct kmem_cache_node *n = get_node(s, node); 3226 3227 free_partial(s, n); 3228 if (n->nr_partial || slabs_node(s, node)) 3229 return 1; 3230 } 3231 free_percpu(s->cpu_slab); 3232 free_kmem_cache_nodes(s); 3233 return 0; 3234 } 3235 3236 int __kmem_cache_shutdown(struct kmem_cache *s) 3237 { 3238 int rc = kmem_cache_close(s); 3239 3240 if (!rc) { 3241 /* 3242 * We do the same lock strategy around sysfs_slab_add, see 3243 * __kmem_cache_create. Because this is pretty much the last 3244 * operation we do and the lock will be released shortly after 3245 * that in slab_common.c, we could just move sysfs_slab_remove 3246 * to a later point in common code. We should do that when we 3247 * have a common sysfs framework for all allocators. 3248 */ 3249 mutex_unlock(&slab_mutex); 3250 sysfs_slab_remove(s); 3251 mutex_lock(&slab_mutex); 3252 } 3253 3254 return rc; 3255 } 3256 3257 /******************************************************************** 3258 * Kmalloc subsystem 3259 *******************************************************************/ 3260 3261 static int __init setup_slub_min_order(char *str) 3262 { 3263 get_option(&str, &slub_min_order); 3264 3265 return 1; 3266 } 3267 3268 __setup("slub_min_order=", setup_slub_min_order); 3269 3270 static int __init setup_slub_max_order(char *str) 3271 { 3272 get_option(&str, &slub_max_order); 3273 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3274 3275 return 1; 3276 } 3277 3278 __setup("slub_max_order=", setup_slub_max_order); 3279 3280 static int __init setup_slub_min_objects(char *str) 3281 { 3282 get_option(&str, &slub_min_objects); 3283 3284 return 1; 3285 } 3286 3287 __setup("slub_min_objects=", setup_slub_min_objects); 3288 3289 static int __init setup_slub_nomerge(char *str) 3290 { 3291 slub_nomerge = 1; 3292 return 1; 3293 } 3294 3295 __setup("slub_nomerge", setup_slub_nomerge); 3296 3297 void *__kmalloc(size_t size, gfp_t flags) 3298 { 3299 struct kmem_cache *s; 3300 void *ret; 3301 3302 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3303 return kmalloc_large(size, flags); 3304 3305 s = kmalloc_slab(size, flags); 3306 3307 if (unlikely(ZERO_OR_NULL_PTR(s))) 3308 return s; 3309 3310 ret = slab_alloc(s, flags, _RET_IP_); 3311 3312 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3313 3314 return ret; 3315 } 3316 EXPORT_SYMBOL(__kmalloc); 3317 3318 #ifdef CONFIG_NUMA 3319 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3320 { 3321 struct page *page; 3322 void *ptr = NULL; 3323 3324 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG; 3325 page = alloc_pages_node(node, flags, get_order(size)); 3326 if (page) 3327 ptr = page_address(page); 3328 3329 kmalloc_large_node_hook(ptr, size, flags); 3330 return ptr; 3331 } 3332 3333 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3334 { 3335 struct kmem_cache *s; 3336 void *ret; 3337 3338 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3339 ret = kmalloc_large_node(size, flags, node); 3340 3341 trace_kmalloc_node(_RET_IP_, ret, 3342 size, PAGE_SIZE << get_order(size), 3343 flags, node); 3344 3345 return ret; 3346 } 3347 3348 s = kmalloc_slab(size, flags); 3349 3350 if (unlikely(ZERO_OR_NULL_PTR(s))) 3351 return s; 3352 3353 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3354 3355 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3356 3357 return ret; 3358 } 3359 EXPORT_SYMBOL(__kmalloc_node); 3360 #endif 3361 3362 size_t ksize(const void *object) 3363 { 3364 struct page *page; 3365 3366 if (unlikely(object == ZERO_SIZE_PTR)) 3367 return 0; 3368 3369 page = virt_to_head_page(object); 3370 3371 if (unlikely(!PageSlab(page))) { 3372 WARN_ON(!PageCompound(page)); 3373 return PAGE_SIZE << compound_order(page); 3374 } 3375 3376 return slab_ksize(page->slab_cache); 3377 } 3378 EXPORT_SYMBOL(ksize); 3379 3380 void kfree(const void *x) 3381 { 3382 struct page *page; 3383 void *object = (void *)x; 3384 3385 trace_kfree(_RET_IP_, x); 3386 3387 if (unlikely(ZERO_OR_NULL_PTR(x))) 3388 return; 3389 3390 page = virt_to_head_page(x); 3391 if (unlikely(!PageSlab(page))) { 3392 BUG_ON(!PageCompound(page)); 3393 kfree_hook(x); 3394 __free_memcg_kmem_pages(page, compound_order(page)); 3395 return; 3396 } 3397 slab_free(page->slab_cache, page, object, _RET_IP_); 3398 } 3399 EXPORT_SYMBOL(kfree); 3400 3401 /* 3402 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3403 * the remaining slabs by the number of items in use. The slabs with the 3404 * most items in use come first. New allocations will then fill those up 3405 * and thus they can be removed from the partial lists. 3406 * 3407 * The slabs with the least items are placed last. This results in them 3408 * being allocated from last increasing the chance that the last objects 3409 * are freed in them. 3410 */ 3411 int kmem_cache_shrink(struct kmem_cache *s) 3412 { 3413 int node; 3414 int i; 3415 struct kmem_cache_node *n; 3416 struct page *page; 3417 struct page *t; 3418 int objects = oo_objects(s->max); 3419 struct list_head *slabs_by_inuse = 3420 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3421 unsigned long flags; 3422 3423 if (!slabs_by_inuse) 3424 return -ENOMEM; 3425 3426 flush_all(s); 3427 for_each_node_state(node, N_NORMAL_MEMORY) { 3428 n = get_node(s, node); 3429 3430 if (!n->nr_partial) 3431 continue; 3432 3433 for (i = 0; i < objects; i++) 3434 INIT_LIST_HEAD(slabs_by_inuse + i); 3435 3436 spin_lock_irqsave(&n->list_lock, flags); 3437 3438 /* 3439 * Build lists indexed by the items in use in each slab. 3440 * 3441 * Note that concurrent frees may occur while we hold the 3442 * list_lock. page->inuse here is the upper limit. 3443 */ 3444 list_for_each_entry_safe(page, t, &n->partial, lru) { 3445 list_move(&page->lru, slabs_by_inuse + page->inuse); 3446 if (!page->inuse) 3447 n->nr_partial--; 3448 } 3449 3450 /* 3451 * Rebuild the partial list with the slabs filled up most 3452 * first and the least used slabs at the end. 3453 */ 3454 for (i = objects - 1; i > 0; i--) 3455 list_splice(slabs_by_inuse + i, n->partial.prev); 3456 3457 spin_unlock_irqrestore(&n->list_lock, flags); 3458 3459 /* Release empty slabs */ 3460 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3461 discard_slab(s, page); 3462 } 3463 3464 kfree(slabs_by_inuse); 3465 return 0; 3466 } 3467 EXPORT_SYMBOL(kmem_cache_shrink); 3468 3469 static int slab_mem_going_offline_callback(void *arg) 3470 { 3471 struct kmem_cache *s; 3472 3473 mutex_lock(&slab_mutex); 3474 list_for_each_entry(s, &slab_caches, list) 3475 kmem_cache_shrink(s); 3476 mutex_unlock(&slab_mutex); 3477 3478 return 0; 3479 } 3480 3481 static void slab_mem_offline_callback(void *arg) 3482 { 3483 struct kmem_cache_node *n; 3484 struct kmem_cache *s; 3485 struct memory_notify *marg = arg; 3486 int offline_node; 3487 3488 offline_node = marg->status_change_nid_normal; 3489 3490 /* 3491 * If the node still has available memory. we need kmem_cache_node 3492 * for it yet. 3493 */ 3494 if (offline_node < 0) 3495 return; 3496 3497 mutex_lock(&slab_mutex); 3498 list_for_each_entry(s, &slab_caches, list) { 3499 n = get_node(s, offline_node); 3500 if (n) { 3501 /* 3502 * if n->nr_slabs > 0, slabs still exist on the node 3503 * that is going down. We were unable to free them, 3504 * and offline_pages() function shouldn't call this 3505 * callback. So, we must fail. 3506 */ 3507 BUG_ON(slabs_node(s, offline_node)); 3508 3509 s->node[offline_node] = NULL; 3510 kmem_cache_free(kmem_cache_node, n); 3511 } 3512 } 3513 mutex_unlock(&slab_mutex); 3514 } 3515 3516 static int slab_mem_going_online_callback(void *arg) 3517 { 3518 struct kmem_cache_node *n; 3519 struct kmem_cache *s; 3520 struct memory_notify *marg = arg; 3521 int nid = marg->status_change_nid_normal; 3522 int ret = 0; 3523 3524 /* 3525 * If the node's memory is already available, then kmem_cache_node is 3526 * already created. Nothing to do. 3527 */ 3528 if (nid < 0) 3529 return 0; 3530 3531 /* 3532 * We are bringing a node online. No memory is available yet. We must 3533 * allocate a kmem_cache_node structure in order to bring the node 3534 * online. 3535 */ 3536 mutex_lock(&slab_mutex); 3537 list_for_each_entry(s, &slab_caches, list) { 3538 /* 3539 * XXX: kmem_cache_alloc_node will fallback to other nodes 3540 * since memory is not yet available from the node that 3541 * is brought up. 3542 */ 3543 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3544 if (!n) { 3545 ret = -ENOMEM; 3546 goto out; 3547 } 3548 init_kmem_cache_node(n); 3549 s->node[nid] = n; 3550 } 3551 out: 3552 mutex_unlock(&slab_mutex); 3553 return ret; 3554 } 3555 3556 static int slab_memory_callback(struct notifier_block *self, 3557 unsigned long action, void *arg) 3558 { 3559 int ret = 0; 3560 3561 switch (action) { 3562 case MEM_GOING_ONLINE: 3563 ret = slab_mem_going_online_callback(arg); 3564 break; 3565 case MEM_GOING_OFFLINE: 3566 ret = slab_mem_going_offline_callback(arg); 3567 break; 3568 case MEM_OFFLINE: 3569 case MEM_CANCEL_ONLINE: 3570 slab_mem_offline_callback(arg); 3571 break; 3572 case MEM_ONLINE: 3573 case MEM_CANCEL_OFFLINE: 3574 break; 3575 } 3576 if (ret) 3577 ret = notifier_from_errno(ret); 3578 else 3579 ret = NOTIFY_OK; 3580 return ret; 3581 } 3582 3583 static struct notifier_block slab_memory_callback_nb = { 3584 .notifier_call = slab_memory_callback, 3585 .priority = SLAB_CALLBACK_PRI, 3586 }; 3587 3588 /******************************************************************** 3589 * Basic setup of slabs 3590 *******************************************************************/ 3591 3592 /* 3593 * Used for early kmem_cache structures that were allocated using 3594 * the page allocator. Allocate them properly then fix up the pointers 3595 * that may be pointing to the wrong kmem_cache structure. 3596 */ 3597 3598 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3599 { 3600 int node; 3601 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3602 3603 memcpy(s, static_cache, kmem_cache->object_size); 3604 3605 /* 3606 * This runs very early, and only the boot processor is supposed to be 3607 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3608 * IPIs around. 3609 */ 3610 __flush_cpu_slab(s, smp_processor_id()); 3611 for_each_node_state(node, N_NORMAL_MEMORY) { 3612 struct kmem_cache_node *n = get_node(s, node); 3613 struct page *p; 3614 3615 if (n) { 3616 list_for_each_entry(p, &n->partial, lru) 3617 p->slab_cache = s; 3618 3619 #ifdef CONFIG_SLUB_DEBUG 3620 list_for_each_entry(p, &n->full, lru) 3621 p->slab_cache = s; 3622 #endif 3623 } 3624 } 3625 list_add(&s->list, &slab_caches); 3626 return s; 3627 } 3628 3629 void __init kmem_cache_init(void) 3630 { 3631 static __initdata struct kmem_cache boot_kmem_cache, 3632 boot_kmem_cache_node; 3633 3634 if (debug_guardpage_minorder()) 3635 slub_max_order = 0; 3636 3637 kmem_cache_node = &boot_kmem_cache_node; 3638 kmem_cache = &boot_kmem_cache; 3639 3640 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3641 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3642 3643 register_hotmemory_notifier(&slab_memory_callback_nb); 3644 3645 /* Able to allocate the per node structures */ 3646 slab_state = PARTIAL; 3647 3648 create_boot_cache(kmem_cache, "kmem_cache", 3649 offsetof(struct kmem_cache, node) + 3650 nr_node_ids * sizeof(struct kmem_cache_node *), 3651 SLAB_HWCACHE_ALIGN); 3652 3653 kmem_cache = bootstrap(&boot_kmem_cache); 3654 3655 /* 3656 * Allocate kmem_cache_node properly from the kmem_cache slab. 3657 * kmem_cache_node is separately allocated so no need to 3658 * update any list pointers. 3659 */ 3660 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3661 3662 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3663 create_kmalloc_caches(0); 3664 3665 #ifdef CONFIG_SMP 3666 register_cpu_notifier(&slab_notifier); 3667 #endif 3668 3669 printk(KERN_INFO 3670 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d," 3671 " CPUs=%d, Nodes=%d\n", 3672 cache_line_size(), 3673 slub_min_order, slub_max_order, slub_min_objects, 3674 nr_cpu_ids, nr_node_ids); 3675 } 3676 3677 void __init kmem_cache_init_late(void) 3678 { 3679 } 3680 3681 /* 3682 * Find a mergeable slab cache 3683 */ 3684 static int slab_unmergeable(struct kmem_cache *s) 3685 { 3686 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3687 return 1; 3688 3689 if (s->ctor) 3690 return 1; 3691 3692 /* 3693 * We may have set a slab to be unmergeable during bootstrap. 3694 */ 3695 if (s->refcount < 0) 3696 return 1; 3697 3698 return 0; 3699 } 3700 3701 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size, 3702 size_t align, unsigned long flags, const char *name, 3703 void (*ctor)(void *)) 3704 { 3705 struct kmem_cache *s; 3706 3707 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3708 return NULL; 3709 3710 if (ctor) 3711 return NULL; 3712 3713 size = ALIGN(size, sizeof(void *)); 3714 align = calculate_alignment(flags, align, size); 3715 size = ALIGN(size, align); 3716 flags = kmem_cache_flags(size, flags, name, NULL); 3717 3718 list_for_each_entry(s, &slab_caches, list) { 3719 if (slab_unmergeable(s)) 3720 continue; 3721 3722 if (size > s->size) 3723 continue; 3724 3725 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3726 continue; 3727 /* 3728 * Check if alignment is compatible. 3729 * Courtesy of Adrian Drzewiecki 3730 */ 3731 if ((s->size & ~(align - 1)) != s->size) 3732 continue; 3733 3734 if (s->size - size >= sizeof(void *)) 3735 continue; 3736 3737 if (!cache_match_memcg(s, memcg)) 3738 continue; 3739 3740 return s; 3741 } 3742 return NULL; 3743 } 3744 3745 struct kmem_cache * 3746 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size, 3747 size_t align, unsigned long flags, void (*ctor)(void *)) 3748 { 3749 struct kmem_cache *s; 3750 3751 s = find_mergeable(memcg, size, align, flags, name, ctor); 3752 if (s) { 3753 s->refcount++; 3754 /* 3755 * Adjust the object sizes so that we clear 3756 * the complete object on kzalloc. 3757 */ 3758 s->object_size = max(s->object_size, (int)size); 3759 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3760 3761 if (sysfs_slab_alias(s, name)) { 3762 s->refcount--; 3763 s = NULL; 3764 } 3765 } 3766 3767 return s; 3768 } 3769 3770 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3771 { 3772 int err; 3773 3774 err = kmem_cache_open(s, flags); 3775 if (err) 3776 return err; 3777 3778 /* Mutex is not taken during early boot */ 3779 if (slab_state <= UP) 3780 return 0; 3781 3782 memcg_propagate_slab_attrs(s); 3783 mutex_unlock(&slab_mutex); 3784 err = sysfs_slab_add(s); 3785 mutex_lock(&slab_mutex); 3786 3787 if (err) 3788 kmem_cache_close(s); 3789 3790 return err; 3791 } 3792 3793 #ifdef CONFIG_SMP 3794 /* 3795 * Use the cpu notifier to insure that the cpu slabs are flushed when 3796 * necessary. 3797 */ 3798 static int slab_cpuup_callback(struct notifier_block *nfb, 3799 unsigned long action, void *hcpu) 3800 { 3801 long cpu = (long)hcpu; 3802 struct kmem_cache *s; 3803 unsigned long flags; 3804 3805 switch (action) { 3806 case CPU_UP_CANCELED: 3807 case CPU_UP_CANCELED_FROZEN: 3808 case CPU_DEAD: 3809 case CPU_DEAD_FROZEN: 3810 mutex_lock(&slab_mutex); 3811 list_for_each_entry(s, &slab_caches, list) { 3812 local_irq_save(flags); 3813 __flush_cpu_slab(s, cpu); 3814 local_irq_restore(flags); 3815 } 3816 mutex_unlock(&slab_mutex); 3817 break; 3818 default: 3819 break; 3820 } 3821 return NOTIFY_OK; 3822 } 3823 3824 static struct notifier_block slab_notifier = { 3825 .notifier_call = slab_cpuup_callback 3826 }; 3827 3828 #endif 3829 3830 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3831 { 3832 struct kmem_cache *s; 3833 void *ret; 3834 3835 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3836 return kmalloc_large(size, gfpflags); 3837 3838 s = kmalloc_slab(size, gfpflags); 3839 3840 if (unlikely(ZERO_OR_NULL_PTR(s))) 3841 return s; 3842 3843 ret = slab_alloc(s, gfpflags, caller); 3844 3845 /* Honor the call site pointer we received. */ 3846 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3847 3848 return ret; 3849 } 3850 3851 #ifdef CONFIG_NUMA 3852 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3853 int node, unsigned long caller) 3854 { 3855 struct kmem_cache *s; 3856 void *ret; 3857 3858 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3859 ret = kmalloc_large_node(size, gfpflags, node); 3860 3861 trace_kmalloc_node(caller, ret, 3862 size, PAGE_SIZE << get_order(size), 3863 gfpflags, node); 3864 3865 return ret; 3866 } 3867 3868 s = kmalloc_slab(size, gfpflags); 3869 3870 if (unlikely(ZERO_OR_NULL_PTR(s))) 3871 return s; 3872 3873 ret = slab_alloc_node(s, gfpflags, node, caller); 3874 3875 /* Honor the call site pointer we received. */ 3876 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3877 3878 return ret; 3879 } 3880 #endif 3881 3882 #ifdef CONFIG_SYSFS 3883 static int count_inuse(struct page *page) 3884 { 3885 return page->inuse; 3886 } 3887 3888 static int count_total(struct page *page) 3889 { 3890 return page->objects; 3891 } 3892 #endif 3893 3894 #ifdef CONFIG_SLUB_DEBUG 3895 static int validate_slab(struct kmem_cache *s, struct page *page, 3896 unsigned long *map) 3897 { 3898 void *p; 3899 void *addr = page_address(page); 3900 3901 if (!check_slab(s, page) || 3902 !on_freelist(s, page, NULL)) 3903 return 0; 3904 3905 /* Now we know that a valid freelist exists */ 3906 bitmap_zero(map, page->objects); 3907 3908 get_map(s, page, map); 3909 for_each_object(p, s, addr, page->objects) { 3910 if (test_bit(slab_index(p, s, addr), map)) 3911 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3912 return 0; 3913 } 3914 3915 for_each_object(p, s, addr, page->objects) 3916 if (!test_bit(slab_index(p, s, addr), map)) 3917 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3918 return 0; 3919 return 1; 3920 } 3921 3922 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3923 unsigned long *map) 3924 { 3925 slab_lock(page); 3926 validate_slab(s, page, map); 3927 slab_unlock(page); 3928 } 3929 3930 static int validate_slab_node(struct kmem_cache *s, 3931 struct kmem_cache_node *n, unsigned long *map) 3932 { 3933 unsigned long count = 0; 3934 struct page *page; 3935 unsigned long flags; 3936 3937 spin_lock_irqsave(&n->list_lock, flags); 3938 3939 list_for_each_entry(page, &n->partial, lru) { 3940 validate_slab_slab(s, page, map); 3941 count++; 3942 } 3943 if (count != n->nr_partial) 3944 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3945 "counter=%ld\n", s->name, count, n->nr_partial); 3946 3947 if (!(s->flags & SLAB_STORE_USER)) 3948 goto out; 3949 3950 list_for_each_entry(page, &n->full, lru) { 3951 validate_slab_slab(s, page, map); 3952 count++; 3953 } 3954 if (count != atomic_long_read(&n->nr_slabs)) 3955 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3956 "counter=%ld\n", s->name, count, 3957 atomic_long_read(&n->nr_slabs)); 3958 3959 out: 3960 spin_unlock_irqrestore(&n->list_lock, flags); 3961 return count; 3962 } 3963 3964 static long validate_slab_cache(struct kmem_cache *s) 3965 { 3966 int node; 3967 unsigned long count = 0; 3968 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3969 sizeof(unsigned long), GFP_KERNEL); 3970 3971 if (!map) 3972 return -ENOMEM; 3973 3974 flush_all(s); 3975 for_each_node_state(node, N_NORMAL_MEMORY) { 3976 struct kmem_cache_node *n = get_node(s, node); 3977 3978 count += validate_slab_node(s, n, map); 3979 } 3980 kfree(map); 3981 return count; 3982 } 3983 /* 3984 * Generate lists of code addresses where slabcache objects are allocated 3985 * and freed. 3986 */ 3987 3988 struct location { 3989 unsigned long count; 3990 unsigned long addr; 3991 long long sum_time; 3992 long min_time; 3993 long max_time; 3994 long min_pid; 3995 long max_pid; 3996 DECLARE_BITMAP(cpus, NR_CPUS); 3997 nodemask_t nodes; 3998 }; 3999 4000 struct loc_track { 4001 unsigned long max; 4002 unsigned long count; 4003 struct location *loc; 4004 }; 4005 4006 static void free_loc_track(struct loc_track *t) 4007 { 4008 if (t->max) 4009 free_pages((unsigned long)t->loc, 4010 get_order(sizeof(struct location) * t->max)); 4011 } 4012 4013 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4014 { 4015 struct location *l; 4016 int order; 4017 4018 order = get_order(sizeof(struct location) * max); 4019 4020 l = (void *)__get_free_pages(flags, order); 4021 if (!l) 4022 return 0; 4023 4024 if (t->count) { 4025 memcpy(l, t->loc, sizeof(struct location) * t->count); 4026 free_loc_track(t); 4027 } 4028 t->max = max; 4029 t->loc = l; 4030 return 1; 4031 } 4032 4033 static int add_location(struct loc_track *t, struct kmem_cache *s, 4034 const struct track *track) 4035 { 4036 long start, end, pos; 4037 struct location *l; 4038 unsigned long caddr; 4039 unsigned long age = jiffies - track->when; 4040 4041 start = -1; 4042 end = t->count; 4043 4044 for ( ; ; ) { 4045 pos = start + (end - start + 1) / 2; 4046 4047 /* 4048 * There is nothing at "end". If we end up there 4049 * we need to add something to before end. 4050 */ 4051 if (pos == end) 4052 break; 4053 4054 caddr = t->loc[pos].addr; 4055 if (track->addr == caddr) { 4056 4057 l = &t->loc[pos]; 4058 l->count++; 4059 if (track->when) { 4060 l->sum_time += age; 4061 if (age < l->min_time) 4062 l->min_time = age; 4063 if (age > l->max_time) 4064 l->max_time = age; 4065 4066 if (track->pid < l->min_pid) 4067 l->min_pid = track->pid; 4068 if (track->pid > l->max_pid) 4069 l->max_pid = track->pid; 4070 4071 cpumask_set_cpu(track->cpu, 4072 to_cpumask(l->cpus)); 4073 } 4074 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4075 return 1; 4076 } 4077 4078 if (track->addr < caddr) 4079 end = pos; 4080 else 4081 start = pos; 4082 } 4083 4084 /* 4085 * Not found. Insert new tracking element. 4086 */ 4087 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4088 return 0; 4089 4090 l = t->loc + pos; 4091 if (pos < t->count) 4092 memmove(l + 1, l, 4093 (t->count - pos) * sizeof(struct location)); 4094 t->count++; 4095 l->count = 1; 4096 l->addr = track->addr; 4097 l->sum_time = age; 4098 l->min_time = age; 4099 l->max_time = age; 4100 l->min_pid = track->pid; 4101 l->max_pid = track->pid; 4102 cpumask_clear(to_cpumask(l->cpus)); 4103 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4104 nodes_clear(l->nodes); 4105 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4106 return 1; 4107 } 4108 4109 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4110 struct page *page, enum track_item alloc, 4111 unsigned long *map) 4112 { 4113 void *addr = page_address(page); 4114 void *p; 4115 4116 bitmap_zero(map, page->objects); 4117 get_map(s, page, map); 4118 4119 for_each_object(p, s, addr, page->objects) 4120 if (!test_bit(slab_index(p, s, addr), map)) 4121 add_location(t, s, get_track(s, p, alloc)); 4122 } 4123 4124 static int list_locations(struct kmem_cache *s, char *buf, 4125 enum track_item alloc) 4126 { 4127 int len = 0; 4128 unsigned long i; 4129 struct loc_track t = { 0, 0, NULL }; 4130 int node; 4131 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4132 sizeof(unsigned long), GFP_KERNEL); 4133 4134 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4135 GFP_TEMPORARY)) { 4136 kfree(map); 4137 return sprintf(buf, "Out of memory\n"); 4138 } 4139 /* Push back cpu slabs */ 4140 flush_all(s); 4141 4142 for_each_node_state(node, N_NORMAL_MEMORY) { 4143 struct kmem_cache_node *n = get_node(s, node); 4144 unsigned long flags; 4145 struct page *page; 4146 4147 if (!atomic_long_read(&n->nr_slabs)) 4148 continue; 4149 4150 spin_lock_irqsave(&n->list_lock, flags); 4151 list_for_each_entry(page, &n->partial, lru) 4152 process_slab(&t, s, page, alloc, map); 4153 list_for_each_entry(page, &n->full, lru) 4154 process_slab(&t, s, page, alloc, map); 4155 spin_unlock_irqrestore(&n->list_lock, flags); 4156 } 4157 4158 for (i = 0; i < t.count; i++) { 4159 struct location *l = &t.loc[i]; 4160 4161 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4162 break; 4163 len += sprintf(buf + len, "%7ld ", l->count); 4164 4165 if (l->addr) 4166 len += sprintf(buf + len, "%pS", (void *)l->addr); 4167 else 4168 len += sprintf(buf + len, "<not-available>"); 4169 4170 if (l->sum_time != l->min_time) { 4171 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4172 l->min_time, 4173 (long)div_u64(l->sum_time, l->count), 4174 l->max_time); 4175 } else 4176 len += sprintf(buf + len, " age=%ld", 4177 l->min_time); 4178 4179 if (l->min_pid != l->max_pid) 4180 len += sprintf(buf + len, " pid=%ld-%ld", 4181 l->min_pid, l->max_pid); 4182 else 4183 len += sprintf(buf + len, " pid=%ld", 4184 l->min_pid); 4185 4186 if (num_online_cpus() > 1 && 4187 !cpumask_empty(to_cpumask(l->cpus)) && 4188 len < PAGE_SIZE - 60) { 4189 len += sprintf(buf + len, " cpus="); 4190 len += cpulist_scnprintf(buf + len, 4191 PAGE_SIZE - len - 50, 4192 to_cpumask(l->cpus)); 4193 } 4194 4195 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4196 len < PAGE_SIZE - 60) { 4197 len += sprintf(buf + len, " nodes="); 4198 len += nodelist_scnprintf(buf + len, 4199 PAGE_SIZE - len - 50, 4200 l->nodes); 4201 } 4202 4203 len += sprintf(buf + len, "\n"); 4204 } 4205 4206 free_loc_track(&t); 4207 kfree(map); 4208 if (!t.count) 4209 len += sprintf(buf, "No data\n"); 4210 return len; 4211 } 4212 #endif 4213 4214 #ifdef SLUB_RESILIENCY_TEST 4215 static void resiliency_test(void) 4216 { 4217 u8 *p; 4218 4219 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4220 4221 printk(KERN_ERR "SLUB resiliency testing\n"); 4222 printk(KERN_ERR "-----------------------\n"); 4223 printk(KERN_ERR "A. Corruption after allocation\n"); 4224 4225 p = kzalloc(16, GFP_KERNEL); 4226 p[16] = 0x12; 4227 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4228 " 0x12->0x%p\n\n", p + 16); 4229 4230 validate_slab_cache(kmalloc_caches[4]); 4231 4232 /* Hmmm... The next two are dangerous */ 4233 p = kzalloc(32, GFP_KERNEL); 4234 p[32 + sizeof(void *)] = 0x34; 4235 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4236 " 0x34 -> -0x%p\n", p); 4237 printk(KERN_ERR 4238 "If allocated object is overwritten then not detectable\n\n"); 4239 4240 validate_slab_cache(kmalloc_caches[5]); 4241 p = kzalloc(64, GFP_KERNEL); 4242 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4243 *p = 0x56; 4244 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4245 p); 4246 printk(KERN_ERR 4247 "If allocated object is overwritten then not detectable\n\n"); 4248 validate_slab_cache(kmalloc_caches[6]); 4249 4250 printk(KERN_ERR "\nB. Corruption after free\n"); 4251 p = kzalloc(128, GFP_KERNEL); 4252 kfree(p); 4253 *p = 0x78; 4254 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4255 validate_slab_cache(kmalloc_caches[7]); 4256 4257 p = kzalloc(256, GFP_KERNEL); 4258 kfree(p); 4259 p[50] = 0x9a; 4260 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4261 p); 4262 validate_slab_cache(kmalloc_caches[8]); 4263 4264 p = kzalloc(512, GFP_KERNEL); 4265 kfree(p); 4266 p[512] = 0xab; 4267 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4268 validate_slab_cache(kmalloc_caches[9]); 4269 } 4270 #else 4271 #ifdef CONFIG_SYSFS 4272 static void resiliency_test(void) {}; 4273 #endif 4274 #endif 4275 4276 #ifdef CONFIG_SYSFS 4277 enum slab_stat_type { 4278 SL_ALL, /* All slabs */ 4279 SL_PARTIAL, /* Only partially allocated slabs */ 4280 SL_CPU, /* Only slabs used for cpu caches */ 4281 SL_OBJECTS, /* Determine allocated objects not slabs */ 4282 SL_TOTAL /* Determine object capacity not slabs */ 4283 }; 4284 4285 #define SO_ALL (1 << SL_ALL) 4286 #define SO_PARTIAL (1 << SL_PARTIAL) 4287 #define SO_CPU (1 << SL_CPU) 4288 #define SO_OBJECTS (1 << SL_OBJECTS) 4289 #define SO_TOTAL (1 << SL_TOTAL) 4290 4291 static ssize_t show_slab_objects(struct kmem_cache *s, 4292 char *buf, unsigned long flags) 4293 { 4294 unsigned long total = 0; 4295 int node; 4296 int x; 4297 unsigned long *nodes; 4298 4299 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4300 if (!nodes) 4301 return -ENOMEM; 4302 4303 if (flags & SO_CPU) { 4304 int cpu; 4305 4306 for_each_possible_cpu(cpu) { 4307 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4308 cpu); 4309 int node; 4310 struct page *page; 4311 4312 page = ACCESS_ONCE(c->page); 4313 if (!page) 4314 continue; 4315 4316 node = page_to_nid(page); 4317 if (flags & SO_TOTAL) 4318 x = page->objects; 4319 else if (flags & SO_OBJECTS) 4320 x = page->inuse; 4321 else 4322 x = 1; 4323 4324 total += x; 4325 nodes[node] += x; 4326 4327 page = ACCESS_ONCE(c->partial); 4328 if (page) { 4329 node = page_to_nid(page); 4330 if (flags & SO_TOTAL) 4331 WARN_ON_ONCE(1); 4332 else if (flags & SO_OBJECTS) 4333 WARN_ON_ONCE(1); 4334 else 4335 x = page->pages; 4336 total += x; 4337 nodes[node] += x; 4338 } 4339 } 4340 } 4341 4342 lock_memory_hotplug(); 4343 #ifdef CONFIG_SLUB_DEBUG 4344 if (flags & SO_ALL) { 4345 for_each_node_state(node, N_NORMAL_MEMORY) { 4346 struct kmem_cache_node *n = get_node(s, node); 4347 4348 if (flags & SO_TOTAL) 4349 x = atomic_long_read(&n->total_objects); 4350 else if (flags & SO_OBJECTS) 4351 x = atomic_long_read(&n->total_objects) - 4352 count_partial(n, count_free); 4353 else 4354 x = atomic_long_read(&n->nr_slabs); 4355 total += x; 4356 nodes[node] += x; 4357 } 4358 4359 } else 4360 #endif 4361 if (flags & SO_PARTIAL) { 4362 for_each_node_state(node, N_NORMAL_MEMORY) { 4363 struct kmem_cache_node *n = get_node(s, node); 4364 4365 if (flags & SO_TOTAL) 4366 x = count_partial(n, count_total); 4367 else if (flags & SO_OBJECTS) 4368 x = count_partial(n, count_inuse); 4369 else 4370 x = n->nr_partial; 4371 total += x; 4372 nodes[node] += x; 4373 } 4374 } 4375 x = sprintf(buf, "%lu", total); 4376 #ifdef CONFIG_NUMA 4377 for_each_node_state(node, N_NORMAL_MEMORY) 4378 if (nodes[node]) 4379 x += sprintf(buf + x, " N%d=%lu", 4380 node, nodes[node]); 4381 #endif 4382 unlock_memory_hotplug(); 4383 kfree(nodes); 4384 return x + sprintf(buf + x, "\n"); 4385 } 4386 4387 #ifdef CONFIG_SLUB_DEBUG 4388 static int any_slab_objects(struct kmem_cache *s) 4389 { 4390 int node; 4391 4392 for_each_online_node(node) { 4393 struct kmem_cache_node *n = get_node(s, node); 4394 4395 if (!n) 4396 continue; 4397 4398 if (atomic_long_read(&n->total_objects)) 4399 return 1; 4400 } 4401 return 0; 4402 } 4403 #endif 4404 4405 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4406 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4407 4408 struct slab_attribute { 4409 struct attribute attr; 4410 ssize_t (*show)(struct kmem_cache *s, char *buf); 4411 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4412 }; 4413 4414 #define SLAB_ATTR_RO(_name) \ 4415 static struct slab_attribute _name##_attr = \ 4416 __ATTR(_name, 0400, _name##_show, NULL) 4417 4418 #define SLAB_ATTR(_name) \ 4419 static struct slab_attribute _name##_attr = \ 4420 __ATTR(_name, 0600, _name##_show, _name##_store) 4421 4422 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4423 { 4424 return sprintf(buf, "%d\n", s->size); 4425 } 4426 SLAB_ATTR_RO(slab_size); 4427 4428 static ssize_t align_show(struct kmem_cache *s, char *buf) 4429 { 4430 return sprintf(buf, "%d\n", s->align); 4431 } 4432 SLAB_ATTR_RO(align); 4433 4434 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4435 { 4436 return sprintf(buf, "%d\n", s->object_size); 4437 } 4438 SLAB_ATTR_RO(object_size); 4439 4440 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4441 { 4442 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4443 } 4444 SLAB_ATTR_RO(objs_per_slab); 4445 4446 static ssize_t order_store(struct kmem_cache *s, 4447 const char *buf, size_t length) 4448 { 4449 unsigned long order; 4450 int err; 4451 4452 err = kstrtoul(buf, 10, &order); 4453 if (err) 4454 return err; 4455 4456 if (order > slub_max_order || order < slub_min_order) 4457 return -EINVAL; 4458 4459 calculate_sizes(s, order); 4460 return length; 4461 } 4462 4463 static ssize_t order_show(struct kmem_cache *s, char *buf) 4464 { 4465 return sprintf(buf, "%d\n", oo_order(s->oo)); 4466 } 4467 SLAB_ATTR(order); 4468 4469 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4470 { 4471 return sprintf(buf, "%lu\n", s->min_partial); 4472 } 4473 4474 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4475 size_t length) 4476 { 4477 unsigned long min; 4478 int err; 4479 4480 err = kstrtoul(buf, 10, &min); 4481 if (err) 4482 return err; 4483 4484 set_min_partial(s, min); 4485 return length; 4486 } 4487 SLAB_ATTR(min_partial); 4488 4489 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4490 { 4491 return sprintf(buf, "%u\n", s->cpu_partial); 4492 } 4493 4494 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4495 size_t length) 4496 { 4497 unsigned long objects; 4498 int err; 4499 4500 err = kstrtoul(buf, 10, &objects); 4501 if (err) 4502 return err; 4503 if (objects && !kmem_cache_has_cpu_partial(s)) 4504 return -EINVAL; 4505 4506 s->cpu_partial = objects; 4507 flush_all(s); 4508 return length; 4509 } 4510 SLAB_ATTR(cpu_partial); 4511 4512 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4513 { 4514 if (!s->ctor) 4515 return 0; 4516 return sprintf(buf, "%pS\n", s->ctor); 4517 } 4518 SLAB_ATTR_RO(ctor); 4519 4520 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4521 { 4522 return sprintf(buf, "%d\n", s->refcount - 1); 4523 } 4524 SLAB_ATTR_RO(aliases); 4525 4526 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4527 { 4528 return show_slab_objects(s, buf, SO_PARTIAL); 4529 } 4530 SLAB_ATTR_RO(partial); 4531 4532 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4533 { 4534 return show_slab_objects(s, buf, SO_CPU); 4535 } 4536 SLAB_ATTR_RO(cpu_slabs); 4537 4538 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4539 { 4540 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4541 } 4542 SLAB_ATTR_RO(objects); 4543 4544 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4545 { 4546 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4547 } 4548 SLAB_ATTR_RO(objects_partial); 4549 4550 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4551 { 4552 int objects = 0; 4553 int pages = 0; 4554 int cpu; 4555 int len; 4556 4557 for_each_online_cpu(cpu) { 4558 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4559 4560 if (page) { 4561 pages += page->pages; 4562 objects += page->pobjects; 4563 } 4564 } 4565 4566 len = sprintf(buf, "%d(%d)", objects, pages); 4567 4568 #ifdef CONFIG_SMP 4569 for_each_online_cpu(cpu) { 4570 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4571 4572 if (page && len < PAGE_SIZE - 20) 4573 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4574 page->pobjects, page->pages); 4575 } 4576 #endif 4577 return len + sprintf(buf + len, "\n"); 4578 } 4579 SLAB_ATTR_RO(slabs_cpu_partial); 4580 4581 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4582 { 4583 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4584 } 4585 4586 static ssize_t reclaim_account_store(struct kmem_cache *s, 4587 const char *buf, size_t length) 4588 { 4589 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4590 if (buf[0] == '1') 4591 s->flags |= SLAB_RECLAIM_ACCOUNT; 4592 return length; 4593 } 4594 SLAB_ATTR(reclaim_account); 4595 4596 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4597 { 4598 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4599 } 4600 SLAB_ATTR_RO(hwcache_align); 4601 4602 #ifdef CONFIG_ZONE_DMA 4603 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4604 { 4605 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4606 } 4607 SLAB_ATTR_RO(cache_dma); 4608 #endif 4609 4610 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4611 { 4612 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4613 } 4614 SLAB_ATTR_RO(destroy_by_rcu); 4615 4616 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4617 { 4618 return sprintf(buf, "%d\n", s->reserved); 4619 } 4620 SLAB_ATTR_RO(reserved); 4621 4622 #ifdef CONFIG_SLUB_DEBUG 4623 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4624 { 4625 return show_slab_objects(s, buf, SO_ALL); 4626 } 4627 SLAB_ATTR_RO(slabs); 4628 4629 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4630 { 4631 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4632 } 4633 SLAB_ATTR_RO(total_objects); 4634 4635 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4636 { 4637 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4638 } 4639 4640 static ssize_t sanity_checks_store(struct kmem_cache *s, 4641 const char *buf, size_t length) 4642 { 4643 s->flags &= ~SLAB_DEBUG_FREE; 4644 if (buf[0] == '1') { 4645 s->flags &= ~__CMPXCHG_DOUBLE; 4646 s->flags |= SLAB_DEBUG_FREE; 4647 } 4648 return length; 4649 } 4650 SLAB_ATTR(sanity_checks); 4651 4652 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4653 { 4654 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4655 } 4656 4657 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4658 size_t length) 4659 { 4660 s->flags &= ~SLAB_TRACE; 4661 if (buf[0] == '1') { 4662 s->flags &= ~__CMPXCHG_DOUBLE; 4663 s->flags |= SLAB_TRACE; 4664 } 4665 return length; 4666 } 4667 SLAB_ATTR(trace); 4668 4669 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4670 { 4671 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4672 } 4673 4674 static ssize_t red_zone_store(struct kmem_cache *s, 4675 const char *buf, size_t length) 4676 { 4677 if (any_slab_objects(s)) 4678 return -EBUSY; 4679 4680 s->flags &= ~SLAB_RED_ZONE; 4681 if (buf[0] == '1') { 4682 s->flags &= ~__CMPXCHG_DOUBLE; 4683 s->flags |= SLAB_RED_ZONE; 4684 } 4685 calculate_sizes(s, -1); 4686 return length; 4687 } 4688 SLAB_ATTR(red_zone); 4689 4690 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4691 { 4692 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4693 } 4694 4695 static ssize_t poison_store(struct kmem_cache *s, 4696 const char *buf, size_t length) 4697 { 4698 if (any_slab_objects(s)) 4699 return -EBUSY; 4700 4701 s->flags &= ~SLAB_POISON; 4702 if (buf[0] == '1') { 4703 s->flags &= ~__CMPXCHG_DOUBLE; 4704 s->flags |= SLAB_POISON; 4705 } 4706 calculate_sizes(s, -1); 4707 return length; 4708 } 4709 SLAB_ATTR(poison); 4710 4711 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4712 { 4713 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4714 } 4715 4716 static ssize_t store_user_store(struct kmem_cache *s, 4717 const char *buf, size_t length) 4718 { 4719 if (any_slab_objects(s)) 4720 return -EBUSY; 4721 4722 s->flags &= ~SLAB_STORE_USER; 4723 if (buf[0] == '1') { 4724 s->flags &= ~__CMPXCHG_DOUBLE; 4725 s->flags |= SLAB_STORE_USER; 4726 } 4727 calculate_sizes(s, -1); 4728 return length; 4729 } 4730 SLAB_ATTR(store_user); 4731 4732 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4733 { 4734 return 0; 4735 } 4736 4737 static ssize_t validate_store(struct kmem_cache *s, 4738 const char *buf, size_t length) 4739 { 4740 int ret = -EINVAL; 4741 4742 if (buf[0] == '1') { 4743 ret = validate_slab_cache(s); 4744 if (ret >= 0) 4745 ret = length; 4746 } 4747 return ret; 4748 } 4749 SLAB_ATTR(validate); 4750 4751 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4752 { 4753 if (!(s->flags & SLAB_STORE_USER)) 4754 return -ENOSYS; 4755 return list_locations(s, buf, TRACK_ALLOC); 4756 } 4757 SLAB_ATTR_RO(alloc_calls); 4758 4759 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4760 { 4761 if (!(s->flags & SLAB_STORE_USER)) 4762 return -ENOSYS; 4763 return list_locations(s, buf, TRACK_FREE); 4764 } 4765 SLAB_ATTR_RO(free_calls); 4766 #endif /* CONFIG_SLUB_DEBUG */ 4767 4768 #ifdef CONFIG_FAILSLAB 4769 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4770 { 4771 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4772 } 4773 4774 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4775 size_t length) 4776 { 4777 s->flags &= ~SLAB_FAILSLAB; 4778 if (buf[0] == '1') 4779 s->flags |= SLAB_FAILSLAB; 4780 return length; 4781 } 4782 SLAB_ATTR(failslab); 4783 #endif 4784 4785 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4786 { 4787 return 0; 4788 } 4789 4790 static ssize_t shrink_store(struct kmem_cache *s, 4791 const char *buf, size_t length) 4792 { 4793 if (buf[0] == '1') { 4794 int rc = kmem_cache_shrink(s); 4795 4796 if (rc) 4797 return rc; 4798 } else 4799 return -EINVAL; 4800 return length; 4801 } 4802 SLAB_ATTR(shrink); 4803 4804 #ifdef CONFIG_NUMA 4805 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4806 { 4807 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4808 } 4809 4810 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4811 const char *buf, size_t length) 4812 { 4813 unsigned long ratio; 4814 int err; 4815 4816 err = kstrtoul(buf, 10, &ratio); 4817 if (err) 4818 return err; 4819 4820 if (ratio <= 100) 4821 s->remote_node_defrag_ratio = ratio * 10; 4822 4823 return length; 4824 } 4825 SLAB_ATTR(remote_node_defrag_ratio); 4826 #endif 4827 4828 #ifdef CONFIG_SLUB_STATS 4829 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4830 { 4831 unsigned long sum = 0; 4832 int cpu; 4833 int len; 4834 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4835 4836 if (!data) 4837 return -ENOMEM; 4838 4839 for_each_online_cpu(cpu) { 4840 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4841 4842 data[cpu] = x; 4843 sum += x; 4844 } 4845 4846 len = sprintf(buf, "%lu", sum); 4847 4848 #ifdef CONFIG_SMP 4849 for_each_online_cpu(cpu) { 4850 if (data[cpu] && len < PAGE_SIZE - 20) 4851 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4852 } 4853 #endif 4854 kfree(data); 4855 return len + sprintf(buf + len, "\n"); 4856 } 4857 4858 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4859 { 4860 int cpu; 4861 4862 for_each_online_cpu(cpu) 4863 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4864 } 4865 4866 #define STAT_ATTR(si, text) \ 4867 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4868 { \ 4869 return show_stat(s, buf, si); \ 4870 } \ 4871 static ssize_t text##_store(struct kmem_cache *s, \ 4872 const char *buf, size_t length) \ 4873 { \ 4874 if (buf[0] != '0') \ 4875 return -EINVAL; \ 4876 clear_stat(s, si); \ 4877 return length; \ 4878 } \ 4879 SLAB_ATTR(text); \ 4880 4881 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4882 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4883 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4884 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4885 STAT_ATTR(FREE_FROZEN, free_frozen); 4886 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4887 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4888 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4889 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4890 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4891 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4892 STAT_ATTR(FREE_SLAB, free_slab); 4893 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4894 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4895 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4896 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4897 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4898 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4899 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4900 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4901 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4902 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4903 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4904 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4905 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4906 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4907 #endif 4908 4909 static struct attribute *slab_attrs[] = { 4910 &slab_size_attr.attr, 4911 &object_size_attr.attr, 4912 &objs_per_slab_attr.attr, 4913 &order_attr.attr, 4914 &min_partial_attr.attr, 4915 &cpu_partial_attr.attr, 4916 &objects_attr.attr, 4917 &objects_partial_attr.attr, 4918 &partial_attr.attr, 4919 &cpu_slabs_attr.attr, 4920 &ctor_attr.attr, 4921 &aliases_attr.attr, 4922 &align_attr.attr, 4923 &hwcache_align_attr.attr, 4924 &reclaim_account_attr.attr, 4925 &destroy_by_rcu_attr.attr, 4926 &shrink_attr.attr, 4927 &reserved_attr.attr, 4928 &slabs_cpu_partial_attr.attr, 4929 #ifdef CONFIG_SLUB_DEBUG 4930 &total_objects_attr.attr, 4931 &slabs_attr.attr, 4932 &sanity_checks_attr.attr, 4933 &trace_attr.attr, 4934 &red_zone_attr.attr, 4935 &poison_attr.attr, 4936 &store_user_attr.attr, 4937 &validate_attr.attr, 4938 &alloc_calls_attr.attr, 4939 &free_calls_attr.attr, 4940 #endif 4941 #ifdef CONFIG_ZONE_DMA 4942 &cache_dma_attr.attr, 4943 #endif 4944 #ifdef CONFIG_NUMA 4945 &remote_node_defrag_ratio_attr.attr, 4946 #endif 4947 #ifdef CONFIG_SLUB_STATS 4948 &alloc_fastpath_attr.attr, 4949 &alloc_slowpath_attr.attr, 4950 &free_fastpath_attr.attr, 4951 &free_slowpath_attr.attr, 4952 &free_frozen_attr.attr, 4953 &free_add_partial_attr.attr, 4954 &free_remove_partial_attr.attr, 4955 &alloc_from_partial_attr.attr, 4956 &alloc_slab_attr.attr, 4957 &alloc_refill_attr.attr, 4958 &alloc_node_mismatch_attr.attr, 4959 &free_slab_attr.attr, 4960 &cpuslab_flush_attr.attr, 4961 &deactivate_full_attr.attr, 4962 &deactivate_empty_attr.attr, 4963 &deactivate_to_head_attr.attr, 4964 &deactivate_to_tail_attr.attr, 4965 &deactivate_remote_frees_attr.attr, 4966 &deactivate_bypass_attr.attr, 4967 &order_fallback_attr.attr, 4968 &cmpxchg_double_fail_attr.attr, 4969 &cmpxchg_double_cpu_fail_attr.attr, 4970 &cpu_partial_alloc_attr.attr, 4971 &cpu_partial_free_attr.attr, 4972 &cpu_partial_node_attr.attr, 4973 &cpu_partial_drain_attr.attr, 4974 #endif 4975 #ifdef CONFIG_FAILSLAB 4976 &failslab_attr.attr, 4977 #endif 4978 4979 NULL 4980 }; 4981 4982 static struct attribute_group slab_attr_group = { 4983 .attrs = slab_attrs, 4984 }; 4985 4986 static ssize_t slab_attr_show(struct kobject *kobj, 4987 struct attribute *attr, 4988 char *buf) 4989 { 4990 struct slab_attribute *attribute; 4991 struct kmem_cache *s; 4992 int err; 4993 4994 attribute = to_slab_attr(attr); 4995 s = to_slab(kobj); 4996 4997 if (!attribute->show) 4998 return -EIO; 4999 5000 err = attribute->show(s, buf); 5001 5002 return err; 5003 } 5004 5005 static ssize_t slab_attr_store(struct kobject *kobj, 5006 struct attribute *attr, 5007 const char *buf, size_t len) 5008 { 5009 struct slab_attribute *attribute; 5010 struct kmem_cache *s; 5011 int err; 5012 5013 attribute = to_slab_attr(attr); 5014 s = to_slab(kobj); 5015 5016 if (!attribute->store) 5017 return -EIO; 5018 5019 err = attribute->store(s, buf, len); 5020 #ifdef CONFIG_MEMCG_KMEM 5021 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5022 int i; 5023 5024 mutex_lock(&slab_mutex); 5025 if (s->max_attr_size < len) 5026 s->max_attr_size = len; 5027 5028 /* 5029 * This is a best effort propagation, so this function's return 5030 * value will be determined by the parent cache only. This is 5031 * basically because not all attributes will have a well 5032 * defined semantics for rollbacks - most of the actions will 5033 * have permanent effects. 5034 * 5035 * Returning the error value of any of the children that fail 5036 * is not 100 % defined, in the sense that users seeing the 5037 * error code won't be able to know anything about the state of 5038 * the cache. 5039 * 5040 * Only returning the error code for the parent cache at least 5041 * has well defined semantics. The cache being written to 5042 * directly either failed or succeeded, in which case we loop 5043 * through the descendants with best-effort propagation. 5044 */ 5045 for_each_memcg_cache_index(i) { 5046 struct kmem_cache *c = cache_from_memcg_idx(s, i); 5047 if (c) 5048 attribute->store(c, buf, len); 5049 } 5050 mutex_unlock(&slab_mutex); 5051 } 5052 #endif 5053 return err; 5054 } 5055 5056 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5057 { 5058 #ifdef CONFIG_MEMCG_KMEM 5059 int i; 5060 char *buffer = NULL; 5061 5062 if (!is_root_cache(s)) 5063 return; 5064 5065 /* 5066 * This mean this cache had no attribute written. Therefore, no point 5067 * in copying default values around 5068 */ 5069 if (!s->max_attr_size) 5070 return; 5071 5072 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5073 char mbuf[64]; 5074 char *buf; 5075 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5076 5077 if (!attr || !attr->store || !attr->show) 5078 continue; 5079 5080 /* 5081 * It is really bad that we have to allocate here, so we will 5082 * do it only as a fallback. If we actually allocate, though, 5083 * we can just use the allocated buffer until the end. 5084 * 5085 * Most of the slub attributes will tend to be very small in 5086 * size, but sysfs allows buffers up to a page, so they can 5087 * theoretically happen. 5088 */ 5089 if (buffer) 5090 buf = buffer; 5091 else if (s->max_attr_size < ARRAY_SIZE(mbuf)) 5092 buf = mbuf; 5093 else { 5094 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5095 if (WARN_ON(!buffer)) 5096 continue; 5097 buf = buffer; 5098 } 5099 5100 attr->show(s->memcg_params->root_cache, buf); 5101 attr->store(s, buf, strlen(buf)); 5102 } 5103 5104 if (buffer) 5105 free_page((unsigned long)buffer); 5106 #endif 5107 } 5108 5109 static const struct sysfs_ops slab_sysfs_ops = { 5110 .show = slab_attr_show, 5111 .store = slab_attr_store, 5112 }; 5113 5114 static struct kobj_type slab_ktype = { 5115 .sysfs_ops = &slab_sysfs_ops, 5116 }; 5117 5118 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5119 { 5120 struct kobj_type *ktype = get_ktype(kobj); 5121 5122 if (ktype == &slab_ktype) 5123 return 1; 5124 return 0; 5125 } 5126 5127 static const struct kset_uevent_ops slab_uevent_ops = { 5128 .filter = uevent_filter, 5129 }; 5130 5131 static struct kset *slab_kset; 5132 5133 #define ID_STR_LENGTH 64 5134 5135 /* Create a unique string id for a slab cache: 5136 * 5137 * Format :[flags-]size 5138 */ 5139 static char *create_unique_id(struct kmem_cache *s) 5140 { 5141 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5142 char *p = name; 5143 5144 BUG_ON(!name); 5145 5146 *p++ = ':'; 5147 /* 5148 * First flags affecting slabcache operations. We will only 5149 * get here for aliasable slabs so we do not need to support 5150 * too many flags. The flags here must cover all flags that 5151 * are matched during merging to guarantee that the id is 5152 * unique. 5153 */ 5154 if (s->flags & SLAB_CACHE_DMA) 5155 *p++ = 'd'; 5156 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5157 *p++ = 'a'; 5158 if (s->flags & SLAB_DEBUG_FREE) 5159 *p++ = 'F'; 5160 if (!(s->flags & SLAB_NOTRACK)) 5161 *p++ = 't'; 5162 if (p != name + 1) 5163 *p++ = '-'; 5164 p += sprintf(p, "%07d", s->size); 5165 5166 #ifdef CONFIG_MEMCG_KMEM 5167 if (!is_root_cache(s)) 5168 p += sprintf(p, "-%08d", 5169 memcg_cache_id(s->memcg_params->memcg)); 5170 #endif 5171 5172 BUG_ON(p > name + ID_STR_LENGTH - 1); 5173 return name; 5174 } 5175 5176 static int sysfs_slab_add(struct kmem_cache *s) 5177 { 5178 int err; 5179 const char *name; 5180 int unmergeable = slab_unmergeable(s); 5181 5182 if (unmergeable) { 5183 /* 5184 * Slabcache can never be merged so we can use the name proper. 5185 * This is typically the case for debug situations. In that 5186 * case we can catch duplicate names easily. 5187 */ 5188 sysfs_remove_link(&slab_kset->kobj, s->name); 5189 name = s->name; 5190 } else { 5191 /* 5192 * Create a unique name for the slab as a target 5193 * for the symlinks. 5194 */ 5195 name = create_unique_id(s); 5196 } 5197 5198 s->kobj.kset = slab_kset; 5199 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5200 if (err) { 5201 kobject_put(&s->kobj); 5202 return err; 5203 } 5204 5205 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5206 if (err) { 5207 kobject_del(&s->kobj); 5208 kobject_put(&s->kobj); 5209 return err; 5210 } 5211 kobject_uevent(&s->kobj, KOBJ_ADD); 5212 if (!unmergeable) { 5213 /* Setup first alias */ 5214 sysfs_slab_alias(s, s->name); 5215 kfree(name); 5216 } 5217 return 0; 5218 } 5219 5220 static void sysfs_slab_remove(struct kmem_cache *s) 5221 { 5222 if (slab_state < FULL) 5223 /* 5224 * Sysfs has not been setup yet so no need to remove the 5225 * cache from sysfs. 5226 */ 5227 return; 5228 5229 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5230 kobject_del(&s->kobj); 5231 kobject_put(&s->kobj); 5232 } 5233 5234 /* 5235 * Need to buffer aliases during bootup until sysfs becomes 5236 * available lest we lose that information. 5237 */ 5238 struct saved_alias { 5239 struct kmem_cache *s; 5240 const char *name; 5241 struct saved_alias *next; 5242 }; 5243 5244 static struct saved_alias *alias_list; 5245 5246 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5247 { 5248 struct saved_alias *al; 5249 5250 if (slab_state == FULL) { 5251 /* 5252 * If we have a leftover link then remove it. 5253 */ 5254 sysfs_remove_link(&slab_kset->kobj, name); 5255 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5256 } 5257 5258 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5259 if (!al) 5260 return -ENOMEM; 5261 5262 al->s = s; 5263 al->name = name; 5264 al->next = alias_list; 5265 alias_list = al; 5266 return 0; 5267 } 5268 5269 static int __init slab_sysfs_init(void) 5270 { 5271 struct kmem_cache *s; 5272 int err; 5273 5274 mutex_lock(&slab_mutex); 5275 5276 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5277 if (!slab_kset) { 5278 mutex_unlock(&slab_mutex); 5279 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5280 return -ENOSYS; 5281 } 5282 5283 slab_state = FULL; 5284 5285 list_for_each_entry(s, &slab_caches, list) { 5286 err = sysfs_slab_add(s); 5287 if (err) 5288 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5289 " to sysfs\n", s->name); 5290 } 5291 5292 while (alias_list) { 5293 struct saved_alias *al = alias_list; 5294 5295 alias_list = alias_list->next; 5296 err = sysfs_slab_alias(al->s, al->name); 5297 if (err) 5298 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5299 " %s to sysfs\n", al->name); 5300 kfree(al); 5301 } 5302 5303 mutex_unlock(&slab_mutex); 5304 resiliency_test(); 5305 return 0; 5306 } 5307 5308 __initcall(slab_sysfs_init); 5309 #endif /* CONFIG_SYSFS */ 5310 5311 /* 5312 * The /proc/slabinfo ABI 5313 */ 5314 #ifdef CONFIG_SLABINFO 5315 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5316 { 5317 unsigned long nr_slabs = 0; 5318 unsigned long nr_objs = 0; 5319 unsigned long nr_free = 0; 5320 int node; 5321 5322 for_each_online_node(node) { 5323 struct kmem_cache_node *n = get_node(s, node); 5324 5325 if (!n) 5326 continue; 5327 5328 nr_slabs += node_nr_slabs(n); 5329 nr_objs += node_nr_objs(n); 5330 nr_free += count_partial(n, count_free); 5331 } 5332 5333 sinfo->active_objs = nr_objs - nr_free; 5334 sinfo->num_objs = nr_objs; 5335 sinfo->active_slabs = nr_slabs; 5336 sinfo->num_slabs = nr_slabs; 5337 sinfo->objects_per_slab = oo_objects(s->oo); 5338 sinfo->cache_order = oo_order(s->oo); 5339 } 5340 5341 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5342 { 5343 } 5344 5345 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5346 size_t count, loff_t *ppos) 5347 { 5348 return -EIO; 5349 } 5350 #endif /* CONFIG_SLABINFO */ 5351