xref: /openbmc/linux/mm/slub.c (revision f6723b56)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 
37 #include <trace/events/kmem.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Lock order:
43  *   1. slab_mutex (Global Mutex)
44  *   2. node->list_lock
45  *   3. slab_lock(page) (Only on some arches and for debugging)
46  *
47  *   slab_mutex
48  *
49  *   The role of the slab_mutex is to protect the list of all the slabs
50  *   and to synchronize major metadata changes to slab cache structures.
51  *
52  *   The slab_lock is only used for debugging and on arches that do not
53  *   have the ability to do a cmpxchg_double. It only protects the second
54  *   double word in the page struct. Meaning
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->counters	-> Counters of objects
57  *	C. page->frozen		-> frozen state
58  *
59  *   If a slab is frozen then it is exempt from list management. It is not
60  *   on any list. The processor that froze the slab is the one who can
61  *   perform list operations on the page. Other processors may put objects
62  *   onto the freelist but the processor that froze the slab is the only
63  *   one that can retrieve the objects from the page's freelist.
64  *
65  *   The list_lock protects the partial and full list on each node and
66  *   the partial slab counter. If taken then no new slabs may be added or
67  *   removed from the lists nor make the number of partial slabs be modified.
68  *   (Note that the total number of slabs is an atomic value that may be
69  *   modified without taking the list lock).
70  *
71  *   The list_lock is a centralized lock and thus we avoid taking it as
72  *   much as possible. As long as SLUB does not have to handle partial
73  *   slabs, operations can continue without any centralized lock. F.e.
74  *   allocating a long series of objects that fill up slabs does not require
75  *   the list lock.
76  *   Interrupts are disabled during allocation and deallocation in order to
77  *   make the slab allocator safe to use in the context of an irq. In addition
78  *   interrupts are disabled to ensure that the processor does not change
79  *   while handling per_cpu slabs, due to kernel preemption.
80  *
81  * SLUB assigns one slab for allocation to each processor.
82  * Allocations only occur from these slabs called cpu slabs.
83  *
84  * Slabs with free elements are kept on a partial list and during regular
85  * operations no list for full slabs is used. If an object in a full slab is
86  * freed then the slab will show up again on the partial lists.
87  * We track full slabs for debugging purposes though because otherwise we
88  * cannot scan all objects.
89  *
90  * Slabs are freed when they become empty. Teardown and setup is
91  * minimal so we rely on the page allocators per cpu caches for
92  * fast frees and allocs.
93  *
94  * Overloading of page flags that are otherwise used for LRU management.
95  *
96  * PageActive 		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * PageError		Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 	return !kmem_cache_debug(s);
130 #else
131 	return false;
132 #endif
133 }
134 
135 /*
136  * Issues still to be resolved:
137  *
138  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139  *
140  * - Variable sizing of the per node arrays
141  */
142 
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145 
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148 
149 /*
150  * Mininum number of partial slabs. These will be left on the partial
151  * lists even if they are empty. kmem_cache_shrink may reclaim them.
152  */
153 #define MIN_PARTIAL 5
154 
155 /*
156  * Maximum number of desirable partial slabs.
157  * The existence of more partial slabs makes kmem_cache_shrink
158  * sort the partial list by the number of objects in use.
159  */
160 #define MAX_PARTIAL 10
161 
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 				SLAB_POISON | SLAB_STORE_USER)
164 
165 /*
166  * Debugging flags that require metadata to be stored in the slab.  These get
167  * disabled when slub_debug=O is used and a cache's min order increases with
168  * metadata.
169  */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171 
172 /*
173  * Set of flags that will prevent slab merging
174  */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 		SLAB_FAILSLAB)
178 
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 		SLAB_CACHE_DMA | SLAB_NOTRACK)
181 
182 #define OO_SHIFT	16
183 #define OO_MASK		((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185 
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON		0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
189 
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193 
194 /*
195  * Tracking user of a slab.
196  */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 	unsigned long addr;	/* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
202 #endif
203 	int cpu;		/* Was running on cpu */
204 	int pid;		/* Pid context */
205 	unsigned long when;	/* When did the operation occur */
206 };
207 
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209 
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 							{ return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220 
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223 
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 	__this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230 
231 /********************************************************************
232  * 			Core slab cache functions
233  *******************************************************************/
234 
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 	return s->node[node];
238 }
239 
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 				struct page *page, const void *object)
243 {
244 	void *base;
245 
246 	if (!object)
247 		return 1;
248 
249 	base = page_address(page);
250 	if (object < base || object >= base + page->objects * s->size ||
251 		(object - base) % s->size) {
252 		return 0;
253 	}
254 
255 	return 1;
256 }
257 
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 	return *(void **)(object + s->offset);
261 }
262 
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 	prefetch(object + s->offset);
266 }
267 
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 	void *p;
271 
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 	p = get_freepointer(s, object);
276 #endif
277 	return p;
278 }
279 
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 	*(void **)(object + s->offset) = fp;
283 }
284 
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 			__p += (__s)->size)
289 
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 	return (p - addr) / s->size;
294 }
295 
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 	/*
300 	 * Debugging requires use of the padding between object
301 	 * and whatever may come after it.
302 	 */
303 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 		return s->object_size;
305 
306 #endif
307 	/*
308 	 * If we have the need to store the freelist pointer
309 	 * back there or track user information then we can
310 	 * only use the space before that information.
311 	 */
312 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 		return s->inuse;
314 	/*
315 	 * Else we can use all the padding etc for the allocation
316 	 */
317 	return s->size;
318 }
319 
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 	return ((PAGE_SIZE << order) - reserved) / size;
323 }
324 
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 		unsigned long size, int reserved)
327 {
328 	struct kmem_cache_order_objects x = {
329 		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 	};
331 
332 	return x;
333 }
334 
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 	return x.x >> OO_SHIFT;
338 }
339 
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 	return x.x & OO_MASK;
343 }
344 
345 /*
346  * Per slab locking using the pagelock
347  */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 	bit_spin_lock(PG_locked, &page->flags);
351 }
352 
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 	__bit_spin_unlock(PG_locked, &page->flags);
356 }
357 
358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359 {
360 	struct page tmp;
361 	tmp.counters = counters_new;
362 	/*
363 	 * page->counters can cover frozen/inuse/objects as well
364 	 * as page->_count.  If we assign to ->counters directly
365 	 * we run the risk of losing updates to page->_count, so
366 	 * be careful and only assign to the fields we need.
367 	 */
368 	page->frozen  = tmp.frozen;
369 	page->inuse   = tmp.inuse;
370 	page->objects = tmp.objects;
371 }
372 
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 		void *freelist_old, unsigned long counters_old,
376 		void *freelist_new, unsigned long counters_new,
377 		const char *n)
378 {
379 	VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 	if (s->flags & __CMPXCHG_DOUBLE) {
383 		if (cmpxchg_double(&page->freelist, &page->counters,
384 			freelist_old, counters_old,
385 			freelist_new, counters_new))
386 		return 1;
387 	} else
388 #endif
389 	{
390 		slab_lock(page);
391 		if (page->freelist == freelist_old &&
392 					page->counters == counters_old) {
393 			page->freelist = freelist_new;
394 			set_page_slub_counters(page, counters_new);
395 			slab_unlock(page);
396 			return 1;
397 		}
398 		slab_unlock(page);
399 	}
400 
401 	cpu_relax();
402 	stat(s, CMPXCHG_DOUBLE_FAIL);
403 
404 #ifdef SLUB_DEBUG_CMPXCHG
405 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
406 #endif
407 
408 	return 0;
409 }
410 
411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 		void *freelist_old, unsigned long counters_old,
413 		void *freelist_new, unsigned long counters_new,
414 		const char *n)
415 {
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 	if (s->flags & __CMPXCHG_DOUBLE) {
419 		if (cmpxchg_double(&page->freelist, &page->counters,
420 			freelist_old, counters_old,
421 			freelist_new, counters_new))
422 		return 1;
423 	} else
424 #endif
425 	{
426 		unsigned long flags;
427 
428 		local_irq_save(flags);
429 		slab_lock(page);
430 		if (page->freelist == freelist_old &&
431 					page->counters == counters_old) {
432 			page->freelist = freelist_new;
433 			set_page_slub_counters(page, counters_new);
434 			slab_unlock(page);
435 			local_irq_restore(flags);
436 			return 1;
437 		}
438 		slab_unlock(page);
439 		local_irq_restore(flags);
440 	}
441 
442 	cpu_relax();
443 	stat(s, CMPXCHG_DOUBLE_FAIL);
444 
445 #ifdef SLUB_DEBUG_CMPXCHG
446 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
447 #endif
448 
449 	return 0;
450 }
451 
452 #ifdef CONFIG_SLUB_DEBUG
453 /*
454  * Determine a map of object in use on a page.
455  *
456  * Node listlock must be held to guarantee that the page does
457  * not vanish from under us.
458  */
459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460 {
461 	void *p;
462 	void *addr = page_address(page);
463 
464 	for (p = page->freelist; p; p = get_freepointer(s, p))
465 		set_bit(slab_index(p, s, addr), map);
466 }
467 
468 /*
469  * Debug settings:
470  */
471 #ifdef CONFIG_SLUB_DEBUG_ON
472 static int slub_debug = DEBUG_DEFAULT_FLAGS;
473 #else
474 static int slub_debug;
475 #endif
476 
477 static char *slub_debug_slabs;
478 static int disable_higher_order_debug;
479 
480 /*
481  * Object debugging
482  */
483 static void print_section(char *text, u8 *addr, unsigned int length)
484 {
485 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 			length, 1);
487 }
488 
489 static struct track *get_track(struct kmem_cache *s, void *object,
490 	enum track_item alloc)
491 {
492 	struct track *p;
493 
494 	if (s->offset)
495 		p = object + s->offset + sizeof(void *);
496 	else
497 		p = object + s->inuse;
498 
499 	return p + alloc;
500 }
501 
502 static void set_track(struct kmem_cache *s, void *object,
503 			enum track_item alloc, unsigned long addr)
504 {
505 	struct track *p = get_track(s, object, alloc);
506 
507 	if (addr) {
508 #ifdef CONFIG_STACKTRACE
509 		struct stack_trace trace;
510 		int i;
511 
512 		trace.nr_entries = 0;
513 		trace.max_entries = TRACK_ADDRS_COUNT;
514 		trace.entries = p->addrs;
515 		trace.skip = 3;
516 		save_stack_trace(&trace);
517 
518 		/* See rant in lockdep.c */
519 		if (trace.nr_entries != 0 &&
520 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 			trace.nr_entries--;
522 
523 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 			p->addrs[i] = 0;
525 #endif
526 		p->addr = addr;
527 		p->cpu = smp_processor_id();
528 		p->pid = current->pid;
529 		p->when = jiffies;
530 	} else
531 		memset(p, 0, sizeof(struct track));
532 }
533 
534 static void init_tracking(struct kmem_cache *s, void *object)
535 {
536 	if (!(s->flags & SLAB_STORE_USER))
537 		return;
538 
539 	set_track(s, object, TRACK_FREE, 0UL);
540 	set_track(s, object, TRACK_ALLOC, 0UL);
541 }
542 
543 static void print_track(const char *s, struct track *t)
544 {
545 	if (!t->addr)
546 		return;
547 
548 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 #ifdef CONFIG_STACKTRACE
551 	{
552 		int i;
553 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 			if (t->addrs[i])
555 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
556 			else
557 				break;
558 	}
559 #endif
560 }
561 
562 static void print_tracking(struct kmem_cache *s, void *object)
563 {
564 	if (!(s->flags & SLAB_STORE_USER))
565 		return;
566 
567 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 	print_track("Freed", get_track(s, object, TRACK_FREE));
569 }
570 
571 static void print_page_info(struct page *page)
572 {
573 	printk(KERN_ERR
574 	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 	       page, page->objects, page->inuse, page->freelist, page->flags);
576 
577 }
578 
579 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580 {
581 	va_list args;
582 	char buf[100];
583 
584 	va_start(args, fmt);
585 	vsnprintf(buf, sizeof(buf), fmt, args);
586 	va_end(args);
587 	printk(KERN_ERR "========================================"
588 			"=====================================\n");
589 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
590 	printk(KERN_ERR "----------------------------------------"
591 			"-------------------------------------\n\n");
592 
593 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
594 }
595 
596 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
597 {
598 	va_list args;
599 	char buf[100];
600 
601 	va_start(args, fmt);
602 	vsnprintf(buf, sizeof(buf), fmt, args);
603 	va_end(args);
604 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
605 }
606 
607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
608 {
609 	unsigned int off;	/* Offset of last byte */
610 	u8 *addr = page_address(page);
611 
612 	print_tracking(s, p);
613 
614 	print_page_info(page);
615 
616 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 			p, p - addr, get_freepointer(s, p));
618 
619 	if (p > addr + 16)
620 		print_section("Bytes b4 ", p - 16, 16);
621 
622 	print_section("Object ", p, min_t(unsigned long, s->object_size,
623 				PAGE_SIZE));
624 	if (s->flags & SLAB_RED_ZONE)
625 		print_section("Redzone ", p + s->object_size,
626 			s->inuse - s->object_size);
627 
628 	if (s->offset)
629 		off = s->offset + sizeof(void *);
630 	else
631 		off = s->inuse;
632 
633 	if (s->flags & SLAB_STORE_USER)
634 		off += 2 * sizeof(struct track);
635 
636 	if (off != s->size)
637 		/* Beginning of the filler is the free pointer */
638 		print_section("Padding ", p + off, s->size - off);
639 
640 	dump_stack();
641 }
642 
643 static void object_err(struct kmem_cache *s, struct page *page,
644 			u8 *object, char *reason)
645 {
646 	slab_bug(s, "%s", reason);
647 	print_trailer(s, page, object);
648 }
649 
650 static void slab_err(struct kmem_cache *s, struct page *page,
651 			const char *fmt, ...)
652 {
653 	va_list args;
654 	char buf[100];
655 
656 	va_start(args, fmt);
657 	vsnprintf(buf, sizeof(buf), fmt, args);
658 	va_end(args);
659 	slab_bug(s, "%s", buf);
660 	print_page_info(page);
661 	dump_stack();
662 }
663 
664 static void init_object(struct kmem_cache *s, void *object, u8 val)
665 {
666 	u8 *p = object;
667 
668 	if (s->flags & __OBJECT_POISON) {
669 		memset(p, POISON_FREE, s->object_size - 1);
670 		p[s->object_size - 1] = POISON_END;
671 	}
672 
673 	if (s->flags & SLAB_RED_ZONE)
674 		memset(p + s->object_size, val, s->inuse - s->object_size);
675 }
676 
677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 						void *from, void *to)
679 {
680 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 	memset(from, data, to - from);
682 }
683 
684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 			u8 *object, char *what,
686 			u8 *start, unsigned int value, unsigned int bytes)
687 {
688 	u8 *fault;
689 	u8 *end;
690 
691 	fault = memchr_inv(start, value, bytes);
692 	if (!fault)
693 		return 1;
694 
695 	end = start + bytes;
696 	while (end > fault && end[-1] == value)
697 		end--;
698 
699 	slab_bug(s, "%s overwritten", what);
700 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 					fault, end - 1, fault[0], value);
702 	print_trailer(s, page, object);
703 
704 	restore_bytes(s, what, value, fault, end);
705 	return 0;
706 }
707 
708 /*
709  * Object layout:
710  *
711  * object address
712  * 	Bytes of the object to be managed.
713  * 	If the freepointer may overlay the object then the free
714  * 	pointer is the first word of the object.
715  *
716  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
717  * 	0xa5 (POISON_END)
718  *
719  * object + s->object_size
720  * 	Padding to reach word boundary. This is also used for Redzoning.
721  * 	Padding is extended by another word if Redzoning is enabled and
722  * 	object_size == inuse.
723  *
724  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725  * 	0xcc (RED_ACTIVE) for objects in use.
726  *
727  * object + s->inuse
728  * 	Meta data starts here.
729  *
730  * 	A. Free pointer (if we cannot overwrite object on free)
731  * 	B. Tracking data for SLAB_STORE_USER
732  * 	C. Padding to reach required alignment boundary or at mininum
733  * 		one word if debugging is on to be able to detect writes
734  * 		before the word boundary.
735  *
736  *	Padding is done using 0x5a (POISON_INUSE)
737  *
738  * object + s->size
739  * 	Nothing is used beyond s->size.
740  *
741  * If slabcaches are merged then the object_size and inuse boundaries are mostly
742  * ignored. And therefore no slab options that rely on these boundaries
743  * may be used with merged slabcaches.
744  */
745 
746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747 {
748 	unsigned long off = s->inuse;	/* The end of info */
749 
750 	if (s->offset)
751 		/* Freepointer is placed after the object. */
752 		off += sizeof(void *);
753 
754 	if (s->flags & SLAB_STORE_USER)
755 		/* We also have user information there */
756 		off += 2 * sizeof(struct track);
757 
758 	if (s->size == off)
759 		return 1;
760 
761 	return check_bytes_and_report(s, page, p, "Object padding",
762 				p + off, POISON_INUSE, s->size - off);
763 }
764 
765 /* Check the pad bytes at the end of a slab page */
766 static int slab_pad_check(struct kmem_cache *s, struct page *page)
767 {
768 	u8 *start;
769 	u8 *fault;
770 	u8 *end;
771 	int length;
772 	int remainder;
773 
774 	if (!(s->flags & SLAB_POISON))
775 		return 1;
776 
777 	start = page_address(page);
778 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 	end = start + length;
780 	remainder = length % s->size;
781 	if (!remainder)
782 		return 1;
783 
784 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 	if (!fault)
786 		return 1;
787 	while (end > fault && end[-1] == POISON_INUSE)
788 		end--;
789 
790 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791 	print_section("Padding ", end - remainder, remainder);
792 
793 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794 	return 0;
795 }
796 
797 static int check_object(struct kmem_cache *s, struct page *page,
798 					void *object, u8 val)
799 {
800 	u8 *p = object;
801 	u8 *endobject = object + s->object_size;
802 
803 	if (s->flags & SLAB_RED_ZONE) {
804 		if (!check_bytes_and_report(s, page, object, "Redzone",
805 			endobject, val, s->inuse - s->object_size))
806 			return 0;
807 	} else {
808 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
809 			check_bytes_and_report(s, page, p, "Alignment padding",
810 				endobject, POISON_INUSE,
811 				s->inuse - s->object_size);
812 		}
813 	}
814 
815 	if (s->flags & SLAB_POISON) {
816 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817 			(!check_bytes_and_report(s, page, p, "Poison", p,
818 					POISON_FREE, s->object_size - 1) ||
819 			 !check_bytes_and_report(s, page, p, "Poison",
820 				p + s->object_size - 1, POISON_END, 1)))
821 			return 0;
822 		/*
823 		 * check_pad_bytes cleans up on its own.
824 		 */
825 		check_pad_bytes(s, page, p);
826 	}
827 
828 	if (!s->offset && val == SLUB_RED_ACTIVE)
829 		/*
830 		 * Object and freepointer overlap. Cannot check
831 		 * freepointer while object is allocated.
832 		 */
833 		return 1;
834 
835 	/* Check free pointer validity */
836 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 		object_err(s, page, p, "Freepointer corrupt");
838 		/*
839 		 * No choice but to zap it and thus lose the remainder
840 		 * of the free objects in this slab. May cause
841 		 * another error because the object count is now wrong.
842 		 */
843 		set_freepointer(s, p, NULL);
844 		return 0;
845 	}
846 	return 1;
847 }
848 
849 static int check_slab(struct kmem_cache *s, struct page *page)
850 {
851 	int maxobj;
852 
853 	VM_BUG_ON(!irqs_disabled());
854 
855 	if (!PageSlab(page)) {
856 		slab_err(s, page, "Not a valid slab page");
857 		return 0;
858 	}
859 
860 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 	if (page->objects > maxobj) {
862 		slab_err(s, page, "objects %u > max %u",
863 			s->name, page->objects, maxobj);
864 		return 0;
865 	}
866 	if (page->inuse > page->objects) {
867 		slab_err(s, page, "inuse %u > max %u",
868 			s->name, page->inuse, page->objects);
869 		return 0;
870 	}
871 	/* Slab_pad_check fixes things up after itself */
872 	slab_pad_check(s, page);
873 	return 1;
874 }
875 
876 /*
877  * Determine if a certain object on a page is on the freelist. Must hold the
878  * slab lock to guarantee that the chains are in a consistent state.
879  */
880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881 {
882 	int nr = 0;
883 	void *fp;
884 	void *object = NULL;
885 	unsigned long max_objects;
886 
887 	fp = page->freelist;
888 	while (fp && nr <= page->objects) {
889 		if (fp == search)
890 			return 1;
891 		if (!check_valid_pointer(s, page, fp)) {
892 			if (object) {
893 				object_err(s, page, object,
894 					"Freechain corrupt");
895 				set_freepointer(s, object, NULL);
896 			} else {
897 				slab_err(s, page, "Freepointer corrupt");
898 				page->freelist = NULL;
899 				page->inuse = page->objects;
900 				slab_fix(s, "Freelist cleared");
901 				return 0;
902 			}
903 			break;
904 		}
905 		object = fp;
906 		fp = get_freepointer(s, object);
907 		nr++;
908 	}
909 
910 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 	if (max_objects > MAX_OBJS_PER_PAGE)
912 		max_objects = MAX_OBJS_PER_PAGE;
913 
914 	if (page->objects != max_objects) {
915 		slab_err(s, page, "Wrong number of objects. Found %d but "
916 			"should be %d", page->objects, max_objects);
917 		page->objects = max_objects;
918 		slab_fix(s, "Number of objects adjusted.");
919 	}
920 	if (page->inuse != page->objects - nr) {
921 		slab_err(s, page, "Wrong object count. Counter is %d but "
922 			"counted were %d", page->inuse, page->objects - nr);
923 		page->inuse = page->objects - nr;
924 		slab_fix(s, "Object count adjusted.");
925 	}
926 	return search == NULL;
927 }
928 
929 static void trace(struct kmem_cache *s, struct page *page, void *object,
930 								int alloc)
931 {
932 	if (s->flags & SLAB_TRACE) {
933 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 			s->name,
935 			alloc ? "alloc" : "free",
936 			object, page->inuse,
937 			page->freelist);
938 
939 		if (!alloc)
940 			print_section("Object ", (void *)object,
941 					s->object_size);
942 
943 		dump_stack();
944 	}
945 }
946 
947 /*
948  * Hooks for other subsystems that check memory allocations. In a typical
949  * production configuration these hooks all should produce no code at all.
950  */
951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952 {
953 	kmemleak_alloc(ptr, size, 1, flags);
954 }
955 
956 static inline void kfree_hook(const void *x)
957 {
958 	kmemleak_free(x);
959 }
960 
961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962 {
963 	flags &= gfp_allowed_mask;
964 	lockdep_trace_alloc(flags);
965 	might_sleep_if(flags & __GFP_WAIT);
966 
967 	return should_failslab(s->object_size, flags, s->flags);
968 }
969 
970 static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 					gfp_t flags, void *object)
972 {
973 	flags &= gfp_allowed_mask;
974 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 }
977 
978 static inline void slab_free_hook(struct kmem_cache *s, void *x)
979 {
980 	kmemleak_free_recursive(x, s->flags);
981 
982 	/*
983 	 * Trouble is that we may no longer disable interrupts in the fast path
984 	 * So in order to make the debug calls that expect irqs to be
985 	 * disabled we need to disable interrupts temporarily.
986 	 */
987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 	{
989 		unsigned long flags;
990 
991 		local_irq_save(flags);
992 		kmemcheck_slab_free(s, x, s->object_size);
993 		debug_check_no_locks_freed(x, s->object_size);
994 		local_irq_restore(flags);
995 	}
996 #endif
997 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
998 		debug_check_no_obj_freed(x, s->object_size);
999 }
1000 
1001 /*
1002  * Tracking of fully allocated slabs for debugging purposes.
1003  */
1004 static void add_full(struct kmem_cache *s,
1005 	struct kmem_cache_node *n, struct page *page)
1006 {
1007 	if (!(s->flags & SLAB_STORE_USER))
1008 		return;
1009 
1010 	lockdep_assert_held(&n->list_lock);
1011 	list_add(&page->lru, &n->full);
1012 }
1013 
1014 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1015 {
1016 	if (!(s->flags & SLAB_STORE_USER))
1017 		return;
1018 
1019 	lockdep_assert_held(&n->list_lock);
1020 	list_del(&page->lru);
1021 }
1022 
1023 /* Tracking of the number of slabs for debugging purposes */
1024 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025 {
1026 	struct kmem_cache_node *n = get_node(s, node);
1027 
1028 	return atomic_long_read(&n->nr_slabs);
1029 }
1030 
1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032 {
1033 	return atomic_long_read(&n->nr_slabs);
1034 }
1035 
1036 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1037 {
1038 	struct kmem_cache_node *n = get_node(s, node);
1039 
1040 	/*
1041 	 * May be called early in order to allocate a slab for the
1042 	 * kmem_cache_node structure. Solve the chicken-egg
1043 	 * dilemma by deferring the increment of the count during
1044 	 * bootstrap (see early_kmem_cache_node_alloc).
1045 	 */
1046 	if (likely(n)) {
1047 		atomic_long_inc(&n->nr_slabs);
1048 		atomic_long_add(objects, &n->total_objects);
1049 	}
1050 }
1051 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1052 {
1053 	struct kmem_cache_node *n = get_node(s, node);
1054 
1055 	atomic_long_dec(&n->nr_slabs);
1056 	atomic_long_sub(objects, &n->total_objects);
1057 }
1058 
1059 /* Object debug checks for alloc/free paths */
1060 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 								void *object)
1062 {
1063 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 		return;
1065 
1066 	init_object(s, object, SLUB_RED_INACTIVE);
1067 	init_tracking(s, object);
1068 }
1069 
1070 static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 					struct page *page,
1072 					void *object, unsigned long addr)
1073 {
1074 	if (!check_slab(s, page))
1075 		goto bad;
1076 
1077 	if (!check_valid_pointer(s, page, object)) {
1078 		object_err(s, page, object, "Freelist Pointer check fails");
1079 		goto bad;
1080 	}
1081 
1082 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1083 		goto bad;
1084 
1085 	/* Success perform special debug activities for allocs */
1086 	if (s->flags & SLAB_STORE_USER)
1087 		set_track(s, object, TRACK_ALLOC, addr);
1088 	trace(s, page, object, 1);
1089 	init_object(s, object, SLUB_RED_ACTIVE);
1090 	return 1;
1091 
1092 bad:
1093 	if (PageSlab(page)) {
1094 		/*
1095 		 * If this is a slab page then lets do the best we can
1096 		 * to avoid issues in the future. Marking all objects
1097 		 * as used avoids touching the remaining objects.
1098 		 */
1099 		slab_fix(s, "Marking all objects used");
1100 		page->inuse = page->objects;
1101 		page->freelist = NULL;
1102 	}
1103 	return 0;
1104 }
1105 
1106 static noinline struct kmem_cache_node *free_debug_processing(
1107 	struct kmem_cache *s, struct page *page, void *object,
1108 	unsigned long addr, unsigned long *flags)
1109 {
1110 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1111 
1112 	spin_lock_irqsave(&n->list_lock, *flags);
1113 	slab_lock(page);
1114 
1115 	if (!check_slab(s, page))
1116 		goto fail;
1117 
1118 	if (!check_valid_pointer(s, page, object)) {
1119 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1120 		goto fail;
1121 	}
1122 
1123 	if (on_freelist(s, page, object)) {
1124 		object_err(s, page, object, "Object already free");
1125 		goto fail;
1126 	}
1127 
1128 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1129 		goto out;
1130 
1131 	if (unlikely(s != page->slab_cache)) {
1132 		if (!PageSlab(page)) {
1133 			slab_err(s, page, "Attempt to free object(0x%p) "
1134 				"outside of slab", object);
1135 		} else if (!page->slab_cache) {
1136 			printk(KERN_ERR
1137 				"SLUB <none>: no slab for object 0x%p.\n",
1138 						object);
1139 			dump_stack();
1140 		} else
1141 			object_err(s, page, object,
1142 					"page slab pointer corrupt.");
1143 		goto fail;
1144 	}
1145 
1146 	if (s->flags & SLAB_STORE_USER)
1147 		set_track(s, object, TRACK_FREE, addr);
1148 	trace(s, page, object, 0);
1149 	init_object(s, object, SLUB_RED_INACTIVE);
1150 out:
1151 	slab_unlock(page);
1152 	/*
1153 	 * Keep node_lock to preserve integrity
1154 	 * until the object is actually freed
1155 	 */
1156 	return n;
1157 
1158 fail:
1159 	slab_unlock(page);
1160 	spin_unlock_irqrestore(&n->list_lock, *flags);
1161 	slab_fix(s, "Object at 0x%p not freed", object);
1162 	return NULL;
1163 }
1164 
1165 static int __init setup_slub_debug(char *str)
1166 {
1167 	slub_debug = DEBUG_DEFAULT_FLAGS;
1168 	if (*str++ != '=' || !*str)
1169 		/*
1170 		 * No options specified. Switch on full debugging.
1171 		 */
1172 		goto out;
1173 
1174 	if (*str == ',')
1175 		/*
1176 		 * No options but restriction on slabs. This means full
1177 		 * debugging for slabs matching a pattern.
1178 		 */
1179 		goto check_slabs;
1180 
1181 	if (tolower(*str) == 'o') {
1182 		/*
1183 		 * Avoid enabling debugging on caches if its minimum order
1184 		 * would increase as a result.
1185 		 */
1186 		disable_higher_order_debug = 1;
1187 		goto out;
1188 	}
1189 
1190 	slub_debug = 0;
1191 	if (*str == '-')
1192 		/*
1193 		 * Switch off all debugging measures.
1194 		 */
1195 		goto out;
1196 
1197 	/*
1198 	 * Determine which debug features should be switched on
1199 	 */
1200 	for (; *str && *str != ','; str++) {
1201 		switch (tolower(*str)) {
1202 		case 'f':
1203 			slub_debug |= SLAB_DEBUG_FREE;
1204 			break;
1205 		case 'z':
1206 			slub_debug |= SLAB_RED_ZONE;
1207 			break;
1208 		case 'p':
1209 			slub_debug |= SLAB_POISON;
1210 			break;
1211 		case 'u':
1212 			slub_debug |= SLAB_STORE_USER;
1213 			break;
1214 		case 't':
1215 			slub_debug |= SLAB_TRACE;
1216 			break;
1217 		case 'a':
1218 			slub_debug |= SLAB_FAILSLAB;
1219 			break;
1220 		default:
1221 			printk(KERN_ERR "slub_debug option '%c' "
1222 				"unknown. skipped\n", *str);
1223 		}
1224 	}
1225 
1226 check_slabs:
1227 	if (*str == ',')
1228 		slub_debug_slabs = str + 1;
1229 out:
1230 	return 1;
1231 }
1232 
1233 __setup("slub_debug", setup_slub_debug);
1234 
1235 static unsigned long kmem_cache_flags(unsigned long object_size,
1236 	unsigned long flags, const char *name,
1237 	void (*ctor)(void *))
1238 {
1239 	/*
1240 	 * Enable debugging if selected on the kernel commandline.
1241 	 */
1242 	if (slub_debug && (!slub_debug_slabs || (name &&
1243 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1244 		flags |= slub_debug;
1245 
1246 	return flags;
1247 }
1248 #else
1249 static inline void setup_object_debug(struct kmem_cache *s,
1250 			struct page *page, void *object) {}
1251 
1252 static inline int alloc_debug_processing(struct kmem_cache *s,
1253 	struct page *page, void *object, unsigned long addr) { return 0; }
1254 
1255 static inline struct kmem_cache_node *free_debug_processing(
1256 	struct kmem_cache *s, struct page *page, void *object,
1257 	unsigned long addr, unsigned long *flags) { return NULL; }
1258 
1259 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1260 			{ return 1; }
1261 static inline int check_object(struct kmem_cache *s, struct page *page,
1262 			void *object, u8 val) { return 1; }
1263 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1264 					struct page *page) {}
1265 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1266 					struct page *page) {}
1267 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1268 	unsigned long flags, const char *name,
1269 	void (*ctor)(void *))
1270 {
1271 	return flags;
1272 }
1273 #define slub_debug 0
1274 
1275 #define disable_higher_order_debug 0
1276 
1277 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1278 							{ return 0; }
1279 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1280 							{ return 0; }
1281 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1282 							int objects) {}
1283 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1284 							int objects) {}
1285 
1286 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1287 {
1288 	kmemleak_alloc(ptr, size, 1, flags);
1289 }
1290 
1291 static inline void kfree_hook(const void *x)
1292 {
1293 	kmemleak_free(x);
1294 }
1295 
1296 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1297 							{ return 0; }
1298 
1299 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1300 		void *object)
1301 {
1302 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1303 		flags & gfp_allowed_mask);
1304 }
1305 
1306 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1307 {
1308 	kmemleak_free_recursive(x, s->flags);
1309 }
1310 
1311 #endif /* CONFIG_SLUB_DEBUG */
1312 
1313 /*
1314  * Slab allocation and freeing
1315  */
1316 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1317 					struct kmem_cache_order_objects oo)
1318 {
1319 	int order = oo_order(oo);
1320 
1321 	flags |= __GFP_NOTRACK;
1322 
1323 	if (node == NUMA_NO_NODE)
1324 		return alloc_pages(flags, order);
1325 	else
1326 		return alloc_pages_exact_node(node, flags, order);
1327 }
1328 
1329 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1330 {
1331 	struct page *page;
1332 	struct kmem_cache_order_objects oo = s->oo;
1333 	gfp_t alloc_gfp;
1334 
1335 	flags &= gfp_allowed_mask;
1336 
1337 	if (flags & __GFP_WAIT)
1338 		local_irq_enable();
1339 
1340 	flags |= s->allocflags;
1341 
1342 	/*
1343 	 * Let the initial higher-order allocation fail under memory pressure
1344 	 * so we fall-back to the minimum order allocation.
1345 	 */
1346 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1347 
1348 	page = alloc_slab_page(alloc_gfp, node, oo);
1349 	if (unlikely(!page)) {
1350 		oo = s->min;
1351 		/*
1352 		 * Allocation may have failed due to fragmentation.
1353 		 * Try a lower order alloc if possible
1354 		 */
1355 		page = alloc_slab_page(flags, node, oo);
1356 
1357 		if (page)
1358 			stat(s, ORDER_FALLBACK);
1359 	}
1360 
1361 	if (kmemcheck_enabled && page
1362 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1363 		int pages = 1 << oo_order(oo);
1364 
1365 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1366 
1367 		/*
1368 		 * Objects from caches that have a constructor don't get
1369 		 * cleared when they're allocated, so we need to do it here.
1370 		 */
1371 		if (s->ctor)
1372 			kmemcheck_mark_uninitialized_pages(page, pages);
1373 		else
1374 			kmemcheck_mark_unallocated_pages(page, pages);
1375 	}
1376 
1377 	if (flags & __GFP_WAIT)
1378 		local_irq_disable();
1379 	if (!page)
1380 		return NULL;
1381 
1382 	page->objects = oo_objects(oo);
1383 	mod_zone_page_state(page_zone(page),
1384 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1385 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1386 		1 << oo_order(oo));
1387 
1388 	return page;
1389 }
1390 
1391 static void setup_object(struct kmem_cache *s, struct page *page,
1392 				void *object)
1393 {
1394 	setup_object_debug(s, page, object);
1395 	if (unlikely(s->ctor))
1396 		s->ctor(object);
1397 }
1398 
1399 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1400 {
1401 	struct page *page;
1402 	void *start;
1403 	void *last;
1404 	void *p;
1405 	int order;
1406 
1407 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1408 
1409 	page = allocate_slab(s,
1410 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1411 	if (!page)
1412 		goto out;
1413 
1414 	order = compound_order(page);
1415 	inc_slabs_node(s, page_to_nid(page), page->objects);
1416 	memcg_bind_pages(s, order);
1417 	page->slab_cache = s;
1418 	__SetPageSlab(page);
1419 	if (page->pfmemalloc)
1420 		SetPageSlabPfmemalloc(page);
1421 
1422 	start = page_address(page);
1423 
1424 	if (unlikely(s->flags & SLAB_POISON))
1425 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1426 
1427 	last = start;
1428 	for_each_object(p, s, start, page->objects) {
1429 		setup_object(s, page, last);
1430 		set_freepointer(s, last, p);
1431 		last = p;
1432 	}
1433 	setup_object(s, page, last);
1434 	set_freepointer(s, last, NULL);
1435 
1436 	page->freelist = start;
1437 	page->inuse = page->objects;
1438 	page->frozen = 1;
1439 out:
1440 	return page;
1441 }
1442 
1443 static void __free_slab(struct kmem_cache *s, struct page *page)
1444 {
1445 	int order = compound_order(page);
1446 	int pages = 1 << order;
1447 
1448 	if (kmem_cache_debug(s)) {
1449 		void *p;
1450 
1451 		slab_pad_check(s, page);
1452 		for_each_object(p, s, page_address(page),
1453 						page->objects)
1454 			check_object(s, page, p, SLUB_RED_INACTIVE);
1455 	}
1456 
1457 	kmemcheck_free_shadow(page, compound_order(page));
1458 
1459 	mod_zone_page_state(page_zone(page),
1460 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1461 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1462 		-pages);
1463 
1464 	__ClearPageSlabPfmemalloc(page);
1465 	__ClearPageSlab(page);
1466 
1467 	memcg_release_pages(s, order);
1468 	page_mapcount_reset(page);
1469 	if (current->reclaim_state)
1470 		current->reclaim_state->reclaimed_slab += pages;
1471 	__free_memcg_kmem_pages(page, order);
1472 }
1473 
1474 #define need_reserve_slab_rcu						\
1475 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1476 
1477 static void rcu_free_slab(struct rcu_head *h)
1478 {
1479 	struct page *page;
1480 
1481 	if (need_reserve_slab_rcu)
1482 		page = virt_to_head_page(h);
1483 	else
1484 		page = container_of((struct list_head *)h, struct page, lru);
1485 
1486 	__free_slab(page->slab_cache, page);
1487 }
1488 
1489 static void free_slab(struct kmem_cache *s, struct page *page)
1490 {
1491 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1492 		struct rcu_head *head;
1493 
1494 		if (need_reserve_slab_rcu) {
1495 			int order = compound_order(page);
1496 			int offset = (PAGE_SIZE << order) - s->reserved;
1497 
1498 			VM_BUG_ON(s->reserved != sizeof(*head));
1499 			head = page_address(page) + offset;
1500 		} else {
1501 			/*
1502 			 * RCU free overloads the RCU head over the LRU
1503 			 */
1504 			head = (void *)&page->lru;
1505 		}
1506 
1507 		call_rcu(head, rcu_free_slab);
1508 	} else
1509 		__free_slab(s, page);
1510 }
1511 
1512 static void discard_slab(struct kmem_cache *s, struct page *page)
1513 {
1514 	dec_slabs_node(s, page_to_nid(page), page->objects);
1515 	free_slab(s, page);
1516 }
1517 
1518 /*
1519  * Management of partially allocated slabs.
1520  */
1521 static inline void
1522 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1523 {
1524 	n->nr_partial++;
1525 	if (tail == DEACTIVATE_TO_TAIL)
1526 		list_add_tail(&page->lru, &n->partial);
1527 	else
1528 		list_add(&page->lru, &n->partial);
1529 }
1530 
1531 static inline void add_partial(struct kmem_cache_node *n,
1532 				struct page *page, int tail)
1533 {
1534 	lockdep_assert_held(&n->list_lock);
1535 	__add_partial(n, page, tail);
1536 }
1537 
1538 static inline void
1539 __remove_partial(struct kmem_cache_node *n, struct page *page)
1540 {
1541 	list_del(&page->lru);
1542 	n->nr_partial--;
1543 }
1544 
1545 static inline void remove_partial(struct kmem_cache_node *n,
1546 					struct page *page)
1547 {
1548 	lockdep_assert_held(&n->list_lock);
1549 	__remove_partial(n, page);
1550 }
1551 
1552 /*
1553  * Remove slab from the partial list, freeze it and
1554  * return the pointer to the freelist.
1555  *
1556  * Returns a list of objects or NULL if it fails.
1557  */
1558 static inline void *acquire_slab(struct kmem_cache *s,
1559 		struct kmem_cache_node *n, struct page *page,
1560 		int mode, int *objects)
1561 {
1562 	void *freelist;
1563 	unsigned long counters;
1564 	struct page new;
1565 
1566 	lockdep_assert_held(&n->list_lock);
1567 
1568 	/*
1569 	 * Zap the freelist and set the frozen bit.
1570 	 * The old freelist is the list of objects for the
1571 	 * per cpu allocation list.
1572 	 */
1573 	freelist = page->freelist;
1574 	counters = page->counters;
1575 	new.counters = counters;
1576 	*objects = new.objects - new.inuse;
1577 	if (mode) {
1578 		new.inuse = page->objects;
1579 		new.freelist = NULL;
1580 	} else {
1581 		new.freelist = freelist;
1582 	}
1583 
1584 	VM_BUG_ON(new.frozen);
1585 	new.frozen = 1;
1586 
1587 	if (!__cmpxchg_double_slab(s, page,
1588 			freelist, counters,
1589 			new.freelist, new.counters,
1590 			"acquire_slab"))
1591 		return NULL;
1592 
1593 	remove_partial(n, page);
1594 	WARN_ON(!freelist);
1595 	return freelist;
1596 }
1597 
1598 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1599 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1600 
1601 /*
1602  * Try to allocate a partial slab from a specific node.
1603  */
1604 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1605 				struct kmem_cache_cpu *c, gfp_t flags)
1606 {
1607 	struct page *page, *page2;
1608 	void *object = NULL;
1609 	int available = 0;
1610 	int objects;
1611 
1612 	/*
1613 	 * Racy check. If we mistakenly see no partial slabs then we
1614 	 * just allocate an empty slab. If we mistakenly try to get a
1615 	 * partial slab and there is none available then get_partials()
1616 	 * will return NULL.
1617 	 */
1618 	if (!n || !n->nr_partial)
1619 		return NULL;
1620 
1621 	spin_lock(&n->list_lock);
1622 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1623 		void *t;
1624 
1625 		if (!pfmemalloc_match(page, flags))
1626 			continue;
1627 
1628 		t = acquire_slab(s, n, page, object == NULL, &objects);
1629 		if (!t)
1630 			break;
1631 
1632 		available += objects;
1633 		if (!object) {
1634 			c->page = page;
1635 			stat(s, ALLOC_FROM_PARTIAL);
1636 			object = t;
1637 		} else {
1638 			put_cpu_partial(s, page, 0);
1639 			stat(s, CPU_PARTIAL_NODE);
1640 		}
1641 		if (!kmem_cache_has_cpu_partial(s)
1642 			|| available > s->cpu_partial / 2)
1643 			break;
1644 
1645 	}
1646 	spin_unlock(&n->list_lock);
1647 	return object;
1648 }
1649 
1650 /*
1651  * Get a page from somewhere. Search in increasing NUMA distances.
1652  */
1653 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1654 		struct kmem_cache_cpu *c)
1655 {
1656 #ifdef CONFIG_NUMA
1657 	struct zonelist *zonelist;
1658 	struct zoneref *z;
1659 	struct zone *zone;
1660 	enum zone_type high_zoneidx = gfp_zone(flags);
1661 	void *object;
1662 	unsigned int cpuset_mems_cookie;
1663 
1664 	/*
1665 	 * The defrag ratio allows a configuration of the tradeoffs between
1666 	 * inter node defragmentation and node local allocations. A lower
1667 	 * defrag_ratio increases the tendency to do local allocations
1668 	 * instead of attempting to obtain partial slabs from other nodes.
1669 	 *
1670 	 * If the defrag_ratio is set to 0 then kmalloc() always
1671 	 * returns node local objects. If the ratio is higher then kmalloc()
1672 	 * may return off node objects because partial slabs are obtained
1673 	 * from other nodes and filled up.
1674 	 *
1675 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1676 	 * defrag_ratio = 1000) then every (well almost) allocation will
1677 	 * first attempt to defrag slab caches on other nodes. This means
1678 	 * scanning over all nodes to look for partial slabs which may be
1679 	 * expensive if we do it every time we are trying to find a slab
1680 	 * with available objects.
1681 	 */
1682 	if (!s->remote_node_defrag_ratio ||
1683 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1684 		return NULL;
1685 
1686 	do {
1687 		cpuset_mems_cookie = get_mems_allowed();
1688 		zonelist = node_zonelist(slab_node(), flags);
1689 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1690 			struct kmem_cache_node *n;
1691 
1692 			n = get_node(s, zone_to_nid(zone));
1693 
1694 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1695 					n->nr_partial > s->min_partial) {
1696 				object = get_partial_node(s, n, c, flags);
1697 				if (object) {
1698 					/*
1699 					 * Return the object even if
1700 					 * put_mems_allowed indicated that
1701 					 * the cpuset mems_allowed was
1702 					 * updated in parallel. It's a
1703 					 * harmless race between the alloc
1704 					 * and the cpuset update.
1705 					 */
1706 					put_mems_allowed(cpuset_mems_cookie);
1707 					return object;
1708 				}
1709 			}
1710 		}
1711 	} while (!put_mems_allowed(cpuset_mems_cookie));
1712 #endif
1713 	return NULL;
1714 }
1715 
1716 /*
1717  * Get a partial page, lock it and return it.
1718  */
1719 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1720 		struct kmem_cache_cpu *c)
1721 {
1722 	void *object;
1723 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1724 
1725 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1726 	if (object || node != NUMA_NO_NODE)
1727 		return object;
1728 
1729 	return get_any_partial(s, flags, c);
1730 }
1731 
1732 #ifdef CONFIG_PREEMPT
1733 /*
1734  * Calculate the next globally unique transaction for disambiguiation
1735  * during cmpxchg. The transactions start with the cpu number and are then
1736  * incremented by CONFIG_NR_CPUS.
1737  */
1738 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1739 #else
1740 /*
1741  * No preemption supported therefore also no need to check for
1742  * different cpus.
1743  */
1744 #define TID_STEP 1
1745 #endif
1746 
1747 static inline unsigned long next_tid(unsigned long tid)
1748 {
1749 	return tid + TID_STEP;
1750 }
1751 
1752 static inline unsigned int tid_to_cpu(unsigned long tid)
1753 {
1754 	return tid % TID_STEP;
1755 }
1756 
1757 static inline unsigned long tid_to_event(unsigned long tid)
1758 {
1759 	return tid / TID_STEP;
1760 }
1761 
1762 static inline unsigned int init_tid(int cpu)
1763 {
1764 	return cpu;
1765 }
1766 
1767 static inline void note_cmpxchg_failure(const char *n,
1768 		const struct kmem_cache *s, unsigned long tid)
1769 {
1770 #ifdef SLUB_DEBUG_CMPXCHG
1771 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1772 
1773 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1774 
1775 #ifdef CONFIG_PREEMPT
1776 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1777 		printk("due to cpu change %d -> %d\n",
1778 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1779 	else
1780 #endif
1781 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1782 		printk("due to cpu running other code. Event %ld->%ld\n",
1783 			tid_to_event(tid), tid_to_event(actual_tid));
1784 	else
1785 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1786 			actual_tid, tid, next_tid(tid));
1787 #endif
1788 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1789 }
1790 
1791 static void init_kmem_cache_cpus(struct kmem_cache *s)
1792 {
1793 	int cpu;
1794 
1795 	for_each_possible_cpu(cpu)
1796 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1797 }
1798 
1799 /*
1800  * Remove the cpu slab
1801  */
1802 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1803 				void *freelist)
1804 {
1805 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1806 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1807 	int lock = 0;
1808 	enum slab_modes l = M_NONE, m = M_NONE;
1809 	void *nextfree;
1810 	int tail = DEACTIVATE_TO_HEAD;
1811 	struct page new;
1812 	struct page old;
1813 
1814 	if (page->freelist) {
1815 		stat(s, DEACTIVATE_REMOTE_FREES);
1816 		tail = DEACTIVATE_TO_TAIL;
1817 	}
1818 
1819 	/*
1820 	 * Stage one: Free all available per cpu objects back
1821 	 * to the page freelist while it is still frozen. Leave the
1822 	 * last one.
1823 	 *
1824 	 * There is no need to take the list->lock because the page
1825 	 * is still frozen.
1826 	 */
1827 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1828 		void *prior;
1829 		unsigned long counters;
1830 
1831 		do {
1832 			prior = page->freelist;
1833 			counters = page->counters;
1834 			set_freepointer(s, freelist, prior);
1835 			new.counters = counters;
1836 			new.inuse--;
1837 			VM_BUG_ON(!new.frozen);
1838 
1839 		} while (!__cmpxchg_double_slab(s, page,
1840 			prior, counters,
1841 			freelist, new.counters,
1842 			"drain percpu freelist"));
1843 
1844 		freelist = nextfree;
1845 	}
1846 
1847 	/*
1848 	 * Stage two: Ensure that the page is unfrozen while the
1849 	 * list presence reflects the actual number of objects
1850 	 * during unfreeze.
1851 	 *
1852 	 * We setup the list membership and then perform a cmpxchg
1853 	 * with the count. If there is a mismatch then the page
1854 	 * is not unfrozen but the page is on the wrong list.
1855 	 *
1856 	 * Then we restart the process which may have to remove
1857 	 * the page from the list that we just put it on again
1858 	 * because the number of objects in the slab may have
1859 	 * changed.
1860 	 */
1861 redo:
1862 
1863 	old.freelist = page->freelist;
1864 	old.counters = page->counters;
1865 	VM_BUG_ON(!old.frozen);
1866 
1867 	/* Determine target state of the slab */
1868 	new.counters = old.counters;
1869 	if (freelist) {
1870 		new.inuse--;
1871 		set_freepointer(s, freelist, old.freelist);
1872 		new.freelist = freelist;
1873 	} else
1874 		new.freelist = old.freelist;
1875 
1876 	new.frozen = 0;
1877 
1878 	if (!new.inuse && n->nr_partial > s->min_partial)
1879 		m = M_FREE;
1880 	else if (new.freelist) {
1881 		m = M_PARTIAL;
1882 		if (!lock) {
1883 			lock = 1;
1884 			/*
1885 			 * Taking the spinlock removes the possiblity
1886 			 * that acquire_slab() will see a slab page that
1887 			 * is frozen
1888 			 */
1889 			spin_lock(&n->list_lock);
1890 		}
1891 	} else {
1892 		m = M_FULL;
1893 		if (kmem_cache_debug(s) && !lock) {
1894 			lock = 1;
1895 			/*
1896 			 * This also ensures that the scanning of full
1897 			 * slabs from diagnostic functions will not see
1898 			 * any frozen slabs.
1899 			 */
1900 			spin_lock(&n->list_lock);
1901 		}
1902 	}
1903 
1904 	if (l != m) {
1905 
1906 		if (l == M_PARTIAL)
1907 
1908 			remove_partial(n, page);
1909 
1910 		else if (l == M_FULL)
1911 
1912 			remove_full(s, n, page);
1913 
1914 		if (m == M_PARTIAL) {
1915 
1916 			add_partial(n, page, tail);
1917 			stat(s, tail);
1918 
1919 		} else if (m == M_FULL) {
1920 
1921 			stat(s, DEACTIVATE_FULL);
1922 			add_full(s, n, page);
1923 
1924 		}
1925 	}
1926 
1927 	l = m;
1928 	if (!__cmpxchg_double_slab(s, page,
1929 				old.freelist, old.counters,
1930 				new.freelist, new.counters,
1931 				"unfreezing slab"))
1932 		goto redo;
1933 
1934 	if (lock)
1935 		spin_unlock(&n->list_lock);
1936 
1937 	if (m == M_FREE) {
1938 		stat(s, DEACTIVATE_EMPTY);
1939 		discard_slab(s, page);
1940 		stat(s, FREE_SLAB);
1941 	}
1942 }
1943 
1944 /*
1945  * Unfreeze all the cpu partial slabs.
1946  *
1947  * This function must be called with interrupts disabled
1948  * for the cpu using c (or some other guarantee must be there
1949  * to guarantee no concurrent accesses).
1950  */
1951 static void unfreeze_partials(struct kmem_cache *s,
1952 		struct kmem_cache_cpu *c)
1953 {
1954 #ifdef CONFIG_SLUB_CPU_PARTIAL
1955 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1956 	struct page *page, *discard_page = NULL;
1957 
1958 	while ((page = c->partial)) {
1959 		struct page new;
1960 		struct page old;
1961 
1962 		c->partial = page->next;
1963 
1964 		n2 = get_node(s, page_to_nid(page));
1965 		if (n != n2) {
1966 			if (n)
1967 				spin_unlock(&n->list_lock);
1968 
1969 			n = n2;
1970 			spin_lock(&n->list_lock);
1971 		}
1972 
1973 		do {
1974 
1975 			old.freelist = page->freelist;
1976 			old.counters = page->counters;
1977 			VM_BUG_ON(!old.frozen);
1978 
1979 			new.counters = old.counters;
1980 			new.freelist = old.freelist;
1981 
1982 			new.frozen = 0;
1983 
1984 		} while (!__cmpxchg_double_slab(s, page,
1985 				old.freelist, old.counters,
1986 				new.freelist, new.counters,
1987 				"unfreezing slab"));
1988 
1989 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1990 			page->next = discard_page;
1991 			discard_page = page;
1992 		} else {
1993 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1994 			stat(s, FREE_ADD_PARTIAL);
1995 		}
1996 	}
1997 
1998 	if (n)
1999 		spin_unlock(&n->list_lock);
2000 
2001 	while (discard_page) {
2002 		page = discard_page;
2003 		discard_page = discard_page->next;
2004 
2005 		stat(s, DEACTIVATE_EMPTY);
2006 		discard_slab(s, page);
2007 		stat(s, FREE_SLAB);
2008 	}
2009 #endif
2010 }
2011 
2012 /*
2013  * Put a page that was just frozen (in __slab_free) into a partial page
2014  * slot if available. This is done without interrupts disabled and without
2015  * preemption disabled. The cmpxchg is racy and may put the partial page
2016  * onto a random cpus partial slot.
2017  *
2018  * If we did not find a slot then simply move all the partials to the
2019  * per node partial list.
2020  */
2021 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2022 {
2023 #ifdef CONFIG_SLUB_CPU_PARTIAL
2024 	struct page *oldpage;
2025 	int pages;
2026 	int pobjects;
2027 
2028 	do {
2029 		pages = 0;
2030 		pobjects = 0;
2031 		oldpage = this_cpu_read(s->cpu_slab->partial);
2032 
2033 		if (oldpage) {
2034 			pobjects = oldpage->pobjects;
2035 			pages = oldpage->pages;
2036 			if (drain && pobjects > s->cpu_partial) {
2037 				unsigned long flags;
2038 				/*
2039 				 * partial array is full. Move the existing
2040 				 * set to the per node partial list.
2041 				 */
2042 				local_irq_save(flags);
2043 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2044 				local_irq_restore(flags);
2045 				oldpage = NULL;
2046 				pobjects = 0;
2047 				pages = 0;
2048 				stat(s, CPU_PARTIAL_DRAIN);
2049 			}
2050 		}
2051 
2052 		pages++;
2053 		pobjects += page->objects - page->inuse;
2054 
2055 		page->pages = pages;
2056 		page->pobjects = pobjects;
2057 		page->next = oldpage;
2058 
2059 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2060 								!= oldpage);
2061 #endif
2062 }
2063 
2064 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2065 {
2066 	stat(s, CPUSLAB_FLUSH);
2067 	deactivate_slab(s, c->page, c->freelist);
2068 
2069 	c->tid = next_tid(c->tid);
2070 	c->page = NULL;
2071 	c->freelist = NULL;
2072 }
2073 
2074 /*
2075  * Flush cpu slab.
2076  *
2077  * Called from IPI handler with interrupts disabled.
2078  */
2079 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2080 {
2081 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2082 
2083 	if (likely(c)) {
2084 		if (c->page)
2085 			flush_slab(s, c);
2086 
2087 		unfreeze_partials(s, c);
2088 	}
2089 }
2090 
2091 static void flush_cpu_slab(void *d)
2092 {
2093 	struct kmem_cache *s = d;
2094 
2095 	__flush_cpu_slab(s, smp_processor_id());
2096 }
2097 
2098 static bool has_cpu_slab(int cpu, void *info)
2099 {
2100 	struct kmem_cache *s = info;
2101 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2102 
2103 	return c->page || c->partial;
2104 }
2105 
2106 static void flush_all(struct kmem_cache *s)
2107 {
2108 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2109 }
2110 
2111 /*
2112  * Check if the objects in a per cpu structure fit numa
2113  * locality expectations.
2114  */
2115 static inline int node_match(struct page *page, int node)
2116 {
2117 #ifdef CONFIG_NUMA
2118 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2119 		return 0;
2120 #endif
2121 	return 1;
2122 }
2123 
2124 static int count_free(struct page *page)
2125 {
2126 	return page->objects - page->inuse;
2127 }
2128 
2129 static unsigned long count_partial(struct kmem_cache_node *n,
2130 					int (*get_count)(struct page *))
2131 {
2132 	unsigned long flags;
2133 	unsigned long x = 0;
2134 	struct page *page;
2135 
2136 	spin_lock_irqsave(&n->list_lock, flags);
2137 	list_for_each_entry(page, &n->partial, lru)
2138 		x += get_count(page);
2139 	spin_unlock_irqrestore(&n->list_lock, flags);
2140 	return x;
2141 }
2142 
2143 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2144 {
2145 #ifdef CONFIG_SLUB_DEBUG
2146 	return atomic_long_read(&n->total_objects);
2147 #else
2148 	return 0;
2149 #endif
2150 }
2151 
2152 static noinline void
2153 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2154 {
2155 	int node;
2156 
2157 	printk(KERN_WARNING
2158 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2159 		nid, gfpflags);
2160 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2161 		"default order: %d, min order: %d\n", s->name, s->object_size,
2162 		s->size, oo_order(s->oo), oo_order(s->min));
2163 
2164 	if (oo_order(s->min) > get_order(s->object_size))
2165 		printk(KERN_WARNING "  %s debugging increased min order, use "
2166 		       "slub_debug=O to disable.\n", s->name);
2167 
2168 	for_each_online_node(node) {
2169 		struct kmem_cache_node *n = get_node(s, node);
2170 		unsigned long nr_slabs;
2171 		unsigned long nr_objs;
2172 		unsigned long nr_free;
2173 
2174 		if (!n)
2175 			continue;
2176 
2177 		nr_free  = count_partial(n, count_free);
2178 		nr_slabs = node_nr_slabs(n);
2179 		nr_objs  = node_nr_objs(n);
2180 
2181 		printk(KERN_WARNING
2182 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2183 			node, nr_slabs, nr_objs, nr_free);
2184 	}
2185 }
2186 
2187 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2188 			int node, struct kmem_cache_cpu **pc)
2189 {
2190 	void *freelist;
2191 	struct kmem_cache_cpu *c = *pc;
2192 	struct page *page;
2193 
2194 	freelist = get_partial(s, flags, node, c);
2195 
2196 	if (freelist)
2197 		return freelist;
2198 
2199 	page = new_slab(s, flags, node);
2200 	if (page) {
2201 		c = __this_cpu_ptr(s->cpu_slab);
2202 		if (c->page)
2203 			flush_slab(s, c);
2204 
2205 		/*
2206 		 * No other reference to the page yet so we can
2207 		 * muck around with it freely without cmpxchg
2208 		 */
2209 		freelist = page->freelist;
2210 		page->freelist = NULL;
2211 
2212 		stat(s, ALLOC_SLAB);
2213 		c->page = page;
2214 		*pc = c;
2215 	} else
2216 		freelist = NULL;
2217 
2218 	return freelist;
2219 }
2220 
2221 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2222 {
2223 	if (unlikely(PageSlabPfmemalloc(page)))
2224 		return gfp_pfmemalloc_allowed(gfpflags);
2225 
2226 	return true;
2227 }
2228 
2229 /*
2230  * Check the page->freelist of a page and either transfer the freelist to the
2231  * per cpu freelist or deactivate the page.
2232  *
2233  * The page is still frozen if the return value is not NULL.
2234  *
2235  * If this function returns NULL then the page has been unfrozen.
2236  *
2237  * This function must be called with interrupt disabled.
2238  */
2239 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2240 {
2241 	struct page new;
2242 	unsigned long counters;
2243 	void *freelist;
2244 
2245 	do {
2246 		freelist = page->freelist;
2247 		counters = page->counters;
2248 
2249 		new.counters = counters;
2250 		VM_BUG_ON(!new.frozen);
2251 
2252 		new.inuse = page->objects;
2253 		new.frozen = freelist != NULL;
2254 
2255 	} while (!__cmpxchg_double_slab(s, page,
2256 		freelist, counters,
2257 		NULL, new.counters,
2258 		"get_freelist"));
2259 
2260 	return freelist;
2261 }
2262 
2263 /*
2264  * Slow path. The lockless freelist is empty or we need to perform
2265  * debugging duties.
2266  *
2267  * Processing is still very fast if new objects have been freed to the
2268  * regular freelist. In that case we simply take over the regular freelist
2269  * as the lockless freelist and zap the regular freelist.
2270  *
2271  * If that is not working then we fall back to the partial lists. We take the
2272  * first element of the freelist as the object to allocate now and move the
2273  * rest of the freelist to the lockless freelist.
2274  *
2275  * And if we were unable to get a new slab from the partial slab lists then
2276  * we need to allocate a new slab. This is the slowest path since it involves
2277  * a call to the page allocator and the setup of a new slab.
2278  */
2279 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2280 			  unsigned long addr, struct kmem_cache_cpu *c)
2281 {
2282 	void *freelist;
2283 	struct page *page;
2284 	unsigned long flags;
2285 
2286 	local_irq_save(flags);
2287 #ifdef CONFIG_PREEMPT
2288 	/*
2289 	 * We may have been preempted and rescheduled on a different
2290 	 * cpu before disabling interrupts. Need to reload cpu area
2291 	 * pointer.
2292 	 */
2293 	c = this_cpu_ptr(s->cpu_slab);
2294 #endif
2295 
2296 	page = c->page;
2297 	if (!page)
2298 		goto new_slab;
2299 redo:
2300 
2301 	if (unlikely(!node_match(page, node))) {
2302 		stat(s, ALLOC_NODE_MISMATCH);
2303 		deactivate_slab(s, page, c->freelist);
2304 		c->page = NULL;
2305 		c->freelist = NULL;
2306 		goto new_slab;
2307 	}
2308 
2309 	/*
2310 	 * By rights, we should be searching for a slab page that was
2311 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2312 	 * information when the page leaves the per-cpu allocator
2313 	 */
2314 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2315 		deactivate_slab(s, page, c->freelist);
2316 		c->page = NULL;
2317 		c->freelist = NULL;
2318 		goto new_slab;
2319 	}
2320 
2321 	/* must check again c->freelist in case of cpu migration or IRQ */
2322 	freelist = c->freelist;
2323 	if (freelist)
2324 		goto load_freelist;
2325 
2326 	stat(s, ALLOC_SLOWPATH);
2327 
2328 	freelist = get_freelist(s, page);
2329 
2330 	if (!freelist) {
2331 		c->page = NULL;
2332 		stat(s, DEACTIVATE_BYPASS);
2333 		goto new_slab;
2334 	}
2335 
2336 	stat(s, ALLOC_REFILL);
2337 
2338 load_freelist:
2339 	/*
2340 	 * freelist is pointing to the list of objects to be used.
2341 	 * page is pointing to the page from which the objects are obtained.
2342 	 * That page must be frozen for per cpu allocations to work.
2343 	 */
2344 	VM_BUG_ON(!c->page->frozen);
2345 	c->freelist = get_freepointer(s, freelist);
2346 	c->tid = next_tid(c->tid);
2347 	local_irq_restore(flags);
2348 	return freelist;
2349 
2350 new_slab:
2351 
2352 	if (c->partial) {
2353 		page = c->page = c->partial;
2354 		c->partial = page->next;
2355 		stat(s, CPU_PARTIAL_ALLOC);
2356 		c->freelist = NULL;
2357 		goto redo;
2358 	}
2359 
2360 	freelist = new_slab_objects(s, gfpflags, node, &c);
2361 
2362 	if (unlikely(!freelist)) {
2363 		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2364 			slab_out_of_memory(s, gfpflags, node);
2365 
2366 		local_irq_restore(flags);
2367 		return NULL;
2368 	}
2369 
2370 	page = c->page;
2371 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2372 		goto load_freelist;
2373 
2374 	/* Only entered in the debug case */
2375 	if (kmem_cache_debug(s) &&
2376 			!alloc_debug_processing(s, page, freelist, addr))
2377 		goto new_slab;	/* Slab failed checks. Next slab needed */
2378 
2379 	deactivate_slab(s, page, get_freepointer(s, freelist));
2380 	c->page = NULL;
2381 	c->freelist = NULL;
2382 	local_irq_restore(flags);
2383 	return freelist;
2384 }
2385 
2386 /*
2387  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2388  * have the fastpath folded into their functions. So no function call
2389  * overhead for requests that can be satisfied on the fastpath.
2390  *
2391  * The fastpath works by first checking if the lockless freelist can be used.
2392  * If not then __slab_alloc is called for slow processing.
2393  *
2394  * Otherwise we can simply pick the next object from the lockless free list.
2395  */
2396 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2397 		gfp_t gfpflags, int node, unsigned long addr)
2398 {
2399 	void **object;
2400 	struct kmem_cache_cpu *c;
2401 	struct page *page;
2402 	unsigned long tid;
2403 
2404 	if (slab_pre_alloc_hook(s, gfpflags))
2405 		return NULL;
2406 
2407 	s = memcg_kmem_get_cache(s, gfpflags);
2408 redo:
2409 	/*
2410 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2411 	 * enabled. We may switch back and forth between cpus while
2412 	 * reading from one cpu area. That does not matter as long
2413 	 * as we end up on the original cpu again when doing the cmpxchg.
2414 	 *
2415 	 * Preemption is disabled for the retrieval of the tid because that
2416 	 * must occur from the current processor. We cannot allow rescheduling
2417 	 * on a different processor between the determination of the pointer
2418 	 * and the retrieval of the tid.
2419 	 */
2420 	preempt_disable();
2421 	c = __this_cpu_ptr(s->cpu_slab);
2422 
2423 	/*
2424 	 * The transaction ids are globally unique per cpu and per operation on
2425 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2426 	 * occurs on the right processor and that there was no operation on the
2427 	 * linked list in between.
2428 	 */
2429 	tid = c->tid;
2430 	preempt_enable();
2431 
2432 	object = c->freelist;
2433 	page = c->page;
2434 	if (unlikely(!object || !node_match(page, node)))
2435 		object = __slab_alloc(s, gfpflags, node, addr, c);
2436 
2437 	else {
2438 		void *next_object = get_freepointer_safe(s, object);
2439 
2440 		/*
2441 		 * The cmpxchg will only match if there was no additional
2442 		 * operation and if we are on the right processor.
2443 		 *
2444 		 * The cmpxchg does the following atomically (without lock
2445 		 * semantics!)
2446 		 * 1. Relocate first pointer to the current per cpu area.
2447 		 * 2. Verify that tid and freelist have not been changed
2448 		 * 3. If they were not changed replace tid and freelist
2449 		 *
2450 		 * Since this is without lock semantics the protection is only
2451 		 * against code executing on this cpu *not* from access by
2452 		 * other cpus.
2453 		 */
2454 		if (unlikely(!this_cpu_cmpxchg_double(
2455 				s->cpu_slab->freelist, s->cpu_slab->tid,
2456 				object, tid,
2457 				next_object, next_tid(tid)))) {
2458 
2459 			note_cmpxchg_failure("slab_alloc", s, tid);
2460 			goto redo;
2461 		}
2462 		prefetch_freepointer(s, next_object);
2463 		stat(s, ALLOC_FASTPATH);
2464 	}
2465 
2466 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2467 		memset(object, 0, s->object_size);
2468 
2469 	slab_post_alloc_hook(s, gfpflags, object);
2470 
2471 	return object;
2472 }
2473 
2474 static __always_inline void *slab_alloc(struct kmem_cache *s,
2475 		gfp_t gfpflags, unsigned long addr)
2476 {
2477 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2478 }
2479 
2480 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2481 {
2482 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2483 
2484 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2485 				s->size, gfpflags);
2486 
2487 	return ret;
2488 }
2489 EXPORT_SYMBOL(kmem_cache_alloc);
2490 
2491 #ifdef CONFIG_TRACING
2492 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2493 {
2494 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2495 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2496 	return ret;
2497 }
2498 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2499 #endif
2500 
2501 #ifdef CONFIG_NUMA
2502 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2503 {
2504 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2505 
2506 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2507 				    s->object_size, s->size, gfpflags, node);
2508 
2509 	return ret;
2510 }
2511 EXPORT_SYMBOL(kmem_cache_alloc_node);
2512 
2513 #ifdef CONFIG_TRACING
2514 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2515 				    gfp_t gfpflags,
2516 				    int node, size_t size)
2517 {
2518 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2519 
2520 	trace_kmalloc_node(_RET_IP_, ret,
2521 			   size, s->size, gfpflags, node);
2522 	return ret;
2523 }
2524 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2525 #endif
2526 #endif
2527 
2528 /*
2529  * Slow patch handling. This may still be called frequently since objects
2530  * have a longer lifetime than the cpu slabs in most processing loads.
2531  *
2532  * So we still attempt to reduce cache line usage. Just take the slab
2533  * lock and free the item. If there is no additional partial page
2534  * handling required then we can return immediately.
2535  */
2536 static void __slab_free(struct kmem_cache *s, struct page *page,
2537 			void *x, unsigned long addr)
2538 {
2539 	void *prior;
2540 	void **object = (void *)x;
2541 	int was_frozen;
2542 	struct page new;
2543 	unsigned long counters;
2544 	struct kmem_cache_node *n = NULL;
2545 	unsigned long uninitialized_var(flags);
2546 
2547 	stat(s, FREE_SLOWPATH);
2548 
2549 	if (kmem_cache_debug(s) &&
2550 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2551 		return;
2552 
2553 	do {
2554 		if (unlikely(n)) {
2555 			spin_unlock_irqrestore(&n->list_lock, flags);
2556 			n = NULL;
2557 		}
2558 		prior = page->freelist;
2559 		counters = page->counters;
2560 		set_freepointer(s, object, prior);
2561 		new.counters = counters;
2562 		was_frozen = new.frozen;
2563 		new.inuse--;
2564 		if ((!new.inuse || !prior) && !was_frozen) {
2565 
2566 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2567 
2568 				/*
2569 				 * Slab was on no list before and will be
2570 				 * partially empty
2571 				 * We can defer the list move and instead
2572 				 * freeze it.
2573 				 */
2574 				new.frozen = 1;
2575 
2576 			} else { /* Needs to be taken off a list */
2577 
2578 	                        n = get_node(s, page_to_nid(page));
2579 				/*
2580 				 * Speculatively acquire the list_lock.
2581 				 * If the cmpxchg does not succeed then we may
2582 				 * drop the list_lock without any processing.
2583 				 *
2584 				 * Otherwise the list_lock will synchronize with
2585 				 * other processors updating the list of slabs.
2586 				 */
2587 				spin_lock_irqsave(&n->list_lock, flags);
2588 
2589 			}
2590 		}
2591 
2592 	} while (!cmpxchg_double_slab(s, page,
2593 		prior, counters,
2594 		object, new.counters,
2595 		"__slab_free"));
2596 
2597 	if (likely(!n)) {
2598 
2599 		/*
2600 		 * If we just froze the page then put it onto the
2601 		 * per cpu partial list.
2602 		 */
2603 		if (new.frozen && !was_frozen) {
2604 			put_cpu_partial(s, page, 1);
2605 			stat(s, CPU_PARTIAL_FREE);
2606 		}
2607 		/*
2608 		 * The list lock was not taken therefore no list
2609 		 * activity can be necessary.
2610 		 */
2611                 if (was_frozen)
2612                         stat(s, FREE_FROZEN);
2613                 return;
2614         }
2615 
2616 	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2617 		goto slab_empty;
2618 
2619 	/*
2620 	 * Objects left in the slab. If it was not on the partial list before
2621 	 * then add it.
2622 	 */
2623 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2624 		if (kmem_cache_debug(s))
2625 			remove_full(s, n, page);
2626 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2627 		stat(s, FREE_ADD_PARTIAL);
2628 	}
2629 	spin_unlock_irqrestore(&n->list_lock, flags);
2630 	return;
2631 
2632 slab_empty:
2633 	if (prior) {
2634 		/*
2635 		 * Slab on the partial list.
2636 		 */
2637 		remove_partial(n, page);
2638 		stat(s, FREE_REMOVE_PARTIAL);
2639 	} else {
2640 		/* Slab must be on the full list */
2641 		remove_full(s, n, page);
2642 	}
2643 
2644 	spin_unlock_irqrestore(&n->list_lock, flags);
2645 	stat(s, FREE_SLAB);
2646 	discard_slab(s, page);
2647 }
2648 
2649 /*
2650  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2651  * can perform fastpath freeing without additional function calls.
2652  *
2653  * The fastpath is only possible if we are freeing to the current cpu slab
2654  * of this processor. This typically the case if we have just allocated
2655  * the item before.
2656  *
2657  * If fastpath is not possible then fall back to __slab_free where we deal
2658  * with all sorts of special processing.
2659  */
2660 static __always_inline void slab_free(struct kmem_cache *s,
2661 			struct page *page, void *x, unsigned long addr)
2662 {
2663 	void **object = (void *)x;
2664 	struct kmem_cache_cpu *c;
2665 	unsigned long tid;
2666 
2667 	slab_free_hook(s, x);
2668 
2669 redo:
2670 	/*
2671 	 * Determine the currently cpus per cpu slab.
2672 	 * The cpu may change afterward. However that does not matter since
2673 	 * data is retrieved via this pointer. If we are on the same cpu
2674 	 * during the cmpxchg then the free will succedd.
2675 	 */
2676 	preempt_disable();
2677 	c = __this_cpu_ptr(s->cpu_slab);
2678 
2679 	tid = c->tid;
2680 	preempt_enable();
2681 
2682 	if (likely(page == c->page)) {
2683 		set_freepointer(s, object, c->freelist);
2684 
2685 		if (unlikely(!this_cpu_cmpxchg_double(
2686 				s->cpu_slab->freelist, s->cpu_slab->tid,
2687 				c->freelist, tid,
2688 				object, next_tid(tid)))) {
2689 
2690 			note_cmpxchg_failure("slab_free", s, tid);
2691 			goto redo;
2692 		}
2693 		stat(s, FREE_FASTPATH);
2694 	} else
2695 		__slab_free(s, page, x, addr);
2696 
2697 }
2698 
2699 void kmem_cache_free(struct kmem_cache *s, void *x)
2700 {
2701 	s = cache_from_obj(s, x);
2702 	if (!s)
2703 		return;
2704 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2705 	trace_kmem_cache_free(_RET_IP_, x);
2706 }
2707 EXPORT_SYMBOL(kmem_cache_free);
2708 
2709 /*
2710  * Object placement in a slab is made very easy because we always start at
2711  * offset 0. If we tune the size of the object to the alignment then we can
2712  * get the required alignment by putting one properly sized object after
2713  * another.
2714  *
2715  * Notice that the allocation order determines the sizes of the per cpu
2716  * caches. Each processor has always one slab available for allocations.
2717  * Increasing the allocation order reduces the number of times that slabs
2718  * must be moved on and off the partial lists and is therefore a factor in
2719  * locking overhead.
2720  */
2721 
2722 /*
2723  * Mininum / Maximum order of slab pages. This influences locking overhead
2724  * and slab fragmentation. A higher order reduces the number of partial slabs
2725  * and increases the number of allocations possible without having to
2726  * take the list_lock.
2727  */
2728 static int slub_min_order;
2729 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2730 static int slub_min_objects;
2731 
2732 /*
2733  * Merge control. If this is set then no merging of slab caches will occur.
2734  * (Could be removed. This was introduced to pacify the merge skeptics.)
2735  */
2736 static int slub_nomerge;
2737 
2738 /*
2739  * Calculate the order of allocation given an slab object size.
2740  *
2741  * The order of allocation has significant impact on performance and other
2742  * system components. Generally order 0 allocations should be preferred since
2743  * order 0 does not cause fragmentation in the page allocator. Larger objects
2744  * be problematic to put into order 0 slabs because there may be too much
2745  * unused space left. We go to a higher order if more than 1/16th of the slab
2746  * would be wasted.
2747  *
2748  * In order to reach satisfactory performance we must ensure that a minimum
2749  * number of objects is in one slab. Otherwise we may generate too much
2750  * activity on the partial lists which requires taking the list_lock. This is
2751  * less a concern for large slabs though which are rarely used.
2752  *
2753  * slub_max_order specifies the order where we begin to stop considering the
2754  * number of objects in a slab as critical. If we reach slub_max_order then
2755  * we try to keep the page order as low as possible. So we accept more waste
2756  * of space in favor of a small page order.
2757  *
2758  * Higher order allocations also allow the placement of more objects in a
2759  * slab and thereby reduce object handling overhead. If the user has
2760  * requested a higher mininum order then we start with that one instead of
2761  * the smallest order which will fit the object.
2762  */
2763 static inline int slab_order(int size, int min_objects,
2764 				int max_order, int fract_leftover, int reserved)
2765 {
2766 	int order;
2767 	int rem;
2768 	int min_order = slub_min_order;
2769 
2770 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2771 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2772 
2773 	for (order = max(min_order,
2774 				fls(min_objects * size - 1) - PAGE_SHIFT);
2775 			order <= max_order; order++) {
2776 
2777 		unsigned long slab_size = PAGE_SIZE << order;
2778 
2779 		if (slab_size < min_objects * size + reserved)
2780 			continue;
2781 
2782 		rem = (slab_size - reserved) % size;
2783 
2784 		if (rem <= slab_size / fract_leftover)
2785 			break;
2786 
2787 	}
2788 
2789 	return order;
2790 }
2791 
2792 static inline int calculate_order(int size, int reserved)
2793 {
2794 	int order;
2795 	int min_objects;
2796 	int fraction;
2797 	int max_objects;
2798 
2799 	/*
2800 	 * Attempt to find best configuration for a slab. This
2801 	 * works by first attempting to generate a layout with
2802 	 * the best configuration and backing off gradually.
2803 	 *
2804 	 * First we reduce the acceptable waste in a slab. Then
2805 	 * we reduce the minimum objects required in a slab.
2806 	 */
2807 	min_objects = slub_min_objects;
2808 	if (!min_objects)
2809 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2810 	max_objects = order_objects(slub_max_order, size, reserved);
2811 	min_objects = min(min_objects, max_objects);
2812 
2813 	while (min_objects > 1) {
2814 		fraction = 16;
2815 		while (fraction >= 4) {
2816 			order = slab_order(size, min_objects,
2817 					slub_max_order, fraction, reserved);
2818 			if (order <= slub_max_order)
2819 				return order;
2820 			fraction /= 2;
2821 		}
2822 		min_objects--;
2823 	}
2824 
2825 	/*
2826 	 * We were unable to place multiple objects in a slab. Now
2827 	 * lets see if we can place a single object there.
2828 	 */
2829 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2830 	if (order <= slub_max_order)
2831 		return order;
2832 
2833 	/*
2834 	 * Doh this slab cannot be placed using slub_max_order.
2835 	 */
2836 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2837 	if (order < MAX_ORDER)
2838 		return order;
2839 	return -ENOSYS;
2840 }
2841 
2842 static void
2843 init_kmem_cache_node(struct kmem_cache_node *n)
2844 {
2845 	n->nr_partial = 0;
2846 	spin_lock_init(&n->list_lock);
2847 	INIT_LIST_HEAD(&n->partial);
2848 #ifdef CONFIG_SLUB_DEBUG
2849 	atomic_long_set(&n->nr_slabs, 0);
2850 	atomic_long_set(&n->total_objects, 0);
2851 	INIT_LIST_HEAD(&n->full);
2852 #endif
2853 }
2854 
2855 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2856 {
2857 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2858 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2859 
2860 	/*
2861 	 * Must align to double word boundary for the double cmpxchg
2862 	 * instructions to work; see __pcpu_double_call_return_bool().
2863 	 */
2864 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2865 				     2 * sizeof(void *));
2866 
2867 	if (!s->cpu_slab)
2868 		return 0;
2869 
2870 	init_kmem_cache_cpus(s);
2871 
2872 	return 1;
2873 }
2874 
2875 static struct kmem_cache *kmem_cache_node;
2876 
2877 /*
2878  * No kmalloc_node yet so do it by hand. We know that this is the first
2879  * slab on the node for this slabcache. There are no concurrent accesses
2880  * possible.
2881  *
2882  * Note that this function only works on the kmem_cache_node
2883  * when allocating for the kmem_cache_node. This is used for bootstrapping
2884  * memory on a fresh node that has no slab structures yet.
2885  */
2886 static void early_kmem_cache_node_alloc(int node)
2887 {
2888 	struct page *page;
2889 	struct kmem_cache_node *n;
2890 
2891 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2892 
2893 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2894 
2895 	BUG_ON(!page);
2896 	if (page_to_nid(page) != node) {
2897 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2898 				"node %d\n", node);
2899 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2900 				"in order to be able to continue\n");
2901 	}
2902 
2903 	n = page->freelist;
2904 	BUG_ON(!n);
2905 	page->freelist = get_freepointer(kmem_cache_node, n);
2906 	page->inuse = 1;
2907 	page->frozen = 0;
2908 	kmem_cache_node->node[node] = n;
2909 #ifdef CONFIG_SLUB_DEBUG
2910 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2911 	init_tracking(kmem_cache_node, n);
2912 #endif
2913 	init_kmem_cache_node(n);
2914 	inc_slabs_node(kmem_cache_node, node, page->objects);
2915 
2916 	/*
2917 	 * No locks need to be taken here as it has just been
2918 	 * initialized and there is no concurrent access.
2919 	 */
2920 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
2921 }
2922 
2923 static void free_kmem_cache_nodes(struct kmem_cache *s)
2924 {
2925 	int node;
2926 
2927 	for_each_node_state(node, N_NORMAL_MEMORY) {
2928 		struct kmem_cache_node *n = s->node[node];
2929 
2930 		if (n)
2931 			kmem_cache_free(kmem_cache_node, n);
2932 
2933 		s->node[node] = NULL;
2934 	}
2935 }
2936 
2937 static int init_kmem_cache_nodes(struct kmem_cache *s)
2938 {
2939 	int node;
2940 
2941 	for_each_node_state(node, N_NORMAL_MEMORY) {
2942 		struct kmem_cache_node *n;
2943 
2944 		if (slab_state == DOWN) {
2945 			early_kmem_cache_node_alloc(node);
2946 			continue;
2947 		}
2948 		n = kmem_cache_alloc_node(kmem_cache_node,
2949 						GFP_KERNEL, node);
2950 
2951 		if (!n) {
2952 			free_kmem_cache_nodes(s);
2953 			return 0;
2954 		}
2955 
2956 		s->node[node] = n;
2957 		init_kmem_cache_node(n);
2958 	}
2959 	return 1;
2960 }
2961 
2962 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2963 {
2964 	if (min < MIN_PARTIAL)
2965 		min = MIN_PARTIAL;
2966 	else if (min > MAX_PARTIAL)
2967 		min = MAX_PARTIAL;
2968 	s->min_partial = min;
2969 }
2970 
2971 /*
2972  * calculate_sizes() determines the order and the distribution of data within
2973  * a slab object.
2974  */
2975 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2976 {
2977 	unsigned long flags = s->flags;
2978 	unsigned long size = s->object_size;
2979 	int order;
2980 
2981 	/*
2982 	 * Round up object size to the next word boundary. We can only
2983 	 * place the free pointer at word boundaries and this determines
2984 	 * the possible location of the free pointer.
2985 	 */
2986 	size = ALIGN(size, sizeof(void *));
2987 
2988 #ifdef CONFIG_SLUB_DEBUG
2989 	/*
2990 	 * Determine if we can poison the object itself. If the user of
2991 	 * the slab may touch the object after free or before allocation
2992 	 * then we should never poison the object itself.
2993 	 */
2994 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2995 			!s->ctor)
2996 		s->flags |= __OBJECT_POISON;
2997 	else
2998 		s->flags &= ~__OBJECT_POISON;
2999 
3000 
3001 	/*
3002 	 * If we are Redzoning then check if there is some space between the
3003 	 * end of the object and the free pointer. If not then add an
3004 	 * additional word to have some bytes to store Redzone information.
3005 	 */
3006 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3007 		size += sizeof(void *);
3008 #endif
3009 
3010 	/*
3011 	 * With that we have determined the number of bytes in actual use
3012 	 * by the object. This is the potential offset to the free pointer.
3013 	 */
3014 	s->inuse = size;
3015 
3016 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3017 		s->ctor)) {
3018 		/*
3019 		 * Relocate free pointer after the object if it is not
3020 		 * permitted to overwrite the first word of the object on
3021 		 * kmem_cache_free.
3022 		 *
3023 		 * This is the case if we do RCU, have a constructor or
3024 		 * destructor or are poisoning the objects.
3025 		 */
3026 		s->offset = size;
3027 		size += sizeof(void *);
3028 	}
3029 
3030 #ifdef CONFIG_SLUB_DEBUG
3031 	if (flags & SLAB_STORE_USER)
3032 		/*
3033 		 * Need to store information about allocs and frees after
3034 		 * the object.
3035 		 */
3036 		size += 2 * sizeof(struct track);
3037 
3038 	if (flags & SLAB_RED_ZONE)
3039 		/*
3040 		 * Add some empty padding so that we can catch
3041 		 * overwrites from earlier objects rather than let
3042 		 * tracking information or the free pointer be
3043 		 * corrupted if a user writes before the start
3044 		 * of the object.
3045 		 */
3046 		size += sizeof(void *);
3047 #endif
3048 
3049 	/*
3050 	 * SLUB stores one object immediately after another beginning from
3051 	 * offset 0. In order to align the objects we have to simply size
3052 	 * each object to conform to the alignment.
3053 	 */
3054 	size = ALIGN(size, s->align);
3055 	s->size = size;
3056 	if (forced_order >= 0)
3057 		order = forced_order;
3058 	else
3059 		order = calculate_order(size, s->reserved);
3060 
3061 	if (order < 0)
3062 		return 0;
3063 
3064 	s->allocflags = 0;
3065 	if (order)
3066 		s->allocflags |= __GFP_COMP;
3067 
3068 	if (s->flags & SLAB_CACHE_DMA)
3069 		s->allocflags |= GFP_DMA;
3070 
3071 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3072 		s->allocflags |= __GFP_RECLAIMABLE;
3073 
3074 	/*
3075 	 * Determine the number of objects per slab
3076 	 */
3077 	s->oo = oo_make(order, size, s->reserved);
3078 	s->min = oo_make(get_order(size), size, s->reserved);
3079 	if (oo_objects(s->oo) > oo_objects(s->max))
3080 		s->max = s->oo;
3081 
3082 	return !!oo_objects(s->oo);
3083 }
3084 
3085 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3086 {
3087 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3088 	s->reserved = 0;
3089 
3090 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3091 		s->reserved = sizeof(struct rcu_head);
3092 
3093 	if (!calculate_sizes(s, -1))
3094 		goto error;
3095 	if (disable_higher_order_debug) {
3096 		/*
3097 		 * Disable debugging flags that store metadata if the min slab
3098 		 * order increased.
3099 		 */
3100 		if (get_order(s->size) > get_order(s->object_size)) {
3101 			s->flags &= ~DEBUG_METADATA_FLAGS;
3102 			s->offset = 0;
3103 			if (!calculate_sizes(s, -1))
3104 				goto error;
3105 		}
3106 	}
3107 
3108 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3109     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3110 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3111 		/* Enable fast mode */
3112 		s->flags |= __CMPXCHG_DOUBLE;
3113 #endif
3114 
3115 	/*
3116 	 * The larger the object size is, the more pages we want on the partial
3117 	 * list to avoid pounding the page allocator excessively.
3118 	 */
3119 	set_min_partial(s, ilog2(s->size) / 2);
3120 
3121 	/*
3122 	 * cpu_partial determined the maximum number of objects kept in the
3123 	 * per cpu partial lists of a processor.
3124 	 *
3125 	 * Per cpu partial lists mainly contain slabs that just have one
3126 	 * object freed. If they are used for allocation then they can be
3127 	 * filled up again with minimal effort. The slab will never hit the
3128 	 * per node partial lists and therefore no locking will be required.
3129 	 *
3130 	 * This setting also determines
3131 	 *
3132 	 * A) The number of objects from per cpu partial slabs dumped to the
3133 	 *    per node list when we reach the limit.
3134 	 * B) The number of objects in cpu partial slabs to extract from the
3135 	 *    per node list when we run out of per cpu objects. We only fetch
3136 	 *    50% to keep some capacity around for frees.
3137 	 */
3138 	if (!kmem_cache_has_cpu_partial(s))
3139 		s->cpu_partial = 0;
3140 	else if (s->size >= PAGE_SIZE)
3141 		s->cpu_partial = 2;
3142 	else if (s->size >= 1024)
3143 		s->cpu_partial = 6;
3144 	else if (s->size >= 256)
3145 		s->cpu_partial = 13;
3146 	else
3147 		s->cpu_partial = 30;
3148 
3149 #ifdef CONFIG_NUMA
3150 	s->remote_node_defrag_ratio = 1000;
3151 #endif
3152 	if (!init_kmem_cache_nodes(s))
3153 		goto error;
3154 
3155 	if (alloc_kmem_cache_cpus(s))
3156 		return 0;
3157 
3158 	free_kmem_cache_nodes(s);
3159 error:
3160 	if (flags & SLAB_PANIC)
3161 		panic("Cannot create slab %s size=%lu realsize=%u "
3162 			"order=%u offset=%u flags=%lx\n",
3163 			s->name, (unsigned long)s->size, s->size,
3164 			oo_order(s->oo), s->offset, flags);
3165 	return -EINVAL;
3166 }
3167 
3168 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3169 							const char *text)
3170 {
3171 #ifdef CONFIG_SLUB_DEBUG
3172 	void *addr = page_address(page);
3173 	void *p;
3174 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3175 				     sizeof(long), GFP_ATOMIC);
3176 	if (!map)
3177 		return;
3178 	slab_err(s, page, text, s->name);
3179 	slab_lock(page);
3180 
3181 	get_map(s, page, map);
3182 	for_each_object(p, s, addr, page->objects) {
3183 
3184 		if (!test_bit(slab_index(p, s, addr), map)) {
3185 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3186 							p, p - addr);
3187 			print_tracking(s, p);
3188 		}
3189 	}
3190 	slab_unlock(page);
3191 	kfree(map);
3192 #endif
3193 }
3194 
3195 /*
3196  * Attempt to free all partial slabs on a node.
3197  * This is called from kmem_cache_close(). We must be the last thread
3198  * using the cache and therefore we do not need to lock anymore.
3199  */
3200 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3201 {
3202 	struct page *page, *h;
3203 
3204 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3205 		if (!page->inuse) {
3206 			__remove_partial(n, page);
3207 			discard_slab(s, page);
3208 		} else {
3209 			list_slab_objects(s, page,
3210 			"Objects remaining in %s on kmem_cache_close()");
3211 		}
3212 	}
3213 }
3214 
3215 /*
3216  * Release all resources used by a slab cache.
3217  */
3218 static inline int kmem_cache_close(struct kmem_cache *s)
3219 {
3220 	int node;
3221 
3222 	flush_all(s);
3223 	/* Attempt to free all objects */
3224 	for_each_node_state(node, N_NORMAL_MEMORY) {
3225 		struct kmem_cache_node *n = get_node(s, node);
3226 
3227 		free_partial(s, n);
3228 		if (n->nr_partial || slabs_node(s, node))
3229 			return 1;
3230 	}
3231 	free_percpu(s->cpu_slab);
3232 	free_kmem_cache_nodes(s);
3233 	return 0;
3234 }
3235 
3236 int __kmem_cache_shutdown(struct kmem_cache *s)
3237 {
3238 	int rc = kmem_cache_close(s);
3239 
3240 	if (!rc) {
3241 		/*
3242 		 * We do the same lock strategy around sysfs_slab_add, see
3243 		 * __kmem_cache_create. Because this is pretty much the last
3244 		 * operation we do and the lock will be released shortly after
3245 		 * that in slab_common.c, we could just move sysfs_slab_remove
3246 		 * to a later point in common code. We should do that when we
3247 		 * have a common sysfs framework for all allocators.
3248 		 */
3249 		mutex_unlock(&slab_mutex);
3250 		sysfs_slab_remove(s);
3251 		mutex_lock(&slab_mutex);
3252 	}
3253 
3254 	return rc;
3255 }
3256 
3257 /********************************************************************
3258  *		Kmalloc subsystem
3259  *******************************************************************/
3260 
3261 static int __init setup_slub_min_order(char *str)
3262 {
3263 	get_option(&str, &slub_min_order);
3264 
3265 	return 1;
3266 }
3267 
3268 __setup("slub_min_order=", setup_slub_min_order);
3269 
3270 static int __init setup_slub_max_order(char *str)
3271 {
3272 	get_option(&str, &slub_max_order);
3273 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3274 
3275 	return 1;
3276 }
3277 
3278 __setup("slub_max_order=", setup_slub_max_order);
3279 
3280 static int __init setup_slub_min_objects(char *str)
3281 {
3282 	get_option(&str, &slub_min_objects);
3283 
3284 	return 1;
3285 }
3286 
3287 __setup("slub_min_objects=", setup_slub_min_objects);
3288 
3289 static int __init setup_slub_nomerge(char *str)
3290 {
3291 	slub_nomerge = 1;
3292 	return 1;
3293 }
3294 
3295 __setup("slub_nomerge", setup_slub_nomerge);
3296 
3297 void *__kmalloc(size_t size, gfp_t flags)
3298 {
3299 	struct kmem_cache *s;
3300 	void *ret;
3301 
3302 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3303 		return kmalloc_large(size, flags);
3304 
3305 	s = kmalloc_slab(size, flags);
3306 
3307 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3308 		return s;
3309 
3310 	ret = slab_alloc(s, flags, _RET_IP_);
3311 
3312 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3313 
3314 	return ret;
3315 }
3316 EXPORT_SYMBOL(__kmalloc);
3317 
3318 #ifdef CONFIG_NUMA
3319 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3320 {
3321 	struct page *page;
3322 	void *ptr = NULL;
3323 
3324 	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3325 	page = alloc_pages_node(node, flags, get_order(size));
3326 	if (page)
3327 		ptr = page_address(page);
3328 
3329 	kmalloc_large_node_hook(ptr, size, flags);
3330 	return ptr;
3331 }
3332 
3333 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3334 {
3335 	struct kmem_cache *s;
3336 	void *ret;
3337 
3338 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3339 		ret = kmalloc_large_node(size, flags, node);
3340 
3341 		trace_kmalloc_node(_RET_IP_, ret,
3342 				   size, PAGE_SIZE << get_order(size),
3343 				   flags, node);
3344 
3345 		return ret;
3346 	}
3347 
3348 	s = kmalloc_slab(size, flags);
3349 
3350 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3351 		return s;
3352 
3353 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3354 
3355 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3356 
3357 	return ret;
3358 }
3359 EXPORT_SYMBOL(__kmalloc_node);
3360 #endif
3361 
3362 size_t ksize(const void *object)
3363 {
3364 	struct page *page;
3365 
3366 	if (unlikely(object == ZERO_SIZE_PTR))
3367 		return 0;
3368 
3369 	page = virt_to_head_page(object);
3370 
3371 	if (unlikely(!PageSlab(page))) {
3372 		WARN_ON(!PageCompound(page));
3373 		return PAGE_SIZE << compound_order(page);
3374 	}
3375 
3376 	return slab_ksize(page->slab_cache);
3377 }
3378 EXPORT_SYMBOL(ksize);
3379 
3380 void kfree(const void *x)
3381 {
3382 	struct page *page;
3383 	void *object = (void *)x;
3384 
3385 	trace_kfree(_RET_IP_, x);
3386 
3387 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3388 		return;
3389 
3390 	page = virt_to_head_page(x);
3391 	if (unlikely(!PageSlab(page))) {
3392 		BUG_ON(!PageCompound(page));
3393 		kfree_hook(x);
3394 		__free_memcg_kmem_pages(page, compound_order(page));
3395 		return;
3396 	}
3397 	slab_free(page->slab_cache, page, object, _RET_IP_);
3398 }
3399 EXPORT_SYMBOL(kfree);
3400 
3401 /*
3402  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3403  * the remaining slabs by the number of items in use. The slabs with the
3404  * most items in use come first. New allocations will then fill those up
3405  * and thus they can be removed from the partial lists.
3406  *
3407  * The slabs with the least items are placed last. This results in them
3408  * being allocated from last increasing the chance that the last objects
3409  * are freed in them.
3410  */
3411 int kmem_cache_shrink(struct kmem_cache *s)
3412 {
3413 	int node;
3414 	int i;
3415 	struct kmem_cache_node *n;
3416 	struct page *page;
3417 	struct page *t;
3418 	int objects = oo_objects(s->max);
3419 	struct list_head *slabs_by_inuse =
3420 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3421 	unsigned long flags;
3422 
3423 	if (!slabs_by_inuse)
3424 		return -ENOMEM;
3425 
3426 	flush_all(s);
3427 	for_each_node_state(node, N_NORMAL_MEMORY) {
3428 		n = get_node(s, node);
3429 
3430 		if (!n->nr_partial)
3431 			continue;
3432 
3433 		for (i = 0; i < objects; i++)
3434 			INIT_LIST_HEAD(slabs_by_inuse + i);
3435 
3436 		spin_lock_irqsave(&n->list_lock, flags);
3437 
3438 		/*
3439 		 * Build lists indexed by the items in use in each slab.
3440 		 *
3441 		 * Note that concurrent frees may occur while we hold the
3442 		 * list_lock. page->inuse here is the upper limit.
3443 		 */
3444 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3445 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3446 			if (!page->inuse)
3447 				n->nr_partial--;
3448 		}
3449 
3450 		/*
3451 		 * Rebuild the partial list with the slabs filled up most
3452 		 * first and the least used slabs at the end.
3453 		 */
3454 		for (i = objects - 1; i > 0; i--)
3455 			list_splice(slabs_by_inuse + i, n->partial.prev);
3456 
3457 		spin_unlock_irqrestore(&n->list_lock, flags);
3458 
3459 		/* Release empty slabs */
3460 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3461 			discard_slab(s, page);
3462 	}
3463 
3464 	kfree(slabs_by_inuse);
3465 	return 0;
3466 }
3467 EXPORT_SYMBOL(kmem_cache_shrink);
3468 
3469 static int slab_mem_going_offline_callback(void *arg)
3470 {
3471 	struct kmem_cache *s;
3472 
3473 	mutex_lock(&slab_mutex);
3474 	list_for_each_entry(s, &slab_caches, list)
3475 		kmem_cache_shrink(s);
3476 	mutex_unlock(&slab_mutex);
3477 
3478 	return 0;
3479 }
3480 
3481 static void slab_mem_offline_callback(void *arg)
3482 {
3483 	struct kmem_cache_node *n;
3484 	struct kmem_cache *s;
3485 	struct memory_notify *marg = arg;
3486 	int offline_node;
3487 
3488 	offline_node = marg->status_change_nid_normal;
3489 
3490 	/*
3491 	 * If the node still has available memory. we need kmem_cache_node
3492 	 * for it yet.
3493 	 */
3494 	if (offline_node < 0)
3495 		return;
3496 
3497 	mutex_lock(&slab_mutex);
3498 	list_for_each_entry(s, &slab_caches, list) {
3499 		n = get_node(s, offline_node);
3500 		if (n) {
3501 			/*
3502 			 * if n->nr_slabs > 0, slabs still exist on the node
3503 			 * that is going down. We were unable to free them,
3504 			 * and offline_pages() function shouldn't call this
3505 			 * callback. So, we must fail.
3506 			 */
3507 			BUG_ON(slabs_node(s, offline_node));
3508 
3509 			s->node[offline_node] = NULL;
3510 			kmem_cache_free(kmem_cache_node, n);
3511 		}
3512 	}
3513 	mutex_unlock(&slab_mutex);
3514 }
3515 
3516 static int slab_mem_going_online_callback(void *arg)
3517 {
3518 	struct kmem_cache_node *n;
3519 	struct kmem_cache *s;
3520 	struct memory_notify *marg = arg;
3521 	int nid = marg->status_change_nid_normal;
3522 	int ret = 0;
3523 
3524 	/*
3525 	 * If the node's memory is already available, then kmem_cache_node is
3526 	 * already created. Nothing to do.
3527 	 */
3528 	if (nid < 0)
3529 		return 0;
3530 
3531 	/*
3532 	 * We are bringing a node online. No memory is available yet. We must
3533 	 * allocate a kmem_cache_node structure in order to bring the node
3534 	 * online.
3535 	 */
3536 	mutex_lock(&slab_mutex);
3537 	list_for_each_entry(s, &slab_caches, list) {
3538 		/*
3539 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3540 		 *      since memory is not yet available from the node that
3541 		 *      is brought up.
3542 		 */
3543 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3544 		if (!n) {
3545 			ret = -ENOMEM;
3546 			goto out;
3547 		}
3548 		init_kmem_cache_node(n);
3549 		s->node[nid] = n;
3550 	}
3551 out:
3552 	mutex_unlock(&slab_mutex);
3553 	return ret;
3554 }
3555 
3556 static int slab_memory_callback(struct notifier_block *self,
3557 				unsigned long action, void *arg)
3558 {
3559 	int ret = 0;
3560 
3561 	switch (action) {
3562 	case MEM_GOING_ONLINE:
3563 		ret = slab_mem_going_online_callback(arg);
3564 		break;
3565 	case MEM_GOING_OFFLINE:
3566 		ret = slab_mem_going_offline_callback(arg);
3567 		break;
3568 	case MEM_OFFLINE:
3569 	case MEM_CANCEL_ONLINE:
3570 		slab_mem_offline_callback(arg);
3571 		break;
3572 	case MEM_ONLINE:
3573 	case MEM_CANCEL_OFFLINE:
3574 		break;
3575 	}
3576 	if (ret)
3577 		ret = notifier_from_errno(ret);
3578 	else
3579 		ret = NOTIFY_OK;
3580 	return ret;
3581 }
3582 
3583 static struct notifier_block slab_memory_callback_nb = {
3584 	.notifier_call = slab_memory_callback,
3585 	.priority = SLAB_CALLBACK_PRI,
3586 };
3587 
3588 /********************************************************************
3589  *			Basic setup of slabs
3590  *******************************************************************/
3591 
3592 /*
3593  * Used for early kmem_cache structures that were allocated using
3594  * the page allocator. Allocate them properly then fix up the pointers
3595  * that may be pointing to the wrong kmem_cache structure.
3596  */
3597 
3598 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3599 {
3600 	int node;
3601 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3602 
3603 	memcpy(s, static_cache, kmem_cache->object_size);
3604 
3605 	/*
3606 	 * This runs very early, and only the boot processor is supposed to be
3607 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3608 	 * IPIs around.
3609 	 */
3610 	__flush_cpu_slab(s, smp_processor_id());
3611 	for_each_node_state(node, N_NORMAL_MEMORY) {
3612 		struct kmem_cache_node *n = get_node(s, node);
3613 		struct page *p;
3614 
3615 		if (n) {
3616 			list_for_each_entry(p, &n->partial, lru)
3617 				p->slab_cache = s;
3618 
3619 #ifdef CONFIG_SLUB_DEBUG
3620 			list_for_each_entry(p, &n->full, lru)
3621 				p->slab_cache = s;
3622 #endif
3623 		}
3624 	}
3625 	list_add(&s->list, &slab_caches);
3626 	return s;
3627 }
3628 
3629 void __init kmem_cache_init(void)
3630 {
3631 	static __initdata struct kmem_cache boot_kmem_cache,
3632 		boot_kmem_cache_node;
3633 
3634 	if (debug_guardpage_minorder())
3635 		slub_max_order = 0;
3636 
3637 	kmem_cache_node = &boot_kmem_cache_node;
3638 	kmem_cache = &boot_kmem_cache;
3639 
3640 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3641 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3642 
3643 	register_hotmemory_notifier(&slab_memory_callback_nb);
3644 
3645 	/* Able to allocate the per node structures */
3646 	slab_state = PARTIAL;
3647 
3648 	create_boot_cache(kmem_cache, "kmem_cache",
3649 			offsetof(struct kmem_cache, node) +
3650 				nr_node_ids * sizeof(struct kmem_cache_node *),
3651 		       SLAB_HWCACHE_ALIGN);
3652 
3653 	kmem_cache = bootstrap(&boot_kmem_cache);
3654 
3655 	/*
3656 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3657 	 * kmem_cache_node is separately allocated so no need to
3658 	 * update any list pointers.
3659 	 */
3660 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3661 
3662 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3663 	create_kmalloc_caches(0);
3664 
3665 #ifdef CONFIG_SMP
3666 	register_cpu_notifier(&slab_notifier);
3667 #endif
3668 
3669 	printk(KERN_INFO
3670 		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3671 		" CPUs=%d, Nodes=%d\n",
3672 		cache_line_size(),
3673 		slub_min_order, slub_max_order, slub_min_objects,
3674 		nr_cpu_ids, nr_node_ids);
3675 }
3676 
3677 void __init kmem_cache_init_late(void)
3678 {
3679 }
3680 
3681 /*
3682  * Find a mergeable slab cache
3683  */
3684 static int slab_unmergeable(struct kmem_cache *s)
3685 {
3686 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3687 		return 1;
3688 
3689 	if (s->ctor)
3690 		return 1;
3691 
3692 	/*
3693 	 * We may have set a slab to be unmergeable during bootstrap.
3694 	 */
3695 	if (s->refcount < 0)
3696 		return 1;
3697 
3698 	return 0;
3699 }
3700 
3701 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3702 		size_t align, unsigned long flags, const char *name,
3703 		void (*ctor)(void *))
3704 {
3705 	struct kmem_cache *s;
3706 
3707 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3708 		return NULL;
3709 
3710 	if (ctor)
3711 		return NULL;
3712 
3713 	size = ALIGN(size, sizeof(void *));
3714 	align = calculate_alignment(flags, align, size);
3715 	size = ALIGN(size, align);
3716 	flags = kmem_cache_flags(size, flags, name, NULL);
3717 
3718 	list_for_each_entry(s, &slab_caches, list) {
3719 		if (slab_unmergeable(s))
3720 			continue;
3721 
3722 		if (size > s->size)
3723 			continue;
3724 
3725 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3726 				continue;
3727 		/*
3728 		 * Check if alignment is compatible.
3729 		 * Courtesy of Adrian Drzewiecki
3730 		 */
3731 		if ((s->size & ~(align - 1)) != s->size)
3732 			continue;
3733 
3734 		if (s->size - size >= sizeof(void *))
3735 			continue;
3736 
3737 		if (!cache_match_memcg(s, memcg))
3738 			continue;
3739 
3740 		return s;
3741 	}
3742 	return NULL;
3743 }
3744 
3745 struct kmem_cache *
3746 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3747 		   size_t align, unsigned long flags, void (*ctor)(void *))
3748 {
3749 	struct kmem_cache *s;
3750 
3751 	s = find_mergeable(memcg, size, align, flags, name, ctor);
3752 	if (s) {
3753 		s->refcount++;
3754 		/*
3755 		 * Adjust the object sizes so that we clear
3756 		 * the complete object on kzalloc.
3757 		 */
3758 		s->object_size = max(s->object_size, (int)size);
3759 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3760 
3761 		if (sysfs_slab_alias(s, name)) {
3762 			s->refcount--;
3763 			s = NULL;
3764 		}
3765 	}
3766 
3767 	return s;
3768 }
3769 
3770 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3771 {
3772 	int err;
3773 
3774 	err = kmem_cache_open(s, flags);
3775 	if (err)
3776 		return err;
3777 
3778 	/* Mutex is not taken during early boot */
3779 	if (slab_state <= UP)
3780 		return 0;
3781 
3782 	memcg_propagate_slab_attrs(s);
3783 	mutex_unlock(&slab_mutex);
3784 	err = sysfs_slab_add(s);
3785 	mutex_lock(&slab_mutex);
3786 
3787 	if (err)
3788 		kmem_cache_close(s);
3789 
3790 	return err;
3791 }
3792 
3793 #ifdef CONFIG_SMP
3794 /*
3795  * Use the cpu notifier to insure that the cpu slabs are flushed when
3796  * necessary.
3797  */
3798 static int slab_cpuup_callback(struct notifier_block *nfb,
3799 		unsigned long action, void *hcpu)
3800 {
3801 	long cpu = (long)hcpu;
3802 	struct kmem_cache *s;
3803 	unsigned long flags;
3804 
3805 	switch (action) {
3806 	case CPU_UP_CANCELED:
3807 	case CPU_UP_CANCELED_FROZEN:
3808 	case CPU_DEAD:
3809 	case CPU_DEAD_FROZEN:
3810 		mutex_lock(&slab_mutex);
3811 		list_for_each_entry(s, &slab_caches, list) {
3812 			local_irq_save(flags);
3813 			__flush_cpu_slab(s, cpu);
3814 			local_irq_restore(flags);
3815 		}
3816 		mutex_unlock(&slab_mutex);
3817 		break;
3818 	default:
3819 		break;
3820 	}
3821 	return NOTIFY_OK;
3822 }
3823 
3824 static struct notifier_block slab_notifier = {
3825 	.notifier_call = slab_cpuup_callback
3826 };
3827 
3828 #endif
3829 
3830 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3831 {
3832 	struct kmem_cache *s;
3833 	void *ret;
3834 
3835 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3836 		return kmalloc_large(size, gfpflags);
3837 
3838 	s = kmalloc_slab(size, gfpflags);
3839 
3840 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3841 		return s;
3842 
3843 	ret = slab_alloc(s, gfpflags, caller);
3844 
3845 	/* Honor the call site pointer we received. */
3846 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3847 
3848 	return ret;
3849 }
3850 
3851 #ifdef CONFIG_NUMA
3852 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3853 					int node, unsigned long caller)
3854 {
3855 	struct kmem_cache *s;
3856 	void *ret;
3857 
3858 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3859 		ret = kmalloc_large_node(size, gfpflags, node);
3860 
3861 		trace_kmalloc_node(caller, ret,
3862 				   size, PAGE_SIZE << get_order(size),
3863 				   gfpflags, node);
3864 
3865 		return ret;
3866 	}
3867 
3868 	s = kmalloc_slab(size, gfpflags);
3869 
3870 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3871 		return s;
3872 
3873 	ret = slab_alloc_node(s, gfpflags, node, caller);
3874 
3875 	/* Honor the call site pointer we received. */
3876 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3877 
3878 	return ret;
3879 }
3880 #endif
3881 
3882 #ifdef CONFIG_SYSFS
3883 static int count_inuse(struct page *page)
3884 {
3885 	return page->inuse;
3886 }
3887 
3888 static int count_total(struct page *page)
3889 {
3890 	return page->objects;
3891 }
3892 #endif
3893 
3894 #ifdef CONFIG_SLUB_DEBUG
3895 static int validate_slab(struct kmem_cache *s, struct page *page,
3896 						unsigned long *map)
3897 {
3898 	void *p;
3899 	void *addr = page_address(page);
3900 
3901 	if (!check_slab(s, page) ||
3902 			!on_freelist(s, page, NULL))
3903 		return 0;
3904 
3905 	/* Now we know that a valid freelist exists */
3906 	bitmap_zero(map, page->objects);
3907 
3908 	get_map(s, page, map);
3909 	for_each_object(p, s, addr, page->objects) {
3910 		if (test_bit(slab_index(p, s, addr), map))
3911 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3912 				return 0;
3913 	}
3914 
3915 	for_each_object(p, s, addr, page->objects)
3916 		if (!test_bit(slab_index(p, s, addr), map))
3917 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3918 				return 0;
3919 	return 1;
3920 }
3921 
3922 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3923 						unsigned long *map)
3924 {
3925 	slab_lock(page);
3926 	validate_slab(s, page, map);
3927 	slab_unlock(page);
3928 }
3929 
3930 static int validate_slab_node(struct kmem_cache *s,
3931 		struct kmem_cache_node *n, unsigned long *map)
3932 {
3933 	unsigned long count = 0;
3934 	struct page *page;
3935 	unsigned long flags;
3936 
3937 	spin_lock_irqsave(&n->list_lock, flags);
3938 
3939 	list_for_each_entry(page, &n->partial, lru) {
3940 		validate_slab_slab(s, page, map);
3941 		count++;
3942 	}
3943 	if (count != n->nr_partial)
3944 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3945 			"counter=%ld\n", s->name, count, n->nr_partial);
3946 
3947 	if (!(s->flags & SLAB_STORE_USER))
3948 		goto out;
3949 
3950 	list_for_each_entry(page, &n->full, lru) {
3951 		validate_slab_slab(s, page, map);
3952 		count++;
3953 	}
3954 	if (count != atomic_long_read(&n->nr_slabs))
3955 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3956 			"counter=%ld\n", s->name, count,
3957 			atomic_long_read(&n->nr_slabs));
3958 
3959 out:
3960 	spin_unlock_irqrestore(&n->list_lock, flags);
3961 	return count;
3962 }
3963 
3964 static long validate_slab_cache(struct kmem_cache *s)
3965 {
3966 	int node;
3967 	unsigned long count = 0;
3968 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3969 				sizeof(unsigned long), GFP_KERNEL);
3970 
3971 	if (!map)
3972 		return -ENOMEM;
3973 
3974 	flush_all(s);
3975 	for_each_node_state(node, N_NORMAL_MEMORY) {
3976 		struct kmem_cache_node *n = get_node(s, node);
3977 
3978 		count += validate_slab_node(s, n, map);
3979 	}
3980 	kfree(map);
3981 	return count;
3982 }
3983 /*
3984  * Generate lists of code addresses where slabcache objects are allocated
3985  * and freed.
3986  */
3987 
3988 struct location {
3989 	unsigned long count;
3990 	unsigned long addr;
3991 	long long sum_time;
3992 	long min_time;
3993 	long max_time;
3994 	long min_pid;
3995 	long max_pid;
3996 	DECLARE_BITMAP(cpus, NR_CPUS);
3997 	nodemask_t nodes;
3998 };
3999 
4000 struct loc_track {
4001 	unsigned long max;
4002 	unsigned long count;
4003 	struct location *loc;
4004 };
4005 
4006 static void free_loc_track(struct loc_track *t)
4007 {
4008 	if (t->max)
4009 		free_pages((unsigned long)t->loc,
4010 			get_order(sizeof(struct location) * t->max));
4011 }
4012 
4013 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4014 {
4015 	struct location *l;
4016 	int order;
4017 
4018 	order = get_order(sizeof(struct location) * max);
4019 
4020 	l = (void *)__get_free_pages(flags, order);
4021 	if (!l)
4022 		return 0;
4023 
4024 	if (t->count) {
4025 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4026 		free_loc_track(t);
4027 	}
4028 	t->max = max;
4029 	t->loc = l;
4030 	return 1;
4031 }
4032 
4033 static int add_location(struct loc_track *t, struct kmem_cache *s,
4034 				const struct track *track)
4035 {
4036 	long start, end, pos;
4037 	struct location *l;
4038 	unsigned long caddr;
4039 	unsigned long age = jiffies - track->when;
4040 
4041 	start = -1;
4042 	end = t->count;
4043 
4044 	for ( ; ; ) {
4045 		pos = start + (end - start + 1) / 2;
4046 
4047 		/*
4048 		 * There is nothing at "end". If we end up there
4049 		 * we need to add something to before end.
4050 		 */
4051 		if (pos == end)
4052 			break;
4053 
4054 		caddr = t->loc[pos].addr;
4055 		if (track->addr == caddr) {
4056 
4057 			l = &t->loc[pos];
4058 			l->count++;
4059 			if (track->when) {
4060 				l->sum_time += age;
4061 				if (age < l->min_time)
4062 					l->min_time = age;
4063 				if (age > l->max_time)
4064 					l->max_time = age;
4065 
4066 				if (track->pid < l->min_pid)
4067 					l->min_pid = track->pid;
4068 				if (track->pid > l->max_pid)
4069 					l->max_pid = track->pid;
4070 
4071 				cpumask_set_cpu(track->cpu,
4072 						to_cpumask(l->cpus));
4073 			}
4074 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4075 			return 1;
4076 		}
4077 
4078 		if (track->addr < caddr)
4079 			end = pos;
4080 		else
4081 			start = pos;
4082 	}
4083 
4084 	/*
4085 	 * Not found. Insert new tracking element.
4086 	 */
4087 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4088 		return 0;
4089 
4090 	l = t->loc + pos;
4091 	if (pos < t->count)
4092 		memmove(l + 1, l,
4093 			(t->count - pos) * sizeof(struct location));
4094 	t->count++;
4095 	l->count = 1;
4096 	l->addr = track->addr;
4097 	l->sum_time = age;
4098 	l->min_time = age;
4099 	l->max_time = age;
4100 	l->min_pid = track->pid;
4101 	l->max_pid = track->pid;
4102 	cpumask_clear(to_cpumask(l->cpus));
4103 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4104 	nodes_clear(l->nodes);
4105 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4106 	return 1;
4107 }
4108 
4109 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4110 		struct page *page, enum track_item alloc,
4111 		unsigned long *map)
4112 {
4113 	void *addr = page_address(page);
4114 	void *p;
4115 
4116 	bitmap_zero(map, page->objects);
4117 	get_map(s, page, map);
4118 
4119 	for_each_object(p, s, addr, page->objects)
4120 		if (!test_bit(slab_index(p, s, addr), map))
4121 			add_location(t, s, get_track(s, p, alloc));
4122 }
4123 
4124 static int list_locations(struct kmem_cache *s, char *buf,
4125 					enum track_item alloc)
4126 {
4127 	int len = 0;
4128 	unsigned long i;
4129 	struct loc_track t = { 0, 0, NULL };
4130 	int node;
4131 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4132 				     sizeof(unsigned long), GFP_KERNEL);
4133 
4134 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4135 				     GFP_TEMPORARY)) {
4136 		kfree(map);
4137 		return sprintf(buf, "Out of memory\n");
4138 	}
4139 	/* Push back cpu slabs */
4140 	flush_all(s);
4141 
4142 	for_each_node_state(node, N_NORMAL_MEMORY) {
4143 		struct kmem_cache_node *n = get_node(s, node);
4144 		unsigned long flags;
4145 		struct page *page;
4146 
4147 		if (!atomic_long_read(&n->nr_slabs))
4148 			continue;
4149 
4150 		spin_lock_irqsave(&n->list_lock, flags);
4151 		list_for_each_entry(page, &n->partial, lru)
4152 			process_slab(&t, s, page, alloc, map);
4153 		list_for_each_entry(page, &n->full, lru)
4154 			process_slab(&t, s, page, alloc, map);
4155 		spin_unlock_irqrestore(&n->list_lock, flags);
4156 	}
4157 
4158 	for (i = 0; i < t.count; i++) {
4159 		struct location *l = &t.loc[i];
4160 
4161 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4162 			break;
4163 		len += sprintf(buf + len, "%7ld ", l->count);
4164 
4165 		if (l->addr)
4166 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4167 		else
4168 			len += sprintf(buf + len, "<not-available>");
4169 
4170 		if (l->sum_time != l->min_time) {
4171 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4172 				l->min_time,
4173 				(long)div_u64(l->sum_time, l->count),
4174 				l->max_time);
4175 		} else
4176 			len += sprintf(buf + len, " age=%ld",
4177 				l->min_time);
4178 
4179 		if (l->min_pid != l->max_pid)
4180 			len += sprintf(buf + len, " pid=%ld-%ld",
4181 				l->min_pid, l->max_pid);
4182 		else
4183 			len += sprintf(buf + len, " pid=%ld",
4184 				l->min_pid);
4185 
4186 		if (num_online_cpus() > 1 &&
4187 				!cpumask_empty(to_cpumask(l->cpus)) &&
4188 				len < PAGE_SIZE - 60) {
4189 			len += sprintf(buf + len, " cpus=");
4190 			len += cpulist_scnprintf(buf + len,
4191 						 PAGE_SIZE - len - 50,
4192 						 to_cpumask(l->cpus));
4193 		}
4194 
4195 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4196 				len < PAGE_SIZE - 60) {
4197 			len += sprintf(buf + len, " nodes=");
4198 			len += nodelist_scnprintf(buf + len,
4199 						  PAGE_SIZE - len - 50,
4200 						  l->nodes);
4201 		}
4202 
4203 		len += sprintf(buf + len, "\n");
4204 	}
4205 
4206 	free_loc_track(&t);
4207 	kfree(map);
4208 	if (!t.count)
4209 		len += sprintf(buf, "No data\n");
4210 	return len;
4211 }
4212 #endif
4213 
4214 #ifdef SLUB_RESILIENCY_TEST
4215 static void resiliency_test(void)
4216 {
4217 	u8 *p;
4218 
4219 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4220 
4221 	printk(KERN_ERR "SLUB resiliency testing\n");
4222 	printk(KERN_ERR "-----------------------\n");
4223 	printk(KERN_ERR "A. Corruption after allocation\n");
4224 
4225 	p = kzalloc(16, GFP_KERNEL);
4226 	p[16] = 0x12;
4227 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4228 			" 0x12->0x%p\n\n", p + 16);
4229 
4230 	validate_slab_cache(kmalloc_caches[4]);
4231 
4232 	/* Hmmm... The next two are dangerous */
4233 	p = kzalloc(32, GFP_KERNEL);
4234 	p[32 + sizeof(void *)] = 0x34;
4235 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4236 			" 0x34 -> -0x%p\n", p);
4237 	printk(KERN_ERR
4238 		"If allocated object is overwritten then not detectable\n\n");
4239 
4240 	validate_slab_cache(kmalloc_caches[5]);
4241 	p = kzalloc(64, GFP_KERNEL);
4242 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4243 	*p = 0x56;
4244 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4245 									p);
4246 	printk(KERN_ERR
4247 		"If allocated object is overwritten then not detectable\n\n");
4248 	validate_slab_cache(kmalloc_caches[6]);
4249 
4250 	printk(KERN_ERR "\nB. Corruption after free\n");
4251 	p = kzalloc(128, GFP_KERNEL);
4252 	kfree(p);
4253 	*p = 0x78;
4254 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4255 	validate_slab_cache(kmalloc_caches[7]);
4256 
4257 	p = kzalloc(256, GFP_KERNEL);
4258 	kfree(p);
4259 	p[50] = 0x9a;
4260 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4261 			p);
4262 	validate_slab_cache(kmalloc_caches[8]);
4263 
4264 	p = kzalloc(512, GFP_KERNEL);
4265 	kfree(p);
4266 	p[512] = 0xab;
4267 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4268 	validate_slab_cache(kmalloc_caches[9]);
4269 }
4270 #else
4271 #ifdef CONFIG_SYSFS
4272 static void resiliency_test(void) {};
4273 #endif
4274 #endif
4275 
4276 #ifdef CONFIG_SYSFS
4277 enum slab_stat_type {
4278 	SL_ALL,			/* All slabs */
4279 	SL_PARTIAL,		/* Only partially allocated slabs */
4280 	SL_CPU,			/* Only slabs used for cpu caches */
4281 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4282 	SL_TOTAL		/* Determine object capacity not slabs */
4283 };
4284 
4285 #define SO_ALL		(1 << SL_ALL)
4286 #define SO_PARTIAL	(1 << SL_PARTIAL)
4287 #define SO_CPU		(1 << SL_CPU)
4288 #define SO_OBJECTS	(1 << SL_OBJECTS)
4289 #define SO_TOTAL	(1 << SL_TOTAL)
4290 
4291 static ssize_t show_slab_objects(struct kmem_cache *s,
4292 			    char *buf, unsigned long flags)
4293 {
4294 	unsigned long total = 0;
4295 	int node;
4296 	int x;
4297 	unsigned long *nodes;
4298 
4299 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4300 	if (!nodes)
4301 		return -ENOMEM;
4302 
4303 	if (flags & SO_CPU) {
4304 		int cpu;
4305 
4306 		for_each_possible_cpu(cpu) {
4307 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4308 							       cpu);
4309 			int node;
4310 			struct page *page;
4311 
4312 			page = ACCESS_ONCE(c->page);
4313 			if (!page)
4314 				continue;
4315 
4316 			node = page_to_nid(page);
4317 			if (flags & SO_TOTAL)
4318 				x = page->objects;
4319 			else if (flags & SO_OBJECTS)
4320 				x = page->inuse;
4321 			else
4322 				x = 1;
4323 
4324 			total += x;
4325 			nodes[node] += x;
4326 
4327 			page = ACCESS_ONCE(c->partial);
4328 			if (page) {
4329 				node = page_to_nid(page);
4330 				if (flags & SO_TOTAL)
4331 					WARN_ON_ONCE(1);
4332 				else if (flags & SO_OBJECTS)
4333 					WARN_ON_ONCE(1);
4334 				else
4335 					x = page->pages;
4336 				total += x;
4337 				nodes[node] += x;
4338 			}
4339 		}
4340 	}
4341 
4342 	lock_memory_hotplug();
4343 #ifdef CONFIG_SLUB_DEBUG
4344 	if (flags & SO_ALL) {
4345 		for_each_node_state(node, N_NORMAL_MEMORY) {
4346 			struct kmem_cache_node *n = get_node(s, node);
4347 
4348 			if (flags & SO_TOTAL)
4349 				x = atomic_long_read(&n->total_objects);
4350 			else if (flags & SO_OBJECTS)
4351 				x = atomic_long_read(&n->total_objects) -
4352 					count_partial(n, count_free);
4353 			else
4354 				x = atomic_long_read(&n->nr_slabs);
4355 			total += x;
4356 			nodes[node] += x;
4357 		}
4358 
4359 	} else
4360 #endif
4361 	if (flags & SO_PARTIAL) {
4362 		for_each_node_state(node, N_NORMAL_MEMORY) {
4363 			struct kmem_cache_node *n = get_node(s, node);
4364 
4365 			if (flags & SO_TOTAL)
4366 				x = count_partial(n, count_total);
4367 			else if (flags & SO_OBJECTS)
4368 				x = count_partial(n, count_inuse);
4369 			else
4370 				x = n->nr_partial;
4371 			total += x;
4372 			nodes[node] += x;
4373 		}
4374 	}
4375 	x = sprintf(buf, "%lu", total);
4376 #ifdef CONFIG_NUMA
4377 	for_each_node_state(node, N_NORMAL_MEMORY)
4378 		if (nodes[node])
4379 			x += sprintf(buf + x, " N%d=%lu",
4380 					node, nodes[node]);
4381 #endif
4382 	unlock_memory_hotplug();
4383 	kfree(nodes);
4384 	return x + sprintf(buf + x, "\n");
4385 }
4386 
4387 #ifdef CONFIG_SLUB_DEBUG
4388 static int any_slab_objects(struct kmem_cache *s)
4389 {
4390 	int node;
4391 
4392 	for_each_online_node(node) {
4393 		struct kmem_cache_node *n = get_node(s, node);
4394 
4395 		if (!n)
4396 			continue;
4397 
4398 		if (atomic_long_read(&n->total_objects))
4399 			return 1;
4400 	}
4401 	return 0;
4402 }
4403 #endif
4404 
4405 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4406 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4407 
4408 struct slab_attribute {
4409 	struct attribute attr;
4410 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4411 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4412 };
4413 
4414 #define SLAB_ATTR_RO(_name) \
4415 	static struct slab_attribute _name##_attr = \
4416 	__ATTR(_name, 0400, _name##_show, NULL)
4417 
4418 #define SLAB_ATTR(_name) \
4419 	static struct slab_attribute _name##_attr =  \
4420 	__ATTR(_name, 0600, _name##_show, _name##_store)
4421 
4422 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4423 {
4424 	return sprintf(buf, "%d\n", s->size);
4425 }
4426 SLAB_ATTR_RO(slab_size);
4427 
4428 static ssize_t align_show(struct kmem_cache *s, char *buf)
4429 {
4430 	return sprintf(buf, "%d\n", s->align);
4431 }
4432 SLAB_ATTR_RO(align);
4433 
4434 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4435 {
4436 	return sprintf(buf, "%d\n", s->object_size);
4437 }
4438 SLAB_ATTR_RO(object_size);
4439 
4440 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4441 {
4442 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4443 }
4444 SLAB_ATTR_RO(objs_per_slab);
4445 
4446 static ssize_t order_store(struct kmem_cache *s,
4447 				const char *buf, size_t length)
4448 {
4449 	unsigned long order;
4450 	int err;
4451 
4452 	err = kstrtoul(buf, 10, &order);
4453 	if (err)
4454 		return err;
4455 
4456 	if (order > slub_max_order || order < slub_min_order)
4457 		return -EINVAL;
4458 
4459 	calculate_sizes(s, order);
4460 	return length;
4461 }
4462 
4463 static ssize_t order_show(struct kmem_cache *s, char *buf)
4464 {
4465 	return sprintf(buf, "%d\n", oo_order(s->oo));
4466 }
4467 SLAB_ATTR(order);
4468 
4469 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4470 {
4471 	return sprintf(buf, "%lu\n", s->min_partial);
4472 }
4473 
4474 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4475 				 size_t length)
4476 {
4477 	unsigned long min;
4478 	int err;
4479 
4480 	err = kstrtoul(buf, 10, &min);
4481 	if (err)
4482 		return err;
4483 
4484 	set_min_partial(s, min);
4485 	return length;
4486 }
4487 SLAB_ATTR(min_partial);
4488 
4489 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4490 {
4491 	return sprintf(buf, "%u\n", s->cpu_partial);
4492 }
4493 
4494 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4495 				 size_t length)
4496 {
4497 	unsigned long objects;
4498 	int err;
4499 
4500 	err = kstrtoul(buf, 10, &objects);
4501 	if (err)
4502 		return err;
4503 	if (objects && !kmem_cache_has_cpu_partial(s))
4504 		return -EINVAL;
4505 
4506 	s->cpu_partial = objects;
4507 	flush_all(s);
4508 	return length;
4509 }
4510 SLAB_ATTR(cpu_partial);
4511 
4512 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4513 {
4514 	if (!s->ctor)
4515 		return 0;
4516 	return sprintf(buf, "%pS\n", s->ctor);
4517 }
4518 SLAB_ATTR_RO(ctor);
4519 
4520 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4521 {
4522 	return sprintf(buf, "%d\n", s->refcount - 1);
4523 }
4524 SLAB_ATTR_RO(aliases);
4525 
4526 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4527 {
4528 	return show_slab_objects(s, buf, SO_PARTIAL);
4529 }
4530 SLAB_ATTR_RO(partial);
4531 
4532 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4533 {
4534 	return show_slab_objects(s, buf, SO_CPU);
4535 }
4536 SLAB_ATTR_RO(cpu_slabs);
4537 
4538 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4539 {
4540 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4541 }
4542 SLAB_ATTR_RO(objects);
4543 
4544 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4545 {
4546 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4547 }
4548 SLAB_ATTR_RO(objects_partial);
4549 
4550 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4551 {
4552 	int objects = 0;
4553 	int pages = 0;
4554 	int cpu;
4555 	int len;
4556 
4557 	for_each_online_cpu(cpu) {
4558 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4559 
4560 		if (page) {
4561 			pages += page->pages;
4562 			objects += page->pobjects;
4563 		}
4564 	}
4565 
4566 	len = sprintf(buf, "%d(%d)", objects, pages);
4567 
4568 #ifdef CONFIG_SMP
4569 	for_each_online_cpu(cpu) {
4570 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4571 
4572 		if (page && len < PAGE_SIZE - 20)
4573 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4574 				page->pobjects, page->pages);
4575 	}
4576 #endif
4577 	return len + sprintf(buf + len, "\n");
4578 }
4579 SLAB_ATTR_RO(slabs_cpu_partial);
4580 
4581 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4582 {
4583 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4584 }
4585 
4586 static ssize_t reclaim_account_store(struct kmem_cache *s,
4587 				const char *buf, size_t length)
4588 {
4589 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4590 	if (buf[0] == '1')
4591 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4592 	return length;
4593 }
4594 SLAB_ATTR(reclaim_account);
4595 
4596 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4597 {
4598 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4599 }
4600 SLAB_ATTR_RO(hwcache_align);
4601 
4602 #ifdef CONFIG_ZONE_DMA
4603 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4604 {
4605 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4606 }
4607 SLAB_ATTR_RO(cache_dma);
4608 #endif
4609 
4610 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4611 {
4612 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4613 }
4614 SLAB_ATTR_RO(destroy_by_rcu);
4615 
4616 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4617 {
4618 	return sprintf(buf, "%d\n", s->reserved);
4619 }
4620 SLAB_ATTR_RO(reserved);
4621 
4622 #ifdef CONFIG_SLUB_DEBUG
4623 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4624 {
4625 	return show_slab_objects(s, buf, SO_ALL);
4626 }
4627 SLAB_ATTR_RO(slabs);
4628 
4629 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4630 {
4631 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4632 }
4633 SLAB_ATTR_RO(total_objects);
4634 
4635 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4636 {
4637 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4638 }
4639 
4640 static ssize_t sanity_checks_store(struct kmem_cache *s,
4641 				const char *buf, size_t length)
4642 {
4643 	s->flags &= ~SLAB_DEBUG_FREE;
4644 	if (buf[0] == '1') {
4645 		s->flags &= ~__CMPXCHG_DOUBLE;
4646 		s->flags |= SLAB_DEBUG_FREE;
4647 	}
4648 	return length;
4649 }
4650 SLAB_ATTR(sanity_checks);
4651 
4652 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4653 {
4654 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4655 }
4656 
4657 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4658 							size_t length)
4659 {
4660 	s->flags &= ~SLAB_TRACE;
4661 	if (buf[0] == '1') {
4662 		s->flags &= ~__CMPXCHG_DOUBLE;
4663 		s->flags |= SLAB_TRACE;
4664 	}
4665 	return length;
4666 }
4667 SLAB_ATTR(trace);
4668 
4669 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4670 {
4671 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4672 }
4673 
4674 static ssize_t red_zone_store(struct kmem_cache *s,
4675 				const char *buf, size_t length)
4676 {
4677 	if (any_slab_objects(s))
4678 		return -EBUSY;
4679 
4680 	s->flags &= ~SLAB_RED_ZONE;
4681 	if (buf[0] == '1') {
4682 		s->flags &= ~__CMPXCHG_DOUBLE;
4683 		s->flags |= SLAB_RED_ZONE;
4684 	}
4685 	calculate_sizes(s, -1);
4686 	return length;
4687 }
4688 SLAB_ATTR(red_zone);
4689 
4690 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4691 {
4692 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4693 }
4694 
4695 static ssize_t poison_store(struct kmem_cache *s,
4696 				const char *buf, size_t length)
4697 {
4698 	if (any_slab_objects(s))
4699 		return -EBUSY;
4700 
4701 	s->flags &= ~SLAB_POISON;
4702 	if (buf[0] == '1') {
4703 		s->flags &= ~__CMPXCHG_DOUBLE;
4704 		s->flags |= SLAB_POISON;
4705 	}
4706 	calculate_sizes(s, -1);
4707 	return length;
4708 }
4709 SLAB_ATTR(poison);
4710 
4711 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4712 {
4713 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4714 }
4715 
4716 static ssize_t store_user_store(struct kmem_cache *s,
4717 				const char *buf, size_t length)
4718 {
4719 	if (any_slab_objects(s))
4720 		return -EBUSY;
4721 
4722 	s->flags &= ~SLAB_STORE_USER;
4723 	if (buf[0] == '1') {
4724 		s->flags &= ~__CMPXCHG_DOUBLE;
4725 		s->flags |= SLAB_STORE_USER;
4726 	}
4727 	calculate_sizes(s, -1);
4728 	return length;
4729 }
4730 SLAB_ATTR(store_user);
4731 
4732 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4733 {
4734 	return 0;
4735 }
4736 
4737 static ssize_t validate_store(struct kmem_cache *s,
4738 			const char *buf, size_t length)
4739 {
4740 	int ret = -EINVAL;
4741 
4742 	if (buf[0] == '1') {
4743 		ret = validate_slab_cache(s);
4744 		if (ret >= 0)
4745 			ret = length;
4746 	}
4747 	return ret;
4748 }
4749 SLAB_ATTR(validate);
4750 
4751 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4752 {
4753 	if (!(s->flags & SLAB_STORE_USER))
4754 		return -ENOSYS;
4755 	return list_locations(s, buf, TRACK_ALLOC);
4756 }
4757 SLAB_ATTR_RO(alloc_calls);
4758 
4759 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4760 {
4761 	if (!(s->flags & SLAB_STORE_USER))
4762 		return -ENOSYS;
4763 	return list_locations(s, buf, TRACK_FREE);
4764 }
4765 SLAB_ATTR_RO(free_calls);
4766 #endif /* CONFIG_SLUB_DEBUG */
4767 
4768 #ifdef CONFIG_FAILSLAB
4769 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4770 {
4771 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4772 }
4773 
4774 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4775 							size_t length)
4776 {
4777 	s->flags &= ~SLAB_FAILSLAB;
4778 	if (buf[0] == '1')
4779 		s->flags |= SLAB_FAILSLAB;
4780 	return length;
4781 }
4782 SLAB_ATTR(failslab);
4783 #endif
4784 
4785 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4786 {
4787 	return 0;
4788 }
4789 
4790 static ssize_t shrink_store(struct kmem_cache *s,
4791 			const char *buf, size_t length)
4792 {
4793 	if (buf[0] == '1') {
4794 		int rc = kmem_cache_shrink(s);
4795 
4796 		if (rc)
4797 			return rc;
4798 	} else
4799 		return -EINVAL;
4800 	return length;
4801 }
4802 SLAB_ATTR(shrink);
4803 
4804 #ifdef CONFIG_NUMA
4805 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4806 {
4807 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4808 }
4809 
4810 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4811 				const char *buf, size_t length)
4812 {
4813 	unsigned long ratio;
4814 	int err;
4815 
4816 	err = kstrtoul(buf, 10, &ratio);
4817 	if (err)
4818 		return err;
4819 
4820 	if (ratio <= 100)
4821 		s->remote_node_defrag_ratio = ratio * 10;
4822 
4823 	return length;
4824 }
4825 SLAB_ATTR(remote_node_defrag_ratio);
4826 #endif
4827 
4828 #ifdef CONFIG_SLUB_STATS
4829 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4830 {
4831 	unsigned long sum  = 0;
4832 	int cpu;
4833 	int len;
4834 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4835 
4836 	if (!data)
4837 		return -ENOMEM;
4838 
4839 	for_each_online_cpu(cpu) {
4840 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4841 
4842 		data[cpu] = x;
4843 		sum += x;
4844 	}
4845 
4846 	len = sprintf(buf, "%lu", sum);
4847 
4848 #ifdef CONFIG_SMP
4849 	for_each_online_cpu(cpu) {
4850 		if (data[cpu] && len < PAGE_SIZE - 20)
4851 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4852 	}
4853 #endif
4854 	kfree(data);
4855 	return len + sprintf(buf + len, "\n");
4856 }
4857 
4858 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4859 {
4860 	int cpu;
4861 
4862 	for_each_online_cpu(cpu)
4863 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4864 }
4865 
4866 #define STAT_ATTR(si, text) 					\
4867 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4868 {								\
4869 	return show_stat(s, buf, si);				\
4870 }								\
4871 static ssize_t text##_store(struct kmem_cache *s,		\
4872 				const char *buf, size_t length)	\
4873 {								\
4874 	if (buf[0] != '0')					\
4875 		return -EINVAL;					\
4876 	clear_stat(s, si);					\
4877 	return length;						\
4878 }								\
4879 SLAB_ATTR(text);						\
4880 
4881 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4882 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4883 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4884 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4885 STAT_ATTR(FREE_FROZEN, free_frozen);
4886 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4887 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4888 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4889 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4890 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4891 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4892 STAT_ATTR(FREE_SLAB, free_slab);
4893 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4894 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4895 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4896 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4897 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4898 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4899 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4900 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4901 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4902 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4903 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4904 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4905 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4906 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4907 #endif
4908 
4909 static struct attribute *slab_attrs[] = {
4910 	&slab_size_attr.attr,
4911 	&object_size_attr.attr,
4912 	&objs_per_slab_attr.attr,
4913 	&order_attr.attr,
4914 	&min_partial_attr.attr,
4915 	&cpu_partial_attr.attr,
4916 	&objects_attr.attr,
4917 	&objects_partial_attr.attr,
4918 	&partial_attr.attr,
4919 	&cpu_slabs_attr.attr,
4920 	&ctor_attr.attr,
4921 	&aliases_attr.attr,
4922 	&align_attr.attr,
4923 	&hwcache_align_attr.attr,
4924 	&reclaim_account_attr.attr,
4925 	&destroy_by_rcu_attr.attr,
4926 	&shrink_attr.attr,
4927 	&reserved_attr.attr,
4928 	&slabs_cpu_partial_attr.attr,
4929 #ifdef CONFIG_SLUB_DEBUG
4930 	&total_objects_attr.attr,
4931 	&slabs_attr.attr,
4932 	&sanity_checks_attr.attr,
4933 	&trace_attr.attr,
4934 	&red_zone_attr.attr,
4935 	&poison_attr.attr,
4936 	&store_user_attr.attr,
4937 	&validate_attr.attr,
4938 	&alloc_calls_attr.attr,
4939 	&free_calls_attr.attr,
4940 #endif
4941 #ifdef CONFIG_ZONE_DMA
4942 	&cache_dma_attr.attr,
4943 #endif
4944 #ifdef CONFIG_NUMA
4945 	&remote_node_defrag_ratio_attr.attr,
4946 #endif
4947 #ifdef CONFIG_SLUB_STATS
4948 	&alloc_fastpath_attr.attr,
4949 	&alloc_slowpath_attr.attr,
4950 	&free_fastpath_attr.attr,
4951 	&free_slowpath_attr.attr,
4952 	&free_frozen_attr.attr,
4953 	&free_add_partial_attr.attr,
4954 	&free_remove_partial_attr.attr,
4955 	&alloc_from_partial_attr.attr,
4956 	&alloc_slab_attr.attr,
4957 	&alloc_refill_attr.attr,
4958 	&alloc_node_mismatch_attr.attr,
4959 	&free_slab_attr.attr,
4960 	&cpuslab_flush_attr.attr,
4961 	&deactivate_full_attr.attr,
4962 	&deactivate_empty_attr.attr,
4963 	&deactivate_to_head_attr.attr,
4964 	&deactivate_to_tail_attr.attr,
4965 	&deactivate_remote_frees_attr.attr,
4966 	&deactivate_bypass_attr.attr,
4967 	&order_fallback_attr.attr,
4968 	&cmpxchg_double_fail_attr.attr,
4969 	&cmpxchg_double_cpu_fail_attr.attr,
4970 	&cpu_partial_alloc_attr.attr,
4971 	&cpu_partial_free_attr.attr,
4972 	&cpu_partial_node_attr.attr,
4973 	&cpu_partial_drain_attr.attr,
4974 #endif
4975 #ifdef CONFIG_FAILSLAB
4976 	&failslab_attr.attr,
4977 #endif
4978 
4979 	NULL
4980 };
4981 
4982 static struct attribute_group slab_attr_group = {
4983 	.attrs = slab_attrs,
4984 };
4985 
4986 static ssize_t slab_attr_show(struct kobject *kobj,
4987 				struct attribute *attr,
4988 				char *buf)
4989 {
4990 	struct slab_attribute *attribute;
4991 	struct kmem_cache *s;
4992 	int err;
4993 
4994 	attribute = to_slab_attr(attr);
4995 	s = to_slab(kobj);
4996 
4997 	if (!attribute->show)
4998 		return -EIO;
4999 
5000 	err = attribute->show(s, buf);
5001 
5002 	return err;
5003 }
5004 
5005 static ssize_t slab_attr_store(struct kobject *kobj,
5006 				struct attribute *attr,
5007 				const char *buf, size_t len)
5008 {
5009 	struct slab_attribute *attribute;
5010 	struct kmem_cache *s;
5011 	int err;
5012 
5013 	attribute = to_slab_attr(attr);
5014 	s = to_slab(kobj);
5015 
5016 	if (!attribute->store)
5017 		return -EIO;
5018 
5019 	err = attribute->store(s, buf, len);
5020 #ifdef CONFIG_MEMCG_KMEM
5021 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5022 		int i;
5023 
5024 		mutex_lock(&slab_mutex);
5025 		if (s->max_attr_size < len)
5026 			s->max_attr_size = len;
5027 
5028 		/*
5029 		 * This is a best effort propagation, so this function's return
5030 		 * value will be determined by the parent cache only. This is
5031 		 * basically because not all attributes will have a well
5032 		 * defined semantics for rollbacks - most of the actions will
5033 		 * have permanent effects.
5034 		 *
5035 		 * Returning the error value of any of the children that fail
5036 		 * is not 100 % defined, in the sense that users seeing the
5037 		 * error code won't be able to know anything about the state of
5038 		 * the cache.
5039 		 *
5040 		 * Only returning the error code for the parent cache at least
5041 		 * has well defined semantics. The cache being written to
5042 		 * directly either failed or succeeded, in which case we loop
5043 		 * through the descendants with best-effort propagation.
5044 		 */
5045 		for_each_memcg_cache_index(i) {
5046 			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5047 			if (c)
5048 				attribute->store(c, buf, len);
5049 		}
5050 		mutex_unlock(&slab_mutex);
5051 	}
5052 #endif
5053 	return err;
5054 }
5055 
5056 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5057 {
5058 #ifdef CONFIG_MEMCG_KMEM
5059 	int i;
5060 	char *buffer = NULL;
5061 
5062 	if (!is_root_cache(s))
5063 		return;
5064 
5065 	/*
5066 	 * This mean this cache had no attribute written. Therefore, no point
5067 	 * in copying default values around
5068 	 */
5069 	if (!s->max_attr_size)
5070 		return;
5071 
5072 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5073 		char mbuf[64];
5074 		char *buf;
5075 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5076 
5077 		if (!attr || !attr->store || !attr->show)
5078 			continue;
5079 
5080 		/*
5081 		 * It is really bad that we have to allocate here, so we will
5082 		 * do it only as a fallback. If we actually allocate, though,
5083 		 * we can just use the allocated buffer until the end.
5084 		 *
5085 		 * Most of the slub attributes will tend to be very small in
5086 		 * size, but sysfs allows buffers up to a page, so they can
5087 		 * theoretically happen.
5088 		 */
5089 		if (buffer)
5090 			buf = buffer;
5091 		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5092 			buf = mbuf;
5093 		else {
5094 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5095 			if (WARN_ON(!buffer))
5096 				continue;
5097 			buf = buffer;
5098 		}
5099 
5100 		attr->show(s->memcg_params->root_cache, buf);
5101 		attr->store(s, buf, strlen(buf));
5102 	}
5103 
5104 	if (buffer)
5105 		free_page((unsigned long)buffer);
5106 #endif
5107 }
5108 
5109 static const struct sysfs_ops slab_sysfs_ops = {
5110 	.show = slab_attr_show,
5111 	.store = slab_attr_store,
5112 };
5113 
5114 static struct kobj_type slab_ktype = {
5115 	.sysfs_ops = &slab_sysfs_ops,
5116 };
5117 
5118 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5119 {
5120 	struct kobj_type *ktype = get_ktype(kobj);
5121 
5122 	if (ktype == &slab_ktype)
5123 		return 1;
5124 	return 0;
5125 }
5126 
5127 static const struct kset_uevent_ops slab_uevent_ops = {
5128 	.filter = uevent_filter,
5129 };
5130 
5131 static struct kset *slab_kset;
5132 
5133 #define ID_STR_LENGTH 64
5134 
5135 /* Create a unique string id for a slab cache:
5136  *
5137  * Format	:[flags-]size
5138  */
5139 static char *create_unique_id(struct kmem_cache *s)
5140 {
5141 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5142 	char *p = name;
5143 
5144 	BUG_ON(!name);
5145 
5146 	*p++ = ':';
5147 	/*
5148 	 * First flags affecting slabcache operations. We will only
5149 	 * get here for aliasable slabs so we do not need to support
5150 	 * too many flags. The flags here must cover all flags that
5151 	 * are matched during merging to guarantee that the id is
5152 	 * unique.
5153 	 */
5154 	if (s->flags & SLAB_CACHE_DMA)
5155 		*p++ = 'd';
5156 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5157 		*p++ = 'a';
5158 	if (s->flags & SLAB_DEBUG_FREE)
5159 		*p++ = 'F';
5160 	if (!(s->flags & SLAB_NOTRACK))
5161 		*p++ = 't';
5162 	if (p != name + 1)
5163 		*p++ = '-';
5164 	p += sprintf(p, "%07d", s->size);
5165 
5166 #ifdef CONFIG_MEMCG_KMEM
5167 	if (!is_root_cache(s))
5168 		p += sprintf(p, "-%08d",
5169 				memcg_cache_id(s->memcg_params->memcg));
5170 #endif
5171 
5172 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5173 	return name;
5174 }
5175 
5176 static int sysfs_slab_add(struct kmem_cache *s)
5177 {
5178 	int err;
5179 	const char *name;
5180 	int unmergeable = slab_unmergeable(s);
5181 
5182 	if (unmergeable) {
5183 		/*
5184 		 * Slabcache can never be merged so we can use the name proper.
5185 		 * This is typically the case for debug situations. In that
5186 		 * case we can catch duplicate names easily.
5187 		 */
5188 		sysfs_remove_link(&slab_kset->kobj, s->name);
5189 		name = s->name;
5190 	} else {
5191 		/*
5192 		 * Create a unique name for the slab as a target
5193 		 * for the symlinks.
5194 		 */
5195 		name = create_unique_id(s);
5196 	}
5197 
5198 	s->kobj.kset = slab_kset;
5199 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5200 	if (err) {
5201 		kobject_put(&s->kobj);
5202 		return err;
5203 	}
5204 
5205 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5206 	if (err) {
5207 		kobject_del(&s->kobj);
5208 		kobject_put(&s->kobj);
5209 		return err;
5210 	}
5211 	kobject_uevent(&s->kobj, KOBJ_ADD);
5212 	if (!unmergeable) {
5213 		/* Setup first alias */
5214 		sysfs_slab_alias(s, s->name);
5215 		kfree(name);
5216 	}
5217 	return 0;
5218 }
5219 
5220 static void sysfs_slab_remove(struct kmem_cache *s)
5221 {
5222 	if (slab_state < FULL)
5223 		/*
5224 		 * Sysfs has not been setup yet so no need to remove the
5225 		 * cache from sysfs.
5226 		 */
5227 		return;
5228 
5229 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5230 	kobject_del(&s->kobj);
5231 	kobject_put(&s->kobj);
5232 }
5233 
5234 /*
5235  * Need to buffer aliases during bootup until sysfs becomes
5236  * available lest we lose that information.
5237  */
5238 struct saved_alias {
5239 	struct kmem_cache *s;
5240 	const char *name;
5241 	struct saved_alias *next;
5242 };
5243 
5244 static struct saved_alias *alias_list;
5245 
5246 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5247 {
5248 	struct saved_alias *al;
5249 
5250 	if (slab_state == FULL) {
5251 		/*
5252 		 * If we have a leftover link then remove it.
5253 		 */
5254 		sysfs_remove_link(&slab_kset->kobj, name);
5255 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5256 	}
5257 
5258 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5259 	if (!al)
5260 		return -ENOMEM;
5261 
5262 	al->s = s;
5263 	al->name = name;
5264 	al->next = alias_list;
5265 	alias_list = al;
5266 	return 0;
5267 }
5268 
5269 static int __init slab_sysfs_init(void)
5270 {
5271 	struct kmem_cache *s;
5272 	int err;
5273 
5274 	mutex_lock(&slab_mutex);
5275 
5276 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5277 	if (!slab_kset) {
5278 		mutex_unlock(&slab_mutex);
5279 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5280 		return -ENOSYS;
5281 	}
5282 
5283 	slab_state = FULL;
5284 
5285 	list_for_each_entry(s, &slab_caches, list) {
5286 		err = sysfs_slab_add(s);
5287 		if (err)
5288 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5289 						" to sysfs\n", s->name);
5290 	}
5291 
5292 	while (alias_list) {
5293 		struct saved_alias *al = alias_list;
5294 
5295 		alias_list = alias_list->next;
5296 		err = sysfs_slab_alias(al->s, al->name);
5297 		if (err)
5298 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5299 					" %s to sysfs\n", al->name);
5300 		kfree(al);
5301 	}
5302 
5303 	mutex_unlock(&slab_mutex);
5304 	resiliency_test();
5305 	return 0;
5306 }
5307 
5308 __initcall(slab_sysfs_init);
5309 #endif /* CONFIG_SYSFS */
5310 
5311 /*
5312  * The /proc/slabinfo ABI
5313  */
5314 #ifdef CONFIG_SLABINFO
5315 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5316 {
5317 	unsigned long nr_slabs = 0;
5318 	unsigned long nr_objs = 0;
5319 	unsigned long nr_free = 0;
5320 	int node;
5321 
5322 	for_each_online_node(node) {
5323 		struct kmem_cache_node *n = get_node(s, node);
5324 
5325 		if (!n)
5326 			continue;
5327 
5328 		nr_slabs += node_nr_slabs(n);
5329 		nr_objs += node_nr_objs(n);
5330 		nr_free += count_partial(n, count_free);
5331 	}
5332 
5333 	sinfo->active_objs = nr_objs - nr_free;
5334 	sinfo->num_objs = nr_objs;
5335 	sinfo->active_slabs = nr_slabs;
5336 	sinfo->num_slabs = nr_slabs;
5337 	sinfo->objects_per_slab = oo_objects(s->oo);
5338 	sinfo->cache_order = oo_order(s->oo);
5339 }
5340 
5341 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5342 {
5343 }
5344 
5345 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5346 		       size_t count, loff_t *ppos)
5347 {
5348 	return -EIO;
5349 }
5350 #endif /* CONFIG_SLABINFO */
5351