1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/bit_spinlock.h> 14 #include <linux/interrupt.h> 15 #include <linux/bitops.h> 16 #include <linux/slab.h> 17 #include <linux/seq_file.h> 18 #include <linux/cpu.h> 19 #include <linux/cpuset.h> 20 #include <linux/mempolicy.h> 21 #include <linux/ctype.h> 22 #include <linux/kallsyms.h> 23 #include <linux/memory.h> 24 25 /* 26 * Lock order: 27 * 1. slab_lock(page) 28 * 2. slab->list_lock 29 * 30 * The slab_lock protects operations on the object of a particular 31 * slab and its metadata in the page struct. If the slab lock 32 * has been taken then no allocations nor frees can be performed 33 * on the objects in the slab nor can the slab be added or removed 34 * from the partial or full lists since this would mean modifying 35 * the page_struct of the slab. 36 * 37 * The list_lock protects the partial and full list on each node and 38 * the partial slab counter. If taken then no new slabs may be added or 39 * removed from the lists nor make the number of partial slabs be modified. 40 * (Note that the total number of slabs is an atomic value that may be 41 * modified without taking the list lock). 42 * 43 * The list_lock is a centralized lock and thus we avoid taking it as 44 * much as possible. As long as SLUB does not have to handle partial 45 * slabs, operations can continue without any centralized lock. F.e. 46 * allocating a long series of objects that fill up slabs does not require 47 * the list lock. 48 * 49 * The lock order is sometimes inverted when we are trying to get a slab 50 * off a list. We take the list_lock and then look for a page on the list 51 * to use. While we do that objects in the slabs may be freed. We can 52 * only operate on the slab if we have also taken the slab_lock. So we use 53 * a slab_trylock() on the slab. If trylock was successful then no frees 54 * can occur anymore and we can use the slab for allocations etc. If the 55 * slab_trylock() does not succeed then frees are in progress in the slab and 56 * we must stay away from it for a while since we may cause a bouncing 57 * cacheline if we try to acquire the lock. So go onto the next slab. 58 * If all pages are busy then we may allocate a new slab instead of reusing 59 * a partial slab. A new slab has noone operating on it and thus there is 60 * no danger of cacheline contention. 61 * 62 * Interrupts are disabled during allocation and deallocation in order to 63 * make the slab allocator safe to use in the context of an irq. In addition 64 * interrupts are disabled to ensure that the processor does not change 65 * while handling per_cpu slabs, due to kernel preemption. 66 * 67 * SLUB assigns one slab for allocation to each processor. 68 * Allocations only occur from these slabs called cpu slabs. 69 * 70 * Slabs with free elements are kept on a partial list and during regular 71 * operations no list for full slabs is used. If an object in a full slab is 72 * freed then the slab will show up again on the partial lists. 73 * We track full slabs for debugging purposes though because otherwise we 74 * cannot scan all objects. 75 * 76 * Slabs are freed when they become empty. Teardown and setup is 77 * minimal so we rely on the page allocators per cpu caches for 78 * fast frees and allocs. 79 * 80 * Overloading of page flags that are otherwise used for LRU management. 81 * 82 * PageActive The slab is frozen and exempt from list processing. 83 * This means that the slab is dedicated to a purpose 84 * such as satisfying allocations for a specific 85 * processor. Objects may be freed in the slab while 86 * it is frozen but slab_free will then skip the usual 87 * list operations. It is up to the processor holding 88 * the slab to integrate the slab into the slab lists 89 * when the slab is no longer needed. 90 * 91 * One use of this flag is to mark slabs that are 92 * used for allocations. Then such a slab becomes a cpu 93 * slab. The cpu slab may be equipped with an additional 94 * freelist that allows lockless access to 95 * free objects in addition to the regular freelist 96 * that requires the slab lock. 97 * 98 * PageError Slab requires special handling due to debug 99 * options set. This moves slab handling out of 100 * the fast path and disables lockless freelists. 101 */ 102 103 #define FROZEN (1 << PG_active) 104 105 #ifdef CONFIG_SLUB_DEBUG 106 #define SLABDEBUG (1 << PG_error) 107 #else 108 #define SLABDEBUG 0 109 #endif 110 111 static inline int SlabFrozen(struct page *page) 112 { 113 return page->flags & FROZEN; 114 } 115 116 static inline void SetSlabFrozen(struct page *page) 117 { 118 page->flags |= FROZEN; 119 } 120 121 static inline void ClearSlabFrozen(struct page *page) 122 { 123 page->flags &= ~FROZEN; 124 } 125 126 static inline int SlabDebug(struct page *page) 127 { 128 return page->flags & SLABDEBUG; 129 } 130 131 static inline void SetSlabDebug(struct page *page) 132 { 133 page->flags |= SLABDEBUG; 134 } 135 136 static inline void ClearSlabDebug(struct page *page) 137 { 138 page->flags &= ~SLABDEBUG; 139 } 140 141 /* 142 * Issues still to be resolved: 143 * 144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 145 * 146 * - Variable sizing of the per node arrays 147 */ 148 149 /* Enable to test recovery from slab corruption on boot */ 150 #undef SLUB_RESILIENCY_TEST 151 152 #if PAGE_SHIFT <= 12 153 154 /* 155 * Small page size. Make sure that we do not fragment memory 156 */ 157 #define DEFAULT_MAX_ORDER 1 158 #define DEFAULT_MIN_OBJECTS 4 159 160 #else 161 162 /* 163 * Large page machines are customarily able to handle larger 164 * page orders. 165 */ 166 #define DEFAULT_MAX_ORDER 2 167 #define DEFAULT_MIN_OBJECTS 8 168 169 #endif 170 171 /* 172 * Mininum number of partial slabs. These will be left on the partial 173 * lists even if they are empty. kmem_cache_shrink may reclaim them. 174 */ 175 #define MIN_PARTIAL 5 176 177 /* 178 * Maximum number of desirable partial slabs. 179 * The existence of more partial slabs makes kmem_cache_shrink 180 * sort the partial list by the number of objects in the. 181 */ 182 #define MAX_PARTIAL 10 183 184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 185 SLAB_POISON | SLAB_STORE_USER) 186 187 /* 188 * Set of flags that will prevent slab merging 189 */ 190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 191 SLAB_TRACE | SLAB_DESTROY_BY_RCU) 192 193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 194 SLAB_CACHE_DMA) 195 196 #ifndef ARCH_KMALLOC_MINALIGN 197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 198 #endif 199 200 #ifndef ARCH_SLAB_MINALIGN 201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 202 #endif 203 204 /* Internal SLUB flags */ 205 #define __OBJECT_POISON 0x80000000 /* Poison object */ 206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 207 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */ 208 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */ 209 210 /* Not all arches define cache_line_size */ 211 #ifndef cache_line_size 212 #define cache_line_size() L1_CACHE_BYTES 213 #endif 214 215 static int kmem_size = sizeof(struct kmem_cache); 216 217 #ifdef CONFIG_SMP 218 static struct notifier_block slab_notifier; 219 #endif 220 221 static enum { 222 DOWN, /* No slab functionality available */ 223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 224 UP, /* Everything works but does not show up in sysfs */ 225 SYSFS /* Sysfs up */ 226 } slab_state = DOWN; 227 228 /* A list of all slab caches on the system */ 229 static DECLARE_RWSEM(slub_lock); 230 static LIST_HEAD(slab_caches); 231 232 /* 233 * Tracking user of a slab. 234 */ 235 struct track { 236 void *addr; /* Called from address */ 237 int cpu; /* Was running on cpu */ 238 int pid; /* Pid context */ 239 unsigned long when; /* When did the operation occur */ 240 }; 241 242 enum track_item { TRACK_ALLOC, TRACK_FREE }; 243 244 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) 245 static int sysfs_slab_add(struct kmem_cache *); 246 static int sysfs_slab_alias(struct kmem_cache *, const char *); 247 static void sysfs_slab_remove(struct kmem_cache *); 248 249 #else 250 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 251 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 252 { return 0; } 253 static inline void sysfs_slab_remove(struct kmem_cache *s) 254 { 255 kfree(s); 256 } 257 258 #endif 259 260 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) 261 { 262 #ifdef CONFIG_SLUB_STATS 263 c->stat[si]++; 264 #endif 265 } 266 267 /******************************************************************** 268 * Core slab cache functions 269 *******************************************************************/ 270 271 int slab_is_available(void) 272 { 273 return slab_state >= UP; 274 } 275 276 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 277 { 278 #ifdef CONFIG_NUMA 279 return s->node[node]; 280 #else 281 return &s->local_node; 282 #endif 283 } 284 285 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) 286 { 287 #ifdef CONFIG_SMP 288 return s->cpu_slab[cpu]; 289 #else 290 return &s->cpu_slab; 291 #endif 292 } 293 294 /* Verify that a pointer has an address that is valid within a slab page */ 295 static inline int check_valid_pointer(struct kmem_cache *s, 296 struct page *page, const void *object) 297 { 298 void *base; 299 300 if (!object) 301 return 1; 302 303 base = page_address(page); 304 if (object < base || object >= base + s->objects * s->size || 305 (object - base) % s->size) { 306 return 0; 307 } 308 309 return 1; 310 } 311 312 /* 313 * Slow version of get and set free pointer. 314 * 315 * This version requires touching the cache lines of kmem_cache which 316 * we avoid to do in the fast alloc free paths. There we obtain the offset 317 * from the page struct. 318 */ 319 static inline void *get_freepointer(struct kmem_cache *s, void *object) 320 { 321 return *(void **)(object + s->offset); 322 } 323 324 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 325 { 326 *(void **)(object + s->offset) = fp; 327 } 328 329 /* Loop over all objects in a slab */ 330 #define for_each_object(__p, __s, __addr) \ 331 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\ 332 __p += (__s)->size) 333 334 /* Scan freelist */ 335 #define for_each_free_object(__p, __s, __free) \ 336 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 337 338 /* Determine object index from a given position */ 339 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 340 { 341 return (p - addr) / s->size; 342 } 343 344 #ifdef CONFIG_SLUB_DEBUG 345 /* 346 * Debug settings: 347 */ 348 #ifdef CONFIG_SLUB_DEBUG_ON 349 static int slub_debug = DEBUG_DEFAULT_FLAGS; 350 #else 351 static int slub_debug; 352 #endif 353 354 static char *slub_debug_slabs; 355 356 /* 357 * Object debugging 358 */ 359 static void print_section(char *text, u8 *addr, unsigned int length) 360 { 361 int i, offset; 362 int newline = 1; 363 char ascii[17]; 364 365 ascii[16] = 0; 366 367 for (i = 0; i < length; i++) { 368 if (newline) { 369 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 370 newline = 0; 371 } 372 printk(KERN_CONT " %02x", addr[i]); 373 offset = i % 16; 374 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 375 if (offset == 15) { 376 printk(KERN_CONT " %s\n", ascii); 377 newline = 1; 378 } 379 } 380 if (!newline) { 381 i %= 16; 382 while (i < 16) { 383 printk(KERN_CONT " "); 384 ascii[i] = ' '; 385 i++; 386 } 387 printk(KERN_CONT " %s\n", ascii); 388 } 389 } 390 391 static struct track *get_track(struct kmem_cache *s, void *object, 392 enum track_item alloc) 393 { 394 struct track *p; 395 396 if (s->offset) 397 p = object + s->offset + sizeof(void *); 398 else 399 p = object + s->inuse; 400 401 return p + alloc; 402 } 403 404 static void set_track(struct kmem_cache *s, void *object, 405 enum track_item alloc, void *addr) 406 { 407 struct track *p; 408 409 if (s->offset) 410 p = object + s->offset + sizeof(void *); 411 else 412 p = object + s->inuse; 413 414 p += alloc; 415 if (addr) { 416 p->addr = addr; 417 p->cpu = smp_processor_id(); 418 p->pid = current ? current->pid : -1; 419 p->when = jiffies; 420 } else 421 memset(p, 0, sizeof(struct track)); 422 } 423 424 static void init_tracking(struct kmem_cache *s, void *object) 425 { 426 if (!(s->flags & SLAB_STORE_USER)) 427 return; 428 429 set_track(s, object, TRACK_FREE, NULL); 430 set_track(s, object, TRACK_ALLOC, NULL); 431 } 432 433 static void print_track(const char *s, struct track *t) 434 { 435 if (!t->addr) 436 return; 437 438 printk(KERN_ERR "INFO: %s in ", s); 439 __print_symbol("%s", (unsigned long)t->addr); 440 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid); 441 } 442 443 static void print_tracking(struct kmem_cache *s, void *object) 444 { 445 if (!(s->flags & SLAB_STORE_USER)) 446 return; 447 448 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 449 print_track("Freed", get_track(s, object, TRACK_FREE)); 450 } 451 452 static void print_page_info(struct page *page) 453 { 454 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n", 455 page, page->inuse, page->freelist, page->flags); 456 457 } 458 459 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 460 { 461 va_list args; 462 char buf[100]; 463 464 va_start(args, fmt); 465 vsnprintf(buf, sizeof(buf), fmt, args); 466 va_end(args); 467 printk(KERN_ERR "========================================" 468 "=====================================\n"); 469 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 470 printk(KERN_ERR "----------------------------------------" 471 "-------------------------------------\n\n"); 472 } 473 474 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 475 { 476 va_list args; 477 char buf[100]; 478 479 va_start(args, fmt); 480 vsnprintf(buf, sizeof(buf), fmt, args); 481 va_end(args); 482 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 483 } 484 485 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 486 { 487 unsigned int off; /* Offset of last byte */ 488 u8 *addr = page_address(page); 489 490 print_tracking(s, p); 491 492 print_page_info(page); 493 494 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 495 p, p - addr, get_freepointer(s, p)); 496 497 if (p > addr + 16) 498 print_section("Bytes b4", p - 16, 16); 499 500 print_section("Object", p, min(s->objsize, 128)); 501 502 if (s->flags & SLAB_RED_ZONE) 503 print_section("Redzone", p + s->objsize, 504 s->inuse - s->objsize); 505 506 if (s->offset) 507 off = s->offset + sizeof(void *); 508 else 509 off = s->inuse; 510 511 if (s->flags & SLAB_STORE_USER) 512 off += 2 * sizeof(struct track); 513 514 if (off != s->size) 515 /* Beginning of the filler is the free pointer */ 516 print_section("Padding", p + off, s->size - off); 517 518 dump_stack(); 519 } 520 521 static void object_err(struct kmem_cache *s, struct page *page, 522 u8 *object, char *reason) 523 { 524 slab_bug(s, reason); 525 print_trailer(s, page, object); 526 } 527 528 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 529 { 530 va_list args; 531 char buf[100]; 532 533 va_start(args, fmt); 534 vsnprintf(buf, sizeof(buf), fmt, args); 535 va_end(args); 536 slab_bug(s, fmt); 537 print_page_info(page); 538 dump_stack(); 539 } 540 541 static void init_object(struct kmem_cache *s, void *object, int active) 542 { 543 u8 *p = object; 544 545 if (s->flags & __OBJECT_POISON) { 546 memset(p, POISON_FREE, s->objsize - 1); 547 p[s->objsize - 1] = POISON_END; 548 } 549 550 if (s->flags & SLAB_RED_ZONE) 551 memset(p + s->objsize, 552 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 553 s->inuse - s->objsize); 554 } 555 556 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 557 { 558 while (bytes) { 559 if (*start != (u8)value) 560 return start; 561 start++; 562 bytes--; 563 } 564 return NULL; 565 } 566 567 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 568 void *from, void *to) 569 { 570 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 571 memset(from, data, to - from); 572 } 573 574 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 575 u8 *object, char *what, 576 u8 *start, unsigned int value, unsigned int bytes) 577 { 578 u8 *fault; 579 u8 *end; 580 581 fault = check_bytes(start, value, bytes); 582 if (!fault) 583 return 1; 584 585 end = start + bytes; 586 while (end > fault && end[-1] == value) 587 end--; 588 589 slab_bug(s, "%s overwritten", what); 590 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 591 fault, end - 1, fault[0], value); 592 print_trailer(s, page, object); 593 594 restore_bytes(s, what, value, fault, end); 595 return 0; 596 } 597 598 /* 599 * Object layout: 600 * 601 * object address 602 * Bytes of the object to be managed. 603 * If the freepointer may overlay the object then the free 604 * pointer is the first word of the object. 605 * 606 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 607 * 0xa5 (POISON_END) 608 * 609 * object + s->objsize 610 * Padding to reach word boundary. This is also used for Redzoning. 611 * Padding is extended by another word if Redzoning is enabled and 612 * objsize == inuse. 613 * 614 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 615 * 0xcc (RED_ACTIVE) for objects in use. 616 * 617 * object + s->inuse 618 * Meta data starts here. 619 * 620 * A. Free pointer (if we cannot overwrite object on free) 621 * B. Tracking data for SLAB_STORE_USER 622 * C. Padding to reach required alignment boundary or at mininum 623 * one word if debugging is on to be able to detect writes 624 * before the word boundary. 625 * 626 * Padding is done using 0x5a (POISON_INUSE) 627 * 628 * object + s->size 629 * Nothing is used beyond s->size. 630 * 631 * If slabcaches are merged then the objsize and inuse boundaries are mostly 632 * ignored. And therefore no slab options that rely on these boundaries 633 * may be used with merged slabcaches. 634 */ 635 636 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 637 { 638 unsigned long off = s->inuse; /* The end of info */ 639 640 if (s->offset) 641 /* Freepointer is placed after the object. */ 642 off += sizeof(void *); 643 644 if (s->flags & SLAB_STORE_USER) 645 /* We also have user information there */ 646 off += 2 * sizeof(struct track); 647 648 if (s->size == off) 649 return 1; 650 651 return check_bytes_and_report(s, page, p, "Object padding", 652 p + off, POISON_INUSE, s->size - off); 653 } 654 655 static int slab_pad_check(struct kmem_cache *s, struct page *page) 656 { 657 u8 *start; 658 u8 *fault; 659 u8 *end; 660 int length; 661 int remainder; 662 663 if (!(s->flags & SLAB_POISON)) 664 return 1; 665 666 start = page_address(page); 667 end = start + (PAGE_SIZE << s->order); 668 length = s->objects * s->size; 669 remainder = end - (start + length); 670 if (!remainder) 671 return 1; 672 673 fault = check_bytes(start + length, POISON_INUSE, remainder); 674 if (!fault) 675 return 1; 676 while (end > fault && end[-1] == POISON_INUSE) 677 end--; 678 679 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 680 print_section("Padding", start, length); 681 682 restore_bytes(s, "slab padding", POISON_INUSE, start, end); 683 return 0; 684 } 685 686 static int check_object(struct kmem_cache *s, struct page *page, 687 void *object, int active) 688 { 689 u8 *p = object; 690 u8 *endobject = object + s->objsize; 691 692 if (s->flags & SLAB_RED_ZONE) { 693 unsigned int red = 694 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 695 696 if (!check_bytes_and_report(s, page, object, "Redzone", 697 endobject, red, s->inuse - s->objsize)) 698 return 0; 699 } else { 700 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 701 check_bytes_and_report(s, page, p, "Alignment padding", 702 endobject, POISON_INUSE, s->inuse - s->objsize); 703 } 704 } 705 706 if (s->flags & SLAB_POISON) { 707 if (!active && (s->flags & __OBJECT_POISON) && 708 (!check_bytes_and_report(s, page, p, "Poison", p, 709 POISON_FREE, s->objsize - 1) || 710 !check_bytes_and_report(s, page, p, "Poison", 711 p + s->objsize - 1, POISON_END, 1))) 712 return 0; 713 /* 714 * check_pad_bytes cleans up on its own. 715 */ 716 check_pad_bytes(s, page, p); 717 } 718 719 if (!s->offset && active) 720 /* 721 * Object and freepointer overlap. Cannot check 722 * freepointer while object is allocated. 723 */ 724 return 1; 725 726 /* Check free pointer validity */ 727 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 728 object_err(s, page, p, "Freepointer corrupt"); 729 /* 730 * No choice but to zap it and thus loose the remainder 731 * of the free objects in this slab. May cause 732 * another error because the object count is now wrong. 733 */ 734 set_freepointer(s, p, NULL); 735 return 0; 736 } 737 return 1; 738 } 739 740 static int check_slab(struct kmem_cache *s, struct page *page) 741 { 742 VM_BUG_ON(!irqs_disabled()); 743 744 if (!PageSlab(page)) { 745 slab_err(s, page, "Not a valid slab page"); 746 return 0; 747 } 748 if (page->inuse > s->objects) { 749 slab_err(s, page, "inuse %u > max %u", 750 s->name, page->inuse, s->objects); 751 return 0; 752 } 753 /* Slab_pad_check fixes things up after itself */ 754 slab_pad_check(s, page); 755 return 1; 756 } 757 758 /* 759 * Determine if a certain object on a page is on the freelist. Must hold the 760 * slab lock to guarantee that the chains are in a consistent state. 761 */ 762 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 763 { 764 int nr = 0; 765 void *fp = page->freelist; 766 void *object = NULL; 767 768 while (fp && nr <= s->objects) { 769 if (fp == search) 770 return 1; 771 if (!check_valid_pointer(s, page, fp)) { 772 if (object) { 773 object_err(s, page, object, 774 "Freechain corrupt"); 775 set_freepointer(s, object, NULL); 776 break; 777 } else { 778 slab_err(s, page, "Freepointer corrupt"); 779 page->freelist = NULL; 780 page->inuse = s->objects; 781 slab_fix(s, "Freelist cleared"); 782 return 0; 783 } 784 break; 785 } 786 object = fp; 787 fp = get_freepointer(s, object); 788 nr++; 789 } 790 791 if (page->inuse != s->objects - nr) { 792 slab_err(s, page, "Wrong object count. Counter is %d but " 793 "counted were %d", page->inuse, s->objects - nr); 794 page->inuse = s->objects - nr; 795 slab_fix(s, "Object count adjusted."); 796 } 797 return search == NULL; 798 } 799 800 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc) 801 { 802 if (s->flags & SLAB_TRACE) { 803 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 804 s->name, 805 alloc ? "alloc" : "free", 806 object, page->inuse, 807 page->freelist); 808 809 if (!alloc) 810 print_section("Object", (void *)object, s->objsize); 811 812 dump_stack(); 813 } 814 } 815 816 /* 817 * Tracking of fully allocated slabs for debugging purposes. 818 */ 819 static void add_full(struct kmem_cache_node *n, struct page *page) 820 { 821 spin_lock(&n->list_lock); 822 list_add(&page->lru, &n->full); 823 spin_unlock(&n->list_lock); 824 } 825 826 static void remove_full(struct kmem_cache *s, struct page *page) 827 { 828 struct kmem_cache_node *n; 829 830 if (!(s->flags & SLAB_STORE_USER)) 831 return; 832 833 n = get_node(s, page_to_nid(page)); 834 835 spin_lock(&n->list_lock); 836 list_del(&page->lru); 837 spin_unlock(&n->list_lock); 838 } 839 840 /* Tracking of the number of slabs for debugging purposes */ 841 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 842 { 843 struct kmem_cache_node *n = get_node(s, node); 844 845 return atomic_long_read(&n->nr_slabs); 846 } 847 848 static inline void inc_slabs_node(struct kmem_cache *s, int node) 849 { 850 struct kmem_cache_node *n = get_node(s, node); 851 852 /* 853 * May be called early in order to allocate a slab for the 854 * kmem_cache_node structure. Solve the chicken-egg 855 * dilemma by deferring the increment of the count during 856 * bootstrap (see early_kmem_cache_node_alloc). 857 */ 858 if (!NUMA_BUILD || n) 859 atomic_long_inc(&n->nr_slabs); 860 } 861 static inline void dec_slabs_node(struct kmem_cache *s, int node) 862 { 863 struct kmem_cache_node *n = get_node(s, node); 864 865 atomic_long_dec(&n->nr_slabs); 866 } 867 868 /* Object debug checks for alloc/free paths */ 869 static void setup_object_debug(struct kmem_cache *s, struct page *page, 870 void *object) 871 { 872 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 873 return; 874 875 init_object(s, object, 0); 876 init_tracking(s, object); 877 } 878 879 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 880 void *object, void *addr) 881 { 882 if (!check_slab(s, page)) 883 goto bad; 884 885 if (!on_freelist(s, page, object)) { 886 object_err(s, page, object, "Object already allocated"); 887 goto bad; 888 } 889 890 if (!check_valid_pointer(s, page, object)) { 891 object_err(s, page, object, "Freelist Pointer check fails"); 892 goto bad; 893 } 894 895 if (!check_object(s, page, object, 0)) 896 goto bad; 897 898 /* Success perform special debug activities for allocs */ 899 if (s->flags & SLAB_STORE_USER) 900 set_track(s, object, TRACK_ALLOC, addr); 901 trace(s, page, object, 1); 902 init_object(s, object, 1); 903 return 1; 904 905 bad: 906 if (PageSlab(page)) { 907 /* 908 * If this is a slab page then lets do the best we can 909 * to avoid issues in the future. Marking all objects 910 * as used avoids touching the remaining objects. 911 */ 912 slab_fix(s, "Marking all objects used"); 913 page->inuse = s->objects; 914 page->freelist = NULL; 915 } 916 return 0; 917 } 918 919 static int free_debug_processing(struct kmem_cache *s, struct page *page, 920 void *object, void *addr) 921 { 922 if (!check_slab(s, page)) 923 goto fail; 924 925 if (!check_valid_pointer(s, page, object)) { 926 slab_err(s, page, "Invalid object pointer 0x%p", object); 927 goto fail; 928 } 929 930 if (on_freelist(s, page, object)) { 931 object_err(s, page, object, "Object already free"); 932 goto fail; 933 } 934 935 if (!check_object(s, page, object, 1)) 936 return 0; 937 938 if (unlikely(s != page->slab)) { 939 if (!PageSlab(page)) { 940 slab_err(s, page, "Attempt to free object(0x%p) " 941 "outside of slab", object); 942 } else if (!page->slab) { 943 printk(KERN_ERR 944 "SLUB <none>: no slab for object 0x%p.\n", 945 object); 946 dump_stack(); 947 } else 948 object_err(s, page, object, 949 "page slab pointer corrupt."); 950 goto fail; 951 } 952 953 /* Special debug activities for freeing objects */ 954 if (!SlabFrozen(page) && !page->freelist) 955 remove_full(s, page); 956 if (s->flags & SLAB_STORE_USER) 957 set_track(s, object, TRACK_FREE, addr); 958 trace(s, page, object, 0); 959 init_object(s, object, 0); 960 return 1; 961 962 fail: 963 slab_fix(s, "Object at 0x%p not freed", object); 964 return 0; 965 } 966 967 static int __init setup_slub_debug(char *str) 968 { 969 slub_debug = DEBUG_DEFAULT_FLAGS; 970 if (*str++ != '=' || !*str) 971 /* 972 * No options specified. Switch on full debugging. 973 */ 974 goto out; 975 976 if (*str == ',') 977 /* 978 * No options but restriction on slabs. This means full 979 * debugging for slabs matching a pattern. 980 */ 981 goto check_slabs; 982 983 slub_debug = 0; 984 if (*str == '-') 985 /* 986 * Switch off all debugging measures. 987 */ 988 goto out; 989 990 /* 991 * Determine which debug features should be switched on 992 */ 993 for (; *str && *str != ','; str++) { 994 switch (tolower(*str)) { 995 case 'f': 996 slub_debug |= SLAB_DEBUG_FREE; 997 break; 998 case 'z': 999 slub_debug |= SLAB_RED_ZONE; 1000 break; 1001 case 'p': 1002 slub_debug |= SLAB_POISON; 1003 break; 1004 case 'u': 1005 slub_debug |= SLAB_STORE_USER; 1006 break; 1007 case 't': 1008 slub_debug |= SLAB_TRACE; 1009 break; 1010 default: 1011 printk(KERN_ERR "slub_debug option '%c' " 1012 "unknown. skipped\n", *str); 1013 } 1014 } 1015 1016 check_slabs: 1017 if (*str == ',') 1018 slub_debug_slabs = str + 1; 1019 out: 1020 return 1; 1021 } 1022 1023 __setup("slub_debug", setup_slub_debug); 1024 1025 static unsigned long kmem_cache_flags(unsigned long objsize, 1026 unsigned long flags, const char *name, 1027 void (*ctor)(struct kmem_cache *, void *)) 1028 { 1029 /* 1030 * Enable debugging if selected on the kernel commandline. 1031 */ 1032 if (slub_debug && (!slub_debug_slabs || 1033 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) 1034 flags |= slub_debug; 1035 1036 return flags; 1037 } 1038 #else 1039 static inline void setup_object_debug(struct kmem_cache *s, 1040 struct page *page, void *object) {} 1041 1042 static inline int alloc_debug_processing(struct kmem_cache *s, 1043 struct page *page, void *object, void *addr) { return 0; } 1044 1045 static inline int free_debug_processing(struct kmem_cache *s, 1046 struct page *page, void *object, void *addr) { return 0; } 1047 1048 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1049 { return 1; } 1050 static inline int check_object(struct kmem_cache *s, struct page *page, 1051 void *object, int active) { return 1; } 1052 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1053 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1054 unsigned long flags, const char *name, 1055 void (*ctor)(struct kmem_cache *, void *)) 1056 { 1057 return flags; 1058 } 1059 #define slub_debug 0 1060 1061 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1062 { return 0; } 1063 static inline void inc_slabs_node(struct kmem_cache *s, int node) {} 1064 static inline void dec_slabs_node(struct kmem_cache *s, int node) {} 1065 #endif 1066 /* 1067 * Slab allocation and freeing 1068 */ 1069 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1070 { 1071 struct page *page; 1072 int pages = 1 << s->order; 1073 1074 flags |= s->allocflags; 1075 1076 if (node == -1) 1077 page = alloc_pages(flags, s->order); 1078 else 1079 page = alloc_pages_node(node, flags, s->order); 1080 1081 if (!page) 1082 return NULL; 1083 1084 mod_zone_page_state(page_zone(page), 1085 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1086 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1087 pages); 1088 1089 return page; 1090 } 1091 1092 static void setup_object(struct kmem_cache *s, struct page *page, 1093 void *object) 1094 { 1095 setup_object_debug(s, page, object); 1096 if (unlikely(s->ctor)) 1097 s->ctor(s, object); 1098 } 1099 1100 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1101 { 1102 struct page *page; 1103 void *start; 1104 void *last; 1105 void *p; 1106 1107 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1108 1109 page = allocate_slab(s, 1110 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1111 if (!page) 1112 goto out; 1113 1114 inc_slabs_node(s, page_to_nid(page)); 1115 page->slab = s; 1116 page->flags |= 1 << PG_slab; 1117 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1118 SLAB_STORE_USER | SLAB_TRACE)) 1119 SetSlabDebug(page); 1120 1121 start = page_address(page); 1122 1123 if (unlikely(s->flags & SLAB_POISON)) 1124 memset(start, POISON_INUSE, PAGE_SIZE << s->order); 1125 1126 last = start; 1127 for_each_object(p, s, start) { 1128 setup_object(s, page, last); 1129 set_freepointer(s, last, p); 1130 last = p; 1131 } 1132 setup_object(s, page, last); 1133 set_freepointer(s, last, NULL); 1134 1135 page->freelist = start; 1136 page->inuse = 0; 1137 out: 1138 return page; 1139 } 1140 1141 static void __free_slab(struct kmem_cache *s, struct page *page) 1142 { 1143 int pages = 1 << s->order; 1144 1145 if (unlikely(SlabDebug(page))) { 1146 void *p; 1147 1148 slab_pad_check(s, page); 1149 for_each_object(p, s, page_address(page)) 1150 check_object(s, page, p, 0); 1151 ClearSlabDebug(page); 1152 } 1153 1154 mod_zone_page_state(page_zone(page), 1155 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1156 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1157 -pages); 1158 1159 __ClearPageSlab(page); 1160 reset_page_mapcount(page); 1161 __free_pages(page, s->order); 1162 } 1163 1164 static void rcu_free_slab(struct rcu_head *h) 1165 { 1166 struct page *page; 1167 1168 page = container_of((struct list_head *)h, struct page, lru); 1169 __free_slab(page->slab, page); 1170 } 1171 1172 static void free_slab(struct kmem_cache *s, struct page *page) 1173 { 1174 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1175 /* 1176 * RCU free overloads the RCU head over the LRU 1177 */ 1178 struct rcu_head *head = (void *)&page->lru; 1179 1180 call_rcu(head, rcu_free_slab); 1181 } else 1182 __free_slab(s, page); 1183 } 1184 1185 static void discard_slab(struct kmem_cache *s, struct page *page) 1186 { 1187 dec_slabs_node(s, page_to_nid(page)); 1188 free_slab(s, page); 1189 } 1190 1191 /* 1192 * Per slab locking using the pagelock 1193 */ 1194 static __always_inline void slab_lock(struct page *page) 1195 { 1196 bit_spin_lock(PG_locked, &page->flags); 1197 } 1198 1199 static __always_inline void slab_unlock(struct page *page) 1200 { 1201 __bit_spin_unlock(PG_locked, &page->flags); 1202 } 1203 1204 static __always_inline int slab_trylock(struct page *page) 1205 { 1206 int rc = 1; 1207 1208 rc = bit_spin_trylock(PG_locked, &page->flags); 1209 return rc; 1210 } 1211 1212 /* 1213 * Management of partially allocated slabs 1214 */ 1215 static void add_partial(struct kmem_cache_node *n, 1216 struct page *page, int tail) 1217 { 1218 spin_lock(&n->list_lock); 1219 n->nr_partial++; 1220 if (tail) 1221 list_add_tail(&page->lru, &n->partial); 1222 else 1223 list_add(&page->lru, &n->partial); 1224 spin_unlock(&n->list_lock); 1225 } 1226 1227 static void remove_partial(struct kmem_cache *s, 1228 struct page *page) 1229 { 1230 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1231 1232 spin_lock(&n->list_lock); 1233 list_del(&page->lru); 1234 n->nr_partial--; 1235 spin_unlock(&n->list_lock); 1236 } 1237 1238 /* 1239 * Lock slab and remove from the partial list. 1240 * 1241 * Must hold list_lock. 1242 */ 1243 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page) 1244 { 1245 if (slab_trylock(page)) { 1246 list_del(&page->lru); 1247 n->nr_partial--; 1248 SetSlabFrozen(page); 1249 return 1; 1250 } 1251 return 0; 1252 } 1253 1254 /* 1255 * Try to allocate a partial slab from a specific node. 1256 */ 1257 static struct page *get_partial_node(struct kmem_cache_node *n) 1258 { 1259 struct page *page; 1260 1261 /* 1262 * Racy check. If we mistakenly see no partial slabs then we 1263 * just allocate an empty slab. If we mistakenly try to get a 1264 * partial slab and there is none available then get_partials() 1265 * will return NULL. 1266 */ 1267 if (!n || !n->nr_partial) 1268 return NULL; 1269 1270 spin_lock(&n->list_lock); 1271 list_for_each_entry(page, &n->partial, lru) 1272 if (lock_and_freeze_slab(n, page)) 1273 goto out; 1274 page = NULL; 1275 out: 1276 spin_unlock(&n->list_lock); 1277 return page; 1278 } 1279 1280 /* 1281 * Get a page from somewhere. Search in increasing NUMA distances. 1282 */ 1283 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1284 { 1285 #ifdef CONFIG_NUMA 1286 struct zonelist *zonelist; 1287 struct zone **z; 1288 struct page *page; 1289 1290 /* 1291 * The defrag ratio allows a configuration of the tradeoffs between 1292 * inter node defragmentation and node local allocations. A lower 1293 * defrag_ratio increases the tendency to do local allocations 1294 * instead of attempting to obtain partial slabs from other nodes. 1295 * 1296 * If the defrag_ratio is set to 0 then kmalloc() always 1297 * returns node local objects. If the ratio is higher then kmalloc() 1298 * may return off node objects because partial slabs are obtained 1299 * from other nodes and filled up. 1300 * 1301 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1302 * defrag_ratio = 1000) then every (well almost) allocation will 1303 * first attempt to defrag slab caches on other nodes. This means 1304 * scanning over all nodes to look for partial slabs which may be 1305 * expensive if we do it every time we are trying to find a slab 1306 * with available objects. 1307 */ 1308 if (!s->remote_node_defrag_ratio || 1309 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1310 return NULL; 1311 1312 zonelist = &NODE_DATA( 1313 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)]; 1314 for (z = zonelist->zones; *z; z++) { 1315 struct kmem_cache_node *n; 1316 1317 n = get_node(s, zone_to_nid(*z)); 1318 1319 if (n && cpuset_zone_allowed_hardwall(*z, flags) && 1320 n->nr_partial > MIN_PARTIAL) { 1321 page = get_partial_node(n); 1322 if (page) 1323 return page; 1324 } 1325 } 1326 #endif 1327 return NULL; 1328 } 1329 1330 /* 1331 * Get a partial page, lock it and return it. 1332 */ 1333 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1334 { 1335 struct page *page; 1336 int searchnode = (node == -1) ? numa_node_id() : node; 1337 1338 page = get_partial_node(get_node(s, searchnode)); 1339 if (page || (flags & __GFP_THISNODE)) 1340 return page; 1341 1342 return get_any_partial(s, flags); 1343 } 1344 1345 /* 1346 * Move a page back to the lists. 1347 * 1348 * Must be called with the slab lock held. 1349 * 1350 * On exit the slab lock will have been dropped. 1351 */ 1352 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1353 { 1354 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1355 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); 1356 1357 ClearSlabFrozen(page); 1358 if (page->inuse) { 1359 1360 if (page->freelist) { 1361 add_partial(n, page, tail); 1362 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1363 } else { 1364 stat(c, DEACTIVATE_FULL); 1365 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER)) 1366 add_full(n, page); 1367 } 1368 slab_unlock(page); 1369 } else { 1370 stat(c, DEACTIVATE_EMPTY); 1371 if (n->nr_partial < MIN_PARTIAL) { 1372 /* 1373 * Adding an empty slab to the partial slabs in order 1374 * to avoid page allocator overhead. This slab needs 1375 * to come after the other slabs with objects in 1376 * so that the others get filled first. That way the 1377 * size of the partial list stays small. 1378 * 1379 * kmem_cache_shrink can reclaim any empty slabs from the 1380 * partial list. 1381 */ 1382 add_partial(n, page, 1); 1383 slab_unlock(page); 1384 } else { 1385 slab_unlock(page); 1386 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); 1387 discard_slab(s, page); 1388 } 1389 } 1390 } 1391 1392 /* 1393 * Remove the cpu slab 1394 */ 1395 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1396 { 1397 struct page *page = c->page; 1398 int tail = 1; 1399 1400 if (page->freelist) 1401 stat(c, DEACTIVATE_REMOTE_FREES); 1402 /* 1403 * Merge cpu freelist into slab freelist. Typically we get here 1404 * because both freelists are empty. So this is unlikely 1405 * to occur. 1406 */ 1407 while (unlikely(c->freelist)) { 1408 void **object; 1409 1410 tail = 0; /* Hot objects. Put the slab first */ 1411 1412 /* Retrieve object from cpu_freelist */ 1413 object = c->freelist; 1414 c->freelist = c->freelist[c->offset]; 1415 1416 /* And put onto the regular freelist */ 1417 object[c->offset] = page->freelist; 1418 page->freelist = object; 1419 page->inuse--; 1420 } 1421 c->page = NULL; 1422 unfreeze_slab(s, page, tail); 1423 } 1424 1425 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1426 { 1427 stat(c, CPUSLAB_FLUSH); 1428 slab_lock(c->page); 1429 deactivate_slab(s, c); 1430 } 1431 1432 /* 1433 * Flush cpu slab. 1434 * 1435 * Called from IPI handler with interrupts disabled. 1436 */ 1437 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1438 { 1439 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1440 1441 if (likely(c && c->page)) 1442 flush_slab(s, c); 1443 } 1444 1445 static void flush_cpu_slab(void *d) 1446 { 1447 struct kmem_cache *s = d; 1448 1449 __flush_cpu_slab(s, smp_processor_id()); 1450 } 1451 1452 static void flush_all(struct kmem_cache *s) 1453 { 1454 #ifdef CONFIG_SMP 1455 on_each_cpu(flush_cpu_slab, s, 1, 1); 1456 #else 1457 unsigned long flags; 1458 1459 local_irq_save(flags); 1460 flush_cpu_slab(s); 1461 local_irq_restore(flags); 1462 #endif 1463 } 1464 1465 /* 1466 * Check if the objects in a per cpu structure fit numa 1467 * locality expectations. 1468 */ 1469 static inline int node_match(struct kmem_cache_cpu *c, int node) 1470 { 1471 #ifdef CONFIG_NUMA 1472 if (node != -1 && c->node != node) 1473 return 0; 1474 #endif 1475 return 1; 1476 } 1477 1478 /* 1479 * Slow path. The lockless freelist is empty or we need to perform 1480 * debugging duties. 1481 * 1482 * Interrupts are disabled. 1483 * 1484 * Processing is still very fast if new objects have been freed to the 1485 * regular freelist. In that case we simply take over the regular freelist 1486 * as the lockless freelist and zap the regular freelist. 1487 * 1488 * If that is not working then we fall back to the partial lists. We take the 1489 * first element of the freelist as the object to allocate now and move the 1490 * rest of the freelist to the lockless freelist. 1491 * 1492 * And if we were unable to get a new slab from the partial slab lists then 1493 * we need to allocate a new slab. This is the slowest path since it involves 1494 * a call to the page allocator and the setup of a new slab. 1495 */ 1496 static void *__slab_alloc(struct kmem_cache *s, 1497 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c) 1498 { 1499 void **object; 1500 struct page *new; 1501 1502 /* We handle __GFP_ZERO in the caller */ 1503 gfpflags &= ~__GFP_ZERO; 1504 1505 if (!c->page) 1506 goto new_slab; 1507 1508 slab_lock(c->page); 1509 if (unlikely(!node_match(c, node))) 1510 goto another_slab; 1511 1512 stat(c, ALLOC_REFILL); 1513 1514 load_freelist: 1515 object = c->page->freelist; 1516 if (unlikely(!object)) 1517 goto another_slab; 1518 if (unlikely(SlabDebug(c->page))) 1519 goto debug; 1520 1521 c->freelist = object[c->offset]; 1522 c->page->inuse = s->objects; 1523 c->page->freelist = NULL; 1524 c->node = page_to_nid(c->page); 1525 unlock_out: 1526 slab_unlock(c->page); 1527 stat(c, ALLOC_SLOWPATH); 1528 return object; 1529 1530 another_slab: 1531 deactivate_slab(s, c); 1532 1533 new_slab: 1534 new = get_partial(s, gfpflags, node); 1535 if (new) { 1536 c->page = new; 1537 stat(c, ALLOC_FROM_PARTIAL); 1538 goto load_freelist; 1539 } 1540 1541 if (gfpflags & __GFP_WAIT) 1542 local_irq_enable(); 1543 1544 new = new_slab(s, gfpflags, node); 1545 1546 if (gfpflags & __GFP_WAIT) 1547 local_irq_disable(); 1548 1549 if (new) { 1550 c = get_cpu_slab(s, smp_processor_id()); 1551 stat(c, ALLOC_SLAB); 1552 if (c->page) 1553 flush_slab(s, c); 1554 slab_lock(new); 1555 SetSlabFrozen(new); 1556 c->page = new; 1557 goto load_freelist; 1558 } 1559 1560 /* 1561 * No memory available. 1562 * 1563 * If the slab uses higher order allocs but the object is 1564 * smaller than a page size then we can fallback in emergencies 1565 * to the page allocator via kmalloc_large. The page allocator may 1566 * have failed to obtain a higher order page and we can try to 1567 * allocate a single page if the object fits into a single page. 1568 * That is only possible if certain conditions are met that are being 1569 * checked when a slab is created. 1570 */ 1571 if (!(gfpflags & __GFP_NORETRY) && 1572 (s->flags & __PAGE_ALLOC_FALLBACK)) { 1573 if (gfpflags & __GFP_WAIT) 1574 local_irq_enable(); 1575 object = kmalloc_large(s->objsize, gfpflags); 1576 if (gfpflags & __GFP_WAIT) 1577 local_irq_disable(); 1578 return object; 1579 } 1580 return NULL; 1581 debug: 1582 if (!alloc_debug_processing(s, c->page, object, addr)) 1583 goto another_slab; 1584 1585 c->page->inuse++; 1586 c->page->freelist = object[c->offset]; 1587 c->node = -1; 1588 goto unlock_out; 1589 } 1590 1591 /* 1592 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1593 * have the fastpath folded into their functions. So no function call 1594 * overhead for requests that can be satisfied on the fastpath. 1595 * 1596 * The fastpath works by first checking if the lockless freelist can be used. 1597 * If not then __slab_alloc is called for slow processing. 1598 * 1599 * Otherwise we can simply pick the next object from the lockless free list. 1600 */ 1601 static __always_inline void *slab_alloc(struct kmem_cache *s, 1602 gfp_t gfpflags, int node, void *addr) 1603 { 1604 void **object; 1605 struct kmem_cache_cpu *c; 1606 unsigned long flags; 1607 1608 local_irq_save(flags); 1609 c = get_cpu_slab(s, smp_processor_id()); 1610 if (unlikely(!c->freelist || !node_match(c, node))) 1611 1612 object = __slab_alloc(s, gfpflags, node, addr, c); 1613 1614 else { 1615 object = c->freelist; 1616 c->freelist = object[c->offset]; 1617 stat(c, ALLOC_FASTPATH); 1618 } 1619 local_irq_restore(flags); 1620 1621 if (unlikely((gfpflags & __GFP_ZERO) && object)) 1622 memset(object, 0, c->objsize); 1623 1624 return object; 1625 } 1626 1627 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1628 { 1629 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); 1630 } 1631 EXPORT_SYMBOL(kmem_cache_alloc); 1632 1633 #ifdef CONFIG_NUMA 1634 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1635 { 1636 return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); 1637 } 1638 EXPORT_SYMBOL(kmem_cache_alloc_node); 1639 #endif 1640 1641 /* 1642 * Slow patch handling. This may still be called frequently since objects 1643 * have a longer lifetime than the cpu slabs in most processing loads. 1644 * 1645 * So we still attempt to reduce cache line usage. Just take the slab 1646 * lock and free the item. If there is no additional partial page 1647 * handling required then we can return immediately. 1648 */ 1649 static void __slab_free(struct kmem_cache *s, struct page *page, 1650 void *x, void *addr, unsigned int offset) 1651 { 1652 void *prior; 1653 void **object = (void *)x; 1654 struct kmem_cache_cpu *c; 1655 1656 c = get_cpu_slab(s, raw_smp_processor_id()); 1657 stat(c, FREE_SLOWPATH); 1658 slab_lock(page); 1659 1660 if (unlikely(SlabDebug(page))) 1661 goto debug; 1662 1663 checks_ok: 1664 prior = object[offset] = page->freelist; 1665 page->freelist = object; 1666 page->inuse--; 1667 1668 if (unlikely(SlabFrozen(page))) { 1669 stat(c, FREE_FROZEN); 1670 goto out_unlock; 1671 } 1672 1673 if (unlikely(!page->inuse)) 1674 goto slab_empty; 1675 1676 /* 1677 * Objects left in the slab. If it was not on the partial list before 1678 * then add it. 1679 */ 1680 if (unlikely(!prior)) { 1681 add_partial(get_node(s, page_to_nid(page)), page, 1); 1682 stat(c, FREE_ADD_PARTIAL); 1683 } 1684 1685 out_unlock: 1686 slab_unlock(page); 1687 return; 1688 1689 slab_empty: 1690 if (prior) { 1691 /* 1692 * Slab still on the partial list. 1693 */ 1694 remove_partial(s, page); 1695 stat(c, FREE_REMOVE_PARTIAL); 1696 } 1697 slab_unlock(page); 1698 stat(c, FREE_SLAB); 1699 discard_slab(s, page); 1700 return; 1701 1702 debug: 1703 if (!free_debug_processing(s, page, x, addr)) 1704 goto out_unlock; 1705 goto checks_ok; 1706 } 1707 1708 /* 1709 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1710 * can perform fastpath freeing without additional function calls. 1711 * 1712 * The fastpath is only possible if we are freeing to the current cpu slab 1713 * of this processor. This typically the case if we have just allocated 1714 * the item before. 1715 * 1716 * If fastpath is not possible then fall back to __slab_free where we deal 1717 * with all sorts of special processing. 1718 */ 1719 static __always_inline void slab_free(struct kmem_cache *s, 1720 struct page *page, void *x, void *addr) 1721 { 1722 void **object = (void *)x; 1723 struct kmem_cache_cpu *c; 1724 unsigned long flags; 1725 1726 local_irq_save(flags); 1727 c = get_cpu_slab(s, smp_processor_id()); 1728 debug_check_no_locks_freed(object, c->objsize); 1729 if (likely(page == c->page && c->node >= 0)) { 1730 object[c->offset] = c->freelist; 1731 c->freelist = object; 1732 stat(c, FREE_FASTPATH); 1733 } else 1734 __slab_free(s, page, x, addr, c->offset); 1735 1736 local_irq_restore(flags); 1737 } 1738 1739 void kmem_cache_free(struct kmem_cache *s, void *x) 1740 { 1741 struct page *page; 1742 1743 page = virt_to_head_page(x); 1744 1745 slab_free(s, page, x, __builtin_return_address(0)); 1746 } 1747 EXPORT_SYMBOL(kmem_cache_free); 1748 1749 /* Figure out on which slab object the object resides */ 1750 static struct page *get_object_page(const void *x) 1751 { 1752 struct page *page = virt_to_head_page(x); 1753 1754 if (!PageSlab(page)) 1755 return NULL; 1756 1757 return page; 1758 } 1759 1760 /* 1761 * Object placement in a slab is made very easy because we always start at 1762 * offset 0. If we tune the size of the object to the alignment then we can 1763 * get the required alignment by putting one properly sized object after 1764 * another. 1765 * 1766 * Notice that the allocation order determines the sizes of the per cpu 1767 * caches. Each processor has always one slab available for allocations. 1768 * Increasing the allocation order reduces the number of times that slabs 1769 * must be moved on and off the partial lists and is therefore a factor in 1770 * locking overhead. 1771 */ 1772 1773 /* 1774 * Mininum / Maximum order of slab pages. This influences locking overhead 1775 * and slab fragmentation. A higher order reduces the number of partial slabs 1776 * and increases the number of allocations possible without having to 1777 * take the list_lock. 1778 */ 1779 static int slub_min_order; 1780 static int slub_max_order = DEFAULT_MAX_ORDER; 1781 static int slub_min_objects = DEFAULT_MIN_OBJECTS; 1782 1783 /* 1784 * Merge control. If this is set then no merging of slab caches will occur. 1785 * (Could be removed. This was introduced to pacify the merge skeptics.) 1786 */ 1787 static int slub_nomerge; 1788 1789 /* 1790 * Calculate the order of allocation given an slab object size. 1791 * 1792 * The order of allocation has significant impact on performance and other 1793 * system components. Generally order 0 allocations should be preferred since 1794 * order 0 does not cause fragmentation in the page allocator. Larger objects 1795 * be problematic to put into order 0 slabs because there may be too much 1796 * unused space left. We go to a higher order if more than 1/8th of the slab 1797 * would be wasted. 1798 * 1799 * In order to reach satisfactory performance we must ensure that a minimum 1800 * number of objects is in one slab. Otherwise we may generate too much 1801 * activity on the partial lists which requires taking the list_lock. This is 1802 * less a concern for large slabs though which are rarely used. 1803 * 1804 * slub_max_order specifies the order where we begin to stop considering the 1805 * number of objects in a slab as critical. If we reach slub_max_order then 1806 * we try to keep the page order as low as possible. So we accept more waste 1807 * of space in favor of a small page order. 1808 * 1809 * Higher order allocations also allow the placement of more objects in a 1810 * slab and thereby reduce object handling overhead. If the user has 1811 * requested a higher mininum order then we start with that one instead of 1812 * the smallest order which will fit the object. 1813 */ 1814 static inline int slab_order(int size, int min_objects, 1815 int max_order, int fract_leftover) 1816 { 1817 int order; 1818 int rem; 1819 int min_order = slub_min_order; 1820 1821 for (order = max(min_order, 1822 fls(min_objects * size - 1) - PAGE_SHIFT); 1823 order <= max_order; order++) { 1824 1825 unsigned long slab_size = PAGE_SIZE << order; 1826 1827 if (slab_size < min_objects * size) 1828 continue; 1829 1830 rem = slab_size % size; 1831 1832 if (rem <= slab_size / fract_leftover) 1833 break; 1834 1835 } 1836 1837 return order; 1838 } 1839 1840 static inline int calculate_order(int size) 1841 { 1842 int order; 1843 int min_objects; 1844 int fraction; 1845 1846 /* 1847 * Attempt to find best configuration for a slab. This 1848 * works by first attempting to generate a layout with 1849 * the best configuration and backing off gradually. 1850 * 1851 * First we reduce the acceptable waste in a slab. Then 1852 * we reduce the minimum objects required in a slab. 1853 */ 1854 min_objects = slub_min_objects; 1855 while (min_objects > 1) { 1856 fraction = 8; 1857 while (fraction >= 4) { 1858 order = slab_order(size, min_objects, 1859 slub_max_order, fraction); 1860 if (order <= slub_max_order) 1861 return order; 1862 fraction /= 2; 1863 } 1864 min_objects /= 2; 1865 } 1866 1867 /* 1868 * We were unable to place multiple objects in a slab. Now 1869 * lets see if we can place a single object there. 1870 */ 1871 order = slab_order(size, 1, slub_max_order, 1); 1872 if (order <= slub_max_order) 1873 return order; 1874 1875 /* 1876 * Doh this slab cannot be placed using slub_max_order. 1877 */ 1878 order = slab_order(size, 1, MAX_ORDER, 1); 1879 if (order <= MAX_ORDER) 1880 return order; 1881 return -ENOSYS; 1882 } 1883 1884 /* 1885 * Figure out what the alignment of the objects will be. 1886 */ 1887 static unsigned long calculate_alignment(unsigned long flags, 1888 unsigned long align, unsigned long size) 1889 { 1890 /* 1891 * If the user wants hardware cache aligned objects then follow that 1892 * suggestion if the object is sufficiently large. 1893 * 1894 * The hardware cache alignment cannot override the specified 1895 * alignment though. If that is greater then use it. 1896 */ 1897 if (flags & SLAB_HWCACHE_ALIGN) { 1898 unsigned long ralign = cache_line_size(); 1899 while (size <= ralign / 2) 1900 ralign /= 2; 1901 align = max(align, ralign); 1902 } 1903 1904 if (align < ARCH_SLAB_MINALIGN) 1905 align = ARCH_SLAB_MINALIGN; 1906 1907 return ALIGN(align, sizeof(void *)); 1908 } 1909 1910 static void init_kmem_cache_cpu(struct kmem_cache *s, 1911 struct kmem_cache_cpu *c) 1912 { 1913 c->page = NULL; 1914 c->freelist = NULL; 1915 c->node = 0; 1916 c->offset = s->offset / sizeof(void *); 1917 c->objsize = s->objsize; 1918 #ifdef CONFIG_SLUB_STATS 1919 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); 1920 #endif 1921 } 1922 1923 static void init_kmem_cache_node(struct kmem_cache_node *n) 1924 { 1925 n->nr_partial = 0; 1926 spin_lock_init(&n->list_lock); 1927 INIT_LIST_HEAD(&n->partial); 1928 #ifdef CONFIG_SLUB_DEBUG 1929 atomic_long_set(&n->nr_slabs, 0); 1930 INIT_LIST_HEAD(&n->full); 1931 #endif 1932 } 1933 1934 #ifdef CONFIG_SMP 1935 /* 1936 * Per cpu array for per cpu structures. 1937 * 1938 * The per cpu array places all kmem_cache_cpu structures from one processor 1939 * close together meaning that it becomes possible that multiple per cpu 1940 * structures are contained in one cacheline. This may be particularly 1941 * beneficial for the kmalloc caches. 1942 * 1943 * A desktop system typically has around 60-80 slabs. With 100 here we are 1944 * likely able to get per cpu structures for all caches from the array defined 1945 * here. We must be able to cover all kmalloc caches during bootstrap. 1946 * 1947 * If the per cpu array is exhausted then fall back to kmalloc 1948 * of individual cachelines. No sharing is possible then. 1949 */ 1950 #define NR_KMEM_CACHE_CPU 100 1951 1952 static DEFINE_PER_CPU(struct kmem_cache_cpu, 1953 kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; 1954 1955 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); 1956 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE; 1957 1958 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, 1959 int cpu, gfp_t flags) 1960 { 1961 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); 1962 1963 if (c) 1964 per_cpu(kmem_cache_cpu_free, cpu) = 1965 (void *)c->freelist; 1966 else { 1967 /* Table overflow: So allocate ourselves */ 1968 c = kmalloc_node( 1969 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), 1970 flags, cpu_to_node(cpu)); 1971 if (!c) 1972 return NULL; 1973 } 1974 1975 init_kmem_cache_cpu(s, c); 1976 return c; 1977 } 1978 1979 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) 1980 { 1981 if (c < per_cpu(kmem_cache_cpu, cpu) || 1982 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { 1983 kfree(c); 1984 return; 1985 } 1986 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); 1987 per_cpu(kmem_cache_cpu_free, cpu) = c; 1988 } 1989 1990 static void free_kmem_cache_cpus(struct kmem_cache *s) 1991 { 1992 int cpu; 1993 1994 for_each_online_cpu(cpu) { 1995 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1996 1997 if (c) { 1998 s->cpu_slab[cpu] = NULL; 1999 free_kmem_cache_cpu(c, cpu); 2000 } 2001 } 2002 } 2003 2004 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2005 { 2006 int cpu; 2007 2008 for_each_online_cpu(cpu) { 2009 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2010 2011 if (c) 2012 continue; 2013 2014 c = alloc_kmem_cache_cpu(s, cpu, flags); 2015 if (!c) { 2016 free_kmem_cache_cpus(s); 2017 return 0; 2018 } 2019 s->cpu_slab[cpu] = c; 2020 } 2021 return 1; 2022 } 2023 2024 /* 2025 * Initialize the per cpu array. 2026 */ 2027 static void init_alloc_cpu_cpu(int cpu) 2028 { 2029 int i; 2030 2031 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once)) 2032 return; 2033 2034 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) 2035 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); 2036 2037 cpu_set(cpu, kmem_cach_cpu_free_init_once); 2038 } 2039 2040 static void __init init_alloc_cpu(void) 2041 { 2042 int cpu; 2043 2044 for_each_online_cpu(cpu) 2045 init_alloc_cpu_cpu(cpu); 2046 } 2047 2048 #else 2049 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} 2050 static inline void init_alloc_cpu(void) {} 2051 2052 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2053 { 2054 init_kmem_cache_cpu(s, &s->cpu_slab); 2055 return 1; 2056 } 2057 #endif 2058 2059 #ifdef CONFIG_NUMA 2060 /* 2061 * No kmalloc_node yet so do it by hand. We know that this is the first 2062 * slab on the node for this slabcache. There are no concurrent accesses 2063 * possible. 2064 * 2065 * Note that this function only works on the kmalloc_node_cache 2066 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2067 * memory on a fresh node that has no slab structures yet. 2068 */ 2069 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags, 2070 int node) 2071 { 2072 struct page *page; 2073 struct kmem_cache_node *n; 2074 unsigned long flags; 2075 2076 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2077 2078 page = new_slab(kmalloc_caches, gfpflags, node); 2079 2080 BUG_ON(!page); 2081 if (page_to_nid(page) != node) { 2082 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2083 "node %d\n", node); 2084 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2085 "in order to be able to continue\n"); 2086 } 2087 2088 n = page->freelist; 2089 BUG_ON(!n); 2090 page->freelist = get_freepointer(kmalloc_caches, n); 2091 page->inuse++; 2092 kmalloc_caches->node[node] = n; 2093 #ifdef CONFIG_SLUB_DEBUG 2094 init_object(kmalloc_caches, n, 1); 2095 init_tracking(kmalloc_caches, n); 2096 #endif 2097 init_kmem_cache_node(n); 2098 inc_slabs_node(kmalloc_caches, node); 2099 2100 /* 2101 * lockdep requires consistent irq usage for each lock 2102 * so even though there cannot be a race this early in 2103 * the boot sequence, we still disable irqs. 2104 */ 2105 local_irq_save(flags); 2106 add_partial(n, page, 0); 2107 local_irq_restore(flags); 2108 return n; 2109 } 2110 2111 static void free_kmem_cache_nodes(struct kmem_cache *s) 2112 { 2113 int node; 2114 2115 for_each_node_state(node, N_NORMAL_MEMORY) { 2116 struct kmem_cache_node *n = s->node[node]; 2117 if (n && n != &s->local_node) 2118 kmem_cache_free(kmalloc_caches, n); 2119 s->node[node] = NULL; 2120 } 2121 } 2122 2123 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2124 { 2125 int node; 2126 int local_node; 2127 2128 if (slab_state >= UP) 2129 local_node = page_to_nid(virt_to_page(s)); 2130 else 2131 local_node = 0; 2132 2133 for_each_node_state(node, N_NORMAL_MEMORY) { 2134 struct kmem_cache_node *n; 2135 2136 if (local_node == node) 2137 n = &s->local_node; 2138 else { 2139 if (slab_state == DOWN) { 2140 n = early_kmem_cache_node_alloc(gfpflags, 2141 node); 2142 continue; 2143 } 2144 n = kmem_cache_alloc_node(kmalloc_caches, 2145 gfpflags, node); 2146 2147 if (!n) { 2148 free_kmem_cache_nodes(s); 2149 return 0; 2150 } 2151 2152 } 2153 s->node[node] = n; 2154 init_kmem_cache_node(n); 2155 } 2156 return 1; 2157 } 2158 #else 2159 static void free_kmem_cache_nodes(struct kmem_cache *s) 2160 { 2161 } 2162 2163 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2164 { 2165 init_kmem_cache_node(&s->local_node); 2166 return 1; 2167 } 2168 #endif 2169 2170 /* 2171 * calculate_sizes() determines the order and the distribution of data within 2172 * a slab object. 2173 */ 2174 static int calculate_sizes(struct kmem_cache *s) 2175 { 2176 unsigned long flags = s->flags; 2177 unsigned long size = s->objsize; 2178 unsigned long align = s->align; 2179 2180 /* 2181 * Round up object size to the next word boundary. We can only 2182 * place the free pointer at word boundaries and this determines 2183 * the possible location of the free pointer. 2184 */ 2185 size = ALIGN(size, sizeof(void *)); 2186 2187 #ifdef CONFIG_SLUB_DEBUG 2188 /* 2189 * Determine if we can poison the object itself. If the user of 2190 * the slab may touch the object after free or before allocation 2191 * then we should never poison the object itself. 2192 */ 2193 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2194 !s->ctor) 2195 s->flags |= __OBJECT_POISON; 2196 else 2197 s->flags &= ~__OBJECT_POISON; 2198 2199 2200 /* 2201 * If we are Redzoning then check if there is some space between the 2202 * end of the object and the free pointer. If not then add an 2203 * additional word to have some bytes to store Redzone information. 2204 */ 2205 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2206 size += sizeof(void *); 2207 #endif 2208 2209 /* 2210 * With that we have determined the number of bytes in actual use 2211 * by the object. This is the potential offset to the free pointer. 2212 */ 2213 s->inuse = size; 2214 2215 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2216 s->ctor)) { 2217 /* 2218 * Relocate free pointer after the object if it is not 2219 * permitted to overwrite the first word of the object on 2220 * kmem_cache_free. 2221 * 2222 * This is the case if we do RCU, have a constructor or 2223 * destructor or are poisoning the objects. 2224 */ 2225 s->offset = size; 2226 size += sizeof(void *); 2227 } 2228 2229 #ifdef CONFIG_SLUB_DEBUG 2230 if (flags & SLAB_STORE_USER) 2231 /* 2232 * Need to store information about allocs and frees after 2233 * the object. 2234 */ 2235 size += 2 * sizeof(struct track); 2236 2237 if (flags & SLAB_RED_ZONE) 2238 /* 2239 * Add some empty padding so that we can catch 2240 * overwrites from earlier objects rather than let 2241 * tracking information or the free pointer be 2242 * corrupted if an user writes before the start 2243 * of the object. 2244 */ 2245 size += sizeof(void *); 2246 #endif 2247 2248 /* 2249 * Determine the alignment based on various parameters that the 2250 * user specified and the dynamic determination of cache line size 2251 * on bootup. 2252 */ 2253 align = calculate_alignment(flags, align, s->objsize); 2254 2255 /* 2256 * SLUB stores one object immediately after another beginning from 2257 * offset 0. In order to align the objects we have to simply size 2258 * each object to conform to the alignment. 2259 */ 2260 size = ALIGN(size, align); 2261 s->size = size; 2262 2263 if ((flags & __KMALLOC_CACHE) && 2264 PAGE_SIZE / size < slub_min_objects) { 2265 /* 2266 * Kmalloc cache that would not have enough objects in 2267 * an order 0 page. Kmalloc slabs can fallback to 2268 * page allocator order 0 allocs so take a reasonably large 2269 * order that will allows us a good number of objects. 2270 */ 2271 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER); 2272 s->flags |= __PAGE_ALLOC_FALLBACK; 2273 s->allocflags |= __GFP_NOWARN; 2274 } else 2275 s->order = calculate_order(size); 2276 2277 if (s->order < 0) 2278 return 0; 2279 2280 s->allocflags = 0; 2281 if (s->order) 2282 s->allocflags |= __GFP_COMP; 2283 2284 if (s->flags & SLAB_CACHE_DMA) 2285 s->allocflags |= SLUB_DMA; 2286 2287 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2288 s->allocflags |= __GFP_RECLAIMABLE; 2289 2290 /* 2291 * Determine the number of objects per slab 2292 */ 2293 s->objects = (PAGE_SIZE << s->order) / size; 2294 2295 return !!s->objects; 2296 2297 } 2298 2299 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2300 const char *name, size_t size, 2301 size_t align, unsigned long flags, 2302 void (*ctor)(struct kmem_cache *, void *)) 2303 { 2304 memset(s, 0, kmem_size); 2305 s->name = name; 2306 s->ctor = ctor; 2307 s->objsize = size; 2308 s->align = align; 2309 s->flags = kmem_cache_flags(size, flags, name, ctor); 2310 2311 if (!calculate_sizes(s)) 2312 goto error; 2313 2314 s->refcount = 1; 2315 #ifdef CONFIG_NUMA 2316 s->remote_node_defrag_ratio = 100; 2317 #endif 2318 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2319 goto error; 2320 2321 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2322 return 1; 2323 free_kmem_cache_nodes(s); 2324 error: 2325 if (flags & SLAB_PANIC) 2326 panic("Cannot create slab %s size=%lu realsize=%u " 2327 "order=%u offset=%u flags=%lx\n", 2328 s->name, (unsigned long)size, s->size, s->order, 2329 s->offset, flags); 2330 return 0; 2331 } 2332 2333 /* 2334 * Check if a given pointer is valid 2335 */ 2336 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2337 { 2338 struct page *page; 2339 2340 page = get_object_page(object); 2341 2342 if (!page || s != page->slab) 2343 /* No slab or wrong slab */ 2344 return 0; 2345 2346 if (!check_valid_pointer(s, page, object)) 2347 return 0; 2348 2349 /* 2350 * We could also check if the object is on the slabs freelist. 2351 * But this would be too expensive and it seems that the main 2352 * purpose of kmem_ptr_valid() is to check if the object belongs 2353 * to a certain slab. 2354 */ 2355 return 1; 2356 } 2357 EXPORT_SYMBOL(kmem_ptr_validate); 2358 2359 /* 2360 * Determine the size of a slab object 2361 */ 2362 unsigned int kmem_cache_size(struct kmem_cache *s) 2363 { 2364 return s->objsize; 2365 } 2366 EXPORT_SYMBOL(kmem_cache_size); 2367 2368 const char *kmem_cache_name(struct kmem_cache *s) 2369 { 2370 return s->name; 2371 } 2372 EXPORT_SYMBOL(kmem_cache_name); 2373 2374 /* 2375 * Attempt to free all slabs on a node. Return the number of slabs we 2376 * were unable to free. 2377 */ 2378 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, 2379 struct list_head *list) 2380 { 2381 int slabs_inuse = 0; 2382 unsigned long flags; 2383 struct page *page, *h; 2384 2385 spin_lock_irqsave(&n->list_lock, flags); 2386 list_for_each_entry_safe(page, h, list, lru) 2387 if (!page->inuse) { 2388 list_del(&page->lru); 2389 discard_slab(s, page); 2390 } else 2391 slabs_inuse++; 2392 spin_unlock_irqrestore(&n->list_lock, flags); 2393 return slabs_inuse; 2394 } 2395 2396 /* 2397 * Release all resources used by a slab cache. 2398 */ 2399 static inline int kmem_cache_close(struct kmem_cache *s) 2400 { 2401 int node; 2402 2403 flush_all(s); 2404 2405 /* Attempt to free all objects */ 2406 free_kmem_cache_cpus(s); 2407 for_each_node_state(node, N_NORMAL_MEMORY) { 2408 struct kmem_cache_node *n = get_node(s, node); 2409 2410 n->nr_partial -= free_list(s, n, &n->partial); 2411 if (slabs_node(s, node)) 2412 return 1; 2413 } 2414 free_kmem_cache_nodes(s); 2415 return 0; 2416 } 2417 2418 /* 2419 * Close a cache and release the kmem_cache structure 2420 * (must be used for caches created using kmem_cache_create) 2421 */ 2422 void kmem_cache_destroy(struct kmem_cache *s) 2423 { 2424 down_write(&slub_lock); 2425 s->refcount--; 2426 if (!s->refcount) { 2427 list_del(&s->list); 2428 up_write(&slub_lock); 2429 if (kmem_cache_close(s)) 2430 WARN_ON(1); 2431 sysfs_slab_remove(s); 2432 } else 2433 up_write(&slub_lock); 2434 } 2435 EXPORT_SYMBOL(kmem_cache_destroy); 2436 2437 /******************************************************************** 2438 * Kmalloc subsystem 2439 *******************************************************************/ 2440 2441 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; 2442 EXPORT_SYMBOL(kmalloc_caches); 2443 2444 static int __init setup_slub_min_order(char *str) 2445 { 2446 get_option(&str, &slub_min_order); 2447 2448 return 1; 2449 } 2450 2451 __setup("slub_min_order=", setup_slub_min_order); 2452 2453 static int __init setup_slub_max_order(char *str) 2454 { 2455 get_option(&str, &slub_max_order); 2456 2457 return 1; 2458 } 2459 2460 __setup("slub_max_order=", setup_slub_max_order); 2461 2462 static int __init setup_slub_min_objects(char *str) 2463 { 2464 get_option(&str, &slub_min_objects); 2465 2466 return 1; 2467 } 2468 2469 __setup("slub_min_objects=", setup_slub_min_objects); 2470 2471 static int __init setup_slub_nomerge(char *str) 2472 { 2473 slub_nomerge = 1; 2474 return 1; 2475 } 2476 2477 __setup("slub_nomerge", setup_slub_nomerge); 2478 2479 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2480 const char *name, int size, gfp_t gfp_flags) 2481 { 2482 unsigned int flags = 0; 2483 2484 if (gfp_flags & SLUB_DMA) 2485 flags = SLAB_CACHE_DMA; 2486 2487 down_write(&slub_lock); 2488 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2489 flags | __KMALLOC_CACHE, NULL)) 2490 goto panic; 2491 2492 list_add(&s->list, &slab_caches); 2493 up_write(&slub_lock); 2494 if (sysfs_slab_add(s)) 2495 goto panic; 2496 return s; 2497 2498 panic: 2499 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2500 } 2501 2502 #ifdef CONFIG_ZONE_DMA 2503 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; 2504 2505 static void sysfs_add_func(struct work_struct *w) 2506 { 2507 struct kmem_cache *s; 2508 2509 down_write(&slub_lock); 2510 list_for_each_entry(s, &slab_caches, list) { 2511 if (s->flags & __SYSFS_ADD_DEFERRED) { 2512 s->flags &= ~__SYSFS_ADD_DEFERRED; 2513 sysfs_slab_add(s); 2514 } 2515 } 2516 up_write(&slub_lock); 2517 } 2518 2519 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2520 2521 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2522 { 2523 struct kmem_cache *s; 2524 char *text; 2525 size_t realsize; 2526 2527 s = kmalloc_caches_dma[index]; 2528 if (s) 2529 return s; 2530 2531 /* Dynamically create dma cache */ 2532 if (flags & __GFP_WAIT) 2533 down_write(&slub_lock); 2534 else { 2535 if (!down_write_trylock(&slub_lock)) 2536 goto out; 2537 } 2538 2539 if (kmalloc_caches_dma[index]) 2540 goto unlock_out; 2541 2542 realsize = kmalloc_caches[index].objsize; 2543 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2544 (unsigned int)realsize); 2545 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2546 2547 if (!s || !text || !kmem_cache_open(s, flags, text, 2548 realsize, ARCH_KMALLOC_MINALIGN, 2549 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { 2550 kfree(s); 2551 kfree(text); 2552 goto unlock_out; 2553 } 2554 2555 list_add(&s->list, &slab_caches); 2556 kmalloc_caches_dma[index] = s; 2557 2558 schedule_work(&sysfs_add_work); 2559 2560 unlock_out: 2561 up_write(&slub_lock); 2562 out: 2563 return kmalloc_caches_dma[index]; 2564 } 2565 #endif 2566 2567 /* 2568 * Conversion table for small slabs sizes / 8 to the index in the 2569 * kmalloc array. This is necessary for slabs < 192 since we have non power 2570 * of two cache sizes there. The size of larger slabs can be determined using 2571 * fls. 2572 */ 2573 static s8 size_index[24] = { 2574 3, /* 8 */ 2575 4, /* 16 */ 2576 5, /* 24 */ 2577 5, /* 32 */ 2578 6, /* 40 */ 2579 6, /* 48 */ 2580 6, /* 56 */ 2581 6, /* 64 */ 2582 1, /* 72 */ 2583 1, /* 80 */ 2584 1, /* 88 */ 2585 1, /* 96 */ 2586 7, /* 104 */ 2587 7, /* 112 */ 2588 7, /* 120 */ 2589 7, /* 128 */ 2590 2, /* 136 */ 2591 2, /* 144 */ 2592 2, /* 152 */ 2593 2, /* 160 */ 2594 2, /* 168 */ 2595 2, /* 176 */ 2596 2, /* 184 */ 2597 2 /* 192 */ 2598 }; 2599 2600 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2601 { 2602 int index; 2603 2604 if (size <= 192) { 2605 if (!size) 2606 return ZERO_SIZE_PTR; 2607 2608 index = size_index[(size - 1) / 8]; 2609 } else 2610 index = fls(size - 1); 2611 2612 #ifdef CONFIG_ZONE_DMA 2613 if (unlikely((flags & SLUB_DMA))) 2614 return dma_kmalloc_cache(index, flags); 2615 2616 #endif 2617 return &kmalloc_caches[index]; 2618 } 2619 2620 void *__kmalloc(size_t size, gfp_t flags) 2621 { 2622 struct kmem_cache *s; 2623 2624 if (unlikely(size > PAGE_SIZE)) 2625 return kmalloc_large(size, flags); 2626 2627 s = get_slab(size, flags); 2628 2629 if (unlikely(ZERO_OR_NULL_PTR(s))) 2630 return s; 2631 2632 return slab_alloc(s, flags, -1, __builtin_return_address(0)); 2633 } 2634 EXPORT_SYMBOL(__kmalloc); 2635 2636 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2637 { 2638 struct page *page = alloc_pages_node(node, flags | __GFP_COMP, 2639 get_order(size)); 2640 2641 if (page) 2642 return page_address(page); 2643 else 2644 return NULL; 2645 } 2646 2647 #ifdef CONFIG_NUMA 2648 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2649 { 2650 struct kmem_cache *s; 2651 2652 if (unlikely(size > PAGE_SIZE)) 2653 return kmalloc_large_node(size, flags, node); 2654 2655 s = get_slab(size, flags); 2656 2657 if (unlikely(ZERO_OR_NULL_PTR(s))) 2658 return s; 2659 2660 return slab_alloc(s, flags, node, __builtin_return_address(0)); 2661 } 2662 EXPORT_SYMBOL(__kmalloc_node); 2663 #endif 2664 2665 size_t ksize(const void *object) 2666 { 2667 struct page *page; 2668 struct kmem_cache *s; 2669 2670 if (unlikely(object == ZERO_SIZE_PTR)) 2671 return 0; 2672 2673 page = virt_to_head_page(object); 2674 2675 if (unlikely(!PageSlab(page))) 2676 return PAGE_SIZE << compound_order(page); 2677 2678 s = page->slab; 2679 2680 #ifdef CONFIG_SLUB_DEBUG 2681 /* 2682 * Debugging requires use of the padding between object 2683 * and whatever may come after it. 2684 */ 2685 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2686 return s->objsize; 2687 2688 #endif 2689 /* 2690 * If we have the need to store the freelist pointer 2691 * back there or track user information then we can 2692 * only use the space before that information. 2693 */ 2694 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2695 return s->inuse; 2696 /* 2697 * Else we can use all the padding etc for the allocation 2698 */ 2699 return s->size; 2700 } 2701 EXPORT_SYMBOL(ksize); 2702 2703 void kfree(const void *x) 2704 { 2705 struct page *page; 2706 void *object = (void *)x; 2707 2708 if (unlikely(ZERO_OR_NULL_PTR(x))) 2709 return; 2710 2711 page = virt_to_head_page(x); 2712 if (unlikely(!PageSlab(page))) { 2713 put_page(page); 2714 return; 2715 } 2716 slab_free(page->slab, page, object, __builtin_return_address(0)); 2717 } 2718 EXPORT_SYMBOL(kfree); 2719 2720 /* 2721 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2722 * the remaining slabs by the number of items in use. The slabs with the 2723 * most items in use come first. New allocations will then fill those up 2724 * and thus they can be removed from the partial lists. 2725 * 2726 * The slabs with the least items are placed last. This results in them 2727 * being allocated from last increasing the chance that the last objects 2728 * are freed in them. 2729 */ 2730 int kmem_cache_shrink(struct kmem_cache *s) 2731 { 2732 int node; 2733 int i; 2734 struct kmem_cache_node *n; 2735 struct page *page; 2736 struct page *t; 2737 struct list_head *slabs_by_inuse = 2738 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL); 2739 unsigned long flags; 2740 2741 if (!slabs_by_inuse) 2742 return -ENOMEM; 2743 2744 flush_all(s); 2745 for_each_node_state(node, N_NORMAL_MEMORY) { 2746 n = get_node(s, node); 2747 2748 if (!n->nr_partial) 2749 continue; 2750 2751 for (i = 0; i < s->objects; i++) 2752 INIT_LIST_HEAD(slabs_by_inuse + i); 2753 2754 spin_lock_irqsave(&n->list_lock, flags); 2755 2756 /* 2757 * Build lists indexed by the items in use in each slab. 2758 * 2759 * Note that concurrent frees may occur while we hold the 2760 * list_lock. page->inuse here is the upper limit. 2761 */ 2762 list_for_each_entry_safe(page, t, &n->partial, lru) { 2763 if (!page->inuse && slab_trylock(page)) { 2764 /* 2765 * Must hold slab lock here because slab_free 2766 * may have freed the last object and be 2767 * waiting to release the slab. 2768 */ 2769 list_del(&page->lru); 2770 n->nr_partial--; 2771 slab_unlock(page); 2772 discard_slab(s, page); 2773 } else { 2774 list_move(&page->lru, 2775 slabs_by_inuse + page->inuse); 2776 } 2777 } 2778 2779 /* 2780 * Rebuild the partial list with the slabs filled up most 2781 * first and the least used slabs at the end. 2782 */ 2783 for (i = s->objects - 1; i >= 0; i--) 2784 list_splice(slabs_by_inuse + i, n->partial.prev); 2785 2786 spin_unlock_irqrestore(&n->list_lock, flags); 2787 } 2788 2789 kfree(slabs_by_inuse); 2790 return 0; 2791 } 2792 EXPORT_SYMBOL(kmem_cache_shrink); 2793 2794 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2795 static int slab_mem_going_offline_callback(void *arg) 2796 { 2797 struct kmem_cache *s; 2798 2799 down_read(&slub_lock); 2800 list_for_each_entry(s, &slab_caches, list) 2801 kmem_cache_shrink(s); 2802 up_read(&slub_lock); 2803 2804 return 0; 2805 } 2806 2807 static void slab_mem_offline_callback(void *arg) 2808 { 2809 struct kmem_cache_node *n; 2810 struct kmem_cache *s; 2811 struct memory_notify *marg = arg; 2812 int offline_node; 2813 2814 offline_node = marg->status_change_nid; 2815 2816 /* 2817 * If the node still has available memory. we need kmem_cache_node 2818 * for it yet. 2819 */ 2820 if (offline_node < 0) 2821 return; 2822 2823 down_read(&slub_lock); 2824 list_for_each_entry(s, &slab_caches, list) { 2825 n = get_node(s, offline_node); 2826 if (n) { 2827 /* 2828 * if n->nr_slabs > 0, slabs still exist on the node 2829 * that is going down. We were unable to free them, 2830 * and offline_pages() function shoudn't call this 2831 * callback. So, we must fail. 2832 */ 2833 BUG_ON(slabs_node(s, offline_node)); 2834 2835 s->node[offline_node] = NULL; 2836 kmem_cache_free(kmalloc_caches, n); 2837 } 2838 } 2839 up_read(&slub_lock); 2840 } 2841 2842 static int slab_mem_going_online_callback(void *arg) 2843 { 2844 struct kmem_cache_node *n; 2845 struct kmem_cache *s; 2846 struct memory_notify *marg = arg; 2847 int nid = marg->status_change_nid; 2848 int ret = 0; 2849 2850 /* 2851 * If the node's memory is already available, then kmem_cache_node is 2852 * already created. Nothing to do. 2853 */ 2854 if (nid < 0) 2855 return 0; 2856 2857 /* 2858 * We are bringing a node online. No memory is availabe yet. We must 2859 * allocate a kmem_cache_node structure in order to bring the node 2860 * online. 2861 */ 2862 down_read(&slub_lock); 2863 list_for_each_entry(s, &slab_caches, list) { 2864 /* 2865 * XXX: kmem_cache_alloc_node will fallback to other nodes 2866 * since memory is not yet available from the node that 2867 * is brought up. 2868 */ 2869 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 2870 if (!n) { 2871 ret = -ENOMEM; 2872 goto out; 2873 } 2874 init_kmem_cache_node(n); 2875 s->node[nid] = n; 2876 } 2877 out: 2878 up_read(&slub_lock); 2879 return ret; 2880 } 2881 2882 static int slab_memory_callback(struct notifier_block *self, 2883 unsigned long action, void *arg) 2884 { 2885 int ret = 0; 2886 2887 switch (action) { 2888 case MEM_GOING_ONLINE: 2889 ret = slab_mem_going_online_callback(arg); 2890 break; 2891 case MEM_GOING_OFFLINE: 2892 ret = slab_mem_going_offline_callback(arg); 2893 break; 2894 case MEM_OFFLINE: 2895 case MEM_CANCEL_ONLINE: 2896 slab_mem_offline_callback(arg); 2897 break; 2898 case MEM_ONLINE: 2899 case MEM_CANCEL_OFFLINE: 2900 break; 2901 } 2902 2903 ret = notifier_from_errno(ret); 2904 return ret; 2905 } 2906 2907 #endif /* CONFIG_MEMORY_HOTPLUG */ 2908 2909 /******************************************************************** 2910 * Basic setup of slabs 2911 *******************************************************************/ 2912 2913 void __init kmem_cache_init(void) 2914 { 2915 int i; 2916 int caches = 0; 2917 2918 init_alloc_cpu(); 2919 2920 #ifdef CONFIG_NUMA 2921 /* 2922 * Must first have the slab cache available for the allocations of the 2923 * struct kmem_cache_node's. There is special bootstrap code in 2924 * kmem_cache_open for slab_state == DOWN. 2925 */ 2926 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 2927 sizeof(struct kmem_cache_node), GFP_KERNEL); 2928 kmalloc_caches[0].refcount = -1; 2929 caches++; 2930 2931 hotplug_memory_notifier(slab_memory_callback, 1); 2932 #endif 2933 2934 /* Able to allocate the per node structures */ 2935 slab_state = PARTIAL; 2936 2937 /* Caches that are not of the two-to-the-power-of size */ 2938 if (KMALLOC_MIN_SIZE <= 64) { 2939 create_kmalloc_cache(&kmalloc_caches[1], 2940 "kmalloc-96", 96, GFP_KERNEL); 2941 caches++; 2942 } 2943 if (KMALLOC_MIN_SIZE <= 128) { 2944 create_kmalloc_cache(&kmalloc_caches[2], 2945 "kmalloc-192", 192, GFP_KERNEL); 2946 caches++; 2947 } 2948 2949 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { 2950 create_kmalloc_cache(&kmalloc_caches[i], 2951 "kmalloc", 1 << i, GFP_KERNEL); 2952 caches++; 2953 } 2954 2955 2956 /* 2957 * Patch up the size_index table if we have strange large alignment 2958 * requirements for the kmalloc array. This is only the case for 2959 * MIPS it seems. The standard arches will not generate any code here. 2960 * 2961 * Largest permitted alignment is 256 bytes due to the way we 2962 * handle the index determination for the smaller caches. 2963 * 2964 * Make sure that nothing crazy happens if someone starts tinkering 2965 * around with ARCH_KMALLOC_MINALIGN 2966 */ 2967 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 2968 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 2969 2970 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) 2971 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; 2972 2973 slab_state = UP; 2974 2975 /* Provide the correct kmalloc names now that the caches are up */ 2976 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) 2977 kmalloc_caches[i]. name = 2978 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); 2979 2980 #ifdef CONFIG_SMP 2981 register_cpu_notifier(&slab_notifier); 2982 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 2983 nr_cpu_ids * sizeof(struct kmem_cache_cpu *); 2984 #else 2985 kmem_size = sizeof(struct kmem_cache); 2986 #endif 2987 2988 printk(KERN_INFO 2989 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 2990 " CPUs=%d, Nodes=%d\n", 2991 caches, cache_line_size(), 2992 slub_min_order, slub_max_order, slub_min_objects, 2993 nr_cpu_ids, nr_node_ids); 2994 } 2995 2996 /* 2997 * Find a mergeable slab cache 2998 */ 2999 static int slab_unmergeable(struct kmem_cache *s) 3000 { 3001 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3002 return 1; 3003 3004 if ((s->flags & __PAGE_ALLOC_FALLBACK)) 3005 return 1; 3006 3007 if (s->ctor) 3008 return 1; 3009 3010 /* 3011 * We may have set a slab to be unmergeable during bootstrap. 3012 */ 3013 if (s->refcount < 0) 3014 return 1; 3015 3016 return 0; 3017 } 3018 3019 static struct kmem_cache *find_mergeable(size_t size, 3020 size_t align, unsigned long flags, const char *name, 3021 void (*ctor)(struct kmem_cache *, void *)) 3022 { 3023 struct kmem_cache *s; 3024 3025 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3026 return NULL; 3027 3028 if (ctor) 3029 return NULL; 3030 3031 size = ALIGN(size, sizeof(void *)); 3032 align = calculate_alignment(flags, align, size); 3033 size = ALIGN(size, align); 3034 flags = kmem_cache_flags(size, flags, name, NULL); 3035 3036 list_for_each_entry(s, &slab_caches, list) { 3037 if (slab_unmergeable(s)) 3038 continue; 3039 3040 if (size > s->size) 3041 continue; 3042 3043 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3044 continue; 3045 /* 3046 * Check if alignment is compatible. 3047 * Courtesy of Adrian Drzewiecki 3048 */ 3049 if ((s->size & ~(align - 1)) != s->size) 3050 continue; 3051 3052 if (s->size - size >= sizeof(void *)) 3053 continue; 3054 3055 return s; 3056 } 3057 return NULL; 3058 } 3059 3060 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3061 size_t align, unsigned long flags, 3062 void (*ctor)(struct kmem_cache *, void *)) 3063 { 3064 struct kmem_cache *s; 3065 3066 down_write(&slub_lock); 3067 s = find_mergeable(size, align, flags, name, ctor); 3068 if (s) { 3069 int cpu; 3070 3071 s->refcount++; 3072 /* 3073 * Adjust the object sizes so that we clear 3074 * the complete object on kzalloc. 3075 */ 3076 s->objsize = max(s->objsize, (int)size); 3077 3078 /* 3079 * And then we need to update the object size in the 3080 * per cpu structures 3081 */ 3082 for_each_online_cpu(cpu) 3083 get_cpu_slab(s, cpu)->objsize = s->objsize; 3084 3085 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3086 up_write(&slub_lock); 3087 3088 if (sysfs_slab_alias(s, name)) 3089 goto err; 3090 return s; 3091 } 3092 3093 s = kmalloc(kmem_size, GFP_KERNEL); 3094 if (s) { 3095 if (kmem_cache_open(s, GFP_KERNEL, name, 3096 size, align, flags, ctor)) { 3097 list_add(&s->list, &slab_caches); 3098 up_write(&slub_lock); 3099 if (sysfs_slab_add(s)) 3100 goto err; 3101 return s; 3102 } 3103 kfree(s); 3104 } 3105 up_write(&slub_lock); 3106 3107 err: 3108 if (flags & SLAB_PANIC) 3109 panic("Cannot create slabcache %s\n", name); 3110 else 3111 s = NULL; 3112 return s; 3113 } 3114 EXPORT_SYMBOL(kmem_cache_create); 3115 3116 #ifdef CONFIG_SMP 3117 /* 3118 * Use the cpu notifier to insure that the cpu slabs are flushed when 3119 * necessary. 3120 */ 3121 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3122 unsigned long action, void *hcpu) 3123 { 3124 long cpu = (long)hcpu; 3125 struct kmem_cache *s; 3126 unsigned long flags; 3127 3128 switch (action) { 3129 case CPU_UP_PREPARE: 3130 case CPU_UP_PREPARE_FROZEN: 3131 init_alloc_cpu_cpu(cpu); 3132 down_read(&slub_lock); 3133 list_for_each_entry(s, &slab_caches, list) 3134 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, 3135 GFP_KERNEL); 3136 up_read(&slub_lock); 3137 break; 3138 3139 case CPU_UP_CANCELED: 3140 case CPU_UP_CANCELED_FROZEN: 3141 case CPU_DEAD: 3142 case CPU_DEAD_FROZEN: 3143 down_read(&slub_lock); 3144 list_for_each_entry(s, &slab_caches, list) { 3145 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3146 3147 local_irq_save(flags); 3148 __flush_cpu_slab(s, cpu); 3149 local_irq_restore(flags); 3150 free_kmem_cache_cpu(c, cpu); 3151 s->cpu_slab[cpu] = NULL; 3152 } 3153 up_read(&slub_lock); 3154 break; 3155 default: 3156 break; 3157 } 3158 return NOTIFY_OK; 3159 } 3160 3161 static struct notifier_block __cpuinitdata slab_notifier = { 3162 .notifier_call = slab_cpuup_callback 3163 }; 3164 3165 #endif 3166 3167 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) 3168 { 3169 struct kmem_cache *s; 3170 3171 if (unlikely(size > PAGE_SIZE)) 3172 return kmalloc_large(size, gfpflags); 3173 3174 s = get_slab(size, gfpflags); 3175 3176 if (unlikely(ZERO_OR_NULL_PTR(s))) 3177 return s; 3178 3179 return slab_alloc(s, gfpflags, -1, caller); 3180 } 3181 3182 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3183 int node, void *caller) 3184 { 3185 struct kmem_cache *s; 3186 3187 if (unlikely(size > PAGE_SIZE)) 3188 return kmalloc_large_node(size, gfpflags, node); 3189 3190 s = get_slab(size, gfpflags); 3191 3192 if (unlikely(ZERO_OR_NULL_PTR(s))) 3193 return s; 3194 3195 return slab_alloc(s, gfpflags, node, caller); 3196 } 3197 3198 #if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO) 3199 static unsigned long count_partial(struct kmem_cache_node *n) 3200 { 3201 unsigned long flags; 3202 unsigned long x = 0; 3203 struct page *page; 3204 3205 spin_lock_irqsave(&n->list_lock, flags); 3206 list_for_each_entry(page, &n->partial, lru) 3207 x += page->inuse; 3208 spin_unlock_irqrestore(&n->list_lock, flags); 3209 return x; 3210 } 3211 #endif 3212 3213 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) 3214 static int validate_slab(struct kmem_cache *s, struct page *page, 3215 unsigned long *map) 3216 { 3217 void *p; 3218 void *addr = page_address(page); 3219 3220 if (!check_slab(s, page) || 3221 !on_freelist(s, page, NULL)) 3222 return 0; 3223 3224 /* Now we know that a valid freelist exists */ 3225 bitmap_zero(map, s->objects); 3226 3227 for_each_free_object(p, s, page->freelist) { 3228 set_bit(slab_index(p, s, addr), map); 3229 if (!check_object(s, page, p, 0)) 3230 return 0; 3231 } 3232 3233 for_each_object(p, s, addr) 3234 if (!test_bit(slab_index(p, s, addr), map)) 3235 if (!check_object(s, page, p, 1)) 3236 return 0; 3237 return 1; 3238 } 3239 3240 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3241 unsigned long *map) 3242 { 3243 if (slab_trylock(page)) { 3244 validate_slab(s, page, map); 3245 slab_unlock(page); 3246 } else 3247 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3248 s->name, page); 3249 3250 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3251 if (!SlabDebug(page)) 3252 printk(KERN_ERR "SLUB %s: SlabDebug not set " 3253 "on slab 0x%p\n", s->name, page); 3254 } else { 3255 if (SlabDebug(page)) 3256 printk(KERN_ERR "SLUB %s: SlabDebug set on " 3257 "slab 0x%p\n", s->name, page); 3258 } 3259 } 3260 3261 static int validate_slab_node(struct kmem_cache *s, 3262 struct kmem_cache_node *n, unsigned long *map) 3263 { 3264 unsigned long count = 0; 3265 struct page *page; 3266 unsigned long flags; 3267 3268 spin_lock_irqsave(&n->list_lock, flags); 3269 3270 list_for_each_entry(page, &n->partial, lru) { 3271 validate_slab_slab(s, page, map); 3272 count++; 3273 } 3274 if (count != n->nr_partial) 3275 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3276 "counter=%ld\n", s->name, count, n->nr_partial); 3277 3278 if (!(s->flags & SLAB_STORE_USER)) 3279 goto out; 3280 3281 list_for_each_entry(page, &n->full, lru) { 3282 validate_slab_slab(s, page, map); 3283 count++; 3284 } 3285 if (count != atomic_long_read(&n->nr_slabs)) 3286 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3287 "counter=%ld\n", s->name, count, 3288 atomic_long_read(&n->nr_slabs)); 3289 3290 out: 3291 spin_unlock_irqrestore(&n->list_lock, flags); 3292 return count; 3293 } 3294 3295 static long validate_slab_cache(struct kmem_cache *s) 3296 { 3297 int node; 3298 unsigned long count = 0; 3299 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) * 3300 sizeof(unsigned long), GFP_KERNEL); 3301 3302 if (!map) 3303 return -ENOMEM; 3304 3305 flush_all(s); 3306 for_each_node_state(node, N_NORMAL_MEMORY) { 3307 struct kmem_cache_node *n = get_node(s, node); 3308 3309 count += validate_slab_node(s, n, map); 3310 } 3311 kfree(map); 3312 return count; 3313 } 3314 3315 #ifdef SLUB_RESILIENCY_TEST 3316 static void resiliency_test(void) 3317 { 3318 u8 *p; 3319 3320 printk(KERN_ERR "SLUB resiliency testing\n"); 3321 printk(KERN_ERR "-----------------------\n"); 3322 printk(KERN_ERR "A. Corruption after allocation\n"); 3323 3324 p = kzalloc(16, GFP_KERNEL); 3325 p[16] = 0x12; 3326 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3327 " 0x12->0x%p\n\n", p + 16); 3328 3329 validate_slab_cache(kmalloc_caches + 4); 3330 3331 /* Hmmm... The next two are dangerous */ 3332 p = kzalloc(32, GFP_KERNEL); 3333 p[32 + sizeof(void *)] = 0x34; 3334 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3335 " 0x34 -> -0x%p\n", p); 3336 printk(KERN_ERR 3337 "If allocated object is overwritten then not detectable\n\n"); 3338 3339 validate_slab_cache(kmalloc_caches + 5); 3340 p = kzalloc(64, GFP_KERNEL); 3341 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3342 *p = 0x56; 3343 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3344 p); 3345 printk(KERN_ERR 3346 "If allocated object is overwritten then not detectable\n\n"); 3347 validate_slab_cache(kmalloc_caches + 6); 3348 3349 printk(KERN_ERR "\nB. Corruption after free\n"); 3350 p = kzalloc(128, GFP_KERNEL); 3351 kfree(p); 3352 *p = 0x78; 3353 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3354 validate_slab_cache(kmalloc_caches + 7); 3355 3356 p = kzalloc(256, GFP_KERNEL); 3357 kfree(p); 3358 p[50] = 0x9a; 3359 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3360 p); 3361 validate_slab_cache(kmalloc_caches + 8); 3362 3363 p = kzalloc(512, GFP_KERNEL); 3364 kfree(p); 3365 p[512] = 0xab; 3366 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3367 validate_slab_cache(kmalloc_caches + 9); 3368 } 3369 #else 3370 static void resiliency_test(void) {}; 3371 #endif 3372 3373 /* 3374 * Generate lists of code addresses where slabcache objects are allocated 3375 * and freed. 3376 */ 3377 3378 struct location { 3379 unsigned long count; 3380 void *addr; 3381 long long sum_time; 3382 long min_time; 3383 long max_time; 3384 long min_pid; 3385 long max_pid; 3386 cpumask_t cpus; 3387 nodemask_t nodes; 3388 }; 3389 3390 struct loc_track { 3391 unsigned long max; 3392 unsigned long count; 3393 struct location *loc; 3394 }; 3395 3396 static void free_loc_track(struct loc_track *t) 3397 { 3398 if (t->max) 3399 free_pages((unsigned long)t->loc, 3400 get_order(sizeof(struct location) * t->max)); 3401 } 3402 3403 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3404 { 3405 struct location *l; 3406 int order; 3407 3408 order = get_order(sizeof(struct location) * max); 3409 3410 l = (void *)__get_free_pages(flags, order); 3411 if (!l) 3412 return 0; 3413 3414 if (t->count) { 3415 memcpy(l, t->loc, sizeof(struct location) * t->count); 3416 free_loc_track(t); 3417 } 3418 t->max = max; 3419 t->loc = l; 3420 return 1; 3421 } 3422 3423 static int add_location(struct loc_track *t, struct kmem_cache *s, 3424 const struct track *track) 3425 { 3426 long start, end, pos; 3427 struct location *l; 3428 void *caddr; 3429 unsigned long age = jiffies - track->when; 3430 3431 start = -1; 3432 end = t->count; 3433 3434 for ( ; ; ) { 3435 pos = start + (end - start + 1) / 2; 3436 3437 /* 3438 * There is nothing at "end". If we end up there 3439 * we need to add something to before end. 3440 */ 3441 if (pos == end) 3442 break; 3443 3444 caddr = t->loc[pos].addr; 3445 if (track->addr == caddr) { 3446 3447 l = &t->loc[pos]; 3448 l->count++; 3449 if (track->when) { 3450 l->sum_time += age; 3451 if (age < l->min_time) 3452 l->min_time = age; 3453 if (age > l->max_time) 3454 l->max_time = age; 3455 3456 if (track->pid < l->min_pid) 3457 l->min_pid = track->pid; 3458 if (track->pid > l->max_pid) 3459 l->max_pid = track->pid; 3460 3461 cpu_set(track->cpu, l->cpus); 3462 } 3463 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3464 return 1; 3465 } 3466 3467 if (track->addr < caddr) 3468 end = pos; 3469 else 3470 start = pos; 3471 } 3472 3473 /* 3474 * Not found. Insert new tracking element. 3475 */ 3476 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3477 return 0; 3478 3479 l = t->loc + pos; 3480 if (pos < t->count) 3481 memmove(l + 1, l, 3482 (t->count - pos) * sizeof(struct location)); 3483 t->count++; 3484 l->count = 1; 3485 l->addr = track->addr; 3486 l->sum_time = age; 3487 l->min_time = age; 3488 l->max_time = age; 3489 l->min_pid = track->pid; 3490 l->max_pid = track->pid; 3491 cpus_clear(l->cpus); 3492 cpu_set(track->cpu, l->cpus); 3493 nodes_clear(l->nodes); 3494 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3495 return 1; 3496 } 3497 3498 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3499 struct page *page, enum track_item alloc) 3500 { 3501 void *addr = page_address(page); 3502 DECLARE_BITMAP(map, s->objects); 3503 void *p; 3504 3505 bitmap_zero(map, s->objects); 3506 for_each_free_object(p, s, page->freelist) 3507 set_bit(slab_index(p, s, addr), map); 3508 3509 for_each_object(p, s, addr) 3510 if (!test_bit(slab_index(p, s, addr), map)) 3511 add_location(t, s, get_track(s, p, alloc)); 3512 } 3513 3514 static int list_locations(struct kmem_cache *s, char *buf, 3515 enum track_item alloc) 3516 { 3517 int len = 0; 3518 unsigned long i; 3519 struct loc_track t = { 0, 0, NULL }; 3520 int node; 3521 3522 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3523 GFP_TEMPORARY)) 3524 return sprintf(buf, "Out of memory\n"); 3525 3526 /* Push back cpu slabs */ 3527 flush_all(s); 3528 3529 for_each_node_state(node, N_NORMAL_MEMORY) { 3530 struct kmem_cache_node *n = get_node(s, node); 3531 unsigned long flags; 3532 struct page *page; 3533 3534 if (!atomic_long_read(&n->nr_slabs)) 3535 continue; 3536 3537 spin_lock_irqsave(&n->list_lock, flags); 3538 list_for_each_entry(page, &n->partial, lru) 3539 process_slab(&t, s, page, alloc); 3540 list_for_each_entry(page, &n->full, lru) 3541 process_slab(&t, s, page, alloc); 3542 spin_unlock_irqrestore(&n->list_lock, flags); 3543 } 3544 3545 for (i = 0; i < t.count; i++) { 3546 struct location *l = &t.loc[i]; 3547 3548 if (len > PAGE_SIZE - 100) 3549 break; 3550 len += sprintf(buf + len, "%7ld ", l->count); 3551 3552 if (l->addr) 3553 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3554 else 3555 len += sprintf(buf + len, "<not-available>"); 3556 3557 if (l->sum_time != l->min_time) { 3558 unsigned long remainder; 3559 3560 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3561 l->min_time, 3562 div_long_long_rem(l->sum_time, l->count, &remainder), 3563 l->max_time); 3564 } else 3565 len += sprintf(buf + len, " age=%ld", 3566 l->min_time); 3567 3568 if (l->min_pid != l->max_pid) 3569 len += sprintf(buf + len, " pid=%ld-%ld", 3570 l->min_pid, l->max_pid); 3571 else 3572 len += sprintf(buf + len, " pid=%ld", 3573 l->min_pid); 3574 3575 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && 3576 len < PAGE_SIZE - 60) { 3577 len += sprintf(buf + len, " cpus="); 3578 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3579 l->cpus); 3580 } 3581 3582 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && 3583 len < PAGE_SIZE - 60) { 3584 len += sprintf(buf + len, " nodes="); 3585 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3586 l->nodes); 3587 } 3588 3589 len += sprintf(buf + len, "\n"); 3590 } 3591 3592 free_loc_track(&t); 3593 if (!t.count) 3594 len += sprintf(buf, "No data\n"); 3595 return len; 3596 } 3597 3598 enum slab_stat_type { 3599 SL_FULL, 3600 SL_PARTIAL, 3601 SL_CPU, 3602 SL_OBJECTS 3603 }; 3604 3605 #define SO_FULL (1 << SL_FULL) 3606 #define SO_PARTIAL (1 << SL_PARTIAL) 3607 #define SO_CPU (1 << SL_CPU) 3608 #define SO_OBJECTS (1 << SL_OBJECTS) 3609 3610 static ssize_t show_slab_objects(struct kmem_cache *s, 3611 char *buf, unsigned long flags) 3612 { 3613 unsigned long total = 0; 3614 int cpu; 3615 int node; 3616 int x; 3617 unsigned long *nodes; 3618 unsigned long *per_cpu; 3619 3620 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3621 if (!nodes) 3622 return -ENOMEM; 3623 per_cpu = nodes + nr_node_ids; 3624 3625 for_each_possible_cpu(cpu) { 3626 struct page *page; 3627 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3628 3629 if (!c) 3630 continue; 3631 3632 page = c->page; 3633 node = c->node; 3634 if (node < 0) 3635 continue; 3636 if (page) { 3637 if (flags & SO_CPU) { 3638 if (flags & SO_OBJECTS) 3639 x = page->inuse; 3640 else 3641 x = 1; 3642 total += x; 3643 nodes[node] += x; 3644 } 3645 per_cpu[node]++; 3646 } 3647 } 3648 3649 for_each_node_state(node, N_NORMAL_MEMORY) { 3650 struct kmem_cache_node *n = get_node(s, node); 3651 3652 if (flags & SO_PARTIAL) { 3653 if (flags & SO_OBJECTS) 3654 x = count_partial(n); 3655 else 3656 x = n->nr_partial; 3657 total += x; 3658 nodes[node] += x; 3659 } 3660 3661 if (flags & SO_FULL) { 3662 int full_slabs = atomic_long_read(&n->nr_slabs) 3663 - per_cpu[node] 3664 - n->nr_partial; 3665 3666 if (flags & SO_OBJECTS) 3667 x = full_slabs * s->objects; 3668 else 3669 x = full_slabs; 3670 total += x; 3671 nodes[node] += x; 3672 } 3673 } 3674 3675 x = sprintf(buf, "%lu", total); 3676 #ifdef CONFIG_NUMA 3677 for_each_node_state(node, N_NORMAL_MEMORY) 3678 if (nodes[node]) 3679 x += sprintf(buf + x, " N%d=%lu", 3680 node, nodes[node]); 3681 #endif 3682 kfree(nodes); 3683 return x + sprintf(buf + x, "\n"); 3684 } 3685 3686 static int any_slab_objects(struct kmem_cache *s) 3687 { 3688 int node; 3689 int cpu; 3690 3691 for_each_possible_cpu(cpu) { 3692 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3693 3694 if (c && c->page) 3695 return 1; 3696 } 3697 3698 for_each_online_node(node) { 3699 struct kmem_cache_node *n = get_node(s, node); 3700 3701 if (!n) 3702 continue; 3703 3704 if (n->nr_partial || atomic_long_read(&n->nr_slabs)) 3705 return 1; 3706 } 3707 return 0; 3708 } 3709 3710 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3711 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3712 3713 struct slab_attribute { 3714 struct attribute attr; 3715 ssize_t (*show)(struct kmem_cache *s, char *buf); 3716 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3717 }; 3718 3719 #define SLAB_ATTR_RO(_name) \ 3720 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3721 3722 #define SLAB_ATTR(_name) \ 3723 static struct slab_attribute _name##_attr = \ 3724 __ATTR(_name, 0644, _name##_show, _name##_store) 3725 3726 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3727 { 3728 return sprintf(buf, "%d\n", s->size); 3729 } 3730 SLAB_ATTR_RO(slab_size); 3731 3732 static ssize_t align_show(struct kmem_cache *s, char *buf) 3733 { 3734 return sprintf(buf, "%d\n", s->align); 3735 } 3736 SLAB_ATTR_RO(align); 3737 3738 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3739 { 3740 return sprintf(buf, "%d\n", s->objsize); 3741 } 3742 SLAB_ATTR_RO(object_size); 3743 3744 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3745 { 3746 return sprintf(buf, "%d\n", s->objects); 3747 } 3748 SLAB_ATTR_RO(objs_per_slab); 3749 3750 static ssize_t order_show(struct kmem_cache *s, char *buf) 3751 { 3752 return sprintf(buf, "%d\n", s->order); 3753 } 3754 SLAB_ATTR_RO(order); 3755 3756 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3757 { 3758 if (s->ctor) { 3759 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3760 3761 return n + sprintf(buf + n, "\n"); 3762 } 3763 return 0; 3764 } 3765 SLAB_ATTR_RO(ctor); 3766 3767 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3768 { 3769 return sprintf(buf, "%d\n", s->refcount - 1); 3770 } 3771 SLAB_ATTR_RO(aliases); 3772 3773 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3774 { 3775 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU); 3776 } 3777 SLAB_ATTR_RO(slabs); 3778 3779 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3780 { 3781 return show_slab_objects(s, buf, SO_PARTIAL); 3782 } 3783 SLAB_ATTR_RO(partial); 3784 3785 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3786 { 3787 return show_slab_objects(s, buf, SO_CPU); 3788 } 3789 SLAB_ATTR_RO(cpu_slabs); 3790 3791 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3792 { 3793 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS); 3794 } 3795 SLAB_ATTR_RO(objects); 3796 3797 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3798 { 3799 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3800 } 3801 3802 static ssize_t sanity_checks_store(struct kmem_cache *s, 3803 const char *buf, size_t length) 3804 { 3805 s->flags &= ~SLAB_DEBUG_FREE; 3806 if (buf[0] == '1') 3807 s->flags |= SLAB_DEBUG_FREE; 3808 return length; 3809 } 3810 SLAB_ATTR(sanity_checks); 3811 3812 static ssize_t trace_show(struct kmem_cache *s, char *buf) 3813 { 3814 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 3815 } 3816 3817 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 3818 size_t length) 3819 { 3820 s->flags &= ~SLAB_TRACE; 3821 if (buf[0] == '1') 3822 s->flags |= SLAB_TRACE; 3823 return length; 3824 } 3825 SLAB_ATTR(trace); 3826 3827 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 3828 { 3829 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 3830 } 3831 3832 static ssize_t reclaim_account_store(struct kmem_cache *s, 3833 const char *buf, size_t length) 3834 { 3835 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 3836 if (buf[0] == '1') 3837 s->flags |= SLAB_RECLAIM_ACCOUNT; 3838 return length; 3839 } 3840 SLAB_ATTR(reclaim_account); 3841 3842 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 3843 { 3844 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 3845 } 3846 SLAB_ATTR_RO(hwcache_align); 3847 3848 #ifdef CONFIG_ZONE_DMA 3849 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 3850 { 3851 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 3852 } 3853 SLAB_ATTR_RO(cache_dma); 3854 #endif 3855 3856 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 3857 { 3858 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 3859 } 3860 SLAB_ATTR_RO(destroy_by_rcu); 3861 3862 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 3863 { 3864 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 3865 } 3866 3867 static ssize_t red_zone_store(struct kmem_cache *s, 3868 const char *buf, size_t length) 3869 { 3870 if (any_slab_objects(s)) 3871 return -EBUSY; 3872 3873 s->flags &= ~SLAB_RED_ZONE; 3874 if (buf[0] == '1') 3875 s->flags |= SLAB_RED_ZONE; 3876 calculate_sizes(s); 3877 return length; 3878 } 3879 SLAB_ATTR(red_zone); 3880 3881 static ssize_t poison_show(struct kmem_cache *s, char *buf) 3882 { 3883 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 3884 } 3885 3886 static ssize_t poison_store(struct kmem_cache *s, 3887 const char *buf, size_t length) 3888 { 3889 if (any_slab_objects(s)) 3890 return -EBUSY; 3891 3892 s->flags &= ~SLAB_POISON; 3893 if (buf[0] == '1') 3894 s->flags |= SLAB_POISON; 3895 calculate_sizes(s); 3896 return length; 3897 } 3898 SLAB_ATTR(poison); 3899 3900 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 3901 { 3902 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 3903 } 3904 3905 static ssize_t store_user_store(struct kmem_cache *s, 3906 const char *buf, size_t length) 3907 { 3908 if (any_slab_objects(s)) 3909 return -EBUSY; 3910 3911 s->flags &= ~SLAB_STORE_USER; 3912 if (buf[0] == '1') 3913 s->flags |= SLAB_STORE_USER; 3914 calculate_sizes(s); 3915 return length; 3916 } 3917 SLAB_ATTR(store_user); 3918 3919 static ssize_t validate_show(struct kmem_cache *s, char *buf) 3920 { 3921 return 0; 3922 } 3923 3924 static ssize_t validate_store(struct kmem_cache *s, 3925 const char *buf, size_t length) 3926 { 3927 int ret = -EINVAL; 3928 3929 if (buf[0] == '1') { 3930 ret = validate_slab_cache(s); 3931 if (ret >= 0) 3932 ret = length; 3933 } 3934 return ret; 3935 } 3936 SLAB_ATTR(validate); 3937 3938 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 3939 { 3940 return 0; 3941 } 3942 3943 static ssize_t shrink_store(struct kmem_cache *s, 3944 const char *buf, size_t length) 3945 { 3946 if (buf[0] == '1') { 3947 int rc = kmem_cache_shrink(s); 3948 3949 if (rc) 3950 return rc; 3951 } else 3952 return -EINVAL; 3953 return length; 3954 } 3955 SLAB_ATTR(shrink); 3956 3957 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 3958 { 3959 if (!(s->flags & SLAB_STORE_USER)) 3960 return -ENOSYS; 3961 return list_locations(s, buf, TRACK_ALLOC); 3962 } 3963 SLAB_ATTR_RO(alloc_calls); 3964 3965 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 3966 { 3967 if (!(s->flags & SLAB_STORE_USER)) 3968 return -ENOSYS; 3969 return list_locations(s, buf, TRACK_FREE); 3970 } 3971 SLAB_ATTR_RO(free_calls); 3972 3973 #ifdef CONFIG_NUMA 3974 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 3975 { 3976 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 3977 } 3978 3979 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 3980 const char *buf, size_t length) 3981 { 3982 int n = simple_strtoul(buf, NULL, 10); 3983 3984 if (n < 100) 3985 s->remote_node_defrag_ratio = n * 10; 3986 return length; 3987 } 3988 SLAB_ATTR(remote_node_defrag_ratio); 3989 #endif 3990 3991 #ifdef CONFIG_SLUB_STATS 3992 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 3993 { 3994 unsigned long sum = 0; 3995 int cpu; 3996 int len; 3997 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 3998 3999 if (!data) 4000 return -ENOMEM; 4001 4002 for_each_online_cpu(cpu) { 4003 unsigned x = get_cpu_slab(s, cpu)->stat[si]; 4004 4005 data[cpu] = x; 4006 sum += x; 4007 } 4008 4009 len = sprintf(buf, "%lu", sum); 4010 4011 #ifdef CONFIG_SMP 4012 for_each_online_cpu(cpu) { 4013 if (data[cpu] && len < PAGE_SIZE - 20) 4014 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4015 } 4016 #endif 4017 kfree(data); 4018 return len + sprintf(buf + len, "\n"); 4019 } 4020 4021 #define STAT_ATTR(si, text) \ 4022 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4023 { \ 4024 return show_stat(s, buf, si); \ 4025 } \ 4026 SLAB_ATTR_RO(text); \ 4027 4028 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4029 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4030 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4031 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4032 STAT_ATTR(FREE_FROZEN, free_frozen); 4033 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4034 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4035 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4036 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4037 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4038 STAT_ATTR(FREE_SLAB, free_slab); 4039 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4040 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4041 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4042 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4043 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4044 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4045 4046 #endif 4047 4048 static struct attribute *slab_attrs[] = { 4049 &slab_size_attr.attr, 4050 &object_size_attr.attr, 4051 &objs_per_slab_attr.attr, 4052 &order_attr.attr, 4053 &objects_attr.attr, 4054 &slabs_attr.attr, 4055 &partial_attr.attr, 4056 &cpu_slabs_attr.attr, 4057 &ctor_attr.attr, 4058 &aliases_attr.attr, 4059 &align_attr.attr, 4060 &sanity_checks_attr.attr, 4061 &trace_attr.attr, 4062 &hwcache_align_attr.attr, 4063 &reclaim_account_attr.attr, 4064 &destroy_by_rcu_attr.attr, 4065 &red_zone_attr.attr, 4066 &poison_attr.attr, 4067 &store_user_attr.attr, 4068 &validate_attr.attr, 4069 &shrink_attr.attr, 4070 &alloc_calls_attr.attr, 4071 &free_calls_attr.attr, 4072 #ifdef CONFIG_ZONE_DMA 4073 &cache_dma_attr.attr, 4074 #endif 4075 #ifdef CONFIG_NUMA 4076 &remote_node_defrag_ratio_attr.attr, 4077 #endif 4078 #ifdef CONFIG_SLUB_STATS 4079 &alloc_fastpath_attr.attr, 4080 &alloc_slowpath_attr.attr, 4081 &free_fastpath_attr.attr, 4082 &free_slowpath_attr.attr, 4083 &free_frozen_attr.attr, 4084 &free_add_partial_attr.attr, 4085 &free_remove_partial_attr.attr, 4086 &alloc_from_partial_attr.attr, 4087 &alloc_slab_attr.attr, 4088 &alloc_refill_attr.attr, 4089 &free_slab_attr.attr, 4090 &cpuslab_flush_attr.attr, 4091 &deactivate_full_attr.attr, 4092 &deactivate_empty_attr.attr, 4093 &deactivate_to_head_attr.attr, 4094 &deactivate_to_tail_attr.attr, 4095 &deactivate_remote_frees_attr.attr, 4096 #endif 4097 NULL 4098 }; 4099 4100 static struct attribute_group slab_attr_group = { 4101 .attrs = slab_attrs, 4102 }; 4103 4104 static ssize_t slab_attr_show(struct kobject *kobj, 4105 struct attribute *attr, 4106 char *buf) 4107 { 4108 struct slab_attribute *attribute; 4109 struct kmem_cache *s; 4110 int err; 4111 4112 attribute = to_slab_attr(attr); 4113 s = to_slab(kobj); 4114 4115 if (!attribute->show) 4116 return -EIO; 4117 4118 err = attribute->show(s, buf); 4119 4120 return err; 4121 } 4122 4123 static ssize_t slab_attr_store(struct kobject *kobj, 4124 struct attribute *attr, 4125 const char *buf, size_t len) 4126 { 4127 struct slab_attribute *attribute; 4128 struct kmem_cache *s; 4129 int err; 4130 4131 attribute = to_slab_attr(attr); 4132 s = to_slab(kobj); 4133 4134 if (!attribute->store) 4135 return -EIO; 4136 4137 err = attribute->store(s, buf, len); 4138 4139 return err; 4140 } 4141 4142 static void kmem_cache_release(struct kobject *kobj) 4143 { 4144 struct kmem_cache *s = to_slab(kobj); 4145 4146 kfree(s); 4147 } 4148 4149 static struct sysfs_ops slab_sysfs_ops = { 4150 .show = slab_attr_show, 4151 .store = slab_attr_store, 4152 }; 4153 4154 static struct kobj_type slab_ktype = { 4155 .sysfs_ops = &slab_sysfs_ops, 4156 .release = kmem_cache_release 4157 }; 4158 4159 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4160 { 4161 struct kobj_type *ktype = get_ktype(kobj); 4162 4163 if (ktype == &slab_ktype) 4164 return 1; 4165 return 0; 4166 } 4167 4168 static struct kset_uevent_ops slab_uevent_ops = { 4169 .filter = uevent_filter, 4170 }; 4171 4172 static struct kset *slab_kset; 4173 4174 #define ID_STR_LENGTH 64 4175 4176 /* Create a unique string id for a slab cache: 4177 * 4178 * Format :[flags-]size 4179 */ 4180 static char *create_unique_id(struct kmem_cache *s) 4181 { 4182 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4183 char *p = name; 4184 4185 BUG_ON(!name); 4186 4187 *p++ = ':'; 4188 /* 4189 * First flags affecting slabcache operations. We will only 4190 * get here for aliasable slabs so we do not need to support 4191 * too many flags. The flags here must cover all flags that 4192 * are matched during merging to guarantee that the id is 4193 * unique. 4194 */ 4195 if (s->flags & SLAB_CACHE_DMA) 4196 *p++ = 'd'; 4197 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4198 *p++ = 'a'; 4199 if (s->flags & SLAB_DEBUG_FREE) 4200 *p++ = 'F'; 4201 if (p != name + 1) 4202 *p++ = '-'; 4203 p += sprintf(p, "%07d", s->size); 4204 BUG_ON(p > name + ID_STR_LENGTH - 1); 4205 return name; 4206 } 4207 4208 static int sysfs_slab_add(struct kmem_cache *s) 4209 { 4210 int err; 4211 const char *name; 4212 int unmergeable; 4213 4214 if (slab_state < SYSFS) 4215 /* Defer until later */ 4216 return 0; 4217 4218 unmergeable = slab_unmergeable(s); 4219 if (unmergeable) { 4220 /* 4221 * Slabcache can never be merged so we can use the name proper. 4222 * This is typically the case for debug situations. In that 4223 * case we can catch duplicate names easily. 4224 */ 4225 sysfs_remove_link(&slab_kset->kobj, s->name); 4226 name = s->name; 4227 } else { 4228 /* 4229 * Create a unique name for the slab as a target 4230 * for the symlinks. 4231 */ 4232 name = create_unique_id(s); 4233 } 4234 4235 s->kobj.kset = slab_kset; 4236 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4237 if (err) { 4238 kobject_put(&s->kobj); 4239 return err; 4240 } 4241 4242 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4243 if (err) 4244 return err; 4245 kobject_uevent(&s->kobj, KOBJ_ADD); 4246 if (!unmergeable) { 4247 /* Setup first alias */ 4248 sysfs_slab_alias(s, s->name); 4249 kfree(name); 4250 } 4251 return 0; 4252 } 4253 4254 static void sysfs_slab_remove(struct kmem_cache *s) 4255 { 4256 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4257 kobject_del(&s->kobj); 4258 kobject_put(&s->kobj); 4259 } 4260 4261 /* 4262 * Need to buffer aliases during bootup until sysfs becomes 4263 * available lest we loose that information. 4264 */ 4265 struct saved_alias { 4266 struct kmem_cache *s; 4267 const char *name; 4268 struct saved_alias *next; 4269 }; 4270 4271 static struct saved_alias *alias_list; 4272 4273 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4274 { 4275 struct saved_alias *al; 4276 4277 if (slab_state == SYSFS) { 4278 /* 4279 * If we have a leftover link then remove it. 4280 */ 4281 sysfs_remove_link(&slab_kset->kobj, name); 4282 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4283 } 4284 4285 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4286 if (!al) 4287 return -ENOMEM; 4288 4289 al->s = s; 4290 al->name = name; 4291 al->next = alias_list; 4292 alias_list = al; 4293 return 0; 4294 } 4295 4296 static int __init slab_sysfs_init(void) 4297 { 4298 struct kmem_cache *s; 4299 int err; 4300 4301 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4302 if (!slab_kset) { 4303 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4304 return -ENOSYS; 4305 } 4306 4307 slab_state = SYSFS; 4308 4309 list_for_each_entry(s, &slab_caches, list) { 4310 err = sysfs_slab_add(s); 4311 if (err) 4312 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4313 " to sysfs\n", s->name); 4314 } 4315 4316 while (alias_list) { 4317 struct saved_alias *al = alias_list; 4318 4319 alias_list = alias_list->next; 4320 err = sysfs_slab_alias(al->s, al->name); 4321 if (err) 4322 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4323 " %s to sysfs\n", s->name); 4324 kfree(al); 4325 } 4326 4327 resiliency_test(); 4328 return 0; 4329 } 4330 4331 __initcall(slab_sysfs_init); 4332 #endif 4333 4334 /* 4335 * The /proc/slabinfo ABI 4336 */ 4337 #ifdef CONFIG_SLABINFO 4338 4339 ssize_t slabinfo_write(struct file *file, const char __user * buffer, 4340 size_t count, loff_t *ppos) 4341 { 4342 return -EINVAL; 4343 } 4344 4345 4346 static void print_slabinfo_header(struct seq_file *m) 4347 { 4348 seq_puts(m, "slabinfo - version: 2.1\n"); 4349 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4350 "<objperslab> <pagesperslab>"); 4351 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4352 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4353 seq_putc(m, '\n'); 4354 } 4355 4356 static void *s_start(struct seq_file *m, loff_t *pos) 4357 { 4358 loff_t n = *pos; 4359 4360 down_read(&slub_lock); 4361 if (!n) 4362 print_slabinfo_header(m); 4363 4364 return seq_list_start(&slab_caches, *pos); 4365 } 4366 4367 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4368 { 4369 return seq_list_next(p, &slab_caches, pos); 4370 } 4371 4372 static void s_stop(struct seq_file *m, void *p) 4373 { 4374 up_read(&slub_lock); 4375 } 4376 4377 static int s_show(struct seq_file *m, void *p) 4378 { 4379 unsigned long nr_partials = 0; 4380 unsigned long nr_slabs = 0; 4381 unsigned long nr_inuse = 0; 4382 unsigned long nr_objs; 4383 struct kmem_cache *s; 4384 int node; 4385 4386 s = list_entry(p, struct kmem_cache, list); 4387 4388 for_each_online_node(node) { 4389 struct kmem_cache_node *n = get_node(s, node); 4390 4391 if (!n) 4392 continue; 4393 4394 nr_partials += n->nr_partial; 4395 nr_slabs += atomic_long_read(&n->nr_slabs); 4396 nr_inuse += count_partial(n); 4397 } 4398 4399 nr_objs = nr_slabs * s->objects; 4400 nr_inuse += (nr_slabs - nr_partials) * s->objects; 4401 4402 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4403 nr_objs, s->size, s->objects, (1 << s->order)); 4404 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4405 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4406 0UL); 4407 seq_putc(m, '\n'); 4408 return 0; 4409 } 4410 4411 const struct seq_operations slabinfo_op = { 4412 .start = s_start, 4413 .next = s_next, 4414 .stop = s_stop, 4415 .show = s_show, 4416 }; 4417 4418 #endif /* CONFIG_SLABINFO */ 4419