xref: /openbmc/linux/mm/slub.c (revision f30828a6)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
26 
27 /*
28  * Lock order:
29  *   1. slab_lock(page)
30  *   2. slab->list_lock
31  *
32  *   The slab_lock protects operations on the object of a particular
33  *   slab and its metadata in the page struct. If the slab lock
34  *   has been taken then no allocations nor frees can be performed
35  *   on the objects in the slab nor can the slab be added or removed
36  *   from the partial or full lists since this would mean modifying
37  *   the page_struct of the slab.
38  *
39  *   The list_lock protects the partial and full list on each node and
40  *   the partial slab counter. If taken then no new slabs may be added or
41  *   removed from the lists nor make the number of partial slabs be modified.
42  *   (Note that the total number of slabs is an atomic value that may be
43  *   modified without taking the list lock).
44  *
45  *   The list_lock is a centralized lock and thus we avoid taking it as
46  *   much as possible. As long as SLUB does not have to handle partial
47  *   slabs, operations can continue without any centralized lock. F.e.
48  *   allocating a long series of objects that fill up slabs does not require
49  *   the list lock.
50  *
51  *   The lock order is sometimes inverted when we are trying to get a slab
52  *   off a list. We take the list_lock and then look for a page on the list
53  *   to use. While we do that objects in the slabs may be freed. We can
54  *   only operate on the slab if we have also taken the slab_lock. So we use
55  *   a slab_trylock() on the slab. If trylock was successful then no frees
56  *   can occur anymore and we can use the slab for allocations etc. If the
57  *   slab_trylock() does not succeed then frees are in progress in the slab and
58  *   we must stay away from it for a while since we may cause a bouncing
59  *   cacheline if we try to acquire the lock. So go onto the next slab.
60  *   If all pages are busy then we may allocate a new slab instead of reusing
61  *   a partial slab. A new slab has noone operating on it and thus there is
62  *   no danger of cacheline contention.
63  *
64  *   Interrupts are disabled during allocation and deallocation in order to
65  *   make the slab allocator safe to use in the context of an irq. In addition
66  *   interrupts are disabled to ensure that the processor does not change
67  *   while handling per_cpu slabs, due to kernel preemption.
68  *
69  * SLUB assigns one slab for allocation to each processor.
70  * Allocations only occur from these slabs called cpu slabs.
71  *
72  * Slabs with free elements are kept on a partial list and during regular
73  * operations no list for full slabs is used. If an object in a full slab is
74  * freed then the slab will show up again on the partial lists.
75  * We track full slabs for debugging purposes though because otherwise we
76  * cannot scan all objects.
77  *
78  * Slabs are freed when they become empty. Teardown and setup is
79  * minimal so we rely on the page allocators per cpu caches for
80  * fast frees and allocs.
81  *
82  * Overloading of page flags that are otherwise used for LRU management.
83  *
84  * PageActive 		The slab is frozen and exempt from list processing.
85  * 			This means that the slab is dedicated to a purpose
86  * 			such as satisfying allocations for a specific
87  * 			processor. Objects may be freed in the slab while
88  * 			it is frozen but slab_free will then skip the usual
89  * 			list operations. It is up to the processor holding
90  * 			the slab to integrate the slab into the slab lists
91  * 			when the slab is no longer needed.
92  *
93  * 			One use of this flag is to mark slabs that are
94  * 			used for allocations. Then such a slab becomes a cpu
95  * 			slab. The cpu slab may be equipped with an additional
96  * 			freelist that allows lockless access to
97  * 			free objects in addition to the regular freelist
98  * 			that requires the slab lock.
99  *
100  * PageError		Slab requires special handling due to debug
101  * 			options set. This moves	slab handling out of
102  * 			the fast path and disables lockless freelists.
103  */
104 
105 #define FROZEN (1 << PG_active)
106 
107 #ifdef CONFIG_SLUB_DEBUG
108 #define SLABDEBUG (1 << PG_error)
109 #else
110 #define SLABDEBUG 0
111 #endif
112 
113 static inline int SlabFrozen(struct page *page)
114 {
115 	return page->flags & FROZEN;
116 }
117 
118 static inline void SetSlabFrozen(struct page *page)
119 {
120 	page->flags |= FROZEN;
121 }
122 
123 static inline void ClearSlabFrozen(struct page *page)
124 {
125 	page->flags &= ~FROZEN;
126 }
127 
128 static inline int SlabDebug(struct page *page)
129 {
130 	return page->flags & SLABDEBUG;
131 }
132 
133 static inline void SetSlabDebug(struct page *page)
134 {
135 	page->flags |= SLABDEBUG;
136 }
137 
138 static inline void ClearSlabDebug(struct page *page)
139 {
140 	page->flags &= ~SLABDEBUG;
141 }
142 
143 /*
144  * Issues still to be resolved:
145  *
146  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147  *
148  * - Variable sizing of the per node arrays
149  */
150 
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153 
154 /*
155  * Mininum number of partial slabs. These will be left on the partial
156  * lists even if they are empty. kmem_cache_shrink may reclaim them.
157  */
158 #define MIN_PARTIAL 5
159 
160 /*
161  * Maximum number of desirable partial slabs.
162  * The existence of more partial slabs makes kmem_cache_shrink
163  * sort the partial list by the number of objects in the.
164  */
165 #define MAX_PARTIAL 10
166 
167 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168 				SLAB_POISON | SLAB_STORE_USER)
169 
170 /*
171  * Set of flags that will prevent slab merging
172  */
173 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
175 
176 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 		SLAB_CACHE_DMA)
178 
179 #ifndef ARCH_KMALLOC_MINALIGN
180 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
181 #endif
182 
183 #ifndef ARCH_SLAB_MINALIGN
184 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
185 #endif
186 
187 /* Internal SLUB flags */
188 #define __OBJECT_POISON		0x80000000 /* Poison object */
189 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
190 
191 static int kmem_size = sizeof(struct kmem_cache);
192 
193 #ifdef CONFIG_SMP
194 static struct notifier_block slab_notifier;
195 #endif
196 
197 static enum {
198 	DOWN,		/* No slab functionality available */
199 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
200 	UP,		/* Everything works but does not show up in sysfs */
201 	SYSFS		/* Sysfs up */
202 } slab_state = DOWN;
203 
204 /* A list of all slab caches on the system */
205 static DECLARE_RWSEM(slub_lock);
206 static LIST_HEAD(slab_caches);
207 
208 /*
209  * Tracking user of a slab.
210  */
211 struct track {
212 	void *addr;		/* Called from address */
213 	int cpu;		/* Was running on cpu */
214 	int pid;		/* Pid context */
215 	unsigned long when;	/* When did the operation occur */
216 };
217 
218 enum track_item { TRACK_ALLOC, TRACK_FREE };
219 
220 #ifdef CONFIG_SLUB_DEBUG
221 static int sysfs_slab_add(struct kmem_cache *);
222 static int sysfs_slab_alias(struct kmem_cache *, const char *);
223 static void sysfs_slab_remove(struct kmem_cache *);
224 
225 #else
226 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
227 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228 							{ return 0; }
229 static inline void sysfs_slab_remove(struct kmem_cache *s)
230 {
231 	kfree(s);
232 }
233 
234 #endif
235 
236 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
237 {
238 #ifdef CONFIG_SLUB_STATS
239 	c->stat[si]++;
240 #endif
241 }
242 
243 /********************************************************************
244  * 			Core slab cache functions
245  *******************************************************************/
246 
247 int slab_is_available(void)
248 {
249 	return slab_state >= UP;
250 }
251 
252 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
253 {
254 #ifdef CONFIG_NUMA
255 	return s->node[node];
256 #else
257 	return &s->local_node;
258 #endif
259 }
260 
261 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
262 {
263 #ifdef CONFIG_SMP
264 	return s->cpu_slab[cpu];
265 #else
266 	return &s->cpu_slab;
267 #endif
268 }
269 
270 /* Verify that a pointer has an address that is valid within a slab page */
271 static inline int check_valid_pointer(struct kmem_cache *s,
272 				struct page *page, const void *object)
273 {
274 	void *base;
275 
276 	if (!object)
277 		return 1;
278 
279 	base = page_address(page);
280 	if (object < base || object >= base + page->objects * s->size ||
281 		(object - base) % s->size) {
282 		return 0;
283 	}
284 
285 	return 1;
286 }
287 
288 /*
289  * Slow version of get and set free pointer.
290  *
291  * This version requires touching the cache lines of kmem_cache which
292  * we avoid to do in the fast alloc free paths. There we obtain the offset
293  * from the page struct.
294  */
295 static inline void *get_freepointer(struct kmem_cache *s, void *object)
296 {
297 	return *(void **)(object + s->offset);
298 }
299 
300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 	*(void **)(object + s->offset) = fp;
303 }
304 
305 /* Loop over all objects in a slab */
306 #define for_each_object(__p, __s, __addr, __objects) \
307 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
308 			__p += (__s)->size)
309 
310 /* Scan freelist */
311 #define for_each_free_object(__p, __s, __free) \
312 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
313 
314 /* Determine object index from a given position */
315 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316 {
317 	return (p - addr) / s->size;
318 }
319 
320 static inline struct kmem_cache_order_objects oo_make(int order,
321 						unsigned long size)
322 {
323 	struct kmem_cache_order_objects x = {
324 		(order << 16) + (PAGE_SIZE << order) / size
325 	};
326 
327 	return x;
328 }
329 
330 static inline int oo_order(struct kmem_cache_order_objects x)
331 {
332 	return x.x >> 16;
333 }
334 
335 static inline int oo_objects(struct kmem_cache_order_objects x)
336 {
337 	return x.x & ((1 << 16) - 1);
338 }
339 
340 #ifdef CONFIG_SLUB_DEBUG
341 /*
342  * Debug settings:
343  */
344 #ifdef CONFIG_SLUB_DEBUG_ON
345 static int slub_debug = DEBUG_DEFAULT_FLAGS;
346 #else
347 static int slub_debug;
348 #endif
349 
350 static char *slub_debug_slabs;
351 
352 /*
353  * Object debugging
354  */
355 static void print_section(char *text, u8 *addr, unsigned int length)
356 {
357 	int i, offset;
358 	int newline = 1;
359 	char ascii[17];
360 
361 	ascii[16] = 0;
362 
363 	for (i = 0; i < length; i++) {
364 		if (newline) {
365 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
366 			newline = 0;
367 		}
368 		printk(KERN_CONT " %02x", addr[i]);
369 		offset = i % 16;
370 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
371 		if (offset == 15) {
372 			printk(KERN_CONT " %s\n", ascii);
373 			newline = 1;
374 		}
375 	}
376 	if (!newline) {
377 		i %= 16;
378 		while (i < 16) {
379 			printk(KERN_CONT "   ");
380 			ascii[i] = ' ';
381 			i++;
382 		}
383 		printk(KERN_CONT " %s\n", ascii);
384 	}
385 }
386 
387 static struct track *get_track(struct kmem_cache *s, void *object,
388 	enum track_item alloc)
389 {
390 	struct track *p;
391 
392 	if (s->offset)
393 		p = object + s->offset + sizeof(void *);
394 	else
395 		p = object + s->inuse;
396 
397 	return p + alloc;
398 }
399 
400 static void set_track(struct kmem_cache *s, void *object,
401 				enum track_item alloc, void *addr)
402 {
403 	struct track *p;
404 
405 	if (s->offset)
406 		p = object + s->offset + sizeof(void *);
407 	else
408 		p = object + s->inuse;
409 
410 	p += alloc;
411 	if (addr) {
412 		p->addr = addr;
413 		p->cpu = smp_processor_id();
414 		p->pid = current->pid;
415 		p->when = jiffies;
416 	} else
417 		memset(p, 0, sizeof(struct track));
418 }
419 
420 static void init_tracking(struct kmem_cache *s, void *object)
421 {
422 	if (!(s->flags & SLAB_STORE_USER))
423 		return;
424 
425 	set_track(s, object, TRACK_FREE, NULL);
426 	set_track(s, object, TRACK_ALLOC, NULL);
427 }
428 
429 static void print_track(const char *s, struct track *t)
430 {
431 	if (!t->addr)
432 		return;
433 
434 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
435 		s, t->addr, jiffies - t->when, t->cpu, t->pid);
436 }
437 
438 static void print_tracking(struct kmem_cache *s, void *object)
439 {
440 	if (!(s->flags & SLAB_STORE_USER))
441 		return;
442 
443 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
444 	print_track("Freed", get_track(s, object, TRACK_FREE));
445 }
446 
447 static void print_page_info(struct page *page)
448 {
449 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
450 		page, page->objects, page->inuse, page->freelist, page->flags);
451 
452 }
453 
454 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
455 {
456 	va_list args;
457 	char buf[100];
458 
459 	va_start(args, fmt);
460 	vsnprintf(buf, sizeof(buf), fmt, args);
461 	va_end(args);
462 	printk(KERN_ERR "========================================"
463 			"=====================================\n");
464 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
465 	printk(KERN_ERR "----------------------------------------"
466 			"-------------------------------------\n\n");
467 }
468 
469 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
470 {
471 	va_list args;
472 	char buf[100];
473 
474 	va_start(args, fmt);
475 	vsnprintf(buf, sizeof(buf), fmt, args);
476 	va_end(args);
477 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
478 }
479 
480 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
481 {
482 	unsigned int off;	/* Offset of last byte */
483 	u8 *addr = page_address(page);
484 
485 	print_tracking(s, p);
486 
487 	print_page_info(page);
488 
489 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
490 			p, p - addr, get_freepointer(s, p));
491 
492 	if (p > addr + 16)
493 		print_section("Bytes b4", p - 16, 16);
494 
495 	print_section("Object", p, min(s->objsize, 128));
496 
497 	if (s->flags & SLAB_RED_ZONE)
498 		print_section("Redzone", p + s->objsize,
499 			s->inuse - s->objsize);
500 
501 	if (s->offset)
502 		off = s->offset + sizeof(void *);
503 	else
504 		off = s->inuse;
505 
506 	if (s->flags & SLAB_STORE_USER)
507 		off += 2 * sizeof(struct track);
508 
509 	if (off != s->size)
510 		/* Beginning of the filler is the free pointer */
511 		print_section("Padding", p + off, s->size - off);
512 
513 	dump_stack();
514 }
515 
516 static void object_err(struct kmem_cache *s, struct page *page,
517 			u8 *object, char *reason)
518 {
519 	slab_bug(s, "%s", reason);
520 	print_trailer(s, page, object);
521 }
522 
523 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
524 {
525 	va_list args;
526 	char buf[100];
527 
528 	va_start(args, fmt);
529 	vsnprintf(buf, sizeof(buf), fmt, args);
530 	va_end(args);
531 	slab_bug(s, "%s", buf);
532 	print_page_info(page);
533 	dump_stack();
534 }
535 
536 static void init_object(struct kmem_cache *s, void *object, int active)
537 {
538 	u8 *p = object;
539 
540 	if (s->flags & __OBJECT_POISON) {
541 		memset(p, POISON_FREE, s->objsize - 1);
542 		p[s->objsize - 1] = POISON_END;
543 	}
544 
545 	if (s->flags & SLAB_RED_ZONE)
546 		memset(p + s->objsize,
547 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
548 			s->inuse - s->objsize);
549 }
550 
551 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
552 {
553 	while (bytes) {
554 		if (*start != (u8)value)
555 			return start;
556 		start++;
557 		bytes--;
558 	}
559 	return NULL;
560 }
561 
562 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
563 						void *from, void *to)
564 {
565 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
566 	memset(from, data, to - from);
567 }
568 
569 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
570 			u8 *object, char *what,
571 			u8 *start, unsigned int value, unsigned int bytes)
572 {
573 	u8 *fault;
574 	u8 *end;
575 
576 	fault = check_bytes(start, value, bytes);
577 	if (!fault)
578 		return 1;
579 
580 	end = start + bytes;
581 	while (end > fault && end[-1] == value)
582 		end--;
583 
584 	slab_bug(s, "%s overwritten", what);
585 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
586 					fault, end - 1, fault[0], value);
587 	print_trailer(s, page, object);
588 
589 	restore_bytes(s, what, value, fault, end);
590 	return 0;
591 }
592 
593 /*
594  * Object layout:
595  *
596  * object address
597  * 	Bytes of the object to be managed.
598  * 	If the freepointer may overlay the object then the free
599  * 	pointer is the first word of the object.
600  *
601  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
602  * 	0xa5 (POISON_END)
603  *
604  * object + s->objsize
605  * 	Padding to reach word boundary. This is also used for Redzoning.
606  * 	Padding is extended by another word if Redzoning is enabled and
607  * 	objsize == inuse.
608  *
609  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
610  * 	0xcc (RED_ACTIVE) for objects in use.
611  *
612  * object + s->inuse
613  * 	Meta data starts here.
614  *
615  * 	A. Free pointer (if we cannot overwrite object on free)
616  * 	B. Tracking data for SLAB_STORE_USER
617  * 	C. Padding to reach required alignment boundary or at mininum
618  * 		one word if debugging is on to be able to detect writes
619  * 		before the word boundary.
620  *
621  *	Padding is done using 0x5a (POISON_INUSE)
622  *
623  * object + s->size
624  * 	Nothing is used beyond s->size.
625  *
626  * If slabcaches are merged then the objsize and inuse boundaries are mostly
627  * ignored. And therefore no slab options that rely on these boundaries
628  * may be used with merged slabcaches.
629  */
630 
631 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
632 {
633 	unsigned long off = s->inuse;	/* The end of info */
634 
635 	if (s->offset)
636 		/* Freepointer is placed after the object. */
637 		off += sizeof(void *);
638 
639 	if (s->flags & SLAB_STORE_USER)
640 		/* We also have user information there */
641 		off += 2 * sizeof(struct track);
642 
643 	if (s->size == off)
644 		return 1;
645 
646 	return check_bytes_and_report(s, page, p, "Object padding",
647 				p + off, POISON_INUSE, s->size - off);
648 }
649 
650 /* Check the pad bytes at the end of a slab page */
651 static int slab_pad_check(struct kmem_cache *s, struct page *page)
652 {
653 	u8 *start;
654 	u8 *fault;
655 	u8 *end;
656 	int length;
657 	int remainder;
658 
659 	if (!(s->flags & SLAB_POISON))
660 		return 1;
661 
662 	start = page_address(page);
663 	length = (PAGE_SIZE << compound_order(page));
664 	end = start + length;
665 	remainder = length % s->size;
666 	if (!remainder)
667 		return 1;
668 
669 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
670 	if (!fault)
671 		return 1;
672 	while (end > fault && end[-1] == POISON_INUSE)
673 		end--;
674 
675 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
676 	print_section("Padding", end - remainder, remainder);
677 
678 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
679 	return 0;
680 }
681 
682 static int check_object(struct kmem_cache *s, struct page *page,
683 					void *object, int active)
684 {
685 	u8 *p = object;
686 	u8 *endobject = object + s->objsize;
687 
688 	if (s->flags & SLAB_RED_ZONE) {
689 		unsigned int red =
690 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
691 
692 		if (!check_bytes_and_report(s, page, object, "Redzone",
693 			endobject, red, s->inuse - s->objsize))
694 			return 0;
695 	} else {
696 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
697 			check_bytes_and_report(s, page, p, "Alignment padding",
698 				endobject, POISON_INUSE, s->inuse - s->objsize);
699 		}
700 	}
701 
702 	if (s->flags & SLAB_POISON) {
703 		if (!active && (s->flags & __OBJECT_POISON) &&
704 			(!check_bytes_and_report(s, page, p, "Poison", p,
705 					POISON_FREE, s->objsize - 1) ||
706 			 !check_bytes_and_report(s, page, p, "Poison",
707 				p + s->objsize - 1, POISON_END, 1)))
708 			return 0;
709 		/*
710 		 * check_pad_bytes cleans up on its own.
711 		 */
712 		check_pad_bytes(s, page, p);
713 	}
714 
715 	if (!s->offset && active)
716 		/*
717 		 * Object and freepointer overlap. Cannot check
718 		 * freepointer while object is allocated.
719 		 */
720 		return 1;
721 
722 	/* Check free pointer validity */
723 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
724 		object_err(s, page, p, "Freepointer corrupt");
725 		/*
726 		 * No choice but to zap it and thus loose the remainder
727 		 * of the free objects in this slab. May cause
728 		 * another error because the object count is now wrong.
729 		 */
730 		set_freepointer(s, p, NULL);
731 		return 0;
732 	}
733 	return 1;
734 }
735 
736 static int check_slab(struct kmem_cache *s, struct page *page)
737 {
738 	int maxobj;
739 
740 	VM_BUG_ON(!irqs_disabled());
741 
742 	if (!PageSlab(page)) {
743 		slab_err(s, page, "Not a valid slab page");
744 		return 0;
745 	}
746 
747 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
748 	if (page->objects > maxobj) {
749 		slab_err(s, page, "objects %u > max %u",
750 			s->name, page->objects, maxobj);
751 		return 0;
752 	}
753 	if (page->inuse > page->objects) {
754 		slab_err(s, page, "inuse %u > max %u",
755 			s->name, page->inuse, page->objects);
756 		return 0;
757 	}
758 	/* Slab_pad_check fixes things up after itself */
759 	slab_pad_check(s, page);
760 	return 1;
761 }
762 
763 /*
764  * Determine if a certain object on a page is on the freelist. Must hold the
765  * slab lock to guarantee that the chains are in a consistent state.
766  */
767 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
768 {
769 	int nr = 0;
770 	void *fp = page->freelist;
771 	void *object = NULL;
772 	unsigned long max_objects;
773 
774 	while (fp && nr <= page->objects) {
775 		if (fp == search)
776 			return 1;
777 		if (!check_valid_pointer(s, page, fp)) {
778 			if (object) {
779 				object_err(s, page, object,
780 					"Freechain corrupt");
781 				set_freepointer(s, object, NULL);
782 				break;
783 			} else {
784 				slab_err(s, page, "Freepointer corrupt");
785 				page->freelist = NULL;
786 				page->inuse = page->objects;
787 				slab_fix(s, "Freelist cleared");
788 				return 0;
789 			}
790 			break;
791 		}
792 		object = fp;
793 		fp = get_freepointer(s, object);
794 		nr++;
795 	}
796 
797 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
798 	if (max_objects > 65535)
799 		max_objects = 65535;
800 
801 	if (page->objects != max_objects) {
802 		slab_err(s, page, "Wrong number of objects. Found %d but "
803 			"should be %d", page->objects, max_objects);
804 		page->objects = max_objects;
805 		slab_fix(s, "Number of objects adjusted.");
806 	}
807 	if (page->inuse != page->objects - nr) {
808 		slab_err(s, page, "Wrong object count. Counter is %d but "
809 			"counted were %d", page->inuse, page->objects - nr);
810 		page->inuse = page->objects - nr;
811 		slab_fix(s, "Object count adjusted.");
812 	}
813 	return search == NULL;
814 }
815 
816 static void trace(struct kmem_cache *s, struct page *page, void *object,
817 								int alloc)
818 {
819 	if (s->flags & SLAB_TRACE) {
820 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
821 			s->name,
822 			alloc ? "alloc" : "free",
823 			object, page->inuse,
824 			page->freelist);
825 
826 		if (!alloc)
827 			print_section("Object", (void *)object, s->objsize);
828 
829 		dump_stack();
830 	}
831 }
832 
833 /*
834  * Tracking of fully allocated slabs for debugging purposes.
835  */
836 static void add_full(struct kmem_cache_node *n, struct page *page)
837 {
838 	spin_lock(&n->list_lock);
839 	list_add(&page->lru, &n->full);
840 	spin_unlock(&n->list_lock);
841 }
842 
843 static void remove_full(struct kmem_cache *s, struct page *page)
844 {
845 	struct kmem_cache_node *n;
846 
847 	if (!(s->flags & SLAB_STORE_USER))
848 		return;
849 
850 	n = get_node(s, page_to_nid(page));
851 
852 	spin_lock(&n->list_lock);
853 	list_del(&page->lru);
854 	spin_unlock(&n->list_lock);
855 }
856 
857 /* Tracking of the number of slabs for debugging purposes */
858 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
859 {
860 	struct kmem_cache_node *n = get_node(s, node);
861 
862 	return atomic_long_read(&n->nr_slabs);
863 }
864 
865 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
866 {
867 	struct kmem_cache_node *n = get_node(s, node);
868 
869 	/*
870 	 * May be called early in order to allocate a slab for the
871 	 * kmem_cache_node structure. Solve the chicken-egg
872 	 * dilemma by deferring the increment of the count during
873 	 * bootstrap (see early_kmem_cache_node_alloc).
874 	 */
875 	if (!NUMA_BUILD || n) {
876 		atomic_long_inc(&n->nr_slabs);
877 		atomic_long_add(objects, &n->total_objects);
878 	}
879 }
880 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
881 {
882 	struct kmem_cache_node *n = get_node(s, node);
883 
884 	atomic_long_dec(&n->nr_slabs);
885 	atomic_long_sub(objects, &n->total_objects);
886 }
887 
888 /* Object debug checks for alloc/free paths */
889 static void setup_object_debug(struct kmem_cache *s, struct page *page,
890 								void *object)
891 {
892 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
893 		return;
894 
895 	init_object(s, object, 0);
896 	init_tracking(s, object);
897 }
898 
899 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
900 						void *object, void *addr)
901 {
902 	if (!check_slab(s, page))
903 		goto bad;
904 
905 	if (!on_freelist(s, page, object)) {
906 		object_err(s, page, object, "Object already allocated");
907 		goto bad;
908 	}
909 
910 	if (!check_valid_pointer(s, page, object)) {
911 		object_err(s, page, object, "Freelist Pointer check fails");
912 		goto bad;
913 	}
914 
915 	if (!check_object(s, page, object, 0))
916 		goto bad;
917 
918 	/* Success perform special debug activities for allocs */
919 	if (s->flags & SLAB_STORE_USER)
920 		set_track(s, object, TRACK_ALLOC, addr);
921 	trace(s, page, object, 1);
922 	init_object(s, object, 1);
923 	return 1;
924 
925 bad:
926 	if (PageSlab(page)) {
927 		/*
928 		 * If this is a slab page then lets do the best we can
929 		 * to avoid issues in the future. Marking all objects
930 		 * as used avoids touching the remaining objects.
931 		 */
932 		slab_fix(s, "Marking all objects used");
933 		page->inuse = page->objects;
934 		page->freelist = NULL;
935 	}
936 	return 0;
937 }
938 
939 static int free_debug_processing(struct kmem_cache *s, struct page *page,
940 						void *object, void *addr)
941 {
942 	if (!check_slab(s, page))
943 		goto fail;
944 
945 	if (!check_valid_pointer(s, page, object)) {
946 		slab_err(s, page, "Invalid object pointer 0x%p", object);
947 		goto fail;
948 	}
949 
950 	if (on_freelist(s, page, object)) {
951 		object_err(s, page, object, "Object already free");
952 		goto fail;
953 	}
954 
955 	if (!check_object(s, page, object, 1))
956 		return 0;
957 
958 	if (unlikely(s != page->slab)) {
959 		if (!PageSlab(page)) {
960 			slab_err(s, page, "Attempt to free object(0x%p) "
961 				"outside of slab", object);
962 		} else if (!page->slab) {
963 			printk(KERN_ERR
964 				"SLUB <none>: no slab for object 0x%p.\n",
965 						object);
966 			dump_stack();
967 		} else
968 			object_err(s, page, object,
969 					"page slab pointer corrupt.");
970 		goto fail;
971 	}
972 
973 	/* Special debug activities for freeing objects */
974 	if (!SlabFrozen(page) && !page->freelist)
975 		remove_full(s, page);
976 	if (s->flags & SLAB_STORE_USER)
977 		set_track(s, object, TRACK_FREE, addr);
978 	trace(s, page, object, 0);
979 	init_object(s, object, 0);
980 	return 1;
981 
982 fail:
983 	slab_fix(s, "Object at 0x%p not freed", object);
984 	return 0;
985 }
986 
987 static int __init setup_slub_debug(char *str)
988 {
989 	slub_debug = DEBUG_DEFAULT_FLAGS;
990 	if (*str++ != '=' || !*str)
991 		/*
992 		 * No options specified. Switch on full debugging.
993 		 */
994 		goto out;
995 
996 	if (*str == ',')
997 		/*
998 		 * No options but restriction on slabs. This means full
999 		 * debugging for slabs matching a pattern.
1000 		 */
1001 		goto check_slabs;
1002 
1003 	slub_debug = 0;
1004 	if (*str == '-')
1005 		/*
1006 		 * Switch off all debugging measures.
1007 		 */
1008 		goto out;
1009 
1010 	/*
1011 	 * Determine which debug features should be switched on
1012 	 */
1013 	for (; *str && *str != ','; str++) {
1014 		switch (tolower(*str)) {
1015 		case 'f':
1016 			slub_debug |= SLAB_DEBUG_FREE;
1017 			break;
1018 		case 'z':
1019 			slub_debug |= SLAB_RED_ZONE;
1020 			break;
1021 		case 'p':
1022 			slub_debug |= SLAB_POISON;
1023 			break;
1024 		case 'u':
1025 			slub_debug |= SLAB_STORE_USER;
1026 			break;
1027 		case 't':
1028 			slub_debug |= SLAB_TRACE;
1029 			break;
1030 		default:
1031 			printk(KERN_ERR "slub_debug option '%c' "
1032 				"unknown. skipped\n", *str);
1033 		}
1034 	}
1035 
1036 check_slabs:
1037 	if (*str == ',')
1038 		slub_debug_slabs = str + 1;
1039 out:
1040 	return 1;
1041 }
1042 
1043 __setup("slub_debug", setup_slub_debug);
1044 
1045 static unsigned long kmem_cache_flags(unsigned long objsize,
1046 	unsigned long flags, const char *name,
1047 	void (*ctor)(struct kmem_cache *, void *))
1048 {
1049 	/*
1050 	 * Enable debugging if selected on the kernel commandline.
1051 	 */
1052 	if (slub_debug && (!slub_debug_slabs ||
1053 	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1054 			flags |= slub_debug;
1055 
1056 	return flags;
1057 }
1058 #else
1059 static inline void setup_object_debug(struct kmem_cache *s,
1060 			struct page *page, void *object) {}
1061 
1062 static inline int alloc_debug_processing(struct kmem_cache *s,
1063 	struct page *page, void *object, void *addr) { return 0; }
1064 
1065 static inline int free_debug_processing(struct kmem_cache *s,
1066 	struct page *page, void *object, void *addr) { return 0; }
1067 
1068 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1069 			{ return 1; }
1070 static inline int check_object(struct kmem_cache *s, struct page *page,
1071 			void *object, int active) { return 1; }
1072 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1073 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1074 	unsigned long flags, const char *name,
1075 	void (*ctor)(struct kmem_cache *, void *))
1076 {
1077 	return flags;
1078 }
1079 #define slub_debug 0
1080 
1081 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1082 							{ return 0; }
1083 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1084 							int objects) {}
1085 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1086 							int objects) {}
1087 #endif
1088 
1089 /*
1090  * Slab allocation and freeing
1091  */
1092 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1093 					struct kmem_cache_order_objects oo)
1094 {
1095 	int order = oo_order(oo);
1096 
1097 	if (node == -1)
1098 		return alloc_pages(flags, order);
1099 	else
1100 		return alloc_pages_node(node, flags, order);
1101 }
1102 
1103 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1104 {
1105 	struct page *page;
1106 	struct kmem_cache_order_objects oo = s->oo;
1107 
1108 	flags |= s->allocflags;
1109 
1110 	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1111 									oo);
1112 	if (unlikely(!page)) {
1113 		oo = s->min;
1114 		/*
1115 		 * Allocation may have failed due to fragmentation.
1116 		 * Try a lower order alloc if possible
1117 		 */
1118 		page = alloc_slab_page(flags, node, oo);
1119 		if (!page)
1120 			return NULL;
1121 
1122 		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1123 	}
1124 	page->objects = oo_objects(oo);
1125 	mod_zone_page_state(page_zone(page),
1126 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1127 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1128 		1 << oo_order(oo));
1129 
1130 	return page;
1131 }
1132 
1133 static void setup_object(struct kmem_cache *s, struct page *page,
1134 				void *object)
1135 {
1136 	setup_object_debug(s, page, object);
1137 	if (unlikely(s->ctor))
1138 		s->ctor(s, object);
1139 }
1140 
1141 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1142 {
1143 	struct page *page;
1144 	void *start;
1145 	void *last;
1146 	void *p;
1147 
1148 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1149 
1150 	page = allocate_slab(s,
1151 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1152 	if (!page)
1153 		goto out;
1154 
1155 	inc_slabs_node(s, page_to_nid(page), page->objects);
1156 	page->slab = s;
1157 	page->flags |= 1 << PG_slab;
1158 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1159 			SLAB_STORE_USER | SLAB_TRACE))
1160 		SetSlabDebug(page);
1161 
1162 	start = page_address(page);
1163 
1164 	if (unlikely(s->flags & SLAB_POISON))
1165 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1166 
1167 	last = start;
1168 	for_each_object(p, s, start, page->objects) {
1169 		setup_object(s, page, last);
1170 		set_freepointer(s, last, p);
1171 		last = p;
1172 	}
1173 	setup_object(s, page, last);
1174 	set_freepointer(s, last, NULL);
1175 
1176 	page->freelist = start;
1177 	page->inuse = 0;
1178 out:
1179 	return page;
1180 }
1181 
1182 static void __free_slab(struct kmem_cache *s, struct page *page)
1183 {
1184 	int order = compound_order(page);
1185 	int pages = 1 << order;
1186 
1187 	if (unlikely(SlabDebug(page))) {
1188 		void *p;
1189 
1190 		slab_pad_check(s, page);
1191 		for_each_object(p, s, page_address(page),
1192 						page->objects)
1193 			check_object(s, page, p, 0);
1194 		ClearSlabDebug(page);
1195 	}
1196 
1197 	mod_zone_page_state(page_zone(page),
1198 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1199 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1200 		-pages);
1201 
1202 	__ClearPageSlab(page);
1203 	reset_page_mapcount(page);
1204 	__free_pages(page, order);
1205 }
1206 
1207 static void rcu_free_slab(struct rcu_head *h)
1208 {
1209 	struct page *page;
1210 
1211 	page = container_of((struct list_head *)h, struct page, lru);
1212 	__free_slab(page->slab, page);
1213 }
1214 
1215 static void free_slab(struct kmem_cache *s, struct page *page)
1216 {
1217 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1218 		/*
1219 		 * RCU free overloads the RCU head over the LRU
1220 		 */
1221 		struct rcu_head *head = (void *)&page->lru;
1222 
1223 		call_rcu(head, rcu_free_slab);
1224 	} else
1225 		__free_slab(s, page);
1226 }
1227 
1228 static void discard_slab(struct kmem_cache *s, struct page *page)
1229 {
1230 	dec_slabs_node(s, page_to_nid(page), page->objects);
1231 	free_slab(s, page);
1232 }
1233 
1234 /*
1235  * Per slab locking using the pagelock
1236  */
1237 static __always_inline void slab_lock(struct page *page)
1238 {
1239 	bit_spin_lock(PG_locked, &page->flags);
1240 }
1241 
1242 static __always_inline void slab_unlock(struct page *page)
1243 {
1244 	__bit_spin_unlock(PG_locked, &page->flags);
1245 }
1246 
1247 static __always_inline int slab_trylock(struct page *page)
1248 {
1249 	int rc = 1;
1250 
1251 	rc = bit_spin_trylock(PG_locked, &page->flags);
1252 	return rc;
1253 }
1254 
1255 /*
1256  * Management of partially allocated slabs
1257  */
1258 static void add_partial(struct kmem_cache_node *n,
1259 				struct page *page, int tail)
1260 {
1261 	spin_lock(&n->list_lock);
1262 	n->nr_partial++;
1263 	if (tail)
1264 		list_add_tail(&page->lru, &n->partial);
1265 	else
1266 		list_add(&page->lru, &n->partial);
1267 	spin_unlock(&n->list_lock);
1268 }
1269 
1270 static void remove_partial(struct kmem_cache *s, struct page *page)
1271 {
1272 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1273 
1274 	spin_lock(&n->list_lock);
1275 	list_del(&page->lru);
1276 	n->nr_partial--;
1277 	spin_unlock(&n->list_lock);
1278 }
1279 
1280 /*
1281  * Lock slab and remove from the partial list.
1282  *
1283  * Must hold list_lock.
1284  */
1285 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1286 							struct page *page)
1287 {
1288 	if (slab_trylock(page)) {
1289 		list_del(&page->lru);
1290 		n->nr_partial--;
1291 		SetSlabFrozen(page);
1292 		return 1;
1293 	}
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Try to allocate a partial slab from a specific node.
1299  */
1300 static struct page *get_partial_node(struct kmem_cache_node *n)
1301 {
1302 	struct page *page;
1303 
1304 	/*
1305 	 * Racy check. If we mistakenly see no partial slabs then we
1306 	 * just allocate an empty slab. If we mistakenly try to get a
1307 	 * partial slab and there is none available then get_partials()
1308 	 * will return NULL.
1309 	 */
1310 	if (!n || !n->nr_partial)
1311 		return NULL;
1312 
1313 	spin_lock(&n->list_lock);
1314 	list_for_each_entry(page, &n->partial, lru)
1315 		if (lock_and_freeze_slab(n, page))
1316 			goto out;
1317 	page = NULL;
1318 out:
1319 	spin_unlock(&n->list_lock);
1320 	return page;
1321 }
1322 
1323 /*
1324  * Get a page from somewhere. Search in increasing NUMA distances.
1325  */
1326 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1327 {
1328 #ifdef CONFIG_NUMA
1329 	struct zonelist *zonelist;
1330 	struct zoneref *z;
1331 	struct zone *zone;
1332 	enum zone_type high_zoneidx = gfp_zone(flags);
1333 	struct page *page;
1334 
1335 	/*
1336 	 * The defrag ratio allows a configuration of the tradeoffs between
1337 	 * inter node defragmentation and node local allocations. A lower
1338 	 * defrag_ratio increases the tendency to do local allocations
1339 	 * instead of attempting to obtain partial slabs from other nodes.
1340 	 *
1341 	 * If the defrag_ratio is set to 0 then kmalloc() always
1342 	 * returns node local objects. If the ratio is higher then kmalloc()
1343 	 * may return off node objects because partial slabs are obtained
1344 	 * from other nodes and filled up.
1345 	 *
1346 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1347 	 * defrag_ratio = 1000) then every (well almost) allocation will
1348 	 * first attempt to defrag slab caches on other nodes. This means
1349 	 * scanning over all nodes to look for partial slabs which may be
1350 	 * expensive if we do it every time we are trying to find a slab
1351 	 * with available objects.
1352 	 */
1353 	if (!s->remote_node_defrag_ratio ||
1354 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1355 		return NULL;
1356 
1357 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1358 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1359 		struct kmem_cache_node *n;
1360 
1361 		n = get_node(s, zone_to_nid(zone));
1362 
1363 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1364 				n->nr_partial > MIN_PARTIAL) {
1365 			page = get_partial_node(n);
1366 			if (page)
1367 				return page;
1368 		}
1369 	}
1370 #endif
1371 	return NULL;
1372 }
1373 
1374 /*
1375  * Get a partial page, lock it and return it.
1376  */
1377 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1378 {
1379 	struct page *page;
1380 	int searchnode = (node == -1) ? numa_node_id() : node;
1381 
1382 	page = get_partial_node(get_node(s, searchnode));
1383 	if (page || (flags & __GFP_THISNODE))
1384 		return page;
1385 
1386 	return get_any_partial(s, flags);
1387 }
1388 
1389 /*
1390  * Move a page back to the lists.
1391  *
1392  * Must be called with the slab lock held.
1393  *
1394  * On exit the slab lock will have been dropped.
1395  */
1396 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1397 {
1398 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1399 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1400 
1401 	ClearSlabFrozen(page);
1402 	if (page->inuse) {
1403 
1404 		if (page->freelist) {
1405 			add_partial(n, page, tail);
1406 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1407 		} else {
1408 			stat(c, DEACTIVATE_FULL);
1409 			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1410 				add_full(n, page);
1411 		}
1412 		slab_unlock(page);
1413 	} else {
1414 		stat(c, DEACTIVATE_EMPTY);
1415 		if (n->nr_partial < MIN_PARTIAL) {
1416 			/*
1417 			 * Adding an empty slab to the partial slabs in order
1418 			 * to avoid page allocator overhead. This slab needs
1419 			 * to come after the other slabs with objects in
1420 			 * so that the others get filled first. That way the
1421 			 * size of the partial list stays small.
1422 			 *
1423 			 * kmem_cache_shrink can reclaim any empty slabs from
1424 			 * the partial list.
1425 			 */
1426 			add_partial(n, page, 1);
1427 			slab_unlock(page);
1428 		} else {
1429 			slab_unlock(page);
1430 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1431 			discard_slab(s, page);
1432 		}
1433 	}
1434 }
1435 
1436 /*
1437  * Remove the cpu slab
1438  */
1439 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1440 {
1441 	struct page *page = c->page;
1442 	int tail = 1;
1443 
1444 	if (page->freelist)
1445 		stat(c, DEACTIVATE_REMOTE_FREES);
1446 	/*
1447 	 * Merge cpu freelist into slab freelist. Typically we get here
1448 	 * because both freelists are empty. So this is unlikely
1449 	 * to occur.
1450 	 */
1451 	while (unlikely(c->freelist)) {
1452 		void **object;
1453 
1454 		tail = 0;	/* Hot objects. Put the slab first */
1455 
1456 		/* Retrieve object from cpu_freelist */
1457 		object = c->freelist;
1458 		c->freelist = c->freelist[c->offset];
1459 
1460 		/* And put onto the regular freelist */
1461 		object[c->offset] = page->freelist;
1462 		page->freelist = object;
1463 		page->inuse--;
1464 	}
1465 	c->page = NULL;
1466 	unfreeze_slab(s, page, tail);
1467 }
1468 
1469 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1470 {
1471 	stat(c, CPUSLAB_FLUSH);
1472 	slab_lock(c->page);
1473 	deactivate_slab(s, c);
1474 }
1475 
1476 /*
1477  * Flush cpu slab.
1478  *
1479  * Called from IPI handler with interrupts disabled.
1480  */
1481 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1482 {
1483 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1484 
1485 	if (likely(c && c->page))
1486 		flush_slab(s, c);
1487 }
1488 
1489 static void flush_cpu_slab(void *d)
1490 {
1491 	struct kmem_cache *s = d;
1492 
1493 	__flush_cpu_slab(s, smp_processor_id());
1494 }
1495 
1496 static void flush_all(struct kmem_cache *s)
1497 {
1498 #ifdef CONFIG_SMP
1499 	on_each_cpu(flush_cpu_slab, s, 1);
1500 #else
1501 	unsigned long flags;
1502 
1503 	local_irq_save(flags);
1504 	flush_cpu_slab(s);
1505 	local_irq_restore(flags);
1506 #endif
1507 }
1508 
1509 /*
1510  * Check if the objects in a per cpu structure fit numa
1511  * locality expectations.
1512  */
1513 static inline int node_match(struct kmem_cache_cpu *c, int node)
1514 {
1515 #ifdef CONFIG_NUMA
1516 	if (node != -1 && c->node != node)
1517 		return 0;
1518 #endif
1519 	return 1;
1520 }
1521 
1522 /*
1523  * Slow path. The lockless freelist is empty or we need to perform
1524  * debugging duties.
1525  *
1526  * Interrupts are disabled.
1527  *
1528  * Processing is still very fast if new objects have been freed to the
1529  * regular freelist. In that case we simply take over the regular freelist
1530  * as the lockless freelist and zap the regular freelist.
1531  *
1532  * If that is not working then we fall back to the partial lists. We take the
1533  * first element of the freelist as the object to allocate now and move the
1534  * rest of the freelist to the lockless freelist.
1535  *
1536  * And if we were unable to get a new slab from the partial slab lists then
1537  * we need to allocate a new slab. This is the slowest path since it involves
1538  * a call to the page allocator and the setup of a new slab.
1539  */
1540 static void *__slab_alloc(struct kmem_cache *s,
1541 		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1542 {
1543 	void **object;
1544 	struct page *new;
1545 
1546 	/* We handle __GFP_ZERO in the caller */
1547 	gfpflags &= ~__GFP_ZERO;
1548 
1549 	if (!c->page)
1550 		goto new_slab;
1551 
1552 	slab_lock(c->page);
1553 	if (unlikely(!node_match(c, node)))
1554 		goto another_slab;
1555 
1556 	stat(c, ALLOC_REFILL);
1557 
1558 load_freelist:
1559 	object = c->page->freelist;
1560 	if (unlikely(!object))
1561 		goto another_slab;
1562 	if (unlikely(SlabDebug(c->page)))
1563 		goto debug;
1564 
1565 	c->freelist = object[c->offset];
1566 	c->page->inuse = c->page->objects;
1567 	c->page->freelist = NULL;
1568 	c->node = page_to_nid(c->page);
1569 unlock_out:
1570 	slab_unlock(c->page);
1571 	stat(c, ALLOC_SLOWPATH);
1572 	return object;
1573 
1574 another_slab:
1575 	deactivate_slab(s, c);
1576 
1577 new_slab:
1578 	new = get_partial(s, gfpflags, node);
1579 	if (new) {
1580 		c->page = new;
1581 		stat(c, ALLOC_FROM_PARTIAL);
1582 		goto load_freelist;
1583 	}
1584 
1585 	if (gfpflags & __GFP_WAIT)
1586 		local_irq_enable();
1587 
1588 	new = new_slab(s, gfpflags, node);
1589 
1590 	if (gfpflags & __GFP_WAIT)
1591 		local_irq_disable();
1592 
1593 	if (new) {
1594 		c = get_cpu_slab(s, smp_processor_id());
1595 		stat(c, ALLOC_SLAB);
1596 		if (c->page)
1597 			flush_slab(s, c);
1598 		slab_lock(new);
1599 		SetSlabFrozen(new);
1600 		c->page = new;
1601 		goto load_freelist;
1602 	}
1603 	return NULL;
1604 debug:
1605 	if (!alloc_debug_processing(s, c->page, object, addr))
1606 		goto another_slab;
1607 
1608 	c->page->inuse++;
1609 	c->page->freelist = object[c->offset];
1610 	c->node = -1;
1611 	goto unlock_out;
1612 }
1613 
1614 /*
1615  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1616  * have the fastpath folded into their functions. So no function call
1617  * overhead for requests that can be satisfied on the fastpath.
1618  *
1619  * The fastpath works by first checking if the lockless freelist can be used.
1620  * If not then __slab_alloc is called for slow processing.
1621  *
1622  * Otherwise we can simply pick the next object from the lockless free list.
1623  */
1624 static __always_inline void *slab_alloc(struct kmem_cache *s,
1625 		gfp_t gfpflags, int node, void *addr)
1626 {
1627 	void **object;
1628 	struct kmem_cache_cpu *c;
1629 	unsigned long flags;
1630 	unsigned int objsize;
1631 
1632 	local_irq_save(flags);
1633 	c = get_cpu_slab(s, smp_processor_id());
1634 	objsize = c->objsize;
1635 	if (unlikely(!c->freelist || !node_match(c, node)))
1636 
1637 		object = __slab_alloc(s, gfpflags, node, addr, c);
1638 
1639 	else {
1640 		object = c->freelist;
1641 		c->freelist = object[c->offset];
1642 		stat(c, ALLOC_FASTPATH);
1643 	}
1644 	local_irq_restore(flags);
1645 
1646 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1647 		memset(object, 0, objsize);
1648 
1649 	return object;
1650 }
1651 
1652 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1653 {
1654 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1655 }
1656 EXPORT_SYMBOL(kmem_cache_alloc);
1657 
1658 #ifdef CONFIG_NUMA
1659 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1660 {
1661 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1662 }
1663 EXPORT_SYMBOL(kmem_cache_alloc_node);
1664 #endif
1665 
1666 /*
1667  * Slow patch handling. This may still be called frequently since objects
1668  * have a longer lifetime than the cpu slabs in most processing loads.
1669  *
1670  * So we still attempt to reduce cache line usage. Just take the slab
1671  * lock and free the item. If there is no additional partial page
1672  * handling required then we can return immediately.
1673  */
1674 static void __slab_free(struct kmem_cache *s, struct page *page,
1675 				void *x, void *addr, unsigned int offset)
1676 {
1677 	void *prior;
1678 	void **object = (void *)x;
1679 	struct kmem_cache_cpu *c;
1680 
1681 	c = get_cpu_slab(s, raw_smp_processor_id());
1682 	stat(c, FREE_SLOWPATH);
1683 	slab_lock(page);
1684 
1685 	if (unlikely(SlabDebug(page)))
1686 		goto debug;
1687 
1688 checks_ok:
1689 	prior = object[offset] = page->freelist;
1690 	page->freelist = object;
1691 	page->inuse--;
1692 
1693 	if (unlikely(SlabFrozen(page))) {
1694 		stat(c, FREE_FROZEN);
1695 		goto out_unlock;
1696 	}
1697 
1698 	if (unlikely(!page->inuse))
1699 		goto slab_empty;
1700 
1701 	/*
1702 	 * Objects left in the slab. If it was not on the partial list before
1703 	 * then add it.
1704 	 */
1705 	if (unlikely(!prior)) {
1706 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1707 		stat(c, FREE_ADD_PARTIAL);
1708 	}
1709 
1710 out_unlock:
1711 	slab_unlock(page);
1712 	return;
1713 
1714 slab_empty:
1715 	if (prior) {
1716 		/*
1717 		 * Slab still on the partial list.
1718 		 */
1719 		remove_partial(s, page);
1720 		stat(c, FREE_REMOVE_PARTIAL);
1721 	}
1722 	slab_unlock(page);
1723 	stat(c, FREE_SLAB);
1724 	discard_slab(s, page);
1725 	return;
1726 
1727 debug:
1728 	if (!free_debug_processing(s, page, x, addr))
1729 		goto out_unlock;
1730 	goto checks_ok;
1731 }
1732 
1733 /*
1734  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1735  * can perform fastpath freeing without additional function calls.
1736  *
1737  * The fastpath is only possible if we are freeing to the current cpu slab
1738  * of this processor. This typically the case if we have just allocated
1739  * the item before.
1740  *
1741  * If fastpath is not possible then fall back to __slab_free where we deal
1742  * with all sorts of special processing.
1743  */
1744 static __always_inline void slab_free(struct kmem_cache *s,
1745 			struct page *page, void *x, void *addr)
1746 {
1747 	void **object = (void *)x;
1748 	struct kmem_cache_cpu *c;
1749 	unsigned long flags;
1750 
1751 	local_irq_save(flags);
1752 	c = get_cpu_slab(s, smp_processor_id());
1753 	debug_check_no_locks_freed(object, c->objsize);
1754 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1755 		debug_check_no_obj_freed(object, s->objsize);
1756 	if (likely(page == c->page && c->node >= 0)) {
1757 		object[c->offset] = c->freelist;
1758 		c->freelist = object;
1759 		stat(c, FREE_FASTPATH);
1760 	} else
1761 		__slab_free(s, page, x, addr, c->offset);
1762 
1763 	local_irq_restore(flags);
1764 }
1765 
1766 void kmem_cache_free(struct kmem_cache *s, void *x)
1767 {
1768 	struct page *page;
1769 
1770 	page = virt_to_head_page(x);
1771 
1772 	slab_free(s, page, x, __builtin_return_address(0));
1773 }
1774 EXPORT_SYMBOL(kmem_cache_free);
1775 
1776 /* Figure out on which slab object the object resides */
1777 static struct page *get_object_page(const void *x)
1778 {
1779 	struct page *page = virt_to_head_page(x);
1780 
1781 	if (!PageSlab(page))
1782 		return NULL;
1783 
1784 	return page;
1785 }
1786 
1787 /*
1788  * Object placement in a slab is made very easy because we always start at
1789  * offset 0. If we tune the size of the object to the alignment then we can
1790  * get the required alignment by putting one properly sized object after
1791  * another.
1792  *
1793  * Notice that the allocation order determines the sizes of the per cpu
1794  * caches. Each processor has always one slab available for allocations.
1795  * Increasing the allocation order reduces the number of times that slabs
1796  * must be moved on and off the partial lists and is therefore a factor in
1797  * locking overhead.
1798  */
1799 
1800 /*
1801  * Mininum / Maximum order of slab pages. This influences locking overhead
1802  * and slab fragmentation. A higher order reduces the number of partial slabs
1803  * and increases the number of allocations possible without having to
1804  * take the list_lock.
1805  */
1806 static int slub_min_order;
1807 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1808 static int slub_min_objects;
1809 
1810 /*
1811  * Merge control. If this is set then no merging of slab caches will occur.
1812  * (Could be removed. This was introduced to pacify the merge skeptics.)
1813  */
1814 static int slub_nomerge;
1815 
1816 /*
1817  * Calculate the order of allocation given an slab object size.
1818  *
1819  * The order of allocation has significant impact on performance and other
1820  * system components. Generally order 0 allocations should be preferred since
1821  * order 0 does not cause fragmentation in the page allocator. Larger objects
1822  * be problematic to put into order 0 slabs because there may be too much
1823  * unused space left. We go to a higher order if more than 1/16th of the slab
1824  * would be wasted.
1825  *
1826  * In order to reach satisfactory performance we must ensure that a minimum
1827  * number of objects is in one slab. Otherwise we may generate too much
1828  * activity on the partial lists which requires taking the list_lock. This is
1829  * less a concern for large slabs though which are rarely used.
1830  *
1831  * slub_max_order specifies the order where we begin to stop considering the
1832  * number of objects in a slab as critical. If we reach slub_max_order then
1833  * we try to keep the page order as low as possible. So we accept more waste
1834  * of space in favor of a small page order.
1835  *
1836  * Higher order allocations also allow the placement of more objects in a
1837  * slab and thereby reduce object handling overhead. If the user has
1838  * requested a higher mininum order then we start with that one instead of
1839  * the smallest order which will fit the object.
1840  */
1841 static inline int slab_order(int size, int min_objects,
1842 				int max_order, int fract_leftover)
1843 {
1844 	int order;
1845 	int rem;
1846 	int min_order = slub_min_order;
1847 
1848 	if ((PAGE_SIZE << min_order) / size > 65535)
1849 		return get_order(size * 65535) - 1;
1850 
1851 	for (order = max(min_order,
1852 				fls(min_objects * size - 1) - PAGE_SHIFT);
1853 			order <= max_order; order++) {
1854 
1855 		unsigned long slab_size = PAGE_SIZE << order;
1856 
1857 		if (slab_size < min_objects * size)
1858 			continue;
1859 
1860 		rem = slab_size % size;
1861 
1862 		if (rem <= slab_size / fract_leftover)
1863 			break;
1864 
1865 	}
1866 
1867 	return order;
1868 }
1869 
1870 static inline int calculate_order(int size)
1871 {
1872 	int order;
1873 	int min_objects;
1874 	int fraction;
1875 
1876 	/*
1877 	 * Attempt to find best configuration for a slab. This
1878 	 * works by first attempting to generate a layout with
1879 	 * the best configuration and backing off gradually.
1880 	 *
1881 	 * First we reduce the acceptable waste in a slab. Then
1882 	 * we reduce the minimum objects required in a slab.
1883 	 */
1884 	min_objects = slub_min_objects;
1885 	if (!min_objects)
1886 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1887 	while (min_objects > 1) {
1888 		fraction = 16;
1889 		while (fraction >= 4) {
1890 			order = slab_order(size, min_objects,
1891 						slub_max_order, fraction);
1892 			if (order <= slub_max_order)
1893 				return order;
1894 			fraction /= 2;
1895 		}
1896 		min_objects /= 2;
1897 	}
1898 
1899 	/*
1900 	 * We were unable to place multiple objects in a slab. Now
1901 	 * lets see if we can place a single object there.
1902 	 */
1903 	order = slab_order(size, 1, slub_max_order, 1);
1904 	if (order <= slub_max_order)
1905 		return order;
1906 
1907 	/*
1908 	 * Doh this slab cannot be placed using slub_max_order.
1909 	 */
1910 	order = slab_order(size, 1, MAX_ORDER, 1);
1911 	if (order <= MAX_ORDER)
1912 		return order;
1913 	return -ENOSYS;
1914 }
1915 
1916 /*
1917  * Figure out what the alignment of the objects will be.
1918  */
1919 static unsigned long calculate_alignment(unsigned long flags,
1920 		unsigned long align, unsigned long size)
1921 {
1922 	/*
1923 	 * If the user wants hardware cache aligned objects then follow that
1924 	 * suggestion if the object is sufficiently large.
1925 	 *
1926 	 * The hardware cache alignment cannot override the specified
1927 	 * alignment though. If that is greater then use it.
1928 	 */
1929 	if (flags & SLAB_HWCACHE_ALIGN) {
1930 		unsigned long ralign = cache_line_size();
1931 		while (size <= ralign / 2)
1932 			ralign /= 2;
1933 		align = max(align, ralign);
1934 	}
1935 
1936 	if (align < ARCH_SLAB_MINALIGN)
1937 		align = ARCH_SLAB_MINALIGN;
1938 
1939 	return ALIGN(align, sizeof(void *));
1940 }
1941 
1942 static void init_kmem_cache_cpu(struct kmem_cache *s,
1943 			struct kmem_cache_cpu *c)
1944 {
1945 	c->page = NULL;
1946 	c->freelist = NULL;
1947 	c->node = 0;
1948 	c->offset = s->offset / sizeof(void *);
1949 	c->objsize = s->objsize;
1950 #ifdef CONFIG_SLUB_STATS
1951 	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1952 #endif
1953 }
1954 
1955 static void init_kmem_cache_node(struct kmem_cache_node *n)
1956 {
1957 	n->nr_partial = 0;
1958 	spin_lock_init(&n->list_lock);
1959 	INIT_LIST_HEAD(&n->partial);
1960 #ifdef CONFIG_SLUB_DEBUG
1961 	atomic_long_set(&n->nr_slabs, 0);
1962 	INIT_LIST_HEAD(&n->full);
1963 #endif
1964 }
1965 
1966 #ifdef CONFIG_SMP
1967 /*
1968  * Per cpu array for per cpu structures.
1969  *
1970  * The per cpu array places all kmem_cache_cpu structures from one processor
1971  * close together meaning that it becomes possible that multiple per cpu
1972  * structures are contained in one cacheline. This may be particularly
1973  * beneficial for the kmalloc caches.
1974  *
1975  * A desktop system typically has around 60-80 slabs. With 100 here we are
1976  * likely able to get per cpu structures for all caches from the array defined
1977  * here. We must be able to cover all kmalloc caches during bootstrap.
1978  *
1979  * If the per cpu array is exhausted then fall back to kmalloc
1980  * of individual cachelines. No sharing is possible then.
1981  */
1982 #define NR_KMEM_CACHE_CPU 100
1983 
1984 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1985 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1986 
1987 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1988 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1989 
1990 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1991 							int cpu, gfp_t flags)
1992 {
1993 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1994 
1995 	if (c)
1996 		per_cpu(kmem_cache_cpu_free, cpu) =
1997 				(void *)c->freelist;
1998 	else {
1999 		/* Table overflow: So allocate ourselves */
2000 		c = kmalloc_node(
2001 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2002 			flags, cpu_to_node(cpu));
2003 		if (!c)
2004 			return NULL;
2005 	}
2006 
2007 	init_kmem_cache_cpu(s, c);
2008 	return c;
2009 }
2010 
2011 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2012 {
2013 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2014 			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2015 		kfree(c);
2016 		return;
2017 	}
2018 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2019 	per_cpu(kmem_cache_cpu_free, cpu) = c;
2020 }
2021 
2022 static void free_kmem_cache_cpus(struct kmem_cache *s)
2023 {
2024 	int cpu;
2025 
2026 	for_each_online_cpu(cpu) {
2027 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2028 
2029 		if (c) {
2030 			s->cpu_slab[cpu] = NULL;
2031 			free_kmem_cache_cpu(c, cpu);
2032 		}
2033 	}
2034 }
2035 
2036 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2037 {
2038 	int cpu;
2039 
2040 	for_each_online_cpu(cpu) {
2041 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2042 
2043 		if (c)
2044 			continue;
2045 
2046 		c = alloc_kmem_cache_cpu(s, cpu, flags);
2047 		if (!c) {
2048 			free_kmem_cache_cpus(s);
2049 			return 0;
2050 		}
2051 		s->cpu_slab[cpu] = c;
2052 	}
2053 	return 1;
2054 }
2055 
2056 /*
2057  * Initialize the per cpu array.
2058  */
2059 static void init_alloc_cpu_cpu(int cpu)
2060 {
2061 	int i;
2062 
2063 	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2064 		return;
2065 
2066 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2067 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2068 
2069 	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2070 }
2071 
2072 static void __init init_alloc_cpu(void)
2073 {
2074 	int cpu;
2075 
2076 	for_each_online_cpu(cpu)
2077 		init_alloc_cpu_cpu(cpu);
2078   }
2079 
2080 #else
2081 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2082 static inline void init_alloc_cpu(void) {}
2083 
2084 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2085 {
2086 	init_kmem_cache_cpu(s, &s->cpu_slab);
2087 	return 1;
2088 }
2089 #endif
2090 
2091 #ifdef CONFIG_NUMA
2092 /*
2093  * No kmalloc_node yet so do it by hand. We know that this is the first
2094  * slab on the node for this slabcache. There are no concurrent accesses
2095  * possible.
2096  *
2097  * Note that this function only works on the kmalloc_node_cache
2098  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2099  * memory on a fresh node that has no slab structures yet.
2100  */
2101 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2102 							   int node)
2103 {
2104 	struct page *page;
2105 	struct kmem_cache_node *n;
2106 	unsigned long flags;
2107 
2108 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2109 
2110 	page = new_slab(kmalloc_caches, gfpflags, node);
2111 
2112 	BUG_ON(!page);
2113 	if (page_to_nid(page) != node) {
2114 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2115 				"node %d\n", node);
2116 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2117 				"in order to be able to continue\n");
2118 	}
2119 
2120 	n = page->freelist;
2121 	BUG_ON(!n);
2122 	page->freelist = get_freepointer(kmalloc_caches, n);
2123 	page->inuse++;
2124 	kmalloc_caches->node[node] = n;
2125 #ifdef CONFIG_SLUB_DEBUG
2126 	init_object(kmalloc_caches, n, 1);
2127 	init_tracking(kmalloc_caches, n);
2128 #endif
2129 	init_kmem_cache_node(n);
2130 	inc_slabs_node(kmalloc_caches, node, page->objects);
2131 
2132 	/*
2133 	 * lockdep requires consistent irq usage for each lock
2134 	 * so even though there cannot be a race this early in
2135 	 * the boot sequence, we still disable irqs.
2136 	 */
2137 	local_irq_save(flags);
2138 	add_partial(n, page, 0);
2139 	local_irq_restore(flags);
2140 	return n;
2141 }
2142 
2143 static void free_kmem_cache_nodes(struct kmem_cache *s)
2144 {
2145 	int node;
2146 
2147 	for_each_node_state(node, N_NORMAL_MEMORY) {
2148 		struct kmem_cache_node *n = s->node[node];
2149 		if (n && n != &s->local_node)
2150 			kmem_cache_free(kmalloc_caches, n);
2151 		s->node[node] = NULL;
2152 	}
2153 }
2154 
2155 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2156 {
2157 	int node;
2158 	int local_node;
2159 
2160 	if (slab_state >= UP)
2161 		local_node = page_to_nid(virt_to_page(s));
2162 	else
2163 		local_node = 0;
2164 
2165 	for_each_node_state(node, N_NORMAL_MEMORY) {
2166 		struct kmem_cache_node *n;
2167 
2168 		if (local_node == node)
2169 			n = &s->local_node;
2170 		else {
2171 			if (slab_state == DOWN) {
2172 				n = early_kmem_cache_node_alloc(gfpflags,
2173 								node);
2174 				continue;
2175 			}
2176 			n = kmem_cache_alloc_node(kmalloc_caches,
2177 							gfpflags, node);
2178 
2179 			if (!n) {
2180 				free_kmem_cache_nodes(s);
2181 				return 0;
2182 			}
2183 
2184 		}
2185 		s->node[node] = n;
2186 		init_kmem_cache_node(n);
2187 	}
2188 	return 1;
2189 }
2190 #else
2191 static void free_kmem_cache_nodes(struct kmem_cache *s)
2192 {
2193 }
2194 
2195 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2196 {
2197 	init_kmem_cache_node(&s->local_node);
2198 	return 1;
2199 }
2200 #endif
2201 
2202 /*
2203  * calculate_sizes() determines the order and the distribution of data within
2204  * a slab object.
2205  */
2206 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2207 {
2208 	unsigned long flags = s->flags;
2209 	unsigned long size = s->objsize;
2210 	unsigned long align = s->align;
2211 	int order;
2212 
2213 	/*
2214 	 * Round up object size to the next word boundary. We can only
2215 	 * place the free pointer at word boundaries and this determines
2216 	 * the possible location of the free pointer.
2217 	 */
2218 	size = ALIGN(size, sizeof(void *));
2219 
2220 #ifdef CONFIG_SLUB_DEBUG
2221 	/*
2222 	 * Determine if we can poison the object itself. If the user of
2223 	 * the slab may touch the object after free or before allocation
2224 	 * then we should never poison the object itself.
2225 	 */
2226 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2227 			!s->ctor)
2228 		s->flags |= __OBJECT_POISON;
2229 	else
2230 		s->flags &= ~__OBJECT_POISON;
2231 
2232 
2233 	/*
2234 	 * If we are Redzoning then check if there is some space between the
2235 	 * end of the object and the free pointer. If not then add an
2236 	 * additional word to have some bytes to store Redzone information.
2237 	 */
2238 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2239 		size += sizeof(void *);
2240 #endif
2241 
2242 	/*
2243 	 * With that we have determined the number of bytes in actual use
2244 	 * by the object. This is the potential offset to the free pointer.
2245 	 */
2246 	s->inuse = size;
2247 
2248 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2249 		s->ctor)) {
2250 		/*
2251 		 * Relocate free pointer after the object if it is not
2252 		 * permitted to overwrite the first word of the object on
2253 		 * kmem_cache_free.
2254 		 *
2255 		 * This is the case if we do RCU, have a constructor or
2256 		 * destructor or are poisoning the objects.
2257 		 */
2258 		s->offset = size;
2259 		size += sizeof(void *);
2260 	}
2261 
2262 #ifdef CONFIG_SLUB_DEBUG
2263 	if (flags & SLAB_STORE_USER)
2264 		/*
2265 		 * Need to store information about allocs and frees after
2266 		 * the object.
2267 		 */
2268 		size += 2 * sizeof(struct track);
2269 
2270 	if (flags & SLAB_RED_ZONE)
2271 		/*
2272 		 * Add some empty padding so that we can catch
2273 		 * overwrites from earlier objects rather than let
2274 		 * tracking information or the free pointer be
2275 		 * corrupted if an user writes before the start
2276 		 * of the object.
2277 		 */
2278 		size += sizeof(void *);
2279 #endif
2280 
2281 	/*
2282 	 * Determine the alignment based on various parameters that the
2283 	 * user specified and the dynamic determination of cache line size
2284 	 * on bootup.
2285 	 */
2286 	align = calculate_alignment(flags, align, s->objsize);
2287 
2288 	/*
2289 	 * SLUB stores one object immediately after another beginning from
2290 	 * offset 0. In order to align the objects we have to simply size
2291 	 * each object to conform to the alignment.
2292 	 */
2293 	size = ALIGN(size, align);
2294 	s->size = size;
2295 	if (forced_order >= 0)
2296 		order = forced_order;
2297 	else
2298 		order = calculate_order(size);
2299 
2300 	if (order < 0)
2301 		return 0;
2302 
2303 	s->allocflags = 0;
2304 	if (order)
2305 		s->allocflags |= __GFP_COMP;
2306 
2307 	if (s->flags & SLAB_CACHE_DMA)
2308 		s->allocflags |= SLUB_DMA;
2309 
2310 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2311 		s->allocflags |= __GFP_RECLAIMABLE;
2312 
2313 	/*
2314 	 * Determine the number of objects per slab
2315 	 */
2316 	s->oo = oo_make(order, size);
2317 	s->min = oo_make(get_order(size), size);
2318 	if (oo_objects(s->oo) > oo_objects(s->max))
2319 		s->max = s->oo;
2320 
2321 	return !!oo_objects(s->oo);
2322 
2323 }
2324 
2325 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2326 		const char *name, size_t size,
2327 		size_t align, unsigned long flags,
2328 		void (*ctor)(struct kmem_cache *, void *))
2329 {
2330 	memset(s, 0, kmem_size);
2331 	s->name = name;
2332 	s->ctor = ctor;
2333 	s->objsize = size;
2334 	s->align = align;
2335 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2336 
2337 	if (!calculate_sizes(s, -1))
2338 		goto error;
2339 
2340 	s->refcount = 1;
2341 #ifdef CONFIG_NUMA
2342 	s->remote_node_defrag_ratio = 100;
2343 #endif
2344 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2345 		goto error;
2346 
2347 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2348 		return 1;
2349 	free_kmem_cache_nodes(s);
2350 error:
2351 	if (flags & SLAB_PANIC)
2352 		panic("Cannot create slab %s size=%lu realsize=%u "
2353 			"order=%u offset=%u flags=%lx\n",
2354 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2355 			s->offset, flags);
2356 	return 0;
2357 }
2358 
2359 /*
2360  * Check if a given pointer is valid
2361  */
2362 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2363 {
2364 	struct page *page;
2365 
2366 	page = get_object_page(object);
2367 
2368 	if (!page || s != page->slab)
2369 		/* No slab or wrong slab */
2370 		return 0;
2371 
2372 	if (!check_valid_pointer(s, page, object))
2373 		return 0;
2374 
2375 	/*
2376 	 * We could also check if the object is on the slabs freelist.
2377 	 * But this would be too expensive and it seems that the main
2378 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2379 	 * to a certain slab.
2380 	 */
2381 	return 1;
2382 }
2383 EXPORT_SYMBOL(kmem_ptr_validate);
2384 
2385 /*
2386  * Determine the size of a slab object
2387  */
2388 unsigned int kmem_cache_size(struct kmem_cache *s)
2389 {
2390 	return s->objsize;
2391 }
2392 EXPORT_SYMBOL(kmem_cache_size);
2393 
2394 const char *kmem_cache_name(struct kmem_cache *s)
2395 {
2396 	return s->name;
2397 }
2398 EXPORT_SYMBOL(kmem_cache_name);
2399 
2400 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2401 							const char *text)
2402 {
2403 #ifdef CONFIG_SLUB_DEBUG
2404 	void *addr = page_address(page);
2405 	void *p;
2406 	DECLARE_BITMAP(map, page->objects);
2407 
2408 	bitmap_zero(map, page->objects);
2409 	slab_err(s, page, "%s", text);
2410 	slab_lock(page);
2411 	for_each_free_object(p, s, page->freelist)
2412 		set_bit(slab_index(p, s, addr), map);
2413 
2414 	for_each_object(p, s, addr, page->objects) {
2415 
2416 		if (!test_bit(slab_index(p, s, addr), map)) {
2417 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2418 							p, p - addr);
2419 			print_tracking(s, p);
2420 		}
2421 	}
2422 	slab_unlock(page);
2423 #endif
2424 }
2425 
2426 /*
2427  * Attempt to free all partial slabs on a node.
2428  */
2429 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2430 {
2431 	unsigned long flags;
2432 	struct page *page, *h;
2433 
2434 	spin_lock_irqsave(&n->list_lock, flags);
2435 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2436 		if (!page->inuse) {
2437 			list_del(&page->lru);
2438 			discard_slab(s, page);
2439 			n->nr_partial--;
2440 		} else {
2441 			list_slab_objects(s, page,
2442 				"Objects remaining on kmem_cache_close()");
2443 		}
2444 	}
2445 	spin_unlock_irqrestore(&n->list_lock, flags);
2446 }
2447 
2448 /*
2449  * Release all resources used by a slab cache.
2450  */
2451 static inline int kmem_cache_close(struct kmem_cache *s)
2452 {
2453 	int node;
2454 
2455 	flush_all(s);
2456 
2457 	/* Attempt to free all objects */
2458 	free_kmem_cache_cpus(s);
2459 	for_each_node_state(node, N_NORMAL_MEMORY) {
2460 		struct kmem_cache_node *n = get_node(s, node);
2461 
2462 		free_partial(s, n);
2463 		if (n->nr_partial || slabs_node(s, node))
2464 			return 1;
2465 	}
2466 	free_kmem_cache_nodes(s);
2467 	return 0;
2468 }
2469 
2470 /*
2471  * Close a cache and release the kmem_cache structure
2472  * (must be used for caches created using kmem_cache_create)
2473  */
2474 void kmem_cache_destroy(struct kmem_cache *s)
2475 {
2476 	down_write(&slub_lock);
2477 	s->refcount--;
2478 	if (!s->refcount) {
2479 		list_del(&s->list);
2480 		up_write(&slub_lock);
2481 		if (kmem_cache_close(s)) {
2482 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2483 				"still has objects.\n", s->name, __func__);
2484 			dump_stack();
2485 		}
2486 		sysfs_slab_remove(s);
2487 	} else
2488 		up_write(&slub_lock);
2489 }
2490 EXPORT_SYMBOL(kmem_cache_destroy);
2491 
2492 /********************************************************************
2493  *		Kmalloc subsystem
2494  *******************************************************************/
2495 
2496 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2497 EXPORT_SYMBOL(kmalloc_caches);
2498 
2499 static int __init setup_slub_min_order(char *str)
2500 {
2501 	get_option(&str, &slub_min_order);
2502 
2503 	return 1;
2504 }
2505 
2506 __setup("slub_min_order=", setup_slub_min_order);
2507 
2508 static int __init setup_slub_max_order(char *str)
2509 {
2510 	get_option(&str, &slub_max_order);
2511 
2512 	return 1;
2513 }
2514 
2515 __setup("slub_max_order=", setup_slub_max_order);
2516 
2517 static int __init setup_slub_min_objects(char *str)
2518 {
2519 	get_option(&str, &slub_min_objects);
2520 
2521 	return 1;
2522 }
2523 
2524 __setup("slub_min_objects=", setup_slub_min_objects);
2525 
2526 static int __init setup_slub_nomerge(char *str)
2527 {
2528 	slub_nomerge = 1;
2529 	return 1;
2530 }
2531 
2532 __setup("slub_nomerge", setup_slub_nomerge);
2533 
2534 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2535 		const char *name, int size, gfp_t gfp_flags)
2536 {
2537 	unsigned int flags = 0;
2538 
2539 	if (gfp_flags & SLUB_DMA)
2540 		flags = SLAB_CACHE_DMA;
2541 
2542 	down_write(&slub_lock);
2543 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2544 								flags, NULL))
2545 		goto panic;
2546 
2547 	list_add(&s->list, &slab_caches);
2548 	up_write(&slub_lock);
2549 	if (sysfs_slab_add(s))
2550 		goto panic;
2551 	return s;
2552 
2553 panic:
2554 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2555 }
2556 
2557 #ifdef CONFIG_ZONE_DMA
2558 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2559 
2560 static void sysfs_add_func(struct work_struct *w)
2561 {
2562 	struct kmem_cache *s;
2563 
2564 	down_write(&slub_lock);
2565 	list_for_each_entry(s, &slab_caches, list) {
2566 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2567 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2568 			sysfs_slab_add(s);
2569 		}
2570 	}
2571 	up_write(&slub_lock);
2572 }
2573 
2574 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2575 
2576 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2577 {
2578 	struct kmem_cache *s;
2579 	char *text;
2580 	size_t realsize;
2581 
2582 	s = kmalloc_caches_dma[index];
2583 	if (s)
2584 		return s;
2585 
2586 	/* Dynamically create dma cache */
2587 	if (flags & __GFP_WAIT)
2588 		down_write(&slub_lock);
2589 	else {
2590 		if (!down_write_trylock(&slub_lock))
2591 			goto out;
2592 	}
2593 
2594 	if (kmalloc_caches_dma[index])
2595 		goto unlock_out;
2596 
2597 	realsize = kmalloc_caches[index].objsize;
2598 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2599 			 (unsigned int)realsize);
2600 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2601 
2602 	if (!s || !text || !kmem_cache_open(s, flags, text,
2603 			realsize, ARCH_KMALLOC_MINALIGN,
2604 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2605 		kfree(s);
2606 		kfree(text);
2607 		goto unlock_out;
2608 	}
2609 
2610 	list_add(&s->list, &slab_caches);
2611 	kmalloc_caches_dma[index] = s;
2612 
2613 	schedule_work(&sysfs_add_work);
2614 
2615 unlock_out:
2616 	up_write(&slub_lock);
2617 out:
2618 	return kmalloc_caches_dma[index];
2619 }
2620 #endif
2621 
2622 /*
2623  * Conversion table for small slabs sizes / 8 to the index in the
2624  * kmalloc array. This is necessary for slabs < 192 since we have non power
2625  * of two cache sizes there. The size of larger slabs can be determined using
2626  * fls.
2627  */
2628 static s8 size_index[24] = {
2629 	3,	/* 8 */
2630 	4,	/* 16 */
2631 	5,	/* 24 */
2632 	5,	/* 32 */
2633 	6,	/* 40 */
2634 	6,	/* 48 */
2635 	6,	/* 56 */
2636 	6,	/* 64 */
2637 	1,	/* 72 */
2638 	1,	/* 80 */
2639 	1,	/* 88 */
2640 	1,	/* 96 */
2641 	7,	/* 104 */
2642 	7,	/* 112 */
2643 	7,	/* 120 */
2644 	7,	/* 128 */
2645 	2,	/* 136 */
2646 	2,	/* 144 */
2647 	2,	/* 152 */
2648 	2,	/* 160 */
2649 	2,	/* 168 */
2650 	2,	/* 176 */
2651 	2,	/* 184 */
2652 	2	/* 192 */
2653 };
2654 
2655 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2656 {
2657 	int index;
2658 
2659 	if (size <= 192) {
2660 		if (!size)
2661 			return ZERO_SIZE_PTR;
2662 
2663 		index = size_index[(size - 1) / 8];
2664 	} else
2665 		index = fls(size - 1);
2666 
2667 #ifdef CONFIG_ZONE_DMA
2668 	if (unlikely((flags & SLUB_DMA)))
2669 		return dma_kmalloc_cache(index, flags);
2670 
2671 #endif
2672 	return &kmalloc_caches[index];
2673 }
2674 
2675 void *__kmalloc(size_t size, gfp_t flags)
2676 {
2677 	struct kmem_cache *s;
2678 
2679 	if (unlikely(size > PAGE_SIZE))
2680 		return kmalloc_large(size, flags);
2681 
2682 	s = get_slab(size, flags);
2683 
2684 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2685 		return s;
2686 
2687 	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2688 }
2689 EXPORT_SYMBOL(__kmalloc);
2690 
2691 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2692 {
2693 	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2694 						get_order(size));
2695 
2696 	if (page)
2697 		return page_address(page);
2698 	else
2699 		return NULL;
2700 }
2701 
2702 #ifdef CONFIG_NUMA
2703 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2704 {
2705 	struct kmem_cache *s;
2706 
2707 	if (unlikely(size > PAGE_SIZE))
2708 		return kmalloc_large_node(size, flags, node);
2709 
2710 	s = get_slab(size, flags);
2711 
2712 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2713 		return s;
2714 
2715 	return slab_alloc(s, flags, node, __builtin_return_address(0));
2716 }
2717 EXPORT_SYMBOL(__kmalloc_node);
2718 #endif
2719 
2720 size_t ksize(const void *object)
2721 {
2722 	struct page *page;
2723 	struct kmem_cache *s;
2724 
2725 	if (unlikely(object == ZERO_SIZE_PTR))
2726 		return 0;
2727 
2728 	page = virt_to_head_page(object);
2729 
2730 	if (unlikely(!PageSlab(page))) {
2731 		WARN_ON(!PageCompound(page));
2732 		return PAGE_SIZE << compound_order(page);
2733 	}
2734 	s = page->slab;
2735 
2736 #ifdef CONFIG_SLUB_DEBUG
2737 	/*
2738 	 * Debugging requires use of the padding between object
2739 	 * and whatever may come after it.
2740 	 */
2741 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2742 		return s->objsize;
2743 
2744 #endif
2745 	/*
2746 	 * If we have the need to store the freelist pointer
2747 	 * back there or track user information then we can
2748 	 * only use the space before that information.
2749 	 */
2750 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2751 		return s->inuse;
2752 	/*
2753 	 * Else we can use all the padding etc for the allocation
2754 	 */
2755 	return s->size;
2756 }
2757 EXPORT_SYMBOL(ksize);
2758 
2759 void kfree(const void *x)
2760 {
2761 	struct page *page;
2762 	void *object = (void *)x;
2763 
2764 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2765 		return;
2766 
2767 	page = virt_to_head_page(x);
2768 	if (unlikely(!PageSlab(page))) {
2769 		BUG_ON(!PageCompound(page));
2770 		put_page(page);
2771 		return;
2772 	}
2773 	slab_free(page->slab, page, object, __builtin_return_address(0));
2774 }
2775 EXPORT_SYMBOL(kfree);
2776 
2777 /*
2778  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2779  * the remaining slabs by the number of items in use. The slabs with the
2780  * most items in use come first. New allocations will then fill those up
2781  * and thus they can be removed from the partial lists.
2782  *
2783  * The slabs with the least items are placed last. This results in them
2784  * being allocated from last increasing the chance that the last objects
2785  * are freed in them.
2786  */
2787 int kmem_cache_shrink(struct kmem_cache *s)
2788 {
2789 	int node;
2790 	int i;
2791 	struct kmem_cache_node *n;
2792 	struct page *page;
2793 	struct page *t;
2794 	int objects = oo_objects(s->max);
2795 	struct list_head *slabs_by_inuse =
2796 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2797 	unsigned long flags;
2798 
2799 	if (!slabs_by_inuse)
2800 		return -ENOMEM;
2801 
2802 	flush_all(s);
2803 	for_each_node_state(node, N_NORMAL_MEMORY) {
2804 		n = get_node(s, node);
2805 
2806 		if (!n->nr_partial)
2807 			continue;
2808 
2809 		for (i = 0; i < objects; i++)
2810 			INIT_LIST_HEAD(slabs_by_inuse + i);
2811 
2812 		spin_lock_irqsave(&n->list_lock, flags);
2813 
2814 		/*
2815 		 * Build lists indexed by the items in use in each slab.
2816 		 *
2817 		 * Note that concurrent frees may occur while we hold the
2818 		 * list_lock. page->inuse here is the upper limit.
2819 		 */
2820 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2821 			if (!page->inuse && slab_trylock(page)) {
2822 				/*
2823 				 * Must hold slab lock here because slab_free
2824 				 * may have freed the last object and be
2825 				 * waiting to release the slab.
2826 				 */
2827 				list_del(&page->lru);
2828 				n->nr_partial--;
2829 				slab_unlock(page);
2830 				discard_slab(s, page);
2831 			} else {
2832 				list_move(&page->lru,
2833 				slabs_by_inuse + page->inuse);
2834 			}
2835 		}
2836 
2837 		/*
2838 		 * Rebuild the partial list with the slabs filled up most
2839 		 * first and the least used slabs at the end.
2840 		 */
2841 		for (i = objects - 1; i >= 0; i--)
2842 			list_splice(slabs_by_inuse + i, n->partial.prev);
2843 
2844 		spin_unlock_irqrestore(&n->list_lock, flags);
2845 	}
2846 
2847 	kfree(slabs_by_inuse);
2848 	return 0;
2849 }
2850 EXPORT_SYMBOL(kmem_cache_shrink);
2851 
2852 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2853 static int slab_mem_going_offline_callback(void *arg)
2854 {
2855 	struct kmem_cache *s;
2856 
2857 	down_read(&slub_lock);
2858 	list_for_each_entry(s, &slab_caches, list)
2859 		kmem_cache_shrink(s);
2860 	up_read(&slub_lock);
2861 
2862 	return 0;
2863 }
2864 
2865 static void slab_mem_offline_callback(void *arg)
2866 {
2867 	struct kmem_cache_node *n;
2868 	struct kmem_cache *s;
2869 	struct memory_notify *marg = arg;
2870 	int offline_node;
2871 
2872 	offline_node = marg->status_change_nid;
2873 
2874 	/*
2875 	 * If the node still has available memory. we need kmem_cache_node
2876 	 * for it yet.
2877 	 */
2878 	if (offline_node < 0)
2879 		return;
2880 
2881 	down_read(&slub_lock);
2882 	list_for_each_entry(s, &slab_caches, list) {
2883 		n = get_node(s, offline_node);
2884 		if (n) {
2885 			/*
2886 			 * if n->nr_slabs > 0, slabs still exist on the node
2887 			 * that is going down. We were unable to free them,
2888 			 * and offline_pages() function shoudn't call this
2889 			 * callback. So, we must fail.
2890 			 */
2891 			BUG_ON(slabs_node(s, offline_node));
2892 
2893 			s->node[offline_node] = NULL;
2894 			kmem_cache_free(kmalloc_caches, n);
2895 		}
2896 	}
2897 	up_read(&slub_lock);
2898 }
2899 
2900 static int slab_mem_going_online_callback(void *arg)
2901 {
2902 	struct kmem_cache_node *n;
2903 	struct kmem_cache *s;
2904 	struct memory_notify *marg = arg;
2905 	int nid = marg->status_change_nid;
2906 	int ret = 0;
2907 
2908 	/*
2909 	 * If the node's memory is already available, then kmem_cache_node is
2910 	 * already created. Nothing to do.
2911 	 */
2912 	if (nid < 0)
2913 		return 0;
2914 
2915 	/*
2916 	 * We are bringing a node online. No memory is available yet. We must
2917 	 * allocate a kmem_cache_node structure in order to bring the node
2918 	 * online.
2919 	 */
2920 	down_read(&slub_lock);
2921 	list_for_each_entry(s, &slab_caches, list) {
2922 		/*
2923 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2924 		 *      since memory is not yet available from the node that
2925 		 *      is brought up.
2926 		 */
2927 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2928 		if (!n) {
2929 			ret = -ENOMEM;
2930 			goto out;
2931 		}
2932 		init_kmem_cache_node(n);
2933 		s->node[nid] = n;
2934 	}
2935 out:
2936 	up_read(&slub_lock);
2937 	return ret;
2938 }
2939 
2940 static int slab_memory_callback(struct notifier_block *self,
2941 				unsigned long action, void *arg)
2942 {
2943 	int ret = 0;
2944 
2945 	switch (action) {
2946 	case MEM_GOING_ONLINE:
2947 		ret = slab_mem_going_online_callback(arg);
2948 		break;
2949 	case MEM_GOING_OFFLINE:
2950 		ret = slab_mem_going_offline_callback(arg);
2951 		break;
2952 	case MEM_OFFLINE:
2953 	case MEM_CANCEL_ONLINE:
2954 		slab_mem_offline_callback(arg);
2955 		break;
2956 	case MEM_ONLINE:
2957 	case MEM_CANCEL_OFFLINE:
2958 		break;
2959 	}
2960 
2961 	ret = notifier_from_errno(ret);
2962 	return ret;
2963 }
2964 
2965 #endif /* CONFIG_MEMORY_HOTPLUG */
2966 
2967 /********************************************************************
2968  *			Basic setup of slabs
2969  *******************************************************************/
2970 
2971 void __init kmem_cache_init(void)
2972 {
2973 	int i;
2974 	int caches = 0;
2975 
2976 	init_alloc_cpu();
2977 
2978 #ifdef CONFIG_NUMA
2979 	/*
2980 	 * Must first have the slab cache available for the allocations of the
2981 	 * struct kmem_cache_node's. There is special bootstrap code in
2982 	 * kmem_cache_open for slab_state == DOWN.
2983 	 */
2984 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2985 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2986 	kmalloc_caches[0].refcount = -1;
2987 	caches++;
2988 
2989 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2990 #endif
2991 
2992 	/* Able to allocate the per node structures */
2993 	slab_state = PARTIAL;
2994 
2995 	/* Caches that are not of the two-to-the-power-of size */
2996 	if (KMALLOC_MIN_SIZE <= 64) {
2997 		create_kmalloc_cache(&kmalloc_caches[1],
2998 				"kmalloc-96", 96, GFP_KERNEL);
2999 		caches++;
3000 		create_kmalloc_cache(&kmalloc_caches[2],
3001 				"kmalloc-192", 192, GFP_KERNEL);
3002 		caches++;
3003 	}
3004 
3005 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
3006 		create_kmalloc_cache(&kmalloc_caches[i],
3007 			"kmalloc", 1 << i, GFP_KERNEL);
3008 		caches++;
3009 	}
3010 
3011 
3012 	/*
3013 	 * Patch up the size_index table if we have strange large alignment
3014 	 * requirements for the kmalloc array. This is only the case for
3015 	 * MIPS it seems. The standard arches will not generate any code here.
3016 	 *
3017 	 * Largest permitted alignment is 256 bytes due to the way we
3018 	 * handle the index determination for the smaller caches.
3019 	 *
3020 	 * Make sure that nothing crazy happens if someone starts tinkering
3021 	 * around with ARCH_KMALLOC_MINALIGN
3022 	 */
3023 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3024 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3025 
3026 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3027 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3028 
3029 	if (KMALLOC_MIN_SIZE == 128) {
3030 		/*
3031 		 * The 192 byte sized cache is not used if the alignment
3032 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3033 		 * instead.
3034 		 */
3035 		for (i = 128 + 8; i <= 192; i += 8)
3036 			size_index[(i - 1) / 8] = 8;
3037 	}
3038 
3039 	slab_state = UP;
3040 
3041 	/* Provide the correct kmalloc names now that the caches are up */
3042 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3043 		kmalloc_caches[i]. name =
3044 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3045 
3046 #ifdef CONFIG_SMP
3047 	register_cpu_notifier(&slab_notifier);
3048 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3049 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3050 #else
3051 	kmem_size = sizeof(struct kmem_cache);
3052 #endif
3053 
3054 	printk(KERN_INFO
3055 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3056 		" CPUs=%d, Nodes=%d\n",
3057 		caches, cache_line_size(),
3058 		slub_min_order, slub_max_order, slub_min_objects,
3059 		nr_cpu_ids, nr_node_ids);
3060 }
3061 
3062 /*
3063  * Find a mergeable slab cache
3064  */
3065 static int slab_unmergeable(struct kmem_cache *s)
3066 {
3067 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3068 		return 1;
3069 
3070 	if (s->ctor)
3071 		return 1;
3072 
3073 	/*
3074 	 * We may have set a slab to be unmergeable during bootstrap.
3075 	 */
3076 	if (s->refcount < 0)
3077 		return 1;
3078 
3079 	return 0;
3080 }
3081 
3082 static struct kmem_cache *find_mergeable(size_t size,
3083 		size_t align, unsigned long flags, const char *name,
3084 		void (*ctor)(struct kmem_cache *, void *))
3085 {
3086 	struct kmem_cache *s;
3087 
3088 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3089 		return NULL;
3090 
3091 	if (ctor)
3092 		return NULL;
3093 
3094 	size = ALIGN(size, sizeof(void *));
3095 	align = calculate_alignment(flags, align, size);
3096 	size = ALIGN(size, align);
3097 	flags = kmem_cache_flags(size, flags, name, NULL);
3098 
3099 	list_for_each_entry(s, &slab_caches, list) {
3100 		if (slab_unmergeable(s))
3101 			continue;
3102 
3103 		if (size > s->size)
3104 			continue;
3105 
3106 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3107 				continue;
3108 		/*
3109 		 * Check if alignment is compatible.
3110 		 * Courtesy of Adrian Drzewiecki
3111 		 */
3112 		if ((s->size & ~(align - 1)) != s->size)
3113 			continue;
3114 
3115 		if (s->size - size >= sizeof(void *))
3116 			continue;
3117 
3118 		return s;
3119 	}
3120 	return NULL;
3121 }
3122 
3123 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3124 		size_t align, unsigned long flags,
3125 		void (*ctor)(struct kmem_cache *, void *))
3126 {
3127 	struct kmem_cache *s;
3128 
3129 	down_write(&slub_lock);
3130 	s = find_mergeable(size, align, flags, name, ctor);
3131 	if (s) {
3132 		int cpu;
3133 
3134 		s->refcount++;
3135 		/*
3136 		 * Adjust the object sizes so that we clear
3137 		 * the complete object on kzalloc.
3138 		 */
3139 		s->objsize = max(s->objsize, (int)size);
3140 
3141 		/*
3142 		 * And then we need to update the object size in the
3143 		 * per cpu structures
3144 		 */
3145 		for_each_online_cpu(cpu)
3146 			get_cpu_slab(s, cpu)->objsize = s->objsize;
3147 
3148 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3149 		up_write(&slub_lock);
3150 
3151 		if (sysfs_slab_alias(s, name))
3152 			goto err;
3153 		return s;
3154 	}
3155 
3156 	s = kmalloc(kmem_size, GFP_KERNEL);
3157 	if (s) {
3158 		if (kmem_cache_open(s, GFP_KERNEL, name,
3159 				size, align, flags, ctor)) {
3160 			list_add(&s->list, &slab_caches);
3161 			up_write(&slub_lock);
3162 			if (sysfs_slab_add(s))
3163 				goto err;
3164 			return s;
3165 		}
3166 		kfree(s);
3167 	}
3168 	up_write(&slub_lock);
3169 
3170 err:
3171 	if (flags & SLAB_PANIC)
3172 		panic("Cannot create slabcache %s\n", name);
3173 	else
3174 		s = NULL;
3175 	return s;
3176 }
3177 EXPORT_SYMBOL(kmem_cache_create);
3178 
3179 #ifdef CONFIG_SMP
3180 /*
3181  * Use the cpu notifier to insure that the cpu slabs are flushed when
3182  * necessary.
3183  */
3184 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3185 		unsigned long action, void *hcpu)
3186 {
3187 	long cpu = (long)hcpu;
3188 	struct kmem_cache *s;
3189 	unsigned long flags;
3190 
3191 	switch (action) {
3192 	case CPU_UP_PREPARE:
3193 	case CPU_UP_PREPARE_FROZEN:
3194 		init_alloc_cpu_cpu(cpu);
3195 		down_read(&slub_lock);
3196 		list_for_each_entry(s, &slab_caches, list)
3197 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3198 							GFP_KERNEL);
3199 		up_read(&slub_lock);
3200 		break;
3201 
3202 	case CPU_UP_CANCELED:
3203 	case CPU_UP_CANCELED_FROZEN:
3204 	case CPU_DEAD:
3205 	case CPU_DEAD_FROZEN:
3206 		down_read(&slub_lock);
3207 		list_for_each_entry(s, &slab_caches, list) {
3208 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3209 
3210 			local_irq_save(flags);
3211 			__flush_cpu_slab(s, cpu);
3212 			local_irq_restore(flags);
3213 			free_kmem_cache_cpu(c, cpu);
3214 			s->cpu_slab[cpu] = NULL;
3215 		}
3216 		up_read(&slub_lock);
3217 		break;
3218 	default:
3219 		break;
3220 	}
3221 	return NOTIFY_OK;
3222 }
3223 
3224 static struct notifier_block __cpuinitdata slab_notifier = {
3225 	.notifier_call = slab_cpuup_callback
3226 };
3227 
3228 #endif
3229 
3230 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3231 {
3232 	struct kmem_cache *s;
3233 
3234 	if (unlikely(size > PAGE_SIZE))
3235 		return kmalloc_large(size, gfpflags);
3236 
3237 	s = get_slab(size, gfpflags);
3238 
3239 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3240 		return s;
3241 
3242 	return slab_alloc(s, gfpflags, -1, caller);
3243 }
3244 
3245 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3246 					int node, void *caller)
3247 {
3248 	struct kmem_cache *s;
3249 
3250 	if (unlikely(size > PAGE_SIZE))
3251 		return kmalloc_large_node(size, gfpflags, node);
3252 
3253 	s = get_slab(size, gfpflags);
3254 
3255 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3256 		return s;
3257 
3258 	return slab_alloc(s, gfpflags, node, caller);
3259 }
3260 
3261 #ifdef CONFIG_SLUB_DEBUG
3262 static unsigned long count_partial(struct kmem_cache_node *n,
3263 					int (*get_count)(struct page *))
3264 {
3265 	unsigned long flags;
3266 	unsigned long x = 0;
3267 	struct page *page;
3268 
3269 	spin_lock_irqsave(&n->list_lock, flags);
3270 	list_for_each_entry(page, &n->partial, lru)
3271 		x += get_count(page);
3272 	spin_unlock_irqrestore(&n->list_lock, flags);
3273 	return x;
3274 }
3275 
3276 static int count_inuse(struct page *page)
3277 {
3278 	return page->inuse;
3279 }
3280 
3281 static int count_total(struct page *page)
3282 {
3283 	return page->objects;
3284 }
3285 
3286 static int count_free(struct page *page)
3287 {
3288 	return page->objects - page->inuse;
3289 }
3290 
3291 static int validate_slab(struct kmem_cache *s, struct page *page,
3292 						unsigned long *map)
3293 {
3294 	void *p;
3295 	void *addr = page_address(page);
3296 
3297 	if (!check_slab(s, page) ||
3298 			!on_freelist(s, page, NULL))
3299 		return 0;
3300 
3301 	/* Now we know that a valid freelist exists */
3302 	bitmap_zero(map, page->objects);
3303 
3304 	for_each_free_object(p, s, page->freelist) {
3305 		set_bit(slab_index(p, s, addr), map);
3306 		if (!check_object(s, page, p, 0))
3307 			return 0;
3308 	}
3309 
3310 	for_each_object(p, s, addr, page->objects)
3311 		if (!test_bit(slab_index(p, s, addr), map))
3312 			if (!check_object(s, page, p, 1))
3313 				return 0;
3314 	return 1;
3315 }
3316 
3317 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3318 						unsigned long *map)
3319 {
3320 	if (slab_trylock(page)) {
3321 		validate_slab(s, page, map);
3322 		slab_unlock(page);
3323 	} else
3324 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3325 			s->name, page);
3326 
3327 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3328 		if (!SlabDebug(page))
3329 			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3330 				"on slab 0x%p\n", s->name, page);
3331 	} else {
3332 		if (SlabDebug(page))
3333 			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3334 				"slab 0x%p\n", s->name, page);
3335 	}
3336 }
3337 
3338 static int validate_slab_node(struct kmem_cache *s,
3339 		struct kmem_cache_node *n, unsigned long *map)
3340 {
3341 	unsigned long count = 0;
3342 	struct page *page;
3343 	unsigned long flags;
3344 
3345 	spin_lock_irqsave(&n->list_lock, flags);
3346 
3347 	list_for_each_entry(page, &n->partial, lru) {
3348 		validate_slab_slab(s, page, map);
3349 		count++;
3350 	}
3351 	if (count != n->nr_partial)
3352 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3353 			"counter=%ld\n", s->name, count, n->nr_partial);
3354 
3355 	if (!(s->flags & SLAB_STORE_USER))
3356 		goto out;
3357 
3358 	list_for_each_entry(page, &n->full, lru) {
3359 		validate_slab_slab(s, page, map);
3360 		count++;
3361 	}
3362 	if (count != atomic_long_read(&n->nr_slabs))
3363 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3364 			"counter=%ld\n", s->name, count,
3365 			atomic_long_read(&n->nr_slabs));
3366 
3367 out:
3368 	spin_unlock_irqrestore(&n->list_lock, flags);
3369 	return count;
3370 }
3371 
3372 static long validate_slab_cache(struct kmem_cache *s)
3373 {
3374 	int node;
3375 	unsigned long count = 0;
3376 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3377 				sizeof(unsigned long), GFP_KERNEL);
3378 
3379 	if (!map)
3380 		return -ENOMEM;
3381 
3382 	flush_all(s);
3383 	for_each_node_state(node, N_NORMAL_MEMORY) {
3384 		struct kmem_cache_node *n = get_node(s, node);
3385 
3386 		count += validate_slab_node(s, n, map);
3387 	}
3388 	kfree(map);
3389 	return count;
3390 }
3391 
3392 #ifdef SLUB_RESILIENCY_TEST
3393 static void resiliency_test(void)
3394 {
3395 	u8 *p;
3396 
3397 	printk(KERN_ERR "SLUB resiliency testing\n");
3398 	printk(KERN_ERR "-----------------------\n");
3399 	printk(KERN_ERR "A. Corruption after allocation\n");
3400 
3401 	p = kzalloc(16, GFP_KERNEL);
3402 	p[16] = 0x12;
3403 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3404 			" 0x12->0x%p\n\n", p + 16);
3405 
3406 	validate_slab_cache(kmalloc_caches + 4);
3407 
3408 	/* Hmmm... The next two are dangerous */
3409 	p = kzalloc(32, GFP_KERNEL);
3410 	p[32 + sizeof(void *)] = 0x34;
3411 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3412 			" 0x34 -> -0x%p\n", p);
3413 	printk(KERN_ERR
3414 		"If allocated object is overwritten then not detectable\n\n");
3415 
3416 	validate_slab_cache(kmalloc_caches + 5);
3417 	p = kzalloc(64, GFP_KERNEL);
3418 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3419 	*p = 0x56;
3420 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3421 									p);
3422 	printk(KERN_ERR
3423 		"If allocated object is overwritten then not detectable\n\n");
3424 	validate_slab_cache(kmalloc_caches + 6);
3425 
3426 	printk(KERN_ERR "\nB. Corruption after free\n");
3427 	p = kzalloc(128, GFP_KERNEL);
3428 	kfree(p);
3429 	*p = 0x78;
3430 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3431 	validate_slab_cache(kmalloc_caches + 7);
3432 
3433 	p = kzalloc(256, GFP_KERNEL);
3434 	kfree(p);
3435 	p[50] = 0x9a;
3436 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3437 			p);
3438 	validate_slab_cache(kmalloc_caches + 8);
3439 
3440 	p = kzalloc(512, GFP_KERNEL);
3441 	kfree(p);
3442 	p[512] = 0xab;
3443 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3444 	validate_slab_cache(kmalloc_caches + 9);
3445 }
3446 #else
3447 static void resiliency_test(void) {};
3448 #endif
3449 
3450 /*
3451  * Generate lists of code addresses where slabcache objects are allocated
3452  * and freed.
3453  */
3454 
3455 struct location {
3456 	unsigned long count;
3457 	void *addr;
3458 	long long sum_time;
3459 	long min_time;
3460 	long max_time;
3461 	long min_pid;
3462 	long max_pid;
3463 	cpumask_t cpus;
3464 	nodemask_t nodes;
3465 };
3466 
3467 struct loc_track {
3468 	unsigned long max;
3469 	unsigned long count;
3470 	struct location *loc;
3471 };
3472 
3473 static void free_loc_track(struct loc_track *t)
3474 {
3475 	if (t->max)
3476 		free_pages((unsigned long)t->loc,
3477 			get_order(sizeof(struct location) * t->max));
3478 }
3479 
3480 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3481 {
3482 	struct location *l;
3483 	int order;
3484 
3485 	order = get_order(sizeof(struct location) * max);
3486 
3487 	l = (void *)__get_free_pages(flags, order);
3488 	if (!l)
3489 		return 0;
3490 
3491 	if (t->count) {
3492 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3493 		free_loc_track(t);
3494 	}
3495 	t->max = max;
3496 	t->loc = l;
3497 	return 1;
3498 }
3499 
3500 static int add_location(struct loc_track *t, struct kmem_cache *s,
3501 				const struct track *track)
3502 {
3503 	long start, end, pos;
3504 	struct location *l;
3505 	void *caddr;
3506 	unsigned long age = jiffies - track->when;
3507 
3508 	start = -1;
3509 	end = t->count;
3510 
3511 	for ( ; ; ) {
3512 		pos = start + (end - start + 1) / 2;
3513 
3514 		/*
3515 		 * There is nothing at "end". If we end up there
3516 		 * we need to add something to before end.
3517 		 */
3518 		if (pos == end)
3519 			break;
3520 
3521 		caddr = t->loc[pos].addr;
3522 		if (track->addr == caddr) {
3523 
3524 			l = &t->loc[pos];
3525 			l->count++;
3526 			if (track->when) {
3527 				l->sum_time += age;
3528 				if (age < l->min_time)
3529 					l->min_time = age;
3530 				if (age > l->max_time)
3531 					l->max_time = age;
3532 
3533 				if (track->pid < l->min_pid)
3534 					l->min_pid = track->pid;
3535 				if (track->pid > l->max_pid)
3536 					l->max_pid = track->pid;
3537 
3538 				cpu_set(track->cpu, l->cpus);
3539 			}
3540 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3541 			return 1;
3542 		}
3543 
3544 		if (track->addr < caddr)
3545 			end = pos;
3546 		else
3547 			start = pos;
3548 	}
3549 
3550 	/*
3551 	 * Not found. Insert new tracking element.
3552 	 */
3553 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3554 		return 0;
3555 
3556 	l = t->loc + pos;
3557 	if (pos < t->count)
3558 		memmove(l + 1, l,
3559 			(t->count - pos) * sizeof(struct location));
3560 	t->count++;
3561 	l->count = 1;
3562 	l->addr = track->addr;
3563 	l->sum_time = age;
3564 	l->min_time = age;
3565 	l->max_time = age;
3566 	l->min_pid = track->pid;
3567 	l->max_pid = track->pid;
3568 	cpus_clear(l->cpus);
3569 	cpu_set(track->cpu, l->cpus);
3570 	nodes_clear(l->nodes);
3571 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3572 	return 1;
3573 }
3574 
3575 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3576 		struct page *page, enum track_item alloc)
3577 {
3578 	void *addr = page_address(page);
3579 	DECLARE_BITMAP(map, page->objects);
3580 	void *p;
3581 
3582 	bitmap_zero(map, page->objects);
3583 	for_each_free_object(p, s, page->freelist)
3584 		set_bit(slab_index(p, s, addr), map);
3585 
3586 	for_each_object(p, s, addr, page->objects)
3587 		if (!test_bit(slab_index(p, s, addr), map))
3588 			add_location(t, s, get_track(s, p, alloc));
3589 }
3590 
3591 static int list_locations(struct kmem_cache *s, char *buf,
3592 					enum track_item alloc)
3593 {
3594 	int len = 0;
3595 	unsigned long i;
3596 	struct loc_track t = { 0, 0, NULL };
3597 	int node;
3598 
3599 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3600 			GFP_TEMPORARY))
3601 		return sprintf(buf, "Out of memory\n");
3602 
3603 	/* Push back cpu slabs */
3604 	flush_all(s);
3605 
3606 	for_each_node_state(node, N_NORMAL_MEMORY) {
3607 		struct kmem_cache_node *n = get_node(s, node);
3608 		unsigned long flags;
3609 		struct page *page;
3610 
3611 		if (!atomic_long_read(&n->nr_slabs))
3612 			continue;
3613 
3614 		spin_lock_irqsave(&n->list_lock, flags);
3615 		list_for_each_entry(page, &n->partial, lru)
3616 			process_slab(&t, s, page, alloc);
3617 		list_for_each_entry(page, &n->full, lru)
3618 			process_slab(&t, s, page, alloc);
3619 		spin_unlock_irqrestore(&n->list_lock, flags);
3620 	}
3621 
3622 	for (i = 0; i < t.count; i++) {
3623 		struct location *l = &t.loc[i];
3624 
3625 		if (len > PAGE_SIZE - 100)
3626 			break;
3627 		len += sprintf(buf + len, "%7ld ", l->count);
3628 
3629 		if (l->addr)
3630 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3631 		else
3632 			len += sprintf(buf + len, "<not-available>");
3633 
3634 		if (l->sum_time != l->min_time) {
3635 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3636 				l->min_time,
3637 				(long)div_u64(l->sum_time, l->count),
3638 				l->max_time);
3639 		} else
3640 			len += sprintf(buf + len, " age=%ld",
3641 				l->min_time);
3642 
3643 		if (l->min_pid != l->max_pid)
3644 			len += sprintf(buf + len, " pid=%ld-%ld",
3645 				l->min_pid, l->max_pid);
3646 		else
3647 			len += sprintf(buf + len, " pid=%ld",
3648 				l->min_pid);
3649 
3650 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3651 				len < PAGE_SIZE - 60) {
3652 			len += sprintf(buf + len, " cpus=");
3653 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3654 					l->cpus);
3655 		}
3656 
3657 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3658 				len < PAGE_SIZE - 60) {
3659 			len += sprintf(buf + len, " nodes=");
3660 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3661 					l->nodes);
3662 		}
3663 
3664 		len += sprintf(buf + len, "\n");
3665 	}
3666 
3667 	free_loc_track(&t);
3668 	if (!t.count)
3669 		len += sprintf(buf, "No data\n");
3670 	return len;
3671 }
3672 
3673 enum slab_stat_type {
3674 	SL_ALL,			/* All slabs */
3675 	SL_PARTIAL,		/* Only partially allocated slabs */
3676 	SL_CPU,			/* Only slabs used for cpu caches */
3677 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3678 	SL_TOTAL		/* Determine object capacity not slabs */
3679 };
3680 
3681 #define SO_ALL		(1 << SL_ALL)
3682 #define SO_PARTIAL	(1 << SL_PARTIAL)
3683 #define SO_CPU		(1 << SL_CPU)
3684 #define SO_OBJECTS	(1 << SL_OBJECTS)
3685 #define SO_TOTAL	(1 << SL_TOTAL)
3686 
3687 static ssize_t show_slab_objects(struct kmem_cache *s,
3688 			    char *buf, unsigned long flags)
3689 {
3690 	unsigned long total = 0;
3691 	int node;
3692 	int x;
3693 	unsigned long *nodes;
3694 	unsigned long *per_cpu;
3695 
3696 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3697 	if (!nodes)
3698 		return -ENOMEM;
3699 	per_cpu = nodes + nr_node_ids;
3700 
3701 	if (flags & SO_CPU) {
3702 		int cpu;
3703 
3704 		for_each_possible_cpu(cpu) {
3705 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3706 
3707 			if (!c || c->node < 0)
3708 				continue;
3709 
3710 			if (c->page) {
3711 					if (flags & SO_TOTAL)
3712 						x = c->page->objects;
3713 				else if (flags & SO_OBJECTS)
3714 					x = c->page->inuse;
3715 				else
3716 					x = 1;
3717 
3718 				total += x;
3719 				nodes[c->node] += x;
3720 			}
3721 			per_cpu[c->node]++;
3722 		}
3723 	}
3724 
3725 	if (flags & SO_ALL) {
3726 		for_each_node_state(node, N_NORMAL_MEMORY) {
3727 			struct kmem_cache_node *n = get_node(s, node);
3728 
3729 		if (flags & SO_TOTAL)
3730 			x = atomic_long_read(&n->total_objects);
3731 		else if (flags & SO_OBJECTS)
3732 			x = atomic_long_read(&n->total_objects) -
3733 				count_partial(n, count_free);
3734 
3735 			else
3736 				x = atomic_long_read(&n->nr_slabs);
3737 			total += x;
3738 			nodes[node] += x;
3739 		}
3740 
3741 	} else if (flags & SO_PARTIAL) {
3742 		for_each_node_state(node, N_NORMAL_MEMORY) {
3743 			struct kmem_cache_node *n = get_node(s, node);
3744 
3745 			if (flags & SO_TOTAL)
3746 				x = count_partial(n, count_total);
3747 			else if (flags & SO_OBJECTS)
3748 				x = count_partial(n, count_inuse);
3749 			else
3750 				x = n->nr_partial;
3751 			total += x;
3752 			nodes[node] += x;
3753 		}
3754 	}
3755 	x = sprintf(buf, "%lu", total);
3756 #ifdef CONFIG_NUMA
3757 	for_each_node_state(node, N_NORMAL_MEMORY)
3758 		if (nodes[node])
3759 			x += sprintf(buf + x, " N%d=%lu",
3760 					node, nodes[node]);
3761 #endif
3762 	kfree(nodes);
3763 	return x + sprintf(buf + x, "\n");
3764 }
3765 
3766 static int any_slab_objects(struct kmem_cache *s)
3767 {
3768 	int node;
3769 
3770 	for_each_online_node(node) {
3771 		struct kmem_cache_node *n = get_node(s, node);
3772 
3773 		if (!n)
3774 			continue;
3775 
3776 		if (atomic_long_read(&n->total_objects))
3777 			return 1;
3778 	}
3779 	return 0;
3780 }
3781 
3782 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3783 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3784 
3785 struct slab_attribute {
3786 	struct attribute attr;
3787 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3788 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3789 };
3790 
3791 #define SLAB_ATTR_RO(_name) \
3792 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3793 
3794 #define SLAB_ATTR(_name) \
3795 	static struct slab_attribute _name##_attr =  \
3796 	__ATTR(_name, 0644, _name##_show, _name##_store)
3797 
3798 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3799 {
3800 	return sprintf(buf, "%d\n", s->size);
3801 }
3802 SLAB_ATTR_RO(slab_size);
3803 
3804 static ssize_t align_show(struct kmem_cache *s, char *buf)
3805 {
3806 	return sprintf(buf, "%d\n", s->align);
3807 }
3808 SLAB_ATTR_RO(align);
3809 
3810 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3811 {
3812 	return sprintf(buf, "%d\n", s->objsize);
3813 }
3814 SLAB_ATTR_RO(object_size);
3815 
3816 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3817 {
3818 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3819 }
3820 SLAB_ATTR_RO(objs_per_slab);
3821 
3822 static ssize_t order_store(struct kmem_cache *s,
3823 				const char *buf, size_t length)
3824 {
3825 	unsigned long order;
3826 	int err;
3827 
3828 	err = strict_strtoul(buf, 10, &order);
3829 	if (err)
3830 		return err;
3831 
3832 	if (order > slub_max_order || order < slub_min_order)
3833 		return -EINVAL;
3834 
3835 	calculate_sizes(s, order);
3836 	return length;
3837 }
3838 
3839 static ssize_t order_show(struct kmem_cache *s, char *buf)
3840 {
3841 	return sprintf(buf, "%d\n", oo_order(s->oo));
3842 }
3843 SLAB_ATTR(order);
3844 
3845 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3846 {
3847 	if (s->ctor) {
3848 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3849 
3850 		return n + sprintf(buf + n, "\n");
3851 	}
3852 	return 0;
3853 }
3854 SLAB_ATTR_RO(ctor);
3855 
3856 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3857 {
3858 	return sprintf(buf, "%d\n", s->refcount - 1);
3859 }
3860 SLAB_ATTR_RO(aliases);
3861 
3862 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3863 {
3864 	return show_slab_objects(s, buf, SO_ALL);
3865 }
3866 SLAB_ATTR_RO(slabs);
3867 
3868 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3869 {
3870 	return show_slab_objects(s, buf, SO_PARTIAL);
3871 }
3872 SLAB_ATTR_RO(partial);
3873 
3874 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3875 {
3876 	return show_slab_objects(s, buf, SO_CPU);
3877 }
3878 SLAB_ATTR_RO(cpu_slabs);
3879 
3880 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3881 {
3882 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3883 }
3884 SLAB_ATTR_RO(objects);
3885 
3886 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3887 {
3888 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3889 }
3890 SLAB_ATTR_RO(objects_partial);
3891 
3892 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3893 {
3894 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3895 }
3896 SLAB_ATTR_RO(total_objects);
3897 
3898 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3899 {
3900 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3901 }
3902 
3903 static ssize_t sanity_checks_store(struct kmem_cache *s,
3904 				const char *buf, size_t length)
3905 {
3906 	s->flags &= ~SLAB_DEBUG_FREE;
3907 	if (buf[0] == '1')
3908 		s->flags |= SLAB_DEBUG_FREE;
3909 	return length;
3910 }
3911 SLAB_ATTR(sanity_checks);
3912 
3913 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3914 {
3915 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3916 }
3917 
3918 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3919 							size_t length)
3920 {
3921 	s->flags &= ~SLAB_TRACE;
3922 	if (buf[0] == '1')
3923 		s->flags |= SLAB_TRACE;
3924 	return length;
3925 }
3926 SLAB_ATTR(trace);
3927 
3928 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3929 {
3930 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3931 }
3932 
3933 static ssize_t reclaim_account_store(struct kmem_cache *s,
3934 				const char *buf, size_t length)
3935 {
3936 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3937 	if (buf[0] == '1')
3938 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3939 	return length;
3940 }
3941 SLAB_ATTR(reclaim_account);
3942 
3943 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3944 {
3945 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3946 }
3947 SLAB_ATTR_RO(hwcache_align);
3948 
3949 #ifdef CONFIG_ZONE_DMA
3950 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3951 {
3952 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3953 }
3954 SLAB_ATTR_RO(cache_dma);
3955 #endif
3956 
3957 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3958 {
3959 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3960 }
3961 SLAB_ATTR_RO(destroy_by_rcu);
3962 
3963 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3964 {
3965 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3966 }
3967 
3968 static ssize_t red_zone_store(struct kmem_cache *s,
3969 				const char *buf, size_t length)
3970 {
3971 	if (any_slab_objects(s))
3972 		return -EBUSY;
3973 
3974 	s->flags &= ~SLAB_RED_ZONE;
3975 	if (buf[0] == '1')
3976 		s->flags |= SLAB_RED_ZONE;
3977 	calculate_sizes(s, -1);
3978 	return length;
3979 }
3980 SLAB_ATTR(red_zone);
3981 
3982 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3983 {
3984 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3985 }
3986 
3987 static ssize_t poison_store(struct kmem_cache *s,
3988 				const char *buf, size_t length)
3989 {
3990 	if (any_slab_objects(s))
3991 		return -EBUSY;
3992 
3993 	s->flags &= ~SLAB_POISON;
3994 	if (buf[0] == '1')
3995 		s->flags |= SLAB_POISON;
3996 	calculate_sizes(s, -1);
3997 	return length;
3998 }
3999 SLAB_ATTR(poison);
4000 
4001 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4002 {
4003 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4004 }
4005 
4006 static ssize_t store_user_store(struct kmem_cache *s,
4007 				const char *buf, size_t length)
4008 {
4009 	if (any_slab_objects(s))
4010 		return -EBUSY;
4011 
4012 	s->flags &= ~SLAB_STORE_USER;
4013 	if (buf[0] == '1')
4014 		s->flags |= SLAB_STORE_USER;
4015 	calculate_sizes(s, -1);
4016 	return length;
4017 }
4018 SLAB_ATTR(store_user);
4019 
4020 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4021 {
4022 	return 0;
4023 }
4024 
4025 static ssize_t validate_store(struct kmem_cache *s,
4026 			const char *buf, size_t length)
4027 {
4028 	int ret = -EINVAL;
4029 
4030 	if (buf[0] == '1') {
4031 		ret = validate_slab_cache(s);
4032 		if (ret >= 0)
4033 			ret = length;
4034 	}
4035 	return ret;
4036 }
4037 SLAB_ATTR(validate);
4038 
4039 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4040 {
4041 	return 0;
4042 }
4043 
4044 static ssize_t shrink_store(struct kmem_cache *s,
4045 			const char *buf, size_t length)
4046 {
4047 	if (buf[0] == '1') {
4048 		int rc = kmem_cache_shrink(s);
4049 
4050 		if (rc)
4051 			return rc;
4052 	} else
4053 		return -EINVAL;
4054 	return length;
4055 }
4056 SLAB_ATTR(shrink);
4057 
4058 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4059 {
4060 	if (!(s->flags & SLAB_STORE_USER))
4061 		return -ENOSYS;
4062 	return list_locations(s, buf, TRACK_ALLOC);
4063 }
4064 SLAB_ATTR_RO(alloc_calls);
4065 
4066 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4067 {
4068 	if (!(s->flags & SLAB_STORE_USER))
4069 		return -ENOSYS;
4070 	return list_locations(s, buf, TRACK_FREE);
4071 }
4072 SLAB_ATTR_RO(free_calls);
4073 
4074 #ifdef CONFIG_NUMA
4075 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4076 {
4077 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4078 }
4079 
4080 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4081 				const char *buf, size_t length)
4082 {
4083 	unsigned long ratio;
4084 	int err;
4085 
4086 	err = strict_strtoul(buf, 10, &ratio);
4087 	if (err)
4088 		return err;
4089 
4090 	if (ratio < 100)
4091 		s->remote_node_defrag_ratio = ratio * 10;
4092 
4093 	return length;
4094 }
4095 SLAB_ATTR(remote_node_defrag_ratio);
4096 #endif
4097 
4098 #ifdef CONFIG_SLUB_STATS
4099 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4100 {
4101 	unsigned long sum  = 0;
4102 	int cpu;
4103 	int len;
4104 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4105 
4106 	if (!data)
4107 		return -ENOMEM;
4108 
4109 	for_each_online_cpu(cpu) {
4110 		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4111 
4112 		data[cpu] = x;
4113 		sum += x;
4114 	}
4115 
4116 	len = sprintf(buf, "%lu", sum);
4117 
4118 #ifdef CONFIG_SMP
4119 	for_each_online_cpu(cpu) {
4120 		if (data[cpu] && len < PAGE_SIZE - 20)
4121 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4122 	}
4123 #endif
4124 	kfree(data);
4125 	return len + sprintf(buf + len, "\n");
4126 }
4127 
4128 #define STAT_ATTR(si, text) 					\
4129 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4130 {								\
4131 	return show_stat(s, buf, si);				\
4132 }								\
4133 SLAB_ATTR_RO(text);						\
4134 
4135 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4136 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4137 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4138 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4139 STAT_ATTR(FREE_FROZEN, free_frozen);
4140 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4141 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4142 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4143 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4144 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4145 STAT_ATTR(FREE_SLAB, free_slab);
4146 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4147 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4148 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4149 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4150 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4151 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4152 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4153 #endif
4154 
4155 static struct attribute *slab_attrs[] = {
4156 	&slab_size_attr.attr,
4157 	&object_size_attr.attr,
4158 	&objs_per_slab_attr.attr,
4159 	&order_attr.attr,
4160 	&objects_attr.attr,
4161 	&objects_partial_attr.attr,
4162 	&total_objects_attr.attr,
4163 	&slabs_attr.attr,
4164 	&partial_attr.attr,
4165 	&cpu_slabs_attr.attr,
4166 	&ctor_attr.attr,
4167 	&aliases_attr.attr,
4168 	&align_attr.attr,
4169 	&sanity_checks_attr.attr,
4170 	&trace_attr.attr,
4171 	&hwcache_align_attr.attr,
4172 	&reclaim_account_attr.attr,
4173 	&destroy_by_rcu_attr.attr,
4174 	&red_zone_attr.attr,
4175 	&poison_attr.attr,
4176 	&store_user_attr.attr,
4177 	&validate_attr.attr,
4178 	&shrink_attr.attr,
4179 	&alloc_calls_attr.attr,
4180 	&free_calls_attr.attr,
4181 #ifdef CONFIG_ZONE_DMA
4182 	&cache_dma_attr.attr,
4183 #endif
4184 #ifdef CONFIG_NUMA
4185 	&remote_node_defrag_ratio_attr.attr,
4186 #endif
4187 #ifdef CONFIG_SLUB_STATS
4188 	&alloc_fastpath_attr.attr,
4189 	&alloc_slowpath_attr.attr,
4190 	&free_fastpath_attr.attr,
4191 	&free_slowpath_attr.attr,
4192 	&free_frozen_attr.attr,
4193 	&free_add_partial_attr.attr,
4194 	&free_remove_partial_attr.attr,
4195 	&alloc_from_partial_attr.attr,
4196 	&alloc_slab_attr.attr,
4197 	&alloc_refill_attr.attr,
4198 	&free_slab_attr.attr,
4199 	&cpuslab_flush_attr.attr,
4200 	&deactivate_full_attr.attr,
4201 	&deactivate_empty_attr.attr,
4202 	&deactivate_to_head_attr.attr,
4203 	&deactivate_to_tail_attr.attr,
4204 	&deactivate_remote_frees_attr.attr,
4205 	&order_fallback_attr.attr,
4206 #endif
4207 	NULL
4208 };
4209 
4210 static struct attribute_group slab_attr_group = {
4211 	.attrs = slab_attrs,
4212 };
4213 
4214 static ssize_t slab_attr_show(struct kobject *kobj,
4215 				struct attribute *attr,
4216 				char *buf)
4217 {
4218 	struct slab_attribute *attribute;
4219 	struct kmem_cache *s;
4220 	int err;
4221 
4222 	attribute = to_slab_attr(attr);
4223 	s = to_slab(kobj);
4224 
4225 	if (!attribute->show)
4226 		return -EIO;
4227 
4228 	err = attribute->show(s, buf);
4229 
4230 	return err;
4231 }
4232 
4233 static ssize_t slab_attr_store(struct kobject *kobj,
4234 				struct attribute *attr,
4235 				const char *buf, size_t len)
4236 {
4237 	struct slab_attribute *attribute;
4238 	struct kmem_cache *s;
4239 	int err;
4240 
4241 	attribute = to_slab_attr(attr);
4242 	s = to_slab(kobj);
4243 
4244 	if (!attribute->store)
4245 		return -EIO;
4246 
4247 	err = attribute->store(s, buf, len);
4248 
4249 	return err;
4250 }
4251 
4252 static void kmem_cache_release(struct kobject *kobj)
4253 {
4254 	struct kmem_cache *s = to_slab(kobj);
4255 
4256 	kfree(s);
4257 }
4258 
4259 static struct sysfs_ops slab_sysfs_ops = {
4260 	.show = slab_attr_show,
4261 	.store = slab_attr_store,
4262 };
4263 
4264 static struct kobj_type slab_ktype = {
4265 	.sysfs_ops = &slab_sysfs_ops,
4266 	.release = kmem_cache_release
4267 };
4268 
4269 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4270 {
4271 	struct kobj_type *ktype = get_ktype(kobj);
4272 
4273 	if (ktype == &slab_ktype)
4274 		return 1;
4275 	return 0;
4276 }
4277 
4278 static struct kset_uevent_ops slab_uevent_ops = {
4279 	.filter = uevent_filter,
4280 };
4281 
4282 static struct kset *slab_kset;
4283 
4284 #define ID_STR_LENGTH 64
4285 
4286 /* Create a unique string id for a slab cache:
4287  *
4288  * Format	:[flags-]size
4289  */
4290 static char *create_unique_id(struct kmem_cache *s)
4291 {
4292 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4293 	char *p = name;
4294 
4295 	BUG_ON(!name);
4296 
4297 	*p++ = ':';
4298 	/*
4299 	 * First flags affecting slabcache operations. We will only
4300 	 * get here for aliasable slabs so we do not need to support
4301 	 * too many flags. The flags here must cover all flags that
4302 	 * are matched during merging to guarantee that the id is
4303 	 * unique.
4304 	 */
4305 	if (s->flags & SLAB_CACHE_DMA)
4306 		*p++ = 'd';
4307 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4308 		*p++ = 'a';
4309 	if (s->flags & SLAB_DEBUG_FREE)
4310 		*p++ = 'F';
4311 	if (p != name + 1)
4312 		*p++ = '-';
4313 	p += sprintf(p, "%07d", s->size);
4314 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4315 	return name;
4316 }
4317 
4318 static int sysfs_slab_add(struct kmem_cache *s)
4319 {
4320 	int err;
4321 	const char *name;
4322 	int unmergeable;
4323 
4324 	if (slab_state < SYSFS)
4325 		/* Defer until later */
4326 		return 0;
4327 
4328 	unmergeable = slab_unmergeable(s);
4329 	if (unmergeable) {
4330 		/*
4331 		 * Slabcache can never be merged so we can use the name proper.
4332 		 * This is typically the case for debug situations. In that
4333 		 * case we can catch duplicate names easily.
4334 		 */
4335 		sysfs_remove_link(&slab_kset->kobj, s->name);
4336 		name = s->name;
4337 	} else {
4338 		/*
4339 		 * Create a unique name for the slab as a target
4340 		 * for the symlinks.
4341 		 */
4342 		name = create_unique_id(s);
4343 	}
4344 
4345 	s->kobj.kset = slab_kset;
4346 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4347 	if (err) {
4348 		kobject_put(&s->kobj);
4349 		return err;
4350 	}
4351 
4352 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4353 	if (err)
4354 		return err;
4355 	kobject_uevent(&s->kobj, KOBJ_ADD);
4356 	if (!unmergeable) {
4357 		/* Setup first alias */
4358 		sysfs_slab_alias(s, s->name);
4359 		kfree(name);
4360 	}
4361 	return 0;
4362 }
4363 
4364 static void sysfs_slab_remove(struct kmem_cache *s)
4365 {
4366 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4367 	kobject_del(&s->kobj);
4368 	kobject_put(&s->kobj);
4369 }
4370 
4371 /*
4372  * Need to buffer aliases during bootup until sysfs becomes
4373  * available lest we loose that information.
4374  */
4375 struct saved_alias {
4376 	struct kmem_cache *s;
4377 	const char *name;
4378 	struct saved_alias *next;
4379 };
4380 
4381 static struct saved_alias *alias_list;
4382 
4383 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4384 {
4385 	struct saved_alias *al;
4386 
4387 	if (slab_state == SYSFS) {
4388 		/*
4389 		 * If we have a leftover link then remove it.
4390 		 */
4391 		sysfs_remove_link(&slab_kset->kobj, name);
4392 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4393 	}
4394 
4395 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4396 	if (!al)
4397 		return -ENOMEM;
4398 
4399 	al->s = s;
4400 	al->name = name;
4401 	al->next = alias_list;
4402 	alias_list = al;
4403 	return 0;
4404 }
4405 
4406 static int __init slab_sysfs_init(void)
4407 {
4408 	struct kmem_cache *s;
4409 	int err;
4410 
4411 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4412 	if (!slab_kset) {
4413 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4414 		return -ENOSYS;
4415 	}
4416 
4417 	slab_state = SYSFS;
4418 
4419 	list_for_each_entry(s, &slab_caches, list) {
4420 		err = sysfs_slab_add(s);
4421 		if (err)
4422 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4423 						" to sysfs\n", s->name);
4424 	}
4425 
4426 	while (alias_list) {
4427 		struct saved_alias *al = alias_list;
4428 
4429 		alias_list = alias_list->next;
4430 		err = sysfs_slab_alias(al->s, al->name);
4431 		if (err)
4432 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4433 					" %s to sysfs\n", s->name);
4434 		kfree(al);
4435 	}
4436 
4437 	resiliency_test();
4438 	return 0;
4439 }
4440 
4441 __initcall(slab_sysfs_init);
4442 #endif
4443 
4444 /*
4445  * The /proc/slabinfo ABI
4446  */
4447 #ifdef CONFIG_SLABINFO
4448 
4449 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4450 		       size_t count, loff_t *ppos)
4451 {
4452 	return -EINVAL;
4453 }
4454 
4455 
4456 static void print_slabinfo_header(struct seq_file *m)
4457 {
4458 	seq_puts(m, "slabinfo - version: 2.1\n");
4459 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4460 		 "<objperslab> <pagesperslab>");
4461 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4462 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4463 	seq_putc(m, '\n');
4464 }
4465 
4466 static void *s_start(struct seq_file *m, loff_t *pos)
4467 {
4468 	loff_t n = *pos;
4469 
4470 	down_read(&slub_lock);
4471 	if (!n)
4472 		print_slabinfo_header(m);
4473 
4474 	return seq_list_start(&slab_caches, *pos);
4475 }
4476 
4477 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4478 {
4479 	return seq_list_next(p, &slab_caches, pos);
4480 }
4481 
4482 static void s_stop(struct seq_file *m, void *p)
4483 {
4484 	up_read(&slub_lock);
4485 }
4486 
4487 static int s_show(struct seq_file *m, void *p)
4488 {
4489 	unsigned long nr_partials = 0;
4490 	unsigned long nr_slabs = 0;
4491 	unsigned long nr_inuse = 0;
4492 	unsigned long nr_objs = 0;
4493 	unsigned long nr_free = 0;
4494 	struct kmem_cache *s;
4495 	int node;
4496 
4497 	s = list_entry(p, struct kmem_cache, list);
4498 
4499 	for_each_online_node(node) {
4500 		struct kmem_cache_node *n = get_node(s, node);
4501 
4502 		if (!n)
4503 			continue;
4504 
4505 		nr_partials += n->nr_partial;
4506 		nr_slabs += atomic_long_read(&n->nr_slabs);
4507 		nr_objs += atomic_long_read(&n->total_objects);
4508 		nr_free += count_partial(n, count_free);
4509 	}
4510 
4511 	nr_inuse = nr_objs - nr_free;
4512 
4513 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4514 		   nr_objs, s->size, oo_objects(s->oo),
4515 		   (1 << oo_order(s->oo)));
4516 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4517 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4518 		   0UL);
4519 	seq_putc(m, '\n');
4520 	return 0;
4521 }
4522 
4523 const struct seq_operations slabinfo_op = {
4524 	.start = s_start,
4525 	.next = s_next,
4526 	.stop = s_stop,
4527 	.show = s_show,
4528 };
4529 
4530 #endif /* CONFIG_SLABINFO */
4531