xref: /openbmc/linux/mm/slub.c (revision f0702555)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects the second
55  *   double word in the page struct. Meaning
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->counters	-> Counters of objects
58  *	C. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 static inline void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 		p += s->red_left_pad;
131 
132 	return p;
133 }
134 
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 	return !kmem_cache_debug(s);
139 #else
140 	return false;
141 #endif
142 }
143 
144 /*
145  * Issues still to be resolved:
146  *
147  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148  *
149  * - Variable sizing of the per node arrays
150  */
151 
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154 
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157 
158 /*
159  * Mininum number of partial slabs. These will be left on the partial
160  * lists even if they are empty. kmem_cache_shrink may reclaim them.
161  */
162 #define MIN_PARTIAL 5
163 
164 /*
165  * Maximum number of desirable partial slabs.
166  * The existence of more partial slabs makes kmem_cache_shrink
167  * sort the partial list by the number of objects in use.
168  */
169 #define MAX_PARTIAL 10
170 
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 				SLAB_POISON | SLAB_STORE_USER)
173 
174 /*
175  * These debug flags cannot use CMPXCHG because there might be consistency
176  * issues when checking or reading debug information
177  */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 				SLAB_TRACE)
180 
181 
182 /*
183  * Debugging flags that require metadata to be stored in the slab.  These get
184  * disabled when slub_debug=O is used and a cache's min order increases with
185  * metadata.
186  */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188 
189 #define OO_SHIFT	16
190 #define OO_MASK		((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192 
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON		0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
196 
197 #ifdef CONFIG_SMP
198 static struct notifier_block slab_notifier;
199 #endif
200 
201 /*
202  * Tracking user of a slab.
203  */
204 #define TRACK_ADDRS_COUNT 16
205 struct track {
206 	unsigned long addr;	/* Called from address */
207 #ifdef CONFIG_STACKTRACE
208 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
209 #endif
210 	int cpu;		/* Was running on cpu */
211 	int pid;		/* Pid context */
212 	unsigned long when;	/* When did the operation occur */
213 };
214 
215 enum track_item { TRACK_ALLOC, TRACK_FREE };
216 
217 #ifdef CONFIG_SYSFS
218 static int sysfs_slab_add(struct kmem_cache *);
219 static int sysfs_slab_alias(struct kmem_cache *, const char *);
220 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	/*
232 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 	 * avoid this_cpu_add()'s irq-disable overhead.
234 	 */
235 	raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238 
239 /********************************************************************
240  * 			Core slab cache functions
241  *******************************************************************/
242 
243 static inline void *get_freepointer(struct kmem_cache *s, void *object)
244 {
245 	return *(void **)(object + s->offset);
246 }
247 
248 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
249 {
250 	prefetch(object + s->offset);
251 }
252 
253 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
254 {
255 	void *p;
256 
257 	if (!debug_pagealloc_enabled())
258 		return get_freepointer(s, object);
259 
260 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 	return p;
262 }
263 
264 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265 {
266 	*(void **)(object + s->offset) = fp;
267 }
268 
269 /* Loop over all objects in a slab */
270 #define for_each_object(__p, __s, __addr, __objects) \
271 	for (__p = fixup_red_left(__s, __addr); \
272 		__p < (__addr) + (__objects) * (__s)->size; \
273 		__p += (__s)->size)
274 
275 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
276 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
277 		__idx <= __objects; \
278 		__p += (__s)->size, __idx++)
279 
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 	return (p - addr) / s->size;
284 }
285 
286 static inline int order_objects(int order, unsigned long size, int reserved)
287 {
288 	return ((PAGE_SIZE << order) - reserved) / size;
289 }
290 
291 static inline struct kmem_cache_order_objects oo_make(int order,
292 		unsigned long size, int reserved)
293 {
294 	struct kmem_cache_order_objects x = {
295 		(order << OO_SHIFT) + order_objects(order, size, reserved)
296 	};
297 
298 	return x;
299 }
300 
301 static inline int oo_order(struct kmem_cache_order_objects x)
302 {
303 	return x.x >> OO_SHIFT;
304 }
305 
306 static inline int oo_objects(struct kmem_cache_order_objects x)
307 {
308 	return x.x & OO_MASK;
309 }
310 
311 /*
312  * Per slab locking using the pagelock
313  */
314 static __always_inline void slab_lock(struct page *page)
315 {
316 	VM_BUG_ON_PAGE(PageTail(page), page);
317 	bit_spin_lock(PG_locked, &page->flags);
318 }
319 
320 static __always_inline void slab_unlock(struct page *page)
321 {
322 	VM_BUG_ON_PAGE(PageTail(page), page);
323 	__bit_spin_unlock(PG_locked, &page->flags);
324 }
325 
326 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
327 {
328 	struct page tmp;
329 	tmp.counters = counters_new;
330 	/*
331 	 * page->counters can cover frozen/inuse/objects as well
332 	 * as page->_refcount.  If we assign to ->counters directly
333 	 * we run the risk of losing updates to page->_refcount, so
334 	 * be careful and only assign to the fields we need.
335 	 */
336 	page->frozen  = tmp.frozen;
337 	page->inuse   = tmp.inuse;
338 	page->objects = tmp.objects;
339 }
340 
341 /* Interrupts must be disabled (for the fallback code to work right) */
342 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
343 		void *freelist_old, unsigned long counters_old,
344 		void *freelist_new, unsigned long counters_new,
345 		const char *n)
346 {
347 	VM_BUG_ON(!irqs_disabled());
348 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
349     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
350 	if (s->flags & __CMPXCHG_DOUBLE) {
351 		if (cmpxchg_double(&page->freelist, &page->counters,
352 				   freelist_old, counters_old,
353 				   freelist_new, counters_new))
354 			return true;
355 	} else
356 #endif
357 	{
358 		slab_lock(page);
359 		if (page->freelist == freelist_old &&
360 					page->counters == counters_old) {
361 			page->freelist = freelist_new;
362 			set_page_slub_counters(page, counters_new);
363 			slab_unlock(page);
364 			return true;
365 		}
366 		slab_unlock(page);
367 	}
368 
369 	cpu_relax();
370 	stat(s, CMPXCHG_DOUBLE_FAIL);
371 
372 #ifdef SLUB_DEBUG_CMPXCHG
373 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
374 #endif
375 
376 	return false;
377 }
378 
379 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
380 		void *freelist_old, unsigned long counters_old,
381 		void *freelist_new, unsigned long counters_new,
382 		const char *n)
383 {
384 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
385     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
386 	if (s->flags & __CMPXCHG_DOUBLE) {
387 		if (cmpxchg_double(&page->freelist, &page->counters,
388 				   freelist_old, counters_old,
389 				   freelist_new, counters_new))
390 			return true;
391 	} else
392 #endif
393 	{
394 		unsigned long flags;
395 
396 		local_irq_save(flags);
397 		slab_lock(page);
398 		if (page->freelist == freelist_old &&
399 					page->counters == counters_old) {
400 			page->freelist = freelist_new;
401 			set_page_slub_counters(page, counters_new);
402 			slab_unlock(page);
403 			local_irq_restore(flags);
404 			return true;
405 		}
406 		slab_unlock(page);
407 		local_irq_restore(flags);
408 	}
409 
410 	cpu_relax();
411 	stat(s, CMPXCHG_DOUBLE_FAIL);
412 
413 #ifdef SLUB_DEBUG_CMPXCHG
414 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
415 #endif
416 
417 	return false;
418 }
419 
420 #ifdef CONFIG_SLUB_DEBUG
421 /*
422  * Determine a map of object in use on a page.
423  *
424  * Node listlock must be held to guarantee that the page does
425  * not vanish from under us.
426  */
427 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
428 {
429 	void *p;
430 	void *addr = page_address(page);
431 
432 	for (p = page->freelist; p; p = get_freepointer(s, p))
433 		set_bit(slab_index(p, s, addr), map);
434 }
435 
436 static inline int size_from_object(struct kmem_cache *s)
437 {
438 	if (s->flags & SLAB_RED_ZONE)
439 		return s->size - s->red_left_pad;
440 
441 	return s->size;
442 }
443 
444 static inline void *restore_red_left(struct kmem_cache *s, void *p)
445 {
446 	if (s->flags & SLAB_RED_ZONE)
447 		p -= s->red_left_pad;
448 
449 	return p;
450 }
451 
452 /*
453  * Debug settings:
454  */
455 #if defined(CONFIG_SLUB_DEBUG_ON)
456 static int slub_debug = DEBUG_DEFAULT_FLAGS;
457 #elif defined(CONFIG_KASAN)
458 static int slub_debug = SLAB_STORE_USER;
459 #else
460 static int slub_debug;
461 #endif
462 
463 static char *slub_debug_slabs;
464 static int disable_higher_order_debug;
465 
466 /*
467  * slub is about to manipulate internal object metadata.  This memory lies
468  * outside the range of the allocated object, so accessing it would normally
469  * be reported by kasan as a bounds error.  metadata_access_enable() is used
470  * to tell kasan that these accesses are OK.
471  */
472 static inline void metadata_access_enable(void)
473 {
474 	kasan_disable_current();
475 }
476 
477 static inline void metadata_access_disable(void)
478 {
479 	kasan_enable_current();
480 }
481 
482 /*
483  * Object debugging
484  */
485 
486 /* Verify that a pointer has an address that is valid within a slab page */
487 static inline int check_valid_pointer(struct kmem_cache *s,
488 				struct page *page, void *object)
489 {
490 	void *base;
491 
492 	if (!object)
493 		return 1;
494 
495 	base = page_address(page);
496 	object = restore_red_left(s, object);
497 	if (object < base || object >= base + page->objects * s->size ||
498 		(object - base) % s->size) {
499 		return 0;
500 	}
501 
502 	return 1;
503 }
504 
505 static void print_section(char *text, u8 *addr, unsigned int length)
506 {
507 	metadata_access_enable();
508 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
509 			length, 1);
510 	metadata_access_disable();
511 }
512 
513 static struct track *get_track(struct kmem_cache *s, void *object,
514 	enum track_item alloc)
515 {
516 	struct track *p;
517 
518 	if (s->offset)
519 		p = object + s->offset + sizeof(void *);
520 	else
521 		p = object + s->inuse;
522 
523 	return p + alloc;
524 }
525 
526 static void set_track(struct kmem_cache *s, void *object,
527 			enum track_item alloc, unsigned long addr)
528 {
529 	struct track *p = get_track(s, object, alloc);
530 
531 	if (addr) {
532 #ifdef CONFIG_STACKTRACE
533 		struct stack_trace trace;
534 		int i;
535 
536 		trace.nr_entries = 0;
537 		trace.max_entries = TRACK_ADDRS_COUNT;
538 		trace.entries = p->addrs;
539 		trace.skip = 3;
540 		metadata_access_enable();
541 		save_stack_trace(&trace);
542 		metadata_access_disable();
543 
544 		/* See rant in lockdep.c */
545 		if (trace.nr_entries != 0 &&
546 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
547 			trace.nr_entries--;
548 
549 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
550 			p->addrs[i] = 0;
551 #endif
552 		p->addr = addr;
553 		p->cpu = smp_processor_id();
554 		p->pid = current->pid;
555 		p->when = jiffies;
556 	} else
557 		memset(p, 0, sizeof(struct track));
558 }
559 
560 static void init_tracking(struct kmem_cache *s, void *object)
561 {
562 	if (!(s->flags & SLAB_STORE_USER))
563 		return;
564 
565 	set_track(s, object, TRACK_FREE, 0UL);
566 	set_track(s, object, TRACK_ALLOC, 0UL);
567 }
568 
569 static void print_track(const char *s, struct track *t)
570 {
571 	if (!t->addr)
572 		return;
573 
574 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
575 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
576 #ifdef CONFIG_STACKTRACE
577 	{
578 		int i;
579 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
580 			if (t->addrs[i])
581 				pr_err("\t%pS\n", (void *)t->addrs[i]);
582 			else
583 				break;
584 	}
585 #endif
586 }
587 
588 static void print_tracking(struct kmem_cache *s, void *object)
589 {
590 	if (!(s->flags & SLAB_STORE_USER))
591 		return;
592 
593 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
594 	print_track("Freed", get_track(s, object, TRACK_FREE));
595 }
596 
597 static void print_page_info(struct page *page)
598 {
599 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
600 	       page, page->objects, page->inuse, page->freelist, page->flags);
601 
602 }
603 
604 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
605 {
606 	struct va_format vaf;
607 	va_list args;
608 
609 	va_start(args, fmt);
610 	vaf.fmt = fmt;
611 	vaf.va = &args;
612 	pr_err("=============================================================================\n");
613 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
614 	pr_err("-----------------------------------------------------------------------------\n\n");
615 
616 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
617 	va_end(args);
618 }
619 
620 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
621 {
622 	struct va_format vaf;
623 	va_list args;
624 
625 	va_start(args, fmt);
626 	vaf.fmt = fmt;
627 	vaf.va = &args;
628 	pr_err("FIX %s: %pV\n", s->name, &vaf);
629 	va_end(args);
630 }
631 
632 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
633 {
634 	unsigned int off;	/* Offset of last byte */
635 	u8 *addr = page_address(page);
636 
637 	print_tracking(s, p);
638 
639 	print_page_info(page);
640 
641 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
642 	       p, p - addr, get_freepointer(s, p));
643 
644 	if (s->flags & SLAB_RED_ZONE)
645 		print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
646 	else if (p > addr + 16)
647 		print_section("Bytes b4 ", p - 16, 16);
648 
649 	print_section("Object ", p, min_t(unsigned long, s->object_size,
650 				PAGE_SIZE));
651 	if (s->flags & SLAB_RED_ZONE)
652 		print_section("Redzone ", p + s->object_size,
653 			s->inuse - s->object_size);
654 
655 	if (s->offset)
656 		off = s->offset + sizeof(void *);
657 	else
658 		off = s->inuse;
659 
660 	if (s->flags & SLAB_STORE_USER)
661 		off += 2 * sizeof(struct track);
662 
663 	if (off != size_from_object(s))
664 		/* Beginning of the filler is the free pointer */
665 		print_section("Padding ", p + off, size_from_object(s) - off);
666 
667 	dump_stack();
668 }
669 
670 void object_err(struct kmem_cache *s, struct page *page,
671 			u8 *object, char *reason)
672 {
673 	slab_bug(s, "%s", reason);
674 	print_trailer(s, page, object);
675 }
676 
677 static void slab_err(struct kmem_cache *s, struct page *page,
678 			const char *fmt, ...)
679 {
680 	va_list args;
681 	char buf[100];
682 
683 	va_start(args, fmt);
684 	vsnprintf(buf, sizeof(buf), fmt, args);
685 	va_end(args);
686 	slab_bug(s, "%s", buf);
687 	print_page_info(page);
688 	dump_stack();
689 }
690 
691 static void init_object(struct kmem_cache *s, void *object, u8 val)
692 {
693 	u8 *p = object;
694 
695 	if (s->flags & SLAB_RED_ZONE)
696 		memset(p - s->red_left_pad, val, s->red_left_pad);
697 
698 	if (s->flags & __OBJECT_POISON) {
699 		memset(p, POISON_FREE, s->object_size - 1);
700 		p[s->object_size - 1] = POISON_END;
701 	}
702 
703 	if (s->flags & SLAB_RED_ZONE)
704 		memset(p + s->object_size, val, s->inuse - s->object_size);
705 }
706 
707 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
708 						void *from, void *to)
709 {
710 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
711 	memset(from, data, to - from);
712 }
713 
714 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
715 			u8 *object, char *what,
716 			u8 *start, unsigned int value, unsigned int bytes)
717 {
718 	u8 *fault;
719 	u8 *end;
720 
721 	metadata_access_enable();
722 	fault = memchr_inv(start, value, bytes);
723 	metadata_access_disable();
724 	if (!fault)
725 		return 1;
726 
727 	end = start + bytes;
728 	while (end > fault && end[-1] == value)
729 		end--;
730 
731 	slab_bug(s, "%s overwritten", what);
732 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
733 					fault, end - 1, fault[0], value);
734 	print_trailer(s, page, object);
735 
736 	restore_bytes(s, what, value, fault, end);
737 	return 0;
738 }
739 
740 /*
741  * Object layout:
742  *
743  * object address
744  * 	Bytes of the object to be managed.
745  * 	If the freepointer may overlay the object then the free
746  * 	pointer is the first word of the object.
747  *
748  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
749  * 	0xa5 (POISON_END)
750  *
751  * object + s->object_size
752  * 	Padding to reach word boundary. This is also used for Redzoning.
753  * 	Padding is extended by another word if Redzoning is enabled and
754  * 	object_size == inuse.
755  *
756  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
757  * 	0xcc (RED_ACTIVE) for objects in use.
758  *
759  * object + s->inuse
760  * 	Meta data starts here.
761  *
762  * 	A. Free pointer (if we cannot overwrite object on free)
763  * 	B. Tracking data for SLAB_STORE_USER
764  * 	C. Padding to reach required alignment boundary or at mininum
765  * 		one word if debugging is on to be able to detect writes
766  * 		before the word boundary.
767  *
768  *	Padding is done using 0x5a (POISON_INUSE)
769  *
770  * object + s->size
771  * 	Nothing is used beyond s->size.
772  *
773  * If slabcaches are merged then the object_size and inuse boundaries are mostly
774  * ignored. And therefore no slab options that rely on these boundaries
775  * may be used with merged slabcaches.
776  */
777 
778 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
779 {
780 	unsigned long off = s->inuse;	/* The end of info */
781 
782 	if (s->offset)
783 		/* Freepointer is placed after the object. */
784 		off += sizeof(void *);
785 
786 	if (s->flags & SLAB_STORE_USER)
787 		/* We also have user information there */
788 		off += 2 * sizeof(struct track);
789 
790 	if (size_from_object(s) == off)
791 		return 1;
792 
793 	return check_bytes_and_report(s, page, p, "Object padding",
794 			p + off, POISON_INUSE, size_from_object(s) - off);
795 }
796 
797 /* Check the pad bytes at the end of a slab page */
798 static int slab_pad_check(struct kmem_cache *s, struct page *page)
799 {
800 	u8 *start;
801 	u8 *fault;
802 	u8 *end;
803 	int length;
804 	int remainder;
805 
806 	if (!(s->flags & SLAB_POISON))
807 		return 1;
808 
809 	start = page_address(page);
810 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
811 	end = start + length;
812 	remainder = length % s->size;
813 	if (!remainder)
814 		return 1;
815 
816 	metadata_access_enable();
817 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
818 	metadata_access_disable();
819 	if (!fault)
820 		return 1;
821 	while (end > fault && end[-1] == POISON_INUSE)
822 		end--;
823 
824 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
825 	print_section("Padding ", end - remainder, remainder);
826 
827 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
828 	return 0;
829 }
830 
831 static int check_object(struct kmem_cache *s, struct page *page,
832 					void *object, u8 val)
833 {
834 	u8 *p = object;
835 	u8 *endobject = object + s->object_size;
836 
837 	if (s->flags & SLAB_RED_ZONE) {
838 		if (!check_bytes_and_report(s, page, object, "Redzone",
839 			object - s->red_left_pad, val, s->red_left_pad))
840 			return 0;
841 
842 		if (!check_bytes_and_report(s, page, object, "Redzone",
843 			endobject, val, s->inuse - s->object_size))
844 			return 0;
845 	} else {
846 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
847 			check_bytes_and_report(s, page, p, "Alignment padding",
848 				endobject, POISON_INUSE,
849 				s->inuse - s->object_size);
850 		}
851 	}
852 
853 	if (s->flags & SLAB_POISON) {
854 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
855 			(!check_bytes_and_report(s, page, p, "Poison", p,
856 					POISON_FREE, s->object_size - 1) ||
857 			 !check_bytes_and_report(s, page, p, "Poison",
858 				p + s->object_size - 1, POISON_END, 1)))
859 			return 0;
860 		/*
861 		 * check_pad_bytes cleans up on its own.
862 		 */
863 		check_pad_bytes(s, page, p);
864 	}
865 
866 	if (!s->offset && val == SLUB_RED_ACTIVE)
867 		/*
868 		 * Object and freepointer overlap. Cannot check
869 		 * freepointer while object is allocated.
870 		 */
871 		return 1;
872 
873 	/* Check free pointer validity */
874 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
875 		object_err(s, page, p, "Freepointer corrupt");
876 		/*
877 		 * No choice but to zap it and thus lose the remainder
878 		 * of the free objects in this slab. May cause
879 		 * another error because the object count is now wrong.
880 		 */
881 		set_freepointer(s, p, NULL);
882 		return 0;
883 	}
884 	return 1;
885 }
886 
887 static int check_slab(struct kmem_cache *s, struct page *page)
888 {
889 	int maxobj;
890 
891 	VM_BUG_ON(!irqs_disabled());
892 
893 	if (!PageSlab(page)) {
894 		slab_err(s, page, "Not a valid slab page");
895 		return 0;
896 	}
897 
898 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
899 	if (page->objects > maxobj) {
900 		slab_err(s, page, "objects %u > max %u",
901 			page->objects, maxobj);
902 		return 0;
903 	}
904 	if (page->inuse > page->objects) {
905 		slab_err(s, page, "inuse %u > max %u",
906 			page->inuse, page->objects);
907 		return 0;
908 	}
909 	/* Slab_pad_check fixes things up after itself */
910 	slab_pad_check(s, page);
911 	return 1;
912 }
913 
914 /*
915  * Determine if a certain object on a page is on the freelist. Must hold the
916  * slab lock to guarantee that the chains are in a consistent state.
917  */
918 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
919 {
920 	int nr = 0;
921 	void *fp;
922 	void *object = NULL;
923 	int max_objects;
924 
925 	fp = page->freelist;
926 	while (fp && nr <= page->objects) {
927 		if (fp == search)
928 			return 1;
929 		if (!check_valid_pointer(s, page, fp)) {
930 			if (object) {
931 				object_err(s, page, object,
932 					"Freechain corrupt");
933 				set_freepointer(s, object, NULL);
934 			} else {
935 				slab_err(s, page, "Freepointer corrupt");
936 				page->freelist = NULL;
937 				page->inuse = page->objects;
938 				slab_fix(s, "Freelist cleared");
939 				return 0;
940 			}
941 			break;
942 		}
943 		object = fp;
944 		fp = get_freepointer(s, object);
945 		nr++;
946 	}
947 
948 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
949 	if (max_objects > MAX_OBJS_PER_PAGE)
950 		max_objects = MAX_OBJS_PER_PAGE;
951 
952 	if (page->objects != max_objects) {
953 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
954 			 page->objects, max_objects);
955 		page->objects = max_objects;
956 		slab_fix(s, "Number of objects adjusted.");
957 	}
958 	if (page->inuse != page->objects - nr) {
959 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
960 			 page->inuse, page->objects - nr);
961 		page->inuse = page->objects - nr;
962 		slab_fix(s, "Object count adjusted.");
963 	}
964 	return search == NULL;
965 }
966 
967 static void trace(struct kmem_cache *s, struct page *page, void *object,
968 								int alloc)
969 {
970 	if (s->flags & SLAB_TRACE) {
971 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
972 			s->name,
973 			alloc ? "alloc" : "free",
974 			object, page->inuse,
975 			page->freelist);
976 
977 		if (!alloc)
978 			print_section("Object ", (void *)object,
979 					s->object_size);
980 
981 		dump_stack();
982 	}
983 }
984 
985 /*
986  * Tracking of fully allocated slabs for debugging purposes.
987  */
988 static void add_full(struct kmem_cache *s,
989 	struct kmem_cache_node *n, struct page *page)
990 {
991 	if (!(s->flags & SLAB_STORE_USER))
992 		return;
993 
994 	lockdep_assert_held(&n->list_lock);
995 	list_add(&page->lru, &n->full);
996 }
997 
998 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
999 {
1000 	if (!(s->flags & SLAB_STORE_USER))
1001 		return;
1002 
1003 	lockdep_assert_held(&n->list_lock);
1004 	list_del(&page->lru);
1005 }
1006 
1007 /* Tracking of the number of slabs for debugging purposes */
1008 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1009 {
1010 	struct kmem_cache_node *n = get_node(s, node);
1011 
1012 	return atomic_long_read(&n->nr_slabs);
1013 }
1014 
1015 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1016 {
1017 	return atomic_long_read(&n->nr_slabs);
1018 }
1019 
1020 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1021 {
1022 	struct kmem_cache_node *n = get_node(s, node);
1023 
1024 	/*
1025 	 * May be called early in order to allocate a slab for the
1026 	 * kmem_cache_node structure. Solve the chicken-egg
1027 	 * dilemma by deferring the increment of the count during
1028 	 * bootstrap (see early_kmem_cache_node_alloc).
1029 	 */
1030 	if (likely(n)) {
1031 		atomic_long_inc(&n->nr_slabs);
1032 		atomic_long_add(objects, &n->total_objects);
1033 	}
1034 }
1035 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1036 {
1037 	struct kmem_cache_node *n = get_node(s, node);
1038 
1039 	atomic_long_dec(&n->nr_slabs);
1040 	atomic_long_sub(objects, &n->total_objects);
1041 }
1042 
1043 /* Object debug checks for alloc/free paths */
1044 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1045 								void *object)
1046 {
1047 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1048 		return;
1049 
1050 	init_object(s, object, SLUB_RED_INACTIVE);
1051 	init_tracking(s, object);
1052 }
1053 
1054 static inline int alloc_consistency_checks(struct kmem_cache *s,
1055 					struct page *page,
1056 					void *object, unsigned long addr)
1057 {
1058 	if (!check_slab(s, page))
1059 		return 0;
1060 
1061 	if (!check_valid_pointer(s, page, object)) {
1062 		object_err(s, page, object, "Freelist Pointer check fails");
1063 		return 0;
1064 	}
1065 
1066 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1067 		return 0;
1068 
1069 	return 1;
1070 }
1071 
1072 static noinline int alloc_debug_processing(struct kmem_cache *s,
1073 					struct page *page,
1074 					void *object, unsigned long addr)
1075 {
1076 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1077 		if (!alloc_consistency_checks(s, page, object, addr))
1078 			goto bad;
1079 	}
1080 
1081 	/* Success perform special debug activities for allocs */
1082 	if (s->flags & SLAB_STORE_USER)
1083 		set_track(s, object, TRACK_ALLOC, addr);
1084 	trace(s, page, object, 1);
1085 	init_object(s, object, SLUB_RED_ACTIVE);
1086 	return 1;
1087 
1088 bad:
1089 	if (PageSlab(page)) {
1090 		/*
1091 		 * If this is a slab page then lets do the best we can
1092 		 * to avoid issues in the future. Marking all objects
1093 		 * as used avoids touching the remaining objects.
1094 		 */
1095 		slab_fix(s, "Marking all objects used");
1096 		page->inuse = page->objects;
1097 		page->freelist = NULL;
1098 	}
1099 	return 0;
1100 }
1101 
1102 static inline int free_consistency_checks(struct kmem_cache *s,
1103 		struct page *page, void *object, unsigned long addr)
1104 {
1105 	if (!check_valid_pointer(s, page, object)) {
1106 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1107 		return 0;
1108 	}
1109 
1110 	if (on_freelist(s, page, object)) {
1111 		object_err(s, page, object, "Object already free");
1112 		return 0;
1113 	}
1114 
1115 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1116 		return 0;
1117 
1118 	if (unlikely(s != page->slab_cache)) {
1119 		if (!PageSlab(page)) {
1120 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1121 				 object);
1122 		} else if (!page->slab_cache) {
1123 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1124 			       object);
1125 			dump_stack();
1126 		} else
1127 			object_err(s, page, object,
1128 					"page slab pointer corrupt.");
1129 		return 0;
1130 	}
1131 	return 1;
1132 }
1133 
1134 /* Supports checking bulk free of a constructed freelist */
1135 static noinline int free_debug_processing(
1136 	struct kmem_cache *s, struct page *page,
1137 	void *head, void *tail, int bulk_cnt,
1138 	unsigned long addr)
1139 {
1140 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1141 	void *object = head;
1142 	int cnt = 0;
1143 	unsigned long uninitialized_var(flags);
1144 	int ret = 0;
1145 
1146 	spin_lock_irqsave(&n->list_lock, flags);
1147 	slab_lock(page);
1148 
1149 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1150 		if (!check_slab(s, page))
1151 			goto out;
1152 	}
1153 
1154 next_object:
1155 	cnt++;
1156 
1157 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1158 		if (!free_consistency_checks(s, page, object, addr))
1159 			goto out;
1160 	}
1161 
1162 	if (s->flags & SLAB_STORE_USER)
1163 		set_track(s, object, TRACK_FREE, addr);
1164 	trace(s, page, object, 0);
1165 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1166 	init_object(s, object, SLUB_RED_INACTIVE);
1167 
1168 	/* Reached end of constructed freelist yet? */
1169 	if (object != tail) {
1170 		object = get_freepointer(s, object);
1171 		goto next_object;
1172 	}
1173 	ret = 1;
1174 
1175 out:
1176 	if (cnt != bulk_cnt)
1177 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1178 			 bulk_cnt, cnt);
1179 
1180 	slab_unlock(page);
1181 	spin_unlock_irqrestore(&n->list_lock, flags);
1182 	if (!ret)
1183 		slab_fix(s, "Object at 0x%p not freed", object);
1184 	return ret;
1185 }
1186 
1187 static int __init setup_slub_debug(char *str)
1188 {
1189 	slub_debug = DEBUG_DEFAULT_FLAGS;
1190 	if (*str++ != '=' || !*str)
1191 		/*
1192 		 * No options specified. Switch on full debugging.
1193 		 */
1194 		goto out;
1195 
1196 	if (*str == ',')
1197 		/*
1198 		 * No options but restriction on slabs. This means full
1199 		 * debugging for slabs matching a pattern.
1200 		 */
1201 		goto check_slabs;
1202 
1203 	slub_debug = 0;
1204 	if (*str == '-')
1205 		/*
1206 		 * Switch off all debugging measures.
1207 		 */
1208 		goto out;
1209 
1210 	/*
1211 	 * Determine which debug features should be switched on
1212 	 */
1213 	for (; *str && *str != ','; str++) {
1214 		switch (tolower(*str)) {
1215 		case 'f':
1216 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1217 			break;
1218 		case 'z':
1219 			slub_debug |= SLAB_RED_ZONE;
1220 			break;
1221 		case 'p':
1222 			slub_debug |= SLAB_POISON;
1223 			break;
1224 		case 'u':
1225 			slub_debug |= SLAB_STORE_USER;
1226 			break;
1227 		case 't':
1228 			slub_debug |= SLAB_TRACE;
1229 			break;
1230 		case 'a':
1231 			slub_debug |= SLAB_FAILSLAB;
1232 			break;
1233 		case 'o':
1234 			/*
1235 			 * Avoid enabling debugging on caches if its minimum
1236 			 * order would increase as a result.
1237 			 */
1238 			disable_higher_order_debug = 1;
1239 			break;
1240 		default:
1241 			pr_err("slub_debug option '%c' unknown. skipped\n",
1242 			       *str);
1243 		}
1244 	}
1245 
1246 check_slabs:
1247 	if (*str == ',')
1248 		slub_debug_slabs = str + 1;
1249 out:
1250 	return 1;
1251 }
1252 
1253 __setup("slub_debug", setup_slub_debug);
1254 
1255 unsigned long kmem_cache_flags(unsigned long object_size,
1256 	unsigned long flags, const char *name,
1257 	void (*ctor)(void *))
1258 {
1259 	/*
1260 	 * Enable debugging if selected on the kernel commandline.
1261 	 */
1262 	if (slub_debug && (!slub_debug_slabs || (name &&
1263 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1264 		flags |= slub_debug;
1265 
1266 	return flags;
1267 }
1268 #else /* !CONFIG_SLUB_DEBUG */
1269 static inline void setup_object_debug(struct kmem_cache *s,
1270 			struct page *page, void *object) {}
1271 
1272 static inline int alloc_debug_processing(struct kmem_cache *s,
1273 	struct page *page, void *object, unsigned long addr) { return 0; }
1274 
1275 static inline int free_debug_processing(
1276 	struct kmem_cache *s, struct page *page,
1277 	void *head, void *tail, int bulk_cnt,
1278 	unsigned long addr) { return 0; }
1279 
1280 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1281 			{ return 1; }
1282 static inline int check_object(struct kmem_cache *s, struct page *page,
1283 			void *object, u8 val) { return 1; }
1284 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1285 					struct page *page) {}
1286 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1287 					struct page *page) {}
1288 unsigned long kmem_cache_flags(unsigned long object_size,
1289 	unsigned long flags, const char *name,
1290 	void (*ctor)(void *))
1291 {
1292 	return flags;
1293 }
1294 #define slub_debug 0
1295 
1296 #define disable_higher_order_debug 0
1297 
1298 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1299 							{ return 0; }
1300 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1301 							{ return 0; }
1302 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1303 							int objects) {}
1304 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1305 							int objects) {}
1306 
1307 #endif /* CONFIG_SLUB_DEBUG */
1308 
1309 /*
1310  * Hooks for other subsystems that check memory allocations. In a typical
1311  * production configuration these hooks all should produce no code at all.
1312  */
1313 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1314 {
1315 	kmemleak_alloc(ptr, size, 1, flags);
1316 	kasan_kmalloc_large(ptr, size, flags);
1317 }
1318 
1319 static inline void kfree_hook(const void *x)
1320 {
1321 	kmemleak_free(x);
1322 	kasan_kfree_large(x);
1323 }
1324 
1325 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1326 {
1327 	kmemleak_free_recursive(x, s->flags);
1328 
1329 	/*
1330 	 * Trouble is that we may no longer disable interrupts in the fast path
1331 	 * So in order to make the debug calls that expect irqs to be
1332 	 * disabled we need to disable interrupts temporarily.
1333 	 */
1334 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1335 	{
1336 		unsigned long flags;
1337 
1338 		local_irq_save(flags);
1339 		kmemcheck_slab_free(s, x, s->object_size);
1340 		debug_check_no_locks_freed(x, s->object_size);
1341 		local_irq_restore(flags);
1342 	}
1343 #endif
1344 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1345 		debug_check_no_obj_freed(x, s->object_size);
1346 
1347 	kasan_slab_free(s, x);
1348 }
1349 
1350 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1351 					   void *head, void *tail)
1352 {
1353 /*
1354  * Compiler cannot detect this function can be removed if slab_free_hook()
1355  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1356  */
1357 #if defined(CONFIG_KMEMCHECK) ||		\
1358 	defined(CONFIG_LOCKDEP)	||		\
1359 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1360 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1361 	defined(CONFIG_KASAN)
1362 
1363 	void *object = head;
1364 	void *tail_obj = tail ? : head;
1365 
1366 	do {
1367 		slab_free_hook(s, object);
1368 	} while ((object != tail_obj) &&
1369 		 (object = get_freepointer(s, object)));
1370 #endif
1371 }
1372 
1373 static void setup_object(struct kmem_cache *s, struct page *page,
1374 				void *object)
1375 {
1376 	setup_object_debug(s, page, object);
1377 	if (unlikely(s->ctor)) {
1378 		kasan_unpoison_object_data(s, object);
1379 		s->ctor(object);
1380 		kasan_poison_object_data(s, object);
1381 	}
1382 }
1383 
1384 /*
1385  * Slab allocation and freeing
1386  */
1387 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1388 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1389 {
1390 	struct page *page;
1391 	int order = oo_order(oo);
1392 
1393 	flags |= __GFP_NOTRACK;
1394 
1395 	if (node == NUMA_NO_NODE)
1396 		page = alloc_pages(flags, order);
1397 	else
1398 		page = __alloc_pages_node(node, flags, order);
1399 
1400 	if (page && memcg_charge_slab(page, flags, order, s)) {
1401 		__free_pages(page, order);
1402 		page = NULL;
1403 	}
1404 
1405 	return page;
1406 }
1407 
1408 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1409 {
1410 	struct page *page;
1411 	struct kmem_cache_order_objects oo = s->oo;
1412 	gfp_t alloc_gfp;
1413 	void *start, *p;
1414 	int idx, order;
1415 
1416 	flags &= gfp_allowed_mask;
1417 
1418 	if (gfpflags_allow_blocking(flags))
1419 		local_irq_enable();
1420 
1421 	flags |= s->allocflags;
1422 
1423 	/*
1424 	 * Let the initial higher-order allocation fail under memory pressure
1425 	 * so we fall-back to the minimum order allocation.
1426 	 */
1427 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1428 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1429 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1430 
1431 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1432 	if (unlikely(!page)) {
1433 		oo = s->min;
1434 		alloc_gfp = flags;
1435 		/*
1436 		 * Allocation may have failed due to fragmentation.
1437 		 * Try a lower order alloc if possible
1438 		 */
1439 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1440 		if (unlikely(!page))
1441 			goto out;
1442 		stat(s, ORDER_FALLBACK);
1443 	}
1444 
1445 	if (kmemcheck_enabled &&
1446 	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1447 		int pages = 1 << oo_order(oo);
1448 
1449 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1450 
1451 		/*
1452 		 * Objects from caches that have a constructor don't get
1453 		 * cleared when they're allocated, so we need to do it here.
1454 		 */
1455 		if (s->ctor)
1456 			kmemcheck_mark_uninitialized_pages(page, pages);
1457 		else
1458 			kmemcheck_mark_unallocated_pages(page, pages);
1459 	}
1460 
1461 	page->objects = oo_objects(oo);
1462 
1463 	order = compound_order(page);
1464 	page->slab_cache = s;
1465 	__SetPageSlab(page);
1466 	if (page_is_pfmemalloc(page))
1467 		SetPageSlabPfmemalloc(page);
1468 
1469 	start = page_address(page);
1470 
1471 	if (unlikely(s->flags & SLAB_POISON))
1472 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1473 
1474 	kasan_poison_slab(page);
1475 
1476 	for_each_object_idx(p, idx, s, start, page->objects) {
1477 		setup_object(s, page, p);
1478 		if (likely(idx < page->objects))
1479 			set_freepointer(s, p, p + s->size);
1480 		else
1481 			set_freepointer(s, p, NULL);
1482 	}
1483 
1484 	page->freelist = fixup_red_left(s, start);
1485 	page->inuse = page->objects;
1486 	page->frozen = 1;
1487 
1488 out:
1489 	if (gfpflags_allow_blocking(flags))
1490 		local_irq_disable();
1491 	if (!page)
1492 		return NULL;
1493 
1494 	mod_zone_page_state(page_zone(page),
1495 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1496 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1497 		1 << oo_order(oo));
1498 
1499 	inc_slabs_node(s, page_to_nid(page), page->objects);
1500 
1501 	return page;
1502 }
1503 
1504 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1505 {
1506 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1507 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1508 		BUG();
1509 	}
1510 
1511 	return allocate_slab(s,
1512 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1513 }
1514 
1515 static void __free_slab(struct kmem_cache *s, struct page *page)
1516 {
1517 	int order = compound_order(page);
1518 	int pages = 1 << order;
1519 
1520 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1521 		void *p;
1522 
1523 		slab_pad_check(s, page);
1524 		for_each_object(p, s, page_address(page),
1525 						page->objects)
1526 			check_object(s, page, p, SLUB_RED_INACTIVE);
1527 	}
1528 
1529 	kmemcheck_free_shadow(page, compound_order(page));
1530 
1531 	mod_zone_page_state(page_zone(page),
1532 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1533 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1534 		-pages);
1535 
1536 	__ClearPageSlabPfmemalloc(page);
1537 	__ClearPageSlab(page);
1538 
1539 	page_mapcount_reset(page);
1540 	if (current->reclaim_state)
1541 		current->reclaim_state->reclaimed_slab += pages;
1542 	memcg_uncharge_slab(page, order, s);
1543 	__free_pages(page, order);
1544 }
1545 
1546 #define need_reserve_slab_rcu						\
1547 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1548 
1549 static void rcu_free_slab(struct rcu_head *h)
1550 {
1551 	struct page *page;
1552 
1553 	if (need_reserve_slab_rcu)
1554 		page = virt_to_head_page(h);
1555 	else
1556 		page = container_of((struct list_head *)h, struct page, lru);
1557 
1558 	__free_slab(page->slab_cache, page);
1559 }
1560 
1561 static void free_slab(struct kmem_cache *s, struct page *page)
1562 {
1563 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1564 		struct rcu_head *head;
1565 
1566 		if (need_reserve_slab_rcu) {
1567 			int order = compound_order(page);
1568 			int offset = (PAGE_SIZE << order) - s->reserved;
1569 
1570 			VM_BUG_ON(s->reserved != sizeof(*head));
1571 			head = page_address(page) + offset;
1572 		} else {
1573 			head = &page->rcu_head;
1574 		}
1575 
1576 		call_rcu(head, rcu_free_slab);
1577 	} else
1578 		__free_slab(s, page);
1579 }
1580 
1581 static void discard_slab(struct kmem_cache *s, struct page *page)
1582 {
1583 	dec_slabs_node(s, page_to_nid(page), page->objects);
1584 	free_slab(s, page);
1585 }
1586 
1587 /*
1588  * Management of partially allocated slabs.
1589  */
1590 static inline void
1591 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1592 {
1593 	n->nr_partial++;
1594 	if (tail == DEACTIVATE_TO_TAIL)
1595 		list_add_tail(&page->lru, &n->partial);
1596 	else
1597 		list_add(&page->lru, &n->partial);
1598 }
1599 
1600 static inline void add_partial(struct kmem_cache_node *n,
1601 				struct page *page, int tail)
1602 {
1603 	lockdep_assert_held(&n->list_lock);
1604 	__add_partial(n, page, tail);
1605 }
1606 
1607 static inline void remove_partial(struct kmem_cache_node *n,
1608 					struct page *page)
1609 {
1610 	lockdep_assert_held(&n->list_lock);
1611 	list_del(&page->lru);
1612 	n->nr_partial--;
1613 }
1614 
1615 /*
1616  * Remove slab from the partial list, freeze it and
1617  * return the pointer to the freelist.
1618  *
1619  * Returns a list of objects or NULL if it fails.
1620  */
1621 static inline void *acquire_slab(struct kmem_cache *s,
1622 		struct kmem_cache_node *n, struct page *page,
1623 		int mode, int *objects)
1624 {
1625 	void *freelist;
1626 	unsigned long counters;
1627 	struct page new;
1628 
1629 	lockdep_assert_held(&n->list_lock);
1630 
1631 	/*
1632 	 * Zap the freelist and set the frozen bit.
1633 	 * The old freelist is the list of objects for the
1634 	 * per cpu allocation list.
1635 	 */
1636 	freelist = page->freelist;
1637 	counters = page->counters;
1638 	new.counters = counters;
1639 	*objects = new.objects - new.inuse;
1640 	if (mode) {
1641 		new.inuse = page->objects;
1642 		new.freelist = NULL;
1643 	} else {
1644 		new.freelist = freelist;
1645 	}
1646 
1647 	VM_BUG_ON(new.frozen);
1648 	new.frozen = 1;
1649 
1650 	if (!__cmpxchg_double_slab(s, page,
1651 			freelist, counters,
1652 			new.freelist, new.counters,
1653 			"acquire_slab"))
1654 		return NULL;
1655 
1656 	remove_partial(n, page);
1657 	WARN_ON(!freelist);
1658 	return freelist;
1659 }
1660 
1661 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1662 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1663 
1664 /*
1665  * Try to allocate a partial slab from a specific node.
1666  */
1667 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1668 				struct kmem_cache_cpu *c, gfp_t flags)
1669 {
1670 	struct page *page, *page2;
1671 	void *object = NULL;
1672 	int available = 0;
1673 	int objects;
1674 
1675 	/*
1676 	 * Racy check. If we mistakenly see no partial slabs then we
1677 	 * just allocate an empty slab. If we mistakenly try to get a
1678 	 * partial slab and there is none available then get_partials()
1679 	 * will return NULL.
1680 	 */
1681 	if (!n || !n->nr_partial)
1682 		return NULL;
1683 
1684 	spin_lock(&n->list_lock);
1685 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1686 		void *t;
1687 
1688 		if (!pfmemalloc_match(page, flags))
1689 			continue;
1690 
1691 		t = acquire_slab(s, n, page, object == NULL, &objects);
1692 		if (!t)
1693 			break;
1694 
1695 		available += objects;
1696 		if (!object) {
1697 			c->page = page;
1698 			stat(s, ALLOC_FROM_PARTIAL);
1699 			object = t;
1700 		} else {
1701 			put_cpu_partial(s, page, 0);
1702 			stat(s, CPU_PARTIAL_NODE);
1703 		}
1704 		if (!kmem_cache_has_cpu_partial(s)
1705 			|| available > s->cpu_partial / 2)
1706 			break;
1707 
1708 	}
1709 	spin_unlock(&n->list_lock);
1710 	return object;
1711 }
1712 
1713 /*
1714  * Get a page from somewhere. Search in increasing NUMA distances.
1715  */
1716 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1717 		struct kmem_cache_cpu *c)
1718 {
1719 #ifdef CONFIG_NUMA
1720 	struct zonelist *zonelist;
1721 	struct zoneref *z;
1722 	struct zone *zone;
1723 	enum zone_type high_zoneidx = gfp_zone(flags);
1724 	void *object;
1725 	unsigned int cpuset_mems_cookie;
1726 
1727 	/*
1728 	 * The defrag ratio allows a configuration of the tradeoffs between
1729 	 * inter node defragmentation and node local allocations. A lower
1730 	 * defrag_ratio increases the tendency to do local allocations
1731 	 * instead of attempting to obtain partial slabs from other nodes.
1732 	 *
1733 	 * If the defrag_ratio is set to 0 then kmalloc() always
1734 	 * returns node local objects. If the ratio is higher then kmalloc()
1735 	 * may return off node objects because partial slabs are obtained
1736 	 * from other nodes and filled up.
1737 	 *
1738 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1739 	 * (which makes defrag_ratio = 1000) then every (well almost)
1740 	 * allocation will first attempt to defrag slab caches on other nodes.
1741 	 * This means scanning over all nodes to look for partial slabs which
1742 	 * may be expensive if we do it every time we are trying to find a slab
1743 	 * with available objects.
1744 	 */
1745 	if (!s->remote_node_defrag_ratio ||
1746 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1747 		return NULL;
1748 
1749 	do {
1750 		cpuset_mems_cookie = read_mems_allowed_begin();
1751 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1752 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1753 			struct kmem_cache_node *n;
1754 
1755 			n = get_node(s, zone_to_nid(zone));
1756 
1757 			if (n && cpuset_zone_allowed(zone, flags) &&
1758 					n->nr_partial > s->min_partial) {
1759 				object = get_partial_node(s, n, c, flags);
1760 				if (object) {
1761 					/*
1762 					 * Don't check read_mems_allowed_retry()
1763 					 * here - if mems_allowed was updated in
1764 					 * parallel, that was a harmless race
1765 					 * between allocation and the cpuset
1766 					 * update
1767 					 */
1768 					return object;
1769 				}
1770 			}
1771 		}
1772 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1773 #endif
1774 	return NULL;
1775 }
1776 
1777 /*
1778  * Get a partial page, lock it and return it.
1779  */
1780 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1781 		struct kmem_cache_cpu *c)
1782 {
1783 	void *object;
1784 	int searchnode = node;
1785 
1786 	if (node == NUMA_NO_NODE)
1787 		searchnode = numa_mem_id();
1788 	else if (!node_present_pages(node))
1789 		searchnode = node_to_mem_node(node);
1790 
1791 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1792 	if (object || node != NUMA_NO_NODE)
1793 		return object;
1794 
1795 	return get_any_partial(s, flags, c);
1796 }
1797 
1798 #ifdef CONFIG_PREEMPT
1799 /*
1800  * Calculate the next globally unique transaction for disambiguiation
1801  * during cmpxchg. The transactions start with the cpu number and are then
1802  * incremented by CONFIG_NR_CPUS.
1803  */
1804 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1805 #else
1806 /*
1807  * No preemption supported therefore also no need to check for
1808  * different cpus.
1809  */
1810 #define TID_STEP 1
1811 #endif
1812 
1813 static inline unsigned long next_tid(unsigned long tid)
1814 {
1815 	return tid + TID_STEP;
1816 }
1817 
1818 static inline unsigned int tid_to_cpu(unsigned long tid)
1819 {
1820 	return tid % TID_STEP;
1821 }
1822 
1823 static inline unsigned long tid_to_event(unsigned long tid)
1824 {
1825 	return tid / TID_STEP;
1826 }
1827 
1828 static inline unsigned int init_tid(int cpu)
1829 {
1830 	return cpu;
1831 }
1832 
1833 static inline void note_cmpxchg_failure(const char *n,
1834 		const struct kmem_cache *s, unsigned long tid)
1835 {
1836 #ifdef SLUB_DEBUG_CMPXCHG
1837 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1838 
1839 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1840 
1841 #ifdef CONFIG_PREEMPT
1842 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1843 		pr_warn("due to cpu change %d -> %d\n",
1844 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1845 	else
1846 #endif
1847 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1848 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1849 			tid_to_event(tid), tid_to_event(actual_tid));
1850 	else
1851 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1852 			actual_tid, tid, next_tid(tid));
1853 #endif
1854 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1855 }
1856 
1857 static void init_kmem_cache_cpus(struct kmem_cache *s)
1858 {
1859 	int cpu;
1860 
1861 	for_each_possible_cpu(cpu)
1862 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1863 }
1864 
1865 /*
1866  * Remove the cpu slab
1867  */
1868 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1869 				void *freelist)
1870 {
1871 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1872 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1873 	int lock = 0;
1874 	enum slab_modes l = M_NONE, m = M_NONE;
1875 	void *nextfree;
1876 	int tail = DEACTIVATE_TO_HEAD;
1877 	struct page new;
1878 	struct page old;
1879 
1880 	if (page->freelist) {
1881 		stat(s, DEACTIVATE_REMOTE_FREES);
1882 		tail = DEACTIVATE_TO_TAIL;
1883 	}
1884 
1885 	/*
1886 	 * Stage one: Free all available per cpu objects back
1887 	 * to the page freelist while it is still frozen. Leave the
1888 	 * last one.
1889 	 *
1890 	 * There is no need to take the list->lock because the page
1891 	 * is still frozen.
1892 	 */
1893 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1894 		void *prior;
1895 		unsigned long counters;
1896 
1897 		do {
1898 			prior = page->freelist;
1899 			counters = page->counters;
1900 			set_freepointer(s, freelist, prior);
1901 			new.counters = counters;
1902 			new.inuse--;
1903 			VM_BUG_ON(!new.frozen);
1904 
1905 		} while (!__cmpxchg_double_slab(s, page,
1906 			prior, counters,
1907 			freelist, new.counters,
1908 			"drain percpu freelist"));
1909 
1910 		freelist = nextfree;
1911 	}
1912 
1913 	/*
1914 	 * Stage two: Ensure that the page is unfrozen while the
1915 	 * list presence reflects the actual number of objects
1916 	 * during unfreeze.
1917 	 *
1918 	 * We setup the list membership and then perform a cmpxchg
1919 	 * with the count. If there is a mismatch then the page
1920 	 * is not unfrozen but the page is on the wrong list.
1921 	 *
1922 	 * Then we restart the process which may have to remove
1923 	 * the page from the list that we just put it on again
1924 	 * because the number of objects in the slab may have
1925 	 * changed.
1926 	 */
1927 redo:
1928 
1929 	old.freelist = page->freelist;
1930 	old.counters = page->counters;
1931 	VM_BUG_ON(!old.frozen);
1932 
1933 	/* Determine target state of the slab */
1934 	new.counters = old.counters;
1935 	if (freelist) {
1936 		new.inuse--;
1937 		set_freepointer(s, freelist, old.freelist);
1938 		new.freelist = freelist;
1939 	} else
1940 		new.freelist = old.freelist;
1941 
1942 	new.frozen = 0;
1943 
1944 	if (!new.inuse && n->nr_partial >= s->min_partial)
1945 		m = M_FREE;
1946 	else if (new.freelist) {
1947 		m = M_PARTIAL;
1948 		if (!lock) {
1949 			lock = 1;
1950 			/*
1951 			 * Taking the spinlock removes the possiblity
1952 			 * that acquire_slab() will see a slab page that
1953 			 * is frozen
1954 			 */
1955 			spin_lock(&n->list_lock);
1956 		}
1957 	} else {
1958 		m = M_FULL;
1959 		if (kmem_cache_debug(s) && !lock) {
1960 			lock = 1;
1961 			/*
1962 			 * This also ensures that the scanning of full
1963 			 * slabs from diagnostic functions will not see
1964 			 * any frozen slabs.
1965 			 */
1966 			spin_lock(&n->list_lock);
1967 		}
1968 	}
1969 
1970 	if (l != m) {
1971 
1972 		if (l == M_PARTIAL)
1973 
1974 			remove_partial(n, page);
1975 
1976 		else if (l == M_FULL)
1977 
1978 			remove_full(s, n, page);
1979 
1980 		if (m == M_PARTIAL) {
1981 
1982 			add_partial(n, page, tail);
1983 			stat(s, tail);
1984 
1985 		} else if (m == M_FULL) {
1986 
1987 			stat(s, DEACTIVATE_FULL);
1988 			add_full(s, n, page);
1989 
1990 		}
1991 	}
1992 
1993 	l = m;
1994 	if (!__cmpxchg_double_slab(s, page,
1995 				old.freelist, old.counters,
1996 				new.freelist, new.counters,
1997 				"unfreezing slab"))
1998 		goto redo;
1999 
2000 	if (lock)
2001 		spin_unlock(&n->list_lock);
2002 
2003 	if (m == M_FREE) {
2004 		stat(s, DEACTIVATE_EMPTY);
2005 		discard_slab(s, page);
2006 		stat(s, FREE_SLAB);
2007 	}
2008 }
2009 
2010 /*
2011  * Unfreeze all the cpu partial slabs.
2012  *
2013  * This function must be called with interrupts disabled
2014  * for the cpu using c (or some other guarantee must be there
2015  * to guarantee no concurrent accesses).
2016  */
2017 static void unfreeze_partials(struct kmem_cache *s,
2018 		struct kmem_cache_cpu *c)
2019 {
2020 #ifdef CONFIG_SLUB_CPU_PARTIAL
2021 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2022 	struct page *page, *discard_page = NULL;
2023 
2024 	while ((page = c->partial)) {
2025 		struct page new;
2026 		struct page old;
2027 
2028 		c->partial = page->next;
2029 
2030 		n2 = get_node(s, page_to_nid(page));
2031 		if (n != n2) {
2032 			if (n)
2033 				spin_unlock(&n->list_lock);
2034 
2035 			n = n2;
2036 			spin_lock(&n->list_lock);
2037 		}
2038 
2039 		do {
2040 
2041 			old.freelist = page->freelist;
2042 			old.counters = page->counters;
2043 			VM_BUG_ON(!old.frozen);
2044 
2045 			new.counters = old.counters;
2046 			new.freelist = old.freelist;
2047 
2048 			new.frozen = 0;
2049 
2050 		} while (!__cmpxchg_double_slab(s, page,
2051 				old.freelist, old.counters,
2052 				new.freelist, new.counters,
2053 				"unfreezing slab"));
2054 
2055 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2056 			page->next = discard_page;
2057 			discard_page = page;
2058 		} else {
2059 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2060 			stat(s, FREE_ADD_PARTIAL);
2061 		}
2062 	}
2063 
2064 	if (n)
2065 		spin_unlock(&n->list_lock);
2066 
2067 	while (discard_page) {
2068 		page = discard_page;
2069 		discard_page = discard_page->next;
2070 
2071 		stat(s, DEACTIVATE_EMPTY);
2072 		discard_slab(s, page);
2073 		stat(s, FREE_SLAB);
2074 	}
2075 #endif
2076 }
2077 
2078 /*
2079  * Put a page that was just frozen (in __slab_free) into a partial page
2080  * slot if available. This is done without interrupts disabled and without
2081  * preemption disabled. The cmpxchg is racy and may put the partial page
2082  * onto a random cpus partial slot.
2083  *
2084  * If we did not find a slot then simply move all the partials to the
2085  * per node partial list.
2086  */
2087 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2088 {
2089 #ifdef CONFIG_SLUB_CPU_PARTIAL
2090 	struct page *oldpage;
2091 	int pages;
2092 	int pobjects;
2093 
2094 	preempt_disable();
2095 	do {
2096 		pages = 0;
2097 		pobjects = 0;
2098 		oldpage = this_cpu_read(s->cpu_slab->partial);
2099 
2100 		if (oldpage) {
2101 			pobjects = oldpage->pobjects;
2102 			pages = oldpage->pages;
2103 			if (drain && pobjects > s->cpu_partial) {
2104 				unsigned long flags;
2105 				/*
2106 				 * partial array is full. Move the existing
2107 				 * set to the per node partial list.
2108 				 */
2109 				local_irq_save(flags);
2110 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2111 				local_irq_restore(flags);
2112 				oldpage = NULL;
2113 				pobjects = 0;
2114 				pages = 0;
2115 				stat(s, CPU_PARTIAL_DRAIN);
2116 			}
2117 		}
2118 
2119 		pages++;
2120 		pobjects += page->objects - page->inuse;
2121 
2122 		page->pages = pages;
2123 		page->pobjects = pobjects;
2124 		page->next = oldpage;
2125 
2126 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2127 								!= oldpage);
2128 	if (unlikely(!s->cpu_partial)) {
2129 		unsigned long flags;
2130 
2131 		local_irq_save(flags);
2132 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2133 		local_irq_restore(flags);
2134 	}
2135 	preempt_enable();
2136 #endif
2137 }
2138 
2139 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2140 {
2141 	stat(s, CPUSLAB_FLUSH);
2142 	deactivate_slab(s, c->page, c->freelist);
2143 
2144 	c->tid = next_tid(c->tid);
2145 	c->page = NULL;
2146 	c->freelist = NULL;
2147 }
2148 
2149 /*
2150  * Flush cpu slab.
2151  *
2152  * Called from IPI handler with interrupts disabled.
2153  */
2154 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2155 {
2156 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2157 
2158 	if (likely(c)) {
2159 		if (c->page)
2160 			flush_slab(s, c);
2161 
2162 		unfreeze_partials(s, c);
2163 	}
2164 }
2165 
2166 static void flush_cpu_slab(void *d)
2167 {
2168 	struct kmem_cache *s = d;
2169 
2170 	__flush_cpu_slab(s, smp_processor_id());
2171 }
2172 
2173 static bool has_cpu_slab(int cpu, void *info)
2174 {
2175 	struct kmem_cache *s = info;
2176 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2177 
2178 	return c->page || c->partial;
2179 }
2180 
2181 static void flush_all(struct kmem_cache *s)
2182 {
2183 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2184 }
2185 
2186 /*
2187  * Check if the objects in a per cpu structure fit numa
2188  * locality expectations.
2189  */
2190 static inline int node_match(struct page *page, int node)
2191 {
2192 #ifdef CONFIG_NUMA
2193 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2194 		return 0;
2195 #endif
2196 	return 1;
2197 }
2198 
2199 #ifdef CONFIG_SLUB_DEBUG
2200 static int count_free(struct page *page)
2201 {
2202 	return page->objects - page->inuse;
2203 }
2204 
2205 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2206 {
2207 	return atomic_long_read(&n->total_objects);
2208 }
2209 #endif /* CONFIG_SLUB_DEBUG */
2210 
2211 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2212 static unsigned long count_partial(struct kmem_cache_node *n,
2213 					int (*get_count)(struct page *))
2214 {
2215 	unsigned long flags;
2216 	unsigned long x = 0;
2217 	struct page *page;
2218 
2219 	spin_lock_irqsave(&n->list_lock, flags);
2220 	list_for_each_entry(page, &n->partial, lru)
2221 		x += get_count(page);
2222 	spin_unlock_irqrestore(&n->list_lock, flags);
2223 	return x;
2224 }
2225 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2226 
2227 static noinline void
2228 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2229 {
2230 #ifdef CONFIG_SLUB_DEBUG
2231 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2232 				      DEFAULT_RATELIMIT_BURST);
2233 	int node;
2234 	struct kmem_cache_node *n;
2235 
2236 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2237 		return;
2238 
2239 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2240 		nid, gfpflags, &gfpflags);
2241 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2242 		s->name, s->object_size, s->size, oo_order(s->oo),
2243 		oo_order(s->min));
2244 
2245 	if (oo_order(s->min) > get_order(s->object_size))
2246 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2247 			s->name);
2248 
2249 	for_each_kmem_cache_node(s, node, n) {
2250 		unsigned long nr_slabs;
2251 		unsigned long nr_objs;
2252 		unsigned long nr_free;
2253 
2254 		nr_free  = count_partial(n, count_free);
2255 		nr_slabs = node_nr_slabs(n);
2256 		nr_objs  = node_nr_objs(n);
2257 
2258 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2259 			node, nr_slabs, nr_objs, nr_free);
2260 	}
2261 #endif
2262 }
2263 
2264 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2265 			int node, struct kmem_cache_cpu **pc)
2266 {
2267 	void *freelist;
2268 	struct kmem_cache_cpu *c = *pc;
2269 	struct page *page;
2270 
2271 	freelist = get_partial(s, flags, node, c);
2272 
2273 	if (freelist)
2274 		return freelist;
2275 
2276 	page = new_slab(s, flags, node);
2277 	if (page) {
2278 		c = raw_cpu_ptr(s->cpu_slab);
2279 		if (c->page)
2280 			flush_slab(s, c);
2281 
2282 		/*
2283 		 * No other reference to the page yet so we can
2284 		 * muck around with it freely without cmpxchg
2285 		 */
2286 		freelist = page->freelist;
2287 		page->freelist = NULL;
2288 
2289 		stat(s, ALLOC_SLAB);
2290 		c->page = page;
2291 		*pc = c;
2292 	} else
2293 		freelist = NULL;
2294 
2295 	return freelist;
2296 }
2297 
2298 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2299 {
2300 	if (unlikely(PageSlabPfmemalloc(page)))
2301 		return gfp_pfmemalloc_allowed(gfpflags);
2302 
2303 	return true;
2304 }
2305 
2306 /*
2307  * Check the page->freelist of a page and either transfer the freelist to the
2308  * per cpu freelist or deactivate the page.
2309  *
2310  * The page is still frozen if the return value is not NULL.
2311  *
2312  * If this function returns NULL then the page has been unfrozen.
2313  *
2314  * This function must be called with interrupt disabled.
2315  */
2316 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2317 {
2318 	struct page new;
2319 	unsigned long counters;
2320 	void *freelist;
2321 
2322 	do {
2323 		freelist = page->freelist;
2324 		counters = page->counters;
2325 
2326 		new.counters = counters;
2327 		VM_BUG_ON(!new.frozen);
2328 
2329 		new.inuse = page->objects;
2330 		new.frozen = freelist != NULL;
2331 
2332 	} while (!__cmpxchg_double_slab(s, page,
2333 		freelist, counters,
2334 		NULL, new.counters,
2335 		"get_freelist"));
2336 
2337 	return freelist;
2338 }
2339 
2340 /*
2341  * Slow path. The lockless freelist is empty or we need to perform
2342  * debugging duties.
2343  *
2344  * Processing is still very fast if new objects have been freed to the
2345  * regular freelist. In that case we simply take over the regular freelist
2346  * as the lockless freelist and zap the regular freelist.
2347  *
2348  * If that is not working then we fall back to the partial lists. We take the
2349  * first element of the freelist as the object to allocate now and move the
2350  * rest of the freelist to the lockless freelist.
2351  *
2352  * And if we were unable to get a new slab from the partial slab lists then
2353  * we need to allocate a new slab. This is the slowest path since it involves
2354  * a call to the page allocator and the setup of a new slab.
2355  *
2356  * Version of __slab_alloc to use when we know that interrupts are
2357  * already disabled (which is the case for bulk allocation).
2358  */
2359 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2360 			  unsigned long addr, struct kmem_cache_cpu *c)
2361 {
2362 	void *freelist;
2363 	struct page *page;
2364 
2365 	page = c->page;
2366 	if (!page)
2367 		goto new_slab;
2368 redo:
2369 
2370 	if (unlikely(!node_match(page, node))) {
2371 		int searchnode = node;
2372 
2373 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2374 			searchnode = node_to_mem_node(node);
2375 
2376 		if (unlikely(!node_match(page, searchnode))) {
2377 			stat(s, ALLOC_NODE_MISMATCH);
2378 			deactivate_slab(s, page, c->freelist);
2379 			c->page = NULL;
2380 			c->freelist = NULL;
2381 			goto new_slab;
2382 		}
2383 	}
2384 
2385 	/*
2386 	 * By rights, we should be searching for a slab page that was
2387 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2388 	 * information when the page leaves the per-cpu allocator
2389 	 */
2390 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2391 		deactivate_slab(s, page, c->freelist);
2392 		c->page = NULL;
2393 		c->freelist = NULL;
2394 		goto new_slab;
2395 	}
2396 
2397 	/* must check again c->freelist in case of cpu migration or IRQ */
2398 	freelist = c->freelist;
2399 	if (freelist)
2400 		goto load_freelist;
2401 
2402 	freelist = get_freelist(s, page);
2403 
2404 	if (!freelist) {
2405 		c->page = NULL;
2406 		stat(s, DEACTIVATE_BYPASS);
2407 		goto new_slab;
2408 	}
2409 
2410 	stat(s, ALLOC_REFILL);
2411 
2412 load_freelist:
2413 	/*
2414 	 * freelist is pointing to the list of objects to be used.
2415 	 * page is pointing to the page from which the objects are obtained.
2416 	 * That page must be frozen for per cpu allocations to work.
2417 	 */
2418 	VM_BUG_ON(!c->page->frozen);
2419 	c->freelist = get_freepointer(s, freelist);
2420 	c->tid = next_tid(c->tid);
2421 	return freelist;
2422 
2423 new_slab:
2424 
2425 	if (c->partial) {
2426 		page = c->page = c->partial;
2427 		c->partial = page->next;
2428 		stat(s, CPU_PARTIAL_ALLOC);
2429 		c->freelist = NULL;
2430 		goto redo;
2431 	}
2432 
2433 	freelist = new_slab_objects(s, gfpflags, node, &c);
2434 
2435 	if (unlikely(!freelist)) {
2436 		slab_out_of_memory(s, gfpflags, node);
2437 		return NULL;
2438 	}
2439 
2440 	page = c->page;
2441 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2442 		goto load_freelist;
2443 
2444 	/* Only entered in the debug case */
2445 	if (kmem_cache_debug(s) &&
2446 			!alloc_debug_processing(s, page, freelist, addr))
2447 		goto new_slab;	/* Slab failed checks. Next slab needed */
2448 
2449 	deactivate_slab(s, page, get_freepointer(s, freelist));
2450 	c->page = NULL;
2451 	c->freelist = NULL;
2452 	return freelist;
2453 }
2454 
2455 /*
2456  * Another one that disabled interrupt and compensates for possible
2457  * cpu changes by refetching the per cpu area pointer.
2458  */
2459 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2460 			  unsigned long addr, struct kmem_cache_cpu *c)
2461 {
2462 	void *p;
2463 	unsigned long flags;
2464 
2465 	local_irq_save(flags);
2466 #ifdef CONFIG_PREEMPT
2467 	/*
2468 	 * We may have been preempted and rescheduled on a different
2469 	 * cpu before disabling interrupts. Need to reload cpu area
2470 	 * pointer.
2471 	 */
2472 	c = this_cpu_ptr(s->cpu_slab);
2473 #endif
2474 
2475 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2476 	local_irq_restore(flags);
2477 	return p;
2478 }
2479 
2480 /*
2481  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2482  * have the fastpath folded into their functions. So no function call
2483  * overhead for requests that can be satisfied on the fastpath.
2484  *
2485  * The fastpath works by first checking if the lockless freelist can be used.
2486  * If not then __slab_alloc is called for slow processing.
2487  *
2488  * Otherwise we can simply pick the next object from the lockless free list.
2489  */
2490 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2491 		gfp_t gfpflags, int node, unsigned long addr)
2492 {
2493 	void *object;
2494 	struct kmem_cache_cpu *c;
2495 	struct page *page;
2496 	unsigned long tid;
2497 
2498 	s = slab_pre_alloc_hook(s, gfpflags);
2499 	if (!s)
2500 		return NULL;
2501 redo:
2502 	/*
2503 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2504 	 * enabled. We may switch back and forth between cpus while
2505 	 * reading from one cpu area. That does not matter as long
2506 	 * as we end up on the original cpu again when doing the cmpxchg.
2507 	 *
2508 	 * We should guarantee that tid and kmem_cache are retrieved on
2509 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2510 	 * to check if it is matched or not.
2511 	 */
2512 	do {
2513 		tid = this_cpu_read(s->cpu_slab->tid);
2514 		c = raw_cpu_ptr(s->cpu_slab);
2515 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2516 		 unlikely(tid != READ_ONCE(c->tid)));
2517 
2518 	/*
2519 	 * Irqless object alloc/free algorithm used here depends on sequence
2520 	 * of fetching cpu_slab's data. tid should be fetched before anything
2521 	 * on c to guarantee that object and page associated with previous tid
2522 	 * won't be used with current tid. If we fetch tid first, object and
2523 	 * page could be one associated with next tid and our alloc/free
2524 	 * request will be failed. In this case, we will retry. So, no problem.
2525 	 */
2526 	barrier();
2527 
2528 	/*
2529 	 * The transaction ids are globally unique per cpu and per operation on
2530 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2531 	 * occurs on the right processor and that there was no operation on the
2532 	 * linked list in between.
2533 	 */
2534 
2535 	object = c->freelist;
2536 	page = c->page;
2537 	if (unlikely(!object || !node_match(page, node))) {
2538 		object = __slab_alloc(s, gfpflags, node, addr, c);
2539 		stat(s, ALLOC_SLOWPATH);
2540 	} else {
2541 		void *next_object = get_freepointer_safe(s, object);
2542 
2543 		/*
2544 		 * The cmpxchg will only match if there was no additional
2545 		 * operation and if we are on the right processor.
2546 		 *
2547 		 * The cmpxchg does the following atomically (without lock
2548 		 * semantics!)
2549 		 * 1. Relocate first pointer to the current per cpu area.
2550 		 * 2. Verify that tid and freelist have not been changed
2551 		 * 3. If they were not changed replace tid and freelist
2552 		 *
2553 		 * Since this is without lock semantics the protection is only
2554 		 * against code executing on this cpu *not* from access by
2555 		 * other cpus.
2556 		 */
2557 		if (unlikely(!this_cpu_cmpxchg_double(
2558 				s->cpu_slab->freelist, s->cpu_slab->tid,
2559 				object, tid,
2560 				next_object, next_tid(tid)))) {
2561 
2562 			note_cmpxchg_failure("slab_alloc", s, tid);
2563 			goto redo;
2564 		}
2565 		prefetch_freepointer(s, next_object);
2566 		stat(s, ALLOC_FASTPATH);
2567 	}
2568 
2569 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2570 		memset(object, 0, s->object_size);
2571 
2572 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2573 
2574 	return object;
2575 }
2576 
2577 static __always_inline void *slab_alloc(struct kmem_cache *s,
2578 		gfp_t gfpflags, unsigned long addr)
2579 {
2580 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2581 }
2582 
2583 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2584 {
2585 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2586 
2587 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2588 				s->size, gfpflags);
2589 
2590 	return ret;
2591 }
2592 EXPORT_SYMBOL(kmem_cache_alloc);
2593 
2594 #ifdef CONFIG_TRACING
2595 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2596 {
2597 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2598 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2599 	kasan_kmalloc(s, ret, size, gfpflags);
2600 	return ret;
2601 }
2602 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2603 #endif
2604 
2605 #ifdef CONFIG_NUMA
2606 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2607 {
2608 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2609 
2610 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2611 				    s->object_size, s->size, gfpflags, node);
2612 
2613 	return ret;
2614 }
2615 EXPORT_SYMBOL(kmem_cache_alloc_node);
2616 
2617 #ifdef CONFIG_TRACING
2618 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2619 				    gfp_t gfpflags,
2620 				    int node, size_t size)
2621 {
2622 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2623 
2624 	trace_kmalloc_node(_RET_IP_, ret,
2625 			   size, s->size, gfpflags, node);
2626 
2627 	kasan_kmalloc(s, ret, size, gfpflags);
2628 	return ret;
2629 }
2630 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2631 #endif
2632 #endif
2633 
2634 /*
2635  * Slow path handling. This may still be called frequently since objects
2636  * have a longer lifetime than the cpu slabs in most processing loads.
2637  *
2638  * So we still attempt to reduce cache line usage. Just take the slab
2639  * lock and free the item. If there is no additional partial page
2640  * handling required then we can return immediately.
2641  */
2642 static void __slab_free(struct kmem_cache *s, struct page *page,
2643 			void *head, void *tail, int cnt,
2644 			unsigned long addr)
2645 
2646 {
2647 	void *prior;
2648 	int was_frozen;
2649 	struct page new;
2650 	unsigned long counters;
2651 	struct kmem_cache_node *n = NULL;
2652 	unsigned long uninitialized_var(flags);
2653 
2654 	stat(s, FREE_SLOWPATH);
2655 
2656 	if (kmem_cache_debug(s) &&
2657 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2658 		return;
2659 
2660 	do {
2661 		if (unlikely(n)) {
2662 			spin_unlock_irqrestore(&n->list_lock, flags);
2663 			n = NULL;
2664 		}
2665 		prior = page->freelist;
2666 		counters = page->counters;
2667 		set_freepointer(s, tail, prior);
2668 		new.counters = counters;
2669 		was_frozen = new.frozen;
2670 		new.inuse -= cnt;
2671 		if ((!new.inuse || !prior) && !was_frozen) {
2672 
2673 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2674 
2675 				/*
2676 				 * Slab was on no list before and will be
2677 				 * partially empty
2678 				 * We can defer the list move and instead
2679 				 * freeze it.
2680 				 */
2681 				new.frozen = 1;
2682 
2683 			} else { /* Needs to be taken off a list */
2684 
2685 				n = get_node(s, page_to_nid(page));
2686 				/*
2687 				 * Speculatively acquire the list_lock.
2688 				 * If the cmpxchg does not succeed then we may
2689 				 * drop the list_lock without any processing.
2690 				 *
2691 				 * Otherwise the list_lock will synchronize with
2692 				 * other processors updating the list of slabs.
2693 				 */
2694 				spin_lock_irqsave(&n->list_lock, flags);
2695 
2696 			}
2697 		}
2698 
2699 	} while (!cmpxchg_double_slab(s, page,
2700 		prior, counters,
2701 		head, new.counters,
2702 		"__slab_free"));
2703 
2704 	if (likely(!n)) {
2705 
2706 		/*
2707 		 * If we just froze the page then put it onto the
2708 		 * per cpu partial list.
2709 		 */
2710 		if (new.frozen && !was_frozen) {
2711 			put_cpu_partial(s, page, 1);
2712 			stat(s, CPU_PARTIAL_FREE);
2713 		}
2714 		/*
2715 		 * The list lock was not taken therefore no list
2716 		 * activity can be necessary.
2717 		 */
2718 		if (was_frozen)
2719 			stat(s, FREE_FROZEN);
2720 		return;
2721 	}
2722 
2723 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2724 		goto slab_empty;
2725 
2726 	/*
2727 	 * Objects left in the slab. If it was not on the partial list before
2728 	 * then add it.
2729 	 */
2730 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2731 		if (kmem_cache_debug(s))
2732 			remove_full(s, n, page);
2733 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2734 		stat(s, FREE_ADD_PARTIAL);
2735 	}
2736 	spin_unlock_irqrestore(&n->list_lock, flags);
2737 	return;
2738 
2739 slab_empty:
2740 	if (prior) {
2741 		/*
2742 		 * Slab on the partial list.
2743 		 */
2744 		remove_partial(n, page);
2745 		stat(s, FREE_REMOVE_PARTIAL);
2746 	} else {
2747 		/* Slab must be on the full list */
2748 		remove_full(s, n, page);
2749 	}
2750 
2751 	spin_unlock_irqrestore(&n->list_lock, flags);
2752 	stat(s, FREE_SLAB);
2753 	discard_slab(s, page);
2754 }
2755 
2756 /*
2757  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2758  * can perform fastpath freeing without additional function calls.
2759  *
2760  * The fastpath is only possible if we are freeing to the current cpu slab
2761  * of this processor. This typically the case if we have just allocated
2762  * the item before.
2763  *
2764  * If fastpath is not possible then fall back to __slab_free where we deal
2765  * with all sorts of special processing.
2766  *
2767  * Bulk free of a freelist with several objects (all pointing to the
2768  * same page) possible by specifying head and tail ptr, plus objects
2769  * count (cnt). Bulk free indicated by tail pointer being set.
2770  */
2771 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2772 				      void *head, void *tail, int cnt,
2773 				      unsigned long addr)
2774 {
2775 	void *tail_obj = tail ? : head;
2776 	struct kmem_cache_cpu *c;
2777 	unsigned long tid;
2778 
2779 	slab_free_freelist_hook(s, head, tail);
2780 
2781 redo:
2782 	/*
2783 	 * Determine the currently cpus per cpu slab.
2784 	 * The cpu may change afterward. However that does not matter since
2785 	 * data is retrieved via this pointer. If we are on the same cpu
2786 	 * during the cmpxchg then the free will succeed.
2787 	 */
2788 	do {
2789 		tid = this_cpu_read(s->cpu_slab->tid);
2790 		c = raw_cpu_ptr(s->cpu_slab);
2791 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2792 		 unlikely(tid != READ_ONCE(c->tid)));
2793 
2794 	/* Same with comment on barrier() in slab_alloc_node() */
2795 	barrier();
2796 
2797 	if (likely(page == c->page)) {
2798 		set_freepointer(s, tail_obj, c->freelist);
2799 
2800 		if (unlikely(!this_cpu_cmpxchg_double(
2801 				s->cpu_slab->freelist, s->cpu_slab->tid,
2802 				c->freelist, tid,
2803 				head, next_tid(tid)))) {
2804 
2805 			note_cmpxchg_failure("slab_free", s, tid);
2806 			goto redo;
2807 		}
2808 		stat(s, FREE_FASTPATH);
2809 	} else
2810 		__slab_free(s, page, head, tail_obj, cnt, addr);
2811 
2812 }
2813 
2814 void kmem_cache_free(struct kmem_cache *s, void *x)
2815 {
2816 	s = cache_from_obj(s, x);
2817 	if (!s)
2818 		return;
2819 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2820 	trace_kmem_cache_free(_RET_IP_, x);
2821 }
2822 EXPORT_SYMBOL(kmem_cache_free);
2823 
2824 struct detached_freelist {
2825 	struct page *page;
2826 	void *tail;
2827 	void *freelist;
2828 	int cnt;
2829 	struct kmem_cache *s;
2830 };
2831 
2832 /*
2833  * This function progressively scans the array with free objects (with
2834  * a limited look ahead) and extract objects belonging to the same
2835  * page.  It builds a detached freelist directly within the given
2836  * page/objects.  This can happen without any need for
2837  * synchronization, because the objects are owned by running process.
2838  * The freelist is build up as a single linked list in the objects.
2839  * The idea is, that this detached freelist can then be bulk
2840  * transferred to the real freelist(s), but only requiring a single
2841  * synchronization primitive.  Look ahead in the array is limited due
2842  * to performance reasons.
2843  */
2844 static inline
2845 int build_detached_freelist(struct kmem_cache *s, size_t size,
2846 			    void **p, struct detached_freelist *df)
2847 {
2848 	size_t first_skipped_index = 0;
2849 	int lookahead = 3;
2850 	void *object;
2851 	struct page *page;
2852 
2853 	/* Always re-init detached_freelist */
2854 	df->page = NULL;
2855 
2856 	do {
2857 		object = p[--size];
2858 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
2859 	} while (!object && size);
2860 
2861 	if (!object)
2862 		return 0;
2863 
2864 	page = virt_to_head_page(object);
2865 	if (!s) {
2866 		/* Handle kalloc'ed objects */
2867 		if (unlikely(!PageSlab(page))) {
2868 			BUG_ON(!PageCompound(page));
2869 			kfree_hook(object);
2870 			__free_kmem_pages(page, compound_order(page));
2871 			p[size] = NULL; /* mark object processed */
2872 			return size;
2873 		}
2874 		/* Derive kmem_cache from object */
2875 		df->s = page->slab_cache;
2876 	} else {
2877 		df->s = cache_from_obj(s, object); /* Support for memcg */
2878 	}
2879 
2880 	/* Start new detached freelist */
2881 	df->page = page;
2882 	set_freepointer(df->s, object, NULL);
2883 	df->tail = object;
2884 	df->freelist = object;
2885 	p[size] = NULL; /* mark object processed */
2886 	df->cnt = 1;
2887 
2888 	while (size) {
2889 		object = p[--size];
2890 		if (!object)
2891 			continue; /* Skip processed objects */
2892 
2893 		/* df->page is always set at this point */
2894 		if (df->page == virt_to_head_page(object)) {
2895 			/* Opportunity build freelist */
2896 			set_freepointer(df->s, object, df->freelist);
2897 			df->freelist = object;
2898 			df->cnt++;
2899 			p[size] = NULL; /* mark object processed */
2900 
2901 			continue;
2902 		}
2903 
2904 		/* Limit look ahead search */
2905 		if (!--lookahead)
2906 			break;
2907 
2908 		if (!first_skipped_index)
2909 			first_skipped_index = size + 1;
2910 	}
2911 
2912 	return first_skipped_index;
2913 }
2914 
2915 /* Note that interrupts must be enabled when calling this function. */
2916 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2917 {
2918 	if (WARN_ON(!size))
2919 		return;
2920 
2921 	do {
2922 		struct detached_freelist df;
2923 
2924 		size = build_detached_freelist(s, size, p, &df);
2925 		if (unlikely(!df.page))
2926 			continue;
2927 
2928 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
2929 	} while (likely(size));
2930 }
2931 EXPORT_SYMBOL(kmem_cache_free_bulk);
2932 
2933 /* Note that interrupts must be enabled when calling this function. */
2934 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2935 			  void **p)
2936 {
2937 	struct kmem_cache_cpu *c;
2938 	int i;
2939 
2940 	/* memcg and kmem_cache debug support */
2941 	s = slab_pre_alloc_hook(s, flags);
2942 	if (unlikely(!s))
2943 		return false;
2944 	/*
2945 	 * Drain objects in the per cpu slab, while disabling local
2946 	 * IRQs, which protects against PREEMPT and interrupts
2947 	 * handlers invoking normal fastpath.
2948 	 */
2949 	local_irq_disable();
2950 	c = this_cpu_ptr(s->cpu_slab);
2951 
2952 	for (i = 0; i < size; i++) {
2953 		void *object = c->freelist;
2954 
2955 		if (unlikely(!object)) {
2956 			/*
2957 			 * Invoking slow path likely have side-effect
2958 			 * of re-populating per CPU c->freelist
2959 			 */
2960 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2961 					    _RET_IP_, c);
2962 			if (unlikely(!p[i]))
2963 				goto error;
2964 
2965 			c = this_cpu_ptr(s->cpu_slab);
2966 			continue; /* goto for-loop */
2967 		}
2968 		c->freelist = get_freepointer(s, object);
2969 		p[i] = object;
2970 	}
2971 	c->tid = next_tid(c->tid);
2972 	local_irq_enable();
2973 
2974 	/* Clear memory outside IRQ disabled fastpath loop */
2975 	if (unlikely(flags & __GFP_ZERO)) {
2976 		int j;
2977 
2978 		for (j = 0; j < i; j++)
2979 			memset(p[j], 0, s->object_size);
2980 	}
2981 
2982 	/* memcg and kmem_cache debug support */
2983 	slab_post_alloc_hook(s, flags, size, p);
2984 	return i;
2985 error:
2986 	local_irq_enable();
2987 	slab_post_alloc_hook(s, flags, i, p);
2988 	__kmem_cache_free_bulk(s, i, p);
2989 	return 0;
2990 }
2991 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2992 
2993 
2994 /*
2995  * Object placement in a slab is made very easy because we always start at
2996  * offset 0. If we tune the size of the object to the alignment then we can
2997  * get the required alignment by putting one properly sized object after
2998  * another.
2999  *
3000  * Notice that the allocation order determines the sizes of the per cpu
3001  * caches. Each processor has always one slab available for allocations.
3002  * Increasing the allocation order reduces the number of times that slabs
3003  * must be moved on and off the partial lists and is therefore a factor in
3004  * locking overhead.
3005  */
3006 
3007 /*
3008  * Mininum / Maximum order of slab pages. This influences locking overhead
3009  * and slab fragmentation. A higher order reduces the number of partial slabs
3010  * and increases the number of allocations possible without having to
3011  * take the list_lock.
3012  */
3013 static int slub_min_order;
3014 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3015 static int slub_min_objects;
3016 
3017 /*
3018  * Calculate the order of allocation given an slab object size.
3019  *
3020  * The order of allocation has significant impact on performance and other
3021  * system components. Generally order 0 allocations should be preferred since
3022  * order 0 does not cause fragmentation in the page allocator. Larger objects
3023  * be problematic to put into order 0 slabs because there may be too much
3024  * unused space left. We go to a higher order if more than 1/16th of the slab
3025  * would be wasted.
3026  *
3027  * In order to reach satisfactory performance we must ensure that a minimum
3028  * number of objects is in one slab. Otherwise we may generate too much
3029  * activity on the partial lists which requires taking the list_lock. This is
3030  * less a concern for large slabs though which are rarely used.
3031  *
3032  * slub_max_order specifies the order where we begin to stop considering the
3033  * number of objects in a slab as critical. If we reach slub_max_order then
3034  * we try to keep the page order as low as possible. So we accept more waste
3035  * of space in favor of a small page order.
3036  *
3037  * Higher order allocations also allow the placement of more objects in a
3038  * slab and thereby reduce object handling overhead. If the user has
3039  * requested a higher mininum order then we start with that one instead of
3040  * the smallest order which will fit the object.
3041  */
3042 static inline int slab_order(int size, int min_objects,
3043 				int max_order, int fract_leftover, int reserved)
3044 {
3045 	int order;
3046 	int rem;
3047 	int min_order = slub_min_order;
3048 
3049 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3050 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3051 
3052 	for (order = max(min_order, get_order(min_objects * size + reserved));
3053 			order <= max_order; order++) {
3054 
3055 		unsigned long slab_size = PAGE_SIZE << order;
3056 
3057 		rem = (slab_size - reserved) % size;
3058 
3059 		if (rem <= slab_size / fract_leftover)
3060 			break;
3061 	}
3062 
3063 	return order;
3064 }
3065 
3066 static inline int calculate_order(int size, int reserved)
3067 {
3068 	int order;
3069 	int min_objects;
3070 	int fraction;
3071 	int max_objects;
3072 
3073 	/*
3074 	 * Attempt to find best configuration for a slab. This
3075 	 * works by first attempting to generate a layout with
3076 	 * the best configuration and backing off gradually.
3077 	 *
3078 	 * First we increase the acceptable waste in a slab. Then
3079 	 * we reduce the minimum objects required in a slab.
3080 	 */
3081 	min_objects = slub_min_objects;
3082 	if (!min_objects)
3083 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3084 	max_objects = order_objects(slub_max_order, size, reserved);
3085 	min_objects = min(min_objects, max_objects);
3086 
3087 	while (min_objects > 1) {
3088 		fraction = 16;
3089 		while (fraction >= 4) {
3090 			order = slab_order(size, min_objects,
3091 					slub_max_order, fraction, reserved);
3092 			if (order <= slub_max_order)
3093 				return order;
3094 			fraction /= 2;
3095 		}
3096 		min_objects--;
3097 	}
3098 
3099 	/*
3100 	 * We were unable to place multiple objects in a slab. Now
3101 	 * lets see if we can place a single object there.
3102 	 */
3103 	order = slab_order(size, 1, slub_max_order, 1, reserved);
3104 	if (order <= slub_max_order)
3105 		return order;
3106 
3107 	/*
3108 	 * Doh this slab cannot be placed using slub_max_order.
3109 	 */
3110 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3111 	if (order < MAX_ORDER)
3112 		return order;
3113 	return -ENOSYS;
3114 }
3115 
3116 static void
3117 init_kmem_cache_node(struct kmem_cache_node *n)
3118 {
3119 	n->nr_partial = 0;
3120 	spin_lock_init(&n->list_lock);
3121 	INIT_LIST_HEAD(&n->partial);
3122 #ifdef CONFIG_SLUB_DEBUG
3123 	atomic_long_set(&n->nr_slabs, 0);
3124 	atomic_long_set(&n->total_objects, 0);
3125 	INIT_LIST_HEAD(&n->full);
3126 #endif
3127 }
3128 
3129 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3130 {
3131 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3132 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3133 
3134 	/*
3135 	 * Must align to double word boundary for the double cmpxchg
3136 	 * instructions to work; see __pcpu_double_call_return_bool().
3137 	 */
3138 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3139 				     2 * sizeof(void *));
3140 
3141 	if (!s->cpu_slab)
3142 		return 0;
3143 
3144 	init_kmem_cache_cpus(s);
3145 
3146 	return 1;
3147 }
3148 
3149 static struct kmem_cache *kmem_cache_node;
3150 
3151 /*
3152  * No kmalloc_node yet so do it by hand. We know that this is the first
3153  * slab on the node for this slabcache. There are no concurrent accesses
3154  * possible.
3155  *
3156  * Note that this function only works on the kmem_cache_node
3157  * when allocating for the kmem_cache_node. This is used for bootstrapping
3158  * memory on a fresh node that has no slab structures yet.
3159  */
3160 static void early_kmem_cache_node_alloc(int node)
3161 {
3162 	struct page *page;
3163 	struct kmem_cache_node *n;
3164 
3165 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3166 
3167 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3168 
3169 	BUG_ON(!page);
3170 	if (page_to_nid(page) != node) {
3171 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3172 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3173 	}
3174 
3175 	n = page->freelist;
3176 	BUG_ON(!n);
3177 	page->freelist = get_freepointer(kmem_cache_node, n);
3178 	page->inuse = 1;
3179 	page->frozen = 0;
3180 	kmem_cache_node->node[node] = n;
3181 #ifdef CONFIG_SLUB_DEBUG
3182 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3183 	init_tracking(kmem_cache_node, n);
3184 #endif
3185 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3186 		      GFP_KERNEL);
3187 	init_kmem_cache_node(n);
3188 	inc_slabs_node(kmem_cache_node, node, page->objects);
3189 
3190 	/*
3191 	 * No locks need to be taken here as it has just been
3192 	 * initialized and there is no concurrent access.
3193 	 */
3194 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3195 }
3196 
3197 static void free_kmem_cache_nodes(struct kmem_cache *s)
3198 {
3199 	int node;
3200 	struct kmem_cache_node *n;
3201 
3202 	for_each_kmem_cache_node(s, node, n) {
3203 		kmem_cache_free(kmem_cache_node, n);
3204 		s->node[node] = NULL;
3205 	}
3206 }
3207 
3208 void __kmem_cache_release(struct kmem_cache *s)
3209 {
3210 	free_percpu(s->cpu_slab);
3211 	free_kmem_cache_nodes(s);
3212 }
3213 
3214 static int init_kmem_cache_nodes(struct kmem_cache *s)
3215 {
3216 	int node;
3217 
3218 	for_each_node_state(node, N_NORMAL_MEMORY) {
3219 		struct kmem_cache_node *n;
3220 
3221 		if (slab_state == DOWN) {
3222 			early_kmem_cache_node_alloc(node);
3223 			continue;
3224 		}
3225 		n = kmem_cache_alloc_node(kmem_cache_node,
3226 						GFP_KERNEL, node);
3227 
3228 		if (!n) {
3229 			free_kmem_cache_nodes(s);
3230 			return 0;
3231 		}
3232 
3233 		s->node[node] = n;
3234 		init_kmem_cache_node(n);
3235 	}
3236 	return 1;
3237 }
3238 
3239 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3240 {
3241 	if (min < MIN_PARTIAL)
3242 		min = MIN_PARTIAL;
3243 	else if (min > MAX_PARTIAL)
3244 		min = MAX_PARTIAL;
3245 	s->min_partial = min;
3246 }
3247 
3248 /*
3249  * calculate_sizes() determines the order and the distribution of data within
3250  * a slab object.
3251  */
3252 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3253 {
3254 	unsigned long flags = s->flags;
3255 	unsigned long size = s->object_size;
3256 	int order;
3257 
3258 	/*
3259 	 * Round up object size to the next word boundary. We can only
3260 	 * place the free pointer at word boundaries and this determines
3261 	 * the possible location of the free pointer.
3262 	 */
3263 	size = ALIGN(size, sizeof(void *));
3264 
3265 #ifdef CONFIG_SLUB_DEBUG
3266 	/*
3267 	 * Determine if we can poison the object itself. If the user of
3268 	 * the slab may touch the object after free or before allocation
3269 	 * then we should never poison the object itself.
3270 	 */
3271 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3272 			!s->ctor)
3273 		s->flags |= __OBJECT_POISON;
3274 	else
3275 		s->flags &= ~__OBJECT_POISON;
3276 
3277 
3278 	/*
3279 	 * If we are Redzoning then check if there is some space between the
3280 	 * end of the object and the free pointer. If not then add an
3281 	 * additional word to have some bytes to store Redzone information.
3282 	 */
3283 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3284 		size += sizeof(void *);
3285 #endif
3286 
3287 	/*
3288 	 * With that we have determined the number of bytes in actual use
3289 	 * by the object. This is the potential offset to the free pointer.
3290 	 */
3291 	s->inuse = size;
3292 
3293 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3294 		s->ctor)) {
3295 		/*
3296 		 * Relocate free pointer after the object if it is not
3297 		 * permitted to overwrite the first word of the object on
3298 		 * kmem_cache_free.
3299 		 *
3300 		 * This is the case if we do RCU, have a constructor or
3301 		 * destructor or are poisoning the objects.
3302 		 */
3303 		s->offset = size;
3304 		size += sizeof(void *);
3305 	}
3306 
3307 #ifdef CONFIG_SLUB_DEBUG
3308 	if (flags & SLAB_STORE_USER)
3309 		/*
3310 		 * Need to store information about allocs and frees after
3311 		 * the object.
3312 		 */
3313 		size += 2 * sizeof(struct track);
3314 
3315 	if (flags & SLAB_RED_ZONE) {
3316 		/*
3317 		 * Add some empty padding so that we can catch
3318 		 * overwrites from earlier objects rather than let
3319 		 * tracking information or the free pointer be
3320 		 * corrupted if a user writes before the start
3321 		 * of the object.
3322 		 */
3323 		size += sizeof(void *);
3324 
3325 		s->red_left_pad = sizeof(void *);
3326 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3327 		size += s->red_left_pad;
3328 	}
3329 #endif
3330 
3331 	/*
3332 	 * SLUB stores one object immediately after another beginning from
3333 	 * offset 0. In order to align the objects we have to simply size
3334 	 * each object to conform to the alignment.
3335 	 */
3336 	size = ALIGN(size, s->align);
3337 	s->size = size;
3338 	if (forced_order >= 0)
3339 		order = forced_order;
3340 	else
3341 		order = calculate_order(size, s->reserved);
3342 
3343 	if (order < 0)
3344 		return 0;
3345 
3346 	s->allocflags = 0;
3347 	if (order)
3348 		s->allocflags |= __GFP_COMP;
3349 
3350 	if (s->flags & SLAB_CACHE_DMA)
3351 		s->allocflags |= GFP_DMA;
3352 
3353 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3354 		s->allocflags |= __GFP_RECLAIMABLE;
3355 
3356 	/*
3357 	 * Determine the number of objects per slab
3358 	 */
3359 	s->oo = oo_make(order, size, s->reserved);
3360 	s->min = oo_make(get_order(size), size, s->reserved);
3361 	if (oo_objects(s->oo) > oo_objects(s->max))
3362 		s->max = s->oo;
3363 
3364 	return !!oo_objects(s->oo);
3365 }
3366 
3367 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3368 {
3369 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3370 	s->reserved = 0;
3371 
3372 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3373 		s->reserved = sizeof(struct rcu_head);
3374 
3375 	if (!calculate_sizes(s, -1))
3376 		goto error;
3377 	if (disable_higher_order_debug) {
3378 		/*
3379 		 * Disable debugging flags that store metadata if the min slab
3380 		 * order increased.
3381 		 */
3382 		if (get_order(s->size) > get_order(s->object_size)) {
3383 			s->flags &= ~DEBUG_METADATA_FLAGS;
3384 			s->offset = 0;
3385 			if (!calculate_sizes(s, -1))
3386 				goto error;
3387 		}
3388 	}
3389 
3390 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3391     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3392 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3393 		/* Enable fast mode */
3394 		s->flags |= __CMPXCHG_DOUBLE;
3395 #endif
3396 
3397 	/*
3398 	 * The larger the object size is, the more pages we want on the partial
3399 	 * list to avoid pounding the page allocator excessively.
3400 	 */
3401 	set_min_partial(s, ilog2(s->size) / 2);
3402 
3403 	/*
3404 	 * cpu_partial determined the maximum number of objects kept in the
3405 	 * per cpu partial lists of a processor.
3406 	 *
3407 	 * Per cpu partial lists mainly contain slabs that just have one
3408 	 * object freed. If they are used for allocation then they can be
3409 	 * filled up again with minimal effort. The slab will never hit the
3410 	 * per node partial lists and therefore no locking will be required.
3411 	 *
3412 	 * This setting also determines
3413 	 *
3414 	 * A) The number of objects from per cpu partial slabs dumped to the
3415 	 *    per node list when we reach the limit.
3416 	 * B) The number of objects in cpu partial slabs to extract from the
3417 	 *    per node list when we run out of per cpu objects. We only fetch
3418 	 *    50% to keep some capacity around for frees.
3419 	 */
3420 	if (!kmem_cache_has_cpu_partial(s))
3421 		s->cpu_partial = 0;
3422 	else if (s->size >= PAGE_SIZE)
3423 		s->cpu_partial = 2;
3424 	else if (s->size >= 1024)
3425 		s->cpu_partial = 6;
3426 	else if (s->size >= 256)
3427 		s->cpu_partial = 13;
3428 	else
3429 		s->cpu_partial = 30;
3430 
3431 #ifdef CONFIG_NUMA
3432 	s->remote_node_defrag_ratio = 1000;
3433 #endif
3434 	if (!init_kmem_cache_nodes(s))
3435 		goto error;
3436 
3437 	if (alloc_kmem_cache_cpus(s))
3438 		return 0;
3439 
3440 	free_kmem_cache_nodes(s);
3441 error:
3442 	if (flags & SLAB_PANIC)
3443 		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3444 		      s->name, (unsigned long)s->size, s->size,
3445 		      oo_order(s->oo), s->offset, flags);
3446 	return -EINVAL;
3447 }
3448 
3449 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3450 							const char *text)
3451 {
3452 #ifdef CONFIG_SLUB_DEBUG
3453 	void *addr = page_address(page);
3454 	void *p;
3455 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3456 				     sizeof(long), GFP_ATOMIC);
3457 	if (!map)
3458 		return;
3459 	slab_err(s, page, text, s->name);
3460 	slab_lock(page);
3461 
3462 	get_map(s, page, map);
3463 	for_each_object(p, s, addr, page->objects) {
3464 
3465 		if (!test_bit(slab_index(p, s, addr), map)) {
3466 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3467 			print_tracking(s, p);
3468 		}
3469 	}
3470 	slab_unlock(page);
3471 	kfree(map);
3472 #endif
3473 }
3474 
3475 /*
3476  * Attempt to free all partial slabs on a node.
3477  * This is called from __kmem_cache_shutdown(). We must take list_lock
3478  * because sysfs file might still access partial list after the shutdowning.
3479  */
3480 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3481 {
3482 	struct page *page, *h;
3483 
3484 	BUG_ON(irqs_disabled());
3485 	spin_lock_irq(&n->list_lock);
3486 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3487 		if (!page->inuse) {
3488 			remove_partial(n, page);
3489 			discard_slab(s, page);
3490 		} else {
3491 			list_slab_objects(s, page,
3492 			"Objects remaining in %s on __kmem_cache_shutdown()");
3493 		}
3494 	}
3495 	spin_unlock_irq(&n->list_lock);
3496 }
3497 
3498 /*
3499  * Release all resources used by a slab cache.
3500  */
3501 int __kmem_cache_shutdown(struct kmem_cache *s)
3502 {
3503 	int node;
3504 	struct kmem_cache_node *n;
3505 
3506 	flush_all(s);
3507 	/* Attempt to free all objects */
3508 	for_each_kmem_cache_node(s, node, n) {
3509 		free_partial(s, n);
3510 		if (n->nr_partial || slabs_node(s, node))
3511 			return 1;
3512 	}
3513 	return 0;
3514 }
3515 
3516 /********************************************************************
3517  *		Kmalloc subsystem
3518  *******************************************************************/
3519 
3520 static int __init setup_slub_min_order(char *str)
3521 {
3522 	get_option(&str, &slub_min_order);
3523 
3524 	return 1;
3525 }
3526 
3527 __setup("slub_min_order=", setup_slub_min_order);
3528 
3529 static int __init setup_slub_max_order(char *str)
3530 {
3531 	get_option(&str, &slub_max_order);
3532 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3533 
3534 	return 1;
3535 }
3536 
3537 __setup("slub_max_order=", setup_slub_max_order);
3538 
3539 static int __init setup_slub_min_objects(char *str)
3540 {
3541 	get_option(&str, &slub_min_objects);
3542 
3543 	return 1;
3544 }
3545 
3546 __setup("slub_min_objects=", setup_slub_min_objects);
3547 
3548 void *__kmalloc(size_t size, gfp_t flags)
3549 {
3550 	struct kmem_cache *s;
3551 	void *ret;
3552 
3553 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3554 		return kmalloc_large(size, flags);
3555 
3556 	s = kmalloc_slab(size, flags);
3557 
3558 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3559 		return s;
3560 
3561 	ret = slab_alloc(s, flags, _RET_IP_);
3562 
3563 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3564 
3565 	kasan_kmalloc(s, ret, size, flags);
3566 
3567 	return ret;
3568 }
3569 EXPORT_SYMBOL(__kmalloc);
3570 
3571 #ifdef CONFIG_NUMA
3572 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3573 {
3574 	struct page *page;
3575 	void *ptr = NULL;
3576 
3577 	flags |= __GFP_COMP | __GFP_NOTRACK;
3578 	page = alloc_kmem_pages_node(node, flags, get_order(size));
3579 	if (page)
3580 		ptr = page_address(page);
3581 
3582 	kmalloc_large_node_hook(ptr, size, flags);
3583 	return ptr;
3584 }
3585 
3586 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3587 {
3588 	struct kmem_cache *s;
3589 	void *ret;
3590 
3591 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3592 		ret = kmalloc_large_node(size, flags, node);
3593 
3594 		trace_kmalloc_node(_RET_IP_, ret,
3595 				   size, PAGE_SIZE << get_order(size),
3596 				   flags, node);
3597 
3598 		return ret;
3599 	}
3600 
3601 	s = kmalloc_slab(size, flags);
3602 
3603 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3604 		return s;
3605 
3606 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3607 
3608 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3609 
3610 	kasan_kmalloc(s, ret, size, flags);
3611 
3612 	return ret;
3613 }
3614 EXPORT_SYMBOL(__kmalloc_node);
3615 #endif
3616 
3617 static size_t __ksize(const void *object)
3618 {
3619 	struct page *page;
3620 
3621 	if (unlikely(object == ZERO_SIZE_PTR))
3622 		return 0;
3623 
3624 	page = virt_to_head_page(object);
3625 
3626 	if (unlikely(!PageSlab(page))) {
3627 		WARN_ON(!PageCompound(page));
3628 		return PAGE_SIZE << compound_order(page);
3629 	}
3630 
3631 	return slab_ksize(page->slab_cache);
3632 }
3633 
3634 size_t ksize(const void *object)
3635 {
3636 	size_t size = __ksize(object);
3637 	/* We assume that ksize callers could use whole allocated area,
3638 	 * so we need to unpoison this area.
3639 	 */
3640 	kasan_unpoison_shadow(object, size);
3641 	return size;
3642 }
3643 EXPORT_SYMBOL(ksize);
3644 
3645 void kfree(const void *x)
3646 {
3647 	struct page *page;
3648 	void *object = (void *)x;
3649 
3650 	trace_kfree(_RET_IP_, x);
3651 
3652 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3653 		return;
3654 
3655 	page = virt_to_head_page(x);
3656 	if (unlikely(!PageSlab(page))) {
3657 		BUG_ON(!PageCompound(page));
3658 		kfree_hook(x);
3659 		__free_kmem_pages(page, compound_order(page));
3660 		return;
3661 	}
3662 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3663 }
3664 EXPORT_SYMBOL(kfree);
3665 
3666 #define SHRINK_PROMOTE_MAX 32
3667 
3668 /*
3669  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3670  * up most to the head of the partial lists. New allocations will then
3671  * fill those up and thus they can be removed from the partial lists.
3672  *
3673  * The slabs with the least items are placed last. This results in them
3674  * being allocated from last increasing the chance that the last objects
3675  * are freed in them.
3676  */
3677 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3678 {
3679 	int node;
3680 	int i;
3681 	struct kmem_cache_node *n;
3682 	struct page *page;
3683 	struct page *t;
3684 	struct list_head discard;
3685 	struct list_head promote[SHRINK_PROMOTE_MAX];
3686 	unsigned long flags;
3687 	int ret = 0;
3688 
3689 	if (deactivate) {
3690 		/*
3691 		 * Disable empty slabs caching. Used to avoid pinning offline
3692 		 * memory cgroups by kmem pages that can be freed.
3693 		 */
3694 		s->cpu_partial = 0;
3695 		s->min_partial = 0;
3696 
3697 		/*
3698 		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3699 		 * so we have to make sure the change is visible.
3700 		 */
3701 		synchronize_sched();
3702 	}
3703 
3704 	flush_all(s);
3705 	for_each_kmem_cache_node(s, node, n) {
3706 		INIT_LIST_HEAD(&discard);
3707 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3708 			INIT_LIST_HEAD(promote + i);
3709 
3710 		spin_lock_irqsave(&n->list_lock, flags);
3711 
3712 		/*
3713 		 * Build lists of slabs to discard or promote.
3714 		 *
3715 		 * Note that concurrent frees may occur while we hold the
3716 		 * list_lock. page->inuse here is the upper limit.
3717 		 */
3718 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3719 			int free = page->objects - page->inuse;
3720 
3721 			/* Do not reread page->inuse */
3722 			barrier();
3723 
3724 			/* We do not keep full slabs on the list */
3725 			BUG_ON(free <= 0);
3726 
3727 			if (free == page->objects) {
3728 				list_move(&page->lru, &discard);
3729 				n->nr_partial--;
3730 			} else if (free <= SHRINK_PROMOTE_MAX)
3731 				list_move(&page->lru, promote + free - 1);
3732 		}
3733 
3734 		/*
3735 		 * Promote the slabs filled up most to the head of the
3736 		 * partial list.
3737 		 */
3738 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3739 			list_splice(promote + i, &n->partial);
3740 
3741 		spin_unlock_irqrestore(&n->list_lock, flags);
3742 
3743 		/* Release empty slabs */
3744 		list_for_each_entry_safe(page, t, &discard, lru)
3745 			discard_slab(s, page);
3746 
3747 		if (slabs_node(s, node))
3748 			ret = 1;
3749 	}
3750 
3751 	return ret;
3752 }
3753 
3754 static int slab_mem_going_offline_callback(void *arg)
3755 {
3756 	struct kmem_cache *s;
3757 
3758 	mutex_lock(&slab_mutex);
3759 	list_for_each_entry(s, &slab_caches, list)
3760 		__kmem_cache_shrink(s, false);
3761 	mutex_unlock(&slab_mutex);
3762 
3763 	return 0;
3764 }
3765 
3766 static void slab_mem_offline_callback(void *arg)
3767 {
3768 	struct kmem_cache_node *n;
3769 	struct kmem_cache *s;
3770 	struct memory_notify *marg = arg;
3771 	int offline_node;
3772 
3773 	offline_node = marg->status_change_nid_normal;
3774 
3775 	/*
3776 	 * If the node still has available memory. we need kmem_cache_node
3777 	 * for it yet.
3778 	 */
3779 	if (offline_node < 0)
3780 		return;
3781 
3782 	mutex_lock(&slab_mutex);
3783 	list_for_each_entry(s, &slab_caches, list) {
3784 		n = get_node(s, offline_node);
3785 		if (n) {
3786 			/*
3787 			 * if n->nr_slabs > 0, slabs still exist on the node
3788 			 * that is going down. We were unable to free them,
3789 			 * and offline_pages() function shouldn't call this
3790 			 * callback. So, we must fail.
3791 			 */
3792 			BUG_ON(slabs_node(s, offline_node));
3793 
3794 			s->node[offline_node] = NULL;
3795 			kmem_cache_free(kmem_cache_node, n);
3796 		}
3797 	}
3798 	mutex_unlock(&slab_mutex);
3799 }
3800 
3801 static int slab_mem_going_online_callback(void *arg)
3802 {
3803 	struct kmem_cache_node *n;
3804 	struct kmem_cache *s;
3805 	struct memory_notify *marg = arg;
3806 	int nid = marg->status_change_nid_normal;
3807 	int ret = 0;
3808 
3809 	/*
3810 	 * If the node's memory is already available, then kmem_cache_node is
3811 	 * already created. Nothing to do.
3812 	 */
3813 	if (nid < 0)
3814 		return 0;
3815 
3816 	/*
3817 	 * We are bringing a node online. No memory is available yet. We must
3818 	 * allocate a kmem_cache_node structure in order to bring the node
3819 	 * online.
3820 	 */
3821 	mutex_lock(&slab_mutex);
3822 	list_for_each_entry(s, &slab_caches, list) {
3823 		/*
3824 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3825 		 *      since memory is not yet available from the node that
3826 		 *      is brought up.
3827 		 */
3828 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3829 		if (!n) {
3830 			ret = -ENOMEM;
3831 			goto out;
3832 		}
3833 		init_kmem_cache_node(n);
3834 		s->node[nid] = n;
3835 	}
3836 out:
3837 	mutex_unlock(&slab_mutex);
3838 	return ret;
3839 }
3840 
3841 static int slab_memory_callback(struct notifier_block *self,
3842 				unsigned long action, void *arg)
3843 {
3844 	int ret = 0;
3845 
3846 	switch (action) {
3847 	case MEM_GOING_ONLINE:
3848 		ret = slab_mem_going_online_callback(arg);
3849 		break;
3850 	case MEM_GOING_OFFLINE:
3851 		ret = slab_mem_going_offline_callback(arg);
3852 		break;
3853 	case MEM_OFFLINE:
3854 	case MEM_CANCEL_ONLINE:
3855 		slab_mem_offline_callback(arg);
3856 		break;
3857 	case MEM_ONLINE:
3858 	case MEM_CANCEL_OFFLINE:
3859 		break;
3860 	}
3861 	if (ret)
3862 		ret = notifier_from_errno(ret);
3863 	else
3864 		ret = NOTIFY_OK;
3865 	return ret;
3866 }
3867 
3868 static struct notifier_block slab_memory_callback_nb = {
3869 	.notifier_call = slab_memory_callback,
3870 	.priority = SLAB_CALLBACK_PRI,
3871 };
3872 
3873 /********************************************************************
3874  *			Basic setup of slabs
3875  *******************************************************************/
3876 
3877 /*
3878  * Used for early kmem_cache structures that were allocated using
3879  * the page allocator. Allocate them properly then fix up the pointers
3880  * that may be pointing to the wrong kmem_cache structure.
3881  */
3882 
3883 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3884 {
3885 	int node;
3886 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3887 	struct kmem_cache_node *n;
3888 
3889 	memcpy(s, static_cache, kmem_cache->object_size);
3890 
3891 	/*
3892 	 * This runs very early, and only the boot processor is supposed to be
3893 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3894 	 * IPIs around.
3895 	 */
3896 	__flush_cpu_slab(s, smp_processor_id());
3897 	for_each_kmem_cache_node(s, node, n) {
3898 		struct page *p;
3899 
3900 		list_for_each_entry(p, &n->partial, lru)
3901 			p->slab_cache = s;
3902 
3903 #ifdef CONFIG_SLUB_DEBUG
3904 		list_for_each_entry(p, &n->full, lru)
3905 			p->slab_cache = s;
3906 #endif
3907 	}
3908 	slab_init_memcg_params(s);
3909 	list_add(&s->list, &slab_caches);
3910 	return s;
3911 }
3912 
3913 void __init kmem_cache_init(void)
3914 {
3915 	static __initdata struct kmem_cache boot_kmem_cache,
3916 		boot_kmem_cache_node;
3917 
3918 	if (debug_guardpage_minorder())
3919 		slub_max_order = 0;
3920 
3921 	kmem_cache_node = &boot_kmem_cache_node;
3922 	kmem_cache = &boot_kmem_cache;
3923 
3924 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3925 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3926 
3927 	register_hotmemory_notifier(&slab_memory_callback_nb);
3928 
3929 	/* Able to allocate the per node structures */
3930 	slab_state = PARTIAL;
3931 
3932 	create_boot_cache(kmem_cache, "kmem_cache",
3933 			offsetof(struct kmem_cache, node) +
3934 				nr_node_ids * sizeof(struct kmem_cache_node *),
3935 		       SLAB_HWCACHE_ALIGN);
3936 
3937 	kmem_cache = bootstrap(&boot_kmem_cache);
3938 
3939 	/*
3940 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3941 	 * kmem_cache_node is separately allocated so no need to
3942 	 * update any list pointers.
3943 	 */
3944 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3945 
3946 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3947 	setup_kmalloc_cache_index_table();
3948 	create_kmalloc_caches(0);
3949 
3950 #ifdef CONFIG_SMP
3951 	register_cpu_notifier(&slab_notifier);
3952 #endif
3953 
3954 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3955 		cache_line_size(),
3956 		slub_min_order, slub_max_order, slub_min_objects,
3957 		nr_cpu_ids, nr_node_ids);
3958 }
3959 
3960 void __init kmem_cache_init_late(void)
3961 {
3962 }
3963 
3964 struct kmem_cache *
3965 __kmem_cache_alias(const char *name, size_t size, size_t align,
3966 		   unsigned long flags, void (*ctor)(void *))
3967 {
3968 	struct kmem_cache *s, *c;
3969 
3970 	s = find_mergeable(size, align, flags, name, ctor);
3971 	if (s) {
3972 		s->refcount++;
3973 
3974 		/*
3975 		 * Adjust the object sizes so that we clear
3976 		 * the complete object on kzalloc.
3977 		 */
3978 		s->object_size = max(s->object_size, (int)size);
3979 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3980 
3981 		for_each_memcg_cache(c, s) {
3982 			c->object_size = s->object_size;
3983 			c->inuse = max_t(int, c->inuse,
3984 					 ALIGN(size, sizeof(void *)));
3985 		}
3986 
3987 		if (sysfs_slab_alias(s, name)) {
3988 			s->refcount--;
3989 			s = NULL;
3990 		}
3991 	}
3992 
3993 	return s;
3994 }
3995 
3996 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3997 {
3998 	int err;
3999 
4000 	err = kmem_cache_open(s, flags);
4001 	if (err)
4002 		return err;
4003 
4004 	/* Mutex is not taken during early boot */
4005 	if (slab_state <= UP)
4006 		return 0;
4007 
4008 	memcg_propagate_slab_attrs(s);
4009 	err = sysfs_slab_add(s);
4010 	if (err)
4011 		__kmem_cache_release(s);
4012 
4013 	return err;
4014 }
4015 
4016 #ifdef CONFIG_SMP
4017 /*
4018  * Use the cpu notifier to insure that the cpu slabs are flushed when
4019  * necessary.
4020  */
4021 static int slab_cpuup_callback(struct notifier_block *nfb,
4022 		unsigned long action, void *hcpu)
4023 {
4024 	long cpu = (long)hcpu;
4025 	struct kmem_cache *s;
4026 	unsigned long flags;
4027 
4028 	switch (action) {
4029 	case CPU_UP_CANCELED:
4030 	case CPU_UP_CANCELED_FROZEN:
4031 	case CPU_DEAD:
4032 	case CPU_DEAD_FROZEN:
4033 		mutex_lock(&slab_mutex);
4034 		list_for_each_entry(s, &slab_caches, list) {
4035 			local_irq_save(flags);
4036 			__flush_cpu_slab(s, cpu);
4037 			local_irq_restore(flags);
4038 		}
4039 		mutex_unlock(&slab_mutex);
4040 		break;
4041 	default:
4042 		break;
4043 	}
4044 	return NOTIFY_OK;
4045 }
4046 
4047 static struct notifier_block slab_notifier = {
4048 	.notifier_call = slab_cpuup_callback
4049 };
4050 
4051 #endif
4052 
4053 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4054 {
4055 	struct kmem_cache *s;
4056 	void *ret;
4057 
4058 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4059 		return kmalloc_large(size, gfpflags);
4060 
4061 	s = kmalloc_slab(size, gfpflags);
4062 
4063 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4064 		return s;
4065 
4066 	ret = slab_alloc(s, gfpflags, caller);
4067 
4068 	/* Honor the call site pointer we received. */
4069 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4070 
4071 	return ret;
4072 }
4073 
4074 #ifdef CONFIG_NUMA
4075 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4076 					int node, unsigned long caller)
4077 {
4078 	struct kmem_cache *s;
4079 	void *ret;
4080 
4081 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4082 		ret = kmalloc_large_node(size, gfpflags, node);
4083 
4084 		trace_kmalloc_node(caller, ret,
4085 				   size, PAGE_SIZE << get_order(size),
4086 				   gfpflags, node);
4087 
4088 		return ret;
4089 	}
4090 
4091 	s = kmalloc_slab(size, gfpflags);
4092 
4093 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4094 		return s;
4095 
4096 	ret = slab_alloc_node(s, gfpflags, node, caller);
4097 
4098 	/* Honor the call site pointer we received. */
4099 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4100 
4101 	return ret;
4102 }
4103 #endif
4104 
4105 #ifdef CONFIG_SYSFS
4106 static int count_inuse(struct page *page)
4107 {
4108 	return page->inuse;
4109 }
4110 
4111 static int count_total(struct page *page)
4112 {
4113 	return page->objects;
4114 }
4115 #endif
4116 
4117 #ifdef CONFIG_SLUB_DEBUG
4118 static int validate_slab(struct kmem_cache *s, struct page *page,
4119 						unsigned long *map)
4120 {
4121 	void *p;
4122 	void *addr = page_address(page);
4123 
4124 	if (!check_slab(s, page) ||
4125 			!on_freelist(s, page, NULL))
4126 		return 0;
4127 
4128 	/* Now we know that a valid freelist exists */
4129 	bitmap_zero(map, page->objects);
4130 
4131 	get_map(s, page, map);
4132 	for_each_object(p, s, addr, page->objects) {
4133 		if (test_bit(slab_index(p, s, addr), map))
4134 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4135 				return 0;
4136 	}
4137 
4138 	for_each_object(p, s, addr, page->objects)
4139 		if (!test_bit(slab_index(p, s, addr), map))
4140 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4141 				return 0;
4142 	return 1;
4143 }
4144 
4145 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4146 						unsigned long *map)
4147 {
4148 	slab_lock(page);
4149 	validate_slab(s, page, map);
4150 	slab_unlock(page);
4151 }
4152 
4153 static int validate_slab_node(struct kmem_cache *s,
4154 		struct kmem_cache_node *n, unsigned long *map)
4155 {
4156 	unsigned long count = 0;
4157 	struct page *page;
4158 	unsigned long flags;
4159 
4160 	spin_lock_irqsave(&n->list_lock, flags);
4161 
4162 	list_for_each_entry(page, &n->partial, lru) {
4163 		validate_slab_slab(s, page, map);
4164 		count++;
4165 	}
4166 	if (count != n->nr_partial)
4167 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4168 		       s->name, count, n->nr_partial);
4169 
4170 	if (!(s->flags & SLAB_STORE_USER))
4171 		goto out;
4172 
4173 	list_for_each_entry(page, &n->full, lru) {
4174 		validate_slab_slab(s, page, map);
4175 		count++;
4176 	}
4177 	if (count != atomic_long_read(&n->nr_slabs))
4178 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4179 		       s->name, count, atomic_long_read(&n->nr_slabs));
4180 
4181 out:
4182 	spin_unlock_irqrestore(&n->list_lock, flags);
4183 	return count;
4184 }
4185 
4186 static long validate_slab_cache(struct kmem_cache *s)
4187 {
4188 	int node;
4189 	unsigned long count = 0;
4190 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4191 				sizeof(unsigned long), GFP_KERNEL);
4192 	struct kmem_cache_node *n;
4193 
4194 	if (!map)
4195 		return -ENOMEM;
4196 
4197 	flush_all(s);
4198 	for_each_kmem_cache_node(s, node, n)
4199 		count += validate_slab_node(s, n, map);
4200 	kfree(map);
4201 	return count;
4202 }
4203 /*
4204  * Generate lists of code addresses where slabcache objects are allocated
4205  * and freed.
4206  */
4207 
4208 struct location {
4209 	unsigned long count;
4210 	unsigned long addr;
4211 	long long sum_time;
4212 	long min_time;
4213 	long max_time;
4214 	long min_pid;
4215 	long max_pid;
4216 	DECLARE_BITMAP(cpus, NR_CPUS);
4217 	nodemask_t nodes;
4218 };
4219 
4220 struct loc_track {
4221 	unsigned long max;
4222 	unsigned long count;
4223 	struct location *loc;
4224 };
4225 
4226 static void free_loc_track(struct loc_track *t)
4227 {
4228 	if (t->max)
4229 		free_pages((unsigned long)t->loc,
4230 			get_order(sizeof(struct location) * t->max));
4231 }
4232 
4233 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4234 {
4235 	struct location *l;
4236 	int order;
4237 
4238 	order = get_order(sizeof(struct location) * max);
4239 
4240 	l = (void *)__get_free_pages(flags, order);
4241 	if (!l)
4242 		return 0;
4243 
4244 	if (t->count) {
4245 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4246 		free_loc_track(t);
4247 	}
4248 	t->max = max;
4249 	t->loc = l;
4250 	return 1;
4251 }
4252 
4253 static int add_location(struct loc_track *t, struct kmem_cache *s,
4254 				const struct track *track)
4255 {
4256 	long start, end, pos;
4257 	struct location *l;
4258 	unsigned long caddr;
4259 	unsigned long age = jiffies - track->when;
4260 
4261 	start = -1;
4262 	end = t->count;
4263 
4264 	for ( ; ; ) {
4265 		pos = start + (end - start + 1) / 2;
4266 
4267 		/*
4268 		 * There is nothing at "end". If we end up there
4269 		 * we need to add something to before end.
4270 		 */
4271 		if (pos == end)
4272 			break;
4273 
4274 		caddr = t->loc[pos].addr;
4275 		if (track->addr == caddr) {
4276 
4277 			l = &t->loc[pos];
4278 			l->count++;
4279 			if (track->when) {
4280 				l->sum_time += age;
4281 				if (age < l->min_time)
4282 					l->min_time = age;
4283 				if (age > l->max_time)
4284 					l->max_time = age;
4285 
4286 				if (track->pid < l->min_pid)
4287 					l->min_pid = track->pid;
4288 				if (track->pid > l->max_pid)
4289 					l->max_pid = track->pid;
4290 
4291 				cpumask_set_cpu(track->cpu,
4292 						to_cpumask(l->cpus));
4293 			}
4294 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4295 			return 1;
4296 		}
4297 
4298 		if (track->addr < caddr)
4299 			end = pos;
4300 		else
4301 			start = pos;
4302 	}
4303 
4304 	/*
4305 	 * Not found. Insert new tracking element.
4306 	 */
4307 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4308 		return 0;
4309 
4310 	l = t->loc + pos;
4311 	if (pos < t->count)
4312 		memmove(l + 1, l,
4313 			(t->count - pos) * sizeof(struct location));
4314 	t->count++;
4315 	l->count = 1;
4316 	l->addr = track->addr;
4317 	l->sum_time = age;
4318 	l->min_time = age;
4319 	l->max_time = age;
4320 	l->min_pid = track->pid;
4321 	l->max_pid = track->pid;
4322 	cpumask_clear(to_cpumask(l->cpus));
4323 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4324 	nodes_clear(l->nodes);
4325 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4326 	return 1;
4327 }
4328 
4329 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4330 		struct page *page, enum track_item alloc,
4331 		unsigned long *map)
4332 {
4333 	void *addr = page_address(page);
4334 	void *p;
4335 
4336 	bitmap_zero(map, page->objects);
4337 	get_map(s, page, map);
4338 
4339 	for_each_object(p, s, addr, page->objects)
4340 		if (!test_bit(slab_index(p, s, addr), map))
4341 			add_location(t, s, get_track(s, p, alloc));
4342 }
4343 
4344 static int list_locations(struct kmem_cache *s, char *buf,
4345 					enum track_item alloc)
4346 {
4347 	int len = 0;
4348 	unsigned long i;
4349 	struct loc_track t = { 0, 0, NULL };
4350 	int node;
4351 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4352 				     sizeof(unsigned long), GFP_KERNEL);
4353 	struct kmem_cache_node *n;
4354 
4355 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4356 				     GFP_TEMPORARY)) {
4357 		kfree(map);
4358 		return sprintf(buf, "Out of memory\n");
4359 	}
4360 	/* Push back cpu slabs */
4361 	flush_all(s);
4362 
4363 	for_each_kmem_cache_node(s, node, n) {
4364 		unsigned long flags;
4365 		struct page *page;
4366 
4367 		if (!atomic_long_read(&n->nr_slabs))
4368 			continue;
4369 
4370 		spin_lock_irqsave(&n->list_lock, flags);
4371 		list_for_each_entry(page, &n->partial, lru)
4372 			process_slab(&t, s, page, alloc, map);
4373 		list_for_each_entry(page, &n->full, lru)
4374 			process_slab(&t, s, page, alloc, map);
4375 		spin_unlock_irqrestore(&n->list_lock, flags);
4376 	}
4377 
4378 	for (i = 0; i < t.count; i++) {
4379 		struct location *l = &t.loc[i];
4380 
4381 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4382 			break;
4383 		len += sprintf(buf + len, "%7ld ", l->count);
4384 
4385 		if (l->addr)
4386 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4387 		else
4388 			len += sprintf(buf + len, "<not-available>");
4389 
4390 		if (l->sum_time != l->min_time) {
4391 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4392 				l->min_time,
4393 				(long)div_u64(l->sum_time, l->count),
4394 				l->max_time);
4395 		} else
4396 			len += sprintf(buf + len, " age=%ld",
4397 				l->min_time);
4398 
4399 		if (l->min_pid != l->max_pid)
4400 			len += sprintf(buf + len, " pid=%ld-%ld",
4401 				l->min_pid, l->max_pid);
4402 		else
4403 			len += sprintf(buf + len, " pid=%ld",
4404 				l->min_pid);
4405 
4406 		if (num_online_cpus() > 1 &&
4407 				!cpumask_empty(to_cpumask(l->cpus)) &&
4408 				len < PAGE_SIZE - 60)
4409 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4410 					 " cpus=%*pbl",
4411 					 cpumask_pr_args(to_cpumask(l->cpus)));
4412 
4413 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4414 				len < PAGE_SIZE - 60)
4415 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4416 					 " nodes=%*pbl",
4417 					 nodemask_pr_args(&l->nodes));
4418 
4419 		len += sprintf(buf + len, "\n");
4420 	}
4421 
4422 	free_loc_track(&t);
4423 	kfree(map);
4424 	if (!t.count)
4425 		len += sprintf(buf, "No data\n");
4426 	return len;
4427 }
4428 #endif
4429 
4430 #ifdef SLUB_RESILIENCY_TEST
4431 static void __init resiliency_test(void)
4432 {
4433 	u8 *p;
4434 
4435 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4436 
4437 	pr_err("SLUB resiliency testing\n");
4438 	pr_err("-----------------------\n");
4439 	pr_err("A. Corruption after allocation\n");
4440 
4441 	p = kzalloc(16, GFP_KERNEL);
4442 	p[16] = 0x12;
4443 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4444 	       p + 16);
4445 
4446 	validate_slab_cache(kmalloc_caches[4]);
4447 
4448 	/* Hmmm... The next two are dangerous */
4449 	p = kzalloc(32, GFP_KERNEL);
4450 	p[32 + sizeof(void *)] = 0x34;
4451 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4452 	       p);
4453 	pr_err("If allocated object is overwritten then not detectable\n\n");
4454 
4455 	validate_slab_cache(kmalloc_caches[5]);
4456 	p = kzalloc(64, GFP_KERNEL);
4457 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4458 	*p = 0x56;
4459 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4460 	       p);
4461 	pr_err("If allocated object is overwritten then not detectable\n\n");
4462 	validate_slab_cache(kmalloc_caches[6]);
4463 
4464 	pr_err("\nB. Corruption after free\n");
4465 	p = kzalloc(128, GFP_KERNEL);
4466 	kfree(p);
4467 	*p = 0x78;
4468 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4469 	validate_slab_cache(kmalloc_caches[7]);
4470 
4471 	p = kzalloc(256, GFP_KERNEL);
4472 	kfree(p);
4473 	p[50] = 0x9a;
4474 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4475 	validate_slab_cache(kmalloc_caches[8]);
4476 
4477 	p = kzalloc(512, GFP_KERNEL);
4478 	kfree(p);
4479 	p[512] = 0xab;
4480 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4481 	validate_slab_cache(kmalloc_caches[9]);
4482 }
4483 #else
4484 #ifdef CONFIG_SYSFS
4485 static void resiliency_test(void) {};
4486 #endif
4487 #endif
4488 
4489 #ifdef CONFIG_SYSFS
4490 enum slab_stat_type {
4491 	SL_ALL,			/* All slabs */
4492 	SL_PARTIAL,		/* Only partially allocated slabs */
4493 	SL_CPU,			/* Only slabs used for cpu caches */
4494 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4495 	SL_TOTAL		/* Determine object capacity not slabs */
4496 };
4497 
4498 #define SO_ALL		(1 << SL_ALL)
4499 #define SO_PARTIAL	(1 << SL_PARTIAL)
4500 #define SO_CPU		(1 << SL_CPU)
4501 #define SO_OBJECTS	(1 << SL_OBJECTS)
4502 #define SO_TOTAL	(1 << SL_TOTAL)
4503 
4504 static ssize_t show_slab_objects(struct kmem_cache *s,
4505 			    char *buf, unsigned long flags)
4506 {
4507 	unsigned long total = 0;
4508 	int node;
4509 	int x;
4510 	unsigned long *nodes;
4511 
4512 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4513 	if (!nodes)
4514 		return -ENOMEM;
4515 
4516 	if (flags & SO_CPU) {
4517 		int cpu;
4518 
4519 		for_each_possible_cpu(cpu) {
4520 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4521 							       cpu);
4522 			int node;
4523 			struct page *page;
4524 
4525 			page = READ_ONCE(c->page);
4526 			if (!page)
4527 				continue;
4528 
4529 			node = page_to_nid(page);
4530 			if (flags & SO_TOTAL)
4531 				x = page->objects;
4532 			else if (flags & SO_OBJECTS)
4533 				x = page->inuse;
4534 			else
4535 				x = 1;
4536 
4537 			total += x;
4538 			nodes[node] += x;
4539 
4540 			page = READ_ONCE(c->partial);
4541 			if (page) {
4542 				node = page_to_nid(page);
4543 				if (flags & SO_TOTAL)
4544 					WARN_ON_ONCE(1);
4545 				else if (flags & SO_OBJECTS)
4546 					WARN_ON_ONCE(1);
4547 				else
4548 					x = page->pages;
4549 				total += x;
4550 				nodes[node] += x;
4551 			}
4552 		}
4553 	}
4554 
4555 	get_online_mems();
4556 #ifdef CONFIG_SLUB_DEBUG
4557 	if (flags & SO_ALL) {
4558 		struct kmem_cache_node *n;
4559 
4560 		for_each_kmem_cache_node(s, node, n) {
4561 
4562 			if (flags & SO_TOTAL)
4563 				x = atomic_long_read(&n->total_objects);
4564 			else if (flags & SO_OBJECTS)
4565 				x = atomic_long_read(&n->total_objects) -
4566 					count_partial(n, count_free);
4567 			else
4568 				x = atomic_long_read(&n->nr_slabs);
4569 			total += x;
4570 			nodes[node] += x;
4571 		}
4572 
4573 	} else
4574 #endif
4575 	if (flags & SO_PARTIAL) {
4576 		struct kmem_cache_node *n;
4577 
4578 		for_each_kmem_cache_node(s, node, n) {
4579 			if (flags & SO_TOTAL)
4580 				x = count_partial(n, count_total);
4581 			else if (flags & SO_OBJECTS)
4582 				x = count_partial(n, count_inuse);
4583 			else
4584 				x = n->nr_partial;
4585 			total += x;
4586 			nodes[node] += x;
4587 		}
4588 	}
4589 	x = sprintf(buf, "%lu", total);
4590 #ifdef CONFIG_NUMA
4591 	for (node = 0; node < nr_node_ids; node++)
4592 		if (nodes[node])
4593 			x += sprintf(buf + x, " N%d=%lu",
4594 					node, nodes[node]);
4595 #endif
4596 	put_online_mems();
4597 	kfree(nodes);
4598 	return x + sprintf(buf + x, "\n");
4599 }
4600 
4601 #ifdef CONFIG_SLUB_DEBUG
4602 static int any_slab_objects(struct kmem_cache *s)
4603 {
4604 	int node;
4605 	struct kmem_cache_node *n;
4606 
4607 	for_each_kmem_cache_node(s, node, n)
4608 		if (atomic_long_read(&n->total_objects))
4609 			return 1;
4610 
4611 	return 0;
4612 }
4613 #endif
4614 
4615 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4616 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4617 
4618 struct slab_attribute {
4619 	struct attribute attr;
4620 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4621 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4622 };
4623 
4624 #define SLAB_ATTR_RO(_name) \
4625 	static struct slab_attribute _name##_attr = \
4626 	__ATTR(_name, 0400, _name##_show, NULL)
4627 
4628 #define SLAB_ATTR(_name) \
4629 	static struct slab_attribute _name##_attr =  \
4630 	__ATTR(_name, 0600, _name##_show, _name##_store)
4631 
4632 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4633 {
4634 	return sprintf(buf, "%d\n", s->size);
4635 }
4636 SLAB_ATTR_RO(slab_size);
4637 
4638 static ssize_t align_show(struct kmem_cache *s, char *buf)
4639 {
4640 	return sprintf(buf, "%d\n", s->align);
4641 }
4642 SLAB_ATTR_RO(align);
4643 
4644 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4645 {
4646 	return sprintf(buf, "%d\n", s->object_size);
4647 }
4648 SLAB_ATTR_RO(object_size);
4649 
4650 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4651 {
4652 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4653 }
4654 SLAB_ATTR_RO(objs_per_slab);
4655 
4656 static ssize_t order_store(struct kmem_cache *s,
4657 				const char *buf, size_t length)
4658 {
4659 	unsigned long order;
4660 	int err;
4661 
4662 	err = kstrtoul(buf, 10, &order);
4663 	if (err)
4664 		return err;
4665 
4666 	if (order > slub_max_order || order < slub_min_order)
4667 		return -EINVAL;
4668 
4669 	calculate_sizes(s, order);
4670 	return length;
4671 }
4672 
4673 static ssize_t order_show(struct kmem_cache *s, char *buf)
4674 {
4675 	return sprintf(buf, "%d\n", oo_order(s->oo));
4676 }
4677 SLAB_ATTR(order);
4678 
4679 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4680 {
4681 	return sprintf(buf, "%lu\n", s->min_partial);
4682 }
4683 
4684 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4685 				 size_t length)
4686 {
4687 	unsigned long min;
4688 	int err;
4689 
4690 	err = kstrtoul(buf, 10, &min);
4691 	if (err)
4692 		return err;
4693 
4694 	set_min_partial(s, min);
4695 	return length;
4696 }
4697 SLAB_ATTR(min_partial);
4698 
4699 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4700 {
4701 	return sprintf(buf, "%u\n", s->cpu_partial);
4702 }
4703 
4704 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4705 				 size_t length)
4706 {
4707 	unsigned long objects;
4708 	int err;
4709 
4710 	err = kstrtoul(buf, 10, &objects);
4711 	if (err)
4712 		return err;
4713 	if (objects && !kmem_cache_has_cpu_partial(s))
4714 		return -EINVAL;
4715 
4716 	s->cpu_partial = objects;
4717 	flush_all(s);
4718 	return length;
4719 }
4720 SLAB_ATTR(cpu_partial);
4721 
4722 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4723 {
4724 	if (!s->ctor)
4725 		return 0;
4726 	return sprintf(buf, "%pS\n", s->ctor);
4727 }
4728 SLAB_ATTR_RO(ctor);
4729 
4730 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4731 {
4732 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4733 }
4734 SLAB_ATTR_RO(aliases);
4735 
4736 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4737 {
4738 	return show_slab_objects(s, buf, SO_PARTIAL);
4739 }
4740 SLAB_ATTR_RO(partial);
4741 
4742 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4743 {
4744 	return show_slab_objects(s, buf, SO_CPU);
4745 }
4746 SLAB_ATTR_RO(cpu_slabs);
4747 
4748 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4749 {
4750 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4751 }
4752 SLAB_ATTR_RO(objects);
4753 
4754 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4755 {
4756 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4757 }
4758 SLAB_ATTR_RO(objects_partial);
4759 
4760 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4761 {
4762 	int objects = 0;
4763 	int pages = 0;
4764 	int cpu;
4765 	int len;
4766 
4767 	for_each_online_cpu(cpu) {
4768 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4769 
4770 		if (page) {
4771 			pages += page->pages;
4772 			objects += page->pobjects;
4773 		}
4774 	}
4775 
4776 	len = sprintf(buf, "%d(%d)", objects, pages);
4777 
4778 #ifdef CONFIG_SMP
4779 	for_each_online_cpu(cpu) {
4780 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4781 
4782 		if (page && len < PAGE_SIZE - 20)
4783 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4784 				page->pobjects, page->pages);
4785 	}
4786 #endif
4787 	return len + sprintf(buf + len, "\n");
4788 }
4789 SLAB_ATTR_RO(slabs_cpu_partial);
4790 
4791 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4792 {
4793 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4794 }
4795 
4796 static ssize_t reclaim_account_store(struct kmem_cache *s,
4797 				const char *buf, size_t length)
4798 {
4799 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4800 	if (buf[0] == '1')
4801 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4802 	return length;
4803 }
4804 SLAB_ATTR(reclaim_account);
4805 
4806 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4807 {
4808 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4809 }
4810 SLAB_ATTR_RO(hwcache_align);
4811 
4812 #ifdef CONFIG_ZONE_DMA
4813 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4814 {
4815 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4816 }
4817 SLAB_ATTR_RO(cache_dma);
4818 #endif
4819 
4820 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4821 {
4822 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4823 }
4824 SLAB_ATTR_RO(destroy_by_rcu);
4825 
4826 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4827 {
4828 	return sprintf(buf, "%d\n", s->reserved);
4829 }
4830 SLAB_ATTR_RO(reserved);
4831 
4832 #ifdef CONFIG_SLUB_DEBUG
4833 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4834 {
4835 	return show_slab_objects(s, buf, SO_ALL);
4836 }
4837 SLAB_ATTR_RO(slabs);
4838 
4839 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4840 {
4841 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4842 }
4843 SLAB_ATTR_RO(total_objects);
4844 
4845 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4846 {
4847 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
4848 }
4849 
4850 static ssize_t sanity_checks_store(struct kmem_cache *s,
4851 				const char *buf, size_t length)
4852 {
4853 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
4854 	if (buf[0] == '1') {
4855 		s->flags &= ~__CMPXCHG_DOUBLE;
4856 		s->flags |= SLAB_CONSISTENCY_CHECKS;
4857 	}
4858 	return length;
4859 }
4860 SLAB_ATTR(sanity_checks);
4861 
4862 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4863 {
4864 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4865 }
4866 
4867 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4868 							size_t length)
4869 {
4870 	/*
4871 	 * Tracing a merged cache is going to give confusing results
4872 	 * as well as cause other issues like converting a mergeable
4873 	 * cache into an umergeable one.
4874 	 */
4875 	if (s->refcount > 1)
4876 		return -EINVAL;
4877 
4878 	s->flags &= ~SLAB_TRACE;
4879 	if (buf[0] == '1') {
4880 		s->flags &= ~__CMPXCHG_DOUBLE;
4881 		s->flags |= SLAB_TRACE;
4882 	}
4883 	return length;
4884 }
4885 SLAB_ATTR(trace);
4886 
4887 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4888 {
4889 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4890 }
4891 
4892 static ssize_t red_zone_store(struct kmem_cache *s,
4893 				const char *buf, size_t length)
4894 {
4895 	if (any_slab_objects(s))
4896 		return -EBUSY;
4897 
4898 	s->flags &= ~SLAB_RED_ZONE;
4899 	if (buf[0] == '1') {
4900 		s->flags |= SLAB_RED_ZONE;
4901 	}
4902 	calculate_sizes(s, -1);
4903 	return length;
4904 }
4905 SLAB_ATTR(red_zone);
4906 
4907 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4908 {
4909 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4910 }
4911 
4912 static ssize_t poison_store(struct kmem_cache *s,
4913 				const char *buf, size_t length)
4914 {
4915 	if (any_slab_objects(s))
4916 		return -EBUSY;
4917 
4918 	s->flags &= ~SLAB_POISON;
4919 	if (buf[0] == '1') {
4920 		s->flags |= SLAB_POISON;
4921 	}
4922 	calculate_sizes(s, -1);
4923 	return length;
4924 }
4925 SLAB_ATTR(poison);
4926 
4927 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4928 {
4929 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4930 }
4931 
4932 static ssize_t store_user_store(struct kmem_cache *s,
4933 				const char *buf, size_t length)
4934 {
4935 	if (any_slab_objects(s))
4936 		return -EBUSY;
4937 
4938 	s->flags &= ~SLAB_STORE_USER;
4939 	if (buf[0] == '1') {
4940 		s->flags &= ~__CMPXCHG_DOUBLE;
4941 		s->flags |= SLAB_STORE_USER;
4942 	}
4943 	calculate_sizes(s, -1);
4944 	return length;
4945 }
4946 SLAB_ATTR(store_user);
4947 
4948 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4949 {
4950 	return 0;
4951 }
4952 
4953 static ssize_t validate_store(struct kmem_cache *s,
4954 			const char *buf, size_t length)
4955 {
4956 	int ret = -EINVAL;
4957 
4958 	if (buf[0] == '1') {
4959 		ret = validate_slab_cache(s);
4960 		if (ret >= 0)
4961 			ret = length;
4962 	}
4963 	return ret;
4964 }
4965 SLAB_ATTR(validate);
4966 
4967 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4968 {
4969 	if (!(s->flags & SLAB_STORE_USER))
4970 		return -ENOSYS;
4971 	return list_locations(s, buf, TRACK_ALLOC);
4972 }
4973 SLAB_ATTR_RO(alloc_calls);
4974 
4975 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4976 {
4977 	if (!(s->flags & SLAB_STORE_USER))
4978 		return -ENOSYS;
4979 	return list_locations(s, buf, TRACK_FREE);
4980 }
4981 SLAB_ATTR_RO(free_calls);
4982 #endif /* CONFIG_SLUB_DEBUG */
4983 
4984 #ifdef CONFIG_FAILSLAB
4985 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4986 {
4987 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4988 }
4989 
4990 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4991 							size_t length)
4992 {
4993 	if (s->refcount > 1)
4994 		return -EINVAL;
4995 
4996 	s->flags &= ~SLAB_FAILSLAB;
4997 	if (buf[0] == '1')
4998 		s->flags |= SLAB_FAILSLAB;
4999 	return length;
5000 }
5001 SLAB_ATTR(failslab);
5002 #endif
5003 
5004 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5005 {
5006 	return 0;
5007 }
5008 
5009 static ssize_t shrink_store(struct kmem_cache *s,
5010 			const char *buf, size_t length)
5011 {
5012 	if (buf[0] == '1')
5013 		kmem_cache_shrink(s);
5014 	else
5015 		return -EINVAL;
5016 	return length;
5017 }
5018 SLAB_ATTR(shrink);
5019 
5020 #ifdef CONFIG_NUMA
5021 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5022 {
5023 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5024 }
5025 
5026 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5027 				const char *buf, size_t length)
5028 {
5029 	unsigned long ratio;
5030 	int err;
5031 
5032 	err = kstrtoul(buf, 10, &ratio);
5033 	if (err)
5034 		return err;
5035 
5036 	if (ratio <= 100)
5037 		s->remote_node_defrag_ratio = ratio * 10;
5038 
5039 	return length;
5040 }
5041 SLAB_ATTR(remote_node_defrag_ratio);
5042 #endif
5043 
5044 #ifdef CONFIG_SLUB_STATS
5045 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5046 {
5047 	unsigned long sum  = 0;
5048 	int cpu;
5049 	int len;
5050 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5051 
5052 	if (!data)
5053 		return -ENOMEM;
5054 
5055 	for_each_online_cpu(cpu) {
5056 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5057 
5058 		data[cpu] = x;
5059 		sum += x;
5060 	}
5061 
5062 	len = sprintf(buf, "%lu", sum);
5063 
5064 #ifdef CONFIG_SMP
5065 	for_each_online_cpu(cpu) {
5066 		if (data[cpu] && len < PAGE_SIZE - 20)
5067 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5068 	}
5069 #endif
5070 	kfree(data);
5071 	return len + sprintf(buf + len, "\n");
5072 }
5073 
5074 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5075 {
5076 	int cpu;
5077 
5078 	for_each_online_cpu(cpu)
5079 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5080 }
5081 
5082 #define STAT_ATTR(si, text) 					\
5083 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5084 {								\
5085 	return show_stat(s, buf, si);				\
5086 }								\
5087 static ssize_t text##_store(struct kmem_cache *s,		\
5088 				const char *buf, size_t length)	\
5089 {								\
5090 	if (buf[0] != '0')					\
5091 		return -EINVAL;					\
5092 	clear_stat(s, si);					\
5093 	return length;						\
5094 }								\
5095 SLAB_ATTR(text);						\
5096 
5097 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5098 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5099 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5100 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5101 STAT_ATTR(FREE_FROZEN, free_frozen);
5102 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5103 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5104 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5105 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5106 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5107 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5108 STAT_ATTR(FREE_SLAB, free_slab);
5109 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5110 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5111 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5112 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5113 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5114 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5115 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5116 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5117 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5118 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5119 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5120 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5121 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5122 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5123 #endif
5124 
5125 static struct attribute *slab_attrs[] = {
5126 	&slab_size_attr.attr,
5127 	&object_size_attr.attr,
5128 	&objs_per_slab_attr.attr,
5129 	&order_attr.attr,
5130 	&min_partial_attr.attr,
5131 	&cpu_partial_attr.attr,
5132 	&objects_attr.attr,
5133 	&objects_partial_attr.attr,
5134 	&partial_attr.attr,
5135 	&cpu_slabs_attr.attr,
5136 	&ctor_attr.attr,
5137 	&aliases_attr.attr,
5138 	&align_attr.attr,
5139 	&hwcache_align_attr.attr,
5140 	&reclaim_account_attr.attr,
5141 	&destroy_by_rcu_attr.attr,
5142 	&shrink_attr.attr,
5143 	&reserved_attr.attr,
5144 	&slabs_cpu_partial_attr.attr,
5145 #ifdef CONFIG_SLUB_DEBUG
5146 	&total_objects_attr.attr,
5147 	&slabs_attr.attr,
5148 	&sanity_checks_attr.attr,
5149 	&trace_attr.attr,
5150 	&red_zone_attr.attr,
5151 	&poison_attr.attr,
5152 	&store_user_attr.attr,
5153 	&validate_attr.attr,
5154 	&alloc_calls_attr.attr,
5155 	&free_calls_attr.attr,
5156 #endif
5157 #ifdef CONFIG_ZONE_DMA
5158 	&cache_dma_attr.attr,
5159 #endif
5160 #ifdef CONFIG_NUMA
5161 	&remote_node_defrag_ratio_attr.attr,
5162 #endif
5163 #ifdef CONFIG_SLUB_STATS
5164 	&alloc_fastpath_attr.attr,
5165 	&alloc_slowpath_attr.attr,
5166 	&free_fastpath_attr.attr,
5167 	&free_slowpath_attr.attr,
5168 	&free_frozen_attr.attr,
5169 	&free_add_partial_attr.attr,
5170 	&free_remove_partial_attr.attr,
5171 	&alloc_from_partial_attr.attr,
5172 	&alloc_slab_attr.attr,
5173 	&alloc_refill_attr.attr,
5174 	&alloc_node_mismatch_attr.attr,
5175 	&free_slab_attr.attr,
5176 	&cpuslab_flush_attr.attr,
5177 	&deactivate_full_attr.attr,
5178 	&deactivate_empty_attr.attr,
5179 	&deactivate_to_head_attr.attr,
5180 	&deactivate_to_tail_attr.attr,
5181 	&deactivate_remote_frees_attr.attr,
5182 	&deactivate_bypass_attr.attr,
5183 	&order_fallback_attr.attr,
5184 	&cmpxchg_double_fail_attr.attr,
5185 	&cmpxchg_double_cpu_fail_attr.attr,
5186 	&cpu_partial_alloc_attr.attr,
5187 	&cpu_partial_free_attr.attr,
5188 	&cpu_partial_node_attr.attr,
5189 	&cpu_partial_drain_attr.attr,
5190 #endif
5191 #ifdef CONFIG_FAILSLAB
5192 	&failslab_attr.attr,
5193 #endif
5194 
5195 	NULL
5196 };
5197 
5198 static struct attribute_group slab_attr_group = {
5199 	.attrs = slab_attrs,
5200 };
5201 
5202 static ssize_t slab_attr_show(struct kobject *kobj,
5203 				struct attribute *attr,
5204 				char *buf)
5205 {
5206 	struct slab_attribute *attribute;
5207 	struct kmem_cache *s;
5208 	int err;
5209 
5210 	attribute = to_slab_attr(attr);
5211 	s = to_slab(kobj);
5212 
5213 	if (!attribute->show)
5214 		return -EIO;
5215 
5216 	err = attribute->show(s, buf);
5217 
5218 	return err;
5219 }
5220 
5221 static ssize_t slab_attr_store(struct kobject *kobj,
5222 				struct attribute *attr,
5223 				const char *buf, size_t len)
5224 {
5225 	struct slab_attribute *attribute;
5226 	struct kmem_cache *s;
5227 	int err;
5228 
5229 	attribute = to_slab_attr(attr);
5230 	s = to_slab(kobj);
5231 
5232 	if (!attribute->store)
5233 		return -EIO;
5234 
5235 	err = attribute->store(s, buf, len);
5236 #ifdef CONFIG_MEMCG
5237 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5238 		struct kmem_cache *c;
5239 
5240 		mutex_lock(&slab_mutex);
5241 		if (s->max_attr_size < len)
5242 			s->max_attr_size = len;
5243 
5244 		/*
5245 		 * This is a best effort propagation, so this function's return
5246 		 * value will be determined by the parent cache only. This is
5247 		 * basically because not all attributes will have a well
5248 		 * defined semantics for rollbacks - most of the actions will
5249 		 * have permanent effects.
5250 		 *
5251 		 * Returning the error value of any of the children that fail
5252 		 * is not 100 % defined, in the sense that users seeing the
5253 		 * error code won't be able to know anything about the state of
5254 		 * the cache.
5255 		 *
5256 		 * Only returning the error code for the parent cache at least
5257 		 * has well defined semantics. The cache being written to
5258 		 * directly either failed or succeeded, in which case we loop
5259 		 * through the descendants with best-effort propagation.
5260 		 */
5261 		for_each_memcg_cache(c, s)
5262 			attribute->store(c, buf, len);
5263 		mutex_unlock(&slab_mutex);
5264 	}
5265 #endif
5266 	return err;
5267 }
5268 
5269 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5270 {
5271 #ifdef CONFIG_MEMCG
5272 	int i;
5273 	char *buffer = NULL;
5274 	struct kmem_cache *root_cache;
5275 
5276 	if (is_root_cache(s))
5277 		return;
5278 
5279 	root_cache = s->memcg_params.root_cache;
5280 
5281 	/*
5282 	 * This mean this cache had no attribute written. Therefore, no point
5283 	 * in copying default values around
5284 	 */
5285 	if (!root_cache->max_attr_size)
5286 		return;
5287 
5288 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5289 		char mbuf[64];
5290 		char *buf;
5291 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5292 
5293 		if (!attr || !attr->store || !attr->show)
5294 			continue;
5295 
5296 		/*
5297 		 * It is really bad that we have to allocate here, so we will
5298 		 * do it only as a fallback. If we actually allocate, though,
5299 		 * we can just use the allocated buffer until the end.
5300 		 *
5301 		 * Most of the slub attributes will tend to be very small in
5302 		 * size, but sysfs allows buffers up to a page, so they can
5303 		 * theoretically happen.
5304 		 */
5305 		if (buffer)
5306 			buf = buffer;
5307 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5308 			buf = mbuf;
5309 		else {
5310 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5311 			if (WARN_ON(!buffer))
5312 				continue;
5313 			buf = buffer;
5314 		}
5315 
5316 		attr->show(root_cache, buf);
5317 		attr->store(s, buf, strlen(buf));
5318 	}
5319 
5320 	if (buffer)
5321 		free_page((unsigned long)buffer);
5322 #endif
5323 }
5324 
5325 static void kmem_cache_release(struct kobject *k)
5326 {
5327 	slab_kmem_cache_release(to_slab(k));
5328 }
5329 
5330 static const struct sysfs_ops slab_sysfs_ops = {
5331 	.show = slab_attr_show,
5332 	.store = slab_attr_store,
5333 };
5334 
5335 static struct kobj_type slab_ktype = {
5336 	.sysfs_ops = &slab_sysfs_ops,
5337 	.release = kmem_cache_release,
5338 };
5339 
5340 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5341 {
5342 	struct kobj_type *ktype = get_ktype(kobj);
5343 
5344 	if (ktype == &slab_ktype)
5345 		return 1;
5346 	return 0;
5347 }
5348 
5349 static const struct kset_uevent_ops slab_uevent_ops = {
5350 	.filter = uevent_filter,
5351 };
5352 
5353 static struct kset *slab_kset;
5354 
5355 static inline struct kset *cache_kset(struct kmem_cache *s)
5356 {
5357 #ifdef CONFIG_MEMCG
5358 	if (!is_root_cache(s))
5359 		return s->memcg_params.root_cache->memcg_kset;
5360 #endif
5361 	return slab_kset;
5362 }
5363 
5364 #define ID_STR_LENGTH 64
5365 
5366 /* Create a unique string id for a slab cache:
5367  *
5368  * Format	:[flags-]size
5369  */
5370 static char *create_unique_id(struct kmem_cache *s)
5371 {
5372 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5373 	char *p = name;
5374 
5375 	BUG_ON(!name);
5376 
5377 	*p++ = ':';
5378 	/*
5379 	 * First flags affecting slabcache operations. We will only
5380 	 * get here for aliasable slabs so we do not need to support
5381 	 * too many flags. The flags here must cover all flags that
5382 	 * are matched during merging to guarantee that the id is
5383 	 * unique.
5384 	 */
5385 	if (s->flags & SLAB_CACHE_DMA)
5386 		*p++ = 'd';
5387 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5388 		*p++ = 'a';
5389 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5390 		*p++ = 'F';
5391 	if (!(s->flags & SLAB_NOTRACK))
5392 		*p++ = 't';
5393 	if (s->flags & SLAB_ACCOUNT)
5394 		*p++ = 'A';
5395 	if (p != name + 1)
5396 		*p++ = '-';
5397 	p += sprintf(p, "%07d", s->size);
5398 
5399 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5400 	return name;
5401 }
5402 
5403 static int sysfs_slab_add(struct kmem_cache *s)
5404 {
5405 	int err;
5406 	const char *name;
5407 	int unmergeable = slab_unmergeable(s);
5408 
5409 	if (unmergeable) {
5410 		/*
5411 		 * Slabcache can never be merged so we can use the name proper.
5412 		 * This is typically the case for debug situations. In that
5413 		 * case we can catch duplicate names easily.
5414 		 */
5415 		sysfs_remove_link(&slab_kset->kobj, s->name);
5416 		name = s->name;
5417 	} else {
5418 		/*
5419 		 * Create a unique name for the slab as a target
5420 		 * for the symlinks.
5421 		 */
5422 		name = create_unique_id(s);
5423 	}
5424 
5425 	s->kobj.kset = cache_kset(s);
5426 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5427 	if (err)
5428 		goto out;
5429 
5430 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5431 	if (err)
5432 		goto out_del_kobj;
5433 
5434 #ifdef CONFIG_MEMCG
5435 	if (is_root_cache(s)) {
5436 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5437 		if (!s->memcg_kset) {
5438 			err = -ENOMEM;
5439 			goto out_del_kobj;
5440 		}
5441 	}
5442 #endif
5443 
5444 	kobject_uevent(&s->kobj, KOBJ_ADD);
5445 	if (!unmergeable) {
5446 		/* Setup first alias */
5447 		sysfs_slab_alias(s, s->name);
5448 	}
5449 out:
5450 	if (!unmergeable)
5451 		kfree(name);
5452 	return err;
5453 out_del_kobj:
5454 	kobject_del(&s->kobj);
5455 	goto out;
5456 }
5457 
5458 void sysfs_slab_remove(struct kmem_cache *s)
5459 {
5460 	if (slab_state < FULL)
5461 		/*
5462 		 * Sysfs has not been setup yet so no need to remove the
5463 		 * cache from sysfs.
5464 		 */
5465 		return;
5466 
5467 #ifdef CONFIG_MEMCG
5468 	kset_unregister(s->memcg_kset);
5469 #endif
5470 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5471 	kobject_del(&s->kobj);
5472 	kobject_put(&s->kobj);
5473 }
5474 
5475 /*
5476  * Need to buffer aliases during bootup until sysfs becomes
5477  * available lest we lose that information.
5478  */
5479 struct saved_alias {
5480 	struct kmem_cache *s;
5481 	const char *name;
5482 	struct saved_alias *next;
5483 };
5484 
5485 static struct saved_alias *alias_list;
5486 
5487 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5488 {
5489 	struct saved_alias *al;
5490 
5491 	if (slab_state == FULL) {
5492 		/*
5493 		 * If we have a leftover link then remove it.
5494 		 */
5495 		sysfs_remove_link(&slab_kset->kobj, name);
5496 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5497 	}
5498 
5499 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5500 	if (!al)
5501 		return -ENOMEM;
5502 
5503 	al->s = s;
5504 	al->name = name;
5505 	al->next = alias_list;
5506 	alias_list = al;
5507 	return 0;
5508 }
5509 
5510 static int __init slab_sysfs_init(void)
5511 {
5512 	struct kmem_cache *s;
5513 	int err;
5514 
5515 	mutex_lock(&slab_mutex);
5516 
5517 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5518 	if (!slab_kset) {
5519 		mutex_unlock(&slab_mutex);
5520 		pr_err("Cannot register slab subsystem.\n");
5521 		return -ENOSYS;
5522 	}
5523 
5524 	slab_state = FULL;
5525 
5526 	list_for_each_entry(s, &slab_caches, list) {
5527 		err = sysfs_slab_add(s);
5528 		if (err)
5529 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5530 			       s->name);
5531 	}
5532 
5533 	while (alias_list) {
5534 		struct saved_alias *al = alias_list;
5535 
5536 		alias_list = alias_list->next;
5537 		err = sysfs_slab_alias(al->s, al->name);
5538 		if (err)
5539 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5540 			       al->name);
5541 		kfree(al);
5542 	}
5543 
5544 	mutex_unlock(&slab_mutex);
5545 	resiliency_test();
5546 	return 0;
5547 }
5548 
5549 __initcall(slab_sysfs_init);
5550 #endif /* CONFIG_SYSFS */
5551 
5552 /*
5553  * The /proc/slabinfo ABI
5554  */
5555 #ifdef CONFIG_SLABINFO
5556 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5557 {
5558 	unsigned long nr_slabs = 0;
5559 	unsigned long nr_objs = 0;
5560 	unsigned long nr_free = 0;
5561 	int node;
5562 	struct kmem_cache_node *n;
5563 
5564 	for_each_kmem_cache_node(s, node, n) {
5565 		nr_slabs += node_nr_slabs(n);
5566 		nr_objs += node_nr_objs(n);
5567 		nr_free += count_partial(n, count_free);
5568 	}
5569 
5570 	sinfo->active_objs = nr_objs - nr_free;
5571 	sinfo->num_objs = nr_objs;
5572 	sinfo->active_slabs = nr_slabs;
5573 	sinfo->num_slabs = nr_slabs;
5574 	sinfo->objects_per_slab = oo_objects(s->oo);
5575 	sinfo->cache_order = oo_order(s->oo);
5576 }
5577 
5578 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5579 {
5580 }
5581 
5582 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5583 		       size_t count, loff_t *ppos)
5584 {
5585 	return -EIO;
5586 }
5587 #endif /* CONFIG_SLABINFO */
5588