1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kmemcheck.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 37 #include <trace/events/kmem.h> 38 39 #include "internal.h" 40 41 /* 42 * Lock order: 43 * 1. slab_mutex (Global Mutex) 44 * 2. node->list_lock 45 * 3. slab_lock(page) (Only on some arches and for debugging) 46 * 47 * slab_mutex 48 * 49 * The role of the slab_mutex is to protect the list of all the slabs 50 * and to synchronize major metadata changes to slab cache structures. 51 * 52 * The slab_lock is only used for debugging and on arches that do not 53 * have the ability to do a cmpxchg_double. It only protects the second 54 * double word in the page struct. Meaning 55 * A. page->freelist -> List of object free in a page 56 * B. page->counters -> Counters of objects 57 * C. page->frozen -> frozen state 58 * 59 * If a slab is frozen then it is exempt from list management. It is not 60 * on any list. The processor that froze the slab is the one who can 61 * perform list operations on the page. Other processors may put objects 62 * onto the freelist but the processor that froze the slab is the only 63 * one that can retrieve the objects from the page's freelist. 64 * 65 * The list_lock protects the partial and full list on each node and 66 * the partial slab counter. If taken then no new slabs may be added or 67 * removed from the lists nor make the number of partial slabs be modified. 68 * (Note that the total number of slabs is an atomic value that may be 69 * modified without taking the list lock). 70 * 71 * The list_lock is a centralized lock and thus we avoid taking it as 72 * much as possible. As long as SLUB does not have to handle partial 73 * slabs, operations can continue without any centralized lock. F.e. 74 * allocating a long series of objects that fill up slabs does not require 75 * the list lock. 76 * Interrupts are disabled during allocation and deallocation in order to 77 * make the slab allocator safe to use in the context of an irq. In addition 78 * interrupts are disabled to ensure that the processor does not change 79 * while handling per_cpu slabs, due to kernel preemption. 80 * 81 * SLUB assigns one slab for allocation to each processor. 82 * Allocations only occur from these slabs called cpu slabs. 83 * 84 * Slabs with free elements are kept on a partial list and during regular 85 * operations no list for full slabs is used. If an object in a full slab is 86 * freed then the slab will show up again on the partial lists. 87 * We track full slabs for debugging purposes though because otherwise we 88 * cannot scan all objects. 89 * 90 * Slabs are freed when they become empty. Teardown and setup is 91 * minimal so we rely on the page allocators per cpu caches for 92 * fast frees and allocs. 93 * 94 * Overloading of page flags that are otherwise used for LRU management. 95 * 96 * PageActive The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * PageError Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 127 { 128 #ifdef CONFIG_SLUB_CPU_PARTIAL 129 return !kmem_cache_debug(s); 130 #else 131 return false; 132 #endif 133 } 134 135 /* 136 * Issues still to be resolved: 137 * 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 139 * 140 * - Variable sizing of the per node arrays 141 */ 142 143 /* Enable to test recovery from slab corruption on boot */ 144 #undef SLUB_RESILIENCY_TEST 145 146 /* Enable to log cmpxchg failures */ 147 #undef SLUB_DEBUG_CMPXCHG 148 149 /* 150 * Mininum number of partial slabs. These will be left on the partial 151 * lists even if they are empty. kmem_cache_shrink may reclaim them. 152 */ 153 #define MIN_PARTIAL 5 154 155 /* 156 * Maximum number of desirable partial slabs. 157 * The existence of more partial slabs makes kmem_cache_shrink 158 * sort the partial list by the number of objects in use. 159 */ 160 #define MAX_PARTIAL 10 161 162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 163 SLAB_POISON | SLAB_STORE_USER) 164 165 /* 166 * Debugging flags that require metadata to be stored in the slab. These get 167 * disabled when slub_debug=O is used and a cache's min order increases with 168 * metadata. 169 */ 170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 171 172 #define OO_SHIFT 16 173 #define OO_MASK ((1 << OO_SHIFT) - 1) 174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 175 176 /* Internal SLUB flags */ 177 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 179 180 #ifdef CONFIG_SMP 181 static struct notifier_block slab_notifier; 182 #endif 183 184 /* 185 * Tracking user of a slab. 186 */ 187 #define TRACK_ADDRS_COUNT 16 188 struct track { 189 unsigned long addr; /* Called from address */ 190 #ifdef CONFIG_STACKTRACE 191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 192 #endif 193 int cpu; /* Was running on cpu */ 194 int pid; /* Pid context */ 195 unsigned long when; /* When did the operation occur */ 196 }; 197 198 enum track_item { TRACK_ALLOC, TRACK_FREE }; 199 200 #ifdef CONFIG_SYSFS 201 static int sysfs_slab_add(struct kmem_cache *); 202 static int sysfs_slab_alias(struct kmem_cache *, const char *); 203 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 204 #else 205 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 206 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 207 { return 0; } 208 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 209 #endif 210 211 static inline void stat(const struct kmem_cache *s, enum stat_item si) 212 { 213 #ifdef CONFIG_SLUB_STATS 214 /* 215 * The rmw is racy on a preemptible kernel but this is acceptable, so 216 * avoid this_cpu_add()'s irq-disable overhead. 217 */ 218 raw_cpu_inc(s->cpu_slab->stat[si]); 219 #endif 220 } 221 222 /******************************************************************** 223 * Core slab cache functions 224 *******************************************************************/ 225 226 /* Verify that a pointer has an address that is valid within a slab page */ 227 static inline int check_valid_pointer(struct kmem_cache *s, 228 struct page *page, const void *object) 229 { 230 void *base; 231 232 if (!object) 233 return 1; 234 235 base = page_address(page); 236 if (object < base || object >= base + page->objects * s->size || 237 (object - base) % s->size) { 238 return 0; 239 } 240 241 return 1; 242 } 243 244 static inline void *get_freepointer(struct kmem_cache *s, void *object) 245 { 246 return *(void **)(object + s->offset); 247 } 248 249 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 250 { 251 prefetch(object + s->offset); 252 } 253 254 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 255 { 256 void *p; 257 258 #ifdef CONFIG_DEBUG_PAGEALLOC 259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 260 #else 261 p = get_freepointer(s, object); 262 #endif 263 return p; 264 } 265 266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 267 { 268 *(void **)(object + s->offset) = fp; 269 } 270 271 /* Loop over all objects in a slab */ 272 #define for_each_object(__p, __s, __addr, __objects) \ 273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 274 __p += (__s)->size) 275 276 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 277 for (__p = (__addr), __idx = 1; __idx <= __objects;\ 278 __p += (__s)->size, __idx++) 279 280 /* Determine object index from a given position */ 281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 282 { 283 return (p - addr) / s->size; 284 } 285 286 static inline size_t slab_ksize(const struct kmem_cache *s) 287 { 288 #ifdef CONFIG_SLUB_DEBUG 289 /* 290 * Debugging requires use of the padding between object 291 * and whatever may come after it. 292 */ 293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 294 return s->object_size; 295 296 #endif 297 /* 298 * If we have the need to store the freelist pointer 299 * back there or track user information then we can 300 * only use the space before that information. 301 */ 302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 303 return s->inuse; 304 /* 305 * Else we can use all the padding etc for the allocation 306 */ 307 return s->size; 308 } 309 310 static inline int order_objects(int order, unsigned long size, int reserved) 311 { 312 return ((PAGE_SIZE << order) - reserved) / size; 313 } 314 315 static inline struct kmem_cache_order_objects oo_make(int order, 316 unsigned long size, int reserved) 317 { 318 struct kmem_cache_order_objects x = { 319 (order << OO_SHIFT) + order_objects(order, size, reserved) 320 }; 321 322 return x; 323 } 324 325 static inline int oo_order(struct kmem_cache_order_objects x) 326 { 327 return x.x >> OO_SHIFT; 328 } 329 330 static inline int oo_objects(struct kmem_cache_order_objects x) 331 { 332 return x.x & OO_MASK; 333 } 334 335 /* 336 * Per slab locking using the pagelock 337 */ 338 static __always_inline void slab_lock(struct page *page) 339 { 340 bit_spin_lock(PG_locked, &page->flags); 341 } 342 343 static __always_inline void slab_unlock(struct page *page) 344 { 345 __bit_spin_unlock(PG_locked, &page->flags); 346 } 347 348 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 349 { 350 struct page tmp; 351 tmp.counters = counters_new; 352 /* 353 * page->counters can cover frozen/inuse/objects as well 354 * as page->_count. If we assign to ->counters directly 355 * we run the risk of losing updates to page->_count, so 356 * be careful and only assign to the fields we need. 357 */ 358 page->frozen = tmp.frozen; 359 page->inuse = tmp.inuse; 360 page->objects = tmp.objects; 361 } 362 363 /* Interrupts must be disabled (for the fallback code to work right) */ 364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 365 void *freelist_old, unsigned long counters_old, 366 void *freelist_new, unsigned long counters_new, 367 const char *n) 368 { 369 VM_BUG_ON(!irqs_disabled()); 370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 372 if (s->flags & __CMPXCHG_DOUBLE) { 373 if (cmpxchg_double(&page->freelist, &page->counters, 374 freelist_old, counters_old, 375 freelist_new, counters_new)) 376 return 1; 377 } else 378 #endif 379 { 380 slab_lock(page); 381 if (page->freelist == freelist_old && 382 page->counters == counters_old) { 383 page->freelist = freelist_new; 384 set_page_slub_counters(page, counters_new); 385 slab_unlock(page); 386 return 1; 387 } 388 slab_unlock(page); 389 } 390 391 cpu_relax(); 392 stat(s, CMPXCHG_DOUBLE_FAIL); 393 394 #ifdef SLUB_DEBUG_CMPXCHG 395 pr_info("%s %s: cmpxchg double redo ", n, s->name); 396 #endif 397 398 return 0; 399 } 400 401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 402 void *freelist_old, unsigned long counters_old, 403 void *freelist_new, unsigned long counters_new, 404 const char *n) 405 { 406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 408 if (s->flags & __CMPXCHG_DOUBLE) { 409 if (cmpxchg_double(&page->freelist, &page->counters, 410 freelist_old, counters_old, 411 freelist_new, counters_new)) 412 return 1; 413 } else 414 #endif 415 { 416 unsigned long flags; 417 418 local_irq_save(flags); 419 slab_lock(page); 420 if (page->freelist == freelist_old && 421 page->counters == counters_old) { 422 page->freelist = freelist_new; 423 set_page_slub_counters(page, counters_new); 424 slab_unlock(page); 425 local_irq_restore(flags); 426 return 1; 427 } 428 slab_unlock(page); 429 local_irq_restore(flags); 430 } 431 432 cpu_relax(); 433 stat(s, CMPXCHG_DOUBLE_FAIL); 434 435 #ifdef SLUB_DEBUG_CMPXCHG 436 pr_info("%s %s: cmpxchg double redo ", n, s->name); 437 #endif 438 439 return 0; 440 } 441 442 #ifdef CONFIG_SLUB_DEBUG 443 /* 444 * Determine a map of object in use on a page. 445 * 446 * Node listlock must be held to guarantee that the page does 447 * not vanish from under us. 448 */ 449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 450 { 451 void *p; 452 void *addr = page_address(page); 453 454 for (p = page->freelist; p; p = get_freepointer(s, p)) 455 set_bit(slab_index(p, s, addr), map); 456 } 457 458 /* 459 * Debug settings: 460 */ 461 #ifdef CONFIG_SLUB_DEBUG_ON 462 static int slub_debug = DEBUG_DEFAULT_FLAGS; 463 #else 464 static int slub_debug; 465 #endif 466 467 static char *slub_debug_slabs; 468 static int disable_higher_order_debug; 469 470 /* 471 * Object debugging 472 */ 473 static void print_section(char *text, u8 *addr, unsigned int length) 474 { 475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 476 length, 1); 477 } 478 479 static struct track *get_track(struct kmem_cache *s, void *object, 480 enum track_item alloc) 481 { 482 struct track *p; 483 484 if (s->offset) 485 p = object + s->offset + sizeof(void *); 486 else 487 p = object + s->inuse; 488 489 return p + alloc; 490 } 491 492 static void set_track(struct kmem_cache *s, void *object, 493 enum track_item alloc, unsigned long addr) 494 { 495 struct track *p = get_track(s, object, alloc); 496 497 if (addr) { 498 #ifdef CONFIG_STACKTRACE 499 struct stack_trace trace; 500 int i; 501 502 trace.nr_entries = 0; 503 trace.max_entries = TRACK_ADDRS_COUNT; 504 trace.entries = p->addrs; 505 trace.skip = 3; 506 save_stack_trace(&trace); 507 508 /* See rant in lockdep.c */ 509 if (trace.nr_entries != 0 && 510 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 511 trace.nr_entries--; 512 513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 514 p->addrs[i] = 0; 515 #endif 516 p->addr = addr; 517 p->cpu = smp_processor_id(); 518 p->pid = current->pid; 519 p->when = jiffies; 520 } else 521 memset(p, 0, sizeof(struct track)); 522 } 523 524 static void init_tracking(struct kmem_cache *s, void *object) 525 { 526 if (!(s->flags & SLAB_STORE_USER)) 527 return; 528 529 set_track(s, object, TRACK_FREE, 0UL); 530 set_track(s, object, TRACK_ALLOC, 0UL); 531 } 532 533 static void print_track(const char *s, struct track *t) 534 { 535 if (!t->addr) 536 return; 537 538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 540 #ifdef CONFIG_STACKTRACE 541 { 542 int i; 543 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 544 if (t->addrs[i]) 545 pr_err("\t%pS\n", (void *)t->addrs[i]); 546 else 547 break; 548 } 549 #endif 550 } 551 552 static void print_tracking(struct kmem_cache *s, void *object) 553 { 554 if (!(s->flags & SLAB_STORE_USER)) 555 return; 556 557 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 558 print_track("Freed", get_track(s, object, TRACK_FREE)); 559 } 560 561 static void print_page_info(struct page *page) 562 { 563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 564 page, page->objects, page->inuse, page->freelist, page->flags); 565 566 } 567 568 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 569 { 570 struct va_format vaf; 571 va_list args; 572 573 va_start(args, fmt); 574 vaf.fmt = fmt; 575 vaf.va = &args; 576 pr_err("=============================================================================\n"); 577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 578 pr_err("-----------------------------------------------------------------------------\n\n"); 579 580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 581 va_end(args); 582 } 583 584 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 585 { 586 struct va_format vaf; 587 va_list args; 588 589 va_start(args, fmt); 590 vaf.fmt = fmt; 591 vaf.va = &args; 592 pr_err("FIX %s: %pV\n", s->name, &vaf); 593 va_end(args); 594 } 595 596 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 597 { 598 unsigned int off; /* Offset of last byte */ 599 u8 *addr = page_address(page); 600 601 print_tracking(s, p); 602 603 print_page_info(page); 604 605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 606 p, p - addr, get_freepointer(s, p)); 607 608 if (p > addr + 16) 609 print_section("Bytes b4 ", p - 16, 16); 610 611 print_section("Object ", p, min_t(unsigned long, s->object_size, 612 PAGE_SIZE)); 613 if (s->flags & SLAB_RED_ZONE) 614 print_section("Redzone ", p + s->object_size, 615 s->inuse - s->object_size); 616 617 if (s->offset) 618 off = s->offset + sizeof(void *); 619 else 620 off = s->inuse; 621 622 if (s->flags & SLAB_STORE_USER) 623 off += 2 * sizeof(struct track); 624 625 if (off != s->size) 626 /* Beginning of the filler is the free pointer */ 627 print_section("Padding ", p + off, s->size - off); 628 629 dump_stack(); 630 } 631 632 static void object_err(struct kmem_cache *s, struct page *page, 633 u8 *object, char *reason) 634 { 635 slab_bug(s, "%s", reason); 636 print_trailer(s, page, object); 637 } 638 639 static void slab_err(struct kmem_cache *s, struct page *page, 640 const char *fmt, ...) 641 { 642 va_list args; 643 char buf[100]; 644 645 va_start(args, fmt); 646 vsnprintf(buf, sizeof(buf), fmt, args); 647 va_end(args); 648 slab_bug(s, "%s", buf); 649 print_page_info(page); 650 dump_stack(); 651 } 652 653 static void init_object(struct kmem_cache *s, void *object, u8 val) 654 { 655 u8 *p = object; 656 657 if (s->flags & __OBJECT_POISON) { 658 memset(p, POISON_FREE, s->object_size - 1); 659 p[s->object_size - 1] = POISON_END; 660 } 661 662 if (s->flags & SLAB_RED_ZONE) 663 memset(p + s->object_size, val, s->inuse - s->object_size); 664 } 665 666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 667 void *from, void *to) 668 { 669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 670 memset(from, data, to - from); 671 } 672 673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 674 u8 *object, char *what, 675 u8 *start, unsigned int value, unsigned int bytes) 676 { 677 u8 *fault; 678 u8 *end; 679 680 fault = memchr_inv(start, value, bytes); 681 if (!fault) 682 return 1; 683 684 end = start + bytes; 685 while (end > fault && end[-1] == value) 686 end--; 687 688 slab_bug(s, "%s overwritten", what); 689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 690 fault, end - 1, fault[0], value); 691 print_trailer(s, page, object); 692 693 restore_bytes(s, what, value, fault, end); 694 return 0; 695 } 696 697 /* 698 * Object layout: 699 * 700 * object address 701 * Bytes of the object to be managed. 702 * If the freepointer may overlay the object then the free 703 * pointer is the first word of the object. 704 * 705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 706 * 0xa5 (POISON_END) 707 * 708 * object + s->object_size 709 * Padding to reach word boundary. This is also used for Redzoning. 710 * Padding is extended by another word if Redzoning is enabled and 711 * object_size == inuse. 712 * 713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 714 * 0xcc (RED_ACTIVE) for objects in use. 715 * 716 * object + s->inuse 717 * Meta data starts here. 718 * 719 * A. Free pointer (if we cannot overwrite object on free) 720 * B. Tracking data for SLAB_STORE_USER 721 * C. Padding to reach required alignment boundary or at mininum 722 * one word if debugging is on to be able to detect writes 723 * before the word boundary. 724 * 725 * Padding is done using 0x5a (POISON_INUSE) 726 * 727 * object + s->size 728 * Nothing is used beyond s->size. 729 * 730 * If slabcaches are merged then the object_size and inuse boundaries are mostly 731 * ignored. And therefore no slab options that rely on these boundaries 732 * may be used with merged slabcaches. 733 */ 734 735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 736 { 737 unsigned long off = s->inuse; /* The end of info */ 738 739 if (s->offset) 740 /* Freepointer is placed after the object. */ 741 off += sizeof(void *); 742 743 if (s->flags & SLAB_STORE_USER) 744 /* We also have user information there */ 745 off += 2 * sizeof(struct track); 746 747 if (s->size == off) 748 return 1; 749 750 return check_bytes_and_report(s, page, p, "Object padding", 751 p + off, POISON_INUSE, s->size - off); 752 } 753 754 /* Check the pad bytes at the end of a slab page */ 755 static int slab_pad_check(struct kmem_cache *s, struct page *page) 756 { 757 u8 *start; 758 u8 *fault; 759 u8 *end; 760 int length; 761 int remainder; 762 763 if (!(s->flags & SLAB_POISON)) 764 return 1; 765 766 start = page_address(page); 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 768 end = start + length; 769 remainder = length % s->size; 770 if (!remainder) 771 return 1; 772 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 774 if (!fault) 775 return 1; 776 while (end > fault && end[-1] == POISON_INUSE) 777 end--; 778 779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 780 print_section("Padding ", end - remainder, remainder); 781 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 783 return 0; 784 } 785 786 static int check_object(struct kmem_cache *s, struct page *page, 787 void *object, u8 val) 788 { 789 u8 *p = object; 790 u8 *endobject = object + s->object_size; 791 792 if (s->flags & SLAB_RED_ZONE) { 793 if (!check_bytes_and_report(s, page, object, "Redzone", 794 endobject, val, s->inuse - s->object_size)) 795 return 0; 796 } else { 797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 798 check_bytes_and_report(s, page, p, "Alignment padding", 799 endobject, POISON_INUSE, 800 s->inuse - s->object_size); 801 } 802 } 803 804 if (s->flags & SLAB_POISON) { 805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 806 (!check_bytes_and_report(s, page, p, "Poison", p, 807 POISON_FREE, s->object_size - 1) || 808 !check_bytes_and_report(s, page, p, "Poison", 809 p + s->object_size - 1, POISON_END, 1))) 810 return 0; 811 /* 812 * check_pad_bytes cleans up on its own. 813 */ 814 check_pad_bytes(s, page, p); 815 } 816 817 if (!s->offset && val == SLUB_RED_ACTIVE) 818 /* 819 * Object and freepointer overlap. Cannot check 820 * freepointer while object is allocated. 821 */ 822 return 1; 823 824 /* Check free pointer validity */ 825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 826 object_err(s, page, p, "Freepointer corrupt"); 827 /* 828 * No choice but to zap it and thus lose the remainder 829 * of the free objects in this slab. May cause 830 * another error because the object count is now wrong. 831 */ 832 set_freepointer(s, p, NULL); 833 return 0; 834 } 835 return 1; 836 } 837 838 static int check_slab(struct kmem_cache *s, struct page *page) 839 { 840 int maxobj; 841 842 VM_BUG_ON(!irqs_disabled()); 843 844 if (!PageSlab(page)) { 845 slab_err(s, page, "Not a valid slab page"); 846 return 0; 847 } 848 849 maxobj = order_objects(compound_order(page), s->size, s->reserved); 850 if (page->objects > maxobj) { 851 slab_err(s, page, "objects %u > max %u", 852 page->objects, maxobj); 853 return 0; 854 } 855 if (page->inuse > page->objects) { 856 slab_err(s, page, "inuse %u > max %u", 857 page->inuse, page->objects); 858 return 0; 859 } 860 /* Slab_pad_check fixes things up after itself */ 861 slab_pad_check(s, page); 862 return 1; 863 } 864 865 /* 866 * Determine if a certain object on a page is on the freelist. Must hold the 867 * slab lock to guarantee that the chains are in a consistent state. 868 */ 869 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 870 { 871 int nr = 0; 872 void *fp; 873 void *object = NULL; 874 int max_objects; 875 876 fp = page->freelist; 877 while (fp && nr <= page->objects) { 878 if (fp == search) 879 return 1; 880 if (!check_valid_pointer(s, page, fp)) { 881 if (object) { 882 object_err(s, page, object, 883 "Freechain corrupt"); 884 set_freepointer(s, object, NULL); 885 } else { 886 slab_err(s, page, "Freepointer corrupt"); 887 page->freelist = NULL; 888 page->inuse = page->objects; 889 slab_fix(s, "Freelist cleared"); 890 return 0; 891 } 892 break; 893 } 894 object = fp; 895 fp = get_freepointer(s, object); 896 nr++; 897 } 898 899 max_objects = order_objects(compound_order(page), s->size, s->reserved); 900 if (max_objects > MAX_OBJS_PER_PAGE) 901 max_objects = MAX_OBJS_PER_PAGE; 902 903 if (page->objects != max_objects) { 904 slab_err(s, page, "Wrong number of objects. Found %d but " 905 "should be %d", page->objects, max_objects); 906 page->objects = max_objects; 907 slab_fix(s, "Number of objects adjusted."); 908 } 909 if (page->inuse != page->objects - nr) { 910 slab_err(s, page, "Wrong object count. Counter is %d but " 911 "counted were %d", page->inuse, page->objects - nr); 912 page->inuse = page->objects - nr; 913 slab_fix(s, "Object count adjusted."); 914 } 915 return search == NULL; 916 } 917 918 static void trace(struct kmem_cache *s, struct page *page, void *object, 919 int alloc) 920 { 921 if (s->flags & SLAB_TRACE) { 922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 923 s->name, 924 alloc ? "alloc" : "free", 925 object, page->inuse, 926 page->freelist); 927 928 if (!alloc) 929 print_section("Object ", (void *)object, 930 s->object_size); 931 932 dump_stack(); 933 } 934 } 935 936 /* 937 * Tracking of fully allocated slabs for debugging purposes. 938 */ 939 static void add_full(struct kmem_cache *s, 940 struct kmem_cache_node *n, struct page *page) 941 { 942 if (!(s->flags & SLAB_STORE_USER)) 943 return; 944 945 lockdep_assert_held(&n->list_lock); 946 list_add(&page->lru, &n->full); 947 } 948 949 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 950 { 951 if (!(s->flags & SLAB_STORE_USER)) 952 return; 953 954 lockdep_assert_held(&n->list_lock); 955 list_del(&page->lru); 956 } 957 958 /* Tracking of the number of slabs for debugging purposes */ 959 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 960 { 961 struct kmem_cache_node *n = get_node(s, node); 962 963 return atomic_long_read(&n->nr_slabs); 964 } 965 966 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 967 { 968 return atomic_long_read(&n->nr_slabs); 969 } 970 971 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 972 { 973 struct kmem_cache_node *n = get_node(s, node); 974 975 /* 976 * May be called early in order to allocate a slab for the 977 * kmem_cache_node structure. Solve the chicken-egg 978 * dilemma by deferring the increment of the count during 979 * bootstrap (see early_kmem_cache_node_alloc). 980 */ 981 if (likely(n)) { 982 atomic_long_inc(&n->nr_slabs); 983 atomic_long_add(objects, &n->total_objects); 984 } 985 } 986 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 987 { 988 struct kmem_cache_node *n = get_node(s, node); 989 990 atomic_long_dec(&n->nr_slabs); 991 atomic_long_sub(objects, &n->total_objects); 992 } 993 994 /* Object debug checks for alloc/free paths */ 995 static void setup_object_debug(struct kmem_cache *s, struct page *page, 996 void *object) 997 { 998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 999 return; 1000 1001 init_object(s, object, SLUB_RED_INACTIVE); 1002 init_tracking(s, object); 1003 } 1004 1005 static noinline int alloc_debug_processing(struct kmem_cache *s, 1006 struct page *page, 1007 void *object, unsigned long addr) 1008 { 1009 if (!check_slab(s, page)) 1010 goto bad; 1011 1012 if (!check_valid_pointer(s, page, object)) { 1013 object_err(s, page, object, "Freelist Pointer check fails"); 1014 goto bad; 1015 } 1016 1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1018 goto bad; 1019 1020 /* Success perform special debug activities for allocs */ 1021 if (s->flags & SLAB_STORE_USER) 1022 set_track(s, object, TRACK_ALLOC, addr); 1023 trace(s, page, object, 1); 1024 init_object(s, object, SLUB_RED_ACTIVE); 1025 return 1; 1026 1027 bad: 1028 if (PageSlab(page)) { 1029 /* 1030 * If this is a slab page then lets do the best we can 1031 * to avoid issues in the future. Marking all objects 1032 * as used avoids touching the remaining objects. 1033 */ 1034 slab_fix(s, "Marking all objects used"); 1035 page->inuse = page->objects; 1036 page->freelist = NULL; 1037 } 1038 return 0; 1039 } 1040 1041 static noinline struct kmem_cache_node *free_debug_processing( 1042 struct kmem_cache *s, struct page *page, void *object, 1043 unsigned long addr, unsigned long *flags) 1044 { 1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1046 1047 spin_lock_irqsave(&n->list_lock, *flags); 1048 slab_lock(page); 1049 1050 if (!check_slab(s, page)) 1051 goto fail; 1052 1053 if (!check_valid_pointer(s, page, object)) { 1054 slab_err(s, page, "Invalid object pointer 0x%p", object); 1055 goto fail; 1056 } 1057 1058 if (on_freelist(s, page, object)) { 1059 object_err(s, page, object, "Object already free"); 1060 goto fail; 1061 } 1062 1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1064 goto out; 1065 1066 if (unlikely(s != page->slab_cache)) { 1067 if (!PageSlab(page)) { 1068 slab_err(s, page, "Attempt to free object(0x%p) " 1069 "outside of slab", object); 1070 } else if (!page->slab_cache) { 1071 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1072 object); 1073 dump_stack(); 1074 } else 1075 object_err(s, page, object, 1076 "page slab pointer corrupt."); 1077 goto fail; 1078 } 1079 1080 if (s->flags & SLAB_STORE_USER) 1081 set_track(s, object, TRACK_FREE, addr); 1082 trace(s, page, object, 0); 1083 init_object(s, object, SLUB_RED_INACTIVE); 1084 out: 1085 slab_unlock(page); 1086 /* 1087 * Keep node_lock to preserve integrity 1088 * until the object is actually freed 1089 */ 1090 return n; 1091 1092 fail: 1093 slab_unlock(page); 1094 spin_unlock_irqrestore(&n->list_lock, *flags); 1095 slab_fix(s, "Object at 0x%p not freed", object); 1096 return NULL; 1097 } 1098 1099 static int __init setup_slub_debug(char *str) 1100 { 1101 slub_debug = DEBUG_DEFAULT_FLAGS; 1102 if (*str++ != '=' || !*str) 1103 /* 1104 * No options specified. Switch on full debugging. 1105 */ 1106 goto out; 1107 1108 if (*str == ',') 1109 /* 1110 * No options but restriction on slabs. This means full 1111 * debugging for slabs matching a pattern. 1112 */ 1113 goto check_slabs; 1114 1115 if (tolower(*str) == 'o') { 1116 /* 1117 * Avoid enabling debugging on caches if its minimum order 1118 * would increase as a result. 1119 */ 1120 disable_higher_order_debug = 1; 1121 goto out; 1122 } 1123 1124 slub_debug = 0; 1125 if (*str == '-') 1126 /* 1127 * Switch off all debugging measures. 1128 */ 1129 goto out; 1130 1131 /* 1132 * Determine which debug features should be switched on 1133 */ 1134 for (; *str && *str != ','; str++) { 1135 switch (tolower(*str)) { 1136 case 'f': 1137 slub_debug |= SLAB_DEBUG_FREE; 1138 break; 1139 case 'z': 1140 slub_debug |= SLAB_RED_ZONE; 1141 break; 1142 case 'p': 1143 slub_debug |= SLAB_POISON; 1144 break; 1145 case 'u': 1146 slub_debug |= SLAB_STORE_USER; 1147 break; 1148 case 't': 1149 slub_debug |= SLAB_TRACE; 1150 break; 1151 case 'a': 1152 slub_debug |= SLAB_FAILSLAB; 1153 break; 1154 default: 1155 pr_err("slub_debug option '%c' unknown. skipped\n", 1156 *str); 1157 } 1158 } 1159 1160 check_slabs: 1161 if (*str == ',') 1162 slub_debug_slabs = str + 1; 1163 out: 1164 return 1; 1165 } 1166 1167 __setup("slub_debug", setup_slub_debug); 1168 1169 unsigned long kmem_cache_flags(unsigned long object_size, 1170 unsigned long flags, const char *name, 1171 void (*ctor)(void *)) 1172 { 1173 /* 1174 * Enable debugging if selected on the kernel commandline. 1175 */ 1176 if (slub_debug && (!slub_debug_slabs || (name && 1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1178 flags |= slub_debug; 1179 1180 return flags; 1181 } 1182 #else 1183 static inline void setup_object_debug(struct kmem_cache *s, 1184 struct page *page, void *object) {} 1185 1186 static inline int alloc_debug_processing(struct kmem_cache *s, 1187 struct page *page, void *object, unsigned long addr) { return 0; } 1188 1189 static inline struct kmem_cache_node *free_debug_processing( 1190 struct kmem_cache *s, struct page *page, void *object, 1191 unsigned long addr, unsigned long *flags) { return NULL; } 1192 1193 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1194 { return 1; } 1195 static inline int check_object(struct kmem_cache *s, struct page *page, 1196 void *object, u8 val) { return 1; } 1197 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1198 struct page *page) {} 1199 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1200 struct page *page) {} 1201 unsigned long kmem_cache_flags(unsigned long object_size, 1202 unsigned long flags, const char *name, 1203 void (*ctor)(void *)) 1204 { 1205 return flags; 1206 } 1207 #define slub_debug 0 1208 1209 #define disable_higher_order_debug 0 1210 1211 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1212 { return 0; } 1213 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1214 { return 0; } 1215 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1216 int objects) {} 1217 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1218 int objects) {} 1219 1220 #endif /* CONFIG_SLUB_DEBUG */ 1221 1222 /* 1223 * Hooks for other subsystems that check memory allocations. In a typical 1224 * production configuration these hooks all should produce no code at all. 1225 */ 1226 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1227 { 1228 kmemleak_alloc(ptr, size, 1, flags); 1229 } 1230 1231 static inline void kfree_hook(const void *x) 1232 { 1233 kmemleak_free(x); 1234 } 1235 1236 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 1237 gfp_t flags) 1238 { 1239 flags &= gfp_allowed_mask; 1240 lockdep_trace_alloc(flags); 1241 might_sleep_if(flags & __GFP_WAIT); 1242 1243 if (should_failslab(s->object_size, flags, s->flags)) 1244 return NULL; 1245 1246 return memcg_kmem_get_cache(s, flags); 1247 } 1248 1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, 1250 gfp_t flags, void *object) 1251 { 1252 flags &= gfp_allowed_mask; 1253 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 1254 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 1255 memcg_kmem_put_cache(s); 1256 } 1257 1258 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1259 { 1260 kmemleak_free_recursive(x, s->flags); 1261 1262 /* 1263 * Trouble is that we may no longer disable interrupts in the fast path 1264 * So in order to make the debug calls that expect irqs to be 1265 * disabled we need to disable interrupts temporarily. 1266 */ 1267 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1268 { 1269 unsigned long flags; 1270 1271 local_irq_save(flags); 1272 kmemcheck_slab_free(s, x, s->object_size); 1273 debug_check_no_locks_freed(x, s->object_size); 1274 local_irq_restore(flags); 1275 } 1276 #endif 1277 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1278 debug_check_no_obj_freed(x, s->object_size); 1279 } 1280 1281 /* 1282 * Slab allocation and freeing 1283 */ 1284 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1285 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1286 { 1287 struct page *page; 1288 int order = oo_order(oo); 1289 1290 flags |= __GFP_NOTRACK; 1291 1292 if (memcg_charge_slab(s, flags, order)) 1293 return NULL; 1294 1295 if (node == NUMA_NO_NODE) 1296 page = alloc_pages(flags, order); 1297 else 1298 page = alloc_pages_exact_node(node, flags, order); 1299 1300 if (!page) 1301 memcg_uncharge_slab(s, order); 1302 1303 return page; 1304 } 1305 1306 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1307 { 1308 struct page *page; 1309 struct kmem_cache_order_objects oo = s->oo; 1310 gfp_t alloc_gfp; 1311 1312 flags &= gfp_allowed_mask; 1313 1314 if (flags & __GFP_WAIT) 1315 local_irq_enable(); 1316 1317 flags |= s->allocflags; 1318 1319 /* 1320 * Let the initial higher-order allocation fail under memory pressure 1321 * so we fall-back to the minimum order allocation. 1322 */ 1323 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1324 1325 page = alloc_slab_page(s, alloc_gfp, node, oo); 1326 if (unlikely(!page)) { 1327 oo = s->min; 1328 alloc_gfp = flags; 1329 /* 1330 * Allocation may have failed due to fragmentation. 1331 * Try a lower order alloc if possible 1332 */ 1333 page = alloc_slab_page(s, alloc_gfp, node, oo); 1334 1335 if (page) 1336 stat(s, ORDER_FALLBACK); 1337 } 1338 1339 if (kmemcheck_enabled && page 1340 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1341 int pages = 1 << oo_order(oo); 1342 1343 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1344 1345 /* 1346 * Objects from caches that have a constructor don't get 1347 * cleared when they're allocated, so we need to do it here. 1348 */ 1349 if (s->ctor) 1350 kmemcheck_mark_uninitialized_pages(page, pages); 1351 else 1352 kmemcheck_mark_unallocated_pages(page, pages); 1353 } 1354 1355 if (flags & __GFP_WAIT) 1356 local_irq_disable(); 1357 if (!page) 1358 return NULL; 1359 1360 page->objects = oo_objects(oo); 1361 mod_zone_page_state(page_zone(page), 1362 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1363 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1364 1 << oo_order(oo)); 1365 1366 return page; 1367 } 1368 1369 static void setup_object(struct kmem_cache *s, struct page *page, 1370 void *object) 1371 { 1372 setup_object_debug(s, page, object); 1373 if (unlikely(s->ctor)) 1374 s->ctor(object); 1375 } 1376 1377 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1378 { 1379 struct page *page; 1380 void *start; 1381 void *p; 1382 int order; 1383 int idx; 1384 1385 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1386 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 1387 BUG(); 1388 } 1389 1390 page = allocate_slab(s, 1391 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1392 if (!page) 1393 goto out; 1394 1395 order = compound_order(page); 1396 inc_slabs_node(s, page_to_nid(page), page->objects); 1397 page->slab_cache = s; 1398 __SetPageSlab(page); 1399 if (page->pfmemalloc) 1400 SetPageSlabPfmemalloc(page); 1401 1402 start = page_address(page); 1403 1404 if (unlikely(s->flags & SLAB_POISON)) 1405 memset(start, POISON_INUSE, PAGE_SIZE << order); 1406 1407 for_each_object_idx(p, idx, s, start, page->objects) { 1408 setup_object(s, page, p); 1409 if (likely(idx < page->objects)) 1410 set_freepointer(s, p, p + s->size); 1411 else 1412 set_freepointer(s, p, NULL); 1413 } 1414 1415 page->freelist = start; 1416 page->inuse = page->objects; 1417 page->frozen = 1; 1418 out: 1419 return page; 1420 } 1421 1422 static void __free_slab(struct kmem_cache *s, struct page *page) 1423 { 1424 int order = compound_order(page); 1425 int pages = 1 << order; 1426 1427 if (kmem_cache_debug(s)) { 1428 void *p; 1429 1430 slab_pad_check(s, page); 1431 for_each_object(p, s, page_address(page), 1432 page->objects) 1433 check_object(s, page, p, SLUB_RED_INACTIVE); 1434 } 1435 1436 kmemcheck_free_shadow(page, compound_order(page)); 1437 1438 mod_zone_page_state(page_zone(page), 1439 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1440 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1441 -pages); 1442 1443 __ClearPageSlabPfmemalloc(page); 1444 __ClearPageSlab(page); 1445 1446 page_mapcount_reset(page); 1447 if (current->reclaim_state) 1448 current->reclaim_state->reclaimed_slab += pages; 1449 __free_pages(page, order); 1450 memcg_uncharge_slab(s, order); 1451 } 1452 1453 #define need_reserve_slab_rcu \ 1454 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1455 1456 static void rcu_free_slab(struct rcu_head *h) 1457 { 1458 struct page *page; 1459 1460 if (need_reserve_slab_rcu) 1461 page = virt_to_head_page(h); 1462 else 1463 page = container_of((struct list_head *)h, struct page, lru); 1464 1465 __free_slab(page->slab_cache, page); 1466 } 1467 1468 static void free_slab(struct kmem_cache *s, struct page *page) 1469 { 1470 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1471 struct rcu_head *head; 1472 1473 if (need_reserve_slab_rcu) { 1474 int order = compound_order(page); 1475 int offset = (PAGE_SIZE << order) - s->reserved; 1476 1477 VM_BUG_ON(s->reserved != sizeof(*head)); 1478 head = page_address(page) + offset; 1479 } else { 1480 /* 1481 * RCU free overloads the RCU head over the LRU 1482 */ 1483 head = (void *)&page->lru; 1484 } 1485 1486 call_rcu(head, rcu_free_slab); 1487 } else 1488 __free_slab(s, page); 1489 } 1490 1491 static void discard_slab(struct kmem_cache *s, struct page *page) 1492 { 1493 dec_slabs_node(s, page_to_nid(page), page->objects); 1494 free_slab(s, page); 1495 } 1496 1497 /* 1498 * Management of partially allocated slabs. 1499 */ 1500 static inline void 1501 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1502 { 1503 n->nr_partial++; 1504 if (tail == DEACTIVATE_TO_TAIL) 1505 list_add_tail(&page->lru, &n->partial); 1506 else 1507 list_add(&page->lru, &n->partial); 1508 } 1509 1510 static inline void add_partial(struct kmem_cache_node *n, 1511 struct page *page, int tail) 1512 { 1513 lockdep_assert_held(&n->list_lock); 1514 __add_partial(n, page, tail); 1515 } 1516 1517 static inline void 1518 __remove_partial(struct kmem_cache_node *n, struct page *page) 1519 { 1520 list_del(&page->lru); 1521 n->nr_partial--; 1522 } 1523 1524 static inline void remove_partial(struct kmem_cache_node *n, 1525 struct page *page) 1526 { 1527 lockdep_assert_held(&n->list_lock); 1528 __remove_partial(n, page); 1529 } 1530 1531 /* 1532 * Remove slab from the partial list, freeze it and 1533 * return the pointer to the freelist. 1534 * 1535 * Returns a list of objects or NULL if it fails. 1536 */ 1537 static inline void *acquire_slab(struct kmem_cache *s, 1538 struct kmem_cache_node *n, struct page *page, 1539 int mode, int *objects) 1540 { 1541 void *freelist; 1542 unsigned long counters; 1543 struct page new; 1544 1545 lockdep_assert_held(&n->list_lock); 1546 1547 /* 1548 * Zap the freelist and set the frozen bit. 1549 * The old freelist is the list of objects for the 1550 * per cpu allocation list. 1551 */ 1552 freelist = page->freelist; 1553 counters = page->counters; 1554 new.counters = counters; 1555 *objects = new.objects - new.inuse; 1556 if (mode) { 1557 new.inuse = page->objects; 1558 new.freelist = NULL; 1559 } else { 1560 new.freelist = freelist; 1561 } 1562 1563 VM_BUG_ON(new.frozen); 1564 new.frozen = 1; 1565 1566 if (!__cmpxchg_double_slab(s, page, 1567 freelist, counters, 1568 new.freelist, new.counters, 1569 "acquire_slab")) 1570 return NULL; 1571 1572 remove_partial(n, page); 1573 WARN_ON(!freelist); 1574 return freelist; 1575 } 1576 1577 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1578 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1579 1580 /* 1581 * Try to allocate a partial slab from a specific node. 1582 */ 1583 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1584 struct kmem_cache_cpu *c, gfp_t flags) 1585 { 1586 struct page *page, *page2; 1587 void *object = NULL; 1588 int available = 0; 1589 int objects; 1590 1591 /* 1592 * Racy check. If we mistakenly see no partial slabs then we 1593 * just allocate an empty slab. If we mistakenly try to get a 1594 * partial slab and there is none available then get_partials() 1595 * will return NULL. 1596 */ 1597 if (!n || !n->nr_partial) 1598 return NULL; 1599 1600 spin_lock(&n->list_lock); 1601 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1602 void *t; 1603 1604 if (!pfmemalloc_match(page, flags)) 1605 continue; 1606 1607 t = acquire_slab(s, n, page, object == NULL, &objects); 1608 if (!t) 1609 break; 1610 1611 available += objects; 1612 if (!object) { 1613 c->page = page; 1614 stat(s, ALLOC_FROM_PARTIAL); 1615 object = t; 1616 } else { 1617 put_cpu_partial(s, page, 0); 1618 stat(s, CPU_PARTIAL_NODE); 1619 } 1620 if (!kmem_cache_has_cpu_partial(s) 1621 || available > s->cpu_partial / 2) 1622 break; 1623 1624 } 1625 spin_unlock(&n->list_lock); 1626 return object; 1627 } 1628 1629 /* 1630 * Get a page from somewhere. Search in increasing NUMA distances. 1631 */ 1632 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1633 struct kmem_cache_cpu *c) 1634 { 1635 #ifdef CONFIG_NUMA 1636 struct zonelist *zonelist; 1637 struct zoneref *z; 1638 struct zone *zone; 1639 enum zone_type high_zoneidx = gfp_zone(flags); 1640 void *object; 1641 unsigned int cpuset_mems_cookie; 1642 1643 /* 1644 * The defrag ratio allows a configuration of the tradeoffs between 1645 * inter node defragmentation and node local allocations. A lower 1646 * defrag_ratio increases the tendency to do local allocations 1647 * instead of attempting to obtain partial slabs from other nodes. 1648 * 1649 * If the defrag_ratio is set to 0 then kmalloc() always 1650 * returns node local objects. If the ratio is higher then kmalloc() 1651 * may return off node objects because partial slabs are obtained 1652 * from other nodes and filled up. 1653 * 1654 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1655 * defrag_ratio = 1000) then every (well almost) allocation will 1656 * first attempt to defrag slab caches on other nodes. This means 1657 * scanning over all nodes to look for partial slabs which may be 1658 * expensive if we do it every time we are trying to find a slab 1659 * with available objects. 1660 */ 1661 if (!s->remote_node_defrag_ratio || 1662 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1663 return NULL; 1664 1665 do { 1666 cpuset_mems_cookie = read_mems_allowed_begin(); 1667 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1668 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1669 struct kmem_cache_node *n; 1670 1671 n = get_node(s, zone_to_nid(zone)); 1672 1673 if (n && cpuset_zone_allowed(zone, flags) && 1674 n->nr_partial > s->min_partial) { 1675 object = get_partial_node(s, n, c, flags); 1676 if (object) { 1677 /* 1678 * Don't check read_mems_allowed_retry() 1679 * here - if mems_allowed was updated in 1680 * parallel, that was a harmless race 1681 * between allocation and the cpuset 1682 * update 1683 */ 1684 return object; 1685 } 1686 } 1687 } 1688 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1689 #endif 1690 return NULL; 1691 } 1692 1693 /* 1694 * Get a partial page, lock it and return it. 1695 */ 1696 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1697 struct kmem_cache_cpu *c) 1698 { 1699 void *object; 1700 int searchnode = node; 1701 1702 if (node == NUMA_NO_NODE) 1703 searchnode = numa_mem_id(); 1704 else if (!node_present_pages(node)) 1705 searchnode = node_to_mem_node(node); 1706 1707 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1708 if (object || node != NUMA_NO_NODE) 1709 return object; 1710 1711 return get_any_partial(s, flags, c); 1712 } 1713 1714 #ifdef CONFIG_PREEMPT 1715 /* 1716 * Calculate the next globally unique transaction for disambiguiation 1717 * during cmpxchg. The transactions start with the cpu number and are then 1718 * incremented by CONFIG_NR_CPUS. 1719 */ 1720 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1721 #else 1722 /* 1723 * No preemption supported therefore also no need to check for 1724 * different cpus. 1725 */ 1726 #define TID_STEP 1 1727 #endif 1728 1729 static inline unsigned long next_tid(unsigned long tid) 1730 { 1731 return tid + TID_STEP; 1732 } 1733 1734 static inline unsigned int tid_to_cpu(unsigned long tid) 1735 { 1736 return tid % TID_STEP; 1737 } 1738 1739 static inline unsigned long tid_to_event(unsigned long tid) 1740 { 1741 return tid / TID_STEP; 1742 } 1743 1744 static inline unsigned int init_tid(int cpu) 1745 { 1746 return cpu; 1747 } 1748 1749 static inline void note_cmpxchg_failure(const char *n, 1750 const struct kmem_cache *s, unsigned long tid) 1751 { 1752 #ifdef SLUB_DEBUG_CMPXCHG 1753 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1754 1755 pr_info("%s %s: cmpxchg redo ", n, s->name); 1756 1757 #ifdef CONFIG_PREEMPT 1758 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1759 pr_warn("due to cpu change %d -> %d\n", 1760 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1761 else 1762 #endif 1763 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1764 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1765 tid_to_event(tid), tid_to_event(actual_tid)); 1766 else 1767 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1768 actual_tid, tid, next_tid(tid)); 1769 #endif 1770 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1771 } 1772 1773 static void init_kmem_cache_cpus(struct kmem_cache *s) 1774 { 1775 int cpu; 1776 1777 for_each_possible_cpu(cpu) 1778 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1779 } 1780 1781 /* 1782 * Remove the cpu slab 1783 */ 1784 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1785 void *freelist) 1786 { 1787 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1788 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1789 int lock = 0; 1790 enum slab_modes l = M_NONE, m = M_NONE; 1791 void *nextfree; 1792 int tail = DEACTIVATE_TO_HEAD; 1793 struct page new; 1794 struct page old; 1795 1796 if (page->freelist) { 1797 stat(s, DEACTIVATE_REMOTE_FREES); 1798 tail = DEACTIVATE_TO_TAIL; 1799 } 1800 1801 /* 1802 * Stage one: Free all available per cpu objects back 1803 * to the page freelist while it is still frozen. Leave the 1804 * last one. 1805 * 1806 * There is no need to take the list->lock because the page 1807 * is still frozen. 1808 */ 1809 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1810 void *prior; 1811 unsigned long counters; 1812 1813 do { 1814 prior = page->freelist; 1815 counters = page->counters; 1816 set_freepointer(s, freelist, prior); 1817 new.counters = counters; 1818 new.inuse--; 1819 VM_BUG_ON(!new.frozen); 1820 1821 } while (!__cmpxchg_double_slab(s, page, 1822 prior, counters, 1823 freelist, new.counters, 1824 "drain percpu freelist")); 1825 1826 freelist = nextfree; 1827 } 1828 1829 /* 1830 * Stage two: Ensure that the page is unfrozen while the 1831 * list presence reflects the actual number of objects 1832 * during unfreeze. 1833 * 1834 * We setup the list membership and then perform a cmpxchg 1835 * with the count. If there is a mismatch then the page 1836 * is not unfrozen but the page is on the wrong list. 1837 * 1838 * Then we restart the process which may have to remove 1839 * the page from the list that we just put it on again 1840 * because the number of objects in the slab may have 1841 * changed. 1842 */ 1843 redo: 1844 1845 old.freelist = page->freelist; 1846 old.counters = page->counters; 1847 VM_BUG_ON(!old.frozen); 1848 1849 /* Determine target state of the slab */ 1850 new.counters = old.counters; 1851 if (freelist) { 1852 new.inuse--; 1853 set_freepointer(s, freelist, old.freelist); 1854 new.freelist = freelist; 1855 } else 1856 new.freelist = old.freelist; 1857 1858 new.frozen = 0; 1859 1860 if (!new.inuse && n->nr_partial >= s->min_partial) 1861 m = M_FREE; 1862 else if (new.freelist) { 1863 m = M_PARTIAL; 1864 if (!lock) { 1865 lock = 1; 1866 /* 1867 * Taking the spinlock removes the possiblity 1868 * that acquire_slab() will see a slab page that 1869 * is frozen 1870 */ 1871 spin_lock(&n->list_lock); 1872 } 1873 } else { 1874 m = M_FULL; 1875 if (kmem_cache_debug(s) && !lock) { 1876 lock = 1; 1877 /* 1878 * This also ensures that the scanning of full 1879 * slabs from diagnostic functions will not see 1880 * any frozen slabs. 1881 */ 1882 spin_lock(&n->list_lock); 1883 } 1884 } 1885 1886 if (l != m) { 1887 1888 if (l == M_PARTIAL) 1889 1890 remove_partial(n, page); 1891 1892 else if (l == M_FULL) 1893 1894 remove_full(s, n, page); 1895 1896 if (m == M_PARTIAL) { 1897 1898 add_partial(n, page, tail); 1899 stat(s, tail); 1900 1901 } else if (m == M_FULL) { 1902 1903 stat(s, DEACTIVATE_FULL); 1904 add_full(s, n, page); 1905 1906 } 1907 } 1908 1909 l = m; 1910 if (!__cmpxchg_double_slab(s, page, 1911 old.freelist, old.counters, 1912 new.freelist, new.counters, 1913 "unfreezing slab")) 1914 goto redo; 1915 1916 if (lock) 1917 spin_unlock(&n->list_lock); 1918 1919 if (m == M_FREE) { 1920 stat(s, DEACTIVATE_EMPTY); 1921 discard_slab(s, page); 1922 stat(s, FREE_SLAB); 1923 } 1924 } 1925 1926 /* 1927 * Unfreeze all the cpu partial slabs. 1928 * 1929 * This function must be called with interrupts disabled 1930 * for the cpu using c (or some other guarantee must be there 1931 * to guarantee no concurrent accesses). 1932 */ 1933 static void unfreeze_partials(struct kmem_cache *s, 1934 struct kmem_cache_cpu *c) 1935 { 1936 #ifdef CONFIG_SLUB_CPU_PARTIAL 1937 struct kmem_cache_node *n = NULL, *n2 = NULL; 1938 struct page *page, *discard_page = NULL; 1939 1940 while ((page = c->partial)) { 1941 struct page new; 1942 struct page old; 1943 1944 c->partial = page->next; 1945 1946 n2 = get_node(s, page_to_nid(page)); 1947 if (n != n2) { 1948 if (n) 1949 spin_unlock(&n->list_lock); 1950 1951 n = n2; 1952 spin_lock(&n->list_lock); 1953 } 1954 1955 do { 1956 1957 old.freelist = page->freelist; 1958 old.counters = page->counters; 1959 VM_BUG_ON(!old.frozen); 1960 1961 new.counters = old.counters; 1962 new.freelist = old.freelist; 1963 1964 new.frozen = 0; 1965 1966 } while (!__cmpxchg_double_slab(s, page, 1967 old.freelist, old.counters, 1968 new.freelist, new.counters, 1969 "unfreezing slab")); 1970 1971 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 1972 page->next = discard_page; 1973 discard_page = page; 1974 } else { 1975 add_partial(n, page, DEACTIVATE_TO_TAIL); 1976 stat(s, FREE_ADD_PARTIAL); 1977 } 1978 } 1979 1980 if (n) 1981 spin_unlock(&n->list_lock); 1982 1983 while (discard_page) { 1984 page = discard_page; 1985 discard_page = discard_page->next; 1986 1987 stat(s, DEACTIVATE_EMPTY); 1988 discard_slab(s, page); 1989 stat(s, FREE_SLAB); 1990 } 1991 #endif 1992 } 1993 1994 /* 1995 * Put a page that was just frozen (in __slab_free) into a partial page 1996 * slot if available. This is done without interrupts disabled and without 1997 * preemption disabled. The cmpxchg is racy and may put the partial page 1998 * onto a random cpus partial slot. 1999 * 2000 * If we did not find a slot then simply move all the partials to the 2001 * per node partial list. 2002 */ 2003 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2004 { 2005 #ifdef CONFIG_SLUB_CPU_PARTIAL 2006 struct page *oldpage; 2007 int pages; 2008 int pobjects; 2009 2010 do { 2011 pages = 0; 2012 pobjects = 0; 2013 oldpage = this_cpu_read(s->cpu_slab->partial); 2014 2015 if (oldpage) { 2016 pobjects = oldpage->pobjects; 2017 pages = oldpage->pages; 2018 if (drain && pobjects > s->cpu_partial) { 2019 unsigned long flags; 2020 /* 2021 * partial array is full. Move the existing 2022 * set to the per node partial list. 2023 */ 2024 local_irq_save(flags); 2025 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2026 local_irq_restore(flags); 2027 oldpage = NULL; 2028 pobjects = 0; 2029 pages = 0; 2030 stat(s, CPU_PARTIAL_DRAIN); 2031 } 2032 } 2033 2034 pages++; 2035 pobjects += page->objects - page->inuse; 2036 2037 page->pages = pages; 2038 page->pobjects = pobjects; 2039 page->next = oldpage; 2040 2041 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2042 != oldpage); 2043 #endif 2044 } 2045 2046 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2047 { 2048 stat(s, CPUSLAB_FLUSH); 2049 deactivate_slab(s, c->page, c->freelist); 2050 2051 c->tid = next_tid(c->tid); 2052 c->page = NULL; 2053 c->freelist = NULL; 2054 } 2055 2056 /* 2057 * Flush cpu slab. 2058 * 2059 * Called from IPI handler with interrupts disabled. 2060 */ 2061 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2062 { 2063 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2064 2065 if (likely(c)) { 2066 if (c->page) 2067 flush_slab(s, c); 2068 2069 unfreeze_partials(s, c); 2070 } 2071 } 2072 2073 static void flush_cpu_slab(void *d) 2074 { 2075 struct kmem_cache *s = d; 2076 2077 __flush_cpu_slab(s, smp_processor_id()); 2078 } 2079 2080 static bool has_cpu_slab(int cpu, void *info) 2081 { 2082 struct kmem_cache *s = info; 2083 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2084 2085 return c->page || c->partial; 2086 } 2087 2088 static void flush_all(struct kmem_cache *s) 2089 { 2090 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2091 } 2092 2093 /* 2094 * Check if the objects in a per cpu structure fit numa 2095 * locality expectations. 2096 */ 2097 static inline int node_match(struct page *page, int node) 2098 { 2099 #ifdef CONFIG_NUMA 2100 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2101 return 0; 2102 #endif 2103 return 1; 2104 } 2105 2106 #ifdef CONFIG_SLUB_DEBUG 2107 static int count_free(struct page *page) 2108 { 2109 return page->objects - page->inuse; 2110 } 2111 2112 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2113 { 2114 return atomic_long_read(&n->total_objects); 2115 } 2116 #endif /* CONFIG_SLUB_DEBUG */ 2117 2118 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2119 static unsigned long count_partial(struct kmem_cache_node *n, 2120 int (*get_count)(struct page *)) 2121 { 2122 unsigned long flags; 2123 unsigned long x = 0; 2124 struct page *page; 2125 2126 spin_lock_irqsave(&n->list_lock, flags); 2127 list_for_each_entry(page, &n->partial, lru) 2128 x += get_count(page); 2129 spin_unlock_irqrestore(&n->list_lock, flags); 2130 return x; 2131 } 2132 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2133 2134 static noinline void 2135 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2136 { 2137 #ifdef CONFIG_SLUB_DEBUG 2138 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2139 DEFAULT_RATELIMIT_BURST); 2140 int node; 2141 struct kmem_cache_node *n; 2142 2143 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2144 return; 2145 2146 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2147 nid, gfpflags); 2148 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2149 s->name, s->object_size, s->size, oo_order(s->oo), 2150 oo_order(s->min)); 2151 2152 if (oo_order(s->min) > get_order(s->object_size)) 2153 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2154 s->name); 2155 2156 for_each_kmem_cache_node(s, node, n) { 2157 unsigned long nr_slabs; 2158 unsigned long nr_objs; 2159 unsigned long nr_free; 2160 2161 nr_free = count_partial(n, count_free); 2162 nr_slabs = node_nr_slabs(n); 2163 nr_objs = node_nr_objs(n); 2164 2165 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2166 node, nr_slabs, nr_objs, nr_free); 2167 } 2168 #endif 2169 } 2170 2171 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2172 int node, struct kmem_cache_cpu **pc) 2173 { 2174 void *freelist; 2175 struct kmem_cache_cpu *c = *pc; 2176 struct page *page; 2177 2178 freelist = get_partial(s, flags, node, c); 2179 2180 if (freelist) 2181 return freelist; 2182 2183 page = new_slab(s, flags, node); 2184 if (page) { 2185 c = raw_cpu_ptr(s->cpu_slab); 2186 if (c->page) 2187 flush_slab(s, c); 2188 2189 /* 2190 * No other reference to the page yet so we can 2191 * muck around with it freely without cmpxchg 2192 */ 2193 freelist = page->freelist; 2194 page->freelist = NULL; 2195 2196 stat(s, ALLOC_SLAB); 2197 c->page = page; 2198 *pc = c; 2199 } else 2200 freelist = NULL; 2201 2202 return freelist; 2203 } 2204 2205 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2206 { 2207 if (unlikely(PageSlabPfmemalloc(page))) 2208 return gfp_pfmemalloc_allowed(gfpflags); 2209 2210 return true; 2211 } 2212 2213 /* 2214 * Check the page->freelist of a page and either transfer the freelist to the 2215 * per cpu freelist or deactivate the page. 2216 * 2217 * The page is still frozen if the return value is not NULL. 2218 * 2219 * If this function returns NULL then the page has been unfrozen. 2220 * 2221 * This function must be called with interrupt disabled. 2222 */ 2223 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2224 { 2225 struct page new; 2226 unsigned long counters; 2227 void *freelist; 2228 2229 do { 2230 freelist = page->freelist; 2231 counters = page->counters; 2232 2233 new.counters = counters; 2234 VM_BUG_ON(!new.frozen); 2235 2236 new.inuse = page->objects; 2237 new.frozen = freelist != NULL; 2238 2239 } while (!__cmpxchg_double_slab(s, page, 2240 freelist, counters, 2241 NULL, new.counters, 2242 "get_freelist")); 2243 2244 return freelist; 2245 } 2246 2247 /* 2248 * Slow path. The lockless freelist is empty or we need to perform 2249 * debugging duties. 2250 * 2251 * Processing is still very fast if new objects have been freed to the 2252 * regular freelist. In that case we simply take over the regular freelist 2253 * as the lockless freelist and zap the regular freelist. 2254 * 2255 * If that is not working then we fall back to the partial lists. We take the 2256 * first element of the freelist as the object to allocate now and move the 2257 * rest of the freelist to the lockless freelist. 2258 * 2259 * And if we were unable to get a new slab from the partial slab lists then 2260 * we need to allocate a new slab. This is the slowest path since it involves 2261 * a call to the page allocator and the setup of a new slab. 2262 */ 2263 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2264 unsigned long addr, struct kmem_cache_cpu *c) 2265 { 2266 void *freelist; 2267 struct page *page; 2268 unsigned long flags; 2269 2270 local_irq_save(flags); 2271 #ifdef CONFIG_PREEMPT 2272 /* 2273 * We may have been preempted and rescheduled on a different 2274 * cpu before disabling interrupts. Need to reload cpu area 2275 * pointer. 2276 */ 2277 c = this_cpu_ptr(s->cpu_slab); 2278 #endif 2279 2280 page = c->page; 2281 if (!page) 2282 goto new_slab; 2283 redo: 2284 2285 if (unlikely(!node_match(page, node))) { 2286 int searchnode = node; 2287 2288 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2289 searchnode = node_to_mem_node(node); 2290 2291 if (unlikely(!node_match(page, searchnode))) { 2292 stat(s, ALLOC_NODE_MISMATCH); 2293 deactivate_slab(s, page, c->freelist); 2294 c->page = NULL; 2295 c->freelist = NULL; 2296 goto new_slab; 2297 } 2298 } 2299 2300 /* 2301 * By rights, we should be searching for a slab page that was 2302 * PFMEMALLOC but right now, we are losing the pfmemalloc 2303 * information when the page leaves the per-cpu allocator 2304 */ 2305 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2306 deactivate_slab(s, page, c->freelist); 2307 c->page = NULL; 2308 c->freelist = NULL; 2309 goto new_slab; 2310 } 2311 2312 /* must check again c->freelist in case of cpu migration or IRQ */ 2313 freelist = c->freelist; 2314 if (freelist) 2315 goto load_freelist; 2316 2317 freelist = get_freelist(s, page); 2318 2319 if (!freelist) { 2320 c->page = NULL; 2321 stat(s, DEACTIVATE_BYPASS); 2322 goto new_slab; 2323 } 2324 2325 stat(s, ALLOC_REFILL); 2326 2327 load_freelist: 2328 /* 2329 * freelist is pointing to the list of objects to be used. 2330 * page is pointing to the page from which the objects are obtained. 2331 * That page must be frozen for per cpu allocations to work. 2332 */ 2333 VM_BUG_ON(!c->page->frozen); 2334 c->freelist = get_freepointer(s, freelist); 2335 c->tid = next_tid(c->tid); 2336 local_irq_restore(flags); 2337 return freelist; 2338 2339 new_slab: 2340 2341 if (c->partial) { 2342 page = c->page = c->partial; 2343 c->partial = page->next; 2344 stat(s, CPU_PARTIAL_ALLOC); 2345 c->freelist = NULL; 2346 goto redo; 2347 } 2348 2349 freelist = new_slab_objects(s, gfpflags, node, &c); 2350 2351 if (unlikely(!freelist)) { 2352 slab_out_of_memory(s, gfpflags, node); 2353 local_irq_restore(flags); 2354 return NULL; 2355 } 2356 2357 page = c->page; 2358 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2359 goto load_freelist; 2360 2361 /* Only entered in the debug case */ 2362 if (kmem_cache_debug(s) && 2363 !alloc_debug_processing(s, page, freelist, addr)) 2364 goto new_slab; /* Slab failed checks. Next slab needed */ 2365 2366 deactivate_slab(s, page, get_freepointer(s, freelist)); 2367 c->page = NULL; 2368 c->freelist = NULL; 2369 local_irq_restore(flags); 2370 return freelist; 2371 } 2372 2373 /* 2374 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2375 * have the fastpath folded into their functions. So no function call 2376 * overhead for requests that can be satisfied on the fastpath. 2377 * 2378 * The fastpath works by first checking if the lockless freelist can be used. 2379 * If not then __slab_alloc is called for slow processing. 2380 * 2381 * Otherwise we can simply pick the next object from the lockless free list. 2382 */ 2383 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2384 gfp_t gfpflags, int node, unsigned long addr) 2385 { 2386 void **object; 2387 struct kmem_cache_cpu *c; 2388 struct page *page; 2389 unsigned long tid; 2390 2391 s = slab_pre_alloc_hook(s, gfpflags); 2392 if (!s) 2393 return NULL; 2394 redo: 2395 /* 2396 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2397 * enabled. We may switch back and forth between cpus while 2398 * reading from one cpu area. That does not matter as long 2399 * as we end up on the original cpu again when doing the cmpxchg. 2400 * 2401 * Preemption is disabled for the retrieval of the tid because that 2402 * must occur from the current processor. We cannot allow rescheduling 2403 * on a different processor between the determination of the pointer 2404 * and the retrieval of the tid. 2405 */ 2406 preempt_disable(); 2407 c = this_cpu_ptr(s->cpu_slab); 2408 2409 /* 2410 * The transaction ids are globally unique per cpu and per operation on 2411 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2412 * occurs on the right processor and that there was no operation on the 2413 * linked list in between. 2414 */ 2415 tid = c->tid; 2416 preempt_enable(); 2417 2418 object = c->freelist; 2419 page = c->page; 2420 if (unlikely(!object || !node_match(page, node))) { 2421 object = __slab_alloc(s, gfpflags, node, addr, c); 2422 stat(s, ALLOC_SLOWPATH); 2423 } else { 2424 void *next_object = get_freepointer_safe(s, object); 2425 2426 /* 2427 * The cmpxchg will only match if there was no additional 2428 * operation and if we are on the right processor. 2429 * 2430 * The cmpxchg does the following atomically (without lock 2431 * semantics!) 2432 * 1. Relocate first pointer to the current per cpu area. 2433 * 2. Verify that tid and freelist have not been changed 2434 * 3. If they were not changed replace tid and freelist 2435 * 2436 * Since this is without lock semantics the protection is only 2437 * against code executing on this cpu *not* from access by 2438 * other cpus. 2439 */ 2440 if (unlikely(!this_cpu_cmpxchg_double( 2441 s->cpu_slab->freelist, s->cpu_slab->tid, 2442 object, tid, 2443 next_object, next_tid(tid)))) { 2444 2445 note_cmpxchg_failure("slab_alloc", s, tid); 2446 goto redo; 2447 } 2448 prefetch_freepointer(s, next_object); 2449 stat(s, ALLOC_FASTPATH); 2450 } 2451 2452 if (unlikely(gfpflags & __GFP_ZERO) && object) 2453 memset(object, 0, s->object_size); 2454 2455 slab_post_alloc_hook(s, gfpflags, object); 2456 2457 return object; 2458 } 2459 2460 static __always_inline void *slab_alloc(struct kmem_cache *s, 2461 gfp_t gfpflags, unsigned long addr) 2462 { 2463 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2464 } 2465 2466 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2467 { 2468 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2469 2470 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2471 s->size, gfpflags); 2472 2473 return ret; 2474 } 2475 EXPORT_SYMBOL(kmem_cache_alloc); 2476 2477 #ifdef CONFIG_TRACING 2478 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2479 { 2480 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2481 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2482 return ret; 2483 } 2484 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2485 #endif 2486 2487 #ifdef CONFIG_NUMA 2488 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2489 { 2490 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2491 2492 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2493 s->object_size, s->size, gfpflags, node); 2494 2495 return ret; 2496 } 2497 EXPORT_SYMBOL(kmem_cache_alloc_node); 2498 2499 #ifdef CONFIG_TRACING 2500 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2501 gfp_t gfpflags, 2502 int node, size_t size) 2503 { 2504 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2505 2506 trace_kmalloc_node(_RET_IP_, ret, 2507 size, s->size, gfpflags, node); 2508 return ret; 2509 } 2510 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2511 #endif 2512 #endif 2513 2514 /* 2515 * Slow patch handling. This may still be called frequently since objects 2516 * have a longer lifetime than the cpu slabs in most processing loads. 2517 * 2518 * So we still attempt to reduce cache line usage. Just take the slab 2519 * lock and free the item. If there is no additional partial page 2520 * handling required then we can return immediately. 2521 */ 2522 static void __slab_free(struct kmem_cache *s, struct page *page, 2523 void *x, unsigned long addr) 2524 { 2525 void *prior; 2526 void **object = (void *)x; 2527 int was_frozen; 2528 struct page new; 2529 unsigned long counters; 2530 struct kmem_cache_node *n = NULL; 2531 unsigned long uninitialized_var(flags); 2532 2533 stat(s, FREE_SLOWPATH); 2534 2535 if (kmem_cache_debug(s) && 2536 !(n = free_debug_processing(s, page, x, addr, &flags))) 2537 return; 2538 2539 do { 2540 if (unlikely(n)) { 2541 spin_unlock_irqrestore(&n->list_lock, flags); 2542 n = NULL; 2543 } 2544 prior = page->freelist; 2545 counters = page->counters; 2546 set_freepointer(s, object, prior); 2547 new.counters = counters; 2548 was_frozen = new.frozen; 2549 new.inuse--; 2550 if ((!new.inuse || !prior) && !was_frozen) { 2551 2552 if (kmem_cache_has_cpu_partial(s) && !prior) { 2553 2554 /* 2555 * Slab was on no list before and will be 2556 * partially empty 2557 * We can defer the list move and instead 2558 * freeze it. 2559 */ 2560 new.frozen = 1; 2561 2562 } else { /* Needs to be taken off a list */ 2563 2564 n = get_node(s, page_to_nid(page)); 2565 /* 2566 * Speculatively acquire the list_lock. 2567 * If the cmpxchg does not succeed then we may 2568 * drop the list_lock without any processing. 2569 * 2570 * Otherwise the list_lock will synchronize with 2571 * other processors updating the list of slabs. 2572 */ 2573 spin_lock_irqsave(&n->list_lock, flags); 2574 2575 } 2576 } 2577 2578 } while (!cmpxchg_double_slab(s, page, 2579 prior, counters, 2580 object, new.counters, 2581 "__slab_free")); 2582 2583 if (likely(!n)) { 2584 2585 /* 2586 * If we just froze the page then put it onto the 2587 * per cpu partial list. 2588 */ 2589 if (new.frozen && !was_frozen) { 2590 put_cpu_partial(s, page, 1); 2591 stat(s, CPU_PARTIAL_FREE); 2592 } 2593 /* 2594 * The list lock was not taken therefore no list 2595 * activity can be necessary. 2596 */ 2597 if (was_frozen) 2598 stat(s, FREE_FROZEN); 2599 return; 2600 } 2601 2602 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2603 goto slab_empty; 2604 2605 /* 2606 * Objects left in the slab. If it was not on the partial list before 2607 * then add it. 2608 */ 2609 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2610 if (kmem_cache_debug(s)) 2611 remove_full(s, n, page); 2612 add_partial(n, page, DEACTIVATE_TO_TAIL); 2613 stat(s, FREE_ADD_PARTIAL); 2614 } 2615 spin_unlock_irqrestore(&n->list_lock, flags); 2616 return; 2617 2618 slab_empty: 2619 if (prior) { 2620 /* 2621 * Slab on the partial list. 2622 */ 2623 remove_partial(n, page); 2624 stat(s, FREE_REMOVE_PARTIAL); 2625 } else { 2626 /* Slab must be on the full list */ 2627 remove_full(s, n, page); 2628 } 2629 2630 spin_unlock_irqrestore(&n->list_lock, flags); 2631 stat(s, FREE_SLAB); 2632 discard_slab(s, page); 2633 } 2634 2635 /* 2636 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2637 * can perform fastpath freeing without additional function calls. 2638 * 2639 * The fastpath is only possible if we are freeing to the current cpu slab 2640 * of this processor. This typically the case if we have just allocated 2641 * the item before. 2642 * 2643 * If fastpath is not possible then fall back to __slab_free where we deal 2644 * with all sorts of special processing. 2645 */ 2646 static __always_inline void slab_free(struct kmem_cache *s, 2647 struct page *page, void *x, unsigned long addr) 2648 { 2649 void **object = (void *)x; 2650 struct kmem_cache_cpu *c; 2651 unsigned long tid; 2652 2653 slab_free_hook(s, x); 2654 2655 redo: 2656 /* 2657 * Determine the currently cpus per cpu slab. 2658 * The cpu may change afterward. However that does not matter since 2659 * data is retrieved via this pointer. If we are on the same cpu 2660 * during the cmpxchg then the free will succedd. 2661 */ 2662 preempt_disable(); 2663 c = this_cpu_ptr(s->cpu_slab); 2664 2665 tid = c->tid; 2666 preempt_enable(); 2667 2668 if (likely(page == c->page)) { 2669 set_freepointer(s, object, c->freelist); 2670 2671 if (unlikely(!this_cpu_cmpxchg_double( 2672 s->cpu_slab->freelist, s->cpu_slab->tid, 2673 c->freelist, tid, 2674 object, next_tid(tid)))) { 2675 2676 note_cmpxchg_failure("slab_free", s, tid); 2677 goto redo; 2678 } 2679 stat(s, FREE_FASTPATH); 2680 } else 2681 __slab_free(s, page, x, addr); 2682 2683 } 2684 2685 void kmem_cache_free(struct kmem_cache *s, void *x) 2686 { 2687 s = cache_from_obj(s, x); 2688 if (!s) 2689 return; 2690 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2691 trace_kmem_cache_free(_RET_IP_, x); 2692 } 2693 EXPORT_SYMBOL(kmem_cache_free); 2694 2695 /* 2696 * Object placement in a slab is made very easy because we always start at 2697 * offset 0. If we tune the size of the object to the alignment then we can 2698 * get the required alignment by putting one properly sized object after 2699 * another. 2700 * 2701 * Notice that the allocation order determines the sizes of the per cpu 2702 * caches. Each processor has always one slab available for allocations. 2703 * Increasing the allocation order reduces the number of times that slabs 2704 * must be moved on and off the partial lists and is therefore a factor in 2705 * locking overhead. 2706 */ 2707 2708 /* 2709 * Mininum / Maximum order of slab pages. This influences locking overhead 2710 * and slab fragmentation. A higher order reduces the number of partial slabs 2711 * and increases the number of allocations possible without having to 2712 * take the list_lock. 2713 */ 2714 static int slub_min_order; 2715 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2716 static int slub_min_objects; 2717 2718 /* 2719 * Calculate the order of allocation given an slab object size. 2720 * 2721 * The order of allocation has significant impact on performance and other 2722 * system components. Generally order 0 allocations should be preferred since 2723 * order 0 does not cause fragmentation in the page allocator. Larger objects 2724 * be problematic to put into order 0 slabs because there may be too much 2725 * unused space left. We go to a higher order if more than 1/16th of the slab 2726 * would be wasted. 2727 * 2728 * In order to reach satisfactory performance we must ensure that a minimum 2729 * number of objects is in one slab. Otherwise we may generate too much 2730 * activity on the partial lists which requires taking the list_lock. This is 2731 * less a concern for large slabs though which are rarely used. 2732 * 2733 * slub_max_order specifies the order where we begin to stop considering the 2734 * number of objects in a slab as critical. If we reach slub_max_order then 2735 * we try to keep the page order as low as possible. So we accept more waste 2736 * of space in favor of a small page order. 2737 * 2738 * Higher order allocations also allow the placement of more objects in a 2739 * slab and thereby reduce object handling overhead. If the user has 2740 * requested a higher mininum order then we start with that one instead of 2741 * the smallest order which will fit the object. 2742 */ 2743 static inline int slab_order(int size, int min_objects, 2744 int max_order, int fract_leftover, int reserved) 2745 { 2746 int order; 2747 int rem; 2748 int min_order = slub_min_order; 2749 2750 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2751 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2752 2753 for (order = max(min_order, 2754 fls(min_objects * size - 1) - PAGE_SHIFT); 2755 order <= max_order; order++) { 2756 2757 unsigned long slab_size = PAGE_SIZE << order; 2758 2759 if (slab_size < min_objects * size + reserved) 2760 continue; 2761 2762 rem = (slab_size - reserved) % size; 2763 2764 if (rem <= slab_size / fract_leftover) 2765 break; 2766 2767 } 2768 2769 return order; 2770 } 2771 2772 static inline int calculate_order(int size, int reserved) 2773 { 2774 int order; 2775 int min_objects; 2776 int fraction; 2777 int max_objects; 2778 2779 /* 2780 * Attempt to find best configuration for a slab. This 2781 * works by first attempting to generate a layout with 2782 * the best configuration and backing off gradually. 2783 * 2784 * First we reduce the acceptable waste in a slab. Then 2785 * we reduce the minimum objects required in a slab. 2786 */ 2787 min_objects = slub_min_objects; 2788 if (!min_objects) 2789 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2790 max_objects = order_objects(slub_max_order, size, reserved); 2791 min_objects = min(min_objects, max_objects); 2792 2793 while (min_objects > 1) { 2794 fraction = 16; 2795 while (fraction >= 4) { 2796 order = slab_order(size, min_objects, 2797 slub_max_order, fraction, reserved); 2798 if (order <= slub_max_order) 2799 return order; 2800 fraction /= 2; 2801 } 2802 min_objects--; 2803 } 2804 2805 /* 2806 * We were unable to place multiple objects in a slab. Now 2807 * lets see if we can place a single object there. 2808 */ 2809 order = slab_order(size, 1, slub_max_order, 1, reserved); 2810 if (order <= slub_max_order) 2811 return order; 2812 2813 /* 2814 * Doh this slab cannot be placed using slub_max_order. 2815 */ 2816 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2817 if (order < MAX_ORDER) 2818 return order; 2819 return -ENOSYS; 2820 } 2821 2822 static void 2823 init_kmem_cache_node(struct kmem_cache_node *n) 2824 { 2825 n->nr_partial = 0; 2826 spin_lock_init(&n->list_lock); 2827 INIT_LIST_HEAD(&n->partial); 2828 #ifdef CONFIG_SLUB_DEBUG 2829 atomic_long_set(&n->nr_slabs, 0); 2830 atomic_long_set(&n->total_objects, 0); 2831 INIT_LIST_HEAD(&n->full); 2832 #endif 2833 } 2834 2835 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2836 { 2837 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2838 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2839 2840 /* 2841 * Must align to double word boundary for the double cmpxchg 2842 * instructions to work; see __pcpu_double_call_return_bool(). 2843 */ 2844 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2845 2 * sizeof(void *)); 2846 2847 if (!s->cpu_slab) 2848 return 0; 2849 2850 init_kmem_cache_cpus(s); 2851 2852 return 1; 2853 } 2854 2855 static struct kmem_cache *kmem_cache_node; 2856 2857 /* 2858 * No kmalloc_node yet so do it by hand. We know that this is the first 2859 * slab on the node for this slabcache. There are no concurrent accesses 2860 * possible. 2861 * 2862 * Note that this function only works on the kmem_cache_node 2863 * when allocating for the kmem_cache_node. This is used for bootstrapping 2864 * memory on a fresh node that has no slab structures yet. 2865 */ 2866 static void early_kmem_cache_node_alloc(int node) 2867 { 2868 struct page *page; 2869 struct kmem_cache_node *n; 2870 2871 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2872 2873 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2874 2875 BUG_ON(!page); 2876 if (page_to_nid(page) != node) { 2877 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 2878 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 2879 } 2880 2881 n = page->freelist; 2882 BUG_ON(!n); 2883 page->freelist = get_freepointer(kmem_cache_node, n); 2884 page->inuse = 1; 2885 page->frozen = 0; 2886 kmem_cache_node->node[node] = n; 2887 #ifdef CONFIG_SLUB_DEBUG 2888 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2889 init_tracking(kmem_cache_node, n); 2890 #endif 2891 init_kmem_cache_node(n); 2892 inc_slabs_node(kmem_cache_node, node, page->objects); 2893 2894 /* 2895 * No locks need to be taken here as it has just been 2896 * initialized and there is no concurrent access. 2897 */ 2898 __add_partial(n, page, DEACTIVATE_TO_HEAD); 2899 } 2900 2901 static void free_kmem_cache_nodes(struct kmem_cache *s) 2902 { 2903 int node; 2904 struct kmem_cache_node *n; 2905 2906 for_each_kmem_cache_node(s, node, n) { 2907 kmem_cache_free(kmem_cache_node, n); 2908 s->node[node] = NULL; 2909 } 2910 } 2911 2912 static int init_kmem_cache_nodes(struct kmem_cache *s) 2913 { 2914 int node; 2915 2916 for_each_node_state(node, N_NORMAL_MEMORY) { 2917 struct kmem_cache_node *n; 2918 2919 if (slab_state == DOWN) { 2920 early_kmem_cache_node_alloc(node); 2921 continue; 2922 } 2923 n = kmem_cache_alloc_node(kmem_cache_node, 2924 GFP_KERNEL, node); 2925 2926 if (!n) { 2927 free_kmem_cache_nodes(s); 2928 return 0; 2929 } 2930 2931 s->node[node] = n; 2932 init_kmem_cache_node(n); 2933 } 2934 return 1; 2935 } 2936 2937 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2938 { 2939 if (min < MIN_PARTIAL) 2940 min = MIN_PARTIAL; 2941 else if (min > MAX_PARTIAL) 2942 min = MAX_PARTIAL; 2943 s->min_partial = min; 2944 } 2945 2946 /* 2947 * calculate_sizes() determines the order and the distribution of data within 2948 * a slab object. 2949 */ 2950 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2951 { 2952 unsigned long flags = s->flags; 2953 unsigned long size = s->object_size; 2954 int order; 2955 2956 /* 2957 * Round up object size to the next word boundary. We can only 2958 * place the free pointer at word boundaries and this determines 2959 * the possible location of the free pointer. 2960 */ 2961 size = ALIGN(size, sizeof(void *)); 2962 2963 #ifdef CONFIG_SLUB_DEBUG 2964 /* 2965 * Determine if we can poison the object itself. If the user of 2966 * the slab may touch the object after free or before allocation 2967 * then we should never poison the object itself. 2968 */ 2969 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2970 !s->ctor) 2971 s->flags |= __OBJECT_POISON; 2972 else 2973 s->flags &= ~__OBJECT_POISON; 2974 2975 2976 /* 2977 * If we are Redzoning then check if there is some space between the 2978 * end of the object and the free pointer. If not then add an 2979 * additional word to have some bytes to store Redzone information. 2980 */ 2981 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 2982 size += sizeof(void *); 2983 #endif 2984 2985 /* 2986 * With that we have determined the number of bytes in actual use 2987 * by the object. This is the potential offset to the free pointer. 2988 */ 2989 s->inuse = size; 2990 2991 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2992 s->ctor)) { 2993 /* 2994 * Relocate free pointer after the object if it is not 2995 * permitted to overwrite the first word of the object on 2996 * kmem_cache_free. 2997 * 2998 * This is the case if we do RCU, have a constructor or 2999 * destructor or are poisoning the objects. 3000 */ 3001 s->offset = size; 3002 size += sizeof(void *); 3003 } 3004 3005 #ifdef CONFIG_SLUB_DEBUG 3006 if (flags & SLAB_STORE_USER) 3007 /* 3008 * Need to store information about allocs and frees after 3009 * the object. 3010 */ 3011 size += 2 * sizeof(struct track); 3012 3013 if (flags & SLAB_RED_ZONE) 3014 /* 3015 * Add some empty padding so that we can catch 3016 * overwrites from earlier objects rather than let 3017 * tracking information or the free pointer be 3018 * corrupted if a user writes before the start 3019 * of the object. 3020 */ 3021 size += sizeof(void *); 3022 #endif 3023 3024 /* 3025 * SLUB stores one object immediately after another beginning from 3026 * offset 0. In order to align the objects we have to simply size 3027 * each object to conform to the alignment. 3028 */ 3029 size = ALIGN(size, s->align); 3030 s->size = size; 3031 if (forced_order >= 0) 3032 order = forced_order; 3033 else 3034 order = calculate_order(size, s->reserved); 3035 3036 if (order < 0) 3037 return 0; 3038 3039 s->allocflags = 0; 3040 if (order) 3041 s->allocflags |= __GFP_COMP; 3042 3043 if (s->flags & SLAB_CACHE_DMA) 3044 s->allocflags |= GFP_DMA; 3045 3046 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3047 s->allocflags |= __GFP_RECLAIMABLE; 3048 3049 /* 3050 * Determine the number of objects per slab 3051 */ 3052 s->oo = oo_make(order, size, s->reserved); 3053 s->min = oo_make(get_order(size), size, s->reserved); 3054 if (oo_objects(s->oo) > oo_objects(s->max)) 3055 s->max = s->oo; 3056 3057 return !!oo_objects(s->oo); 3058 } 3059 3060 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3061 { 3062 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3063 s->reserved = 0; 3064 3065 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3066 s->reserved = sizeof(struct rcu_head); 3067 3068 if (!calculate_sizes(s, -1)) 3069 goto error; 3070 if (disable_higher_order_debug) { 3071 /* 3072 * Disable debugging flags that store metadata if the min slab 3073 * order increased. 3074 */ 3075 if (get_order(s->size) > get_order(s->object_size)) { 3076 s->flags &= ~DEBUG_METADATA_FLAGS; 3077 s->offset = 0; 3078 if (!calculate_sizes(s, -1)) 3079 goto error; 3080 } 3081 } 3082 3083 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3084 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3085 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3086 /* Enable fast mode */ 3087 s->flags |= __CMPXCHG_DOUBLE; 3088 #endif 3089 3090 /* 3091 * The larger the object size is, the more pages we want on the partial 3092 * list to avoid pounding the page allocator excessively. 3093 */ 3094 set_min_partial(s, ilog2(s->size) / 2); 3095 3096 /* 3097 * cpu_partial determined the maximum number of objects kept in the 3098 * per cpu partial lists of a processor. 3099 * 3100 * Per cpu partial lists mainly contain slabs that just have one 3101 * object freed. If they are used for allocation then they can be 3102 * filled up again with minimal effort. The slab will never hit the 3103 * per node partial lists and therefore no locking will be required. 3104 * 3105 * This setting also determines 3106 * 3107 * A) The number of objects from per cpu partial slabs dumped to the 3108 * per node list when we reach the limit. 3109 * B) The number of objects in cpu partial slabs to extract from the 3110 * per node list when we run out of per cpu objects. We only fetch 3111 * 50% to keep some capacity around for frees. 3112 */ 3113 if (!kmem_cache_has_cpu_partial(s)) 3114 s->cpu_partial = 0; 3115 else if (s->size >= PAGE_SIZE) 3116 s->cpu_partial = 2; 3117 else if (s->size >= 1024) 3118 s->cpu_partial = 6; 3119 else if (s->size >= 256) 3120 s->cpu_partial = 13; 3121 else 3122 s->cpu_partial = 30; 3123 3124 #ifdef CONFIG_NUMA 3125 s->remote_node_defrag_ratio = 1000; 3126 #endif 3127 if (!init_kmem_cache_nodes(s)) 3128 goto error; 3129 3130 if (alloc_kmem_cache_cpus(s)) 3131 return 0; 3132 3133 free_kmem_cache_nodes(s); 3134 error: 3135 if (flags & SLAB_PANIC) 3136 panic("Cannot create slab %s size=%lu realsize=%u " 3137 "order=%u offset=%u flags=%lx\n", 3138 s->name, (unsigned long)s->size, s->size, 3139 oo_order(s->oo), s->offset, flags); 3140 return -EINVAL; 3141 } 3142 3143 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3144 const char *text) 3145 { 3146 #ifdef CONFIG_SLUB_DEBUG 3147 void *addr = page_address(page); 3148 void *p; 3149 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3150 sizeof(long), GFP_ATOMIC); 3151 if (!map) 3152 return; 3153 slab_err(s, page, text, s->name); 3154 slab_lock(page); 3155 3156 get_map(s, page, map); 3157 for_each_object(p, s, addr, page->objects) { 3158 3159 if (!test_bit(slab_index(p, s, addr), map)) { 3160 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3161 print_tracking(s, p); 3162 } 3163 } 3164 slab_unlock(page); 3165 kfree(map); 3166 #endif 3167 } 3168 3169 /* 3170 * Attempt to free all partial slabs on a node. 3171 * This is called from kmem_cache_close(). We must be the last thread 3172 * using the cache and therefore we do not need to lock anymore. 3173 */ 3174 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3175 { 3176 struct page *page, *h; 3177 3178 list_for_each_entry_safe(page, h, &n->partial, lru) { 3179 if (!page->inuse) { 3180 __remove_partial(n, page); 3181 discard_slab(s, page); 3182 } else { 3183 list_slab_objects(s, page, 3184 "Objects remaining in %s on kmem_cache_close()"); 3185 } 3186 } 3187 } 3188 3189 /* 3190 * Release all resources used by a slab cache. 3191 */ 3192 static inline int kmem_cache_close(struct kmem_cache *s) 3193 { 3194 int node; 3195 struct kmem_cache_node *n; 3196 3197 flush_all(s); 3198 /* Attempt to free all objects */ 3199 for_each_kmem_cache_node(s, node, n) { 3200 free_partial(s, n); 3201 if (n->nr_partial || slabs_node(s, node)) 3202 return 1; 3203 } 3204 free_percpu(s->cpu_slab); 3205 free_kmem_cache_nodes(s); 3206 return 0; 3207 } 3208 3209 int __kmem_cache_shutdown(struct kmem_cache *s) 3210 { 3211 return kmem_cache_close(s); 3212 } 3213 3214 /******************************************************************** 3215 * Kmalloc subsystem 3216 *******************************************************************/ 3217 3218 static int __init setup_slub_min_order(char *str) 3219 { 3220 get_option(&str, &slub_min_order); 3221 3222 return 1; 3223 } 3224 3225 __setup("slub_min_order=", setup_slub_min_order); 3226 3227 static int __init setup_slub_max_order(char *str) 3228 { 3229 get_option(&str, &slub_max_order); 3230 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3231 3232 return 1; 3233 } 3234 3235 __setup("slub_max_order=", setup_slub_max_order); 3236 3237 static int __init setup_slub_min_objects(char *str) 3238 { 3239 get_option(&str, &slub_min_objects); 3240 3241 return 1; 3242 } 3243 3244 __setup("slub_min_objects=", setup_slub_min_objects); 3245 3246 void *__kmalloc(size_t size, gfp_t flags) 3247 { 3248 struct kmem_cache *s; 3249 void *ret; 3250 3251 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3252 return kmalloc_large(size, flags); 3253 3254 s = kmalloc_slab(size, flags); 3255 3256 if (unlikely(ZERO_OR_NULL_PTR(s))) 3257 return s; 3258 3259 ret = slab_alloc(s, flags, _RET_IP_); 3260 3261 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3262 3263 return ret; 3264 } 3265 EXPORT_SYMBOL(__kmalloc); 3266 3267 #ifdef CONFIG_NUMA 3268 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3269 { 3270 struct page *page; 3271 void *ptr = NULL; 3272 3273 flags |= __GFP_COMP | __GFP_NOTRACK; 3274 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3275 if (page) 3276 ptr = page_address(page); 3277 3278 kmalloc_large_node_hook(ptr, size, flags); 3279 return ptr; 3280 } 3281 3282 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3283 { 3284 struct kmem_cache *s; 3285 void *ret; 3286 3287 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3288 ret = kmalloc_large_node(size, flags, node); 3289 3290 trace_kmalloc_node(_RET_IP_, ret, 3291 size, PAGE_SIZE << get_order(size), 3292 flags, node); 3293 3294 return ret; 3295 } 3296 3297 s = kmalloc_slab(size, flags); 3298 3299 if (unlikely(ZERO_OR_NULL_PTR(s))) 3300 return s; 3301 3302 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3303 3304 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3305 3306 return ret; 3307 } 3308 EXPORT_SYMBOL(__kmalloc_node); 3309 #endif 3310 3311 size_t ksize(const void *object) 3312 { 3313 struct page *page; 3314 3315 if (unlikely(object == ZERO_SIZE_PTR)) 3316 return 0; 3317 3318 page = virt_to_head_page(object); 3319 3320 if (unlikely(!PageSlab(page))) { 3321 WARN_ON(!PageCompound(page)); 3322 return PAGE_SIZE << compound_order(page); 3323 } 3324 3325 return slab_ksize(page->slab_cache); 3326 } 3327 EXPORT_SYMBOL(ksize); 3328 3329 void kfree(const void *x) 3330 { 3331 struct page *page; 3332 void *object = (void *)x; 3333 3334 trace_kfree(_RET_IP_, x); 3335 3336 if (unlikely(ZERO_OR_NULL_PTR(x))) 3337 return; 3338 3339 page = virt_to_head_page(x); 3340 if (unlikely(!PageSlab(page))) { 3341 BUG_ON(!PageCompound(page)); 3342 kfree_hook(x); 3343 __free_kmem_pages(page, compound_order(page)); 3344 return; 3345 } 3346 slab_free(page->slab_cache, page, object, _RET_IP_); 3347 } 3348 EXPORT_SYMBOL(kfree); 3349 3350 /* 3351 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3352 * the remaining slabs by the number of items in use. The slabs with the 3353 * most items in use come first. New allocations will then fill those up 3354 * and thus they can be removed from the partial lists. 3355 * 3356 * The slabs with the least items are placed last. This results in them 3357 * being allocated from last increasing the chance that the last objects 3358 * are freed in them. 3359 */ 3360 int __kmem_cache_shrink(struct kmem_cache *s) 3361 { 3362 int node; 3363 int i; 3364 struct kmem_cache_node *n; 3365 struct page *page; 3366 struct page *t; 3367 int objects = oo_objects(s->max); 3368 struct list_head *slabs_by_inuse = 3369 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3370 unsigned long flags; 3371 3372 if (!slabs_by_inuse) 3373 return -ENOMEM; 3374 3375 flush_all(s); 3376 for_each_kmem_cache_node(s, node, n) { 3377 if (!n->nr_partial) 3378 continue; 3379 3380 for (i = 0; i < objects; i++) 3381 INIT_LIST_HEAD(slabs_by_inuse + i); 3382 3383 spin_lock_irqsave(&n->list_lock, flags); 3384 3385 /* 3386 * Build lists indexed by the items in use in each slab. 3387 * 3388 * Note that concurrent frees may occur while we hold the 3389 * list_lock. page->inuse here is the upper limit. 3390 */ 3391 list_for_each_entry_safe(page, t, &n->partial, lru) { 3392 list_move(&page->lru, slabs_by_inuse + page->inuse); 3393 if (!page->inuse) 3394 n->nr_partial--; 3395 } 3396 3397 /* 3398 * Rebuild the partial list with the slabs filled up most 3399 * first and the least used slabs at the end. 3400 */ 3401 for (i = objects - 1; i > 0; i--) 3402 list_splice(slabs_by_inuse + i, n->partial.prev); 3403 3404 spin_unlock_irqrestore(&n->list_lock, flags); 3405 3406 /* Release empty slabs */ 3407 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3408 discard_slab(s, page); 3409 } 3410 3411 kfree(slabs_by_inuse); 3412 return 0; 3413 } 3414 3415 static int slab_mem_going_offline_callback(void *arg) 3416 { 3417 struct kmem_cache *s; 3418 3419 mutex_lock(&slab_mutex); 3420 list_for_each_entry(s, &slab_caches, list) 3421 __kmem_cache_shrink(s); 3422 mutex_unlock(&slab_mutex); 3423 3424 return 0; 3425 } 3426 3427 static void slab_mem_offline_callback(void *arg) 3428 { 3429 struct kmem_cache_node *n; 3430 struct kmem_cache *s; 3431 struct memory_notify *marg = arg; 3432 int offline_node; 3433 3434 offline_node = marg->status_change_nid_normal; 3435 3436 /* 3437 * If the node still has available memory. we need kmem_cache_node 3438 * for it yet. 3439 */ 3440 if (offline_node < 0) 3441 return; 3442 3443 mutex_lock(&slab_mutex); 3444 list_for_each_entry(s, &slab_caches, list) { 3445 n = get_node(s, offline_node); 3446 if (n) { 3447 /* 3448 * if n->nr_slabs > 0, slabs still exist on the node 3449 * that is going down. We were unable to free them, 3450 * and offline_pages() function shouldn't call this 3451 * callback. So, we must fail. 3452 */ 3453 BUG_ON(slabs_node(s, offline_node)); 3454 3455 s->node[offline_node] = NULL; 3456 kmem_cache_free(kmem_cache_node, n); 3457 } 3458 } 3459 mutex_unlock(&slab_mutex); 3460 } 3461 3462 static int slab_mem_going_online_callback(void *arg) 3463 { 3464 struct kmem_cache_node *n; 3465 struct kmem_cache *s; 3466 struct memory_notify *marg = arg; 3467 int nid = marg->status_change_nid_normal; 3468 int ret = 0; 3469 3470 /* 3471 * If the node's memory is already available, then kmem_cache_node is 3472 * already created. Nothing to do. 3473 */ 3474 if (nid < 0) 3475 return 0; 3476 3477 /* 3478 * We are bringing a node online. No memory is available yet. We must 3479 * allocate a kmem_cache_node structure in order to bring the node 3480 * online. 3481 */ 3482 mutex_lock(&slab_mutex); 3483 list_for_each_entry(s, &slab_caches, list) { 3484 /* 3485 * XXX: kmem_cache_alloc_node will fallback to other nodes 3486 * since memory is not yet available from the node that 3487 * is brought up. 3488 */ 3489 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3490 if (!n) { 3491 ret = -ENOMEM; 3492 goto out; 3493 } 3494 init_kmem_cache_node(n); 3495 s->node[nid] = n; 3496 } 3497 out: 3498 mutex_unlock(&slab_mutex); 3499 return ret; 3500 } 3501 3502 static int slab_memory_callback(struct notifier_block *self, 3503 unsigned long action, void *arg) 3504 { 3505 int ret = 0; 3506 3507 switch (action) { 3508 case MEM_GOING_ONLINE: 3509 ret = slab_mem_going_online_callback(arg); 3510 break; 3511 case MEM_GOING_OFFLINE: 3512 ret = slab_mem_going_offline_callback(arg); 3513 break; 3514 case MEM_OFFLINE: 3515 case MEM_CANCEL_ONLINE: 3516 slab_mem_offline_callback(arg); 3517 break; 3518 case MEM_ONLINE: 3519 case MEM_CANCEL_OFFLINE: 3520 break; 3521 } 3522 if (ret) 3523 ret = notifier_from_errno(ret); 3524 else 3525 ret = NOTIFY_OK; 3526 return ret; 3527 } 3528 3529 static struct notifier_block slab_memory_callback_nb = { 3530 .notifier_call = slab_memory_callback, 3531 .priority = SLAB_CALLBACK_PRI, 3532 }; 3533 3534 /******************************************************************** 3535 * Basic setup of slabs 3536 *******************************************************************/ 3537 3538 /* 3539 * Used for early kmem_cache structures that were allocated using 3540 * the page allocator. Allocate them properly then fix up the pointers 3541 * that may be pointing to the wrong kmem_cache structure. 3542 */ 3543 3544 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3545 { 3546 int node; 3547 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3548 struct kmem_cache_node *n; 3549 3550 memcpy(s, static_cache, kmem_cache->object_size); 3551 3552 /* 3553 * This runs very early, and only the boot processor is supposed to be 3554 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3555 * IPIs around. 3556 */ 3557 __flush_cpu_slab(s, smp_processor_id()); 3558 for_each_kmem_cache_node(s, node, n) { 3559 struct page *p; 3560 3561 list_for_each_entry(p, &n->partial, lru) 3562 p->slab_cache = s; 3563 3564 #ifdef CONFIG_SLUB_DEBUG 3565 list_for_each_entry(p, &n->full, lru) 3566 p->slab_cache = s; 3567 #endif 3568 } 3569 list_add(&s->list, &slab_caches); 3570 return s; 3571 } 3572 3573 void __init kmem_cache_init(void) 3574 { 3575 static __initdata struct kmem_cache boot_kmem_cache, 3576 boot_kmem_cache_node; 3577 3578 if (debug_guardpage_minorder()) 3579 slub_max_order = 0; 3580 3581 kmem_cache_node = &boot_kmem_cache_node; 3582 kmem_cache = &boot_kmem_cache; 3583 3584 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3585 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3586 3587 register_hotmemory_notifier(&slab_memory_callback_nb); 3588 3589 /* Able to allocate the per node structures */ 3590 slab_state = PARTIAL; 3591 3592 create_boot_cache(kmem_cache, "kmem_cache", 3593 offsetof(struct kmem_cache, node) + 3594 nr_node_ids * sizeof(struct kmem_cache_node *), 3595 SLAB_HWCACHE_ALIGN); 3596 3597 kmem_cache = bootstrap(&boot_kmem_cache); 3598 3599 /* 3600 * Allocate kmem_cache_node properly from the kmem_cache slab. 3601 * kmem_cache_node is separately allocated so no need to 3602 * update any list pointers. 3603 */ 3604 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3605 3606 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3607 create_kmalloc_caches(0); 3608 3609 #ifdef CONFIG_SMP 3610 register_cpu_notifier(&slab_notifier); 3611 #endif 3612 3613 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3614 cache_line_size(), 3615 slub_min_order, slub_max_order, slub_min_objects, 3616 nr_cpu_ids, nr_node_ids); 3617 } 3618 3619 void __init kmem_cache_init_late(void) 3620 { 3621 } 3622 3623 struct kmem_cache * 3624 __kmem_cache_alias(const char *name, size_t size, size_t align, 3625 unsigned long flags, void (*ctor)(void *)) 3626 { 3627 struct kmem_cache *s; 3628 3629 s = find_mergeable(size, align, flags, name, ctor); 3630 if (s) { 3631 int i; 3632 struct kmem_cache *c; 3633 3634 s->refcount++; 3635 3636 /* 3637 * Adjust the object sizes so that we clear 3638 * the complete object on kzalloc. 3639 */ 3640 s->object_size = max(s->object_size, (int)size); 3641 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3642 3643 for_each_memcg_cache_index(i) { 3644 c = cache_from_memcg_idx(s, i); 3645 if (!c) 3646 continue; 3647 c->object_size = s->object_size; 3648 c->inuse = max_t(int, c->inuse, 3649 ALIGN(size, sizeof(void *))); 3650 } 3651 3652 if (sysfs_slab_alias(s, name)) { 3653 s->refcount--; 3654 s = NULL; 3655 } 3656 } 3657 3658 return s; 3659 } 3660 3661 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3662 { 3663 int err; 3664 3665 err = kmem_cache_open(s, flags); 3666 if (err) 3667 return err; 3668 3669 /* Mutex is not taken during early boot */ 3670 if (slab_state <= UP) 3671 return 0; 3672 3673 memcg_propagate_slab_attrs(s); 3674 err = sysfs_slab_add(s); 3675 if (err) 3676 kmem_cache_close(s); 3677 3678 return err; 3679 } 3680 3681 #ifdef CONFIG_SMP 3682 /* 3683 * Use the cpu notifier to insure that the cpu slabs are flushed when 3684 * necessary. 3685 */ 3686 static int slab_cpuup_callback(struct notifier_block *nfb, 3687 unsigned long action, void *hcpu) 3688 { 3689 long cpu = (long)hcpu; 3690 struct kmem_cache *s; 3691 unsigned long flags; 3692 3693 switch (action) { 3694 case CPU_UP_CANCELED: 3695 case CPU_UP_CANCELED_FROZEN: 3696 case CPU_DEAD: 3697 case CPU_DEAD_FROZEN: 3698 mutex_lock(&slab_mutex); 3699 list_for_each_entry(s, &slab_caches, list) { 3700 local_irq_save(flags); 3701 __flush_cpu_slab(s, cpu); 3702 local_irq_restore(flags); 3703 } 3704 mutex_unlock(&slab_mutex); 3705 break; 3706 default: 3707 break; 3708 } 3709 return NOTIFY_OK; 3710 } 3711 3712 static struct notifier_block slab_notifier = { 3713 .notifier_call = slab_cpuup_callback 3714 }; 3715 3716 #endif 3717 3718 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3719 { 3720 struct kmem_cache *s; 3721 void *ret; 3722 3723 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3724 return kmalloc_large(size, gfpflags); 3725 3726 s = kmalloc_slab(size, gfpflags); 3727 3728 if (unlikely(ZERO_OR_NULL_PTR(s))) 3729 return s; 3730 3731 ret = slab_alloc(s, gfpflags, caller); 3732 3733 /* Honor the call site pointer we received. */ 3734 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3735 3736 return ret; 3737 } 3738 3739 #ifdef CONFIG_NUMA 3740 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3741 int node, unsigned long caller) 3742 { 3743 struct kmem_cache *s; 3744 void *ret; 3745 3746 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3747 ret = kmalloc_large_node(size, gfpflags, node); 3748 3749 trace_kmalloc_node(caller, ret, 3750 size, PAGE_SIZE << get_order(size), 3751 gfpflags, node); 3752 3753 return ret; 3754 } 3755 3756 s = kmalloc_slab(size, gfpflags); 3757 3758 if (unlikely(ZERO_OR_NULL_PTR(s))) 3759 return s; 3760 3761 ret = slab_alloc_node(s, gfpflags, node, caller); 3762 3763 /* Honor the call site pointer we received. */ 3764 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3765 3766 return ret; 3767 } 3768 #endif 3769 3770 #ifdef CONFIG_SYSFS 3771 static int count_inuse(struct page *page) 3772 { 3773 return page->inuse; 3774 } 3775 3776 static int count_total(struct page *page) 3777 { 3778 return page->objects; 3779 } 3780 #endif 3781 3782 #ifdef CONFIG_SLUB_DEBUG 3783 static int validate_slab(struct kmem_cache *s, struct page *page, 3784 unsigned long *map) 3785 { 3786 void *p; 3787 void *addr = page_address(page); 3788 3789 if (!check_slab(s, page) || 3790 !on_freelist(s, page, NULL)) 3791 return 0; 3792 3793 /* Now we know that a valid freelist exists */ 3794 bitmap_zero(map, page->objects); 3795 3796 get_map(s, page, map); 3797 for_each_object(p, s, addr, page->objects) { 3798 if (test_bit(slab_index(p, s, addr), map)) 3799 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3800 return 0; 3801 } 3802 3803 for_each_object(p, s, addr, page->objects) 3804 if (!test_bit(slab_index(p, s, addr), map)) 3805 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3806 return 0; 3807 return 1; 3808 } 3809 3810 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3811 unsigned long *map) 3812 { 3813 slab_lock(page); 3814 validate_slab(s, page, map); 3815 slab_unlock(page); 3816 } 3817 3818 static int validate_slab_node(struct kmem_cache *s, 3819 struct kmem_cache_node *n, unsigned long *map) 3820 { 3821 unsigned long count = 0; 3822 struct page *page; 3823 unsigned long flags; 3824 3825 spin_lock_irqsave(&n->list_lock, flags); 3826 3827 list_for_each_entry(page, &n->partial, lru) { 3828 validate_slab_slab(s, page, map); 3829 count++; 3830 } 3831 if (count != n->nr_partial) 3832 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 3833 s->name, count, n->nr_partial); 3834 3835 if (!(s->flags & SLAB_STORE_USER)) 3836 goto out; 3837 3838 list_for_each_entry(page, &n->full, lru) { 3839 validate_slab_slab(s, page, map); 3840 count++; 3841 } 3842 if (count != atomic_long_read(&n->nr_slabs)) 3843 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 3844 s->name, count, atomic_long_read(&n->nr_slabs)); 3845 3846 out: 3847 spin_unlock_irqrestore(&n->list_lock, flags); 3848 return count; 3849 } 3850 3851 static long validate_slab_cache(struct kmem_cache *s) 3852 { 3853 int node; 3854 unsigned long count = 0; 3855 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3856 sizeof(unsigned long), GFP_KERNEL); 3857 struct kmem_cache_node *n; 3858 3859 if (!map) 3860 return -ENOMEM; 3861 3862 flush_all(s); 3863 for_each_kmem_cache_node(s, node, n) 3864 count += validate_slab_node(s, n, map); 3865 kfree(map); 3866 return count; 3867 } 3868 /* 3869 * Generate lists of code addresses where slabcache objects are allocated 3870 * and freed. 3871 */ 3872 3873 struct location { 3874 unsigned long count; 3875 unsigned long addr; 3876 long long sum_time; 3877 long min_time; 3878 long max_time; 3879 long min_pid; 3880 long max_pid; 3881 DECLARE_BITMAP(cpus, NR_CPUS); 3882 nodemask_t nodes; 3883 }; 3884 3885 struct loc_track { 3886 unsigned long max; 3887 unsigned long count; 3888 struct location *loc; 3889 }; 3890 3891 static void free_loc_track(struct loc_track *t) 3892 { 3893 if (t->max) 3894 free_pages((unsigned long)t->loc, 3895 get_order(sizeof(struct location) * t->max)); 3896 } 3897 3898 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3899 { 3900 struct location *l; 3901 int order; 3902 3903 order = get_order(sizeof(struct location) * max); 3904 3905 l = (void *)__get_free_pages(flags, order); 3906 if (!l) 3907 return 0; 3908 3909 if (t->count) { 3910 memcpy(l, t->loc, sizeof(struct location) * t->count); 3911 free_loc_track(t); 3912 } 3913 t->max = max; 3914 t->loc = l; 3915 return 1; 3916 } 3917 3918 static int add_location(struct loc_track *t, struct kmem_cache *s, 3919 const struct track *track) 3920 { 3921 long start, end, pos; 3922 struct location *l; 3923 unsigned long caddr; 3924 unsigned long age = jiffies - track->when; 3925 3926 start = -1; 3927 end = t->count; 3928 3929 for ( ; ; ) { 3930 pos = start + (end - start + 1) / 2; 3931 3932 /* 3933 * There is nothing at "end". If we end up there 3934 * we need to add something to before end. 3935 */ 3936 if (pos == end) 3937 break; 3938 3939 caddr = t->loc[pos].addr; 3940 if (track->addr == caddr) { 3941 3942 l = &t->loc[pos]; 3943 l->count++; 3944 if (track->when) { 3945 l->sum_time += age; 3946 if (age < l->min_time) 3947 l->min_time = age; 3948 if (age > l->max_time) 3949 l->max_time = age; 3950 3951 if (track->pid < l->min_pid) 3952 l->min_pid = track->pid; 3953 if (track->pid > l->max_pid) 3954 l->max_pid = track->pid; 3955 3956 cpumask_set_cpu(track->cpu, 3957 to_cpumask(l->cpus)); 3958 } 3959 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3960 return 1; 3961 } 3962 3963 if (track->addr < caddr) 3964 end = pos; 3965 else 3966 start = pos; 3967 } 3968 3969 /* 3970 * Not found. Insert new tracking element. 3971 */ 3972 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3973 return 0; 3974 3975 l = t->loc + pos; 3976 if (pos < t->count) 3977 memmove(l + 1, l, 3978 (t->count - pos) * sizeof(struct location)); 3979 t->count++; 3980 l->count = 1; 3981 l->addr = track->addr; 3982 l->sum_time = age; 3983 l->min_time = age; 3984 l->max_time = age; 3985 l->min_pid = track->pid; 3986 l->max_pid = track->pid; 3987 cpumask_clear(to_cpumask(l->cpus)); 3988 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3989 nodes_clear(l->nodes); 3990 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3991 return 1; 3992 } 3993 3994 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3995 struct page *page, enum track_item alloc, 3996 unsigned long *map) 3997 { 3998 void *addr = page_address(page); 3999 void *p; 4000 4001 bitmap_zero(map, page->objects); 4002 get_map(s, page, map); 4003 4004 for_each_object(p, s, addr, page->objects) 4005 if (!test_bit(slab_index(p, s, addr), map)) 4006 add_location(t, s, get_track(s, p, alloc)); 4007 } 4008 4009 static int list_locations(struct kmem_cache *s, char *buf, 4010 enum track_item alloc) 4011 { 4012 int len = 0; 4013 unsigned long i; 4014 struct loc_track t = { 0, 0, NULL }; 4015 int node; 4016 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4017 sizeof(unsigned long), GFP_KERNEL); 4018 struct kmem_cache_node *n; 4019 4020 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4021 GFP_TEMPORARY)) { 4022 kfree(map); 4023 return sprintf(buf, "Out of memory\n"); 4024 } 4025 /* Push back cpu slabs */ 4026 flush_all(s); 4027 4028 for_each_kmem_cache_node(s, node, n) { 4029 unsigned long flags; 4030 struct page *page; 4031 4032 if (!atomic_long_read(&n->nr_slabs)) 4033 continue; 4034 4035 spin_lock_irqsave(&n->list_lock, flags); 4036 list_for_each_entry(page, &n->partial, lru) 4037 process_slab(&t, s, page, alloc, map); 4038 list_for_each_entry(page, &n->full, lru) 4039 process_slab(&t, s, page, alloc, map); 4040 spin_unlock_irqrestore(&n->list_lock, flags); 4041 } 4042 4043 for (i = 0; i < t.count; i++) { 4044 struct location *l = &t.loc[i]; 4045 4046 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4047 break; 4048 len += sprintf(buf + len, "%7ld ", l->count); 4049 4050 if (l->addr) 4051 len += sprintf(buf + len, "%pS", (void *)l->addr); 4052 else 4053 len += sprintf(buf + len, "<not-available>"); 4054 4055 if (l->sum_time != l->min_time) { 4056 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4057 l->min_time, 4058 (long)div_u64(l->sum_time, l->count), 4059 l->max_time); 4060 } else 4061 len += sprintf(buf + len, " age=%ld", 4062 l->min_time); 4063 4064 if (l->min_pid != l->max_pid) 4065 len += sprintf(buf + len, " pid=%ld-%ld", 4066 l->min_pid, l->max_pid); 4067 else 4068 len += sprintf(buf + len, " pid=%ld", 4069 l->min_pid); 4070 4071 if (num_online_cpus() > 1 && 4072 !cpumask_empty(to_cpumask(l->cpus)) && 4073 len < PAGE_SIZE - 60) { 4074 len += sprintf(buf + len, " cpus="); 4075 len += cpulist_scnprintf(buf + len, 4076 PAGE_SIZE - len - 50, 4077 to_cpumask(l->cpus)); 4078 } 4079 4080 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4081 len < PAGE_SIZE - 60) { 4082 len += sprintf(buf + len, " nodes="); 4083 len += nodelist_scnprintf(buf + len, 4084 PAGE_SIZE - len - 50, 4085 l->nodes); 4086 } 4087 4088 len += sprintf(buf + len, "\n"); 4089 } 4090 4091 free_loc_track(&t); 4092 kfree(map); 4093 if (!t.count) 4094 len += sprintf(buf, "No data\n"); 4095 return len; 4096 } 4097 #endif 4098 4099 #ifdef SLUB_RESILIENCY_TEST 4100 static void __init resiliency_test(void) 4101 { 4102 u8 *p; 4103 4104 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4105 4106 pr_err("SLUB resiliency testing\n"); 4107 pr_err("-----------------------\n"); 4108 pr_err("A. Corruption after allocation\n"); 4109 4110 p = kzalloc(16, GFP_KERNEL); 4111 p[16] = 0x12; 4112 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4113 p + 16); 4114 4115 validate_slab_cache(kmalloc_caches[4]); 4116 4117 /* Hmmm... The next two are dangerous */ 4118 p = kzalloc(32, GFP_KERNEL); 4119 p[32 + sizeof(void *)] = 0x34; 4120 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4121 p); 4122 pr_err("If allocated object is overwritten then not detectable\n\n"); 4123 4124 validate_slab_cache(kmalloc_caches[5]); 4125 p = kzalloc(64, GFP_KERNEL); 4126 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4127 *p = 0x56; 4128 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4129 p); 4130 pr_err("If allocated object is overwritten then not detectable\n\n"); 4131 validate_slab_cache(kmalloc_caches[6]); 4132 4133 pr_err("\nB. Corruption after free\n"); 4134 p = kzalloc(128, GFP_KERNEL); 4135 kfree(p); 4136 *p = 0x78; 4137 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4138 validate_slab_cache(kmalloc_caches[7]); 4139 4140 p = kzalloc(256, GFP_KERNEL); 4141 kfree(p); 4142 p[50] = 0x9a; 4143 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4144 validate_slab_cache(kmalloc_caches[8]); 4145 4146 p = kzalloc(512, GFP_KERNEL); 4147 kfree(p); 4148 p[512] = 0xab; 4149 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4150 validate_slab_cache(kmalloc_caches[9]); 4151 } 4152 #else 4153 #ifdef CONFIG_SYSFS 4154 static void resiliency_test(void) {}; 4155 #endif 4156 #endif 4157 4158 #ifdef CONFIG_SYSFS 4159 enum slab_stat_type { 4160 SL_ALL, /* All slabs */ 4161 SL_PARTIAL, /* Only partially allocated slabs */ 4162 SL_CPU, /* Only slabs used for cpu caches */ 4163 SL_OBJECTS, /* Determine allocated objects not slabs */ 4164 SL_TOTAL /* Determine object capacity not slabs */ 4165 }; 4166 4167 #define SO_ALL (1 << SL_ALL) 4168 #define SO_PARTIAL (1 << SL_PARTIAL) 4169 #define SO_CPU (1 << SL_CPU) 4170 #define SO_OBJECTS (1 << SL_OBJECTS) 4171 #define SO_TOTAL (1 << SL_TOTAL) 4172 4173 static ssize_t show_slab_objects(struct kmem_cache *s, 4174 char *buf, unsigned long flags) 4175 { 4176 unsigned long total = 0; 4177 int node; 4178 int x; 4179 unsigned long *nodes; 4180 4181 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4182 if (!nodes) 4183 return -ENOMEM; 4184 4185 if (flags & SO_CPU) { 4186 int cpu; 4187 4188 for_each_possible_cpu(cpu) { 4189 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4190 cpu); 4191 int node; 4192 struct page *page; 4193 4194 page = ACCESS_ONCE(c->page); 4195 if (!page) 4196 continue; 4197 4198 node = page_to_nid(page); 4199 if (flags & SO_TOTAL) 4200 x = page->objects; 4201 else if (flags & SO_OBJECTS) 4202 x = page->inuse; 4203 else 4204 x = 1; 4205 4206 total += x; 4207 nodes[node] += x; 4208 4209 page = ACCESS_ONCE(c->partial); 4210 if (page) { 4211 node = page_to_nid(page); 4212 if (flags & SO_TOTAL) 4213 WARN_ON_ONCE(1); 4214 else if (flags & SO_OBJECTS) 4215 WARN_ON_ONCE(1); 4216 else 4217 x = page->pages; 4218 total += x; 4219 nodes[node] += x; 4220 } 4221 } 4222 } 4223 4224 get_online_mems(); 4225 #ifdef CONFIG_SLUB_DEBUG 4226 if (flags & SO_ALL) { 4227 struct kmem_cache_node *n; 4228 4229 for_each_kmem_cache_node(s, node, n) { 4230 4231 if (flags & SO_TOTAL) 4232 x = atomic_long_read(&n->total_objects); 4233 else if (flags & SO_OBJECTS) 4234 x = atomic_long_read(&n->total_objects) - 4235 count_partial(n, count_free); 4236 else 4237 x = atomic_long_read(&n->nr_slabs); 4238 total += x; 4239 nodes[node] += x; 4240 } 4241 4242 } else 4243 #endif 4244 if (flags & SO_PARTIAL) { 4245 struct kmem_cache_node *n; 4246 4247 for_each_kmem_cache_node(s, node, n) { 4248 if (flags & SO_TOTAL) 4249 x = count_partial(n, count_total); 4250 else if (flags & SO_OBJECTS) 4251 x = count_partial(n, count_inuse); 4252 else 4253 x = n->nr_partial; 4254 total += x; 4255 nodes[node] += x; 4256 } 4257 } 4258 x = sprintf(buf, "%lu", total); 4259 #ifdef CONFIG_NUMA 4260 for (node = 0; node < nr_node_ids; node++) 4261 if (nodes[node]) 4262 x += sprintf(buf + x, " N%d=%lu", 4263 node, nodes[node]); 4264 #endif 4265 put_online_mems(); 4266 kfree(nodes); 4267 return x + sprintf(buf + x, "\n"); 4268 } 4269 4270 #ifdef CONFIG_SLUB_DEBUG 4271 static int any_slab_objects(struct kmem_cache *s) 4272 { 4273 int node; 4274 struct kmem_cache_node *n; 4275 4276 for_each_kmem_cache_node(s, node, n) 4277 if (atomic_long_read(&n->total_objects)) 4278 return 1; 4279 4280 return 0; 4281 } 4282 #endif 4283 4284 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4285 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4286 4287 struct slab_attribute { 4288 struct attribute attr; 4289 ssize_t (*show)(struct kmem_cache *s, char *buf); 4290 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4291 }; 4292 4293 #define SLAB_ATTR_RO(_name) \ 4294 static struct slab_attribute _name##_attr = \ 4295 __ATTR(_name, 0400, _name##_show, NULL) 4296 4297 #define SLAB_ATTR(_name) \ 4298 static struct slab_attribute _name##_attr = \ 4299 __ATTR(_name, 0600, _name##_show, _name##_store) 4300 4301 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4302 { 4303 return sprintf(buf, "%d\n", s->size); 4304 } 4305 SLAB_ATTR_RO(slab_size); 4306 4307 static ssize_t align_show(struct kmem_cache *s, char *buf) 4308 { 4309 return sprintf(buf, "%d\n", s->align); 4310 } 4311 SLAB_ATTR_RO(align); 4312 4313 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4314 { 4315 return sprintf(buf, "%d\n", s->object_size); 4316 } 4317 SLAB_ATTR_RO(object_size); 4318 4319 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4320 { 4321 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4322 } 4323 SLAB_ATTR_RO(objs_per_slab); 4324 4325 static ssize_t order_store(struct kmem_cache *s, 4326 const char *buf, size_t length) 4327 { 4328 unsigned long order; 4329 int err; 4330 4331 err = kstrtoul(buf, 10, &order); 4332 if (err) 4333 return err; 4334 4335 if (order > slub_max_order || order < slub_min_order) 4336 return -EINVAL; 4337 4338 calculate_sizes(s, order); 4339 return length; 4340 } 4341 4342 static ssize_t order_show(struct kmem_cache *s, char *buf) 4343 { 4344 return sprintf(buf, "%d\n", oo_order(s->oo)); 4345 } 4346 SLAB_ATTR(order); 4347 4348 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4349 { 4350 return sprintf(buf, "%lu\n", s->min_partial); 4351 } 4352 4353 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4354 size_t length) 4355 { 4356 unsigned long min; 4357 int err; 4358 4359 err = kstrtoul(buf, 10, &min); 4360 if (err) 4361 return err; 4362 4363 set_min_partial(s, min); 4364 return length; 4365 } 4366 SLAB_ATTR(min_partial); 4367 4368 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4369 { 4370 return sprintf(buf, "%u\n", s->cpu_partial); 4371 } 4372 4373 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4374 size_t length) 4375 { 4376 unsigned long objects; 4377 int err; 4378 4379 err = kstrtoul(buf, 10, &objects); 4380 if (err) 4381 return err; 4382 if (objects && !kmem_cache_has_cpu_partial(s)) 4383 return -EINVAL; 4384 4385 s->cpu_partial = objects; 4386 flush_all(s); 4387 return length; 4388 } 4389 SLAB_ATTR(cpu_partial); 4390 4391 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4392 { 4393 if (!s->ctor) 4394 return 0; 4395 return sprintf(buf, "%pS\n", s->ctor); 4396 } 4397 SLAB_ATTR_RO(ctor); 4398 4399 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4400 { 4401 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4402 } 4403 SLAB_ATTR_RO(aliases); 4404 4405 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4406 { 4407 return show_slab_objects(s, buf, SO_PARTIAL); 4408 } 4409 SLAB_ATTR_RO(partial); 4410 4411 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4412 { 4413 return show_slab_objects(s, buf, SO_CPU); 4414 } 4415 SLAB_ATTR_RO(cpu_slabs); 4416 4417 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4418 { 4419 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4420 } 4421 SLAB_ATTR_RO(objects); 4422 4423 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4424 { 4425 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4426 } 4427 SLAB_ATTR_RO(objects_partial); 4428 4429 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4430 { 4431 int objects = 0; 4432 int pages = 0; 4433 int cpu; 4434 int len; 4435 4436 for_each_online_cpu(cpu) { 4437 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4438 4439 if (page) { 4440 pages += page->pages; 4441 objects += page->pobjects; 4442 } 4443 } 4444 4445 len = sprintf(buf, "%d(%d)", objects, pages); 4446 4447 #ifdef CONFIG_SMP 4448 for_each_online_cpu(cpu) { 4449 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4450 4451 if (page && len < PAGE_SIZE - 20) 4452 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4453 page->pobjects, page->pages); 4454 } 4455 #endif 4456 return len + sprintf(buf + len, "\n"); 4457 } 4458 SLAB_ATTR_RO(slabs_cpu_partial); 4459 4460 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4461 { 4462 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4463 } 4464 4465 static ssize_t reclaim_account_store(struct kmem_cache *s, 4466 const char *buf, size_t length) 4467 { 4468 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4469 if (buf[0] == '1') 4470 s->flags |= SLAB_RECLAIM_ACCOUNT; 4471 return length; 4472 } 4473 SLAB_ATTR(reclaim_account); 4474 4475 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4476 { 4477 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4478 } 4479 SLAB_ATTR_RO(hwcache_align); 4480 4481 #ifdef CONFIG_ZONE_DMA 4482 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4483 { 4484 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4485 } 4486 SLAB_ATTR_RO(cache_dma); 4487 #endif 4488 4489 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4490 { 4491 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4492 } 4493 SLAB_ATTR_RO(destroy_by_rcu); 4494 4495 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4496 { 4497 return sprintf(buf, "%d\n", s->reserved); 4498 } 4499 SLAB_ATTR_RO(reserved); 4500 4501 #ifdef CONFIG_SLUB_DEBUG 4502 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4503 { 4504 return show_slab_objects(s, buf, SO_ALL); 4505 } 4506 SLAB_ATTR_RO(slabs); 4507 4508 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4509 { 4510 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4511 } 4512 SLAB_ATTR_RO(total_objects); 4513 4514 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4515 { 4516 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4517 } 4518 4519 static ssize_t sanity_checks_store(struct kmem_cache *s, 4520 const char *buf, size_t length) 4521 { 4522 s->flags &= ~SLAB_DEBUG_FREE; 4523 if (buf[0] == '1') { 4524 s->flags &= ~__CMPXCHG_DOUBLE; 4525 s->flags |= SLAB_DEBUG_FREE; 4526 } 4527 return length; 4528 } 4529 SLAB_ATTR(sanity_checks); 4530 4531 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4532 { 4533 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4534 } 4535 4536 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4537 size_t length) 4538 { 4539 /* 4540 * Tracing a merged cache is going to give confusing results 4541 * as well as cause other issues like converting a mergeable 4542 * cache into an umergeable one. 4543 */ 4544 if (s->refcount > 1) 4545 return -EINVAL; 4546 4547 s->flags &= ~SLAB_TRACE; 4548 if (buf[0] == '1') { 4549 s->flags &= ~__CMPXCHG_DOUBLE; 4550 s->flags |= SLAB_TRACE; 4551 } 4552 return length; 4553 } 4554 SLAB_ATTR(trace); 4555 4556 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4557 { 4558 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4559 } 4560 4561 static ssize_t red_zone_store(struct kmem_cache *s, 4562 const char *buf, size_t length) 4563 { 4564 if (any_slab_objects(s)) 4565 return -EBUSY; 4566 4567 s->flags &= ~SLAB_RED_ZONE; 4568 if (buf[0] == '1') { 4569 s->flags &= ~__CMPXCHG_DOUBLE; 4570 s->flags |= SLAB_RED_ZONE; 4571 } 4572 calculate_sizes(s, -1); 4573 return length; 4574 } 4575 SLAB_ATTR(red_zone); 4576 4577 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4578 { 4579 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4580 } 4581 4582 static ssize_t poison_store(struct kmem_cache *s, 4583 const char *buf, size_t length) 4584 { 4585 if (any_slab_objects(s)) 4586 return -EBUSY; 4587 4588 s->flags &= ~SLAB_POISON; 4589 if (buf[0] == '1') { 4590 s->flags &= ~__CMPXCHG_DOUBLE; 4591 s->flags |= SLAB_POISON; 4592 } 4593 calculate_sizes(s, -1); 4594 return length; 4595 } 4596 SLAB_ATTR(poison); 4597 4598 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4599 { 4600 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4601 } 4602 4603 static ssize_t store_user_store(struct kmem_cache *s, 4604 const char *buf, size_t length) 4605 { 4606 if (any_slab_objects(s)) 4607 return -EBUSY; 4608 4609 s->flags &= ~SLAB_STORE_USER; 4610 if (buf[0] == '1') { 4611 s->flags &= ~__CMPXCHG_DOUBLE; 4612 s->flags |= SLAB_STORE_USER; 4613 } 4614 calculate_sizes(s, -1); 4615 return length; 4616 } 4617 SLAB_ATTR(store_user); 4618 4619 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4620 { 4621 return 0; 4622 } 4623 4624 static ssize_t validate_store(struct kmem_cache *s, 4625 const char *buf, size_t length) 4626 { 4627 int ret = -EINVAL; 4628 4629 if (buf[0] == '1') { 4630 ret = validate_slab_cache(s); 4631 if (ret >= 0) 4632 ret = length; 4633 } 4634 return ret; 4635 } 4636 SLAB_ATTR(validate); 4637 4638 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4639 { 4640 if (!(s->flags & SLAB_STORE_USER)) 4641 return -ENOSYS; 4642 return list_locations(s, buf, TRACK_ALLOC); 4643 } 4644 SLAB_ATTR_RO(alloc_calls); 4645 4646 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4647 { 4648 if (!(s->flags & SLAB_STORE_USER)) 4649 return -ENOSYS; 4650 return list_locations(s, buf, TRACK_FREE); 4651 } 4652 SLAB_ATTR_RO(free_calls); 4653 #endif /* CONFIG_SLUB_DEBUG */ 4654 4655 #ifdef CONFIG_FAILSLAB 4656 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4657 { 4658 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4659 } 4660 4661 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4662 size_t length) 4663 { 4664 if (s->refcount > 1) 4665 return -EINVAL; 4666 4667 s->flags &= ~SLAB_FAILSLAB; 4668 if (buf[0] == '1') 4669 s->flags |= SLAB_FAILSLAB; 4670 return length; 4671 } 4672 SLAB_ATTR(failslab); 4673 #endif 4674 4675 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4676 { 4677 return 0; 4678 } 4679 4680 static ssize_t shrink_store(struct kmem_cache *s, 4681 const char *buf, size_t length) 4682 { 4683 if (buf[0] == '1') { 4684 int rc = kmem_cache_shrink(s); 4685 4686 if (rc) 4687 return rc; 4688 } else 4689 return -EINVAL; 4690 return length; 4691 } 4692 SLAB_ATTR(shrink); 4693 4694 #ifdef CONFIG_NUMA 4695 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4696 { 4697 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4698 } 4699 4700 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4701 const char *buf, size_t length) 4702 { 4703 unsigned long ratio; 4704 int err; 4705 4706 err = kstrtoul(buf, 10, &ratio); 4707 if (err) 4708 return err; 4709 4710 if (ratio <= 100) 4711 s->remote_node_defrag_ratio = ratio * 10; 4712 4713 return length; 4714 } 4715 SLAB_ATTR(remote_node_defrag_ratio); 4716 #endif 4717 4718 #ifdef CONFIG_SLUB_STATS 4719 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4720 { 4721 unsigned long sum = 0; 4722 int cpu; 4723 int len; 4724 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4725 4726 if (!data) 4727 return -ENOMEM; 4728 4729 for_each_online_cpu(cpu) { 4730 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4731 4732 data[cpu] = x; 4733 sum += x; 4734 } 4735 4736 len = sprintf(buf, "%lu", sum); 4737 4738 #ifdef CONFIG_SMP 4739 for_each_online_cpu(cpu) { 4740 if (data[cpu] && len < PAGE_SIZE - 20) 4741 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4742 } 4743 #endif 4744 kfree(data); 4745 return len + sprintf(buf + len, "\n"); 4746 } 4747 4748 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4749 { 4750 int cpu; 4751 4752 for_each_online_cpu(cpu) 4753 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4754 } 4755 4756 #define STAT_ATTR(si, text) \ 4757 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4758 { \ 4759 return show_stat(s, buf, si); \ 4760 } \ 4761 static ssize_t text##_store(struct kmem_cache *s, \ 4762 const char *buf, size_t length) \ 4763 { \ 4764 if (buf[0] != '0') \ 4765 return -EINVAL; \ 4766 clear_stat(s, si); \ 4767 return length; \ 4768 } \ 4769 SLAB_ATTR(text); \ 4770 4771 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4772 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4773 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4774 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4775 STAT_ATTR(FREE_FROZEN, free_frozen); 4776 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4777 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4778 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4779 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4780 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4781 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4782 STAT_ATTR(FREE_SLAB, free_slab); 4783 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4784 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4785 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4786 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4787 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4788 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4789 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4790 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4791 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4792 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4793 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4794 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4795 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4796 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4797 #endif 4798 4799 static struct attribute *slab_attrs[] = { 4800 &slab_size_attr.attr, 4801 &object_size_attr.attr, 4802 &objs_per_slab_attr.attr, 4803 &order_attr.attr, 4804 &min_partial_attr.attr, 4805 &cpu_partial_attr.attr, 4806 &objects_attr.attr, 4807 &objects_partial_attr.attr, 4808 &partial_attr.attr, 4809 &cpu_slabs_attr.attr, 4810 &ctor_attr.attr, 4811 &aliases_attr.attr, 4812 &align_attr.attr, 4813 &hwcache_align_attr.attr, 4814 &reclaim_account_attr.attr, 4815 &destroy_by_rcu_attr.attr, 4816 &shrink_attr.attr, 4817 &reserved_attr.attr, 4818 &slabs_cpu_partial_attr.attr, 4819 #ifdef CONFIG_SLUB_DEBUG 4820 &total_objects_attr.attr, 4821 &slabs_attr.attr, 4822 &sanity_checks_attr.attr, 4823 &trace_attr.attr, 4824 &red_zone_attr.attr, 4825 &poison_attr.attr, 4826 &store_user_attr.attr, 4827 &validate_attr.attr, 4828 &alloc_calls_attr.attr, 4829 &free_calls_attr.attr, 4830 #endif 4831 #ifdef CONFIG_ZONE_DMA 4832 &cache_dma_attr.attr, 4833 #endif 4834 #ifdef CONFIG_NUMA 4835 &remote_node_defrag_ratio_attr.attr, 4836 #endif 4837 #ifdef CONFIG_SLUB_STATS 4838 &alloc_fastpath_attr.attr, 4839 &alloc_slowpath_attr.attr, 4840 &free_fastpath_attr.attr, 4841 &free_slowpath_attr.attr, 4842 &free_frozen_attr.attr, 4843 &free_add_partial_attr.attr, 4844 &free_remove_partial_attr.attr, 4845 &alloc_from_partial_attr.attr, 4846 &alloc_slab_attr.attr, 4847 &alloc_refill_attr.attr, 4848 &alloc_node_mismatch_attr.attr, 4849 &free_slab_attr.attr, 4850 &cpuslab_flush_attr.attr, 4851 &deactivate_full_attr.attr, 4852 &deactivate_empty_attr.attr, 4853 &deactivate_to_head_attr.attr, 4854 &deactivate_to_tail_attr.attr, 4855 &deactivate_remote_frees_attr.attr, 4856 &deactivate_bypass_attr.attr, 4857 &order_fallback_attr.attr, 4858 &cmpxchg_double_fail_attr.attr, 4859 &cmpxchg_double_cpu_fail_attr.attr, 4860 &cpu_partial_alloc_attr.attr, 4861 &cpu_partial_free_attr.attr, 4862 &cpu_partial_node_attr.attr, 4863 &cpu_partial_drain_attr.attr, 4864 #endif 4865 #ifdef CONFIG_FAILSLAB 4866 &failslab_attr.attr, 4867 #endif 4868 4869 NULL 4870 }; 4871 4872 static struct attribute_group slab_attr_group = { 4873 .attrs = slab_attrs, 4874 }; 4875 4876 static ssize_t slab_attr_show(struct kobject *kobj, 4877 struct attribute *attr, 4878 char *buf) 4879 { 4880 struct slab_attribute *attribute; 4881 struct kmem_cache *s; 4882 int err; 4883 4884 attribute = to_slab_attr(attr); 4885 s = to_slab(kobj); 4886 4887 if (!attribute->show) 4888 return -EIO; 4889 4890 err = attribute->show(s, buf); 4891 4892 return err; 4893 } 4894 4895 static ssize_t slab_attr_store(struct kobject *kobj, 4896 struct attribute *attr, 4897 const char *buf, size_t len) 4898 { 4899 struct slab_attribute *attribute; 4900 struct kmem_cache *s; 4901 int err; 4902 4903 attribute = to_slab_attr(attr); 4904 s = to_slab(kobj); 4905 4906 if (!attribute->store) 4907 return -EIO; 4908 4909 err = attribute->store(s, buf, len); 4910 #ifdef CONFIG_MEMCG_KMEM 4911 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 4912 int i; 4913 4914 mutex_lock(&slab_mutex); 4915 if (s->max_attr_size < len) 4916 s->max_attr_size = len; 4917 4918 /* 4919 * This is a best effort propagation, so this function's return 4920 * value will be determined by the parent cache only. This is 4921 * basically because not all attributes will have a well 4922 * defined semantics for rollbacks - most of the actions will 4923 * have permanent effects. 4924 * 4925 * Returning the error value of any of the children that fail 4926 * is not 100 % defined, in the sense that users seeing the 4927 * error code won't be able to know anything about the state of 4928 * the cache. 4929 * 4930 * Only returning the error code for the parent cache at least 4931 * has well defined semantics. The cache being written to 4932 * directly either failed or succeeded, in which case we loop 4933 * through the descendants with best-effort propagation. 4934 */ 4935 for_each_memcg_cache_index(i) { 4936 struct kmem_cache *c = cache_from_memcg_idx(s, i); 4937 if (c) 4938 attribute->store(c, buf, len); 4939 } 4940 mutex_unlock(&slab_mutex); 4941 } 4942 #endif 4943 return err; 4944 } 4945 4946 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 4947 { 4948 #ifdef CONFIG_MEMCG_KMEM 4949 int i; 4950 char *buffer = NULL; 4951 struct kmem_cache *root_cache; 4952 4953 if (is_root_cache(s)) 4954 return; 4955 4956 root_cache = s->memcg_params->root_cache; 4957 4958 /* 4959 * This mean this cache had no attribute written. Therefore, no point 4960 * in copying default values around 4961 */ 4962 if (!root_cache->max_attr_size) 4963 return; 4964 4965 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 4966 char mbuf[64]; 4967 char *buf; 4968 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 4969 4970 if (!attr || !attr->store || !attr->show) 4971 continue; 4972 4973 /* 4974 * It is really bad that we have to allocate here, so we will 4975 * do it only as a fallback. If we actually allocate, though, 4976 * we can just use the allocated buffer until the end. 4977 * 4978 * Most of the slub attributes will tend to be very small in 4979 * size, but sysfs allows buffers up to a page, so they can 4980 * theoretically happen. 4981 */ 4982 if (buffer) 4983 buf = buffer; 4984 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 4985 buf = mbuf; 4986 else { 4987 buffer = (char *) get_zeroed_page(GFP_KERNEL); 4988 if (WARN_ON(!buffer)) 4989 continue; 4990 buf = buffer; 4991 } 4992 4993 attr->show(root_cache, buf); 4994 attr->store(s, buf, strlen(buf)); 4995 } 4996 4997 if (buffer) 4998 free_page((unsigned long)buffer); 4999 #endif 5000 } 5001 5002 static void kmem_cache_release(struct kobject *k) 5003 { 5004 slab_kmem_cache_release(to_slab(k)); 5005 } 5006 5007 static const struct sysfs_ops slab_sysfs_ops = { 5008 .show = slab_attr_show, 5009 .store = slab_attr_store, 5010 }; 5011 5012 static struct kobj_type slab_ktype = { 5013 .sysfs_ops = &slab_sysfs_ops, 5014 .release = kmem_cache_release, 5015 }; 5016 5017 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5018 { 5019 struct kobj_type *ktype = get_ktype(kobj); 5020 5021 if (ktype == &slab_ktype) 5022 return 1; 5023 return 0; 5024 } 5025 5026 static const struct kset_uevent_ops slab_uevent_ops = { 5027 .filter = uevent_filter, 5028 }; 5029 5030 static struct kset *slab_kset; 5031 5032 static inline struct kset *cache_kset(struct kmem_cache *s) 5033 { 5034 #ifdef CONFIG_MEMCG_KMEM 5035 if (!is_root_cache(s)) 5036 return s->memcg_params->root_cache->memcg_kset; 5037 #endif 5038 return slab_kset; 5039 } 5040 5041 #define ID_STR_LENGTH 64 5042 5043 /* Create a unique string id for a slab cache: 5044 * 5045 * Format :[flags-]size 5046 */ 5047 static char *create_unique_id(struct kmem_cache *s) 5048 { 5049 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5050 char *p = name; 5051 5052 BUG_ON(!name); 5053 5054 *p++ = ':'; 5055 /* 5056 * First flags affecting slabcache operations. We will only 5057 * get here for aliasable slabs so we do not need to support 5058 * too many flags. The flags here must cover all flags that 5059 * are matched during merging to guarantee that the id is 5060 * unique. 5061 */ 5062 if (s->flags & SLAB_CACHE_DMA) 5063 *p++ = 'd'; 5064 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5065 *p++ = 'a'; 5066 if (s->flags & SLAB_DEBUG_FREE) 5067 *p++ = 'F'; 5068 if (!(s->flags & SLAB_NOTRACK)) 5069 *p++ = 't'; 5070 if (p != name + 1) 5071 *p++ = '-'; 5072 p += sprintf(p, "%07d", s->size); 5073 5074 BUG_ON(p > name + ID_STR_LENGTH - 1); 5075 return name; 5076 } 5077 5078 static int sysfs_slab_add(struct kmem_cache *s) 5079 { 5080 int err; 5081 const char *name; 5082 int unmergeable = slab_unmergeable(s); 5083 5084 if (unmergeable) { 5085 /* 5086 * Slabcache can never be merged so we can use the name proper. 5087 * This is typically the case for debug situations. In that 5088 * case we can catch duplicate names easily. 5089 */ 5090 sysfs_remove_link(&slab_kset->kobj, s->name); 5091 name = s->name; 5092 } else { 5093 /* 5094 * Create a unique name for the slab as a target 5095 * for the symlinks. 5096 */ 5097 name = create_unique_id(s); 5098 } 5099 5100 s->kobj.kset = cache_kset(s); 5101 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5102 if (err) 5103 goto out_put_kobj; 5104 5105 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5106 if (err) 5107 goto out_del_kobj; 5108 5109 #ifdef CONFIG_MEMCG_KMEM 5110 if (is_root_cache(s)) { 5111 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5112 if (!s->memcg_kset) { 5113 err = -ENOMEM; 5114 goto out_del_kobj; 5115 } 5116 } 5117 #endif 5118 5119 kobject_uevent(&s->kobj, KOBJ_ADD); 5120 if (!unmergeable) { 5121 /* Setup first alias */ 5122 sysfs_slab_alias(s, s->name); 5123 } 5124 out: 5125 if (!unmergeable) 5126 kfree(name); 5127 return err; 5128 out_del_kobj: 5129 kobject_del(&s->kobj); 5130 out_put_kobj: 5131 kobject_put(&s->kobj); 5132 goto out; 5133 } 5134 5135 void sysfs_slab_remove(struct kmem_cache *s) 5136 { 5137 if (slab_state < FULL) 5138 /* 5139 * Sysfs has not been setup yet so no need to remove the 5140 * cache from sysfs. 5141 */ 5142 return; 5143 5144 #ifdef CONFIG_MEMCG_KMEM 5145 kset_unregister(s->memcg_kset); 5146 #endif 5147 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5148 kobject_del(&s->kobj); 5149 kobject_put(&s->kobj); 5150 } 5151 5152 /* 5153 * Need to buffer aliases during bootup until sysfs becomes 5154 * available lest we lose that information. 5155 */ 5156 struct saved_alias { 5157 struct kmem_cache *s; 5158 const char *name; 5159 struct saved_alias *next; 5160 }; 5161 5162 static struct saved_alias *alias_list; 5163 5164 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5165 { 5166 struct saved_alias *al; 5167 5168 if (slab_state == FULL) { 5169 /* 5170 * If we have a leftover link then remove it. 5171 */ 5172 sysfs_remove_link(&slab_kset->kobj, name); 5173 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5174 } 5175 5176 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5177 if (!al) 5178 return -ENOMEM; 5179 5180 al->s = s; 5181 al->name = name; 5182 al->next = alias_list; 5183 alias_list = al; 5184 return 0; 5185 } 5186 5187 static int __init slab_sysfs_init(void) 5188 { 5189 struct kmem_cache *s; 5190 int err; 5191 5192 mutex_lock(&slab_mutex); 5193 5194 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5195 if (!slab_kset) { 5196 mutex_unlock(&slab_mutex); 5197 pr_err("Cannot register slab subsystem.\n"); 5198 return -ENOSYS; 5199 } 5200 5201 slab_state = FULL; 5202 5203 list_for_each_entry(s, &slab_caches, list) { 5204 err = sysfs_slab_add(s); 5205 if (err) 5206 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5207 s->name); 5208 } 5209 5210 while (alias_list) { 5211 struct saved_alias *al = alias_list; 5212 5213 alias_list = alias_list->next; 5214 err = sysfs_slab_alias(al->s, al->name); 5215 if (err) 5216 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5217 al->name); 5218 kfree(al); 5219 } 5220 5221 mutex_unlock(&slab_mutex); 5222 resiliency_test(); 5223 return 0; 5224 } 5225 5226 __initcall(slab_sysfs_init); 5227 #endif /* CONFIG_SYSFS */ 5228 5229 /* 5230 * The /proc/slabinfo ABI 5231 */ 5232 #ifdef CONFIG_SLABINFO 5233 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5234 { 5235 unsigned long nr_slabs = 0; 5236 unsigned long nr_objs = 0; 5237 unsigned long nr_free = 0; 5238 int node; 5239 struct kmem_cache_node *n; 5240 5241 for_each_kmem_cache_node(s, node, n) { 5242 nr_slabs += node_nr_slabs(n); 5243 nr_objs += node_nr_objs(n); 5244 nr_free += count_partial(n, count_free); 5245 } 5246 5247 sinfo->active_objs = nr_objs - nr_free; 5248 sinfo->num_objs = nr_objs; 5249 sinfo->active_slabs = nr_slabs; 5250 sinfo->num_slabs = nr_slabs; 5251 sinfo->objects_per_slab = oo_objects(s->oo); 5252 sinfo->cache_order = oo_order(s->oo); 5253 } 5254 5255 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5256 { 5257 } 5258 5259 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5260 size_t count, loff_t *ppos) 5261 { 5262 return -EIO; 5263 } 5264 #endif /* CONFIG_SLABINFO */ 5265