1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/stacktrace.h> 38 #include <linux/prefetch.h> 39 #include <linux/memcontrol.h> 40 #include <linux/random.h> 41 #include <kunit/test.h> 42 #include <kunit/test-bug.h> 43 #include <linux/sort.h> 44 45 #include <linux/debugfs.h> 46 #include <trace/events/kmem.h> 47 48 #include "internal.h" 49 50 /* 51 * Lock order: 52 * 1. slab_mutex (Global Mutex) 53 * 2. node->list_lock (Spinlock) 54 * 3. kmem_cache->cpu_slab->lock (Local lock) 55 * 4. slab_lock(slab) (Only on some arches) 56 * 5. object_map_lock (Only for debugging) 57 * 58 * slab_mutex 59 * 60 * The role of the slab_mutex is to protect the list of all the slabs 61 * and to synchronize major metadata changes to slab cache structures. 62 * Also synchronizes memory hotplug callbacks. 63 * 64 * slab_lock 65 * 66 * The slab_lock is a wrapper around the page lock, thus it is a bit 67 * spinlock. 68 * 69 * The slab_lock is only used on arches that do not have the ability 70 * to do a cmpxchg_double. It only protects: 71 * 72 * A. slab->freelist -> List of free objects in a slab 73 * B. slab->inuse -> Number of objects in use 74 * C. slab->objects -> Number of objects in slab 75 * D. slab->frozen -> frozen state 76 * 77 * Frozen slabs 78 * 79 * If a slab is frozen then it is exempt from list management. It is not 80 * on any list except per cpu partial list. The processor that froze the 81 * slab is the one who can perform list operations on the slab. Other 82 * processors may put objects onto the freelist but the processor that 83 * froze the slab is the only one that can retrieve the objects from the 84 * slab's freelist. 85 * 86 * list_lock 87 * 88 * The list_lock protects the partial and full list on each node and 89 * the partial slab counter. If taken then no new slabs may be added or 90 * removed from the lists nor make the number of partial slabs be modified. 91 * (Note that the total number of slabs is an atomic value that may be 92 * modified without taking the list lock). 93 * 94 * The list_lock is a centralized lock and thus we avoid taking it as 95 * much as possible. As long as SLUB does not have to handle partial 96 * slabs, operations can continue without any centralized lock. F.e. 97 * allocating a long series of objects that fill up slabs does not require 98 * the list lock. 99 * 100 * For debug caches, all allocations are forced to go through a list_lock 101 * protected region to serialize against concurrent validation. 102 * 103 * cpu_slab->lock local lock 104 * 105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 106 * except the stat counters. This is a percpu structure manipulated only by 107 * the local cpu, so the lock protects against being preempted or interrupted 108 * by an irq. Fast path operations rely on lockless operations instead. 109 * 110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 111 * which means the lockless fastpath cannot be used as it might interfere with 112 * an in-progress slow path operations. In this case the local lock is always 113 * taken but it still utilizes the freelist for the common operations. 114 * 115 * lockless fastpaths 116 * 117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 118 * are fully lockless when satisfied from the percpu slab (and when 119 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 120 * They also don't disable preemption or migration or irqs. They rely on 121 * the transaction id (tid) field to detect being preempted or moved to 122 * another cpu. 123 * 124 * irq, preemption, migration considerations 125 * 126 * Interrupts are disabled as part of list_lock or local_lock operations, or 127 * around the slab_lock operation, in order to make the slab allocator safe 128 * to use in the context of an irq. 129 * 130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 133 * doesn't have to be revalidated in each section protected by the local lock. 134 * 135 * SLUB assigns one slab for allocation to each processor. 136 * Allocations only occur from these slabs called cpu slabs. 137 * 138 * Slabs with free elements are kept on a partial list and during regular 139 * operations no list for full slabs is used. If an object in a full slab is 140 * freed then the slab will show up again on the partial lists. 141 * We track full slabs for debugging purposes though because otherwise we 142 * cannot scan all objects. 143 * 144 * Slabs are freed when they become empty. Teardown and setup is 145 * minimal so we rely on the page allocators per cpu caches for 146 * fast frees and allocs. 147 * 148 * slab->frozen The slab is frozen and exempt from list processing. 149 * This means that the slab is dedicated to a purpose 150 * such as satisfying allocations for a specific 151 * processor. Objects may be freed in the slab while 152 * it is frozen but slab_free will then skip the usual 153 * list operations. It is up to the processor holding 154 * the slab to integrate the slab into the slab lists 155 * when the slab is no longer needed. 156 * 157 * One use of this flag is to mark slabs that are 158 * used for allocations. Then such a slab becomes a cpu 159 * slab. The cpu slab may be equipped with an additional 160 * freelist that allows lockless access to 161 * free objects in addition to the regular freelist 162 * that requires the slab lock. 163 * 164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 165 * options set. This moves slab handling out of 166 * the fast path and disables lockless freelists. 167 */ 168 169 /* 170 * We could simply use migrate_disable()/enable() but as long as it's a 171 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 172 */ 173 #ifndef CONFIG_PREEMPT_RT 174 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 175 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 176 #define USE_LOCKLESS_FAST_PATH() (true) 177 #else 178 #define slub_get_cpu_ptr(var) \ 179 ({ \ 180 migrate_disable(); \ 181 this_cpu_ptr(var); \ 182 }) 183 #define slub_put_cpu_ptr(var) \ 184 do { \ 185 (void)(var); \ 186 migrate_enable(); \ 187 } while (0) 188 #define USE_LOCKLESS_FAST_PATH() (false) 189 #endif 190 191 #ifndef CONFIG_SLUB_TINY 192 #define __fastpath_inline __always_inline 193 #else 194 #define __fastpath_inline 195 #endif 196 197 #ifdef CONFIG_SLUB_DEBUG 198 #ifdef CONFIG_SLUB_DEBUG_ON 199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 200 #else 201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 202 #endif 203 #endif /* CONFIG_SLUB_DEBUG */ 204 205 /* Structure holding parameters for get_partial() call chain */ 206 struct partial_context { 207 struct slab **slab; 208 gfp_t flags; 209 unsigned int orig_size; 210 }; 211 212 static inline bool kmem_cache_debug(struct kmem_cache *s) 213 { 214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 215 } 216 217 static inline bool slub_debug_orig_size(struct kmem_cache *s) 218 { 219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 220 (s->flags & SLAB_KMALLOC)); 221 } 222 223 void *fixup_red_left(struct kmem_cache *s, void *p) 224 { 225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 226 p += s->red_left_pad; 227 228 return p; 229 } 230 231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 232 { 233 #ifdef CONFIG_SLUB_CPU_PARTIAL 234 return !kmem_cache_debug(s); 235 #else 236 return false; 237 #endif 238 } 239 240 /* 241 * Issues still to be resolved: 242 * 243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 244 * 245 * - Variable sizing of the per node arrays 246 */ 247 248 /* Enable to log cmpxchg failures */ 249 #undef SLUB_DEBUG_CMPXCHG 250 251 #ifndef CONFIG_SLUB_TINY 252 /* 253 * Minimum number of partial slabs. These will be left on the partial 254 * lists even if they are empty. kmem_cache_shrink may reclaim them. 255 */ 256 #define MIN_PARTIAL 5 257 258 /* 259 * Maximum number of desirable partial slabs. 260 * The existence of more partial slabs makes kmem_cache_shrink 261 * sort the partial list by the number of objects in use. 262 */ 263 #define MAX_PARTIAL 10 264 #else 265 #define MIN_PARTIAL 0 266 #define MAX_PARTIAL 0 267 #endif 268 269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 270 SLAB_POISON | SLAB_STORE_USER) 271 272 /* 273 * These debug flags cannot use CMPXCHG because there might be consistency 274 * issues when checking or reading debug information 275 */ 276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 277 SLAB_TRACE) 278 279 280 /* 281 * Debugging flags that require metadata to be stored in the slab. These get 282 * disabled when slub_debug=O is used and a cache's min order increases with 283 * metadata. 284 */ 285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 286 287 #define OO_SHIFT 16 288 #define OO_MASK ((1 << OO_SHIFT) - 1) 289 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 290 291 /* Internal SLUB flags */ 292 /* Poison object */ 293 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 294 /* Use cmpxchg_double */ 295 296 #ifdef system_has_freelist_aba 297 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 298 #else 299 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U) 300 #endif 301 302 /* 303 * Tracking user of a slab. 304 */ 305 #define TRACK_ADDRS_COUNT 16 306 struct track { 307 unsigned long addr; /* Called from address */ 308 #ifdef CONFIG_STACKDEPOT 309 depot_stack_handle_t handle; 310 #endif 311 int cpu; /* Was running on cpu */ 312 int pid; /* Pid context */ 313 unsigned long when; /* When did the operation occur */ 314 }; 315 316 enum track_item { TRACK_ALLOC, TRACK_FREE }; 317 318 #ifdef SLAB_SUPPORTS_SYSFS 319 static int sysfs_slab_add(struct kmem_cache *); 320 static int sysfs_slab_alias(struct kmem_cache *, const char *); 321 #else 322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 324 { return 0; } 325 #endif 326 327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 328 static void debugfs_slab_add(struct kmem_cache *); 329 #else 330 static inline void debugfs_slab_add(struct kmem_cache *s) { } 331 #endif 332 333 static inline void stat(const struct kmem_cache *s, enum stat_item si) 334 { 335 #ifdef CONFIG_SLUB_STATS 336 /* 337 * The rmw is racy on a preemptible kernel but this is acceptable, so 338 * avoid this_cpu_add()'s irq-disable overhead. 339 */ 340 raw_cpu_inc(s->cpu_slab->stat[si]); 341 #endif 342 } 343 344 /* 345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 347 * differ during memory hotplug/hotremove operations. 348 * Protected by slab_mutex. 349 */ 350 static nodemask_t slab_nodes; 351 352 #ifndef CONFIG_SLUB_TINY 353 /* 354 * Workqueue used for flush_cpu_slab(). 355 */ 356 static struct workqueue_struct *flushwq; 357 #endif 358 359 /******************************************************************** 360 * Core slab cache functions 361 *******************************************************************/ 362 363 /* 364 * freeptr_t represents a SLUB freelist pointer, which might be encoded 365 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 366 */ 367 typedef struct { unsigned long v; } freeptr_t; 368 369 /* 370 * Returns freelist pointer (ptr). With hardening, this is obfuscated 371 * with an XOR of the address where the pointer is held and a per-cache 372 * random number. 373 */ 374 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 375 void *ptr, unsigned long ptr_addr) 376 { 377 unsigned long encoded; 378 379 #ifdef CONFIG_SLAB_FREELIST_HARDENED 380 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 381 #else 382 encoded = (unsigned long)ptr; 383 #endif 384 return (freeptr_t){.v = encoded}; 385 } 386 387 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 388 freeptr_t ptr, unsigned long ptr_addr) 389 { 390 void *decoded; 391 392 #ifdef CONFIG_SLAB_FREELIST_HARDENED 393 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 394 #else 395 decoded = (void *)ptr.v; 396 #endif 397 return decoded; 398 } 399 400 static inline void *get_freepointer(struct kmem_cache *s, void *object) 401 { 402 unsigned long ptr_addr; 403 freeptr_t p; 404 405 object = kasan_reset_tag(object); 406 ptr_addr = (unsigned long)object + s->offset; 407 p = *(freeptr_t *)(ptr_addr); 408 return freelist_ptr_decode(s, p, ptr_addr); 409 } 410 411 #ifndef CONFIG_SLUB_TINY 412 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 413 { 414 prefetchw(object + s->offset); 415 } 416 #endif 417 418 /* 419 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 420 * pointer value in the case the current thread loses the race for the next 421 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 422 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 423 * KMSAN will still check all arguments of cmpxchg because of imperfect 424 * handling of inline assembly. 425 * To work around this problem, we apply __no_kmsan_checks to ensure that 426 * get_freepointer_safe() returns initialized memory. 427 */ 428 __no_kmsan_checks 429 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 430 { 431 unsigned long freepointer_addr; 432 freeptr_t p; 433 434 if (!debug_pagealloc_enabled_static()) 435 return get_freepointer(s, object); 436 437 object = kasan_reset_tag(object); 438 freepointer_addr = (unsigned long)object + s->offset; 439 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 440 return freelist_ptr_decode(s, p, freepointer_addr); 441 } 442 443 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 444 { 445 unsigned long freeptr_addr = (unsigned long)object + s->offset; 446 447 #ifdef CONFIG_SLAB_FREELIST_HARDENED 448 BUG_ON(object == fp); /* naive detection of double free or corruption */ 449 #endif 450 451 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 452 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 453 } 454 455 /* Loop over all objects in a slab */ 456 #define for_each_object(__p, __s, __addr, __objects) \ 457 for (__p = fixup_red_left(__s, __addr); \ 458 __p < (__addr) + (__objects) * (__s)->size; \ 459 __p += (__s)->size) 460 461 static inline unsigned int order_objects(unsigned int order, unsigned int size) 462 { 463 return ((unsigned int)PAGE_SIZE << order) / size; 464 } 465 466 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 467 unsigned int size) 468 { 469 struct kmem_cache_order_objects x = { 470 (order << OO_SHIFT) + order_objects(order, size) 471 }; 472 473 return x; 474 } 475 476 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 477 { 478 return x.x >> OO_SHIFT; 479 } 480 481 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 482 { 483 return x.x & OO_MASK; 484 } 485 486 #ifdef CONFIG_SLUB_CPU_PARTIAL 487 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 488 { 489 unsigned int nr_slabs; 490 491 s->cpu_partial = nr_objects; 492 493 /* 494 * We take the number of objects but actually limit the number of 495 * slabs on the per cpu partial list, in order to limit excessive 496 * growth of the list. For simplicity we assume that the slabs will 497 * be half-full. 498 */ 499 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 500 s->cpu_partial_slabs = nr_slabs; 501 } 502 #else 503 static inline void 504 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 505 { 506 } 507 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 508 509 /* 510 * Per slab locking using the pagelock 511 */ 512 static __always_inline void slab_lock(struct slab *slab) 513 { 514 struct page *page = slab_page(slab); 515 516 VM_BUG_ON_PAGE(PageTail(page), page); 517 bit_spin_lock(PG_locked, &page->flags); 518 } 519 520 static __always_inline void slab_unlock(struct slab *slab) 521 { 522 struct page *page = slab_page(slab); 523 524 VM_BUG_ON_PAGE(PageTail(page), page); 525 __bit_spin_unlock(PG_locked, &page->flags); 526 } 527 528 static inline bool 529 __update_freelist_fast(struct slab *slab, 530 void *freelist_old, unsigned long counters_old, 531 void *freelist_new, unsigned long counters_new) 532 { 533 #ifdef system_has_freelist_aba 534 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 535 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 536 537 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 538 #else 539 return false; 540 #endif 541 } 542 543 static inline bool 544 __update_freelist_slow(struct slab *slab, 545 void *freelist_old, unsigned long counters_old, 546 void *freelist_new, unsigned long counters_new) 547 { 548 bool ret = false; 549 550 slab_lock(slab); 551 if (slab->freelist == freelist_old && 552 slab->counters == counters_old) { 553 slab->freelist = freelist_new; 554 slab->counters = counters_new; 555 ret = true; 556 } 557 slab_unlock(slab); 558 559 return ret; 560 } 561 562 /* 563 * Interrupts must be disabled (for the fallback code to work right), typically 564 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 565 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 566 * allocation/ free operation in hardirq context. Therefore nothing can 567 * interrupt the operation. 568 */ 569 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 570 void *freelist_old, unsigned long counters_old, 571 void *freelist_new, unsigned long counters_new, 572 const char *n) 573 { 574 bool ret; 575 576 if (USE_LOCKLESS_FAST_PATH()) 577 lockdep_assert_irqs_disabled(); 578 579 if (s->flags & __CMPXCHG_DOUBLE) { 580 ret = __update_freelist_fast(slab, freelist_old, counters_old, 581 freelist_new, counters_new); 582 } else { 583 ret = __update_freelist_slow(slab, freelist_old, counters_old, 584 freelist_new, counters_new); 585 } 586 if (likely(ret)) 587 return true; 588 589 cpu_relax(); 590 stat(s, CMPXCHG_DOUBLE_FAIL); 591 592 #ifdef SLUB_DEBUG_CMPXCHG 593 pr_info("%s %s: cmpxchg double redo ", n, s->name); 594 #endif 595 596 return false; 597 } 598 599 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 600 void *freelist_old, unsigned long counters_old, 601 void *freelist_new, unsigned long counters_new, 602 const char *n) 603 { 604 bool ret; 605 606 if (s->flags & __CMPXCHG_DOUBLE) { 607 ret = __update_freelist_fast(slab, freelist_old, counters_old, 608 freelist_new, counters_new); 609 } else { 610 unsigned long flags; 611 612 local_irq_save(flags); 613 ret = __update_freelist_slow(slab, freelist_old, counters_old, 614 freelist_new, counters_new); 615 local_irq_restore(flags); 616 } 617 if (likely(ret)) 618 return true; 619 620 cpu_relax(); 621 stat(s, CMPXCHG_DOUBLE_FAIL); 622 623 #ifdef SLUB_DEBUG_CMPXCHG 624 pr_info("%s %s: cmpxchg double redo ", n, s->name); 625 #endif 626 627 return false; 628 } 629 630 #ifdef CONFIG_SLUB_DEBUG 631 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 632 static DEFINE_SPINLOCK(object_map_lock); 633 634 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 635 struct slab *slab) 636 { 637 void *addr = slab_address(slab); 638 void *p; 639 640 bitmap_zero(obj_map, slab->objects); 641 642 for (p = slab->freelist; p; p = get_freepointer(s, p)) 643 set_bit(__obj_to_index(s, addr, p), obj_map); 644 } 645 646 #if IS_ENABLED(CONFIG_KUNIT) 647 static bool slab_add_kunit_errors(void) 648 { 649 struct kunit_resource *resource; 650 651 if (!kunit_get_current_test()) 652 return false; 653 654 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 655 if (!resource) 656 return false; 657 658 (*(int *)resource->data)++; 659 kunit_put_resource(resource); 660 return true; 661 } 662 #else 663 static inline bool slab_add_kunit_errors(void) { return false; } 664 #endif 665 666 static inline unsigned int size_from_object(struct kmem_cache *s) 667 { 668 if (s->flags & SLAB_RED_ZONE) 669 return s->size - s->red_left_pad; 670 671 return s->size; 672 } 673 674 static inline void *restore_red_left(struct kmem_cache *s, void *p) 675 { 676 if (s->flags & SLAB_RED_ZONE) 677 p -= s->red_left_pad; 678 679 return p; 680 } 681 682 /* 683 * Debug settings: 684 */ 685 #if defined(CONFIG_SLUB_DEBUG_ON) 686 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 687 #else 688 static slab_flags_t slub_debug; 689 #endif 690 691 static char *slub_debug_string; 692 static int disable_higher_order_debug; 693 694 /* 695 * slub is about to manipulate internal object metadata. This memory lies 696 * outside the range of the allocated object, so accessing it would normally 697 * be reported by kasan as a bounds error. metadata_access_enable() is used 698 * to tell kasan that these accesses are OK. 699 */ 700 static inline void metadata_access_enable(void) 701 { 702 kasan_disable_current(); 703 } 704 705 static inline void metadata_access_disable(void) 706 { 707 kasan_enable_current(); 708 } 709 710 /* 711 * Object debugging 712 */ 713 714 /* Verify that a pointer has an address that is valid within a slab page */ 715 static inline int check_valid_pointer(struct kmem_cache *s, 716 struct slab *slab, void *object) 717 { 718 void *base; 719 720 if (!object) 721 return 1; 722 723 base = slab_address(slab); 724 object = kasan_reset_tag(object); 725 object = restore_red_left(s, object); 726 if (object < base || object >= base + slab->objects * s->size || 727 (object - base) % s->size) { 728 return 0; 729 } 730 731 return 1; 732 } 733 734 static void print_section(char *level, char *text, u8 *addr, 735 unsigned int length) 736 { 737 metadata_access_enable(); 738 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 739 16, 1, kasan_reset_tag((void *)addr), length, 1); 740 metadata_access_disable(); 741 } 742 743 /* 744 * See comment in calculate_sizes(). 745 */ 746 static inline bool freeptr_outside_object(struct kmem_cache *s) 747 { 748 return s->offset >= s->inuse; 749 } 750 751 /* 752 * Return offset of the end of info block which is inuse + free pointer if 753 * not overlapping with object. 754 */ 755 static inline unsigned int get_info_end(struct kmem_cache *s) 756 { 757 if (freeptr_outside_object(s)) 758 return s->inuse + sizeof(void *); 759 else 760 return s->inuse; 761 } 762 763 static struct track *get_track(struct kmem_cache *s, void *object, 764 enum track_item alloc) 765 { 766 struct track *p; 767 768 p = object + get_info_end(s); 769 770 return kasan_reset_tag(p + alloc); 771 } 772 773 #ifdef CONFIG_STACKDEPOT 774 static noinline depot_stack_handle_t set_track_prepare(void) 775 { 776 depot_stack_handle_t handle; 777 unsigned long entries[TRACK_ADDRS_COUNT]; 778 unsigned int nr_entries; 779 780 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 781 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 782 783 return handle; 784 } 785 #else 786 static inline depot_stack_handle_t set_track_prepare(void) 787 { 788 return 0; 789 } 790 #endif 791 792 static void set_track_update(struct kmem_cache *s, void *object, 793 enum track_item alloc, unsigned long addr, 794 depot_stack_handle_t handle) 795 { 796 struct track *p = get_track(s, object, alloc); 797 798 #ifdef CONFIG_STACKDEPOT 799 p->handle = handle; 800 #endif 801 p->addr = addr; 802 p->cpu = smp_processor_id(); 803 p->pid = current->pid; 804 p->when = jiffies; 805 } 806 807 static __always_inline void set_track(struct kmem_cache *s, void *object, 808 enum track_item alloc, unsigned long addr) 809 { 810 depot_stack_handle_t handle = set_track_prepare(); 811 812 set_track_update(s, object, alloc, addr, handle); 813 } 814 815 static void init_tracking(struct kmem_cache *s, void *object) 816 { 817 struct track *p; 818 819 if (!(s->flags & SLAB_STORE_USER)) 820 return; 821 822 p = get_track(s, object, TRACK_ALLOC); 823 memset(p, 0, 2*sizeof(struct track)); 824 } 825 826 static void print_track(const char *s, struct track *t, unsigned long pr_time) 827 { 828 depot_stack_handle_t handle __maybe_unused; 829 830 if (!t->addr) 831 return; 832 833 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 834 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 835 #ifdef CONFIG_STACKDEPOT 836 handle = READ_ONCE(t->handle); 837 if (handle) 838 stack_depot_print(handle); 839 else 840 pr_err("object allocation/free stack trace missing\n"); 841 #endif 842 } 843 844 void print_tracking(struct kmem_cache *s, void *object) 845 { 846 unsigned long pr_time = jiffies; 847 if (!(s->flags & SLAB_STORE_USER)) 848 return; 849 850 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 851 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 852 } 853 854 static void print_slab_info(const struct slab *slab) 855 { 856 struct folio *folio = (struct folio *)slab_folio(slab); 857 858 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 859 slab, slab->objects, slab->inuse, slab->freelist, 860 folio_flags(folio, 0)); 861 } 862 863 /* 864 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 865 * family will round up the real request size to these fixed ones, so 866 * there could be an extra area than what is requested. Save the original 867 * request size in the meta data area, for better debug and sanity check. 868 */ 869 static inline void set_orig_size(struct kmem_cache *s, 870 void *object, unsigned int orig_size) 871 { 872 void *p = kasan_reset_tag(object); 873 874 if (!slub_debug_orig_size(s)) 875 return; 876 877 #ifdef CONFIG_KASAN_GENERIC 878 /* 879 * KASAN could save its free meta data in object's data area at 880 * offset 0, if the size is larger than 'orig_size', it will 881 * overlap the data redzone in [orig_size+1, object_size], and 882 * the check should be skipped. 883 */ 884 if (kasan_metadata_size(s, true) > orig_size) 885 orig_size = s->object_size; 886 #endif 887 888 p += get_info_end(s); 889 p += sizeof(struct track) * 2; 890 891 *(unsigned int *)p = orig_size; 892 } 893 894 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 895 { 896 void *p = kasan_reset_tag(object); 897 898 if (!slub_debug_orig_size(s)) 899 return s->object_size; 900 901 p += get_info_end(s); 902 p += sizeof(struct track) * 2; 903 904 return *(unsigned int *)p; 905 } 906 907 void skip_orig_size_check(struct kmem_cache *s, const void *object) 908 { 909 set_orig_size(s, (void *)object, s->object_size); 910 } 911 912 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 913 { 914 struct va_format vaf; 915 va_list args; 916 917 va_start(args, fmt); 918 vaf.fmt = fmt; 919 vaf.va = &args; 920 pr_err("=============================================================================\n"); 921 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 922 pr_err("-----------------------------------------------------------------------------\n\n"); 923 va_end(args); 924 } 925 926 __printf(2, 3) 927 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 928 { 929 struct va_format vaf; 930 va_list args; 931 932 if (slab_add_kunit_errors()) 933 return; 934 935 va_start(args, fmt); 936 vaf.fmt = fmt; 937 vaf.va = &args; 938 pr_err("FIX %s: %pV\n", s->name, &vaf); 939 va_end(args); 940 } 941 942 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 943 { 944 unsigned int off; /* Offset of last byte */ 945 u8 *addr = slab_address(slab); 946 947 print_tracking(s, p); 948 949 print_slab_info(slab); 950 951 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 952 p, p - addr, get_freepointer(s, p)); 953 954 if (s->flags & SLAB_RED_ZONE) 955 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 956 s->red_left_pad); 957 else if (p > addr + 16) 958 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 959 960 print_section(KERN_ERR, "Object ", p, 961 min_t(unsigned int, s->object_size, PAGE_SIZE)); 962 if (s->flags & SLAB_RED_ZONE) 963 print_section(KERN_ERR, "Redzone ", p + s->object_size, 964 s->inuse - s->object_size); 965 966 off = get_info_end(s); 967 968 if (s->flags & SLAB_STORE_USER) 969 off += 2 * sizeof(struct track); 970 971 if (slub_debug_orig_size(s)) 972 off += sizeof(unsigned int); 973 974 off += kasan_metadata_size(s, false); 975 976 if (off != size_from_object(s)) 977 /* Beginning of the filler is the free pointer */ 978 print_section(KERN_ERR, "Padding ", p + off, 979 size_from_object(s) - off); 980 981 dump_stack(); 982 } 983 984 static void object_err(struct kmem_cache *s, struct slab *slab, 985 u8 *object, char *reason) 986 { 987 if (slab_add_kunit_errors()) 988 return; 989 990 slab_bug(s, "%s", reason); 991 print_trailer(s, slab, object); 992 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 993 } 994 995 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 996 void **freelist, void *nextfree) 997 { 998 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 999 !check_valid_pointer(s, slab, nextfree) && freelist) { 1000 object_err(s, slab, *freelist, "Freechain corrupt"); 1001 *freelist = NULL; 1002 slab_fix(s, "Isolate corrupted freechain"); 1003 return true; 1004 } 1005 1006 return false; 1007 } 1008 1009 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1010 const char *fmt, ...) 1011 { 1012 va_list args; 1013 char buf[100]; 1014 1015 if (slab_add_kunit_errors()) 1016 return; 1017 1018 va_start(args, fmt); 1019 vsnprintf(buf, sizeof(buf), fmt, args); 1020 va_end(args); 1021 slab_bug(s, "%s", buf); 1022 print_slab_info(slab); 1023 dump_stack(); 1024 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1025 } 1026 1027 static void init_object(struct kmem_cache *s, void *object, u8 val) 1028 { 1029 u8 *p = kasan_reset_tag(object); 1030 unsigned int poison_size = s->object_size; 1031 1032 if (s->flags & SLAB_RED_ZONE) { 1033 memset(p - s->red_left_pad, val, s->red_left_pad); 1034 1035 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1036 /* 1037 * Redzone the extra allocated space by kmalloc than 1038 * requested, and the poison size will be limited to 1039 * the original request size accordingly. 1040 */ 1041 poison_size = get_orig_size(s, object); 1042 } 1043 } 1044 1045 if (s->flags & __OBJECT_POISON) { 1046 memset(p, POISON_FREE, poison_size - 1); 1047 p[poison_size - 1] = POISON_END; 1048 } 1049 1050 if (s->flags & SLAB_RED_ZONE) 1051 memset(p + poison_size, val, s->inuse - poison_size); 1052 } 1053 1054 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1055 void *from, void *to) 1056 { 1057 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1058 memset(from, data, to - from); 1059 } 1060 1061 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1062 u8 *object, char *what, 1063 u8 *start, unsigned int value, unsigned int bytes) 1064 { 1065 u8 *fault; 1066 u8 *end; 1067 u8 *addr = slab_address(slab); 1068 1069 metadata_access_enable(); 1070 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1071 metadata_access_disable(); 1072 if (!fault) 1073 return 1; 1074 1075 end = start + bytes; 1076 while (end > fault && end[-1] == value) 1077 end--; 1078 1079 if (slab_add_kunit_errors()) 1080 goto skip_bug_print; 1081 1082 slab_bug(s, "%s overwritten", what); 1083 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1084 fault, end - 1, fault - addr, 1085 fault[0], value); 1086 print_trailer(s, slab, object); 1087 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1088 1089 skip_bug_print: 1090 restore_bytes(s, what, value, fault, end); 1091 return 0; 1092 } 1093 1094 /* 1095 * Object layout: 1096 * 1097 * object address 1098 * Bytes of the object to be managed. 1099 * If the freepointer may overlay the object then the free 1100 * pointer is at the middle of the object. 1101 * 1102 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1103 * 0xa5 (POISON_END) 1104 * 1105 * object + s->object_size 1106 * Padding to reach word boundary. This is also used for Redzoning. 1107 * Padding is extended by another word if Redzoning is enabled and 1108 * object_size == inuse. 1109 * 1110 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1111 * 0xcc (RED_ACTIVE) for objects in use. 1112 * 1113 * object + s->inuse 1114 * Meta data starts here. 1115 * 1116 * A. Free pointer (if we cannot overwrite object on free) 1117 * B. Tracking data for SLAB_STORE_USER 1118 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1119 * D. Padding to reach required alignment boundary or at minimum 1120 * one word if debugging is on to be able to detect writes 1121 * before the word boundary. 1122 * 1123 * Padding is done using 0x5a (POISON_INUSE) 1124 * 1125 * object + s->size 1126 * Nothing is used beyond s->size. 1127 * 1128 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1129 * ignored. And therefore no slab options that rely on these boundaries 1130 * may be used with merged slabcaches. 1131 */ 1132 1133 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1134 { 1135 unsigned long off = get_info_end(s); /* The end of info */ 1136 1137 if (s->flags & SLAB_STORE_USER) { 1138 /* We also have user information there */ 1139 off += 2 * sizeof(struct track); 1140 1141 if (s->flags & SLAB_KMALLOC) 1142 off += sizeof(unsigned int); 1143 } 1144 1145 off += kasan_metadata_size(s, false); 1146 1147 if (size_from_object(s) == off) 1148 return 1; 1149 1150 return check_bytes_and_report(s, slab, p, "Object padding", 1151 p + off, POISON_INUSE, size_from_object(s) - off); 1152 } 1153 1154 /* Check the pad bytes at the end of a slab page */ 1155 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1156 { 1157 u8 *start; 1158 u8 *fault; 1159 u8 *end; 1160 u8 *pad; 1161 int length; 1162 int remainder; 1163 1164 if (!(s->flags & SLAB_POISON)) 1165 return; 1166 1167 start = slab_address(slab); 1168 length = slab_size(slab); 1169 end = start + length; 1170 remainder = length % s->size; 1171 if (!remainder) 1172 return; 1173 1174 pad = end - remainder; 1175 metadata_access_enable(); 1176 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1177 metadata_access_disable(); 1178 if (!fault) 1179 return; 1180 while (end > fault && end[-1] == POISON_INUSE) 1181 end--; 1182 1183 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1184 fault, end - 1, fault - start); 1185 print_section(KERN_ERR, "Padding ", pad, remainder); 1186 1187 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1188 } 1189 1190 static int check_object(struct kmem_cache *s, struct slab *slab, 1191 void *object, u8 val) 1192 { 1193 u8 *p = object; 1194 u8 *endobject = object + s->object_size; 1195 unsigned int orig_size; 1196 1197 if (s->flags & SLAB_RED_ZONE) { 1198 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1199 object - s->red_left_pad, val, s->red_left_pad)) 1200 return 0; 1201 1202 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1203 endobject, val, s->inuse - s->object_size)) 1204 return 0; 1205 1206 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1207 orig_size = get_orig_size(s, object); 1208 1209 if (s->object_size > orig_size && 1210 !check_bytes_and_report(s, slab, object, 1211 "kmalloc Redzone", p + orig_size, 1212 val, s->object_size - orig_size)) { 1213 return 0; 1214 } 1215 } 1216 } else { 1217 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1218 check_bytes_and_report(s, slab, p, "Alignment padding", 1219 endobject, POISON_INUSE, 1220 s->inuse - s->object_size); 1221 } 1222 } 1223 1224 if (s->flags & SLAB_POISON) { 1225 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1226 (!check_bytes_and_report(s, slab, p, "Poison", p, 1227 POISON_FREE, s->object_size - 1) || 1228 !check_bytes_and_report(s, slab, p, "End Poison", 1229 p + s->object_size - 1, POISON_END, 1))) 1230 return 0; 1231 /* 1232 * check_pad_bytes cleans up on its own. 1233 */ 1234 check_pad_bytes(s, slab, p); 1235 } 1236 1237 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1238 /* 1239 * Object and freepointer overlap. Cannot check 1240 * freepointer while object is allocated. 1241 */ 1242 return 1; 1243 1244 /* Check free pointer validity */ 1245 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1246 object_err(s, slab, p, "Freepointer corrupt"); 1247 /* 1248 * No choice but to zap it and thus lose the remainder 1249 * of the free objects in this slab. May cause 1250 * another error because the object count is now wrong. 1251 */ 1252 set_freepointer(s, p, NULL); 1253 return 0; 1254 } 1255 return 1; 1256 } 1257 1258 static int check_slab(struct kmem_cache *s, struct slab *slab) 1259 { 1260 int maxobj; 1261 1262 if (!folio_test_slab(slab_folio(slab))) { 1263 slab_err(s, slab, "Not a valid slab page"); 1264 return 0; 1265 } 1266 1267 maxobj = order_objects(slab_order(slab), s->size); 1268 if (slab->objects > maxobj) { 1269 slab_err(s, slab, "objects %u > max %u", 1270 slab->objects, maxobj); 1271 return 0; 1272 } 1273 if (slab->inuse > slab->objects) { 1274 slab_err(s, slab, "inuse %u > max %u", 1275 slab->inuse, slab->objects); 1276 return 0; 1277 } 1278 if (slab->frozen) { 1279 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed"); 1280 return 0; 1281 } 1282 1283 /* Slab_pad_check fixes things up after itself */ 1284 slab_pad_check(s, slab); 1285 return 1; 1286 } 1287 1288 /* 1289 * Determine if a certain object in a slab is on the freelist. Must hold the 1290 * slab lock to guarantee that the chains are in a consistent state. 1291 */ 1292 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1293 { 1294 int nr = 0; 1295 void *fp; 1296 void *object = NULL; 1297 int max_objects; 1298 1299 fp = slab->freelist; 1300 while (fp && nr <= slab->objects) { 1301 if (fp == search) 1302 return 1; 1303 if (!check_valid_pointer(s, slab, fp)) { 1304 if (object) { 1305 object_err(s, slab, object, 1306 "Freechain corrupt"); 1307 set_freepointer(s, object, NULL); 1308 } else { 1309 slab_err(s, slab, "Freepointer corrupt"); 1310 slab->freelist = NULL; 1311 slab->inuse = slab->objects; 1312 slab_fix(s, "Freelist cleared"); 1313 return 0; 1314 } 1315 break; 1316 } 1317 object = fp; 1318 fp = get_freepointer(s, object); 1319 nr++; 1320 } 1321 1322 max_objects = order_objects(slab_order(slab), s->size); 1323 if (max_objects > MAX_OBJS_PER_PAGE) 1324 max_objects = MAX_OBJS_PER_PAGE; 1325 1326 if (slab->objects != max_objects) { 1327 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1328 slab->objects, max_objects); 1329 slab->objects = max_objects; 1330 slab_fix(s, "Number of objects adjusted"); 1331 } 1332 if (slab->inuse != slab->objects - nr) { 1333 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1334 slab->inuse, slab->objects - nr); 1335 slab->inuse = slab->objects - nr; 1336 slab_fix(s, "Object count adjusted"); 1337 } 1338 return search == NULL; 1339 } 1340 1341 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1342 int alloc) 1343 { 1344 if (s->flags & SLAB_TRACE) { 1345 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1346 s->name, 1347 alloc ? "alloc" : "free", 1348 object, slab->inuse, 1349 slab->freelist); 1350 1351 if (!alloc) 1352 print_section(KERN_INFO, "Object ", (void *)object, 1353 s->object_size); 1354 1355 dump_stack(); 1356 } 1357 } 1358 1359 /* 1360 * Tracking of fully allocated slabs for debugging purposes. 1361 */ 1362 static void add_full(struct kmem_cache *s, 1363 struct kmem_cache_node *n, struct slab *slab) 1364 { 1365 if (!(s->flags & SLAB_STORE_USER)) 1366 return; 1367 1368 lockdep_assert_held(&n->list_lock); 1369 list_add(&slab->slab_list, &n->full); 1370 } 1371 1372 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1373 { 1374 if (!(s->flags & SLAB_STORE_USER)) 1375 return; 1376 1377 lockdep_assert_held(&n->list_lock); 1378 list_del(&slab->slab_list); 1379 } 1380 1381 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1382 { 1383 return atomic_long_read(&n->nr_slabs); 1384 } 1385 1386 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1387 { 1388 struct kmem_cache_node *n = get_node(s, node); 1389 1390 /* 1391 * May be called early in order to allocate a slab for the 1392 * kmem_cache_node structure. Solve the chicken-egg 1393 * dilemma by deferring the increment of the count during 1394 * bootstrap (see early_kmem_cache_node_alloc). 1395 */ 1396 if (likely(n)) { 1397 atomic_long_inc(&n->nr_slabs); 1398 atomic_long_add(objects, &n->total_objects); 1399 } 1400 } 1401 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1402 { 1403 struct kmem_cache_node *n = get_node(s, node); 1404 1405 atomic_long_dec(&n->nr_slabs); 1406 atomic_long_sub(objects, &n->total_objects); 1407 } 1408 1409 /* Object debug checks for alloc/free paths */ 1410 static void setup_object_debug(struct kmem_cache *s, void *object) 1411 { 1412 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1413 return; 1414 1415 init_object(s, object, SLUB_RED_INACTIVE); 1416 init_tracking(s, object); 1417 } 1418 1419 static 1420 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1421 { 1422 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1423 return; 1424 1425 metadata_access_enable(); 1426 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1427 metadata_access_disable(); 1428 } 1429 1430 static inline int alloc_consistency_checks(struct kmem_cache *s, 1431 struct slab *slab, void *object) 1432 { 1433 if (!check_slab(s, slab)) 1434 return 0; 1435 1436 if (!check_valid_pointer(s, slab, object)) { 1437 object_err(s, slab, object, "Freelist Pointer check fails"); 1438 return 0; 1439 } 1440 1441 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1442 return 0; 1443 1444 return 1; 1445 } 1446 1447 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1448 struct slab *slab, void *object, int orig_size) 1449 { 1450 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1451 if (!alloc_consistency_checks(s, slab, object)) 1452 goto bad; 1453 } 1454 1455 /* Success. Perform special debug activities for allocs */ 1456 trace(s, slab, object, 1); 1457 set_orig_size(s, object, orig_size); 1458 init_object(s, object, SLUB_RED_ACTIVE); 1459 return true; 1460 1461 bad: 1462 if (folio_test_slab(slab_folio(slab))) { 1463 /* 1464 * If this is a slab page then lets do the best we can 1465 * to avoid issues in the future. Marking all objects 1466 * as used avoids touching the remaining objects. 1467 */ 1468 slab_fix(s, "Marking all objects used"); 1469 slab->inuse = slab->objects; 1470 slab->freelist = NULL; 1471 slab->frozen = 1; /* mark consistency-failed slab as frozen */ 1472 } 1473 return false; 1474 } 1475 1476 static inline int free_consistency_checks(struct kmem_cache *s, 1477 struct slab *slab, void *object, unsigned long addr) 1478 { 1479 if (!check_valid_pointer(s, slab, object)) { 1480 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1481 return 0; 1482 } 1483 1484 if (on_freelist(s, slab, object)) { 1485 object_err(s, slab, object, "Object already free"); 1486 return 0; 1487 } 1488 1489 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1490 return 0; 1491 1492 if (unlikely(s != slab->slab_cache)) { 1493 if (!folio_test_slab(slab_folio(slab))) { 1494 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1495 object); 1496 } else if (!slab->slab_cache) { 1497 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1498 object); 1499 dump_stack(); 1500 } else 1501 object_err(s, slab, object, 1502 "page slab pointer corrupt."); 1503 return 0; 1504 } 1505 return 1; 1506 } 1507 1508 /* 1509 * Parse a block of slub_debug options. Blocks are delimited by ';' 1510 * 1511 * @str: start of block 1512 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1513 * @slabs: return start of list of slabs, or NULL when there's no list 1514 * @init: assume this is initial parsing and not per-kmem-create parsing 1515 * 1516 * returns the start of next block if there's any, or NULL 1517 */ 1518 static char * 1519 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1520 { 1521 bool higher_order_disable = false; 1522 1523 /* Skip any completely empty blocks */ 1524 while (*str && *str == ';') 1525 str++; 1526 1527 if (*str == ',') { 1528 /* 1529 * No options but restriction on slabs. This means full 1530 * debugging for slabs matching a pattern. 1531 */ 1532 *flags = DEBUG_DEFAULT_FLAGS; 1533 goto check_slabs; 1534 } 1535 *flags = 0; 1536 1537 /* Determine which debug features should be switched on */ 1538 for (; *str && *str != ',' && *str != ';'; str++) { 1539 switch (tolower(*str)) { 1540 case '-': 1541 *flags = 0; 1542 break; 1543 case 'f': 1544 *flags |= SLAB_CONSISTENCY_CHECKS; 1545 break; 1546 case 'z': 1547 *flags |= SLAB_RED_ZONE; 1548 break; 1549 case 'p': 1550 *flags |= SLAB_POISON; 1551 break; 1552 case 'u': 1553 *flags |= SLAB_STORE_USER; 1554 break; 1555 case 't': 1556 *flags |= SLAB_TRACE; 1557 break; 1558 case 'a': 1559 *flags |= SLAB_FAILSLAB; 1560 break; 1561 case 'o': 1562 /* 1563 * Avoid enabling debugging on caches if its minimum 1564 * order would increase as a result. 1565 */ 1566 higher_order_disable = true; 1567 break; 1568 default: 1569 if (init) 1570 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1571 } 1572 } 1573 check_slabs: 1574 if (*str == ',') 1575 *slabs = ++str; 1576 else 1577 *slabs = NULL; 1578 1579 /* Skip over the slab list */ 1580 while (*str && *str != ';') 1581 str++; 1582 1583 /* Skip any completely empty blocks */ 1584 while (*str && *str == ';') 1585 str++; 1586 1587 if (init && higher_order_disable) 1588 disable_higher_order_debug = 1; 1589 1590 if (*str) 1591 return str; 1592 else 1593 return NULL; 1594 } 1595 1596 static int __init setup_slub_debug(char *str) 1597 { 1598 slab_flags_t flags; 1599 slab_flags_t global_flags; 1600 char *saved_str; 1601 char *slab_list; 1602 bool global_slub_debug_changed = false; 1603 bool slab_list_specified = false; 1604 1605 global_flags = DEBUG_DEFAULT_FLAGS; 1606 if (*str++ != '=' || !*str) 1607 /* 1608 * No options specified. Switch on full debugging. 1609 */ 1610 goto out; 1611 1612 saved_str = str; 1613 while (str) { 1614 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1615 1616 if (!slab_list) { 1617 global_flags = flags; 1618 global_slub_debug_changed = true; 1619 } else { 1620 slab_list_specified = true; 1621 if (flags & SLAB_STORE_USER) 1622 stack_depot_request_early_init(); 1623 } 1624 } 1625 1626 /* 1627 * For backwards compatibility, a single list of flags with list of 1628 * slabs means debugging is only changed for those slabs, so the global 1629 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1630 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1631 * long as there is no option specifying flags without a slab list. 1632 */ 1633 if (slab_list_specified) { 1634 if (!global_slub_debug_changed) 1635 global_flags = slub_debug; 1636 slub_debug_string = saved_str; 1637 } 1638 out: 1639 slub_debug = global_flags; 1640 if (slub_debug & SLAB_STORE_USER) 1641 stack_depot_request_early_init(); 1642 if (slub_debug != 0 || slub_debug_string) 1643 static_branch_enable(&slub_debug_enabled); 1644 else 1645 static_branch_disable(&slub_debug_enabled); 1646 if ((static_branch_unlikely(&init_on_alloc) || 1647 static_branch_unlikely(&init_on_free)) && 1648 (slub_debug & SLAB_POISON)) 1649 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1650 return 1; 1651 } 1652 1653 __setup("slub_debug", setup_slub_debug); 1654 1655 /* 1656 * kmem_cache_flags - apply debugging options to the cache 1657 * @object_size: the size of an object without meta data 1658 * @flags: flags to set 1659 * @name: name of the cache 1660 * 1661 * Debug option(s) are applied to @flags. In addition to the debug 1662 * option(s), if a slab name (or multiple) is specified i.e. 1663 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1664 * then only the select slabs will receive the debug option(s). 1665 */ 1666 slab_flags_t kmem_cache_flags(unsigned int object_size, 1667 slab_flags_t flags, const char *name) 1668 { 1669 char *iter; 1670 size_t len; 1671 char *next_block; 1672 slab_flags_t block_flags; 1673 slab_flags_t slub_debug_local = slub_debug; 1674 1675 if (flags & SLAB_NO_USER_FLAGS) 1676 return flags; 1677 1678 /* 1679 * If the slab cache is for debugging (e.g. kmemleak) then 1680 * don't store user (stack trace) information by default, 1681 * but let the user enable it via the command line below. 1682 */ 1683 if (flags & SLAB_NOLEAKTRACE) 1684 slub_debug_local &= ~SLAB_STORE_USER; 1685 1686 len = strlen(name); 1687 next_block = slub_debug_string; 1688 /* Go through all blocks of debug options, see if any matches our slab's name */ 1689 while (next_block) { 1690 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1691 if (!iter) 1692 continue; 1693 /* Found a block that has a slab list, search it */ 1694 while (*iter) { 1695 char *end, *glob; 1696 size_t cmplen; 1697 1698 end = strchrnul(iter, ','); 1699 if (next_block && next_block < end) 1700 end = next_block - 1; 1701 1702 glob = strnchr(iter, end - iter, '*'); 1703 if (glob) 1704 cmplen = glob - iter; 1705 else 1706 cmplen = max_t(size_t, len, (end - iter)); 1707 1708 if (!strncmp(name, iter, cmplen)) { 1709 flags |= block_flags; 1710 return flags; 1711 } 1712 1713 if (!*end || *end == ';') 1714 break; 1715 iter = end + 1; 1716 } 1717 } 1718 1719 return flags | slub_debug_local; 1720 } 1721 #else /* !CONFIG_SLUB_DEBUG */ 1722 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1723 static inline 1724 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1725 1726 static inline bool alloc_debug_processing(struct kmem_cache *s, 1727 struct slab *slab, void *object, int orig_size) { return true; } 1728 1729 static inline bool free_debug_processing(struct kmem_cache *s, 1730 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1731 unsigned long addr, depot_stack_handle_t handle) { return true; } 1732 1733 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1734 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1735 void *object, u8 val) { return 1; } 1736 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1737 static inline void set_track(struct kmem_cache *s, void *object, 1738 enum track_item alloc, unsigned long addr) {} 1739 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1740 struct slab *slab) {} 1741 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1742 struct slab *slab) {} 1743 slab_flags_t kmem_cache_flags(unsigned int object_size, 1744 slab_flags_t flags, const char *name) 1745 { 1746 return flags; 1747 } 1748 #define slub_debug 0 1749 1750 #define disable_higher_order_debug 0 1751 1752 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1753 { return 0; } 1754 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1755 int objects) {} 1756 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1757 int objects) {} 1758 1759 #ifndef CONFIG_SLUB_TINY 1760 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1761 void **freelist, void *nextfree) 1762 { 1763 return false; 1764 } 1765 #endif 1766 #endif /* CONFIG_SLUB_DEBUG */ 1767 1768 /* 1769 * Hooks for other subsystems that check memory allocations. In a typical 1770 * production configuration these hooks all should produce no code at all. 1771 */ 1772 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1773 void *x, bool init) 1774 { 1775 kmemleak_free_recursive(x, s->flags); 1776 kmsan_slab_free(s, x); 1777 1778 debug_check_no_locks_freed(x, s->object_size); 1779 1780 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1781 debug_check_no_obj_freed(x, s->object_size); 1782 1783 /* Use KCSAN to help debug racy use-after-free. */ 1784 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1785 __kcsan_check_access(x, s->object_size, 1786 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1787 1788 /* 1789 * As memory initialization might be integrated into KASAN, 1790 * kasan_slab_free and initialization memset's must be 1791 * kept together to avoid discrepancies in behavior. 1792 * 1793 * The initialization memset's clear the object and the metadata, 1794 * but don't touch the SLAB redzone. 1795 */ 1796 if (init) { 1797 int rsize; 1798 1799 if (!kasan_has_integrated_init()) 1800 memset(kasan_reset_tag(x), 0, s->object_size); 1801 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1802 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1803 s->size - s->inuse - rsize); 1804 } 1805 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1806 return kasan_slab_free(s, x, init); 1807 } 1808 1809 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1810 void **head, void **tail, 1811 int *cnt) 1812 { 1813 1814 void *object; 1815 void *next = *head; 1816 void *old_tail = *tail ? *tail : *head; 1817 1818 if (is_kfence_address(next)) { 1819 slab_free_hook(s, next, false); 1820 return true; 1821 } 1822 1823 /* Head and tail of the reconstructed freelist */ 1824 *head = NULL; 1825 *tail = NULL; 1826 1827 do { 1828 object = next; 1829 next = get_freepointer(s, object); 1830 1831 /* If object's reuse doesn't have to be delayed */ 1832 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1833 /* Move object to the new freelist */ 1834 set_freepointer(s, object, *head); 1835 *head = object; 1836 if (!*tail) 1837 *tail = object; 1838 } else { 1839 /* 1840 * Adjust the reconstructed freelist depth 1841 * accordingly if object's reuse is delayed. 1842 */ 1843 --(*cnt); 1844 } 1845 } while (object != old_tail); 1846 1847 if (*head == *tail) 1848 *tail = NULL; 1849 1850 return *head != NULL; 1851 } 1852 1853 static void *setup_object(struct kmem_cache *s, void *object) 1854 { 1855 setup_object_debug(s, object); 1856 object = kasan_init_slab_obj(s, object); 1857 if (unlikely(s->ctor)) { 1858 kasan_unpoison_object_data(s, object); 1859 s->ctor(object); 1860 kasan_poison_object_data(s, object); 1861 } 1862 return object; 1863 } 1864 1865 /* 1866 * Slab allocation and freeing 1867 */ 1868 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 1869 struct kmem_cache_order_objects oo) 1870 { 1871 struct folio *folio; 1872 struct slab *slab; 1873 unsigned int order = oo_order(oo); 1874 1875 if (node == NUMA_NO_NODE) 1876 folio = (struct folio *)alloc_pages(flags, order); 1877 else 1878 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1879 1880 if (!folio) 1881 return NULL; 1882 1883 slab = folio_slab(folio); 1884 __folio_set_slab(folio); 1885 /* Make the flag visible before any changes to folio->mapping */ 1886 smp_wmb(); 1887 if (folio_is_pfmemalloc(folio)) 1888 slab_set_pfmemalloc(slab); 1889 1890 return slab; 1891 } 1892 1893 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1894 /* Pre-initialize the random sequence cache */ 1895 static int init_cache_random_seq(struct kmem_cache *s) 1896 { 1897 unsigned int count = oo_objects(s->oo); 1898 int err; 1899 1900 /* Bailout if already initialised */ 1901 if (s->random_seq) 1902 return 0; 1903 1904 err = cache_random_seq_create(s, count, GFP_KERNEL); 1905 if (err) { 1906 pr_err("SLUB: Unable to initialize free list for %s\n", 1907 s->name); 1908 return err; 1909 } 1910 1911 /* Transform to an offset on the set of pages */ 1912 if (s->random_seq) { 1913 unsigned int i; 1914 1915 for (i = 0; i < count; i++) 1916 s->random_seq[i] *= s->size; 1917 } 1918 return 0; 1919 } 1920 1921 /* Initialize each random sequence freelist per cache */ 1922 static void __init init_freelist_randomization(void) 1923 { 1924 struct kmem_cache *s; 1925 1926 mutex_lock(&slab_mutex); 1927 1928 list_for_each_entry(s, &slab_caches, list) 1929 init_cache_random_seq(s); 1930 1931 mutex_unlock(&slab_mutex); 1932 } 1933 1934 /* Get the next entry on the pre-computed freelist randomized */ 1935 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1936 unsigned long *pos, void *start, 1937 unsigned long page_limit, 1938 unsigned long freelist_count) 1939 { 1940 unsigned int idx; 1941 1942 /* 1943 * If the target page allocation failed, the number of objects on the 1944 * page might be smaller than the usual size defined by the cache. 1945 */ 1946 do { 1947 idx = s->random_seq[*pos]; 1948 *pos += 1; 1949 if (*pos >= freelist_count) 1950 *pos = 0; 1951 } while (unlikely(idx >= page_limit)); 1952 1953 return (char *)start + idx; 1954 } 1955 1956 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1957 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1958 { 1959 void *start; 1960 void *cur; 1961 void *next; 1962 unsigned long idx, pos, page_limit, freelist_count; 1963 1964 if (slab->objects < 2 || !s->random_seq) 1965 return false; 1966 1967 freelist_count = oo_objects(s->oo); 1968 pos = get_random_u32_below(freelist_count); 1969 1970 page_limit = slab->objects * s->size; 1971 start = fixup_red_left(s, slab_address(slab)); 1972 1973 /* First entry is used as the base of the freelist */ 1974 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1975 freelist_count); 1976 cur = setup_object(s, cur); 1977 slab->freelist = cur; 1978 1979 for (idx = 1; idx < slab->objects; idx++) { 1980 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1981 freelist_count); 1982 next = setup_object(s, next); 1983 set_freepointer(s, cur, next); 1984 cur = next; 1985 } 1986 set_freepointer(s, cur, NULL); 1987 1988 return true; 1989 } 1990 #else 1991 static inline int init_cache_random_seq(struct kmem_cache *s) 1992 { 1993 return 0; 1994 } 1995 static inline void init_freelist_randomization(void) { } 1996 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1997 { 1998 return false; 1999 } 2000 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2001 2002 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2003 { 2004 struct slab *slab; 2005 struct kmem_cache_order_objects oo = s->oo; 2006 gfp_t alloc_gfp; 2007 void *start, *p, *next; 2008 int idx; 2009 bool shuffle; 2010 2011 flags &= gfp_allowed_mask; 2012 2013 flags |= s->allocflags; 2014 2015 /* 2016 * Let the initial higher-order allocation fail under memory pressure 2017 * so we fall-back to the minimum order allocation. 2018 */ 2019 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2020 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2021 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2022 2023 slab = alloc_slab_page(alloc_gfp, node, oo); 2024 if (unlikely(!slab)) { 2025 oo = s->min; 2026 alloc_gfp = flags; 2027 /* 2028 * Allocation may have failed due to fragmentation. 2029 * Try a lower order alloc if possible 2030 */ 2031 slab = alloc_slab_page(alloc_gfp, node, oo); 2032 if (unlikely(!slab)) 2033 return NULL; 2034 stat(s, ORDER_FALLBACK); 2035 } 2036 2037 slab->objects = oo_objects(oo); 2038 slab->inuse = 0; 2039 slab->frozen = 0; 2040 2041 account_slab(slab, oo_order(oo), s, flags); 2042 2043 slab->slab_cache = s; 2044 2045 kasan_poison_slab(slab); 2046 2047 start = slab_address(slab); 2048 2049 setup_slab_debug(s, slab, start); 2050 2051 shuffle = shuffle_freelist(s, slab); 2052 2053 if (!shuffle) { 2054 start = fixup_red_left(s, start); 2055 start = setup_object(s, start); 2056 slab->freelist = start; 2057 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2058 next = p + s->size; 2059 next = setup_object(s, next); 2060 set_freepointer(s, p, next); 2061 p = next; 2062 } 2063 set_freepointer(s, p, NULL); 2064 } 2065 2066 return slab; 2067 } 2068 2069 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2070 { 2071 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2072 flags = kmalloc_fix_flags(flags); 2073 2074 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2075 2076 return allocate_slab(s, 2077 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2078 } 2079 2080 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2081 { 2082 struct folio *folio = slab_folio(slab); 2083 int order = folio_order(folio); 2084 int pages = 1 << order; 2085 2086 __slab_clear_pfmemalloc(slab); 2087 folio->mapping = NULL; 2088 /* Make the mapping reset visible before clearing the flag */ 2089 smp_wmb(); 2090 __folio_clear_slab(folio); 2091 mm_account_reclaimed_pages(pages); 2092 unaccount_slab(slab, order, s); 2093 __free_pages(&folio->page, order); 2094 } 2095 2096 static void rcu_free_slab(struct rcu_head *h) 2097 { 2098 struct slab *slab = container_of(h, struct slab, rcu_head); 2099 2100 __free_slab(slab->slab_cache, slab); 2101 } 2102 2103 static void free_slab(struct kmem_cache *s, struct slab *slab) 2104 { 2105 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2106 void *p; 2107 2108 slab_pad_check(s, slab); 2109 for_each_object(p, s, slab_address(slab), slab->objects) 2110 check_object(s, slab, p, SLUB_RED_INACTIVE); 2111 } 2112 2113 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2114 call_rcu(&slab->rcu_head, rcu_free_slab); 2115 else 2116 __free_slab(s, slab); 2117 } 2118 2119 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2120 { 2121 dec_slabs_node(s, slab_nid(slab), slab->objects); 2122 free_slab(s, slab); 2123 } 2124 2125 /* 2126 * Management of partially allocated slabs. 2127 */ 2128 static inline void 2129 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2130 { 2131 n->nr_partial++; 2132 if (tail == DEACTIVATE_TO_TAIL) 2133 list_add_tail(&slab->slab_list, &n->partial); 2134 else 2135 list_add(&slab->slab_list, &n->partial); 2136 } 2137 2138 static inline void add_partial(struct kmem_cache_node *n, 2139 struct slab *slab, int tail) 2140 { 2141 lockdep_assert_held(&n->list_lock); 2142 __add_partial(n, slab, tail); 2143 } 2144 2145 static inline void remove_partial(struct kmem_cache_node *n, 2146 struct slab *slab) 2147 { 2148 lockdep_assert_held(&n->list_lock); 2149 list_del(&slab->slab_list); 2150 n->nr_partial--; 2151 } 2152 2153 /* 2154 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a 2155 * slab from the n->partial list. Remove only a single object from the slab, do 2156 * the alloc_debug_processing() checks and leave the slab on the list, or move 2157 * it to full list if it was the last free object. 2158 */ 2159 static void *alloc_single_from_partial(struct kmem_cache *s, 2160 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2161 { 2162 void *object; 2163 2164 lockdep_assert_held(&n->list_lock); 2165 2166 object = slab->freelist; 2167 slab->freelist = get_freepointer(s, object); 2168 slab->inuse++; 2169 2170 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2171 if (folio_test_slab(slab_folio(slab))) 2172 remove_partial(n, slab); 2173 return NULL; 2174 } 2175 2176 if (slab->inuse == slab->objects) { 2177 remove_partial(n, slab); 2178 add_full(s, n, slab); 2179 } 2180 2181 return object; 2182 } 2183 2184 /* 2185 * Called only for kmem_cache_debug() caches to allocate from a freshly 2186 * allocated slab. Allocate a single object instead of whole freelist 2187 * and put the slab to the partial (or full) list. 2188 */ 2189 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2190 struct slab *slab, int orig_size) 2191 { 2192 int nid = slab_nid(slab); 2193 struct kmem_cache_node *n = get_node(s, nid); 2194 unsigned long flags; 2195 void *object; 2196 2197 2198 object = slab->freelist; 2199 slab->freelist = get_freepointer(s, object); 2200 slab->inuse = 1; 2201 2202 if (!alloc_debug_processing(s, slab, object, orig_size)) 2203 /* 2204 * It's not really expected that this would fail on a 2205 * freshly allocated slab, but a concurrent memory 2206 * corruption in theory could cause that. 2207 */ 2208 return NULL; 2209 2210 spin_lock_irqsave(&n->list_lock, flags); 2211 2212 if (slab->inuse == slab->objects) 2213 add_full(s, n, slab); 2214 else 2215 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2216 2217 inc_slabs_node(s, nid, slab->objects); 2218 spin_unlock_irqrestore(&n->list_lock, flags); 2219 2220 return object; 2221 } 2222 2223 /* 2224 * Remove slab from the partial list, freeze it and 2225 * return the pointer to the freelist. 2226 * 2227 * Returns a list of objects or NULL if it fails. 2228 */ 2229 static inline void *acquire_slab(struct kmem_cache *s, 2230 struct kmem_cache_node *n, struct slab *slab, 2231 int mode) 2232 { 2233 void *freelist; 2234 unsigned long counters; 2235 struct slab new; 2236 2237 lockdep_assert_held(&n->list_lock); 2238 2239 /* 2240 * Zap the freelist and set the frozen bit. 2241 * The old freelist is the list of objects for the 2242 * per cpu allocation list. 2243 */ 2244 freelist = slab->freelist; 2245 counters = slab->counters; 2246 new.counters = counters; 2247 if (mode) { 2248 new.inuse = slab->objects; 2249 new.freelist = NULL; 2250 } else { 2251 new.freelist = freelist; 2252 } 2253 2254 VM_BUG_ON(new.frozen); 2255 new.frozen = 1; 2256 2257 if (!__slab_update_freelist(s, slab, 2258 freelist, counters, 2259 new.freelist, new.counters, 2260 "acquire_slab")) 2261 return NULL; 2262 2263 remove_partial(n, slab); 2264 WARN_ON(!freelist); 2265 return freelist; 2266 } 2267 2268 #ifdef CONFIG_SLUB_CPU_PARTIAL 2269 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2270 #else 2271 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2272 int drain) { } 2273 #endif 2274 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2275 2276 /* 2277 * Try to allocate a partial slab from a specific node. 2278 */ 2279 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2280 struct partial_context *pc) 2281 { 2282 struct slab *slab, *slab2; 2283 void *object = NULL; 2284 unsigned long flags; 2285 unsigned int partial_slabs = 0; 2286 2287 /* 2288 * Racy check. If we mistakenly see no partial slabs then we 2289 * just allocate an empty slab. If we mistakenly try to get a 2290 * partial slab and there is none available then get_partial() 2291 * will return NULL. 2292 */ 2293 if (!n || !n->nr_partial) 2294 return NULL; 2295 2296 spin_lock_irqsave(&n->list_lock, flags); 2297 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2298 void *t; 2299 2300 if (!pfmemalloc_match(slab, pc->flags)) 2301 continue; 2302 2303 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2304 object = alloc_single_from_partial(s, n, slab, 2305 pc->orig_size); 2306 if (object) 2307 break; 2308 continue; 2309 } 2310 2311 t = acquire_slab(s, n, slab, object == NULL); 2312 if (!t) 2313 break; 2314 2315 if (!object) { 2316 *pc->slab = slab; 2317 stat(s, ALLOC_FROM_PARTIAL); 2318 object = t; 2319 } else { 2320 put_cpu_partial(s, slab, 0); 2321 stat(s, CPU_PARTIAL_NODE); 2322 partial_slabs++; 2323 } 2324 #ifdef CONFIG_SLUB_CPU_PARTIAL 2325 if (!kmem_cache_has_cpu_partial(s) 2326 || partial_slabs > s->cpu_partial_slabs / 2) 2327 break; 2328 #else 2329 break; 2330 #endif 2331 2332 } 2333 spin_unlock_irqrestore(&n->list_lock, flags); 2334 return object; 2335 } 2336 2337 /* 2338 * Get a slab from somewhere. Search in increasing NUMA distances. 2339 */ 2340 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc) 2341 { 2342 #ifdef CONFIG_NUMA 2343 struct zonelist *zonelist; 2344 struct zoneref *z; 2345 struct zone *zone; 2346 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2347 void *object; 2348 unsigned int cpuset_mems_cookie; 2349 2350 /* 2351 * The defrag ratio allows a configuration of the tradeoffs between 2352 * inter node defragmentation and node local allocations. A lower 2353 * defrag_ratio increases the tendency to do local allocations 2354 * instead of attempting to obtain partial slabs from other nodes. 2355 * 2356 * If the defrag_ratio is set to 0 then kmalloc() always 2357 * returns node local objects. If the ratio is higher then kmalloc() 2358 * may return off node objects because partial slabs are obtained 2359 * from other nodes and filled up. 2360 * 2361 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2362 * (which makes defrag_ratio = 1000) then every (well almost) 2363 * allocation will first attempt to defrag slab caches on other nodes. 2364 * This means scanning over all nodes to look for partial slabs which 2365 * may be expensive if we do it every time we are trying to find a slab 2366 * with available objects. 2367 */ 2368 if (!s->remote_node_defrag_ratio || 2369 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2370 return NULL; 2371 2372 do { 2373 cpuset_mems_cookie = read_mems_allowed_begin(); 2374 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2375 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2376 struct kmem_cache_node *n; 2377 2378 n = get_node(s, zone_to_nid(zone)); 2379 2380 if (n && cpuset_zone_allowed(zone, pc->flags) && 2381 n->nr_partial > s->min_partial) { 2382 object = get_partial_node(s, n, pc); 2383 if (object) { 2384 /* 2385 * Don't check read_mems_allowed_retry() 2386 * here - if mems_allowed was updated in 2387 * parallel, that was a harmless race 2388 * between allocation and the cpuset 2389 * update 2390 */ 2391 return object; 2392 } 2393 } 2394 } 2395 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2396 #endif /* CONFIG_NUMA */ 2397 return NULL; 2398 } 2399 2400 /* 2401 * Get a partial slab, lock it and return it. 2402 */ 2403 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc) 2404 { 2405 void *object; 2406 int searchnode = node; 2407 2408 if (node == NUMA_NO_NODE) 2409 searchnode = numa_mem_id(); 2410 2411 object = get_partial_node(s, get_node(s, searchnode), pc); 2412 if (object || node != NUMA_NO_NODE) 2413 return object; 2414 2415 return get_any_partial(s, pc); 2416 } 2417 2418 #ifndef CONFIG_SLUB_TINY 2419 2420 #ifdef CONFIG_PREEMPTION 2421 /* 2422 * Calculate the next globally unique transaction for disambiguation 2423 * during cmpxchg. The transactions start with the cpu number and are then 2424 * incremented by CONFIG_NR_CPUS. 2425 */ 2426 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2427 #else 2428 /* 2429 * No preemption supported therefore also no need to check for 2430 * different cpus. 2431 */ 2432 #define TID_STEP 1 2433 #endif /* CONFIG_PREEMPTION */ 2434 2435 static inline unsigned long next_tid(unsigned long tid) 2436 { 2437 return tid + TID_STEP; 2438 } 2439 2440 #ifdef SLUB_DEBUG_CMPXCHG 2441 static inline unsigned int tid_to_cpu(unsigned long tid) 2442 { 2443 return tid % TID_STEP; 2444 } 2445 2446 static inline unsigned long tid_to_event(unsigned long tid) 2447 { 2448 return tid / TID_STEP; 2449 } 2450 #endif 2451 2452 static inline unsigned int init_tid(int cpu) 2453 { 2454 return cpu; 2455 } 2456 2457 static inline void note_cmpxchg_failure(const char *n, 2458 const struct kmem_cache *s, unsigned long tid) 2459 { 2460 #ifdef SLUB_DEBUG_CMPXCHG 2461 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2462 2463 pr_info("%s %s: cmpxchg redo ", n, s->name); 2464 2465 #ifdef CONFIG_PREEMPTION 2466 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2467 pr_warn("due to cpu change %d -> %d\n", 2468 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2469 else 2470 #endif 2471 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2472 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2473 tid_to_event(tid), tid_to_event(actual_tid)); 2474 else 2475 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2476 actual_tid, tid, next_tid(tid)); 2477 #endif 2478 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2479 } 2480 2481 static void init_kmem_cache_cpus(struct kmem_cache *s) 2482 { 2483 int cpu; 2484 struct kmem_cache_cpu *c; 2485 2486 for_each_possible_cpu(cpu) { 2487 c = per_cpu_ptr(s->cpu_slab, cpu); 2488 local_lock_init(&c->lock); 2489 c->tid = init_tid(cpu); 2490 } 2491 } 2492 2493 /* 2494 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2495 * unfreezes the slabs and puts it on the proper list. 2496 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2497 * by the caller. 2498 */ 2499 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2500 void *freelist) 2501 { 2502 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST }; 2503 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2504 int free_delta = 0; 2505 enum slab_modes mode = M_NONE; 2506 void *nextfree, *freelist_iter, *freelist_tail; 2507 int tail = DEACTIVATE_TO_HEAD; 2508 unsigned long flags = 0; 2509 struct slab new; 2510 struct slab old; 2511 2512 if (slab->freelist) { 2513 stat(s, DEACTIVATE_REMOTE_FREES); 2514 tail = DEACTIVATE_TO_TAIL; 2515 } 2516 2517 /* 2518 * Stage one: Count the objects on cpu's freelist as free_delta and 2519 * remember the last object in freelist_tail for later splicing. 2520 */ 2521 freelist_tail = NULL; 2522 freelist_iter = freelist; 2523 while (freelist_iter) { 2524 nextfree = get_freepointer(s, freelist_iter); 2525 2526 /* 2527 * If 'nextfree' is invalid, it is possible that the object at 2528 * 'freelist_iter' is already corrupted. So isolate all objects 2529 * starting at 'freelist_iter' by skipping them. 2530 */ 2531 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2532 break; 2533 2534 freelist_tail = freelist_iter; 2535 free_delta++; 2536 2537 freelist_iter = nextfree; 2538 } 2539 2540 /* 2541 * Stage two: Unfreeze the slab while splicing the per-cpu 2542 * freelist to the head of slab's freelist. 2543 * 2544 * Ensure that the slab is unfrozen while the list presence 2545 * reflects the actual number of objects during unfreeze. 2546 * 2547 * We first perform cmpxchg holding lock and insert to list 2548 * when it succeed. If there is mismatch then the slab is not 2549 * unfrozen and number of objects in the slab may have changed. 2550 * Then release lock and retry cmpxchg again. 2551 */ 2552 redo: 2553 2554 old.freelist = READ_ONCE(slab->freelist); 2555 old.counters = READ_ONCE(slab->counters); 2556 VM_BUG_ON(!old.frozen); 2557 2558 /* Determine target state of the slab */ 2559 new.counters = old.counters; 2560 if (freelist_tail) { 2561 new.inuse -= free_delta; 2562 set_freepointer(s, freelist_tail, old.freelist); 2563 new.freelist = freelist; 2564 } else 2565 new.freelist = old.freelist; 2566 2567 new.frozen = 0; 2568 2569 if (!new.inuse && n->nr_partial >= s->min_partial) { 2570 mode = M_FREE; 2571 } else if (new.freelist) { 2572 mode = M_PARTIAL; 2573 /* 2574 * Taking the spinlock removes the possibility that 2575 * acquire_slab() will see a slab that is frozen 2576 */ 2577 spin_lock_irqsave(&n->list_lock, flags); 2578 } else { 2579 mode = M_FULL_NOLIST; 2580 } 2581 2582 2583 if (!slab_update_freelist(s, slab, 2584 old.freelist, old.counters, 2585 new.freelist, new.counters, 2586 "unfreezing slab")) { 2587 if (mode == M_PARTIAL) 2588 spin_unlock_irqrestore(&n->list_lock, flags); 2589 goto redo; 2590 } 2591 2592 2593 if (mode == M_PARTIAL) { 2594 add_partial(n, slab, tail); 2595 spin_unlock_irqrestore(&n->list_lock, flags); 2596 stat(s, tail); 2597 } else if (mode == M_FREE) { 2598 stat(s, DEACTIVATE_EMPTY); 2599 discard_slab(s, slab); 2600 stat(s, FREE_SLAB); 2601 } else if (mode == M_FULL_NOLIST) { 2602 stat(s, DEACTIVATE_FULL); 2603 } 2604 } 2605 2606 #ifdef CONFIG_SLUB_CPU_PARTIAL 2607 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2608 { 2609 struct kmem_cache_node *n = NULL, *n2 = NULL; 2610 struct slab *slab, *slab_to_discard = NULL; 2611 unsigned long flags = 0; 2612 2613 while (partial_slab) { 2614 struct slab new; 2615 struct slab old; 2616 2617 slab = partial_slab; 2618 partial_slab = slab->next; 2619 2620 n2 = get_node(s, slab_nid(slab)); 2621 if (n != n2) { 2622 if (n) 2623 spin_unlock_irqrestore(&n->list_lock, flags); 2624 2625 n = n2; 2626 spin_lock_irqsave(&n->list_lock, flags); 2627 } 2628 2629 do { 2630 2631 old.freelist = slab->freelist; 2632 old.counters = slab->counters; 2633 VM_BUG_ON(!old.frozen); 2634 2635 new.counters = old.counters; 2636 new.freelist = old.freelist; 2637 2638 new.frozen = 0; 2639 2640 } while (!__slab_update_freelist(s, slab, 2641 old.freelist, old.counters, 2642 new.freelist, new.counters, 2643 "unfreezing slab")); 2644 2645 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2646 slab->next = slab_to_discard; 2647 slab_to_discard = slab; 2648 } else { 2649 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2650 stat(s, FREE_ADD_PARTIAL); 2651 } 2652 } 2653 2654 if (n) 2655 spin_unlock_irqrestore(&n->list_lock, flags); 2656 2657 while (slab_to_discard) { 2658 slab = slab_to_discard; 2659 slab_to_discard = slab_to_discard->next; 2660 2661 stat(s, DEACTIVATE_EMPTY); 2662 discard_slab(s, slab); 2663 stat(s, FREE_SLAB); 2664 } 2665 } 2666 2667 /* 2668 * Unfreeze all the cpu partial slabs. 2669 */ 2670 static void unfreeze_partials(struct kmem_cache *s) 2671 { 2672 struct slab *partial_slab; 2673 unsigned long flags; 2674 2675 local_lock_irqsave(&s->cpu_slab->lock, flags); 2676 partial_slab = this_cpu_read(s->cpu_slab->partial); 2677 this_cpu_write(s->cpu_slab->partial, NULL); 2678 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2679 2680 if (partial_slab) 2681 __unfreeze_partials(s, partial_slab); 2682 } 2683 2684 static void unfreeze_partials_cpu(struct kmem_cache *s, 2685 struct kmem_cache_cpu *c) 2686 { 2687 struct slab *partial_slab; 2688 2689 partial_slab = slub_percpu_partial(c); 2690 c->partial = NULL; 2691 2692 if (partial_slab) 2693 __unfreeze_partials(s, partial_slab); 2694 } 2695 2696 /* 2697 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2698 * partial slab slot if available. 2699 * 2700 * If we did not find a slot then simply move all the partials to the 2701 * per node partial list. 2702 */ 2703 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2704 { 2705 struct slab *oldslab; 2706 struct slab *slab_to_unfreeze = NULL; 2707 unsigned long flags; 2708 int slabs = 0; 2709 2710 local_lock_irqsave(&s->cpu_slab->lock, flags); 2711 2712 oldslab = this_cpu_read(s->cpu_slab->partial); 2713 2714 if (oldslab) { 2715 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2716 /* 2717 * Partial array is full. Move the existing set to the 2718 * per node partial list. Postpone the actual unfreezing 2719 * outside of the critical section. 2720 */ 2721 slab_to_unfreeze = oldslab; 2722 oldslab = NULL; 2723 } else { 2724 slabs = oldslab->slabs; 2725 } 2726 } 2727 2728 slabs++; 2729 2730 slab->slabs = slabs; 2731 slab->next = oldslab; 2732 2733 this_cpu_write(s->cpu_slab->partial, slab); 2734 2735 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2736 2737 if (slab_to_unfreeze) { 2738 __unfreeze_partials(s, slab_to_unfreeze); 2739 stat(s, CPU_PARTIAL_DRAIN); 2740 } 2741 } 2742 2743 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2744 2745 static inline void unfreeze_partials(struct kmem_cache *s) { } 2746 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2747 struct kmem_cache_cpu *c) { } 2748 2749 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2750 2751 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2752 { 2753 unsigned long flags; 2754 struct slab *slab; 2755 void *freelist; 2756 2757 local_lock_irqsave(&s->cpu_slab->lock, flags); 2758 2759 slab = c->slab; 2760 freelist = c->freelist; 2761 2762 c->slab = NULL; 2763 c->freelist = NULL; 2764 c->tid = next_tid(c->tid); 2765 2766 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2767 2768 if (slab) { 2769 deactivate_slab(s, slab, freelist); 2770 stat(s, CPUSLAB_FLUSH); 2771 } 2772 } 2773 2774 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2775 { 2776 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2777 void *freelist = c->freelist; 2778 struct slab *slab = c->slab; 2779 2780 c->slab = NULL; 2781 c->freelist = NULL; 2782 c->tid = next_tid(c->tid); 2783 2784 if (slab) { 2785 deactivate_slab(s, slab, freelist); 2786 stat(s, CPUSLAB_FLUSH); 2787 } 2788 2789 unfreeze_partials_cpu(s, c); 2790 } 2791 2792 struct slub_flush_work { 2793 struct work_struct work; 2794 struct kmem_cache *s; 2795 bool skip; 2796 }; 2797 2798 /* 2799 * Flush cpu slab. 2800 * 2801 * Called from CPU work handler with migration disabled. 2802 */ 2803 static void flush_cpu_slab(struct work_struct *w) 2804 { 2805 struct kmem_cache *s; 2806 struct kmem_cache_cpu *c; 2807 struct slub_flush_work *sfw; 2808 2809 sfw = container_of(w, struct slub_flush_work, work); 2810 2811 s = sfw->s; 2812 c = this_cpu_ptr(s->cpu_slab); 2813 2814 if (c->slab) 2815 flush_slab(s, c); 2816 2817 unfreeze_partials(s); 2818 } 2819 2820 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2821 { 2822 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2823 2824 return c->slab || slub_percpu_partial(c); 2825 } 2826 2827 static DEFINE_MUTEX(flush_lock); 2828 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2829 2830 static void flush_all_cpus_locked(struct kmem_cache *s) 2831 { 2832 struct slub_flush_work *sfw; 2833 unsigned int cpu; 2834 2835 lockdep_assert_cpus_held(); 2836 mutex_lock(&flush_lock); 2837 2838 for_each_online_cpu(cpu) { 2839 sfw = &per_cpu(slub_flush, cpu); 2840 if (!has_cpu_slab(cpu, s)) { 2841 sfw->skip = true; 2842 continue; 2843 } 2844 INIT_WORK(&sfw->work, flush_cpu_slab); 2845 sfw->skip = false; 2846 sfw->s = s; 2847 queue_work_on(cpu, flushwq, &sfw->work); 2848 } 2849 2850 for_each_online_cpu(cpu) { 2851 sfw = &per_cpu(slub_flush, cpu); 2852 if (sfw->skip) 2853 continue; 2854 flush_work(&sfw->work); 2855 } 2856 2857 mutex_unlock(&flush_lock); 2858 } 2859 2860 static void flush_all(struct kmem_cache *s) 2861 { 2862 cpus_read_lock(); 2863 flush_all_cpus_locked(s); 2864 cpus_read_unlock(); 2865 } 2866 2867 /* 2868 * Use the cpu notifier to insure that the cpu slabs are flushed when 2869 * necessary. 2870 */ 2871 static int slub_cpu_dead(unsigned int cpu) 2872 { 2873 struct kmem_cache *s; 2874 2875 mutex_lock(&slab_mutex); 2876 list_for_each_entry(s, &slab_caches, list) 2877 __flush_cpu_slab(s, cpu); 2878 mutex_unlock(&slab_mutex); 2879 return 0; 2880 } 2881 2882 #else /* CONFIG_SLUB_TINY */ 2883 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 2884 static inline void flush_all(struct kmem_cache *s) { } 2885 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 2886 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 2887 #endif /* CONFIG_SLUB_TINY */ 2888 2889 /* 2890 * Check if the objects in a per cpu structure fit numa 2891 * locality expectations. 2892 */ 2893 static inline int node_match(struct slab *slab, int node) 2894 { 2895 #ifdef CONFIG_NUMA 2896 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2897 return 0; 2898 #endif 2899 return 1; 2900 } 2901 2902 #ifdef CONFIG_SLUB_DEBUG 2903 static int count_free(struct slab *slab) 2904 { 2905 return slab->objects - slab->inuse; 2906 } 2907 2908 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2909 { 2910 return atomic_long_read(&n->total_objects); 2911 } 2912 2913 /* Supports checking bulk free of a constructed freelist */ 2914 static inline bool free_debug_processing(struct kmem_cache *s, 2915 struct slab *slab, void *head, void *tail, int *bulk_cnt, 2916 unsigned long addr, depot_stack_handle_t handle) 2917 { 2918 bool checks_ok = false; 2919 void *object = head; 2920 int cnt = 0; 2921 2922 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 2923 if (!check_slab(s, slab)) 2924 goto out; 2925 } 2926 2927 if (slab->inuse < *bulk_cnt) { 2928 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 2929 slab->inuse, *bulk_cnt); 2930 goto out; 2931 } 2932 2933 next_object: 2934 2935 if (++cnt > *bulk_cnt) 2936 goto out_cnt; 2937 2938 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 2939 if (!free_consistency_checks(s, slab, object, addr)) 2940 goto out; 2941 } 2942 2943 if (s->flags & SLAB_STORE_USER) 2944 set_track_update(s, object, TRACK_FREE, addr, handle); 2945 trace(s, slab, object, 0); 2946 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 2947 init_object(s, object, SLUB_RED_INACTIVE); 2948 2949 /* Reached end of constructed freelist yet? */ 2950 if (object != tail) { 2951 object = get_freepointer(s, object); 2952 goto next_object; 2953 } 2954 checks_ok = true; 2955 2956 out_cnt: 2957 if (cnt != *bulk_cnt) { 2958 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 2959 *bulk_cnt, cnt); 2960 *bulk_cnt = cnt; 2961 } 2962 2963 out: 2964 2965 if (!checks_ok) 2966 slab_fix(s, "Object at 0x%p not freed", object); 2967 2968 return checks_ok; 2969 } 2970 #endif /* CONFIG_SLUB_DEBUG */ 2971 2972 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 2973 static unsigned long count_partial(struct kmem_cache_node *n, 2974 int (*get_count)(struct slab *)) 2975 { 2976 unsigned long flags; 2977 unsigned long x = 0; 2978 struct slab *slab; 2979 2980 spin_lock_irqsave(&n->list_lock, flags); 2981 list_for_each_entry(slab, &n->partial, slab_list) 2982 x += get_count(slab); 2983 spin_unlock_irqrestore(&n->list_lock, flags); 2984 return x; 2985 } 2986 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 2987 2988 #ifdef CONFIG_SLUB_DEBUG 2989 static noinline void 2990 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2991 { 2992 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2993 DEFAULT_RATELIMIT_BURST); 2994 int node; 2995 struct kmem_cache_node *n; 2996 2997 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2998 return; 2999 3000 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 3001 nid, gfpflags, &gfpflags); 3002 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3003 s->name, s->object_size, s->size, oo_order(s->oo), 3004 oo_order(s->min)); 3005 3006 if (oo_order(s->min) > get_order(s->object_size)) 3007 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 3008 s->name); 3009 3010 for_each_kmem_cache_node(s, node, n) { 3011 unsigned long nr_slabs; 3012 unsigned long nr_objs; 3013 unsigned long nr_free; 3014 3015 nr_free = count_partial(n, count_free); 3016 nr_slabs = node_nr_slabs(n); 3017 nr_objs = node_nr_objs(n); 3018 3019 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3020 node, nr_slabs, nr_objs, nr_free); 3021 } 3022 } 3023 #else /* CONFIG_SLUB_DEBUG */ 3024 static inline void 3025 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3026 #endif 3027 3028 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3029 { 3030 if (unlikely(slab_test_pfmemalloc(slab))) 3031 return gfp_pfmemalloc_allowed(gfpflags); 3032 3033 return true; 3034 } 3035 3036 #ifndef CONFIG_SLUB_TINY 3037 static inline bool 3038 __update_cpu_freelist_fast(struct kmem_cache *s, 3039 void *freelist_old, void *freelist_new, 3040 unsigned long tid) 3041 { 3042 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3043 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3044 3045 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3046 &old.full, new.full); 3047 } 3048 3049 /* 3050 * Check the slab->freelist and either transfer the freelist to the 3051 * per cpu freelist or deactivate the slab. 3052 * 3053 * The slab is still frozen if the return value is not NULL. 3054 * 3055 * If this function returns NULL then the slab has been unfrozen. 3056 */ 3057 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3058 { 3059 struct slab new; 3060 unsigned long counters; 3061 void *freelist; 3062 3063 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3064 3065 do { 3066 freelist = slab->freelist; 3067 counters = slab->counters; 3068 3069 new.counters = counters; 3070 VM_BUG_ON(!new.frozen); 3071 3072 new.inuse = slab->objects; 3073 new.frozen = freelist != NULL; 3074 3075 } while (!__slab_update_freelist(s, slab, 3076 freelist, counters, 3077 NULL, new.counters, 3078 "get_freelist")); 3079 3080 return freelist; 3081 } 3082 3083 /* 3084 * Slow path. The lockless freelist is empty or we need to perform 3085 * debugging duties. 3086 * 3087 * Processing is still very fast if new objects have been freed to the 3088 * regular freelist. In that case we simply take over the regular freelist 3089 * as the lockless freelist and zap the regular freelist. 3090 * 3091 * If that is not working then we fall back to the partial lists. We take the 3092 * first element of the freelist as the object to allocate now and move the 3093 * rest of the freelist to the lockless freelist. 3094 * 3095 * And if we were unable to get a new slab from the partial slab lists then 3096 * we need to allocate a new slab. This is the slowest path since it involves 3097 * a call to the page allocator and the setup of a new slab. 3098 * 3099 * Version of __slab_alloc to use when we know that preemption is 3100 * already disabled (which is the case for bulk allocation). 3101 */ 3102 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3103 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3104 { 3105 void *freelist; 3106 struct slab *slab; 3107 unsigned long flags; 3108 struct partial_context pc; 3109 3110 stat(s, ALLOC_SLOWPATH); 3111 3112 reread_slab: 3113 3114 slab = READ_ONCE(c->slab); 3115 if (!slab) { 3116 /* 3117 * if the node is not online or has no normal memory, just 3118 * ignore the node constraint 3119 */ 3120 if (unlikely(node != NUMA_NO_NODE && 3121 !node_isset(node, slab_nodes))) 3122 node = NUMA_NO_NODE; 3123 goto new_slab; 3124 } 3125 redo: 3126 3127 if (unlikely(!node_match(slab, node))) { 3128 /* 3129 * same as above but node_match() being false already 3130 * implies node != NUMA_NO_NODE 3131 */ 3132 if (!node_isset(node, slab_nodes)) { 3133 node = NUMA_NO_NODE; 3134 } else { 3135 stat(s, ALLOC_NODE_MISMATCH); 3136 goto deactivate_slab; 3137 } 3138 } 3139 3140 /* 3141 * By rights, we should be searching for a slab page that was 3142 * PFMEMALLOC but right now, we are losing the pfmemalloc 3143 * information when the page leaves the per-cpu allocator 3144 */ 3145 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3146 goto deactivate_slab; 3147 3148 /* must check again c->slab in case we got preempted and it changed */ 3149 local_lock_irqsave(&s->cpu_slab->lock, flags); 3150 if (unlikely(slab != c->slab)) { 3151 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3152 goto reread_slab; 3153 } 3154 freelist = c->freelist; 3155 if (freelist) 3156 goto load_freelist; 3157 3158 freelist = get_freelist(s, slab); 3159 3160 if (!freelist) { 3161 c->slab = NULL; 3162 c->tid = next_tid(c->tid); 3163 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3164 stat(s, DEACTIVATE_BYPASS); 3165 goto new_slab; 3166 } 3167 3168 stat(s, ALLOC_REFILL); 3169 3170 load_freelist: 3171 3172 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3173 3174 /* 3175 * freelist is pointing to the list of objects to be used. 3176 * slab is pointing to the slab from which the objects are obtained. 3177 * That slab must be frozen for per cpu allocations to work. 3178 */ 3179 VM_BUG_ON(!c->slab->frozen); 3180 c->freelist = get_freepointer(s, freelist); 3181 c->tid = next_tid(c->tid); 3182 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3183 return freelist; 3184 3185 deactivate_slab: 3186 3187 local_lock_irqsave(&s->cpu_slab->lock, flags); 3188 if (slab != c->slab) { 3189 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3190 goto reread_slab; 3191 } 3192 freelist = c->freelist; 3193 c->slab = NULL; 3194 c->freelist = NULL; 3195 c->tid = next_tid(c->tid); 3196 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3197 deactivate_slab(s, slab, freelist); 3198 3199 new_slab: 3200 3201 if (slub_percpu_partial(c)) { 3202 local_lock_irqsave(&s->cpu_slab->lock, flags); 3203 if (unlikely(c->slab)) { 3204 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3205 goto reread_slab; 3206 } 3207 if (unlikely(!slub_percpu_partial(c))) { 3208 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3209 /* we were preempted and partial list got empty */ 3210 goto new_objects; 3211 } 3212 3213 slab = c->slab = slub_percpu_partial(c); 3214 slub_set_percpu_partial(c, slab); 3215 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3216 stat(s, CPU_PARTIAL_ALLOC); 3217 goto redo; 3218 } 3219 3220 new_objects: 3221 3222 pc.flags = gfpflags; 3223 pc.slab = &slab; 3224 pc.orig_size = orig_size; 3225 freelist = get_partial(s, node, &pc); 3226 if (freelist) 3227 goto check_new_slab; 3228 3229 slub_put_cpu_ptr(s->cpu_slab); 3230 slab = new_slab(s, gfpflags, node); 3231 c = slub_get_cpu_ptr(s->cpu_slab); 3232 3233 if (unlikely(!slab)) { 3234 slab_out_of_memory(s, gfpflags, node); 3235 return NULL; 3236 } 3237 3238 stat(s, ALLOC_SLAB); 3239 3240 if (kmem_cache_debug(s)) { 3241 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3242 3243 if (unlikely(!freelist)) 3244 goto new_objects; 3245 3246 if (s->flags & SLAB_STORE_USER) 3247 set_track(s, freelist, TRACK_ALLOC, addr); 3248 3249 return freelist; 3250 } 3251 3252 /* 3253 * No other reference to the slab yet so we can 3254 * muck around with it freely without cmpxchg 3255 */ 3256 freelist = slab->freelist; 3257 slab->freelist = NULL; 3258 slab->inuse = slab->objects; 3259 slab->frozen = 1; 3260 3261 inc_slabs_node(s, slab_nid(slab), slab->objects); 3262 3263 check_new_slab: 3264 3265 if (kmem_cache_debug(s)) { 3266 /* 3267 * For debug caches here we had to go through 3268 * alloc_single_from_partial() so just store the tracking info 3269 * and return the object 3270 */ 3271 if (s->flags & SLAB_STORE_USER) 3272 set_track(s, freelist, TRACK_ALLOC, addr); 3273 3274 return freelist; 3275 } 3276 3277 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3278 /* 3279 * For !pfmemalloc_match() case we don't load freelist so that 3280 * we don't make further mismatched allocations easier. 3281 */ 3282 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3283 return freelist; 3284 } 3285 3286 retry_load_slab: 3287 3288 local_lock_irqsave(&s->cpu_slab->lock, flags); 3289 if (unlikely(c->slab)) { 3290 void *flush_freelist = c->freelist; 3291 struct slab *flush_slab = c->slab; 3292 3293 c->slab = NULL; 3294 c->freelist = NULL; 3295 c->tid = next_tid(c->tid); 3296 3297 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3298 3299 deactivate_slab(s, flush_slab, flush_freelist); 3300 3301 stat(s, CPUSLAB_FLUSH); 3302 3303 goto retry_load_slab; 3304 } 3305 c->slab = slab; 3306 3307 goto load_freelist; 3308 } 3309 3310 /* 3311 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3312 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3313 * pointer. 3314 */ 3315 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3316 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3317 { 3318 void *p; 3319 3320 #ifdef CONFIG_PREEMPT_COUNT 3321 /* 3322 * We may have been preempted and rescheduled on a different 3323 * cpu before disabling preemption. Need to reload cpu area 3324 * pointer. 3325 */ 3326 c = slub_get_cpu_ptr(s->cpu_slab); 3327 #endif 3328 3329 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3330 #ifdef CONFIG_PREEMPT_COUNT 3331 slub_put_cpu_ptr(s->cpu_slab); 3332 #endif 3333 return p; 3334 } 3335 3336 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3337 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3338 { 3339 struct kmem_cache_cpu *c; 3340 struct slab *slab; 3341 unsigned long tid; 3342 void *object; 3343 3344 redo: 3345 /* 3346 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3347 * enabled. We may switch back and forth between cpus while 3348 * reading from one cpu area. That does not matter as long 3349 * as we end up on the original cpu again when doing the cmpxchg. 3350 * 3351 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3352 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3353 * the tid. If we are preempted and switched to another cpu between the 3354 * two reads, it's OK as the two are still associated with the same cpu 3355 * and cmpxchg later will validate the cpu. 3356 */ 3357 c = raw_cpu_ptr(s->cpu_slab); 3358 tid = READ_ONCE(c->tid); 3359 3360 /* 3361 * Irqless object alloc/free algorithm used here depends on sequence 3362 * of fetching cpu_slab's data. tid should be fetched before anything 3363 * on c to guarantee that object and slab associated with previous tid 3364 * won't be used with current tid. If we fetch tid first, object and 3365 * slab could be one associated with next tid and our alloc/free 3366 * request will be failed. In this case, we will retry. So, no problem. 3367 */ 3368 barrier(); 3369 3370 /* 3371 * The transaction ids are globally unique per cpu and per operation on 3372 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3373 * occurs on the right processor and that there was no operation on the 3374 * linked list in between. 3375 */ 3376 3377 object = c->freelist; 3378 slab = c->slab; 3379 3380 if (!USE_LOCKLESS_FAST_PATH() || 3381 unlikely(!object || !slab || !node_match(slab, node))) { 3382 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3383 } else { 3384 void *next_object = get_freepointer_safe(s, object); 3385 3386 /* 3387 * The cmpxchg will only match if there was no additional 3388 * operation and if we are on the right processor. 3389 * 3390 * The cmpxchg does the following atomically (without lock 3391 * semantics!) 3392 * 1. Relocate first pointer to the current per cpu area. 3393 * 2. Verify that tid and freelist have not been changed 3394 * 3. If they were not changed replace tid and freelist 3395 * 3396 * Since this is without lock semantics the protection is only 3397 * against code executing on this cpu *not* from access by 3398 * other cpus. 3399 */ 3400 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3401 note_cmpxchg_failure("slab_alloc", s, tid); 3402 goto redo; 3403 } 3404 prefetch_freepointer(s, next_object); 3405 stat(s, ALLOC_FASTPATH); 3406 } 3407 3408 return object; 3409 } 3410 #else /* CONFIG_SLUB_TINY */ 3411 static void *__slab_alloc_node(struct kmem_cache *s, 3412 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3413 { 3414 struct partial_context pc; 3415 struct slab *slab; 3416 void *object; 3417 3418 pc.flags = gfpflags; 3419 pc.slab = &slab; 3420 pc.orig_size = orig_size; 3421 object = get_partial(s, node, &pc); 3422 3423 if (object) 3424 return object; 3425 3426 slab = new_slab(s, gfpflags, node); 3427 if (unlikely(!slab)) { 3428 slab_out_of_memory(s, gfpflags, node); 3429 return NULL; 3430 } 3431 3432 object = alloc_single_from_new_slab(s, slab, orig_size); 3433 3434 return object; 3435 } 3436 #endif /* CONFIG_SLUB_TINY */ 3437 3438 /* 3439 * If the object has been wiped upon free, make sure it's fully initialized by 3440 * zeroing out freelist pointer. 3441 */ 3442 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3443 void *obj) 3444 { 3445 if (unlikely(slab_want_init_on_free(s)) && obj) 3446 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3447 0, sizeof(void *)); 3448 } 3449 3450 /* 3451 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3452 * have the fastpath folded into their functions. So no function call 3453 * overhead for requests that can be satisfied on the fastpath. 3454 * 3455 * The fastpath works by first checking if the lockless freelist can be used. 3456 * If not then __slab_alloc is called for slow processing. 3457 * 3458 * Otherwise we can simply pick the next object from the lockless free list. 3459 */ 3460 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3461 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3462 { 3463 void *object; 3464 struct obj_cgroup *objcg = NULL; 3465 bool init = false; 3466 3467 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3468 if (!s) 3469 return NULL; 3470 3471 object = kfence_alloc(s, orig_size, gfpflags); 3472 if (unlikely(object)) 3473 goto out; 3474 3475 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 3476 3477 maybe_wipe_obj_freeptr(s, object); 3478 init = slab_want_init_on_alloc(gfpflags, s); 3479 3480 out: 3481 /* 3482 * When init equals 'true', like for kzalloc() family, only 3483 * @orig_size bytes might be zeroed instead of s->object_size 3484 */ 3485 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size); 3486 3487 return object; 3488 } 3489 3490 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, 3491 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3492 { 3493 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); 3494 } 3495 3496 static __fastpath_inline 3497 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3498 gfp_t gfpflags) 3499 { 3500 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); 3501 3502 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 3503 3504 return ret; 3505 } 3506 3507 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3508 { 3509 return __kmem_cache_alloc_lru(s, NULL, gfpflags); 3510 } 3511 EXPORT_SYMBOL(kmem_cache_alloc); 3512 3513 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3514 gfp_t gfpflags) 3515 { 3516 return __kmem_cache_alloc_lru(s, lru, gfpflags); 3517 } 3518 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3519 3520 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, 3521 int node, size_t orig_size, 3522 unsigned long caller) 3523 { 3524 return slab_alloc_node(s, NULL, gfpflags, node, 3525 caller, orig_size); 3526 } 3527 3528 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3529 { 3530 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3531 3532 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 3533 3534 return ret; 3535 } 3536 EXPORT_SYMBOL(kmem_cache_alloc_node); 3537 3538 static noinline void free_to_partial_list( 3539 struct kmem_cache *s, struct slab *slab, 3540 void *head, void *tail, int bulk_cnt, 3541 unsigned long addr) 3542 { 3543 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3544 struct slab *slab_free = NULL; 3545 int cnt = bulk_cnt; 3546 unsigned long flags; 3547 depot_stack_handle_t handle = 0; 3548 3549 if (s->flags & SLAB_STORE_USER) 3550 handle = set_track_prepare(); 3551 3552 spin_lock_irqsave(&n->list_lock, flags); 3553 3554 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 3555 void *prior = slab->freelist; 3556 3557 /* Perform the actual freeing while we still hold the locks */ 3558 slab->inuse -= cnt; 3559 set_freepointer(s, tail, prior); 3560 slab->freelist = head; 3561 3562 /* 3563 * If the slab is empty, and node's partial list is full, 3564 * it should be discarded anyway no matter it's on full or 3565 * partial list. 3566 */ 3567 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 3568 slab_free = slab; 3569 3570 if (!prior) { 3571 /* was on full list */ 3572 remove_full(s, n, slab); 3573 if (!slab_free) { 3574 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3575 stat(s, FREE_ADD_PARTIAL); 3576 } 3577 } else if (slab_free) { 3578 remove_partial(n, slab); 3579 stat(s, FREE_REMOVE_PARTIAL); 3580 } 3581 } 3582 3583 if (slab_free) { 3584 /* 3585 * Update the counters while still holding n->list_lock to 3586 * prevent spurious validation warnings 3587 */ 3588 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 3589 } 3590 3591 spin_unlock_irqrestore(&n->list_lock, flags); 3592 3593 if (slab_free) { 3594 stat(s, FREE_SLAB); 3595 free_slab(s, slab_free); 3596 } 3597 } 3598 3599 /* 3600 * Slow path handling. This may still be called frequently since objects 3601 * have a longer lifetime than the cpu slabs in most processing loads. 3602 * 3603 * So we still attempt to reduce cache line usage. Just take the slab 3604 * lock and free the item. If there is no additional partial slab 3605 * handling required then we can return immediately. 3606 */ 3607 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3608 void *head, void *tail, int cnt, 3609 unsigned long addr) 3610 3611 { 3612 void *prior; 3613 int was_frozen; 3614 struct slab new; 3615 unsigned long counters; 3616 struct kmem_cache_node *n = NULL; 3617 unsigned long flags; 3618 3619 stat(s, FREE_SLOWPATH); 3620 3621 if (kfence_free(head)) 3622 return; 3623 3624 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 3625 free_to_partial_list(s, slab, head, tail, cnt, addr); 3626 return; 3627 } 3628 3629 do { 3630 if (unlikely(n)) { 3631 spin_unlock_irqrestore(&n->list_lock, flags); 3632 n = NULL; 3633 } 3634 prior = slab->freelist; 3635 counters = slab->counters; 3636 set_freepointer(s, tail, prior); 3637 new.counters = counters; 3638 was_frozen = new.frozen; 3639 new.inuse -= cnt; 3640 if ((!new.inuse || !prior) && !was_frozen) { 3641 3642 if (kmem_cache_has_cpu_partial(s) && !prior) { 3643 3644 /* 3645 * Slab was on no list before and will be 3646 * partially empty 3647 * We can defer the list move and instead 3648 * freeze it. 3649 */ 3650 new.frozen = 1; 3651 3652 } else { /* Needs to be taken off a list */ 3653 3654 n = get_node(s, slab_nid(slab)); 3655 /* 3656 * Speculatively acquire the list_lock. 3657 * If the cmpxchg does not succeed then we may 3658 * drop the list_lock without any processing. 3659 * 3660 * Otherwise the list_lock will synchronize with 3661 * other processors updating the list of slabs. 3662 */ 3663 spin_lock_irqsave(&n->list_lock, flags); 3664 3665 } 3666 } 3667 3668 } while (!slab_update_freelist(s, slab, 3669 prior, counters, 3670 head, new.counters, 3671 "__slab_free")); 3672 3673 if (likely(!n)) { 3674 3675 if (likely(was_frozen)) { 3676 /* 3677 * The list lock was not taken therefore no list 3678 * activity can be necessary. 3679 */ 3680 stat(s, FREE_FROZEN); 3681 } else if (new.frozen) { 3682 /* 3683 * If we just froze the slab then put it onto the 3684 * per cpu partial list. 3685 */ 3686 put_cpu_partial(s, slab, 1); 3687 stat(s, CPU_PARTIAL_FREE); 3688 } 3689 3690 return; 3691 } 3692 3693 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3694 goto slab_empty; 3695 3696 /* 3697 * Objects left in the slab. If it was not on the partial list before 3698 * then add it. 3699 */ 3700 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3701 remove_full(s, n, slab); 3702 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3703 stat(s, FREE_ADD_PARTIAL); 3704 } 3705 spin_unlock_irqrestore(&n->list_lock, flags); 3706 return; 3707 3708 slab_empty: 3709 if (prior) { 3710 /* 3711 * Slab on the partial list. 3712 */ 3713 remove_partial(n, slab); 3714 stat(s, FREE_REMOVE_PARTIAL); 3715 } else { 3716 /* Slab must be on the full list */ 3717 remove_full(s, n, slab); 3718 } 3719 3720 spin_unlock_irqrestore(&n->list_lock, flags); 3721 stat(s, FREE_SLAB); 3722 discard_slab(s, slab); 3723 } 3724 3725 #ifndef CONFIG_SLUB_TINY 3726 /* 3727 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3728 * can perform fastpath freeing without additional function calls. 3729 * 3730 * The fastpath is only possible if we are freeing to the current cpu slab 3731 * of this processor. This typically the case if we have just allocated 3732 * the item before. 3733 * 3734 * If fastpath is not possible then fall back to __slab_free where we deal 3735 * with all sorts of special processing. 3736 * 3737 * Bulk free of a freelist with several objects (all pointing to the 3738 * same slab) possible by specifying head and tail ptr, plus objects 3739 * count (cnt). Bulk free indicated by tail pointer being set. 3740 */ 3741 static __always_inline void do_slab_free(struct kmem_cache *s, 3742 struct slab *slab, void *head, void *tail, 3743 int cnt, unsigned long addr) 3744 { 3745 void *tail_obj = tail ? : head; 3746 struct kmem_cache_cpu *c; 3747 unsigned long tid; 3748 void **freelist; 3749 3750 redo: 3751 /* 3752 * Determine the currently cpus per cpu slab. 3753 * The cpu may change afterward. However that does not matter since 3754 * data is retrieved via this pointer. If we are on the same cpu 3755 * during the cmpxchg then the free will succeed. 3756 */ 3757 c = raw_cpu_ptr(s->cpu_slab); 3758 tid = READ_ONCE(c->tid); 3759 3760 /* Same with comment on barrier() in slab_alloc_node() */ 3761 barrier(); 3762 3763 if (unlikely(slab != c->slab)) { 3764 __slab_free(s, slab, head, tail_obj, cnt, addr); 3765 return; 3766 } 3767 3768 if (USE_LOCKLESS_FAST_PATH()) { 3769 freelist = READ_ONCE(c->freelist); 3770 3771 set_freepointer(s, tail_obj, freelist); 3772 3773 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 3774 note_cmpxchg_failure("slab_free", s, tid); 3775 goto redo; 3776 } 3777 } else { 3778 /* Update the free list under the local lock */ 3779 local_lock(&s->cpu_slab->lock); 3780 c = this_cpu_ptr(s->cpu_slab); 3781 if (unlikely(slab != c->slab)) { 3782 local_unlock(&s->cpu_slab->lock); 3783 goto redo; 3784 } 3785 tid = c->tid; 3786 freelist = c->freelist; 3787 3788 set_freepointer(s, tail_obj, freelist); 3789 c->freelist = head; 3790 c->tid = next_tid(tid); 3791 3792 local_unlock(&s->cpu_slab->lock); 3793 } 3794 stat(s, FREE_FASTPATH); 3795 } 3796 #else /* CONFIG_SLUB_TINY */ 3797 static void do_slab_free(struct kmem_cache *s, 3798 struct slab *slab, void *head, void *tail, 3799 int cnt, unsigned long addr) 3800 { 3801 void *tail_obj = tail ? : head; 3802 3803 __slab_free(s, slab, head, tail_obj, cnt, addr); 3804 } 3805 #endif /* CONFIG_SLUB_TINY */ 3806 3807 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3808 void *head, void *tail, void **p, int cnt, 3809 unsigned long addr) 3810 { 3811 memcg_slab_free_hook(s, slab, p, cnt); 3812 /* 3813 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3814 * to remove objects, whose reuse must be delayed. 3815 */ 3816 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3817 do_slab_free(s, slab, head, tail, cnt, addr); 3818 } 3819 3820 #ifdef CONFIG_KASAN_GENERIC 3821 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3822 { 3823 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3824 } 3825 #endif 3826 3827 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller) 3828 { 3829 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller); 3830 } 3831 3832 void kmem_cache_free(struct kmem_cache *s, void *x) 3833 { 3834 s = cache_from_obj(s, x); 3835 if (!s) 3836 return; 3837 trace_kmem_cache_free(_RET_IP_, x, s); 3838 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); 3839 } 3840 EXPORT_SYMBOL(kmem_cache_free); 3841 3842 struct detached_freelist { 3843 struct slab *slab; 3844 void *tail; 3845 void *freelist; 3846 int cnt; 3847 struct kmem_cache *s; 3848 }; 3849 3850 /* 3851 * This function progressively scans the array with free objects (with 3852 * a limited look ahead) and extract objects belonging to the same 3853 * slab. It builds a detached freelist directly within the given 3854 * slab/objects. This can happen without any need for 3855 * synchronization, because the objects are owned by running process. 3856 * The freelist is build up as a single linked list in the objects. 3857 * The idea is, that this detached freelist can then be bulk 3858 * transferred to the real freelist(s), but only requiring a single 3859 * synchronization primitive. Look ahead in the array is limited due 3860 * to performance reasons. 3861 */ 3862 static inline 3863 int build_detached_freelist(struct kmem_cache *s, size_t size, 3864 void **p, struct detached_freelist *df) 3865 { 3866 int lookahead = 3; 3867 void *object; 3868 struct folio *folio; 3869 size_t same; 3870 3871 object = p[--size]; 3872 folio = virt_to_folio(object); 3873 if (!s) { 3874 /* Handle kalloc'ed objects */ 3875 if (unlikely(!folio_test_slab(folio))) { 3876 free_large_kmalloc(folio, object); 3877 df->slab = NULL; 3878 return size; 3879 } 3880 /* Derive kmem_cache from object */ 3881 df->slab = folio_slab(folio); 3882 df->s = df->slab->slab_cache; 3883 } else { 3884 df->slab = folio_slab(folio); 3885 df->s = cache_from_obj(s, object); /* Support for memcg */ 3886 } 3887 3888 /* Start new detached freelist */ 3889 df->tail = object; 3890 df->freelist = object; 3891 df->cnt = 1; 3892 3893 if (is_kfence_address(object)) 3894 return size; 3895 3896 set_freepointer(df->s, object, NULL); 3897 3898 same = size; 3899 while (size) { 3900 object = p[--size]; 3901 /* df->slab is always set at this point */ 3902 if (df->slab == virt_to_slab(object)) { 3903 /* Opportunity build freelist */ 3904 set_freepointer(df->s, object, df->freelist); 3905 df->freelist = object; 3906 df->cnt++; 3907 same--; 3908 if (size != same) 3909 swap(p[size], p[same]); 3910 continue; 3911 } 3912 3913 /* Limit look ahead search */ 3914 if (!--lookahead) 3915 break; 3916 } 3917 3918 return same; 3919 } 3920 3921 /* Note that interrupts must be enabled when calling this function. */ 3922 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3923 { 3924 if (!size) 3925 return; 3926 3927 do { 3928 struct detached_freelist df; 3929 3930 size = build_detached_freelist(s, size, p, &df); 3931 if (!df.slab) 3932 continue; 3933 3934 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, 3935 _RET_IP_); 3936 } while (likely(size)); 3937 } 3938 EXPORT_SYMBOL(kmem_cache_free_bulk); 3939 3940 #ifndef CONFIG_SLUB_TINY 3941 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 3942 size_t size, void **p, struct obj_cgroup *objcg) 3943 { 3944 struct kmem_cache_cpu *c; 3945 unsigned long irqflags; 3946 int i; 3947 3948 /* 3949 * Drain objects in the per cpu slab, while disabling local 3950 * IRQs, which protects against PREEMPT and interrupts 3951 * handlers invoking normal fastpath. 3952 */ 3953 c = slub_get_cpu_ptr(s->cpu_slab); 3954 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 3955 3956 for (i = 0; i < size; i++) { 3957 void *object = kfence_alloc(s, s->object_size, flags); 3958 3959 if (unlikely(object)) { 3960 p[i] = object; 3961 continue; 3962 } 3963 3964 object = c->freelist; 3965 if (unlikely(!object)) { 3966 /* 3967 * We may have removed an object from c->freelist using 3968 * the fastpath in the previous iteration; in that case, 3969 * c->tid has not been bumped yet. 3970 * Since ___slab_alloc() may reenable interrupts while 3971 * allocating memory, we should bump c->tid now. 3972 */ 3973 c->tid = next_tid(c->tid); 3974 3975 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 3976 3977 /* 3978 * Invoking slow path likely have side-effect 3979 * of re-populating per CPU c->freelist 3980 */ 3981 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3982 _RET_IP_, c, s->object_size); 3983 if (unlikely(!p[i])) 3984 goto error; 3985 3986 c = this_cpu_ptr(s->cpu_slab); 3987 maybe_wipe_obj_freeptr(s, p[i]); 3988 3989 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 3990 3991 continue; /* goto for-loop */ 3992 } 3993 c->freelist = get_freepointer(s, object); 3994 p[i] = object; 3995 maybe_wipe_obj_freeptr(s, p[i]); 3996 } 3997 c->tid = next_tid(c->tid); 3998 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 3999 slub_put_cpu_ptr(s->cpu_slab); 4000 4001 return i; 4002 4003 error: 4004 slub_put_cpu_ptr(s->cpu_slab); 4005 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 4006 kmem_cache_free_bulk(s, i, p); 4007 return 0; 4008 4009 } 4010 #else /* CONFIG_SLUB_TINY */ 4011 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4012 size_t size, void **p, struct obj_cgroup *objcg) 4013 { 4014 int i; 4015 4016 for (i = 0; i < size; i++) { 4017 void *object = kfence_alloc(s, s->object_size, flags); 4018 4019 if (unlikely(object)) { 4020 p[i] = object; 4021 continue; 4022 } 4023 4024 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 4025 _RET_IP_, s->object_size); 4026 if (unlikely(!p[i])) 4027 goto error; 4028 4029 maybe_wipe_obj_freeptr(s, p[i]); 4030 } 4031 4032 return i; 4033 4034 error: 4035 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 4036 kmem_cache_free_bulk(s, i, p); 4037 return 0; 4038 } 4039 #endif /* CONFIG_SLUB_TINY */ 4040 4041 /* Note that interrupts must be enabled when calling this function. */ 4042 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4043 void **p) 4044 { 4045 int i; 4046 struct obj_cgroup *objcg = NULL; 4047 4048 if (!size) 4049 return 0; 4050 4051 /* memcg and kmem_cache debug support */ 4052 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 4053 if (unlikely(!s)) 4054 return 0; 4055 4056 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg); 4057 4058 /* 4059 * memcg and kmem_cache debug support and memory initialization. 4060 * Done outside of the IRQ disabled fastpath loop. 4061 */ 4062 if (i != 0) 4063 slab_post_alloc_hook(s, objcg, flags, size, p, 4064 slab_want_init_on_alloc(flags, s), s->object_size); 4065 return i; 4066 } 4067 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 4068 4069 4070 /* 4071 * Object placement in a slab is made very easy because we always start at 4072 * offset 0. If we tune the size of the object to the alignment then we can 4073 * get the required alignment by putting one properly sized object after 4074 * another. 4075 * 4076 * Notice that the allocation order determines the sizes of the per cpu 4077 * caches. Each processor has always one slab available for allocations. 4078 * Increasing the allocation order reduces the number of times that slabs 4079 * must be moved on and off the partial lists and is therefore a factor in 4080 * locking overhead. 4081 */ 4082 4083 /* 4084 * Minimum / Maximum order of slab pages. This influences locking overhead 4085 * and slab fragmentation. A higher order reduces the number of partial slabs 4086 * and increases the number of allocations possible without having to 4087 * take the list_lock. 4088 */ 4089 static unsigned int slub_min_order; 4090 static unsigned int slub_max_order = 4091 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4092 static unsigned int slub_min_objects; 4093 4094 /* 4095 * Calculate the order of allocation given an slab object size. 4096 * 4097 * The order of allocation has significant impact on performance and other 4098 * system components. Generally order 0 allocations should be preferred since 4099 * order 0 does not cause fragmentation in the page allocator. Larger objects 4100 * be problematic to put into order 0 slabs because there may be too much 4101 * unused space left. We go to a higher order if more than 1/16th of the slab 4102 * would be wasted. 4103 * 4104 * In order to reach satisfactory performance we must ensure that a minimum 4105 * number of objects is in one slab. Otherwise we may generate too much 4106 * activity on the partial lists which requires taking the list_lock. This is 4107 * less a concern for large slabs though which are rarely used. 4108 * 4109 * slub_max_order specifies the order where we begin to stop considering the 4110 * number of objects in a slab as critical. If we reach slub_max_order then 4111 * we try to keep the page order as low as possible. So we accept more waste 4112 * of space in favor of a small page order. 4113 * 4114 * Higher order allocations also allow the placement of more objects in a 4115 * slab and thereby reduce object handling overhead. If the user has 4116 * requested a higher minimum order then we start with that one instead of 4117 * the smallest order which will fit the object. 4118 */ 4119 static inline unsigned int calc_slab_order(unsigned int size, 4120 unsigned int min_objects, unsigned int max_order, 4121 unsigned int fract_leftover) 4122 { 4123 unsigned int min_order = slub_min_order; 4124 unsigned int order; 4125 4126 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4127 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4128 4129 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 4130 order <= max_order; order++) { 4131 4132 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4133 unsigned int rem; 4134 4135 rem = slab_size % size; 4136 4137 if (rem <= slab_size / fract_leftover) 4138 break; 4139 } 4140 4141 return order; 4142 } 4143 4144 static inline int calculate_order(unsigned int size) 4145 { 4146 unsigned int order; 4147 unsigned int min_objects; 4148 unsigned int max_objects; 4149 unsigned int nr_cpus; 4150 4151 /* 4152 * Attempt to find best configuration for a slab. This 4153 * works by first attempting to generate a layout with 4154 * the best configuration and backing off gradually. 4155 * 4156 * First we increase the acceptable waste in a slab. Then 4157 * we reduce the minimum objects required in a slab. 4158 */ 4159 min_objects = slub_min_objects; 4160 if (!min_objects) { 4161 /* 4162 * Some architectures will only update present cpus when 4163 * onlining them, so don't trust the number if it's just 1. But 4164 * we also don't want to use nr_cpu_ids always, as on some other 4165 * architectures, there can be many possible cpus, but never 4166 * onlined. Here we compromise between trying to avoid too high 4167 * order on systems that appear larger than they are, and too 4168 * low order on systems that appear smaller than they are. 4169 */ 4170 nr_cpus = num_present_cpus(); 4171 if (nr_cpus <= 1) 4172 nr_cpus = nr_cpu_ids; 4173 min_objects = 4 * (fls(nr_cpus) + 1); 4174 } 4175 max_objects = order_objects(slub_max_order, size); 4176 min_objects = min(min_objects, max_objects); 4177 4178 while (min_objects > 1) { 4179 unsigned int fraction; 4180 4181 fraction = 16; 4182 while (fraction >= 4) { 4183 order = calc_slab_order(size, min_objects, 4184 slub_max_order, fraction); 4185 if (order <= slub_max_order) 4186 return order; 4187 fraction /= 2; 4188 } 4189 min_objects--; 4190 } 4191 4192 /* 4193 * We were unable to place multiple objects in a slab. Now 4194 * lets see if we can place a single object there. 4195 */ 4196 order = calc_slab_order(size, 1, slub_max_order, 1); 4197 if (order <= slub_max_order) 4198 return order; 4199 4200 /* 4201 * Doh this slab cannot be placed using slub_max_order. 4202 */ 4203 order = calc_slab_order(size, 1, MAX_ORDER, 1); 4204 if (order <= MAX_ORDER) 4205 return order; 4206 return -ENOSYS; 4207 } 4208 4209 static void 4210 init_kmem_cache_node(struct kmem_cache_node *n) 4211 { 4212 n->nr_partial = 0; 4213 spin_lock_init(&n->list_lock); 4214 INIT_LIST_HEAD(&n->partial); 4215 #ifdef CONFIG_SLUB_DEBUG 4216 atomic_long_set(&n->nr_slabs, 0); 4217 atomic_long_set(&n->total_objects, 0); 4218 INIT_LIST_HEAD(&n->full); 4219 #endif 4220 } 4221 4222 #ifndef CONFIG_SLUB_TINY 4223 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4224 { 4225 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4226 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 4227 sizeof(struct kmem_cache_cpu)); 4228 4229 /* 4230 * Must align to double word boundary for the double cmpxchg 4231 * instructions to work; see __pcpu_double_call_return_bool(). 4232 */ 4233 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 4234 2 * sizeof(void *)); 4235 4236 if (!s->cpu_slab) 4237 return 0; 4238 4239 init_kmem_cache_cpus(s); 4240 4241 return 1; 4242 } 4243 #else 4244 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4245 { 4246 return 1; 4247 } 4248 #endif /* CONFIG_SLUB_TINY */ 4249 4250 static struct kmem_cache *kmem_cache_node; 4251 4252 /* 4253 * No kmalloc_node yet so do it by hand. We know that this is the first 4254 * slab on the node for this slabcache. There are no concurrent accesses 4255 * possible. 4256 * 4257 * Note that this function only works on the kmem_cache_node 4258 * when allocating for the kmem_cache_node. This is used for bootstrapping 4259 * memory on a fresh node that has no slab structures yet. 4260 */ 4261 static void early_kmem_cache_node_alloc(int node) 4262 { 4263 struct slab *slab; 4264 struct kmem_cache_node *n; 4265 4266 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 4267 4268 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 4269 4270 BUG_ON(!slab); 4271 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects); 4272 if (slab_nid(slab) != node) { 4273 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 4274 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 4275 } 4276 4277 n = slab->freelist; 4278 BUG_ON(!n); 4279 #ifdef CONFIG_SLUB_DEBUG 4280 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 4281 init_tracking(kmem_cache_node, n); 4282 #endif 4283 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 4284 slab->freelist = get_freepointer(kmem_cache_node, n); 4285 slab->inuse = 1; 4286 kmem_cache_node->node[node] = n; 4287 init_kmem_cache_node(n); 4288 inc_slabs_node(kmem_cache_node, node, slab->objects); 4289 4290 /* 4291 * No locks need to be taken here as it has just been 4292 * initialized and there is no concurrent access. 4293 */ 4294 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 4295 } 4296 4297 static void free_kmem_cache_nodes(struct kmem_cache *s) 4298 { 4299 int node; 4300 struct kmem_cache_node *n; 4301 4302 for_each_kmem_cache_node(s, node, n) { 4303 s->node[node] = NULL; 4304 kmem_cache_free(kmem_cache_node, n); 4305 } 4306 } 4307 4308 void __kmem_cache_release(struct kmem_cache *s) 4309 { 4310 cache_random_seq_destroy(s); 4311 #ifndef CONFIG_SLUB_TINY 4312 free_percpu(s->cpu_slab); 4313 #endif 4314 free_kmem_cache_nodes(s); 4315 } 4316 4317 static int init_kmem_cache_nodes(struct kmem_cache *s) 4318 { 4319 int node; 4320 4321 for_each_node_mask(node, slab_nodes) { 4322 struct kmem_cache_node *n; 4323 4324 if (slab_state == DOWN) { 4325 early_kmem_cache_node_alloc(node); 4326 continue; 4327 } 4328 n = kmem_cache_alloc_node(kmem_cache_node, 4329 GFP_KERNEL, node); 4330 4331 if (!n) { 4332 free_kmem_cache_nodes(s); 4333 return 0; 4334 } 4335 4336 init_kmem_cache_node(n); 4337 s->node[node] = n; 4338 } 4339 return 1; 4340 } 4341 4342 static void set_cpu_partial(struct kmem_cache *s) 4343 { 4344 #ifdef CONFIG_SLUB_CPU_PARTIAL 4345 unsigned int nr_objects; 4346 4347 /* 4348 * cpu_partial determined the maximum number of objects kept in the 4349 * per cpu partial lists of a processor. 4350 * 4351 * Per cpu partial lists mainly contain slabs that just have one 4352 * object freed. If they are used for allocation then they can be 4353 * filled up again with minimal effort. The slab will never hit the 4354 * per node partial lists and therefore no locking will be required. 4355 * 4356 * For backwards compatibility reasons, this is determined as number 4357 * of objects, even though we now limit maximum number of pages, see 4358 * slub_set_cpu_partial() 4359 */ 4360 if (!kmem_cache_has_cpu_partial(s)) 4361 nr_objects = 0; 4362 else if (s->size >= PAGE_SIZE) 4363 nr_objects = 6; 4364 else if (s->size >= 1024) 4365 nr_objects = 24; 4366 else if (s->size >= 256) 4367 nr_objects = 52; 4368 else 4369 nr_objects = 120; 4370 4371 slub_set_cpu_partial(s, nr_objects); 4372 #endif 4373 } 4374 4375 /* 4376 * calculate_sizes() determines the order and the distribution of data within 4377 * a slab object. 4378 */ 4379 static int calculate_sizes(struct kmem_cache *s) 4380 { 4381 slab_flags_t flags = s->flags; 4382 unsigned int size = s->object_size; 4383 unsigned int order; 4384 4385 /* 4386 * Round up object size to the next word boundary. We can only 4387 * place the free pointer at word boundaries and this determines 4388 * the possible location of the free pointer. 4389 */ 4390 size = ALIGN(size, sizeof(void *)); 4391 4392 #ifdef CONFIG_SLUB_DEBUG 4393 /* 4394 * Determine if we can poison the object itself. If the user of 4395 * the slab may touch the object after free or before allocation 4396 * then we should never poison the object itself. 4397 */ 4398 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4399 !s->ctor) 4400 s->flags |= __OBJECT_POISON; 4401 else 4402 s->flags &= ~__OBJECT_POISON; 4403 4404 4405 /* 4406 * If we are Redzoning then check if there is some space between the 4407 * end of the object and the free pointer. If not then add an 4408 * additional word to have some bytes to store Redzone information. 4409 */ 4410 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4411 size += sizeof(void *); 4412 #endif 4413 4414 /* 4415 * With that we have determined the number of bytes in actual use 4416 * by the object and redzoning. 4417 */ 4418 s->inuse = size; 4419 4420 if (slub_debug_orig_size(s) || 4421 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4422 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4423 s->ctor) { 4424 /* 4425 * Relocate free pointer after the object if it is not 4426 * permitted to overwrite the first word of the object on 4427 * kmem_cache_free. 4428 * 4429 * This is the case if we do RCU, have a constructor or 4430 * destructor, are poisoning the objects, or are 4431 * redzoning an object smaller than sizeof(void *). 4432 * 4433 * The assumption that s->offset >= s->inuse means free 4434 * pointer is outside of the object is used in the 4435 * freeptr_outside_object() function. If that is no 4436 * longer true, the function needs to be modified. 4437 */ 4438 s->offset = size; 4439 size += sizeof(void *); 4440 } else { 4441 /* 4442 * Store freelist pointer near middle of object to keep 4443 * it away from the edges of the object to avoid small 4444 * sized over/underflows from neighboring allocations. 4445 */ 4446 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4447 } 4448 4449 #ifdef CONFIG_SLUB_DEBUG 4450 if (flags & SLAB_STORE_USER) { 4451 /* 4452 * Need to store information about allocs and frees after 4453 * the object. 4454 */ 4455 size += 2 * sizeof(struct track); 4456 4457 /* Save the original kmalloc request size */ 4458 if (flags & SLAB_KMALLOC) 4459 size += sizeof(unsigned int); 4460 } 4461 #endif 4462 4463 kasan_cache_create(s, &size, &s->flags); 4464 #ifdef CONFIG_SLUB_DEBUG 4465 if (flags & SLAB_RED_ZONE) { 4466 /* 4467 * Add some empty padding so that we can catch 4468 * overwrites from earlier objects rather than let 4469 * tracking information or the free pointer be 4470 * corrupted if a user writes before the start 4471 * of the object. 4472 */ 4473 size += sizeof(void *); 4474 4475 s->red_left_pad = sizeof(void *); 4476 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4477 size += s->red_left_pad; 4478 } 4479 #endif 4480 4481 /* 4482 * SLUB stores one object immediately after another beginning from 4483 * offset 0. In order to align the objects we have to simply size 4484 * each object to conform to the alignment. 4485 */ 4486 size = ALIGN(size, s->align); 4487 s->size = size; 4488 s->reciprocal_size = reciprocal_value(size); 4489 order = calculate_order(size); 4490 4491 if ((int)order < 0) 4492 return 0; 4493 4494 s->allocflags = 0; 4495 if (order) 4496 s->allocflags |= __GFP_COMP; 4497 4498 if (s->flags & SLAB_CACHE_DMA) 4499 s->allocflags |= GFP_DMA; 4500 4501 if (s->flags & SLAB_CACHE_DMA32) 4502 s->allocflags |= GFP_DMA32; 4503 4504 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4505 s->allocflags |= __GFP_RECLAIMABLE; 4506 4507 /* 4508 * Determine the number of objects per slab 4509 */ 4510 s->oo = oo_make(order, size); 4511 s->min = oo_make(get_order(size), size); 4512 4513 return !!oo_objects(s->oo); 4514 } 4515 4516 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4517 { 4518 s->flags = kmem_cache_flags(s->size, flags, s->name); 4519 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4520 s->random = get_random_long(); 4521 #endif 4522 4523 if (!calculate_sizes(s)) 4524 goto error; 4525 if (disable_higher_order_debug) { 4526 /* 4527 * Disable debugging flags that store metadata if the min slab 4528 * order increased. 4529 */ 4530 if (get_order(s->size) > get_order(s->object_size)) { 4531 s->flags &= ~DEBUG_METADATA_FLAGS; 4532 s->offset = 0; 4533 if (!calculate_sizes(s)) 4534 goto error; 4535 } 4536 } 4537 4538 #ifdef system_has_freelist_aba 4539 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 4540 /* Enable fast mode */ 4541 s->flags |= __CMPXCHG_DOUBLE; 4542 } 4543 #endif 4544 4545 /* 4546 * The larger the object size is, the more slabs we want on the partial 4547 * list to avoid pounding the page allocator excessively. 4548 */ 4549 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 4550 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 4551 4552 set_cpu_partial(s); 4553 4554 #ifdef CONFIG_NUMA 4555 s->remote_node_defrag_ratio = 1000; 4556 #endif 4557 4558 /* Initialize the pre-computed randomized freelist if slab is up */ 4559 if (slab_state >= UP) { 4560 if (init_cache_random_seq(s)) 4561 goto error; 4562 } 4563 4564 if (!init_kmem_cache_nodes(s)) 4565 goto error; 4566 4567 if (alloc_kmem_cache_cpus(s)) 4568 return 0; 4569 4570 error: 4571 __kmem_cache_release(s); 4572 return -EINVAL; 4573 } 4574 4575 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4576 const char *text) 4577 { 4578 #ifdef CONFIG_SLUB_DEBUG 4579 void *addr = slab_address(slab); 4580 void *p; 4581 4582 slab_err(s, slab, text, s->name); 4583 4584 spin_lock(&object_map_lock); 4585 __fill_map(object_map, s, slab); 4586 4587 for_each_object(p, s, addr, slab->objects) { 4588 4589 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 4590 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4591 print_tracking(s, p); 4592 } 4593 } 4594 spin_unlock(&object_map_lock); 4595 #endif 4596 } 4597 4598 /* 4599 * Attempt to free all partial slabs on a node. 4600 * This is called from __kmem_cache_shutdown(). We must take list_lock 4601 * because sysfs file might still access partial list after the shutdowning. 4602 */ 4603 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4604 { 4605 LIST_HEAD(discard); 4606 struct slab *slab, *h; 4607 4608 BUG_ON(irqs_disabled()); 4609 spin_lock_irq(&n->list_lock); 4610 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4611 if (!slab->inuse) { 4612 remove_partial(n, slab); 4613 list_add(&slab->slab_list, &discard); 4614 } else { 4615 list_slab_objects(s, slab, 4616 "Objects remaining in %s on __kmem_cache_shutdown()"); 4617 } 4618 } 4619 spin_unlock_irq(&n->list_lock); 4620 4621 list_for_each_entry_safe(slab, h, &discard, slab_list) 4622 discard_slab(s, slab); 4623 } 4624 4625 bool __kmem_cache_empty(struct kmem_cache *s) 4626 { 4627 int node; 4628 struct kmem_cache_node *n; 4629 4630 for_each_kmem_cache_node(s, node, n) 4631 if (n->nr_partial || node_nr_slabs(n)) 4632 return false; 4633 return true; 4634 } 4635 4636 /* 4637 * Release all resources used by a slab cache. 4638 */ 4639 int __kmem_cache_shutdown(struct kmem_cache *s) 4640 { 4641 int node; 4642 struct kmem_cache_node *n; 4643 4644 flush_all_cpus_locked(s); 4645 /* Attempt to free all objects */ 4646 for_each_kmem_cache_node(s, node, n) { 4647 free_partial(s, n); 4648 if (n->nr_partial || node_nr_slabs(n)) 4649 return 1; 4650 } 4651 return 0; 4652 } 4653 4654 #ifdef CONFIG_PRINTK 4655 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4656 { 4657 void *base; 4658 int __maybe_unused i; 4659 unsigned int objnr; 4660 void *objp; 4661 void *objp0; 4662 struct kmem_cache *s = slab->slab_cache; 4663 struct track __maybe_unused *trackp; 4664 4665 kpp->kp_ptr = object; 4666 kpp->kp_slab = slab; 4667 kpp->kp_slab_cache = s; 4668 base = slab_address(slab); 4669 objp0 = kasan_reset_tag(object); 4670 #ifdef CONFIG_SLUB_DEBUG 4671 objp = restore_red_left(s, objp0); 4672 #else 4673 objp = objp0; 4674 #endif 4675 objnr = obj_to_index(s, slab, objp); 4676 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4677 objp = base + s->size * objnr; 4678 kpp->kp_objp = objp; 4679 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4680 || (objp - base) % s->size) || 4681 !(s->flags & SLAB_STORE_USER)) 4682 return; 4683 #ifdef CONFIG_SLUB_DEBUG 4684 objp = fixup_red_left(s, objp); 4685 trackp = get_track(s, objp, TRACK_ALLOC); 4686 kpp->kp_ret = (void *)trackp->addr; 4687 #ifdef CONFIG_STACKDEPOT 4688 { 4689 depot_stack_handle_t handle; 4690 unsigned long *entries; 4691 unsigned int nr_entries; 4692 4693 handle = READ_ONCE(trackp->handle); 4694 if (handle) { 4695 nr_entries = stack_depot_fetch(handle, &entries); 4696 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4697 kpp->kp_stack[i] = (void *)entries[i]; 4698 } 4699 4700 trackp = get_track(s, objp, TRACK_FREE); 4701 handle = READ_ONCE(trackp->handle); 4702 if (handle) { 4703 nr_entries = stack_depot_fetch(handle, &entries); 4704 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4705 kpp->kp_free_stack[i] = (void *)entries[i]; 4706 } 4707 } 4708 #endif 4709 #endif 4710 } 4711 #endif 4712 4713 /******************************************************************** 4714 * Kmalloc subsystem 4715 *******************************************************************/ 4716 4717 static int __init setup_slub_min_order(char *str) 4718 { 4719 get_option(&str, (int *)&slub_min_order); 4720 4721 return 1; 4722 } 4723 4724 __setup("slub_min_order=", setup_slub_min_order); 4725 4726 static int __init setup_slub_max_order(char *str) 4727 { 4728 get_option(&str, (int *)&slub_max_order); 4729 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER); 4730 4731 return 1; 4732 } 4733 4734 __setup("slub_max_order=", setup_slub_max_order); 4735 4736 static int __init setup_slub_min_objects(char *str) 4737 { 4738 get_option(&str, (int *)&slub_min_objects); 4739 4740 return 1; 4741 } 4742 4743 __setup("slub_min_objects=", setup_slub_min_objects); 4744 4745 #ifdef CONFIG_HARDENED_USERCOPY 4746 /* 4747 * Rejects incorrectly sized objects and objects that are to be copied 4748 * to/from userspace but do not fall entirely within the containing slab 4749 * cache's usercopy region. 4750 * 4751 * Returns NULL if check passes, otherwise const char * to name of cache 4752 * to indicate an error. 4753 */ 4754 void __check_heap_object(const void *ptr, unsigned long n, 4755 const struct slab *slab, bool to_user) 4756 { 4757 struct kmem_cache *s; 4758 unsigned int offset; 4759 bool is_kfence = is_kfence_address(ptr); 4760 4761 ptr = kasan_reset_tag(ptr); 4762 4763 /* Find object and usable object size. */ 4764 s = slab->slab_cache; 4765 4766 /* Reject impossible pointers. */ 4767 if (ptr < slab_address(slab)) 4768 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4769 to_user, 0, n); 4770 4771 /* Find offset within object. */ 4772 if (is_kfence) 4773 offset = ptr - kfence_object_start(ptr); 4774 else 4775 offset = (ptr - slab_address(slab)) % s->size; 4776 4777 /* Adjust for redzone and reject if within the redzone. */ 4778 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4779 if (offset < s->red_left_pad) 4780 usercopy_abort("SLUB object in left red zone", 4781 s->name, to_user, offset, n); 4782 offset -= s->red_left_pad; 4783 } 4784 4785 /* Allow address range falling entirely within usercopy region. */ 4786 if (offset >= s->useroffset && 4787 offset - s->useroffset <= s->usersize && 4788 n <= s->useroffset - offset + s->usersize) 4789 return; 4790 4791 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4792 } 4793 #endif /* CONFIG_HARDENED_USERCOPY */ 4794 4795 #define SHRINK_PROMOTE_MAX 32 4796 4797 /* 4798 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4799 * up most to the head of the partial lists. New allocations will then 4800 * fill those up and thus they can be removed from the partial lists. 4801 * 4802 * The slabs with the least items are placed last. This results in them 4803 * being allocated from last increasing the chance that the last objects 4804 * are freed in them. 4805 */ 4806 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4807 { 4808 int node; 4809 int i; 4810 struct kmem_cache_node *n; 4811 struct slab *slab; 4812 struct slab *t; 4813 struct list_head discard; 4814 struct list_head promote[SHRINK_PROMOTE_MAX]; 4815 unsigned long flags; 4816 int ret = 0; 4817 4818 for_each_kmem_cache_node(s, node, n) { 4819 INIT_LIST_HEAD(&discard); 4820 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4821 INIT_LIST_HEAD(promote + i); 4822 4823 spin_lock_irqsave(&n->list_lock, flags); 4824 4825 /* 4826 * Build lists of slabs to discard or promote. 4827 * 4828 * Note that concurrent frees may occur while we hold the 4829 * list_lock. slab->inuse here is the upper limit. 4830 */ 4831 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4832 int free = slab->objects - slab->inuse; 4833 4834 /* Do not reread slab->inuse */ 4835 barrier(); 4836 4837 /* We do not keep full slabs on the list */ 4838 BUG_ON(free <= 0); 4839 4840 if (free == slab->objects) { 4841 list_move(&slab->slab_list, &discard); 4842 n->nr_partial--; 4843 dec_slabs_node(s, node, slab->objects); 4844 } else if (free <= SHRINK_PROMOTE_MAX) 4845 list_move(&slab->slab_list, promote + free - 1); 4846 } 4847 4848 /* 4849 * Promote the slabs filled up most to the head of the 4850 * partial list. 4851 */ 4852 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4853 list_splice(promote + i, &n->partial); 4854 4855 spin_unlock_irqrestore(&n->list_lock, flags); 4856 4857 /* Release empty slabs */ 4858 list_for_each_entry_safe(slab, t, &discard, slab_list) 4859 free_slab(s, slab); 4860 4861 if (node_nr_slabs(n)) 4862 ret = 1; 4863 } 4864 4865 return ret; 4866 } 4867 4868 int __kmem_cache_shrink(struct kmem_cache *s) 4869 { 4870 flush_all(s); 4871 return __kmem_cache_do_shrink(s); 4872 } 4873 4874 static int slab_mem_going_offline_callback(void *arg) 4875 { 4876 struct kmem_cache *s; 4877 4878 mutex_lock(&slab_mutex); 4879 list_for_each_entry(s, &slab_caches, list) { 4880 flush_all_cpus_locked(s); 4881 __kmem_cache_do_shrink(s); 4882 } 4883 mutex_unlock(&slab_mutex); 4884 4885 return 0; 4886 } 4887 4888 static void slab_mem_offline_callback(void *arg) 4889 { 4890 struct memory_notify *marg = arg; 4891 int offline_node; 4892 4893 offline_node = marg->status_change_nid_normal; 4894 4895 /* 4896 * If the node still has available memory. we need kmem_cache_node 4897 * for it yet. 4898 */ 4899 if (offline_node < 0) 4900 return; 4901 4902 mutex_lock(&slab_mutex); 4903 node_clear(offline_node, slab_nodes); 4904 /* 4905 * We no longer free kmem_cache_node structures here, as it would be 4906 * racy with all get_node() users, and infeasible to protect them with 4907 * slab_mutex. 4908 */ 4909 mutex_unlock(&slab_mutex); 4910 } 4911 4912 static int slab_mem_going_online_callback(void *arg) 4913 { 4914 struct kmem_cache_node *n; 4915 struct kmem_cache *s; 4916 struct memory_notify *marg = arg; 4917 int nid = marg->status_change_nid_normal; 4918 int ret = 0; 4919 4920 /* 4921 * If the node's memory is already available, then kmem_cache_node is 4922 * already created. Nothing to do. 4923 */ 4924 if (nid < 0) 4925 return 0; 4926 4927 /* 4928 * We are bringing a node online. No memory is available yet. We must 4929 * allocate a kmem_cache_node structure in order to bring the node 4930 * online. 4931 */ 4932 mutex_lock(&slab_mutex); 4933 list_for_each_entry(s, &slab_caches, list) { 4934 /* 4935 * The structure may already exist if the node was previously 4936 * onlined and offlined. 4937 */ 4938 if (get_node(s, nid)) 4939 continue; 4940 /* 4941 * XXX: kmem_cache_alloc_node will fallback to other nodes 4942 * since memory is not yet available from the node that 4943 * is brought up. 4944 */ 4945 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4946 if (!n) { 4947 ret = -ENOMEM; 4948 goto out; 4949 } 4950 init_kmem_cache_node(n); 4951 s->node[nid] = n; 4952 } 4953 /* 4954 * Any cache created after this point will also have kmem_cache_node 4955 * initialized for the new node. 4956 */ 4957 node_set(nid, slab_nodes); 4958 out: 4959 mutex_unlock(&slab_mutex); 4960 return ret; 4961 } 4962 4963 static int slab_memory_callback(struct notifier_block *self, 4964 unsigned long action, void *arg) 4965 { 4966 int ret = 0; 4967 4968 switch (action) { 4969 case MEM_GOING_ONLINE: 4970 ret = slab_mem_going_online_callback(arg); 4971 break; 4972 case MEM_GOING_OFFLINE: 4973 ret = slab_mem_going_offline_callback(arg); 4974 break; 4975 case MEM_OFFLINE: 4976 case MEM_CANCEL_ONLINE: 4977 slab_mem_offline_callback(arg); 4978 break; 4979 case MEM_ONLINE: 4980 case MEM_CANCEL_OFFLINE: 4981 break; 4982 } 4983 if (ret) 4984 ret = notifier_from_errno(ret); 4985 else 4986 ret = NOTIFY_OK; 4987 return ret; 4988 } 4989 4990 /******************************************************************** 4991 * Basic setup of slabs 4992 *******************************************************************/ 4993 4994 /* 4995 * Used for early kmem_cache structures that were allocated using 4996 * the page allocator. Allocate them properly then fix up the pointers 4997 * that may be pointing to the wrong kmem_cache structure. 4998 */ 4999 5000 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 5001 { 5002 int node; 5003 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 5004 struct kmem_cache_node *n; 5005 5006 memcpy(s, static_cache, kmem_cache->object_size); 5007 5008 /* 5009 * This runs very early, and only the boot processor is supposed to be 5010 * up. Even if it weren't true, IRQs are not up so we couldn't fire 5011 * IPIs around. 5012 */ 5013 __flush_cpu_slab(s, smp_processor_id()); 5014 for_each_kmem_cache_node(s, node, n) { 5015 struct slab *p; 5016 5017 list_for_each_entry(p, &n->partial, slab_list) 5018 p->slab_cache = s; 5019 5020 #ifdef CONFIG_SLUB_DEBUG 5021 list_for_each_entry(p, &n->full, slab_list) 5022 p->slab_cache = s; 5023 #endif 5024 } 5025 list_add(&s->list, &slab_caches); 5026 return s; 5027 } 5028 5029 void __init kmem_cache_init(void) 5030 { 5031 static __initdata struct kmem_cache boot_kmem_cache, 5032 boot_kmem_cache_node; 5033 int node; 5034 5035 if (debug_guardpage_minorder()) 5036 slub_max_order = 0; 5037 5038 /* Print slub debugging pointers without hashing */ 5039 if (__slub_debug_enabled()) 5040 no_hash_pointers_enable(NULL); 5041 5042 kmem_cache_node = &boot_kmem_cache_node; 5043 kmem_cache = &boot_kmem_cache; 5044 5045 /* 5046 * Initialize the nodemask for which we will allocate per node 5047 * structures. Here we don't need taking slab_mutex yet. 5048 */ 5049 for_each_node_state(node, N_NORMAL_MEMORY) 5050 node_set(node, slab_nodes); 5051 5052 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5053 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 5054 5055 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5056 5057 /* Able to allocate the per node structures */ 5058 slab_state = PARTIAL; 5059 5060 create_boot_cache(kmem_cache, "kmem_cache", 5061 offsetof(struct kmem_cache, node) + 5062 nr_node_ids * sizeof(struct kmem_cache_node *), 5063 SLAB_HWCACHE_ALIGN, 0, 0); 5064 5065 kmem_cache = bootstrap(&boot_kmem_cache); 5066 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5067 5068 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5069 setup_kmalloc_cache_index_table(); 5070 create_kmalloc_caches(0); 5071 5072 /* Setup random freelists for each cache */ 5073 init_freelist_randomization(); 5074 5075 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5076 slub_cpu_dead); 5077 5078 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5079 cache_line_size(), 5080 slub_min_order, slub_max_order, slub_min_objects, 5081 nr_cpu_ids, nr_node_ids); 5082 } 5083 5084 void __init kmem_cache_init_late(void) 5085 { 5086 #ifndef CONFIG_SLUB_TINY 5087 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5088 WARN_ON(!flushwq); 5089 #endif 5090 } 5091 5092 struct kmem_cache * 5093 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5094 slab_flags_t flags, void (*ctor)(void *)) 5095 { 5096 struct kmem_cache *s; 5097 5098 s = find_mergeable(size, align, flags, name, ctor); 5099 if (s) { 5100 if (sysfs_slab_alias(s, name)) 5101 return NULL; 5102 5103 s->refcount++; 5104 5105 /* 5106 * Adjust the object sizes so that we clear 5107 * the complete object on kzalloc. 5108 */ 5109 s->object_size = max(s->object_size, size); 5110 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5111 } 5112 5113 return s; 5114 } 5115 5116 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5117 { 5118 int err; 5119 5120 err = kmem_cache_open(s, flags); 5121 if (err) 5122 return err; 5123 5124 /* Mutex is not taken during early boot */ 5125 if (slab_state <= UP) 5126 return 0; 5127 5128 err = sysfs_slab_add(s); 5129 if (err) { 5130 __kmem_cache_release(s); 5131 return err; 5132 } 5133 5134 if (s->flags & SLAB_STORE_USER) 5135 debugfs_slab_add(s); 5136 5137 return 0; 5138 } 5139 5140 #ifdef SLAB_SUPPORTS_SYSFS 5141 static int count_inuse(struct slab *slab) 5142 { 5143 return slab->inuse; 5144 } 5145 5146 static int count_total(struct slab *slab) 5147 { 5148 return slab->objects; 5149 } 5150 #endif 5151 5152 #ifdef CONFIG_SLUB_DEBUG 5153 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5154 unsigned long *obj_map) 5155 { 5156 void *p; 5157 void *addr = slab_address(slab); 5158 5159 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5160 return; 5161 5162 /* Now we know that a valid freelist exists */ 5163 __fill_map(obj_map, s, slab); 5164 for_each_object(p, s, addr, slab->objects) { 5165 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5166 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5167 5168 if (!check_object(s, slab, p, val)) 5169 break; 5170 } 5171 } 5172 5173 static int validate_slab_node(struct kmem_cache *s, 5174 struct kmem_cache_node *n, unsigned long *obj_map) 5175 { 5176 unsigned long count = 0; 5177 struct slab *slab; 5178 unsigned long flags; 5179 5180 spin_lock_irqsave(&n->list_lock, flags); 5181 5182 list_for_each_entry(slab, &n->partial, slab_list) { 5183 validate_slab(s, slab, obj_map); 5184 count++; 5185 } 5186 if (count != n->nr_partial) { 5187 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5188 s->name, count, n->nr_partial); 5189 slab_add_kunit_errors(); 5190 } 5191 5192 if (!(s->flags & SLAB_STORE_USER)) 5193 goto out; 5194 5195 list_for_each_entry(slab, &n->full, slab_list) { 5196 validate_slab(s, slab, obj_map); 5197 count++; 5198 } 5199 if (count != node_nr_slabs(n)) { 5200 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5201 s->name, count, node_nr_slabs(n)); 5202 slab_add_kunit_errors(); 5203 } 5204 5205 out: 5206 spin_unlock_irqrestore(&n->list_lock, flags); 5207 return count; 5208 } 5209 5210 long validate_slab_cache(struct kmem_cache *s) 5211 { 5212 int node; 5213 unsigned long count = 0; 5214 struct kmem_cache_node *n; 5215 unsigned long *obj_map; 5216 5217 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5218 if (!obj_map) 5219 return -ENOMEM; 5220 5221 flush_all(s); 5222 for_each_kmem_cache_node(s, node, n) 5223 count += validate_slab_node(s, n, obj_map); 5224 5225 bitmap_free(obj_map); 5226 5227 return count; 5228 } 5229 EXPORT_SYMBOL(validate_slab_cache); 5230 5231 #ifdef CONFIG_DEBUG_FS 5232 /* 5233 * Generate lists of code addresses where slabcache objects are allocated 5234 * and freed. 5235 */ 5236 5237 struct location { 5238 depot_stack_handle_t handle; 5239 unsigned long count; 5240 unsigned long addr; 5241 unsigned long waste; 5242 long long sum_time; 5243 long min_time; 5244 long max_time; 5245 long min_pid; 5246 long max_pid; 5247 DECLARE_BITMAP(cpus, NR_CPUS); 5248 nodemask_t nodes; 5249 }; 5250 5251 struct loc_track { 5252 unsigned long max; 5253 unsigned long count; 5254 struct location *loc; 5255 loff_t idx; 5256 }; 5257 5258 static struct dentry *slab_debugfs_root; 5259 5260 static void free_loc_track(struct loc_track *t) 5261 { 5262 if (t->max) 5263 free_pages((unsigned long)t->loc, 5264 get_order(sizeof(struct location) * t->max)); 5265 } 5266 5267 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5268 { 5269 struct location *l; 5270 int order; 5271 5272 order = get_order(sizeof(struct location) * max); 5273 5274 l = (void *)__get_free_pages(flags, order); 5275 if (!l) 5276 return 0; 5277 5278 if (t->count) { 5279 memcpy(l, t->loc, sizeof(struct location) * t->count); 5280 free_loc_track(t); 5281 } 5282 t->max = max; 5283 t->loc = l; 5284 return 1; 5285 } 5286 5287 static int add_location(struct loc_track *t, struct kmem_cache *s, 5288 const struct track *track, 5289 unsigned int orig_size) 5290 { 5291 long start, end, pos; 5292 struct location *l; 5293 unsigned long caddr, chandle, cwaste; 5294 unsigned long age = jiffies - track->when; 5295 depot_stack_handle_t handle = 0; 5296 unsigned int waste = s->object_size - orig_size; 5297 5298 #ifdef CONFIG_STACKDEPOT 5299 handle = READ_ONCE(track->handle); 5300 #endif 5301 start = -1; 5302 end = t->count; 5303 5304 for ( ; ; ) { 5305 pos = start + (end - start + 1) / 2; 5306 5307 /* 5308 * There is nothing at "end". If we end up there 5309 * we need to add something to before end. 5310 */ 5311 if (pos == end) 5312 break; 5313 5314 l = &t->loc[pos]; 5315 caddr = l->addr; 5316 chandle = l->handle; 5317 cwaste = l->waste; 5318 if ((track->addr == caddr) && (handle == chandle) && 5319 (waste == cwaste)) { 5320 5321 l->count++; 5322 if (track->when) { 5323 l->sum_time += age; 5324 if (age < l->min_time) 5325 l->min_time = age; 5326 if (age > l->max_time) 5327 l->max_time = age; 5328 5329 if (track->pid < l->min_pid) 5330 l->min_pid = track->pid; 5331 if (track->pid > l->max_pid) 5332 l->max_pid = track->pid; 5333 5334 cpumask_set_cpu(track->cpu, 5335 to_cpumask(l->cpus)); 5336 } 5337 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5338 return 1; 5339 } 5340 5341 if (track->addr < caddr) 5342 end = pos; 5343 else if (track->addr == caddr && handle < chandle) 5344 end = pos; 5345 else if (track->addr == caddr && handle == chandle && 5346 waste < cwaste) 5347 end = pos; 5348 else 5349 start = pos; 5350 } 5351 5352 /* 5353 * Not found. Insert new tracking element. 5354 */ 5355 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5356 return 0; 5357 5358 l = t->loc + pos; 5359 if (pos < t->count) 5360 memmove(l + 1, l, 5361 (t->count - pos) * sizeof(struct location)); 5362 t->count++; 5363 l->count = 1; 5364 l->addr = track->addr; 5365 l->sum_time = age; 5366 l->min_time = age; 5367 l->max_time = age; 5368 l->min_pid = track->pid; 5369 l->max_pid = track->pid; 5370 l->handle = handle; 5371 l->waste = waste; 5372 cpumask_clear(to_cpumask(l->cpus)); 5373 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5374 nodes_clear(l->nodes); 5375 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5376 return 1; 5377 } 5378 5379 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5380 struct slab *slab, enum track_item alloc, 5381 unsigned long *obj_map) 5382 { 5383 void *addr = slab_address(slab); 5384 bool is_alloc = (alloc == TRACK_ALLOC); 5385 void *p; 5386 5387 __fill_map(obj_map, s, slab); 5388 5389 for_each_object(p, s, addr, slab->objects) 5390 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5391 add_location(t, s, get_track(s, p, alloc), 5392 is_alloc ? get_orig_size(s, p) : 5393 s->object_size); 5394 } 5395 #endif /* CONFIG_DEBUG_FS */ 5396 #endif /* CONFIG_SLUB_DEBUG */ 5397 5398 #ifdef SLAB_SUPPORTS_SYSFS 5399 enum slab_stat_type { 5400 SL_ALL, /* All slabs */ 5401 SL_PARTIAL, /* Only partially allocated slabs */ 5402 SL_CPU, /* Only slabs used for cpu caches */ 5403 SL_OBJECTS, /* Determine allocated objects not slabs */ 5404 SL_TOTAL /* Determine object capacity not slabs */ 5405 }; 5406 5407 #define SO_ALL (1 << SL_ALL) 5408 #define SO_PARTIAL (1 << SL_PARTIAL) 5409 #define SO_CPU (1 << SL_CPU) 5410 #define SO_OBJECTS (1 << SL_OBJECTS) 5411 #define SO_TOTAL (1 << SL_TOTAL) 5412 5413 static ssize_t show_slab_objects(struct kmem_cache *s, 5414 char *buf, unsigned long flags) 5415 { 5416 unsigned long total = 0; 5417 int node; 5418 int x; 5419 unsigned long *nodes; 5420 int len = 0; 5421 5422 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5423 if (!nodes) 5424 return -ENOMEM; 5425 5426 if (flags & SO_CPU) { 5427 int cpu; 5428 5429 for_each_possible_cpu(cpu) { 5430 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5431 cpu); 5432 int node; 5433 struct slab *slab; 5434 5435 slab = READ_ONCE(c->slab); 5436 if (!slab) 5437 continue; 5438 5439 node = slab_nid(slab); 5440 if (flags & SO_TOTAL) 5441 x = slab->objects; 5442 else if (flags & SO_OBJECTS) 5443 x = slab->inuse; 5444 else 5445 x = 1; 5446 5447 total += x; 5448 nodes[node] += x; 5449 5450 #ifdef CONFIG_SLUB_CPU_PARTIAL 5451 slab = slub_percpu_partial_read_once(c); 5452 if (slab) { 5453 node = slab_nid(slab); 5454 if (flags & SO_TOTAL) 5455 WARN_ON_ONCE(1); 5456 else if (flags & SO_OBJECTS) 5457 WARN_ON_ONCE(1); 5458 else 5459 x = slab->slabs; 5460 total += x; 5461 nodes[node] += x; 5462 } 5463 #endif 5464 } 5465 } 5466 5467 /* 5468 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5469 * already held which will conflict with an existing lock order: 5470 * 5471 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5472 * 5473 * We don't really need mem_hotplug_lock (to hold off 5474 * slab_mem_going_offline_callback) here because slab's memory hot 5475 * unplug code doesn't destroy the kmem_cache->node[] data. 5476 */ 5477 5478 #ifdef CONFIG_SLUB_DEBUG 5479 if (flags & SO_ALL) { 5480 struct kmem_cache_node *n; 5481 5482 for_each_kmem_cache_node(s, node, n) { 5483 5484 if (flags & SO_TOTAL) 5485 x = node_nr_objs(n); 5486 else if (flags & SO_OBJECTS) 5487 x = node_nr_objs(n) - count_partial(n, count_free); 5488 else 5489 x = node_nr_slabs(n); 5490 total += x; 5491 nodes[node] += x; 5492 } 5493 5494 } else 5495 #endif 5496 if (flags & SO_PARTIAL) { 5497 struct kmem_cache_node *n; 5498 5499 for_each_kmem_cache_node(s, node, n) { 5500 if (flags & SO_TOTAL) 5501 x = count_partial(n, count_total); 5502 else if (flags & SO_OBJECTS) 5503 x = count_partial(n, count_inuse); 5504 else 5505 x = n->nr_partial; 5506 total += x; 5507 nodes[node] += x; 5508 } 5509 } 5510 5511 len += sysfs_emit_at(buf, len, "%lu", total); 5512 #ifdef CONFIG_NUMA 5513 for (node = 0; node < nr_node_ids; node++) { 5514 if (nodes[node]) 5515 len += sysfs_emit_at(buf, len, " N%d=%lu", 5516 node, nodes[node]); 5517 } 5518 #endif 5519 len += sysfs_emit_at(buf, len, "\n"); 5520 kfree(nodes); 5521 5522 return len; 5523 } 5524 5525 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5526 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5527 5528 struct slab_attribute { 5529 struct attribute attr; 5530 ssize_t (*show)(struct kmem_cache *s, char *buf); 5531 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5532 }; 5533 5534 #define SLAB_ATTR_RO(_name) \ 5535 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 5536 5537 #define SLAB_ATTR(_name) \ 5538 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 5539 5540 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5541 { 5542 return sysfs_emit(buf, "%u\n", s->size); 5543 } 5544 SLAB_ATTR_RO(slab_size); 5545 5546 static ssize_t align_show(struct kmem_cache *s, char *buf) 5547 { 5548 return sysfs_emit(buf, "%u\n", s->align); 5549 } 5550 SLAB_ATTR_RO(align); 5551 5552 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5553 { 5554 return sysfs_emit(buf, "%u\n", s->object_size); 5555 } 5556 SLAB_ATTR_RO(object_size); 5557 5558 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5559 { 5560 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5561 } 5562 SLAB_ATTR_RO(objs_per_slab); 5563 5564 static ssize_t order_show(struct kmem_cache *s, char *buf) 5565 { 5566 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5567 } 5568 SLAB_ATTR_RO(order); 5569 5570 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5571 { 5572 return sysfs_emit(buf, "%lu\n", s->min_partial); 5573 } 5574 5575 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5576 size_t length) 5577 { 5578 unsigned long min; 5579 int err; 5580 5581 err = kstrtoul(buf, 10, &min); 5582 if (err) 5583 return err; 5584 5585 s->min_partial = min; 5586 return length; 5587 } 5588 SLAB_ATTR(min_partial); 5589 5590 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5591 { 5592 unsigned int nr_partial = 0; 5593 #ifdef CONFIG_SLUB_CPU_PARTIAL 5594 nr_partial = s->cpu_partial; 5595 #endif 5596 5597 return sysfs_emit(buf, "%u\n", nr_partial); 5598 } 5599 5600 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5601 size_t length) 5602 { 5603 unsigned int objects; 5604 int err; 5605 5606 err = kstrtouint(buf, 10, &objects); 5607 if (err) 5608 return err; 5609 if (objects && !kmem_cache_has_cpu_partial(s)) 5610 return -EINVAL; 5611 5612 slub_set_cpu_partial(s, objects); 5613 flush_all(s); 5614 return length; 5615 } 5616 SLAB_ATTR(cpu_partial); 5617 5618 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5619 { 5620 if (!s->ctor) 5621 return 0; 5622 return sysfs_emit(buf, "%pS\n", s->ctor); 5623 } 5624 SLAB_ATTR_RO(ctor); 5625 5626 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5627 { 5628 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5629 } 5630 SLAB_ATTR_RO(aliases); 5631 5632 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5633 { 5634 return show_slab_objects(s, buf, SO_PARTIAL); 5635 } 5636 SLAB_ATTR_RO(partial); 5637 5638 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5639 { 5640 return show_slab_objects(s, buf, SO_CPU); 5641 } 5642 SLAB_ATTR_RO(cpu_slabs); 5643 5644 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5645 { 5646 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5647 } 5648 SLAB_ATTR_RO(objects_partial); 5649 5650 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5651 { 5652 int objects = 0; 5653 int slabs = 0; 5654 int cpu __maybe_unused; 5655 int len = 0; 5656 5657 #ifdef CONFIG_SLUB_CPU_PARTIAL 5658 for_each_online_cpu(cpu) { 5659 struct slab *slab; 5660 5661 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5662 5663 if (slab) 5664 slabs += slab->slabs; 5665 } 5666 #endif 5667 5668 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5669 objects = (slabs * oo_objects(s->oo)) / 2; 5670 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5671 5672 #ifdef CONFIG_SLUB_CPU_PARTIAL 5673 for_each_online_cpu(cpu) { 5674 struct slab *slab; 5675 5676 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5677 if (slab) { 5678 slabs = READ_ONCE(slab->slabs); 5679 objects = (slabs * oo_objects(s->oo)) / 2; 5680 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5681 cpu, objects, slabs); 5682 } 5683 } 5684 #endif 5685 len += sysfs_emit_at(buf, len, "\n"); 5686 5687 return len; 5688 } 5689 SLAB_ATTR_RO(slabs_cpu_partial); 5690 5691 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5692 { 5693 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5694 } 5695 SLAB_ATTR_RO(reclaim_account); 5696 5697 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5698 { 5699 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5700 } 5701 SLAB_ATTR_RO(hwcache_align); 5702 5703 #ifdef CONFIG_ZONE_DMA 5704 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5705 { 5706 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5707 } 5708 SLAB_ATTR_RO(cache_dma); 5709 #endif 5710 5711 #ifdef CONFIG_HARDENED_USERCOPY 5712 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5713 { 5714 return sysfs_emit(buf, "%u\n", s->usersize); 5715 } 5716 SLAB_ATTR_RO(usersize); 5717 #endif 5718 5719 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5720 { 5721 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5722 } 5723 SLAB_ATTR_RO(destroy_by_rcu); 5724 5725 #ifdef CONFIG_SLUB_DEBUG 5726 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5727 { 5728 return show_slab_objects(s, buf, SO_ALL); 5729 } 5730 SLAB_ATTR_RO(slabs); 5731 5732 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5733 { 5734 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5735 } 5736 SLAB_ATTR_RO(total_objects); 5737 5738 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5739 { 5740 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5741 } 5742 SLAB_ATTR_RO(objects); 5743 5744 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5745 { 5746 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5747 } 5748 SLAB_ATTR_RO(sanity_checks); 5749 5750 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5751 { 5752 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5753 } 5754 SLAB_ATTR_RO(trace); 5755 5756 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5757 { 5758 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5759 } 5760 5761 SLAB_ATTR_RO(red_zone); 5762 5763 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5764 { 5765 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5766 } 5767 5768 SLAB_ATTR_RO(poison); 5769 5770 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5771 { 5772 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5773 } 5774 5775 SLAB_ATTR_RO(store_user); 5776 5777 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5778 { 5779 return 0; 5780 } 5781 5782 static ssize_t validate_store(struct kmem_cache *s, 5783 const char *buf, size_t length) 5784 { 5785 int ret = -EINVAL; 5786 5787 if (buf[0] == '1' && kmem_cache_debug(s)) { 5788 ret = validate_slab_cache(s); 5789 if (ret >= 0) 5790 ret = length; 5791 } 5792 return ret; 5793 } 5794 SLAB_ATTR(validate); 5795 5796 #endif /* CONFIG_SLUB_DEBUG */ 5797 5798 #ifdef CONFIG_FAILSLAB 5799 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5800 { 5801 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5802 } 5803 5804 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5805 size_t length) 5806 { 5807 if (s->refcount > 1) 5808 return -EINVAL; 5809 5810 if (buf[0] == '1') 5811 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 5812 else 5813 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 5814 5815 return length; 5816 } 5817 SLAB_ATTR(failslab); 5818 #endif 5819 5820 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5821 { 5822 return 0; 5823 } 5824 5825 static ssize_t shrink_store(struct kmem_cache *s, 5826 const char *buf, size_t length) 5827 { 5828 if (buf[0] == '1') 5829 kmem_cache_shrink(s); 5830 else 5831 return -EINVAL; 5832 return length; 5833 } 5834 SLAB_ATTR(shrink); 5835 5836 #ifdef CONFIG_NUMA 5837 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5838 { 5839 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5840 } 5841 5842 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5843 const char *buf, size_t length) 5844 { 5845 unsigned int ratio; 5846 int err; 5847 5848 err = kstrtouint(buf, 10, &ratio); 5849 if (err) 5850 return err; 5851 if (ratio > 100) 5852 return -ERANGE; 5853 5854 s->remote_node_defrag_ratio = ratio * 10; 5855 5856 return length; 5857 } 5858 SLAB_ATTR(remote_node_defrag_ratio); 5859 #endif 5860 5861 #ifdef CONFIG_SLUB_STATS 5862 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5863 { 5864 unsigned long sum = 0; 5865 int cpu; 5866 int len = 0; 5867 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5868 5869 if (!data) 5870 return -ENOMEM; 5871 5872 for_each_online_cpu(cpu) { 5873 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5874 5875 data[cpu] = x; 5876 sum += x; 5877 } 5878 5879 len += sysfs_emit_at(buf, len, "%lu", sum); 5880 5881 #ifdef CONFIG_SMP 5882 for_each_online_cpu(cpu) { 5883 if (data[cpu]) 5884 len += sysfs_emit_at(buf, len, " C%d=%u", 5885 cpu, data[cpu]); 5886 } 5887 #endif 5888 kfree(data); 5889 len += sysfs_emit_at(buf, len, "\n"); 5890 5891 return len; 5892 } 5893 5894 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5895 { 5896 int cpu; 5897 5898 for_each_online_cpu(cpu) 5899 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5900 } 5901 5902 #define STAT_ATTR(si, text) \ 5903 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5904 { \ 5905 return show_stat(s, buf, si); \ 5906 } \ 5907 static ssize_t text##_store(struct kmem_cache *s, \ 5908 const char *buf, size_t length) \ 5909 { \ 5910 if (buf[0] != '0') \ 5911 return -EINVAL; \ 5912 clear_stat(s, si); \ 5913 return length; \ 5914 } \ 5915 SLAB_ATTR(text); \ 5916 5917 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5918 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5919 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5920 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5921 STAT_ATTR(FREE_FROZEN, free_frozen); 5922 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5923 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5924 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5925 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5926 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5927 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5928 STAT_ATTR(FREE_SLAB, free_slab); 5929 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5930 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5931 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5932 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5933 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5934 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5935 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5936 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5937 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5938 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5939 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5940 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5941 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5942 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5943 #endif /* CONFIG_SLUB_STATS */ 5944 5945 #ifdef CONFIG_KFENCE 5946 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 5947 { 5948 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 5949 } 5950 5951 static ssize_t skip_kfence_store(struct kmem_cache *s, 5952 const char *buf, size_t length) 5953 { 5954 int ret = length; 5955 5956 if (buf[0] == '0') 5957 s->flags &= ~SLAB_SKIP_KFENCE; 5958 else if (buf[0] == '1') 5959 s->flags |= SLAB_SKIP_KFENCE; 5960 else 5961 ret = -EINVAL; 5962 5963 return ret; 5964 } 5965 SLAB_ATTR(skip_kfence); 5966 #endif 5967 5968 static struct attribute *slab_attrs[] = { 5969 &slab_size_attr.attr, 5970 &object_size_attr.attr, 5971 &objs_per_slab_attr.attr, 5972 &order_attr.attr, 5973 &min_partial_attr.attr, 5974 &cpu_partial_attr.attr, 5975 &objects_partial_attr.attr, 5976 &partial_attr.attr, 5977 &cpu_slabs_attr.attr, 5978 &ctor_attr.attr, 5979 &aliases_attr.attr, 5980 &align_attr.attr, 5981 &hwcache_align_attr.attr, 5982 &reclaim_account_attr.attr, 5983 &destroy_by_rcu_attr.attr, 5984 &shrink_attr.attr, 5985 &slabs_cpu_partial_attr.attr, 5986 #ifdef CONFIG_SLUB_DEBUG 5987 &total_objects_attr.attr, 5988 &objects_attr.attr, 5989 &slabs_attr.attr, 5990 &sanity_checks_attr.attr, 5991 &trace_attr.attr, 5992 &red_zone_attr.attr, 5993 &poison_attr.attr, 5994 &store_user_attr.attr, 5995 &validate_attr.attr, 5996 #endif 5997 #ifdef CONFIG_ZONE_DMA 5998 &cache_dma_attr.attr, 5999 #endif 6000 #ifdef CONFIG_NUMA 6001 &remote_node_defrag_ratio_attr.attr, 6002 #endif 6003 #ifdef CONFIG_SLUB_STATS 6004 &alloc_fastpath_attr.attr, 6005 &alloc_slowpath_attr.attr, 6006 &free_fastpath_attr.attr, 6007 &free_slowpath_attr.attr, 6008 &free_frozen_attr.attr, 6009 &free_add_partial_attr.attr, 6010 &free_remove_partial_attr.attr, 6011 &alloc_from_partial_attr.attr, 6012 &alloc_slab_attr.attr, 6013 &alloc_refill_attr.attr, 6014 &alloc_node_mismatch_attr.attr, 6015 &free_slab_attr.attr, 6016 &cpuslab_flush_attr.attr, 6017 &deactivate_full_attr.attr, 6018 &deactivate_empty_attr.attr, 6019 &deactivate_to_head_attr.attr, 6020 &deactivate_to_tail_attr.attr, 6021 &deactivate_remote_frees_attr.attr, 6022 &deactivate_bypass_attr.attr, 6023 &order_fallback_attr.attr, 6024 &cmpxchg_double_fail_attr.attr, 6025 &cmpxchg_double_cpu_fail_attr.attr, 6026 &cpu_partial_alloc_attr.attr, 6027 &cpu_partial_free_attr.attr, 6028 &cpu_partial_node_attr.attr, 6029 &cpu_partial_drain_attr.attr, 6030 #endif 6031 #ifdef CONFIG_FAILSLAB 6032 &failslab_attr.attr, 6033 #endif 6034 #ifdef CONFIG_HARDENED_USERCOPY 6035 &usersize_attr.attr, 6036 #endif 6037 #ifdef CONFIG_KFENCE 6038 &skip_kfence_attr.attr, 6039 #endif 6040 6041 NULL 6042 }; 6043 6044 static const struct attribute_group slab_attr_group = { 6045 .attrs = slab_attrs, 6046 }; 6047 6048 static ssize_t slab_attr_show(struct kobject *kobj, 6049 struct attribute *attr, 6050 char *buf) 6051 { 6052 struct slab_attribute *attribute; 6053 struct kmem_cache *s; 6054 6055 attribute = to_slab_attr(attr); 6056 s = to_slab(kobj); 6057 6058 if (!attribute->show) 6059 return -EIO; 6060 6061 return attribute->show(s, buf); 6062 } 6063 6064 static ssize_t slab_attr_store(struct kobject *kobj, 6065 struct attribute *attr, 6066 const char *buf, size_t len) 6067 { 6068 struct slab_attribute *attribute; 6069 struct kmem_cache *s; 6070 6071 attribute = to_slab_attr(attr); 6072 s = to_slab(kobj); 6073 6074 if (!attribute->store) 6075 return -EIO; 6076 6077 return attribute->store(s, buf, len); 6078 } 6079 6080 static void kmem_cache_release(struct kobject *k) 6081 { 6082 slab_kmem_cache_release(to_slab(k)); 6083 } 6084 6085 static const struct sysfs_ops slab_sysfs_ops = { 6086 .show = slab_attr_show, 6087 .store = slab_attr_store, 6088 }; 6089 6090 static const struct kobj_type slab_ktype = { 6091 .sysfs_ops = &slab_sysfs_ops, 6092 .release = kmem_cache_release, 6093 }; 6094 6095 static struct kset *slab_kset; 6096 6097 static inline struct kset *cache_kset(struct kmem_cache *s) 6098 { 6099 return slab_kset; 6100 } 6101 6102 #define ID_STR_LENGTH 32 6103 6104 /* Create a unique string id for a slab cache: 6105 * 6106 * Format :[flags-]size 6107 */ 6108 static char *create_unique_id(struct kmem_cache *s) 6109 { 6110 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6111 char *p = name; 6112 6113 if (!name) 6114 return ERR_PTR(-ENOMEM); 6115 6116 *p++ = ':'; 6117 /* 6118 * First flags affecting slabcache operations. We will only 6119 * get here for aliasable slabs so we do not need to support 6120 * too many flags. The flags here must cover all flags that 6121 * are matched during merging to guarantee that the id is 6122 * unique. 6123 */ 6124 if (s->flags & SLAB_CACHE_DMA) 6125 *p++ = 'd'; 6126 if (s->flags & SLAB_CACHE_DMA32) 6127 *p++ = 'D'; 6128 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6129 *p++ = 'a'; 6130 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6131 *p++ = 'F'; 6132 if (s->flags & SLAB_ACCOUNT) 6133 *p++ = 'A'; 6134 if (p != name + 1) 6135 *p++ = '-'; 6136 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6137 6138 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6139 kfree(name); 6140 return ERR_PTR(-EINVAL); 6141 } 6142 kmsan_unpoison_memory(name, p - name); 6143 return name; 6144 } 6145 6146 static int sysfs_slab_add(struct kmem_cache *s) 6147 { 6148 int err; 6149 const char *name; 6150 struct kset *kset = cache_kset(s); 6151 int unmergeable = slab_unmergeable(s); 6152 6153 if (!unmergeable && disable_higher_order_debug && 6154 (slub_debug & DEBUG_METADATA_FLAGS)) 6155 unmergeable = 1; 6156 6157 if (unmergeable) { 6158 /* 6159 * Slabcache can never be merged so we can use the name proper. 6160 * This is typically the case for debug situations. In that 6161 * case we can catch duplicate names easily. 6162 */ 6163 sysfs_remove_link(&slab_kset->kobj, s->name); 6164 name = s->name; 6165 } else { 6166 /* 6167 * Create a unique name for the slab as a target 6168 * for the symlinks. 6169 */ 6170 name = create_unique_id(s); 6171 if (IS_ERR(name)) 6172 return PTR_ERR(name); 6173 } 6174 6175 s->kobj.kset = kset; 6176 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6177 if (err) 6178 goto out; 6179 6180 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6181 if (err) 6182 goto out_del_kobj; 6183 6184 if (!unmergeable) { 6185 /* Setup first alias */ 6186 sysfs_slab_alias(s, s->name); 6187 } 6188 out: 6189 if (!unmergeable) 6190 kfree(name); 6191 return err; 6192 out_del_kobj: 6193 kobject_del(&s->kobj); 6194 goto out; 6195 } 6196 6197 void sysfs_slab_unlink(struct kmem_cache *s) 6198 { 6199 if (slab_state >= FULL) 6200 kobject_del(&s->kobj); 6201 } 6202 6203 void sysfs_slab_release(struct kmem_cache *s) 6204 { 6205 if (slab_state >= FULL) 6206 kobject_put(&s->kobj); 6207 } 6208 6209 /* 6210 * Need to buffer aliases during bootup until sysfs becomes 6211 * available lest we lose that information. 6212 */ 6213 struct saved_alias { 6214 struct kmem_cache *s; 6215 const char *name; 6216 struct saved_alias *next; 6217 }; 6218 6219 static struct saved_alias *alias_list; 6220 6221 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6222 { 6223 struct saved_alias *al; 6224 6225 if (slab_state == FULL) { 6226 /* 6227 * If we have a leftover link then remove it. 6228 */ 6229 sysfs_remove_link(&slab_kset->kobj, name); 6230 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6231 } 6232 6233 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6234 if (!al) 6235 return -ENOMEM; 6236 6237 al->s = s; 6238 al->name = name; 6239 al->next = alias_list; 6240 alias_list = al; 6241 kmsan_unpoison_memory(al, sizeof(*al)); 6242 return 0; 6243 } 6244 6245 static int __init slab_sysfs_init(void) 6246 { 6247 struct kmem_cache *s; 6248 int err; 6249 6250 mutex_lock(&slab_mutex); 6251 6252 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6253 if (!slab_kset) { 6254 mutex_unlock(&slab_mutex); 6255 pr_err("Cannot register slab subsystem.\n"); 6256 return -ENOMEM; 6257 } 6258 6259 slab_state = FULL; 6260 6261 list_for_each_entry(s, &slab_caches, list) { 6262 err = sysfs_slab_add(s); 6263 if (err) 6264 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6265 s->name); 6266 } 6267 6268 while (alias_list) { 6269 struct saved_alias *al = alias_list; 6270 6271 alias_list = alias_list->next; 6272 err = sysfs_slab_alias(al->s, al->name); 6273 if (err) 6274 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6275 al->name); 6276 kfree(al); 6277 } 6278 6279 mutex_unlock(&slab_mutex); 6280 return 0; 6281 } 6282 late_initcall(slab_sysfs_init); 6283 #endif /* SLAB_SUPPORTS_SYSFS */ 6284 6285 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6286 static int slab_debugfs_show(struct seq_file *seq, void *v) 6287 { 6288 struct loc_track *t = seq->private; 6289 struct location *l; 6290 unsigned long idx; 6291 6292 idx = (unsigned long) t->idx; 6293 if (idx < t->count) { 6294 l = &t->loc[idx]; 6295 6296 seq_printf(seq, "%7ld ", l->count); 6297 6298 if (l->addr) 6299 seq_printf(seq, "%pS", (void *)l->addr); 6300 else 6301 seq_puts(seq, "<not-available>"); 6302 6303 if (l->waste) 6304 seq_printf(seq, " waste=%lu/%lu", 6305 l->count * l->waste, l->waste); 6306 6307 if (l->sum_time != l->min_time) { 6308 seq_printf(seq, " age=%ld/%llu/%ld", 6309 l->min_time, div_u64(l->sum_time, l->count), 6310 l->max_time); 6311 } else 6312 seq_printf(seq, " age=%ld", l->min_time); 6313 6314 if (l->min_pid != l->max_pid) 6315 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6316 else 6317 seq_printf(seq, " pid=%ld", 6318 l->min_pid); 6319 6320 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6321 seq_printf(seq, " cpus=%*pbl", 6322 cpumask_pr_args(to_cpumask(l->cpus))); 6323 6324 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6325 seq_printf(seq, " nodes=%*pbl", 6326 nodemask_pr_args(&l->nodes)); 6327 6328 #ifdef CONFIG_STACKDEPOT 6329 { 6330 depot_stack_handle_t handle; 6331 unsigned long *entries; 6332 unsigned int nr_entries, j; 6333 6334 handle = READ_ONCE(l->handle); 6335 if (handle) { 6336 nr_entries = stack_depot_fetch(handle, &entries); 6337 seq_puts(seq, "\n"); 6338 for (j = 0; j < nr_entries; j++) 6339 seq_printf(seq, " %pS\n", (void *)entries[j]); 6340 } 6341 } 6342 #endif 6343 seq_puts(seq, "\n"); 6344 } 6345 6346 if (!idx && !t->count) 6347 seq_puts(seq, "No data\n"); 6348 6349 return 0; 6350 } 6351 6352 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6353 { 6354 } 6355 6356 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6357 { 6358 struct loc_track *t = seq->private; 6359 6360 t->idx = ++(*ppos); 6361 if (*ppos <= t->count) 6362 return ppos; 6363 6364 return NULL; 6365 } 6366 6367 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6368 { 6369 struct location *loc1 = (struct location *)a; 6370 struct location *loc2 = (struct location *)b; 6371 6372 if (loc1->count > loc2->count) 6373 return -1; 6374 else 6375 return 1; 6376 } 6377 6378 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6379 { 6380 struct loc_track *t = seq->private; 6381 6382 t->idx = *ppos; 6383 return ppos; 6384 } 6385 6386 static const struct seq_operations slab_debugfs_sops = { 6387 .start = slab_debugfs_start, 6388 .next = slab_debugfs_next, 6389 .stop = slab_debugfs_stop, 6390 .show = slab_debugfs_show, 6391 }; 6392 6393 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6394 { 6395 6396 struct kmem_cache_node *n; 6397 enum track_item alloc; 6398 int node; 6399 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6400 sizeof(struct loc_track)); 6401 struct kmem_cache *s = file_inode(filep)->i_private; 6402 unsigned long *obj_map; 6403 6404 if (!t) 6405 return -ENOMEM; 6406 6407 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6408 if (!obj_map) { 6409 seq_release_private(inode, filep); 6410 return -ENOMEM; 6411 } 6412 6413 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6414 alloc = TRACK_ALLOC; 6415 else 6416 alloc = TRACK_FREE; 6417 6418 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6419 bitmap_free(obj_map); 6420 seq_release_private(inode, filep); 6421 return -ENOMEM; 6422 } 6423 6424 for_each_kmem_cache_node(s, node, n) { 6425 unsigned long flags; 6426 struct slab *slab; 6427 6428 if (!node_nr_slabs(n)) 6429 continue; 6430 6431 spin_lock_irqsave(&n->list_lock, flags); 6432 list_for_each_entry(slab, &n->partial, slab_list) 6433 process_slab(t, s, slab, alloc, obj_map); 6434 list_for_each_entry(slab, &n->full, slab_list) 6435 process_slab(t, s, slab, alloc, obj_map); 6436 spin_unlock_irqrestore(&n->list_lock, flags); 6437 } 6438 6439 /* Sort locations by count */ 6440 sort_r(t->loc, t->count, sizeof(struct location), 6441 cmp_loc_by_count, NULL, NULL); 6442 6443 bitmap_free(obj_map); 6444 return 0; 6445 } 6446 6447 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6448 { 6449 struct seq_file *seq = file->private_data; 6450 struct loc_track *t = seq->private; 6451 6452 free_loc_track(t); 6453 return seq_release_private(inode, file); 6454 } 6455 6456 static const struct file_operations slab_debugfs_fops = { 6457 .open = slab_debug_trace_open, 6458 .read = seq_read, 6459 .llseek = seq_lseek, 6460 .release = slab_debug_trace_release, 6461 }; 6462 6463 static void debugfs_slab_add(struct kmem_cache *s) 6464 { 6465 struct dentry *slab_cache_dir; 6466 6467 if (unlikely(!slab_debugfs_root)) 6468 return; 6469 6470 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6471 6472 debugfs_create_file("alloc_traces", 0400, 6473 slab_cache_dir, s, &slab_debugfs_fops); 6474 6475 debugfs_create_file("free_traces", 0400, 6476 slab_cache_dir, s, &slab_debugfs_fops); 6477 } 6478 6479 void debugfs_slab_release(struct kmem_cache *s) 6480 { 6481 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 6482 } 6483 6484 static int __init slab_debugfs_init(void) 6485 { 6486 struct kmem_cache *s; 6487 6488 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6489 6490 list_for_each_entry(s, &slab_caches, list) 6491 if (s->flags & SLAB_STORE_USER) 6492 debugfs_slab_add(s); 6493 6494 return 0; 6495 6496 } 6497 __initcall(slab_debugfs_init); 6498 #endif 6499 /* 6500 * The /proc/slabinfo ABI 6501 */ 6502 #ifdef CONFIG_SLUB_DEBUG 6503 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6504 { 6505 unsigned long nr_slabs = 0; 6506 unsigned long nr_objs = 0; 6507 unsigned long nr_free = 0; 6508 int node; 6509 struct kmem_cache_node *n; 6510 6511 for_each_kmem_cache_node(s, node, n) { 6512 nr_slabs += node_nr_slabs(n); 6513 nr_objs += node_nr_objs(n); 6514 nr_free += count_partial(n, count_free); 6515 } 6516 6517 sinfo->active_objs = nr_objs - nr_free; 6518 sinfo->num_objs = nr_objs; 6519 sinfo->active_slabs = nr_slabs; 6520 sinfo->num_slabs = nr_slabs; 6521 sinfo->objects_per_slab = oo_objects(s->oo); 6522 sinfo->cache_order = oo_order(s->oo); 6523 } 6524 6525 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6526 { 6527 } 6528 6529 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6530 size_t count, loff_t *ppos) 6531 { 6532 return -EIO; 6533 } 6534 #endif /* CONFIG_SLUB_DEBUG */ 6535