xref: /openbmc/linux/mm/slub.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38 
39 #include <trace/events/kmem.h>
40 
41 #include "internal.h"
42 
43 /*
44  * Lock order:
45  *   1. slab_mutex (Global Mutex)
46  *   2. node->list_lock
47  *   3. slab_lock(page) (Only on some arches and for debugging)
48  *
49  *   slab_mutex
50  *
51  *   The role of the slab_mutex is to protect the list of all the slabs
52  *   and to synchronize major metadata changes to slab cache structures.
53  *
54  *   The slab_lock is only used for debugging and on arches that do not
55  *   have the ability to do a cmpxchg_double. It only protects:
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->inuse		-> Number of objects in use
58  *	C. page->objects	-> Number of objects in page
59  *	D. page->frozen		-> frozen state
60  *
61  *   If a slab is frozen then it is exempt from list management. It is not
62  *   on any list. The processor that froze the slab is the one who can
63  *   perform list operations on the page. Other processors may put objects
64  *   onto the freelist but the processor that froze the slab is the only
65  *   one that can retrieve the objects from the page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * Overloading of page flags that are otherwise used for LRU management.
97  *
98  * PageActive 		The slab is frozen and exempt from list processing.
99  * 			This means that the slab is dedicated to a purpose
100  * 			such as satisfying allocations for a specific
101  * 			processor. Objects may be freed in the slab while
102  * 			it is frozen but slab_free will then skip the usual
103  * 			list operations. It is up to the processor holding
104  * 			the slab to integrate the slab into the slab lists
105  * 			when the slab is no longer needed.
106  *
107  * 			One use of this flag is to mark slabs that are
108  * 			used for allocations. Then such a slab becomes a cpu
109  * 			slab. The cpu slab may be equipped with an additional
110  * 			freelist that allows lockless access to
111  * 			free objects in addition to the regular freelist
112  * 			that requires the slab lock.
113  *
114  * PageError		Slab requires special handling due to debug
115  * 			options set. This moves	slab handling out of
116  * 			the fast path and disables lockless freelists.
117  */
118 
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 	return 0;
125 #endif
126 }
127 
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 		p += s->red_left_pad;
132 
133 	return p;
134 }
135 
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 	return !kmem_cache_debug(s);
140 #else
141 	return false;
142 #endif
143 }
144 
145 /*
146  * Issues still to be resolved:
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158 
159 /*
160  * Mininum number of partial slabs. These will be left on the partial
161  * lists even if they are empty. kmem_cache_shrink may reclaim them.
162  */
163 #define MIN_PARTIAL 5
164 
165 /*
166  * Maximum number of desirable partial slabs.
167  * The existence of more partial slabs makes kmem_cache_shrink
168  * sort the partial list by the number of objects in use.
169  */
170 #define MAX_PARTIAL 10
171 
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 				SLAB_POISON | SLAB_STORE_USER)
174 
175 /*
176  * These debug flags cannot use CMPXCHG because there might be consistency
177  * issues when checking or reading debug information
178  */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 				SLAB_TRACE)
181 
182 
183 /*
184  * Debugging flags that require metadata to be stored in the slab.  These get
185  * disabled when slub_debug=O is used and a cache's min order increases with
186  * metadata.
187  */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 
190 #define OO_SHIFT	16
191 #define OO_MASK		((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193 
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
199 
200 /*
201  * Tracking user of a slab.
202  */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 	unsigned long addr;	/* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
208 #endif
209 	int cpu;		/* Was running on cpu */
210 	int pid;		/* Pid context */
211 	unsigned long when;	/* When did the operation occur */
212 };
213 
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228 
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 	/*
233 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 	 * avoid this_cpu_add()'s irq-disable overhead.
235 	 */
236 	raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239 
240 /********************************************************************
241  * 			Core slab cache functions
242  *******************************************************************/
243 
244 /*
245  * Returns freelist pointer (ptr). With hardening, this is obfuscated
246  * with an XOR of the address where the pointer is held and a per-cache
247  * random number.
248  */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 				 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254 #else
255 	return ptr;
256 #endif
257 }
258 
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
261 					 void *ptr_addr)
262 {
263 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 			    (unsigned long)ptr_addr);
265 }
266 
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 	return freelist_dereference(s, object + s->offset);
270 }
271 
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273 {
274 	if (object)
275 		prefetch(freelist_dereference(s, object + s->offset));
276 }
277 
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 	unsigned long freepointer_addr;
281 	void *p;
282 
283 	if (!debug_pagealloc_enabled())
284 		return get_freepointer(s, object);
285 
286 	freepointer_addr = (unsigned long)object + s->offset;
287 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 	return freelist_ptr(s, p, freepointer_addr);
289 }
290 
291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292 {
293 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
294 
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 	BUG_ON(object == fp); /* naive detection of double free or corruption */
297 #endif
298 
299 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
300 }
301 
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 	for (__p = fixup_red_left(__s, __addr); \
305 		__p < (__addr) + (__objects) * (__s)->size; \
306 		__p += (__s)->size)
307 
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 		__idx <= __objects; \
311 		__p += (__s)->size, __idx++)
312 
313 /* Determine object index from a given position */
314 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
315 {
316 	return (p - addr) / s->size;
317 }
318 
319 static inline unsigned int order_objects(unsigned int order, unsigned int size)
320 {
321 	return ((unsigned int)PAGE_SIZE << order) / size;
322 }
323 
324 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
325 		unsigned int size)
326 {
327 	struct kmem_cache_order_objects x = {
328 		(order << OO_SHIFT) + order_objects(order, size)
329 	};
330 
331 	return x;
332 }
333 
334 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
335 {
336 	return x.x >> OO_SHIFT;
337 }
338 
339 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
340 {
341 	return x.x & OO_MASK;
342 }
343 
344 /*
345  * Per slab locking using the pagelock
346  */
347 static __always_inline void slab_lock(struct page *page)
348 {
349 	VM_BUG_ON_PAGE(PageTail(page), page);
350 	bit_spin_lock(PG_locked, &page->flags);
351 }
352 
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 	VM_BUG_ON_PAGE(PageTail(page), page);
356 	__bit_spin_unlock(PG_locked, &page->flags);
357 }
358 
359 /* Interrupts must be disabled (for the fallback code to work right) */
360 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
361 		void *freelist_old, unsigned long counters_old,
362 		void *freelist_new, unsigned long counters_new,
363 		const char *n)
364 {
365 	VM_BUG_ON(!irqs_disabled());
366 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
367     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
368 	if (s->flags & __CMPXCHG_DOUBLE) {
369 		if (cmpxchg_double(&page->freelist, &page->counters,
370 				   freelist_old, counters_old,
371 				   freelist_new, counters_new))
372 			return true;
373 	} else
374 #endif
375 	{
376 		slab_lock(page);
377 		if (page->freelist == freelist_old &&
378 					page->counters == counters_old) {
379 			page->freelist = freelist_new;
380 			page->counters = counters_new;
381 			slab_unlock(page);
382 			return true;
383 		}
384 		slab_unlock(page);
385 	}
386 
387 	cpu_relax();
388 	stat(s, CMPXCHG_DOUBLE_FAIL);
389 
390 #ifdef SLUB_DEBUG_CMPXCHG
391 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
392 #endif
393 
394 	return false;
395 }
396 
397 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
398 		void *freelist_old, unsigned long counters_old,
399 		void *freelist_new, unsigned long counters_new,
400 		const char *n)
401 {
402 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
403     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
404 	if (s->flags & __CMPXCHG_DOUBLE) {
405 		if (cmpxchg_double(&page->freelist, &page->counters,
406 				   freelist_old, counters_old,
407 				   freelist_new, counters_new))
408 			return true;
409 	} else
410 #endif
411 	{
412 		unsigned long flags;
413 
414 		local_irq_save(flags);
415 		slab_lock(page);
416 		if (page->freelist == freelist_old &&
417 					page->counters == counters_old) {
418 			page->freelist = freelist_new;
419 			page->counters = counters_new;
420 			slab_unlock(page);
421 			local_irq_restore(flags);
422 			return true;
423 		}
424 		slab_unlock(page);
425 		local_irq_restore(flags);
426 	}
427 
428 	cpu_relax();
429 	stat(s, CMPXCHG_DOUBLE_FAIL);
430 
431 #ifdef SLUB_DEBUG_CMPXCHG
432 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
433 #endif
434 
435 	return false;
436 }
437 
438 #ifdef CONFIG_SLUB_DEBUG
439 /*
440  * Determine a map of object in use on a page.
441  *
442  * Node listlock must be held to guarantee that the page does
443  * not vanish from under us.
444  */
445 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
446 {
447 	void *p;
448 	void *addr = page_address(page);
449 
450 	for (p = page->freelist; p; p = get_freepointer(s, p))
451 		set_bit(slab_index(p, s, addr), map);
452 }
453 
454 static inline unsigned int size_from_object(struct kmem_cache *s)
455 {
456 	if (s->flags & SLAB_RED_ZONE)
457 		return s->size - s->red_left_pad;
458 
459 	return s->size;
460 }
461 
462 static inline void *restore_red_left(struct kmem_cache *s, void *p)
463 {
464 	if (s->flags & SLAB_RED_ZONE)
465 		p -= s->red_left_pad;
466 
467 	return p;
468 }
469 
470 /*
471  * Debug settings:
472  */
473 #if defined(CONFIG_SLUB_DEBUG_ON)
474 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
475 #else
476 static slab_flags_t slub_debug;
477 #endif
478 
479 static char *slub_debug_slabs;
480 static int disable_higher_order_debug;
481 
482 /*
483  * slub is about to manipulate internal object metadata.  This memory lies
484  * outside the range of the allocated object, so accessing it would normally
485  * be reported by kasan as a bounds error.  metadata_access_enable() is used
486  * to tell kasan that these accesses are OK.
487  */
488 static inline void metadata_access_enable(void)
489 {
490 	kasan_disable_current();
491 }
492 
493 static inline void metadata_access_disable(void)
494 {
495 	kasan_enable_current();
496 }
497 
498 /*
499  * Object debugging
500  */
501 
502 /* Verify that a pointer has an address that is valid within a slab page */
503 static inline int check_valid_pointer(struct kmem_cache *s,
504 				struct page *page, void *object)
505 {
506 	void *base;
507 
508 	if (!object)
509 		return 1;
510 
511 	base = page_address(page);
512 	object = restore_red_left(s, object);
513 	if (object < base || object >= base + page->objects * s->size ||
514 		(object - base) % s->size) {
515 		return 0;
516 	}
517 
518 	return 1;
519 }
520 
521 static void print_section(char *level, char *text, u8 *addr,
522 			  unsigned int length)
523 {
524 	metadata_access_enable();
525 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
526 			length, 1);
527 	metadata_access_disable();
528 }
529 
530 static struct track *get_track(struct kmem_cache *s, void *object,
531 	enum track_item alloc)
532 {
533 	struct track *p;
534 
535 	if (s->offset)
536 		p = object + s->offset + sizeof(void *);
537 	else
538 		p = object + s->inuse;
539 
540 	return p + alloc;
541 }
542 
543 static void set_track(struct kmem_cache *s, void *object,
544 			enum track_item alloc, unsigned long addr)
545 {
546 	struct track *p = get_track(s, object, alloc);
547 
548 	if (addr) {
549 #ifdef CONFIG_STACKTRACE
550 		struct stack_trace trace;
551 		int i;
552 
553 		trace.nr_entries = 0;
554 		trace.max_entries = TRACK_ADDRS_COUNT;
555 		trace.entries = p->addrs;
556 		trace.skip = 3;
557 		metadata_access_enable();
558 		save_stack_trace(&trace);
559 		metadata_access_disable();
560 
561 		/* See rant in lockdep.c */
562 		if (trace.nr_entries != 0 &&
563 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
564 			trace.nr_entries--;
565 
566 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
567 			p->addrs[i] = 0;
568 #endif
569 		p->addr = addr;
570 		p->cpu = smp_processor_id();
571 		p->pid = current->pid;
572 		p->when = jiffies;
573 	} else
574 		memset(p, 0, sizeof(struct track));
575 }
576 
577 static void init_tracking(struct kmem_cache *s, void *object)
578 {
579 	if (!(s->flags & SLAB_STORE_USER))
580 		return;
581 
582 	set_track(s, object, TRACK_FREE, 0UL);
583 	set_track(s, object, TRACK_ALLOC, 0UL);
584 }
585 
586 static void print_track(const char *s, struct track *t, unsigned long pr_time)
587 {
588 	if (!t->addr)
589 		return;
590 
591 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
592 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
593 #ifdef CONFIG_STACKTRACE
594 	{
595 		int i;
596 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
597 			if (t->addrs[i])
598 				pr_err("\t%pS\n", (void *)t->addrs[i]);
599 			else
600 				break;
601 	}
602 #endif
603 }
604 
605 static void print_tracking(struct kmem_cache *s, void *object)
606 {
607 	unsigned long pr_time = jiffies;
608 	if (!(s->flags & SLAB_STORE_USER))
609 		return;
610 
611 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
612 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
613 }
614 
615 static void print_page_info(struct page *page)
616 {
617 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
618 	       page, page->objects, page->inuse, page->freelist, page->flags);
619 
620 }
621 
622 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
623 {
624 	struct va_format vaf;
625 	va_list args;
626 
627 	va_start(args, fmt);
628 	vaf.fmt = fmt;
629 	vaf.va = &args;
630 	pr_err("=============================================================================\n");
631 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
632 	pr_err("-----------------------------------------------------------------------------\n\n");
633 
634 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
635 	va_end(args);
636 }
637 
638 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
639 {
640 	struct va_format vaf;
641 	va_list args;
642 
643 	va_start(args, fmt);
644 	vaf.fmt = fmt;
645 	vaf.va = &args;
646 	pr_err("FIX %s: %pV\n", s->name, &vaf);
647 	va_end(args);
648 }
649 
650 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
651 {
652 	unsigned int off;	/* Offset of last byte */
653 	u8 *addr = page_address(page);
654 
655 	print_tracking(s, p);
656 
657 	print_page_info(page);
658 
659 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
660 	       p, p - addr, get_freepointer(s, p));
661 
662 	if (s->flags & SLAB_RED_ZONE)
663 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
664 			      s->red_left_pad);
665 	else if (p > addr + 16)
666 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
667 
668 	print_section(KERN_ERR, "Object ", p,
669 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
670 	if (s->flags & SLAB_RED_ZONE)
671 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
672 			s->inuse - s->object_size);
673 
674 	if (s->offset)
675 		off = s->offset + sizeof(void *);
676 	else
677 		off = s->inuse;
678 
679 	if (s->flags & SLAB_STORE_USER)
680 		off += 2 * sizeof(struct track);
681 
682 	off += kasan_metadata_size(s);
683 
684 	if (off != size_from_object(s))
685 		/* Beginning of the filler is the free pointer */
686 		print_section(KERN_ERR, "Padding ", p + off,
687 			      size_from_object(s) - off);
688 
689 	dump_stack();
690 }
691 
692 void object_err(struct kmem_cache *s, struct page *page,
693 			u8 *object, char *reason)
694 {
695 	slab_bug(s, "%s", reason);
696 	print_trailer(s, page, object);
697 }
698 
699 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
700 			const char *fmt, ...)
701 {
702 	va_list args;
703 	char buf[100];
704 
705 	va_start(args, fmt);
706 	vsnprintf(buf, sizeof(buf), fmt, args);
707 	va_end(args);
708 	slab_bug(s, "%s", buf);
709 	print_page_info(page);
710 	dump_stack();
711 }
712 
713 static void init_object(struct kmem_cache *s, void *object, u8 val)
714 {
715 	u8 *p = object;
716 
717 	if (s->flags & SLAB_RED_ZONE)
718 		memset(p - s->red_left_pad, val, s->red_left_pad);
719 
720 	if (s->flags & __OBJECT_POISON) {
721 		memset(p, POISON_FREE, s->object_size - 1);
722 		p[s->object_size - 1] = POISON_END;
723 	}
724 
725 	if (s->flags & SLAB_RED_ZONE)
726 		memset(p + s->object_size, val, s->inuse - s->object_size);
727 }
728 
729 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
730 						void *from, void *to)
731 {
732 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
733 	memset(from, data, to - from);
734 }
735 
736 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
737 			u8 *object, char *what,
738 			u8 *start, unsigned int value, unsigned int bytes)
739 {
740 	u8 *fault;
741 	u8 *end;
742 
743 	metadata_access_enable();
744 	fault = memchr_inv(start, value, bytes);
745 	metadata_access_disable();
746 	if (!fault)
747 		return 1;
748 
749 	end = start + bytes;
750 	while (end > fault && end[-1] == value)
751 		end--;
752 
753 	slab_bug(s, "%s overwritten", what);
754 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
755 					fault, end - 1, fault[0], value);
756 	print_trailer(s, page, object);
757 
758 	restore_bytes(s, what, value, fault, end);
759 	return 0;
760 }
761 
762 /*
763  * Object layout:
764  *
765  * object address
766  * 	Bytes of the object to be managed.
767  * 	If the freepointer may overlay the object then the free
768  * 	pointer is the first word of the object.
769  *
770  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
771  * 	0xa5 (POISON_END)
772  *
773  * object + s->object_size
774  * 	Padding to reach word boundary. This is also used for Redzoning.
775  * 	Padding is extended by another word if Redzoning is enabled and
776  * 	object_size == inuse.
777  *
778  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
779  * 	0xcc (RED_ACTIVE) for objects in use.
780  *
781  * object + s->inuse
782  * 	Meta data starts here.
783  *
784  * 	A. Free pointer (if we cannot overwrite object on free)
785  * 	B. Tracking data for SLAB_STORE_USER
786  * 	C. Padding to reach required alignment boundary or at mininum
787  * 		one word if debugging is on to be able to detect writes
788  * 		before the word boundary.
789  *
790  *	Padding is done using 0x5a (POISON_INUSE)
791  *
792  * object + s->size
793  * 	Nothing is used beyond s->size.
794  *
795  * If slabcaches are merged then the object_size and inuse boundaries are mostly
796  * ignored. And therefore no slab options that rely on these boundaries
797  * may be used with merged slabcaches.
798  */
799 
800 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
801 {
802 	unsigned long off = s->inuse;	/* The end of info */
803 
804 	if (s->offset)
805 		/* Freepointer is placed after the object. */
806 		off += sizeof(void *);
807 
808 	if (s->flags & SLAB_STORE_USER)
809 		/* We also have user information there */
810 		off += 2 * sizeof(struct track);
811 
812 	off += kasan_metadata_size(s);
813 
814 	if (size_from_object(s) == off)
815 		return 1;
816 
817 	return check_bytes_and_report(s, page, p, "Object padding",
818 			p + off, POISON_INUSE, size_from_object(s) - off);
819 }
820 
821 /* Check the pad bytes at the end of a slab page */
822 static int slab_pad_check(struct kmem_cache *s, struct page *page)
823 {
824 	u8 *start;
825 	u8 *fault;
826 	u8 *end;
827 	u8 *pad;
828 	int length;
829 	int remainder;
830 
831 	if (!(s->flags & SLAB_POISON))
832 		return 1;
833 
834 	start = page_address(page);
835 	length = PAGE_SIZE << compound_order(page);
836 	end = start + length;
837 	remainder = length % s->size;
838 	if (!remainder)
839 		return 1;
840 
841 	pad = end - remainder;
842 	metadata_access_enable();
843 	fault = memchr_inv(pad, POISON_INUSE, remainder);
844 	metadata_access_disable();
845 	if (!fault)
846 		return 1;
847 	while (end > fault && end[-1] == POISON_INUSE)
848 		end--;
849 
850 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
851 	print_section(KERN_ERR, "Padding ", pad, remainder);
852 
853 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
854 	return 0;
855 }
856 
857 static int check_object(struct kmem_cache *s, struct page *page,
858 					void *object, u8 val)
859 {
860 	u8 *p = object;
861 	u8 *endobject = object + s->object_size;
862 
863 	if (s->flags & SLAB_RED_ZONE) {
864 		if (!check_bytes_and_report(s, page, object, "Redzone",
865 			object - s->red_left_pad, val, s->red_left_pad))
866 			return 0;
867 
868 		if (!check_bytes_and_report(s, page, object, "Redzone",
869 			endobject, val, s->inuse - s->object_size))
870 			return 0;
871 	} else {
872 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
873 			check_bytes_and_report(s, page, p, "Alignment padding",
874 				endobject, POISON_INUSE,
875 				s->inuse - s->object_size);
876 		}
877 	}
878 
879 	if (s->flags & SLAB_POISON) {
880 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
881 			(!check_bytes_and_report(s, page, p, "Poison", p,
882 					POISON_FREE, s->object_size - 1) ||
883 			 !check_bytes_and_report(s, page, p, "Poison",
884 				p + s->object_size - 1, POISON_END, 1)))
885 			return 0;
886 		/*
887 		 * check_pad_bytes cleans up on its own.
888 		 */
889 		check_pad_bytes(s, page, p);
890 	}
891 
892 	if (!s->offset && val == SLUB_RED_ACTIVE)
893 		/*
894 		 * Object and freepointer overlap. Cannot check
895 		 * freepointer while object is allocated.
896 		 */
897 		return 1;
898 
899 	/* Check free pointer validity */
900 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
901 		object_err(s, page, p, "Freepointer corrupt");
902 		/*
903 		 * No choice but to zap it and thus lose the remainder
904 		 * of the free objects in this slab. May cause
905 		 * another error because the object count is now wrong.
906 		 */
907 		set_freepointer(s, p, NULL);
908 		return 0;
909 	}
910 	return 1;
911 }
912 
913 static int check_slab(struct kmem_cache *s, struct page *page)
914 {
915 	int maxobj;
916 
917 	VM_BUG_ON(!irqs_disabled());
918 
919 	if (!PageSlab(page)) {
920 		slab_err(s, page, "Not a valid slab page");
921 		return 0;
922 	}
923 
924 	maxobj = order_objects(compound_order(page), s->size);
925 	if (page->objects > maxobj) {
926 		slab_err(s, page, "objects %u > max %u",
927 			page->objects, maxobj);
928 		return 0;
929 	}
930 	if (page->inuse > page->objects) {
931 		slab_err(s, page, "inuse %u > max %u",
932 			page->inuse, page->objects);
933 		return 0;
934 	}
935 	/* Slab_pad_check fixes things up after itself */
936 	slab_pad_check(s, page);
937 	return 1;
938 }
939 
940 /*
941  * Determine if a certain object on a page is on the freelist. Must hold the
942  * slab lock to guarantee that the chains are in a consistent state.
943  */
944 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
945 {
946 	int nr = 0;
947 	void *fp;
948 	void *object = NULL;
949 	int max_objects;
950 
951 	fp = page->freelist;
952 	while (fp && nr <= page->objects) {
953 		if (fp == search)
954 			return 1;
955 		if (!check_valid_pointer(s, page, fp)) {
956 			if (object) {
957 				object_err(s, page, object,
958 					"Freechain corrupt");
959 				set_freepointer(s, object, NULL);
960 			} else {
961 				slab_err(s, page, "Freepointer corrupt");
962 				page->freelist = NULL;
963 				page->inuse = page->objects;
964 				slab_fix(s, "Freelist cleared");
965 				return 0;
966 			}
967 			break;
968 		}
969 		object = fp;
970 		fp = get_freepointer(s, object);
971 		nr++;
972 	}
973 
974 	max_objects = order_objects(compound_order(page), s->size);
975 	if (max_objects > MAX_OBJS_PER_PAGE)
976 		max_objects = MAX_OBJS_PER_PAGE;
977 
978 	if (page->objects != max_objects) {
979 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
980 			 page->objects, max_objects);
981 		page->objects = max_objects;
982 		slab_fix(s, "Number of objects adjusted.");
983 	}
984 	if (page->inuse != page->objects - nr) {
985 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
986 			 page->inuse, page->objects - nr);
987 		page->inuse = page->objects - nr;
988 		slab_fix(s, "Object count adjusted.");
989 	}
990 	return search == NULL;
991 }
992 
993 static void trace(struct kmem_cache *s, struct page *page, void *object,
994 								int alloc)
995 {
996 	if (s->flags & SLAB_TRACE) {
997 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
998 			s->name,
999 			alloc ? "alloc" : "free",
1000 			object, page->inuse,
1001 			page->freelist);
1002 
1003 		if (!alloc)
1004 			print_section(KERN_INFO, "Object ", (void *)object,
1005 					s->object_size);
1006 
1007 		dump_stack();
1008 	}
1009 }
1010 
1011 /*
1012  * Tracking of fully allocated slabs for debugging purposes.
1013  */
1014 static void add_full(struct kmem_cache *s,
1015 	struct kmem_cache_node *n, struct page *page)
1016 {
1017 	if (!(s->flags & SLAB_STORE_USER))
1018 		return;
1019 
1020 	lockdep_assert_held(&n->list_lock);
1021 	list_add(&page->lru, &n->full);
1022 }
1023 
1024 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1025 {
1026 	if (!(s->flags & SLAB_STORE_USER))
1027 		return;
1028 
1029 	lockdep_assert_held(&n->list_lock);
1030 	list_del(&page->lru);
1031 }
1032 
1033 /* Tracking of the number of slabs for debugging purposes */
1034 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1035 {
1036 	struct kmem_cache_node *n = get_node(s, node);
1037 
1038 	return atomic_long_read(&n->nr_slabs);
1039 }
1040 
1041 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1042 {
1043 	return atomic_long_read(&n->nr_slabs);
1044 }
1045 
1046 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1047 {
1048 	struct kmem_cache_node *n = get_node(s, node);
1049 
1050 	/*
1051 	 * May be called early in order to allocate a slab for the
1052 	 * kmem_cache_node structure. Solve the chicken-egg
1053 	 * dilemma by deferring the increment of the count during
1054 	 * bootstrap (see early_kmem_cache_node_alloc).
1055 	 */
1056 	if (likely(n)) {
1057 		atomic_long_inc(&n->nr_slabs);
1058 		atomic_long_add(objects, &n->total_objects);
1059 	}
1060 }
1061 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1062 {
1063 	struct kmem_cache_node *n = get_node(s, node);
1064 
1065 	atomic_long_dec(&n->nr_slabs);
1066 	atomic_long_sub(objects, &n->total_objects);
1067 }
1068 
1069 /* Object debug checks for alloc/free paths */
1070 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1071 								void *object)
1072 {
1073 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1074 		return;
1075 
1076 	init_object(s, object, SLUB_RED_INACTIVE);
1077 	init_tracking(s, object);
1078 }
1079 
1080 static inline int alloc_consistency_checks(struct kmem_cache *s,
1081 					struct page *page,
1082 					void *object, unsigned long addr)
1083 {
1084 	if (!check_slab(s, page))
1085 		return 0;
1086 
1087 	if (!check_valid_pointer(s, page, object)) {
1088 		object_err(s, page, object, "Freelist Pointer check fails");
1089 		return 0;
1090 	}
1091 
1092 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1093 		return 0;
1094 
1095 	return 1;
1096 }
1097 
1098 static noinline int alloc_debug_processing(struct kmem_cache *s,
1099 					struct page *page,
1100 					void *object, unsigned long addr)
1101 {
1102 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1103 		if (!alloc_consistency_checks(s, page, object, addr))
1104 			goto bad;
1105 	}
1106 
1107 	/* Success perform special debug activities for allocs */
1108 	if (s->flags & SLAB_STORE_USER)
1109 		set_track(s, object, TRACK_ALLOC, addr);
1110 	trace(s, page, object, 1);
1111 	init_object(s, object, SLUB_RED_ACTIVE);
1112 	return 1;
1113 
1114 bad:
1115 	if (PageSlab(page)) {
1116 		/*
1117 		 * If this is a slab page then lets do the best we can
1118 		 * to avoid issues in the future. Marking all objects
1119 		 * as used avoids touching the remaining objects.
1120 		 */
1121 		slab_fix(s, "Marking all objects used");
1122 		page->inuse = page->objects;
1123 		page->freelist = NULL;
1124 	}
1125 	return 0;
1126 }
1127 
1128 static inline int free_consistency_checks(struct kmem_cache *s,
1129 		struct page *page, void *object, unsigned long addr)
1130 {
1131 	if (!check_valid_pointer(s, page, object)) {
1132 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1133 		return 0;
1134 	}
1135 
1136 	if (on_freelist(s, page, object)) {
1137 		object_err(s, page, object, "Object already free");
1138 		return 0;
1139 	}
1140 
1141 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1142 		return 0;
1143 
1144 	if (unlikely(s != page->slab_cache)) {
1145 		if (!PageSlab(page)) {
1146 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1147 				 object);
1148 		} else if (!page->slab_cache) {
1149 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1150 			       object);
1151 			dump_stack();
1152 		} else
1153 			object_err(s, page, object,
1154 					"page slab pointer corrupt.");
1155 		return 0;
1156 	}
1157 	return 1;
1158 }
1159 
1160 /* Supports checking bulk free of a constructed freelist */
1161 static noinline int free_debug_processing(
1162 	struct kmem_cache *s, struct page *page,
1163 	void *head, void *tail, int bulk_cnt,
1164 	unsigned long addr)
1165 {
1166 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1167 	void *object = head;
1168 	int cnt = 0;
1169 	unsigned long uninitialized_var(flags);
1170 	int ret = 0;
1171 
1172 	spin_lock_irqsave(&n->list_lock, flags);
1173 	slab_lock(page);
1174 
1175 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1176 		if (!check_slab(s, page))
1177 			goto out;
1178 	}
1179 
1180 next_object:
1181 	cnt++;
1182 
1183 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1184 		if (!free_consistency_checks(s, page, object, addr))
1185 			goto out;
1186 	}
1187 
1188 	if (s->flags & SLAB_STORE_USER)
1189 		set_track(s, object, TRACK_FREE, addr);
1190 	trace(s, page, object, 0);
1191 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1192 	init_object(s, object, SLUB_RED_INACTIVE);
1193 
1194 	/* Reached end of constructed freelist yet? */
1195 	if (object != tail) {
1196 		object = get_freepointer(s, object);
1197 		goto next_object;
1198 	}
1199 	ret = 1;
1200 
1201 out:
1202 	if (cnt != bulk_cnt)
1203 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1204 			 bulk_cnt, cnt);
1205 
1206 	slab_unlock(page);
1207 	spin_unlock_irqrestore(&n->list_lock, flags);
1208 	if (!ret)
1209 		slab_fix(s, "Object at 0x%p not freed", object);
1210 	return ret;
1211 }
1212 
1213 static int __init setup_slub_debug(char *str)
1214 {
1215 	slub_debug = DEBUG_DEFAULT_FLAGS;
1216 	if (*str++ != '=' || !*str)
1217 		/*
1218 		 * No options specified. Switch on full debugging.
1219 		 */
1220 		goto out;
1221 
1222 	if (*str == ',')
1223 		/*
1224 		 * No options but restriction on slabs. This means full
1225 		 * debugging for slabs matching a pattern.
1226 		 */
1227 		goto check_slabs;
1228 
1229 	slub_debug = 0;
1230 	if (*str == '-')
1231 		/*
1232 		 * Switch off all debugging measures.
1233 		 */
1234 		goto out;
1235 
1236 	/*
1237 	 * Determine which debug features should be switched on
1238 	 */
1239 	for (; *str && *str != ','; str++) {
1240 		switch (tolower(*str)) {
1241 		case 'f':
1242 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1243 			break;
1244 		case 'z':
1245 			slub_debug |= SLAB_RED_ZONE;
1246 			break;
1247 		case 'p':
1248 			slub_debug |= SLAB_POISON;
1249 			break;
1250 		case 'u':
1251 			slub_debug |= SLAB_STORE_USER;
1252 			break;
1253 		case 't':
1254 			slub_debug |= SLAB_TRACE;
1255 			break;
1256 		case 'a':
1257 			slub_debug |= SLAB_FAILSLAB;
1258 			break;
1259 		case 'o':
1260 			/*
1261 			 * Avoid enabling debugging on caches if its minimum
1262 			 * order would increase as a result.
1263 			 */
1264 			disable_higher_order_debug = 1;
1265 			break;
1266 		default:
1267 			pr_err("slub_debug option '%c' unknown. skipped\n",
1268 			       *str);
1269 		}
1270 	}
1271 
1272 check_slabs:
1273 	if (*str == ',')
1274 		slub_debug_slabs = str + 1;
1275 out:
1276 	return 1;
1277 }
1278 
1279 __setup("slub_debug", setup_slub_debug);
1280 
1281 slab_flags_t kmem_cache_flags(unsigned int object_size,
1282 	slab_flags_t flags, const char *name,
1283 	void (*ctor)(void *))
1284 {
1285 	/*
1286 	 * Enable debugging if selected on the kernel commandline.
1287 	 */
1288 	if (slub_debug && (!slub_debug_slabs || (name &&
1289 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1290 		flags |= slub_debug;
1291 
1292 	return flags;
1293 }
1294 #else /* !CONFIG_SLUB_DEBUG */
1295 static inline void setup_object_debug(struct kmem_cache *s,
1296 			struct page *page, void *object) {}
1297 
1298 static inline int alloc_debug_processing(struct kmem_cache *s,
1299 	struct page *page, void *object, unsigned long addr) { return 0; }
1300 
1301 static inline int free_debug_processing(
1302 	struct kmem_cache *s, struct page *page,
1303 	void *head, void *tail, int bulk_cnt,
1304 	unsigned long addr) { return 0; }
1305 
1306 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1307 			{ return 1; }
1308 static inline int check_object(struct kmem_cache *s, struct page *page,
1309 			void *object, u8 val) { return 1; }
1310 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1311 					struct page *page) {}
1312 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1313 					struct page *page) {}
1314 slab_flags_t kmem_cache_flags(unsigned int object_size,
1315 	slab_flags_t flags, const char *name,
1316 	void (*ctor)(void *))
1317 {
1318 	return flags;
1319 }
1320 #define slub_debug 0
1321 
1322 #define disable_higher_order_debug 0
1323 
1324 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1325 							{ return 0; }
1326 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1327 							{ return 0; }
1328 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1329 							int objects) {}
1330 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1331 							int objects) {}
1332 
1333 #endif /* CONFIG_SLUB_DEBUG */
1334 
1335 /*
1336  * Hooks for other subsystems that check memory allocations. In a typical
1337  * production configuration these hooks all should produce no code at all.
1338  */
1339 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1340 {
1341 	kmemleak_alloc(ptr, size, 1, flags);
1342 	kasan_kmalloc_large(ptr, size, flags);
1343 }
1344 
1345 static __always_inline void kfree_hook(void *x)
1346 {
1347 	kmemleak_free(x);
1348 	kasan_kfree_large(x, _RET_IP_);
1349 }
1350 
1351 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1352 {
1353 	kmemleak_free_recursive(x, s->flags);
1354 
1355 	/*
1356 	 * Trouble is that we may no longer disable interrupts in the fast path
1357 	 * So in order to make the debug calls that expect irqs to be
1358 	 * disabled we need to disable interrupts temporarily.
1359 	 */
1360 #ifdef CONFIG_LOCKDEP
1361 	{
1362 		unsigned long flags;
1363 
1364 		local_irq_save(flags);
1365 		debug_check_no_locks_freed(x, s->object_size);
1366 		local_irq_restore(flags);
1367 	}
1368 #endif
1369 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1370 		debug_check_no_obj_freed(x, s->object_size);
1371 
1372 	/* KASAN might put x into memory quarantine, delaying its reuse */
1373 	return kasan_slab_free(s, x, _RET_IP_);
1374 }
1375 
1376 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1377 					   void **head, void **tail)
1378 {
1379 /*
1380  * Compiler cannot detect this function can be removed if slab_free_hook()
1381  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1382  */
1383 #if defined(CONFIG_LOCKDEP)	||		\
1384 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1385 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1386 	defined(CONFIG_KASAN)
1387 
1388 	void *object;
1389 	void *next = *head;
1390 	void *old_tail = *tail ? *tail : *head;
1391 
1392 	/* Head and tail of the reconstructed freelist */
1393 	*head = NULL;
1394 	*tail = NULL;
1395 
1396 	do {
1397 		object = next;
1398 		next = get_freepointer(s, object);
1399 		/* If object's reuse doesn't have to be delayed */
1400 		if (!slab_free_hook(s, object)) {
1401 			/* Move object to the new freelist */
1402 			set_freepointer(s, object, *head);
1403 			*head = object;
1404 			if (!*tail)
1405 				*tail = object;
1406 		}
1407 	} while (object != old_tail);
1408 
1409 	if (*head == *tail)
1410 		*tail = NULL;
1411 
1412 	return *head != NULL;
1413 #else
1414 	return true;
1415 #endif
1416 }
1417 
1418 static void setup_object(struct kmem_cache *s, struct page *page,
1419 				void *object)
1420 {
1421 	setup_object_debug(s, page, object);
1422 	kasan_init_slab_obj(s, object);
1423 	if (unlikely(s->ctor)) {
1424 		kasan_unpoison_object_data(s, object);
1425 		s->ctor(object);
1426 		kasan_poison_object_data(s, object);
1427 	}
1428 }
1429 
1430 /*
1431  * Slab allocation and freeing
1432  */
1433 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1434 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1435 {
1436 	struct page *page;
1437 	unsigned int order = oo_order(oo);
1438 
1439 	if (node == NUMA_NO_NODE)
1440 		page = alloc_pages(flags, order);
1441 	else
1442 		page = __alloc_pages_node(node, flags, order);
1443 
1444 	if (page && memcg_charge_slab(page, flags, order, s)) {
1445 		__free_pages(page, order);
1446 		page = NULL;
1447 	}
1448 
1449 	return page;
1450 }
1451 
1452 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1453 /* Pre-initialize the random sequence cache */
1454 static int init_cache_random_seq(struct kmem_cache *s)
1455 {
1456 	unsigned int count = oo_objects(s->oo);
1457 	int err;
1458 
1459 	/* Bailout if already initialised */
1460 	if (s->random_seq)
1461 		return 0;
1462 
1463 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1464 	if (err) {
1465 		pr_err("SLUB: Unable to initialize free list for %s\n",
1466 			s->name);
1467 		return err;
1468 	}
1469 
1470 	/* Transform to an offset on the set of pages */
1471 	if (s->random_seq) {
1472 		unsigned int i;
1473 
1474 		for (i = 0; i < count; i++)
1475 			s->random_seq[i] *= s->size;
1476 	}
1477 	return 0;
1478 }
1479 
1480 /* Initialize each random sequence freelist per cache */
1481 static void __init init_freelist_randomization(void)
1482 {
1483 	struct kmem_cache *s;
1484 
1485 	mutex_lock(&slab_mutex);
1486 
1487 	list_for_each_entry(s, &slab_caches, list)
1488 		init_cache_random_seq(s);
1489 
1490 	mutex_unlock(&slab_mutex);
1491 }
1492 
1493 /* Get the next entry on the pre-computed freelist randomized */
1494 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1495 				unsigned long *pos, void *start,
1496 				unsigned long page_limit,
1497 				unsigned long freelist_count)
1498 {
1499 	unsigned int idx;
1500 
1501 	/*
1502 	 * If the target page allocation failed, the number of objects on the
1503 	 * page might be smaller than the usual size defined by the cache.
1504 	 */
1505 	do {
1506 		idx = s->random_seq[*pos];
1507 		*pos += 1;
1508 		if (*pos >= freelist_count)
1509 			*pos = 0;
1510 	} while (unlikely(idx >= page_limit));
1511 
1512 	return (char *)start + idx;
1513 }
1514 
1515 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1516 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1517 {
1518 	void *start;
1519 	void *cur;
1520 	void *next;
1521 	unsigned long idx, pos, page_limit, freelist_count;
1522 
1523 	if (page->objects < 2 || !s->random_seq)
1524 		return false;
1525 
1526 	freelist_count = oo_objects(s->oo);
1527 	pos = get_random_int() % freelist_count;
1528 
1529 	page_limit = page->objects * s->size;
1530 	start = fixup_red_left(s, page_address(page));
1531 
1532 	/* First entry is used as the base of the freelist */
1533 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1534 				freelist_count);
1535 	page->freelist = cur;
1536 
1537 	for (idx = 1; idx < page->objects; idx++) {
1538 		setup_object(s, page, cur);
1539 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1540 			freelist_count);
1541 		set_freepointer(s, cur, next);
1542 		cur = next;
1543 	}
1544 	setup_object(s, page, cur);
1545 	set_freepointer(s, cur, NULL);
1546 
1547 	return true;
1548 }
1549 #else
1550 static inline int init_cache_random_seq(struct kmem_cache *s)
1551 {
1552 	return 0;
1553 }
1554 static inline void init_freelist_randomization(void) { }
1555 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1556 {
1557 	return false;
1558 }
1559 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1560 
1561 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1562 {
1563 	struct page *page;
1564 	struct kmem_cache_order_objects oo = s->oo;
1565 	gfp_t alloc_gfp;
1566 	void *start, *p;
1567 	int idx, order;
1568 	bool shuffle;
1569 
1570 	flags &= gfp_allowed_mask;
1571 
1572 	if (gfpflags_allow_blocking(flags))
1573 		local_irq_enable();
1574 
1575 	flags |= s->allocflags;
1576 
1577 	/*
1578 	 * Let the initial higher-order allocation fail under memory pressure
1579 	 * so we fall-back to the minimum order allocation.
1580 	 */
1581 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1582 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1583 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1584 
1585 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1586 	if (unlikely(!page)) {
1587 		oo = s->min;
1588 		alloc_gfp = flags;
1589 		/*
1590 		 * Allocation may have failed due to fragmentation.
1591 		 * Try a lower order alloc if possible
1592 		 */
1593 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1594 		if (unlikely(!page))
1595 			goto out;
1596 		stat(s, ORDER_FALLBACK);
1597 	}
1598 
1599 	page->objects = oo_objects(oo);
1600 
1601 	order = compound_order(page);
1602 	page->slab_cache = s;
1603 	__SetPageSlab(page);
1604 	if (page_is_pfmemalloc(page))
1605 		SetPageSlabPfmemalloc(page);
1606 
1607 	start = page_address(page);
1608 
1609 	if (unlikely(s->flags & SLAB_POISON))
1610 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1611 
1612 	kasan_poison_slab(page);
1613 
1614 	shuffle = shuffle_freelist(s, page);
1615 
1616 	if (!shuffle) {
1617 		for_each_object_idx(p, idx, s, start, page->objects) {
1618 			setup_object(s, page, p);
1619 			if (likely(idx < page->objects))
1620 				set_freepointer(s, p, p + s->size);
1621 			else
1622 				set_freepointer(s, p, NULL);
1623 		}
1624 		page->freelist = fixup_red_left(s, start);
1625 	}
1626 
1627 	page->inuse = page->objects;
1628 	page->frozen = 1;
1629 
1630 out:
1631 	if (gfpflags_allow_blocking(flags))
1632 		local_irq_disable();
1633 	if (!page)
1634 		return NULL;
1635 
1636 	mod_lruvec_page_state(page,
1637 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1638 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1639 		1 << oo_order(oo));
1640 
1641 	inc_slabs_node(s, page_to_nid(page), page->objects);
1642 
1643 	return page;
1644 }
1645 
1646 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1647 {
1648 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1649 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1650 		flags &= ~GFP_SLAB_BUG_MASK;
1651 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1652 				invalid_mask, &invalid_mask, flags, &flags);
1653 		dump_stack();
1654 	}
1655 
1656 	return allocate_slab(s,
1657 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1658 }
1659 
1660 static void __free_slab(struct kmem_cache *s, struct page *page)
1661 {
1662 	int order = compound_order(page);
1663 	int pages = 1 << order;
1664 
1665 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1666 		void *p;
1667 
1668 		slab_pad_check(s, page);
1669 		for_each_object(p, s, page_address(page),
1670 						page->objects)
1671 			check_object(s, page, p, SLUB_RED_INACTIVE);
1672 	}
1673 
1674 	mod_lruvec_page_state(page,
1675 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1676 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1677 		-pages);
1678 
1679 	__ClearPageSlabPfmemalloc(page);
1680 	__ClearPageSlab(page);
1681 
1682 	page->mapping = NULL;
1683 	if (current->reclaim_state)
1684 		current->reclaim_state->reclaimed_slab += pages;
1685 	memcg_uncharge_slab(page, order, s);
1686 	__free_pages(page, order);
1687 }
1688 
1689 static void rcu_free_slab(struct rcu_head *h)
1690 {
1691 	struct page *page = container_of(h, struct page, rcu_head);
1692 
1693 	__free_slab(page->slab_cache, page);
1694 }
1695 
1696 static void free_slab(struct kmem_cache *s, struct page *page)
1697 {
1698 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1699 		call_rcu(&page->rcu_head, rcu_free_slab);
1700 	} else
1701 		__free_slab(s, page);
1702 }
1703 
1704 static void discard_slab(struct kmem_cache *s, struct page *page)
1705 {
1706 	dec_slabs_node(s, page_to_nid(page), page->objects);
1707 	free_slab(s, page);
1708 }
1709 
1710 /*
1711  * Management of partially allocated slabs.
1712  */
1713 static inline void
1714 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1715 {
1716 	n->nr_partial++;
1717 	if (tail == DEACTIVATE_TO_TAIL)
1718 		list_add_tail(&page->lru, &n->partial);
1719 	else
1720 		list_add(&page->lru, &n->partial);
1721 }
1722 
1723 static inline void add_partial(struct kmem_cache_node *n,
1724 				struct page *page, int tail)
1725 {
1726 	lockdep_assert_held(&n->list_lock);
1727 	__add_partial(n, page, tail);
1728 }
1729 
1730 static inline void remove_partial(struct kmem_cache_node *n,
1731 					struct page *page)
1732 {
1733 	lockdep_assert_held(&n->list_lock);
1734 	list_del(&page->lru);
1735 	n->nr_partial--;
1736 }
1737 
1738 /*
1739  * Remove slab from the partial list, freeze it and
1740  * return the pointer to the freelist.
1741  *
1742  * Returns a list of objects or NULL if it fails.
1743  */
1744 static inline void *acquire_slab(struct kmem_cache *s,
1745 		struct kmem_cache_node *n, struct page *page,
1746 		int mode, int *objects)
1747 {
1748 	void *freelist;
1749 	unsigned long counters;
1750 	struct page new;
1751 
1752 	lockdep_assert_held(&n->list_lock);
1753 
1754 	/*
1755 	 * Zap the freelist and set the frozen bit.
1756 	 * The old freelist is the list of objects for the
1757 	 * per cpu allocation list.
1758 	 */
1759 	freelist = page->freelist;
1760 	counters = page->counters;
1761 	new.counters = counters;
1762 	*objects = new.objects - new.inuse;
1763 	if (mode) {
1764 		new.inuse = page->objects;
1765 		new.freelist = NULL;
1766 	} else {
1767 		new.freelist = freelist;
1768 	}
1769 
1770 	VM_BUG_ON(new.frozen);
1771 	new.frozen = 1;
1772 
1773 	if (!__cmpxchg_double_slab(s, page,
1774 			freelist, counters,
1775 			new.freelist, new.counters,
1776 			"acquire_slab"))
1777 		return NULL;
1778 
1779 	remove_partial(n, page);
1780 	WARN_ON(!freelist);
1781 	return freelist;
1782 }
1783 
1784 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1785 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1786 
1787 /*
1788  * Try to allocate a partial slab from a specific node.
1789  */
1790 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1791 				struct kmem_cache_cpu *c, gfp_t flags)
1792 {
1793 	struct page *page, *page2;
1794 	void *object = NULL;
1795 	unsigned int available = 0;
1796 	int objects;
1797 
1798 	/*
1799 	 * Racy check. If we mistakenly see no partial slabs then we
1800 	 * just allocate an empty slab. If we mistakenly try to get a
1801 	 * partial slab and there is none available then get_partials()
1802 	 * will return NULL.
1803 	 */
1804 	if (!n || !n->nr_partial)
1805 		return NULL;
1806 
1807 	spin_lock(&n->list_lock);
1808 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1809 		void *t;
1810 
1811 		if (!pfmemalloc_match(page, flags))
1812 			continue;
1813 
1814 		t = acquire_slab(s, n, page, object == NULL, &objects);
1815 		if (!t)
1816 			break;
1817 
1818 		available += objects;
1819 		if (!object) {
1820 			c->page = page;
1821 			stat(s, ALLOC_FROM_PARTIAL);
1822 			object = t;
1823 		} else {
1824 			put_cpu_partial(s, page, 0);
1825 			stat(s, CPU_PARTIAL_NODE);
1826 		}
1827 		if (!kmem_cache_has_cpu_partial(s)
1828 			|| available > slub_cpu_partial(s) / 2)
1829 			break;
1830 
1831 	}
1832 	spin_unlock(&n->list_lock);
1833 	return object;
1834 }
1835 
1836 /*
1837  * Get a page from somewhere. Search in increasing NUMA distances.
1838  */
1839 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1840 		struct kmem_cache_cpu *c)
1841 {
1842 #ifdef CONFIG_NUMA
1843 	struct zonelist *zonelist;
1844 	struct zoneref *z;
1845 	struct zone *zone;
1846 	enum zone_type high_zoneidx = gfp_zone(flags);
1847 	void *object;
1848 	unsigned int cpuset_mems_cookie;
1849 
1850 	/*
1851 	 * The defrag ratio allows a configuration of the tradeoffs between
1852 	 * inter node defragmentation and node local allocations. A lower
1853 	 * defrag_ratio increases the tendency to do local allocations
1854 	 * instead of attempting to obtain partial slabs from other nodes.
1855 	 *
1856 	 * If the defrag_ratio is set to 0 then kmalloc() always
1857 	 * returns node local objects. If the ratio is higher then kmalloc()
1858 	 * may return off node objects because partial slabs are obtained
1859 	 * from other nodes and filled up.
1860 	 *
1861 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1862 	 * (which makes defrag_ratio = 1000) then every (well almost)
1863 	 * allocation will first attempt to defrag slab caches on other nodes.
1864 	 * This means scanning over all nodes to look for partial slabs which
1865 	 * may be expensive if we do it every time we are trying to find a slab
1866 	 * with available objects.
1867 	 */
1868 	if (!s->remote_node_defrag_ratio ||
1869 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1870 		return NULL;
1871 
1872 	do {
1873 		cpuset_mems_cookie = read_mems_allowed_begin();
1874 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1875 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1876 			struct kmem_cache_node *n;
1877 
1878 			n = get_node(s, zone_to_nid(zone));
1879 
1880 			if (n && cpuset_zone_allowed(zone, flags) &&
1881 					n->nr_partial > s->min_partial) {
1882 				object = get_partial_node(s, n, c, flags);
1883 				if (object) {
1884 					/*
1885 					 * Don't check read_mems_allowed_retry()
1886 					 * here - if mems_allowed was updated in
1887 					 * parallel, that was a harmless race
1888 					 * between allocation and the cpuset
1889 					 * update
1890 					 */
1891 					return object;
1892 				}
1893 			}
1894 		}
1895 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1896 #endif
1897 	return NULL;
1898 }
1899 
1900 /*
1901  * Get a partial page, lock it and return it.
1902  */
1903 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1904 		struct kmem_cache_cpu *c)
1905 {
1906 	void *object;
1907 	int searchnode = node;
1908 
1909 	if (node == NUMA_NO_NODE)
1910 		searchnode = numa_mem_id();
1911 	else if (!node_present_pages(node))
1912 		searchnode = node_to_mem_node(node);
1913 
1914 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1915 	if (object || node != NUMA_NO_NODE)
1916 		return object;
1917 
1918 	return get_any_partial(s, flags, c);
1919 }
1920 
1921 #ifdef CONFIG_PREEMPT
1922 /*
1923  * Calculate the next globally unique transaction for disambiguiation
1924  * during cmpxchg. The transactions start with the cpu number and are then
1925  * incremented by CONFIG_NR_CPUS.
1926  */
1927 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1928 #else
1929 /*
1930  * No preemption supported therefore also no need to check for
1931  * different cpus.
1932  */
1933 #define TID_STEP 1
1934 #endif
1935 
1936 static inline unsigned long next_tid(unsigned long tid)
1937 {
1938 	return tid + TID_STEP;
1939 }
1940 
1941 static inline unsigned int tid_to_cpu(unsigned long tid)
1942 {
1943 	return tid % TID_STEP;
1944 }
1945 
1946 static inline unsigned long tid_to_event(unsigned long tid)
1947 {
1948 	return tid / TID_STEP;
1949 }
1950 
1951 static inline unsigned int init_tid(int cpu)
1952 {
1953 	return cpu;
1954 }
1955 
1956 static inline void note_cmpxchg_failure(const char *n,
1957 		const struct kmem_cache *s, unsigned long tid)
1958 {
1959 #ifdef SLUB_DEBUG_CMPXCHG
1960 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1961 
1962 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1963 
1964 #ifdef CONFIG_PREEMPT
1965 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1966 		pr_warn("due to cpu change %d -> %d\n",
1967 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1968 	else
1969 #endif
1970 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1971 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1972 			tid_to_event(tid), tid_to_event(actual_tid));
1973 	else
1974 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1975 			actual_tid, tid, next_tid(tid));
1976 #endif
1977 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1978 }
1979 
1980 static void init_kmem_cache_cpus(struct kmem_cache *s)
1981 {
1982 	int cpu;
1983 
1984 	for_each_possible_cpu(cpu)
1985 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1986 }
1987 
1988 /*
1989  * Remove the cpu slab
1990  */
1991 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1992 				void *freelist, struct kmem_cache_cpu *c)
1993 {
1994 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1995 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1996 	int lock = 0;
1997 	enum slab_modes l = M_NONE, m = M_NONE;
1998 	void *nextfree;
1999 	int tail = DEACTIVATE_TO_HEAD;
2000 	struct page new;
2001 	struct page old;
2002 
2003 	if (page->freelist) {
2004 		stat(s, DEACTIVATE_REMOTE_FREES);
2005 		tail = DEACTIVATE_TO_TAIL;
2006 	}
2007 
2008 	/*
2009 	 * Stage one: Free all available per cpu objects back
2010 	 * to the page freelist while it is still frozen. Leave the
2011 	 * last one.
2012 	 *
2013 	 * There is no need to take the list->lock because the page
2014 	 * is still frozen.
2015 	 */
2016 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2017 		void *prior;
2018 		unsigned long counters;
2019 
2020 		do {
2021 			prior = page->freelist;
2022 			counters = page->counters;
2023 			set_freepointer(s, freelist, prior);
2024 			new.counters = counters;
2025 			new.inuse--;
2026 			VM_BUG_ON(!new.frozen);
2027 
2028 		} while (!__cmpxchg_double_slab(s, page,
2029 			prior, counters,
2030 			freelist, new.counters,
2031 			"drain percpu freelist"));
2032 
2033 		freelist = nextfree;
2034 	}
2035 
2036 	/*
2037 	 * Stage two: Ensure that the page is unfrozen while the
2038 	 * list presence reflects the actual number of objects
2039 	 * during unfreeze.
2040 	 *
2041 	 * We setup the list membership and then perform a cmpxchg
2042 	 * with the count. If there is a mismatch then the page
2043 	 * is not unfrozen but the page is on the wrong list.
2044 	 *
2045 	 * Then we restart the process which may have to remove
2046 	 * the page from the list that we just put it on again
2047 	 * because the number of objects in the slab may have
2048 	 * changed.
2049 	 */
2050 redo:
2051 
2052 	old.freelist = page->freelist;
2053 	old.counters = page->counters;
2054 	VM_BUG_ON(!old.frozen);
2055 
2056 	/* Determine target state of the slab */
2057 	new.counters = old.counters;
2058 	if (freelist) {
2059 		new.inuse--;
2060 		set_freepointer(s, freelist, old.freelist);
2061 		new.freelist = freelist;
2062 	} else
2063 		new.freelist = old.freelist;
2064 
2065 	new.frozen = 0;
2066 
2067 	if (!new.inuse && n->nr_partial >= s->min_partial)
2068 		m = M_FREE;
2069 	else if (new.freelist) {
2070 		m = M_PARTIAL;
2071 		if (!lock) {
2072 			lock = 1;
2073 			/*
2074 			 * Taking the spinlock removes the possiblity
2075 			 * that acquire_slab() will see a slab page that
2076 			 * is frozen
2077 			 */
2078 			spin_lock(&n->list_lock);
2079 		}
2080 	} else {
2081 		m = M_FULL;
2082 		if (kmem_cache_debug(s) && !lock) {
2083 			lock = 1;
2084 			/*
2085 			 * This also ensures that the scanning of full
2086 			 * slabs from diagnostic functions will not see
2087 			 * any frozen slabs.
2088 			 */
2089 			spin_lock(&n->list_lock);
2090 		}
2091 	}
2092 
2093 	if (l != m) {
2094 
2095 		if (l == M_PARTIAL)
2096 
2097 			remove_partial(n, page);
2098 
2099 		else if (l == M_FULL)
2100 
2101 			remove_full(s, n, page);
2102 
2103 		if (m == M_PARTIAL) {
2104 
2105 			add_partial(n, page, tail);
2106 			stat(s, tail);
2107 
2108 		} else if (m == M_FULL) {
2109 
2110 			stat(s, DEACTIVATE_FULL);
2111 			add_full(s, n, page);
2112 
2113 		}
2114 	}
2115 
2116 	l = m;
2117 	if (!__cmpxchg_double_slab(s, page,
2118 				old.freelist, old.counters,
2119 				new.freelist, new.counters,
2120 				"unfreezing slab"))
2121 		goto redo;
2122 
2123 	if (lock)
2124 		spin_unlock(&n->list_lock);
2125 
2126 	if (m == M_FREE) {
2127 		stat(s, DEACTIVATE_EMPTY);
2128 		discard_slab(s, page);
2129 		stat(s, FREE_SLAB);
2130 	}
2131 
2132 	c->page = NULL;
2133 	c->freelist = NULL;
2134 }
2135 
2136 /*
2137  * Unfreeze all the cpu partial slabs.
2138  *
2139  * This function must be called with interrupts disabled
2140  * for the cpu using c (or some other guarantee must be there
2141  * to guarantee no concurrent accesses).
2142  */
2143 static void unfreeze_partials(struct kmem_cache *s,
2144 		struct kmem_cache_cpu *c)
2145 {
2146 #ifdef CONFIG_SLUB_CPU_PARTIAL
2147 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2148 	struct page *page, *discard_page = NULL;
2149 
2150 	while ((page = c->partial)) {
2151 		struct page new;
2152 		struct page old;
2153 
2154 		c->partial = page->next;
2155 
2156 		n2 = get_node(s, page_to_nid(page));
2157 		if (n != n2) {
2158 			if (n)
2159 				spin_unlock(&n->list_lock);
2160 
2161 			n = n2;
2162 			spin_lock(&n->list_lock);
2163 		}
2164 
2165 		do {
2166 
2167 			old.freelist = page->freelist;
2168 			old.counters = page->counters;
2169 			VM_BUG_ON(!old.frozen);
2170 
2171 			new.counters = old.counters;
2172 			new.freelist = old.freelist;
2173 
2174 			new.frozen = 0;
2175 
2176 		} while (!__cmpxchg_double_slab(s, page,
2177 				old.freelist, old.counters,
2178 				new.freelist, new.counters,
2179 				"unfreezing slab"));
2180 
2181 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2182 			page->next = discard_page;
2183 			discard_page = page;
2184 		} else {
2185 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2186 			stat(s, FREE_ADD_PARTIAL);
2187 		}
2188 	}
2189 
2190 	if (n)
2191 		spin_unlock(&n->list_lock);
2192 
2193 	while (discard_page) {
2194 		page = discard_page;
2195 		discard_page = discard_page->next;
2196 
2197 		stat(s, DEACTIVATE_EMPTY);
2198 		discard_slab(s, page);
2199 		stat(s, FREE_SLAB);
2200 	}
2201 #endif
2202 }
2203 
2204 /*
2205  * Put a page that was just frozen (in __slab_free) into a partial page
2206  * slot if available.
2207  *
2208  * If we did not find a slot then simply move all the partials to the
2209  * per node partial list.
2210  */
2211 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2212 {
2213 #ifdef CONFIG_SLUB_CPU_PARTIAL
2214 	struct page *oldpage;
2215 	int pages;
2216 	int pobjects;
2217 
2218 	preempt_disable();
2219 	do {
2220 		pages = 0;
2221 		pobjects = 0;
2222 		oldpage = this_cpu_read(s->cpu_slab->partial);
2223 
2224 		if (oldpage) {
2225 			pobjects = oldpage->pobjects;
2226 			pages = oldpage->pages;
2227 			if (drain && pobjects > s->cpu_partial) {
2228 				unsigned long flags;
2229 				/*
2230 				 * partial array is full. Move the existing
2231 				 * set to the per node partial list.
2232 				 */
2233 				local_irq_save(flags);
2234 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2235 				local_irq_restore(flags);
2236 				oldpage = NULL;
2237 				pobjects = 0;
2238 				pages = 0;
2239 				stat(s, CPU_PARTIAL_DRAIN);
2240 			}
2241 		}
2242 
2243 		pages++;
2244 		pobjects += page->objects - page->inuse;
2245 
2246 		page->pages = pages;
2247 		page->pobjects = pobjects;
2248 		page->next = oldpage;
2249 
2250 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2251 								!= oldpage);
2252 	if (unlikely(!s->cpu_partial)) {
2253 		unsigned long flags;
2254 
2255 		local_irq_save(flags);
2256 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2257 		local_irq_restore(flags);
2258 	}
2259 	preempt_enable();
2260 #endif
2261 }
2262 
2263 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2264 {
2265 	stat(s, CPUSLAB_FLUSH);
2266 	deactivate_slab(s, c->page, c->freelist, c);
2267 
2268 	c->tid = next_tid(c->tid);
2269 }
2270 
2271 /*
2272  * Flush cpu slab.
2273  *
2274  * Called from IPI handler with interrupts disabled.
2275  */
2276 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2277 {
2278 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2279 
2280 	if (likely(c)) {
2281 		if (c->page)
2282 			flush_slab(s, c);
2283 
2284 		unfreeze_partials(s, c);
2285 	}
2286 }
2287 
2288 static void flush_cpu_slab(void *d)
2289 {
2290 	struct kmem_cache *s = d;
2291 
2292 	__flush_cpu_slab(s, smp_processor_id());
2293 }
2294 
2295 static bool has_cpu_slab(int cpu, void *info)
2296 {
2297 	struct kmem_cache *s = info;
2298 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2299 
2300 	return c->page || slub_percpu_partial(c);
2301 }
2302 
2303 static void flush_all(struct kmem_cache *s)
2304 {
2305 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2306 }
2307 
2308 /*
2309  * Use the cpu notifier to insure that the cpu slabs are flushed when
2310  * necessary.
2311  */
2312 static int slub_cpu_dead(unsigned int cpu)
2313 {
2314 	struct kmem_cache *s;
2315 	unsigned long flags;
2316 
2317 	mutex_lock(&slab_mutex);
2318 	list_for_each_entry(s, &slab_caches, list) {
2319 		local_irq_save(flags);
2320 		__flush_cpu_slab(s, cpu);
2321 		local_irq_restore(flags);
2322 	}
2323 	mutex_unlock(&slab_mutex);
2324 	return 0;
2325 }
2326 
2327 /*
2328  * Check if the objects in a per cpu structure fit numa
2329  * locality expectations.
2330  */
2331 static inline int node_match(struct page *page, int node)
2332 {
2333 #ifdef CONFIG_NUMA
2334 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2335 		return 0;
2336 #endif
2337 	return 1;
2338 }
2339 
2340 #ifdef CONFIG_SLUB_DEBUG
2341 static int count_free(struct page *page)
2342 {
2343 	return page->objects - page->inuse;
2344 }
2345 
2346 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2347 {
2348 	return atomic_long_read(&n->total_objects);
2349 }
2350 #endif /* CONFIG_SLUB_DEBUG */
2351 
2352 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2353 static unsigned long count_partial(struct kmem_cache_node *n,
2354 					int (*get_count)(struct page *))
2355 {
2356 	unsigned long flags;
2357 	unsigned long x = 0;
2358 	struct page *page;
2359 
2360 	spin_lock_irqsave(&n->list_lock, flags);
2361 	list_for_each_entry(page, &n->partial, lru)
2362 		x += get_count(page);
2363 	spin_unlock_irqrestore(&n->list_lock, flags);
2364 	return x;
2365 }
2366 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2367 
2368 static noinline void
2369 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2370 {
2371 #ifdef CONFIG_SLUB_DEBUG
2372 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2373 				      DEFAULT_RATELIMIT_BURST);
2374 	int node;
2375 	struct kmem_cache_node *n;
2376 
2377 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2378 		return;
2379 
2380 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2381 		nid, gfpflags, &gfpflags);
2382 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2383 		s->name, s->object_size, s->size, oo_order(s->oo),
2384 		oo_order(s->min));
2385 
2386 	if (oo_order(s->min) > get_order(s->object_size))
2387 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2388 			s->name);
2389 
2390 	for_each_kmem_cache_node(s, node, n) {
2391 		unsigned long nr_slabs;
2392 		unsigned long nr_objs;
2393 		unsigned long nr_free;
2394 
2395 		nr_free  = count_partial(n, count_free);
2396 		nr_slabs = node_nr_slabs(n);
2397 		nr_objs  = node_nr_objs(n);
2398 
2399 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2400 			node, nr_slabs, nr_objs, nr_free);
2401 	}
2402 #endif
2403 }
2404 
2405 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2406 			int node, struct kmem_cache_cpu **pc)
2407 {
2408 	void *freelist;
2409 	struct kmem_cache_cpu *c = *pc;
2410 	struct page *page;
2411 
2412 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2413 
2414 	freelist = get_partial(s, flags, node, c);
2415 
2416 	if (freelist)
2417 		return freelist;
2418 
2419 	page = new_slab(s, flags, node);
2420 	if (page) {
2421 		c = raw_cpu_ptr(s->cpu_slab);
2422 		if (c->page)
2423 			flush_slab(s, c);
2424 
2425 		/*
2426 		 * No other reference to the page yet so we can
2427 		 * muck around with it freely without cmpxchg
2428 		 */
2429 		freelist = page->freelist;
2430 		page->freelist = NULL;
2431 
2432 		stat(s, ALLOC_SLAB);
2433 		c->page = page;
2434 		*pc = c;
2435 	} else
2436 		freelist = NULL;
2437 
2438 	return freelist;
2439 }
2440 
2441 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2442 {
2443 	if (unlikely(PageSlabPfmemalloc(page)))
2444 		return gfp_pfmemalloc_allowed(gfpflags);
2445 
2446 	return true;
2447 }
2448 
2449 /*
2450  * Check the page->freelist of a page and either transfer the freelist to the
2451  * per cpu freelist or deactivate the page.
2452  *
2453  * The page is still frozen if the return value is not NULL.
2454  *
2455  * If this function returns NULL then the page has been unfrozen.
2456  *
2457  * This function must be called with interrupt disabled.
2458  */
2459 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2460 {
2461 	struct page new;
2462 	unsigned long counters;
2463 	void *freelist;
2464 
2465 	do {
2466 		freelist = page->freelist;
2467 		counters = page->counters;
2468 
2469 		new.counters = counters;
2470 		VM_BUG_ON(!new.frozen);
2471 
2472 		new.inuse = page->objects;
2473 		new.frozen = freelist != NULL;
2474 
2475 	} while (!__cmpxchg_double_slab(s, page,
2476 		freelist, counters,
2477 		NULL, new.counters,
2478 		"get_freelist"));
2479 
2480 	return freelist;
2481 }
2482 
2483 /*
2484  * Slow path. The lockless freelist is empty or we need to perform
2485  * debugging duties.
2486  *
2487  * Processing is still very fast if new objects have been freed to the
2488  * regular freelist. In that case we simply take over the regular freelist
2489  * as the lockless freelist and zap the regular freelist.
2490  *
2491  * If that is not working then we fall back to the partial lists. We take the
2492  * first element of the freelist as the object to allocate now and move the
2493  * rest of the freelist to the lockless freelist.
2494  *
2495  * And if we were unable to get a new slab from the partial slab lists then
2496  * we need to allocate a new slab. This is the slowest path since it involves
2497  * a call to the page allocator and the setup of a new slab.
2498  *
2499  * Version of __slab_alloc to use when we know that interrupts are
2500  * already disabled (which is the case for bulk allocation).
2501  */
2502 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2503 			  unsigned long addr, struct kmem_cache_cpu *c)
2504 {
2505 	void *freelist;
2506 	struct page *page;
2507 
2508 	page = c->page;
2509 	if (!page)
2510 		goto new_slab;
2511 redo:
2512 
2513 	if (unlikely(!node_match(page, node))) {
2514 		int searchnode = node;
2515 
2516 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2517 			searchnode = node_to_mem_node(node);
2518 
2519 		if (unlikely(!node_match(page, searchnode))) {
2520 			stat(s, ALLOC_NODE_MISMATCH);
2521 			deactivate_slab(s, page, c->freelist, c);
2522 			goto new_slab;
2523 		}
2524 	}
2525 
2526 	/*
2527 	 * By rights, we should be searching for a slab page that was
2528 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2529 	 * information when the page leaves the per-cpu allocator
2530 	 */
2531 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2532 		deactivate_slab(s, page, c->freelist, c);
2533 		goto new_slab;
2534 	}
2535 
2536 	/* must check again c->freelist in case of cpu migration or IRQ */
2537 	freelist = c->freelist;
2538 	if (freelist)
2539 		goto load_freelist;
2540 
2541 	freelist = get_freelist(s, page);
2542 
2543 	if (!freelist) {
2544 		c->page = NULL;
2545 		stat(s, DEACTIVATE_BYPASS);
2546 		goto new_slab;
2547 	}
2548 
2549 	stat(s, ALLOC_REFILL);
2550 
2551 load_freelist:
2552 	/*
2553 	 * freelist is pointing to the list of objects to be used.
2554 	 * page is pointing to the page from which the objects are obtained.
2555 	 * That page must be frozen for per cpu allocations to work.
2556 	 */
2557 	VM_BUG_ON(!c->page->frozen);
2558 	c->freelist = get_freepointer(s, freelist);
2559 	c->tid = next_tid(c->tid);
2560 	return freelist;
2561 
2562 new_slab:
2563 
2564 	if (slub_percpu_partial(c)) {
2565 		page = c->page = slub_percpu_partial(c);
2566 		slub_set_percpu_partial(c, page);
2567 		stat(s, CPU_PARTIAL_ALLOC);
2568 		goto redo;
2569 	}
2570 
2571 	freelist = new_slab_objects(s, gfpflags, node, &c);
2572 
2573 	if (unlikely(!freelist)) {
2574 		slab_out_of_memory(s, gfpflags, node);
2575 		return NULL;
2576 	}
2577 
2578 	page = c->page;
2579 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2580 		goto load_freelist;
2581 
2582 	/* Only entered in the debug case */
2583 	if (kmem_cache_debug(s) &&
2584 			!alloc_debug_processing(s, page, freelist, addr))
2585 		goto new_slab;	/* Slab failed checks. Next slab needed */
2586 
2587 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2588 	return freelist;
2589 }
2590 
2591 /*
2592  * Another one that disabled interrupt and compensates for possible
2593  * cpu changes by refetching the per cpu area pointer.
2594  */
2595 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2596 			  unsigned long addr, struct kmem_cache_cpu *c)
2597 {
2598 	void *p;
2599 	unsigned long flags;
2600 
2601 	local_irq_save(flags);
2602 #ifdef CONFIG_PREEMPT
2603 	/*
2604 	 * We may have been preempted and rescheduled on a different
2605 	 * cpu before disabling interrupts. Need to reload cpu area
2606 	 * pointer.
2607 	 */
2608 	c = this_cpu_ptr(s->cpu_slab);
2609 #endif
2610 
2611 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2612 	local_irq_restore(flags);
2613 	return p;
2614 }
2615 
2616 /*
2617  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2618  * have the fastpath folded into their functions. So no function call
2619  * overhead for requests that can be satisfied on the fastpath.
2620  *
2621  * The fastpath works by first checking if the lockless freelist can be used.
2622  * If not then __slab_alloc is called for slow processing.
2623  *
2624  * Otherwise we can simply pick the next object from the lockless free list.
2625  */
2626 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2627 		gfp_t gfpflags, int node, unsigned long addr)
2628 {
2629 	void *object;
2630 	struct kmem_cache_cpu *c;
2631 	struct page *page;
2632 	unsigned long tid;
2633 
2634 	s = slab_pre_alloc_hook(s, gfpflags);
2635 	if (!s)
2636 		return NULL;
2637 redo:
2638 	/*
2639 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2640 	 * enabled. We may switch back and forth between cpus while
2641 	 * reading from one cpu area. That does not matter as long
2642 	 * as we end up on the original cpu again when doing the cmpxchg.
2643 	 *
2644 	 * We should guarantee that tid and kmem_cache are retrieved on
2645 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2646 	 * to check if it is matched or not.
2647 	 */
2648 	do {
2649 		tid = this_cpu_read(s->cpu_slab->tid);
2650 		c = raw_cpu_ptr(s->cpu_slab);
2651 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2652 		 unlikely(tid != READ_ONCE(c->tid)));
2653 
2654 	/*
2655 	 * Irqless object alloc/free algorithm used here depends on sequence
2656 	 * of fetching cpu_slab's data. tid should be fetched before anything
2657 	 * on c to guarantee that object and page associated with previous tid
2658 	 * won't be used with current tid. If we fetch tid first, object and
2659 	 * page could be one associated with next tid and our alloc/free
2660 	 * request will be failed. In this case, we will retry. So, no problem.
2661 	 */
2662 	barrier();
2663 
2664 	/*
2665 	 * The transaction ids are globally unique per cpu and per operation on
2666 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2667 	 * occurs on the right processor and that there was no operation on the
2668 	 * linked list in between.
2669 	 */
2670 
2671 	object = c->freelist;
2672 	page = c->page;
2673 	if (unlikely(!object || !node_match(page, node))) {
2674 		object = __slab_alloc(s, gfpflags, node, addr, c);
2675 		stat(s, ALLOC_SLOWPATH);
2676 	} else {
2677 		void *next_object = get_freepointer_safe(s, object);
2678 
2679 		/*
2680 		 * The cmpxchg will only match if there was no additional
2681 		 * operation and if we are on the right processor.
2682 		 *
2683 		 * The cmpxchg does the following atomically (without lock
2684 		 * semantics!)
2685 		 * 1. Relocate first pointer to the current per cpu area.
2686 		 * 2. Verify that tid and freelist have not been changed
2687 		 * 3. If they were not changed replace tid and freelist
2688 		 *
2689 		 * Since this is without lock semantics the protection is only
2690 		 * against code executing on this cpu *not* from access by
2691 		 * other cpus.
2692 		 */
2693 		if (unlikely(!this_cpu_cmpxchg_double(
2694 				s->cpu_slab->freelist, s->cpu_slab->tid,
2695 				object, tid,
2696 				next_object, next_tid(tid)))) {
2697 
2698 			note_cmpxchg_failure("slab_alloc", s, tid);
2699 			goto redo;
2700 		}
2701 		prefetch_freepointer(s, next_object);
2702 		stat(s, ALLOC_FASTPATH);
2703 	}
2704 
2705 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2706 		memset(object, 0, s->object_size);
2707 
2708 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2709 
2710 	return object;
2711 }
2712 
2713 static __always_inline void *slab_alloc(struct kmem_cache *s,
2714 		gfp_t gfpflags, unsigned long addr)
2715 {
2716 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2717 }
2718 
2719 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2720 {
2721 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2722 
2723 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2724 				s->size, gfpflags);
2725 
2726 	return ret;
2727 }
2728 EXPORT_SYMBOL(kmem_cache_alloc);
2729 
2730 #ifdef CONFIG_TRACING
2731 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2732 {
2733 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2734 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2735 	kasan_kmalloc(s, ret, size, gfpflags);
2736 	return ret;
2737 }
2738 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2739 #endif
2740 
2741 #ifdef CONFIG_NUMA
2742 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2743 {
2744 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2745 
2746 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2747 				    s->object_size, s->size, gfpflags, node);
2748 
2749 	return ret;
2750 }
2751 EXPORT_SYMBOL(kmem_cache_alloc_node);
2752 
2753 #ifdef CONFIG_TRACING
2754 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2755 				    gfp_t gfpflags,
2756 				    int node, size_t size)
2757 {
2758 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2759 
2760 	trace_kmalloc_node(_RET_IP_, ret,
2761 			   size, s->size, gfpflags, node);
2762 
2763 	kasan_kmalloc(s, ret, size, gfpflags);
2764 	return ret;
2765 }
2766 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2767 #endif
2768 #endif
2769 
2770 /*
2771  * Slow path handling. This may still be called frequently since objects
2772  * have a longer lifetime than the cpu slabs in most processing loads.
2773  *
2774  * So we still attempt to reduce cache line usage. Just take the slab
2775  * lock and free the item. If there is no additional partial page
2776  * handling required then we can return immediately.
2777  */
2778 static void __slab_free(struct kmem_cache *s, struct page *page,
2779 			void *head, void *tail, int cnt,
2780 			unsigned long addr)
2781 
2782 {
2783 	void *prior;
2784 	int was_frozen;
2785 	struct page new;
2786 	unsigned long counters;
2787 	struct kmem_cache_node *n = NULL;
2788 	unsigned long uninitialized_var(flags);
2789 
2790 	stat(s, FREE_SLOWPATH);
2791 
2792 	if (kmem_cache_debug(s) &&
2793 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2794 		return;
2795 
2796 	do {
2797 		if (unlikely(n)) {
2798 			spin_unlock_irqrestore(&n->list_lock, flags);
2799 			n = NULL;
2800 		}
2801 		prior = page->freelist;
2802 		counters = page->counters;
2803 		set_freepointer(s, tail, prior);
2804 		new.counters = counters;
2805 		was_frozen = new.frozen;
2806 		new.inuse -= cnt;
2807 		if ((!new.inuse || !prior) && !was_frozen) {
2808 
2809 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2810 
2811 				/*
2812 				 * Slab was on no list before and will be
2813 				 * partially empty
2814 				 * We can defer the list move and instead
2815 				 * freeze it.
2816 				 */
2817 				new.frozen = 1;
2818 
2819 			} else { /* Needs to be taken off a list */
2820 
2821 				n = get_node(s, page_to_nid(page));
2822 				/*
2823 				 * Speculatively acquire the list_lock.
2824 				 * If the cmpxchg does not succeed then we may
2825 				 * drop the list_lock without any processing.
2826 				 *
2827 				 * Otherwise the list_lock will synchronize with
2828 				 * other processors updating the list of slabs.
2829 				 */
2830 				spin_lock_irqsave(&n->list_lock, flags);
2831 
2832 			}
2833 		}
2834 
2835 	} while (!cmpxchg_double_slab(s, page,
2836 		prior, counters,
2837 		head, new.counters,
2838 		"__slab_free"));
2839 
2840 	if (likely(!n)) {
2841 
2842 		/*
2843 		 * If we just froze the page then put it onto the
2844 		 * per cpu partial list.
2845 		 */
2846 		if (new.frozen && !was_frozen) {
2847 			put_cpu_partial(s, page, 1);
2848 			stat(s, CPU_PARTIAL_FREE);
2849 		}
2850 		/*
2851 		 * The list lock was not taken therefore no list
2852 		 * activity can be necessary.
2853 		 */
2854 		if (was_frozen)
2855 			stat(s, FREE_FROZEN);
2856 		return;
2857 	}
2858 
2859 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2860 		goto slab_empty;
2861 
2862 	/*
2863 	 * Objects left in the slab. If it was not on the partial list before
2864 	 * then add it.
2865 	 */
2866 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2867 		if (kmem_cache_debug(s))
2868 			remove_full(s, n, page);
2869 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2870 		stat(s, FREE_ADD_PARTIAL);
2871 	}
2872 	spin_unlock_irqrestore(&n->list_lock, flags);
2873 	return;
2874 
2875 slab_empty:
2876 	if (prior) {
2877 		/*
2878 		 * Slab on the partial list.
2879 		 */
2880 		remove_partial(n, page);
2881 		stat(s, FREE_REMOVE_PARTIAL);
2882 	} else {
2883 		/* Slab must be on the full list */
2884 		remove_full(s, n, page);
2885 	}
2886 
2887 	spin_unlock_irqrestore(&n->list_lock, flags);
2888 	stat(s, FREE_SLAB);
2889 	discard_slab(s, page);
2890 }
2891 
2892 /*
2893  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2894  * can perform fastpath freeing without additional function calls.
2895  *
2896  * The fastpath is only possible if we are freeing to the current cpu slab
2897  * of this processor. This typically the case if we have just allocated
2898  * the item before.
2899  *
2900  * If fastpath is not possible then fall back to __slab_free where we deal
2901  * with all sorts of special processing.
2902  *
2903  * Bulk free of a freelist with several objects (all pointing to the
2904  * same page) possible by specifying head and tail ptr, plus objects
2905  * count (cnt). Bulk free indicated by tail pointer being set.
2906  */
2907 static __always_inline void do_slab_free(struct kmem_cache *s,
2908 				struct page *page, void *head, void *tail,
2909 				int cnt, unsigned long addr)
2910 {
2911 	void *tail_obj = tail ? : head;
2912 	struct kmem_cache_cpu *c;
2913 	unsigned long tid;
2914 redo:
2915 	/*
2916 	 * Determine the currently cpus per cpu slab.
2917 	 * The cpu may change afterward. However that does not matter since
2918 	 * data is retrieved via this pointer. If we are on the same cpu
2919 	 * during the cmpxchg then the free will succeed.
2920 	 */
2921 	do {
2922 		tid = this_cpu_read(s->cpu_slab->tid);
2923 		c = raw_cpu_ptr(s->cpu_slab);
2924 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2925 		 unlikely(tid != READ_ONCE(c->tid)));
2926 
2927 	/* Same with comment on barrier() in slab_alloc_node() */
2928 	barrier();
2929 
2930 	if (likely(page == c->page)) {
2931 		set_freepointer(s, tail_obj, c->freelist);
2932 
2933 		if (unlikely(!this_cpu_cmpxchg_double(
2934 				s->cpu_slab->freelist, s->cpu_slab->tid,
2935 				c->freelist, tid,
2936 				head, next_tid(tid)))) {
2937 
2938 			note_cmpxchg_failure("slab_free", s, tid);
2939 			goto redo;
2940 		}
2941 		stat(s, FREE_FASTPATH);
2942 	} else
2943 		__slab_free(s, page, head, tail_obj, cnt, addr);
2944 
2945 }
2946 
2947 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2948 				      void *head, void *tail, int cnt,
2949 				      unsigned long addr)
2950 {
2951 	/*
2952 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2953 	 * to remove objects, whose reuse must be delayed.
2954 	 */
2955 	if (slab_free_freelist_hook(s, &head, &tail))
2956 		do_slab_free(s, page, head, tail, cnt, addr);
2957 }
2958 
2959 #ifdef CONFIG_KASAN
2960 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2961 {
2962 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2963 }
2964 #endif
2965 
2966 void kmem_cache_free(struct kmem_cache *s, void *x)
2967 {
2968 	s = cache_from_obj(s, x);
2969 	if (!s)
2970 		return;
2971 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2972 	trace_kmem_cache_free(_RET_IP_, x);
2973 }
2974 EXPORT_SYMBOL(kmem_cache_free);
2975 
2976 struct detached_freelist {
2977 	struct page *page;
2978 	void *tail;
2979 	void *freelist;
2980 	int cnt;
2981 	struct kmem_cache *s;
2982 };
2983 
2984 /*
2985  * This function progressively scans the array with free objects (with
2986  * a limited look ahead) and extract objects belonging to the same
2987  * page.  It builds a detached freelist directly within the given
2988  * page/objects.  This can happen without any need for
2989  * synchronization, because the objects are owned by running process.
2990  * The freelist is build up as a single linked list in the objects.
2991  * The idea is, that this detached freelist can then be bulk
2992  * transferred to the real freelist(s), but only requiring a single
2993  * synchronization primitive.  Look ahead in the array is limited due
2994  * to performance reasons.
2995  */
2996 static inline
2997 int build_detached_freelist(struct kmem_cache *s, size_t size,
2998 			    void **p, struct detached_freelist *df)
2999 {
3000 	size_t first_skipped_index = 0;
3001 	int lookahead = 3;
3002 	void *object;
3003 	struct page *page;
3004 
3005 	/* Always re-init detached_freelist */
3006 	df->page = NULL;
3007 
3008 	do {
3009 		object = p[--size];
3010 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3011 	} while (!object && size);
3012 
3013 	if (!object)
3014 		return 0;
3015 
3016 	page = virt_to_head_page(object);
3017 	if (!s) {
3018 		/* Handle kalloc'ed objects */
3019 		if (unlikely(!PageSlab(page))) {
3020 			BUG_ON(!PageCompound(page));
3021 			kfree_hook(object);
3022 			__free_pages(page, compound_order(page));
3023 			p[size] = NULL; /* mark object processed */
3024 			return size;
3025 		}
3026 		/* Derive kmem_cache from object */
3027 		df->s = page->slab_cache;
3028 	} else {
3029 		df->s = cache_from_obj(s, object); /* Support for memcg */
3030 	}
3031 
3032 	/* Start new detached freelist */
3033 	df->page = page;
3034 	set_freepointer(df->s, object, NULL);
3035 	df->tail = object;
3036 	df->freelist = object;
3037 	p[size] = NULL; /* mark object processed */
3038 	df->cnt = 1;
3039 
3040 	while (size) {
3041 		object = p[--size];
3042 		if (!object)
3043 			continue; /* Skip processed objects */
3044 
3045 		/* df->page is always set at this point */
3046 		if (df->page == virt_to_head_page(object)) {
3047 			/* Opportunity build freelist */
3048 			set_freepointer(df->s, object, df->freelist);
3049 			df->freelist = object;
3050 			df->cnt++;
3051 			p[size] = NULL; /* mark object processed */
3052 
3053 			continue;
3054 		}
3055 
3056 		/* Limit look ahead search */
3057 		if (!--lookahead)
3058 			break;
3059 
3060 		if (!first_skipped_index)
3061 			first_skipped_index = size + 1;
3062 	}
3063 
3064 	return first_skipped_index;
3065 }
3066 
3067 /* Note that interrupts must be enabled when calling this function. */
3068 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3069 {
3070 	if (WARN_ON(!size))
3071 		return;
3072 
3073 	do {
3074 		struct detached_freelist df;
3075 
3076 		size = build_detached_freelist(s, size, p, &df);
3077 		if (!df.page)
3078 			continue;
3079 
3080 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3081 	} while (likely(size));
3082 }
3083 EXPORT_SYMBOL(kmem_cache_free_bulk);
3084 
3085 /* Note that interrupts must be enabled when calling this function. */
3086 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3087 			  void **p)
3088 {
3089 	struct kmem_cache_cpu *c;
3090 	int i;
3091 
3092 	/* memcg and kmem_cache debug support */
3093 	s = slab_pre_alloc_hook(s, flags);
3094 	if (unlikely(!s))
3095 		return false;
3096 	/*
3097 	 * Drain objects in the per cpu slab, while disabling local
3098 	 * IRQs, which protects against PREEMPT and interrupts
3099 	 * handlers invoking normal fastpath.
3100 	 */
3101 	local_irq_disable();
3102 	c = this_cpu_ptr(s->cpu_slab);
3103 
3104 	for (i = 0; i < size; i++) {
3105 		void *object = c->freelist;
3106 
3107 		if (unlikely(!object)) {
3108 			/*
3109 			 * Invoking slow path likely have side-effect
3110 			 * of re-populating per CPU c->freelist
3111 			 */
3112 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3113 					    _RET_IP_, c);
3114 			if (unlikely(!p[i]))
3115 				goto error;
3116 
3117 			c = this_cpu_ptr(s->cpu_slab);
3118 			continue; /* goto for-loop */
3119 		}
3120 		c->freelist = get_freepointer(s, object);
3121 		p[i] = object;
3122 	}
3123 	c->tid = next_tid(c->tid);
3124 	local_irq_enable();
3125 
3126 	/* Clear memory outside IRQ disabled fastpath loop */
3127 	if (unlikely(flags & __GFP_ZERO)) {
3128 		int j;
3129 
3130 		for (j = 0; j < i; j++)
3131 			memset(p[j], 0, s->object_size);
3132 	}
3133 
3134 	/* memcg and kmem_cache debug support */
3135 	slab_post_alloc_hook(s, flags, size, p);
3136 	return i;
3137 error:
3138 	local_irq_enable();
3139 	slab_post_alloc_hook(s, flags, i, p);
3140 	__kmem_cache_free_bulk(s, i, p);
3141 	return 0;
3142 }
3143 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3144 
3145 
3146 /*
3147  * Object placement in a slab is made very easy because we always start at
3148  * offset 0. If we tune the size of the object to the alignment then we can
3149  * get the required alignment by putting one properly sized object after
3150  * another.
3151  *
3152  * Notice that the allocation order determines the sizes of the per cpu
3153  * caches. Each processor has always one slab available for allocations.
3154  * Increasing the allocation order reduces the number of times that slabs
3155  * must be moved on and off the partial lists and is therefore a factor in
3156  * locking overhead.
3157  */
3158 
3159 /*
3160  * Mininum / Maximum order of slab pages. This influences locking overhead
3161  * and slab fragmentation. A higher order reduces the number of partial slabs
3162  * and increases the number of allocations possible without having to
3163  * take the list_lock.
3164  */
3165 static unsigned int slub_min_order;
3166 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3167 static unsigned int slub_min_objects;
3168 
3169 /*
3170  * Calculate the order of allocation given an slab object size.
3171  *
3172  * The order of allocation has significant impact on performance and other
3173  * system components. Generally order 0 allocations should be preferred since
3174  * order 0 does not cause fragmentation in the page allocator. Larger objects
3175  * be problematic to put into order 0 slabs because there may be too much
3176  * unused space left. We go to a higher order if more than 1/16th of the slab
3177  * would be wasted.
3178  *
3179  * In order to reach satisfactory performance we must ensure that a minimum
3180  * number of objects is in one slab. Otherwise we may generate too much
3181  * activity on the partial lists which requires taking the list_lock. This is
3182  * less a concern for large slabs though which are rarely used.
3183  *
3184  * slub_max_order specifies the order where we begin to stop considering the
3185  * number of objects in a slab as critical. If we reach slub_max_order then
3186  * we try to keep the page order as low as possible. So we accept more waste
3187  * of space in favor of a small page order.
3188  *
3189  * Higher order allocations also allow the placement of more objects in a
3190  * slab and thereby reduce object handling overhead. If the user has
3191  * requested a higher mininum order then we start with that one instead of
3192  * the smallest order which will fit the object.
3193  */
3194 static inline unsigned int slab_order(unsigned int size,
3195 		unsigned int min_objects, unsigned int max_order,
3196 		unsigned int fract_leftover)
3197 {
3198 	unsigned int min_order = slub_min_order;
3199 	unsigned int order;
3200 
3201 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3202 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3203 
3204 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3205 			order <= max_order; order++) {
3206 
3207 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3208 		unsigned int rem;
3209 
3210 		rem = slab_size % size;
3211 
3212 		if (rem <= slab_size / fract_leftover)
3213 			break;
3214 	}
3215 
3216 	return order;
3217 }
3218 
3219 static inline int calculate_order(unsigned int size)
3220 {
3221 	unsigned int order;
3222 	unsigned int min_objects;
3223 	unsigned int max_objects;
3224 
3225 	/*
3226 	 * Attempt to find best configuration for a slab. This
3227 	 * works by first attempting to generate a layout with
3228 	 * the best configuration and backing off gradually.
3229 	 *
3230 	 * First we increase the acceptable waste in a slab. Then
3231 	 * we reduce the minimum objects required in a slab.
3232 	 */
3233 	min_objects = slub_min_objects;
3234 	if (!min_objects)
3235 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3236 	max_objects = order_objects(slub_max_order, size);
3237 	min_objects = min(min_objects, max_objects);
3238 
3239 	while (min_objects > 1) {
3240 		unsigned int fraction;
3241 
3242 		fraction = 16;
3243 		while (fraction >= 4) {
3244 			order = slab_order(size, min_objects,
3245 					slub_max_order, fraction);
3246 			if (order <= slub_max_order)
3247 				return order;
3248 			fraction /= 2;
3249 		}
3250 		min_objects--;
3251 	}
3252 
3253 	/*
3254 	 * We were unable to place multiple objects in a slab. Now
3255 	 * lets see if we can place a single object there.
3256 	 */
3257 	order = slab_order(size, 1, slub_max_order, 1);
3258 	if (order <= slub_max_order)
3259 		return order;
3260 
3261 	/*
3262 	 * Doh this slab cannot be placed using slub_max_order.
3263 	 */
3264 	order = slab_order(size, 1, MAX_ORDER, 1);
3265 	if (order < MAX_ORDER)
3266 		return order;
3267 	return -ENOSYS;
3268 }
3269 
3270 static void
3271 init_kmem_cache_node(struct kmem_cache_node *n)
3272 {
3273 	n->nr_partial = 0;
3274 	spin_lock_init(&n->list_lock);
3275 	INIT_LIST_HEAD(&n->partial);
3276 #ifdef CONFIG_SLUB_DEBUG
3277 	atomic_long_set(&n->nr_slabs, 0);
3278 	atomic_long_set(&n->total_objects, 0);
3279 	INIT_LIST_HEAD(&n->full);
3280 #endif
3281 }
3282 
3283 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3284 {
3285 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3286 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3287 
3288 	/*
3289 	 * Must align to double word boundary for the double cmpxchg
3290 	 * instructions to work; see __pcpu_double_call_return_bool().
3291 	 */
3292 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3293 				     2 * sizeof(void *));
3294 
3295 	if (!s->cpu_slab)
3296 		return 0;
3297 
3298 	init_kmem_cache_cpus(s);
3299 
3300 	return 1;
3301 }
3302 
3303 static struct kmem_cache *kmem_cache_node;
3304 
3305 /*
3306  * No kmalloc_node yet so do it by hand. We know that this is the first
3307  * slab on the node for this slabcache. There are no concurrent accesses
3308  * possible.
3309  *
3310  * Note that this function only works on the kmem_cache_node
3311  * when allocating for the kmem_cache_node. This is used for bootstrapping
3312  * memory on a fresh node that has no slab structures yet.
3313  */
3314 static void early_kmem_cache_node_alloc(int node)
3315 {
3316 	struct page *page;
3317 	struct kmem_cache_node *n;
3318 
3319 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3320 
3321 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3322 
3323 	BUG_ON(!page);
3324 	if (page_to_nid(page) != node) {
3325 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3326 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3327 	}
3328 
3329 	n = page->freelist;
3330 	BUG_ON(!n);
3331 	page->freelist = get_freepointer(kmem_cache_node, n);
3332 	page->inuse = 1;
3333 	page->frozen = 0;
3334 	kmem_cache_node->node[node] = n;
3335 #ifdef CONFIG_SLUB_DEBUG
3336 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3337 	init_tracking(kmem_cache_node, n);
3338 #endif
3339 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3340 		      GFP_KERNEL);
3341 	init_kmem_cache_node(n);
3342 	inc_slabs_node(kmem_cache_node, node, page->objects);
3343 
3344 	/*
3345 	 * No locks need to be taken here as it has just been
3346 	 * initialized and there is no concurrent access.
3347 	 */
3348 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3349 }
3350 
3351 static void free_kmem_cache_nodes(struct kmem_cache *s)
3352 {
3353 	int node;
3354 	struct kmem_cache_node *n;
3355 
3356 	for_each_kmem_cache_node(s, node, n) {
3357 		s->node[node] = NULL;
3358 		kmem_cache_free(kmem_cache_node, n);
3359 	}
3360 }
3361 
3362 void __kmem_cache_release(struct kmem_cache *s)
3363 {
3364 	cache_random_seq_destroy(s);
3365 	free_percpu(s->cpu_slab);
3366 	free_kmem_cache_nodes(s);
3367 }
3368 
3369 static int init_kmem_cache_nodes(struct kmem_cache *s)
3370 {
3371 	int node;
3372 
3373 	for_each_node_state(node, N_NORMAL_MEMORY) {
3374 		struct kmem_cache_node *n;
3375 
3376 		if (slab_state == DOWN) {
3377 			early_kmem_cache_node_alloc(node);
3378 			continue;
3379 		}
3380 		n = kmem_cache_alloc_node(kmem_cache_node,
3381 						GFP_KERNEL, node);
3382 
3383 		if (!n) {
3384 			free_kmem_cache_nodes(s);
3385 			return 0;
3386 		}
3387 
3388 		init_kmem_cache_node(n);
3389 		s->node[node] = n;
3390 	}
3391 	return 1;
3392 }
3393 
3394 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3395 {
3396 	if (min < MIN_PARTIAL)
3397 		min = MIN_PARTIAL;
3398 	else if (min > MAX_PARTIAL)
3399 		min = MAX_PARTIAL;
3400 	s->min_partial = min;
3401 }
3402 
3403 static void set_cpu_partial(struct kmem_cache *s)
3404 {
3405 #ifdef CONFIG_SLUB_CPU_PARTIAL
3406 	/*
3407 	 * cpu_partial determined the maximum number of objects kept in the
3408 	 * per cpu partial lists of a processor.
3409 	 *
3410 	 * Per cpu partial lists mainly contain slabs that just have one
3411 	 * object freed. If they are used for allocation then they can be
3412 	 * filled up again with minimal effort. The slab will never hit the
3413 	 * per node partial lists and therefore no locking will be required.
3414 	 *
3415 	 * This setting also determines
3416 	 *
3417 	 * A) The number of objects from per cpu partial slabs dumped to the
3418 	 *    per node list when we reach the limit.
3419 	 * B) The number of objects in cpu partial slabs to extract from the
3420 	 *    per node list when we run out of per cpu objects. We only fetch
3421 	 *    50% to keep some capacity around for frees.
3422 	 */
3423 	if (!kmem_cache_has_cpu_partial(s))
3424 		s->cpu_partial = 0;
3425 	else if (s->size >= PAGE_SIZE)
3426 		s->cpu_partial = 2;
3427 	else if (s->size >= 1024)
3428 		s->cpu_partial = 6;
3429 	else if (s->size >= 256)
3430 		s->cpu_partial = 13;
3431 	else
3432 		s->cpu_partial = 30;
3433 #endif
3434 }
3435 
3436 /*
3437  * calculate_sizes() determines the order and the distribution of data within
3438  * a slab object.
3439  */
3440 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3441 {
3442 	slab_flags_t flags = s->flags;
3443 	unsigned int size = s->object_size;
3444 	unsigned int order;
3445 
3446 	/*
3447 	 * Round up object size to the next word boundary. We can only
3448 	 * place the free pointer at word boundaries and this determines
3449 	 * the possible location of the free pointer.
3450 	 */
3451 	size = ALIGN(size, sizeof(void *));
3452 
3453 #ifdef CONFIG_SLUB_DEBUG
3454 	/*
3455 	 * Determine if we can poison the object itself. If the user of
3456 	 * the slab may touch the object after free or before allocation
3457 	 * then we should never poison the object itself.
3458 	 */
3459 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3460 			!s->ctor)
3461 		s->flags |= __OBJECT_POISON;
3462 	else
3463 		s->flags &= ~__OBJECT_POISON;
3464 
3465 
3466 	/*
3467 	 * If we are Redzoning then check if there is some space between the
3468 	 * end of the object and the free pointer. If not then add an
3469 	 * additional word to have some bytes to store Redzone information.
3470 	 */
3471 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3472 		size += sizeof(void *);
3473 #endif
3474 
3475 	/*
3476 	 * With that we have determined the number of bytes in actual use
3477 	 * by the object. This is the potential offset to the free pointer.
3478 	 */
3479 	s->inuse = size;
3480 
3481 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3482 		s->ctor)) {
3483 		/*
3484 		 * Relocate free pointer after the object if it is not
3485 		 * permitted to overwrite the first word of the object on
3486 		 * kmem_cache_free.
3487 		 *
3488 		 * This is the case if we do RCU, have a constructor or
3489 		 * destructor or are poisoning the objects.
3490 		 */
3491 		s->offset = size;
3492 		size += sizeof(void *);
3493 	}
3494 
3495 #ifdef CONFIG_SLUB_DEBUG
3496 	if (flags & SLAB_STORE_USER)
3497 		/*
3498 		 * Need to store information about allocs and frees after
3499 		 * the object.
3500 		 */
3501 		size += 2 * sizeof(struct track);
3502 #endif
3503 
3504 	kasan_cache_create(s, &size, &s->flags);
3505 #ifdef CONFIG_SLUB_DEBUG
3506 	if (flags & SLAB_RED_ZONE) {
3507 		/*
3508 		 * Add some empty padding so that we can catch
3509 		 * overwrites from earlier objects rather than let
3510 		 * tracking information or the free pointer be
3511 		 * corrupted if a user writes before the start
3512 		 * of the object.
3513 		 */
3514 		size += sizeof(void *);
3515 
3516 		s->red_left_pad = sizeof(void *);
3517 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3518 		size += s->red_left_pad;
3519 	}
3520 #endif
3521 
3522 	/*
3523 	 * SLUB stores one object immediately after another beginning from
3524 	 * offset 0. In order to align the objects we have to simply size
3525 	 * each object to conform to the alignment.
3526 	 */
3527 	size = ALIGN(size, s->align);
3528 	s->size = size;
3529 	if (forced_order >= 0)
3530 		order = forced_order;
3531 	else
3532 		order = calculate_order(size);
3533 
3534 	if ((int)order < 0)
3535 		return 0;
3536 
3537 	s->allocflags = 0;
3538 	if (order)
3539 		s->allocflags |= __GFP_COMP;
3540 
3541 	if (s->flags & SLAB_CACHE_DMA)
3542 		s->allocflags |= GFP_DMA;
3543 
3544 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3545 		s->allocflags |= __GFP_RECLAIMABLE;
3546 
3547 	/*
3548 	 * Determine the number of objects per slab
3549 	 */
3550 	s->oo = oo_make(order, size);
3551 	s->min = oo_make(get_order(size), size);
3552 	if (oo_objects(s->oo) > oo_objects(s->max))
3553 		s->max = s->oo;
3554 
3555 	return !!oo_objects(s->oo);
3556 }
3557 
3558 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3559 {
3560 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3561 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3562 	s->random = get_random_long();
3563 #endif
3564 
3565 	if (!calculate_sizes(s, -1))
3566 		goto error;
3567 	if (disable_higher_order_debug) {
3568 		/*
3569 		 * Disable debugging flags that store metadata if the min slab
3570 		 * order increased.
3571 		 */
3572 		if (get_order(s->size) > get_order(s->object_size)) {
3573 			s->flags &= ~DEBUG_METADATA_FLAGS;
3574 			s->offset = 0;
3575 			if (!calculate_sizes(s, -1))
3576 				goto error;
3577 		}
3578 	}
3579 
3580 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3581     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3582 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3583 		/* Enable fast mode */
3584 		s->flags |= __CMPXCHG_DOUBLE;
3585 #endif
3586 
3587 	/*
3588 	 * The larger the object size is, the more pages we want on the partial
3589 	 * list to avoid pounding the page allocator excessively.
3590 	 */
3591 	set_min_partial(s, ilog2(s->size) / 2);
3592 
3593 	set_cpu_partial(s);
3594 
3595 #ifdef CONFIG_NUMA
3596 	s->remote_node_defrag_ratio = 1000;
3597 #endif
3598 
3599 	/* Initialize the pre-computed randomized freelist if slab is up */
3600 	if (slab_state >= UP) {
3601 		if (init_cache_random_seq(s))
3602 			goto error;
3603 	}
3604 
3605 	if (!init_kmem_cache_nodes(s))
3606 		goto error;
3607 
3608 	if (alloc_kmem_cache_cpus(s))
3609 		return 0;
3610 
3611 	free_kmem_cache_nodes(s);
3612 error:
3613 	if (flags & SLAB_PANIC)
3614 		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3615 		      s->name, s->size, s->size,
3616 		      oo_order(s->oo), s->offset, (unsigned long)flags);
3617 	return -EINVAL;
3618 }
3619 
3620 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3621 							const char *text)
3622 {
3623 #ifdef CONFIG_SLUB_DEBUG
3624 	void *addr = page_address(page);
3625 	void *p;
3626 	unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects),
3627 				     sizeof(long),
3628 				     GFP_ATOMIC);
3629 	if (!map)
3630 		return;
3631 	slab_err(s, page, text, s->name);
3632 	slab_lock(page);
3633 
3634 	get_map(s, page, map);
3635 	for_each_object(p, s, addr, page->objects) {
3636 
3637 		if (!test_bit(slab_index(p, s, addr), map)) {
3638 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3639 			print_tracking(s, p);
3640 		}
3641 	}
3642 	slab_unlock(page);
3643 	kfree(map);
3644 #endif
3645 }
3646 
3647 /*
3648  * Attempt to free all partial slabs on a node.
3649  * This is called from __kmem_cache_shutdown(). We must take list_lock
3650  * because sysfs file might still access partial list after the shutdowning.
3651  */
3652 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3653 {
3654 	LIST_HEAD(discard);
3655 	struct page *page, *h;
3656 
3657 	BUG_ON(irqs_disabled());
3658 	spin_lock_irq(&n->list_lock);
3659 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3660 		if (!page->inuse) {
3661 			remove_partial(n, page);
3662 			list_add(&page->lru, &discard);
3663 		} else {
3664 			list_slab_objects(s, page,
3665 			"Objects remaining in %s on __kmem_cache_shutdown()");
3666 		}
3667 	}
3668 	spin_unlock_irq(&n->list_lock);
3669 
3670 	list_for_each_entry_safe(page, h, &discard, lru)
3671 		discard_slab(s, page);
3672 }
3673 
3674 bool __kmem_cache_empty(struct kmem_cache *s)
3675 {
3676 	int node;
3677 	struct kmem_cache_node *n;
3678 
3679 	for_each_kmem_cache_node(s, node, n)
3680 		if (n->nr_partial || slabs_node(s, node))
3681 			return false;
3682 	return true;
3683 }
3684 
3685 /*
3686  * Release all resources used by a slab cache.
3687  */
3688 int __kmem_cache_shutdown(struct kmem_cache *s)
3689 {
3690 	int node;
3691 	struct kmem_cache_node *n;
3692 
3693 	flush_all(s);
3694 	/* Attempt to free all objects */
3695 	for_each_kmem_cache_node(s, node, n) {
3696 		free_partial(s, n);
3697 		if (n->nr_partial || slabs_node(s, node))
3698 			return 1;
3699 	}
3700 	sysfs_slab_remove(s);
3701 	return 0;
3702 }
3703 
3704 /********************************************************************
3705  *		Kmalloc subsystem
3706  *******************************************************************/
3707 
3708 static int __init setup_slub_min_order(char *str)
3709 {
3710 	get_option(&str, (int *)&slub_min_order);
3711 
3712 	return 1;
3713 }
3714 
3715 __setup("slub_min_order=", setup_slub_min_order);
3716 
3717 static int __init setup_slub_max_order(char *str)
3718 {
3719 	get_option(&str, (int *)&slub_max_order);
3720 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3721 
3722 	return 1;
3723 }
3724 
3725 __setup("slub_max_order=", setup_slub_max_order);
3726 
3727 static int __init setup_slub_min_objects(char *str)
3728 {
3729 	get_option(&str, (int *)&slub_min_objects);
3730 
3731 	return 1;
3732 }
3733 
3734 __setup("slub_min_objects=", setup_slub_min_objects);
3735 
3736 void *__kmalloc(size_t size, gfp_t flags)
3737 {
3738 	struct kmem_cache *s;
3739 	void *ret;
3740 
3741 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3742 		return kmalloc_large(size, flags);
3743 
3744 	s = kmalloc_slab(size, flags);
3745 
3746 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3747 		return s;
3748 
3749 	ret = slab_alloc(s, flags, _RET_IP_);
3750 
3751 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3752 
3753 	kasan_kmalloc(s, ret, size, flags);
3754 
3755 	return ret;
3756 }
3757 EXPORT_SYMBOL(__kmalloc);
3758 
3759 #ifdef CONFIG_NUMA
3760 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3761 {
3762 	struct page *page;
3763 	void *ptr = NULL;
3764 
3765 	flags |= __GFP_COMP;
3766 	page = alloc_pages_node(node, flags, get_order(size));
3767 	if (page)
3768 		ptr = page_address(page);
3769 
3770 	kmalloc_large_node_hook(ptr, size, flags);
3771 	return ptr;
3772 }
3773 
3774 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3775 {
3776 	struct kmem_cache *s;
3777 	void *ret;
3778 
3779 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3780 		ret = kmalloc_large_node(size, flags, node);
3781 
3782 		trace_kmalloc_node(_RET_IP_, ret,
3783 				   size, PAGE_SIZE << get_order(size),
3784 				   flags, node);
3785 
3786 		return ret;
3787 	}
3788 
3789 	s = kmalloc_slab(size, flags);
3790 
3791 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3792 		return s;
3793 
3794 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3795 
3796 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3797 
3798 	kasan_kmalloc(s, ret, size, flags);
3799 
3800 	return ret;
3801 }
3802 EXPORT_SYMBOL(__kmalloc_node);
3803 #endif
3804 
3805 #ifdef CONFIG_HARDENED_USERCOPY
3806 /*
3807  * Rejects incorrectly sized objects and objects that are to be copied
3808  * to/from userspace but do not fall entirely within the containing slab
3809  * cache's usercopy region.
3810  *
3811  * Returns NULL if check passes, otherwise const char * to name of cache
3812  * to indicate an error.
3813  */
3814 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3815 			 bool to_user)
3816 {
3817 	struct kmem_cache *s;
3818 	unsigned int offset;
3819 	size_t object_size;
3820 
3821 	/* Find object and usable object size. */
3822 	s = page->slab_cache;
3823 
3824 	/* Reject impossible pointers. */
3825 	if (ptr < page_address(page))
3826 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3827 			       to_user, 0, n);
3828 
3829 	/* Find offset within object. */
3830 	offset = (ptr - page_address(page)) % s->size;
3831 
3832 	/* Adjust for redzone and reject if within the redzone. */
3833 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3834 		if (offset < s->red_left_pad)
3835 			usercopy_abort("SLUB object in left red zone",
3836 				       s->name, to_user, offset, n);
3837 		offset -= s->red_left_pad;
3838 	}
3839 
3840 	/* Allow address range falling entirely within usercopy region. */
3841 	if (offset >= s->useroffset &&
3842 	    offset - s->useroffset <= s->usersize &&
3843 	    n <= s->useroffset - offset + s->usersize)
3844 		return;
3845 
3846 	/*
3847 	 * If the copy is still within the allocated object, produce
3848 	 * a warning instead of rejecting the copy. This is intended
3849 	 * to be a temporary method to find any missing usercopy
3850 	 * whitelists.
3851 	 */
3852 	object_size = slab_ksize(s);
3853 	if (usercopy_fallback &&
3854 	    offset <= object_size && n <= object_size - offset) {
3855 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3856 		return;
3857 	}
3858 
3859 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3860 }
3861 #endif /* CONFIG_HARDENED_USERCOPY */
3862 
3863 static size_t __ksize(const void *object)
3864 {
3865 	struct page *page;
3866 
3867 	if (unlikely(object == ZERO_SIZE_PTR))
3868 		return 0;
3869 
3870 	page = virt_to_head_page(object);
3871 
3872 	if (unlikely(!PageSlab(page))) {
3873 		WARN_ON(!PageCompound(page));
3874 		return PAGE_SIZE << compound_order(page);
3875 	}
3876 
3877 	return slab_ksize(page->slab_cache);
3878 }
3879 
3880 size_t ksize(const void *object)
3881 {
3882 	size_t size = __ksize(object);
3883 	/* We assume that ksize callers could use whole allocated area,
3884 	 * so we need to unpoison this area.
3885 	 */
3886 	kasan_unpoison_shadow(object, size);
3887 	return size;
3888 }
3889 EXPORT_SYMBOL(ksize);
3890 
3891 void kfree(const void *x)
3892 {
3893 	struct page *page;
3894 	void *object = (void *)x;
3895 
3896 	trace_kfree(_RET_IP_, x);
3897 
3898 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3899 		return;
3900 
3901 	page = virt_to_head_page(x);
3902 	if (unlikely(!PageSlab(page))) {
3903 		BUG_ON(!PageCompound(page));
3904 		kfree_hook(object);
3905 		__free_pages(page, compound_order(page));
3906 		return;
3907 	}
3908 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3909 }
3910 EXPORT_SYMBOL(kfree);
3911 
3912 #define SHRINK_PROMOTE_MAX 32
3913 
3914 /*
3915  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3916  * up most to the head of the partial lists. New allocations will then
3917  * fill those up and thus they can be removed from the partial lists.
3918  *
3919  * The slabs with the least items are placed last. This results in them
3920  * being allocated from last increasing the chance that the last objects
3921  * are freed in them.
3922  */
3923 int __kmem_cache_shrink(struct kmem_cache *s)
3924 {
3925 	int node;
3926 	int i;
3927 	struct kmem_cache_node *n;
3928 	struct page *page;
3929 	struct page *t;
3930 	struct list_head discard;
3931 	struct list_head promote[SHRINK_PROMOTE_MAX];
3932 	unsigned long flags;
3933 	int ret = 0;
3934 
3935 	flush_all(s);
3936 	for_each_kmem_cache_node(s, node, n) {
3937 		INIT_LIST_HEAD(&discard);
3938 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3939 			INIT_LIST_HEAD(promote + i);
3940 
3941 		spin_lock_irqsave(&n->list_lock, flags);
3942 
3943 		/*
3944 		 * Build lists of slabs to discard or promote.
3945 		 *
3946 		 * Note that concurrent frees may occur while we hold the
3947 		 * list_lock. page->inuse here is the upper limit.
3948 		 */
3949 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3950 			int free = page->objects - page->inuse;
3951 
3952 			/* Do not reread page->inuse */
3953 			barrier();
3954 
3955 			/* We do not keep full slabs on the list */
3956 			BUG_ON(free <= 0);
3957 
3958 			if (free == page->objects) {
3959 				list_move(&page->lru, &discard);
3960 				n->nr_partial--;
3961 			} else if (free <= SHRINK_PROMOTE_MAX)
3962 				list_move(&page->lru, promote + free - 1);
3963 		}
3964 
3965 		/*
3966 		 * Promote the slabs filled up most to the head of the
3967 		 * partial list.
3968 		 */
3969 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3970 			list_splice(promote + i, &n->partial);
3971 
3972 		spin_unlock_irqrestore(&n->list_lock, flags);
3973 
3974 		/* Release empty slabs */
3975 		list_for_each_entry_safe(page, t, &discard, lru)
3976 			discard_slab(s, page);
3977 
3978 		if (slabs_node(s, node))
3979 			ret = 1;
3980 	}
3981 
3982 	return ret;
3983 }
3984 
3985 #ifdef CONFIG_MEMCG
3986 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3987 {
3988 	/*
3989 	 * Called with all the locks held after a sched RCU grace period.
3990 	 * Even if @s becomes empty after shrinking, we can't know that @s
3991 	 * doesn't have allocations already in-flight and thus can't
3992 	 * destroy @s until the associated memcg is released.
3993 	 *
3994 	 * However, let's remove the sysfs files for empty caches here.
3995 	 * Each cache has a lot of interface files which aren't
3996 	 * particularly useful for empty draining caches; otherwise, we can
3997 	 * easily end up with millions of unnecessary sysfs files on
3998 	 * systems which have a lot of memory and transient cgroups.
3999 	 */
4000 	if (!__kmem_cache_shrink(s))
4001 		sysfs_slab_remove(s);
4002 }
4003 
4004 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4005 {
4006 	/*
4007 	 * Disable empty slabs caching. Used to avoid pinning offline
4008 	 * memory cgroups by kmem pages that can be freed.
4009 	 */
4010 	slub_set_cpu_partial(s, 0);
4011 	s->min_partial = 0;
4012 
4013 	/*
4014 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4015 	 * we have to make sure the change is visible before shrinking.
4016 	 */
4017 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4018 }
4019 #endif
4020 
4021 static int slab_mem_going_offline_callback(void *arg)
4022 {
4023 	struct kmem_cache *s;
4024 
4025 	mutex_lock(&slab_mutex);
4026 	list_for_each_entry(s, &slab_caches, list)
4027 		__kmem_cache_shrink(s);
4028 	mutex_unlock(&slab_mutex);
4029 
4030 	return 0;
4031 }
4032 
4033 static void slab_mem_offline_callback(void *arg)
4034 {
4035 	struct kmem_cache_node *n;
4036 	struct kmem_cache *s;
4037 	struct memory_notify *marg = arg;
4038 	int offline_node;
4039 
4040 	offline_node = marg->status_change_nid_normal;
4041 
4042 	/*
4043 	 * If the node still has available memory. we need kmem_cache_node
4044 	 * for it yet.
4045 	 */
4046 	if (offline_node < 0)
4047 		return;
4048 
4049 	mutex_lock(&slab_mutex);
4050 	list_for_each_entry(s, &slab_caches, list) {
4051 		n = get_node(s, offline_node);
4052 		if (n) {
4053 			/*
4054 			 * if n->nr_slabs > 0, slabs still exist on the node
4055 			 * that is going down. We were unable to free them,
4056 			 * and offline_pages() function shouldn't call this
4057 			 * callback. So, we must fail.
4058 			 */
4059 			BUG_ON(slabs_node(s, offline_node));
4060 
4061 			s->node[offline_node] = NULL;
4062 			kmem_cache_free(kmem_cache_node, n);
4063 		}
4064 	}
4065 	mutex_unlock(&slab_mutex);
4066 }
4067 
4068 static int slab_mem_going_online_callback(void *arg)
4069 {
4070 	struct kmem_cache_node *n;
4071 	struct kmem_cache *s;
4072 	struct memory_notify *marg = arg;
4073 	int nid = marg->status_change_nid_normal;
4074 	int ret = 0;
4075 
4076 	/*
4077 	 * If the node's memory is already available, then kmem_cache_node is
4078 	 * already created. Nothing to do.
4079 	 */
4080 	if (nid < 0)
4081 		return 0;
4082 
4083 	/*
4084 	 * We are bringing a node online. No memory is available yet. We must
4085 	 * allocate a kmem_cache_node structure in order to bring the node
4086 	 * online.
4087 	 */
4088 	mutex_lock(&slab_mutex);
4089 	list_for_each_entry(s, &slab_caches, list) {
4090 		/*
4091 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4092 		 *      since memory is not yet available from the node that
4093 		 *      is brought up.
4094 		 */
4095 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4096 		if (!n) {
4097 			ret = -ENOMEM;
4098 			goto out;
4099 		}
4100 		init_kmem_cache_node(n);
4101 		s->node[nid] = n;
4102 	}
4103 out:
4104 	mutex_unlock(&slab_mutex);
4105 	return ret;
4106 }
4107 
4108 static int slab_memory_callback(struct notifier_block *self,
4109 				unsigned long action, void *arg)
4110 {
4111 	int ret = 0;
4112 
4113 	switch (action) {
4114 	case MEM_GOING_ONLINE:
4115 		ret = slab_mem_going_online_callback(arg);
4116 		break;
4117 	case MEM_GOING_OFFLINE:
4118 		ret = slab_mem_going_offline_callback(arg);
4119 		break;
4120 	case MEM_OFFLINE:
4121 	case MEM_CANCEL_ONLINE:
4122 		slab_mem_offline_callback(arg);
4123 		break;
4124 	case MEM_ONLINE:
4125 	case MEM_CANCEL_OFFLINE:
4126 		break;
4127 	}
4128 	if (ret)
4129 		ret = notifier_from_errno(ret);
4130 	else
4131 		ret = NOTIFY_OK;
4132 	return ret;
4133 }
4134 
4135 static struct notifier_block slab_memory_callback_nb = {
4136 	.notifier_call = slab_memory_callback,
4137 	.priority = SLAB_CALLBACK_PRI,
4138 };
4139 
4140 /********************************************************************
4141  *			Basic setup of slabs
4142  *******************************************************************/
4143 
4144 /*
4145  * Used for early kmem_cache structures that were allocated using
4146  * the page allocator. Allocate them properly then fix up the pointers
4147  * that may be pointing to the wrong kmem_cache structure.
4148  */
4149 
4150 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4151 {
4152 	int node;
4153 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4154 	struct kmem_cache_node *n;
4155 
4156 	memcpy(s, static_cache, kmem_cache->object_size);
4157 
4158 	/*
4159 	 * This runs very early, and only the boot processor is supposed to be
4160 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4161 	 * IPIs around.
4162 	 */
4163 	__flush_cpu_slab(s, smp_processor_id());
4164 	for_each_kmem_cache_node(s, node, n) {
4165 		struct page *p;
4166 
4167 		list_for_each_entry(p, &n->partial, lru)
4168 			p->slab_cache = s;
4169 
4170 #ifdef CONFIG_SLUB_DEBUG
4171 		list_for_each_entry(p, &n->full, lru)
4172 			p->slab_cache = s;
4173 #endif
4174 	}
4175 	slab_init_memcg_params(s);
4176 	list_add(&s->list, &slab_caches);
4177 	memcg_link_cache(s);
4178 	return s;
4179 }
4180 
4181 void __init kmem_cache_init(void)
4182 {
4183 	static __initdata struct kmem_cache boot_kmem_cache,
4184 		boot_kmem_cache_node;
4185 
4186 	if (debug_guardpage_minorder())
4187 		slub_max_order = 0;
4188 
4189 	kmem_cache_node = &boot_kmem_cache_node;
4190 	kmem_cache = &boot_kmem_cache;
4191 
4192 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4193 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4194 
4195 	register_hotmemory_notifier(&slab_memory_callback_nb);
4196 
4197 	/* Able to allocate the per node structures */
4198 	slab_state = PARTIAL;
4199 
4200 	create_boot_cache(kmem_cache, "kmem_cache",
4201 			offsetof(struct kmem_cache, node) +
4202 				nr_node_ids * sizeof(struct kmem_cache_node *),
4203 		       SLAB_HWCACHE_ALIGN, 0, 0);
4204 
4205 	kmem_cache = bootstrap(&boot_kmem_cache);
4206 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4207 
4208 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4209 	setup_kmalloc_cache_index_table();
4210 	create_kmalloc_caches(0);
4211 
4212 	/* Setup random freelists for each cache */
4213 	init_freelist_randomization();
4214 
4215 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4216 				  slub_cpu_dead);
4217 
4218 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4219 		cache_line_size(),
4220 		slub_min_order, slub_max_order, slub_min_objects,
4221 		nr_cpu_ids, nr_node_ids);
4222 }
4223 
4224 void __init kmem_cache_init_late(void)
4225 {
4226 }
4227 
4228 struct kmem_cache *
4229 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4230 		   slab_flags_t flags, void (*ctor)(void *))
4231 {
4232 	struct kmem_cache *s, *c;
4233 
4234 	s = find_mergeable(size, align, flags, name, ctor);
4235 	if (s) {
4236 		s->refcount++;
4237 
4238 		/*
4239 		 * Adjust the object sizes so that we clear
4240 		 * the complete object on kzalloc.
4241 		 */
4242 		s->object_size = max(s->object_size, size);
4243 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4244 
4245 		for_each_memcg_cache(c, s) {
4246 			c->object_size = s->object_size;
4247 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4248 		}
4249 
4250 		if (sysfs_slab_alias(s, name)) {
4251 			s->refcount--;
4252 			s = NULL;
4253 		}
4254 	}
4255 
4256 	return s;
4257 }
4258 
4259 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4260 {
4261 	int err;
4262 
4263 	err = kmem_cache_open(s, flags);
4264 	if (err)
4265 		return err;
4266 
4267 	/* Mutex is not taken during early boot */
4268 	if (slab_state <= UP)
4269 		return 0;
4270 
4271 	memcg_propagate_slab_attrs(s);
4272 	err = sysfs_slab_add(s);
4273 	if (err)
4274 		__kmem_cache_release(s);
4275 
4276 	return err;
4277 }
4278 
4279 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4280 {
4281 	struct kmem_cache *s;
4282 	void *ret;
4283 
4284 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4285 		return kmalloc_large(size, gfpflags);
4286 
4287 	s = kmalloc_slab(size, gfpflags);
4288 
4289 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4290 		return s;
4291 
4292 	ret = slab_alloc(s, gfpflags, caller);
4293 
4294 	/* Honor the call site pointer we received. */
4295 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4296 
4297 	return ret;
4298 }
4299 
4300 #ifdef CONFIG_NUMA
4301 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4302 					int node, unsigned long caller)
4303 {
4304 	struct kmem_cache *s;
4305 	void *ret;
4306 
4307 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4308 		ret = kmalloc_large_node(size, gfpflags, node);
4309 
4310 		trace_kmalloc_node(caller, ret,
4311 				   size, PAGE_SIZE << get_order(size),
4312 				   gfpflags, node);
4313 
4314 		return ret;
4315 	}
4316 
4317 	s = kmalloc_slab(size, gfpflags);
4318 
4319 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4320 		return s;
4321 
4322 	ret = slab_alloc_node(s, gfpflags, node, caller);
4323 
4324 	/* Honor the call site pointer we received. */
4325 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4326 
4327 	return ret;
4328 }
4329 #endif
4330 
4331 #ifdef CONFIG_SYSFS
4332 static int count_inuse(struct page *page)
4333 {
4334 	return page->inuse;
4335 }
4336 
4337 static int count_total(struct page *page)
4338 {
4339 	return page->objects;
4340 }
4341 #endif
4342 
4343 #ifdef CONFIG_SLUB_DEBUG
4344 static int validate_slab(struct kmem_cache *s, struct page *page,
4345 						unsigned long *map)
4346 {
4347 	void *p;
4348 	void *addr = page_address(page);
4349 
4350 	if (!check_slab(s, page) ||
4351 			!on_freelist(s, page, NULL))
4352 		return 0;
4353 
4354 	/* Now we know that a valid freelist exists */
4355 	bitmap_zero(map, page->objects);
4356 
4357 	get_map(s, page, map);
4358 	for_each_object(p, s, addr, page->objects) {
4359 		if (test_bit(slab_index(p, s, addr), map))
4360 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4361 				return 0;
4362 	}
4363 
4364 	for_each_object(p, s, addr, page->objects)
4365 		if (!test_bit(slab_index(p, s, addr), map))
4366 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4367 				return 0;
4368 	return 1;
4369 }
4370 
4371 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4372 						unsigned long *map)
4373 {
4374 	slab_lock(page);
4375 	validate_slab(s, page, map);
4376 	slab_unlock(page);
4377 }
4378 
4379 static int validate_slab_node(struct kmem_cache *s,
4380 		struct kmem_cache_node *n, unsigned long *map)
4381 {
4382 	unsigned long count = 0;
4383 	struct page *page;
4384 	unsigned long flags;
4385 
4386 	spin_lock_irqsave(&n->list_lock, flags);
4387 
4388 	list_for_each_entry(page, &n->partial, lru) {
4389 		validate_slab_slab(s, page, map);
4390 		count++;
4391 	}
4392 	if (count != n->nr_partial)
4393 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4394 		       s->name, count, n->nr_partial);
4395 
4396 	if (!(s->flags & SLAB_STORE_USER))
4397 		goto out;
4398 
4399 	list_for_each_entry(page, &n->full, lru) {
4400 		validate_slab_slab(s, page, map);
4401 		count++;
4402 	}
4403 	if (count != atomic_long_read(&n->nr_slabs))
4404 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4405 		       s->name, count, atomic_long_read(&n->nr_slabs));
4406 
4407 out:
4408 	spin_unlock_irqrestore(&n->list_lock, flags);
4409 	return count;
4410 }
4411 
4412 static long validate_slab_cache(struct kmem_cache *s)
4413 {
4414 	int node;
4415 	unsigned long count = 0;
4416 	unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4417 					   sizeof(unsigned long),
4418 					   GFP_KERNEL);
4419 	struct kmem_cache_node *n;
4420 
4421 	if (!map)
4422 		return -ENOMEM;
4423 
4424 	flush_all(s);
4425 	for_each_kmem_cache_node(s, node, n)
4426 		count += validate_slab_node(s, n, map);
4427 	kfree(map);
4428 	return count;
4429 }
4430 /*
4431  * Generate lists of code addresses where slabcache objects are allocated
4432  * and freed.
4433  */
4434 
4435 struct location {
4436 	unsigned long count;
4437 	unsigned long addr;
4438 	long long sum_time;
4439 	long min_time;
4440 	long max_time;
4441 	long min_pid;
4442 	long max_pid;
4443 	DECLARE_BITMAP(cpus, NR_CPUS);
4444 	nodemask_t nodes;
4445 };
4446 
4447 struct loc_track {
4448 	unsigned long max;
4449 	unsigned long count;
4450 	struct location *loc;
4451 };
4452 
4453 static void free_loc_track(struct loc_track *t)
4454 {
4455 	if (t->max)
4456 		free_pages((unsigned long)t->loc,
4457 			get_order(sizeof(struct location) * t->max));
4458 }
4459 
4460 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4461 {
4462 	struct location *l;
4463 	int order;
4464 
4465 	order = get_order(sizeof(struct location) * max);
4466 
4467 	l = (void *)__get_free_pages(flags, order);
4468 	if (!l)
4469 		return 0;
4470 
4471 	if (t->count) {
4472 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4473 		free_loc_track(t);
4474 	}
4475 	t->max = max;
4476 	t->loc = l;
4477 	return 1;
4478 }
4479 
4480 static int add_location(struct loc_track *t, struct kmem_cache *s,
4481 				const struct track *track)
4482 {
4483 	long start, end, pos;
4484 	struct location *l;
4485 	unsigned long caddr;
4486 	unsigned long age = jiffies - track->when;
4487 
4488 	start = -1;
4489 	end = t->count;
4490 
4491 	for ( ; ; ) {
4492 		pos = start + (end - start + 1) / 2;
4493 
4494 		/*
4495 		 * There is nothing at "end". If we end up there
4496 		 * we need to add something to before end.
4497 		 */
4498 		if (pos == end)
4499 			break;
4500 
4501 		caddr = t->loc[pos].addr;
4502 		if (track->addr == caddr) {
4503 
4504 			l = &t->loc[pos];
4505 			l->count++;
4506 			if (track->when) {
4507 				l->sum_time += age;
4508 				if (age < l->min_time)
4509 					l->min_time = age;
4510 				if (age > l->max_time)
4511 					l->max_time = age;
4512 
4513 				if (track->pid < l->min_pid)
4514 					l->min_pid = track->pid;
4515 				if (track->pid > l->max_pid)
4516 					l->max_pid = track->pid;
4517 
4518 				cpumask_set_cpu(track->cpu,
4519 						to_cpumask(l->cpus));
4520 			}
4521 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4522 			return 1;
4523 		}
4524 
4525 		if (track->addr < caddr)
4526 			end = pos;
4527 		else
4528 			start = pos;
4529 	}
4530 
4531 	/*
4532 	 * Not found. Insert new tracking element.
4533 	 */
4534 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4535 		return 0;
4536 
4537 	l = t->loc + pos;
4538 	if (pos < t->count)
4539 		memmove(l + 1, l,
4540 			(t->count - pos) * sizeof(struct location));
4541 	t->count++;
4542 	l->count = 1;
4543 	l->addr = track->addr;
4544 	l->sum_time = age;
4545 	l->min_time = age;
4546 	l->max_time = age;
4547 	l->min_pid = track->pid;
4548 	l->max_pid = track->pid;
4549 	cpumask_clear(to_cpumask(l->cpus));
4550 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4551 	nodes_clear(l->nodes);
4552 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4553 	return 1;
4554 }
4555 
4556 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4557 		struct page *page, enum track_item alloc,
4558 		unsigned long *map)
4559 {
4560 	void *addr = page_address(page);
4561 	void *p;
4562 
4563 	bitmap_zero(map, page->objects);
4564 	get_map(s, page, map);
4565 
4566 	for_each_object(p, s, addr, page->objects)
4567 		if (!test_bit(slab_index(p, s, addr), map))
4568 			add_location(t, s, get_track(s, p, alloc));
4569 }
4570 
4571 static int list_locations(struct kmem_cache *s, char *buf,
4572 					enum track_item alloc)
4573 {
4574 	int len = 0;
4575 	unsigned long i;
4576 	struct loc_track t = { 0, 0, NULL };
4577 	int node;
4578 	unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4579 					   sizeof(unsigned long),
4580 					   GFP_KERNEL);
4581 	struct kmem_cache_node *n;
4582 
4583 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4584 				     GFP_KERNEL)) {
4585 		kfree(map);
4586 		return sprintf(buf, "Out of memory\n");
4587 	}
4588 	/* Push back cpu slabs */
4589 	flush_all(s);
4590 
4591 	for_each_kmem_cache_node(s, node, n) {
4592 		unsigned long flags;
4593 		struct page *page;
4594 
4595 		if (!atomic_long_read(&n->nr_slabs))
4596 			continue;
4597 
4598 		spin_lock_irqsave(&n->list_lock, flags);
4599 		list_for_each_entry(page, &n->partial, lru)
4600 			process_slab(&t, s, page, alloc, map);
4601 		list_for_each_entry(page, &n->full, lru)
4602 			process_slab(&t, s, page, alloc, map);
4603 		spin_unlock_irqrestore(&n->list_lock, flags);
4604 	}
4605 
4606 	for (i = 0; i < t.count; i++) {
4607 		struct location *l = &t.loc[i];
4608 
4609 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4610 			break;
4611 		len += sprintf(buf + len, "%7ld ", l->count);
4612 
4613 		if (l->addr)
4614 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4615 		else
4616 			len += sprintf(buf + len, "<not-available>");
4617 
4618 		if (l->sum_time != l->min_time) {
4619 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4620 				l->min_time,
4621 				(long)div_u64(l->sum_time, l->count),
4622 				l->max_time);
4623 		} else
4624 			len += sprintf(buf + len, " age=%ld",
4625 				l->min_time);
4626 
4627 		if (l->min_pid != l->max_pid)
4628 			len += sprintf(buf + len, " pid=%ld-%ld",
4629 				l->min_pid, l->max_pid);
4630 		else
4631 			len += sprintf(buf + len, " pid=%ld",
4632 				l->min_pid);
4633 
4634 		if (num_online_cpus() > 1 &&
4635 				!cpumask_empty(to_cpumask(l->cpus)) &&
4636 				len < PAGE_SIZE - 60)
4637 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4638 					 " cpus=%*pbl",
4639 					 cpumask_pr_args(to_cpumask(l->cpus)));
4640 
4641 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4642 				len < PAGE_SIZE - 60)
4643 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4644 					 " nodes=%*pbl",
4645 					 nodemask_pr_args(&l->nodes));
4646 
4647 		len += sprintf(buf + len, "\n");
4648 	}
4649 
4650 	free_loc_track(&t);
4651 	kfree(map);
4652 	if (!t.count)
4653 		len += sprintf(buf, "No data\n");
4654 	return len;
4655 }
4656 #endif
4657 
4658 #ifdef SLUB_RESILIENCY_TEST
4659 static void __init resiliency_test(void)
4660 {
4661 	u8 *p;
4662 
4663 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4664 
4665 	pr_err("SLUB resiliency testing\n");
4666 	pr_err("-----------------------\n");
4667 	pr_err("A. Corruption after allocation\n");
4668 
4669 	p = kzalloc(16, GFP_KERNEL);
4670 	p[16] = 0x12;
4671 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4672 	       p + 16);
4673 
4674 	validate_slab_cache(kmalloc_caches[4]);
4675 
4676 	/* Hmmm... The next two are dangerous */
4677 	p = kzalloc(32, GFP_KERNEL);
4678 	p[32 + sizeof(void *)] = 0x34;
4679 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4680 	       p);
4681 	pr_err("If allocated object is overwritten then not detectable\n\n");
4682 
4683 	validate_slab_cache(kmalloc_caches[5]);
4684 	p = kzalloc(64, GFP_KERNEL);
4685 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4686 	*p = 0x56;
4687 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4688 	       p);
4689 	pr_err("If allocated object is overwritten then not detectable\n\n");
4690 	validate_slab_cache(kmalloc_caches[6]);
4691 
4692 	pr_err("\nB. Corruption after free\n");
4693 	p = kzalloc(128, GFP_KERNEL);
4694 	kfree(p);
4695 	*p = 0x78;
4696 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4697 	validate_slab_cache(kmalloc_caches[7]);
4698 
4699 	p = kzalloc(256, GFP_KERNEL);
4700 	kfree(p);
4701 	p[50] = 0x9a;
4702 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4703 	validate_slab_cache(kmalloc_caches[8]);
4704 
4705 	p = kzalloc(512, GFP_KERNEL);
4706 	kfree(p);
4707 	p[512] = 0xab;
4708 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4709 	validate_slab_cache(kmalloc_caches[9]);
4710 }
4711 #else
4712 #ifdef CONFIG_SYSFS
4713 static void resiliency_test(void) {};
4714 #endif
4715 #endif
4716 
4717 #ifdef CONFIG_SYSFS
4718 enum slab_stat_type {
4719 	SL_ALL,			/* All slabs */
4720 	SL_PARTIAL,		/* Only partially allocated slabs */
4721 	SL_CPU,			/* Only slabs used for cpu caches */
4722 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4723 	SL_TOTAL		/* Determine object capacity not slabs */
4724 };
4725 
4726 #define SO_ALL		(1 << SL_ALL)
4727 #define SO_PARTIAL	(1 << SL_PARTIAL)
4728 #define SO_CPU		(1 << SL_CPU)
4729 #define SO_OBJECTS	(1 << SL_OBJECTS)
4730 #define SO_TOTAL	(1 << SL_TOTAL)
4731 
4732 #ifdef CONFIG_MEMCG
4733 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4734 
4735 static int __init setup_slub_memcg_sysfs(char *str)
4736 {
4737 	int v;
4738 
4739 	if (get_option(&str, &v) > 0)
4740 		memcg_sysfs_enabled = v;
4741 
4742 	return 1;
4743 }
4744 
4745 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4746 #endif
4747 
4748 static ssize_t show_slab_objects(struct kmem_cache *s,
4749 			    char *buf, unsigned long flags)
4750 {
4751 	unsigned long total = 0;
4752 	int node;
4753 	int x;
4754 	unsigned long *nodes;
4755 
4756 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4757 	if (!nodes)
4758 		return -ENOMEM;
4759 
4760 	if (flags & SO_CPU) {
4761 		int cpu;
4762 
4763 		for_each_possible_cpu(cpu) {
4764 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4765 							       cpu);
4766 			int node;
4767 			struct page *page;
4768 
4769 			page = READ_ONCE(c->page);
4770 			if (!page)
4771 				continue;
4772 
4773 			node = page_to_nid(page);
4774 			if (flags & SO_TOTAL)
4775 				x = page->objects;
4776 			else if (flags & SO_OBJECTS)
4777 				x = page->inuse;
4778 			else
4779 				x = 1;
4780 
4781 			total += x;
4782 			nodes[node] += x;
4783 
4784 			page = slub_percpu_partial_read_once(c);
4785 			if (page) {
4786 				node = page_to_nid(page);
4787 				if (flags & SO_TOTAL)
4788 					WARN_ON_ONCE(1);
4789 				else if (flags & SO_OBJECTS)
4790 					WARN_ON_ONCE(1);
4791 				else
4792 					x = page->pages;
4793 				total += x;
4794 				nodes[node] += x;
4795 			}
4796 		}
4797 	}
4798 
4799 	get_online_mems();
4800 #ifdef CONFIG_SLUB_DEBUG
4801 	if (flags & SO_ALL) {
4802 		struct kmem_cache_node *n;
4803 
4804 		for_each_kmem_cache_node(s, node, n) {
4805 
4806 			if (flags & SO_TOTAL)
4807 				x = atomic_long_read(&n->total_objects);
4808 			else if (flags & SO_OBJECTS)
4809 				x = atomic_long_read(&n->total_objects) -
4810 					count_partial(n, count_free);
4811 			else
4812 				x = atomic_long_read(&n->nr_slabs);
4813 			total += x;
4814 			nodes[node] += x;
4815 		}
4816 
4817 	} else
4818 #endif
4819 	if (flags & SO_PARTIAL) {
4820 		struct kmem_cache_node *n;
4821 
4822 		for_each_kmem_cache_node(s, node, n) {
4823 			if (flags & SO_TOTAL)
4824 				x = count_partial(n, count_total);
4825 			else if (flags & SO_OBJECTS)
4826 				x = count_partial(n, count_inuse);
4827 			else
4828 				x = n->nr_partial;
4829 			total += x;
4830 			nodes[node] += x;
4831 		}
4832 	}
4833 	x = sprintf(buf, "%lu", total);
4834 #ifdef CONFIG_NUMA
4835 	for (node = 0; node < nr_node_ids; node++)
4836 		if (nodes[node])
4837 			x += sprintf(buf + x, " N%d=%lu",
4838 					node, nodes[node]);
4839 #endif
4840 	put_online_mems();
4841 	kfree(nodes);
4842 	return x + sprintf(buf + x, "\n");
4843 }
4844 
4845 #ifdef CONFIG_SLUB_DEBUG
4846 static int any_slab_objects(struct kmem_cache *s)
4847 {
4848 	int node;
4849 	struct kmem_cache_node *n;
4850 
4851 	for_each_kmem_cache_node(s, node, n)
4852 		if (atomic_long_read(&n->total_objects))
4853 			return 1;
4854 
4855 	return 0;
4856 }
4857 #endif
4858 
4859 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4860 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4861 
4862 struct slab_attribute {
4863 	struct attribute attr;
4864 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4865 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4866 };
4867 
4868 #define SLAB_ATTR_RO(_name) \
4869 	static struct slab_attribute _name##_attr = \
4870 	__ATTR(_name, 0400, _name##_show, NULL)
4871 
4872 #define SLAB_ATTR(_name) \
4873 	static struct slab_attribute _name##_attr =  \
4874 	__ATTR(_name, 0600, _name##_show, _name##_store)
4875 
4876 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4877 {
4878 	return sprintf(buf, "%u\n", s->size);
4879 }
4880 SLAB_ATTR_RO(slab_size);
4881 
4882 static ssize_t align_show(struct kmem_cache *s, char *buf)
4883 {
4884 	return sprintf(buf, "%u\n", s->align);
4885 }
4886 SLAB_ATTR_RO(align);
4887 
4888 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4889 {
4890 	return sprintf(buf, "%u\n", s->object_size);
4891 }
4892 SLAB_ATTR_RO(object_size);
4893 
4894 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4895 {
4896 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4897 }
4898 SLAB_ATTR_RO(objs_per_slab);
4899 
4900 static ssize_t order_store(struct kmem_cache *s,
4901 				const char *buf, size_t length)
4902 {
4903 	unsigned int order;
4904 	int err;
4905 
4906 	err = kstrtouint(buf, 10, &order);
4907 	if (err)
4908 		return err;
4909 
4910 	if (order > slub_max_order || order < slub_min_order)
4911 		return -EINVAL;
4912 
4913 	calculate_sizes(s, order);
4914 	return length;
4915 }
4916 
4917 static ssize_t order_show(struct kmem_cache *s, char *buf)
4918 {
4919 	return sprintf(buf, "%u\n", oo_order(s->oo));
4920 }
4921 SLAB_ATTR(order);
4922 
4923 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4924 {
4925 	return sprintf(buf, "%lu\n", s->min_partial);
4926 }
4927 
4928 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4929 				 size_t length)
4930 {
4931 	unsigned long min;
4932 	int err;
4933 
4934 	err = kstrtoul(buf, 10, &min);
4935 	if (err)
4936 		return err;
4937 
4938 	set_min_partial(s, min);
4939 	return length;
4940 }
4941 SLAB_ATTR(min_partial);
4942 
4943 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4944 {
4945 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4946 }
4947 
4948 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4949 				 size_t length)
4950 {
4951 	unsigned int objects;
4952 	int err;
4953 
4954 	err = kstrtouint(buf, 10, &objects);
4955 	if (err)
4956 		return err;
4957 	if (objects && !kmem_cache_has_cpu_partial(s))
4958 		return -EINVAL;
4959 
4960 	slub_set_cpu_partial(s, objects);
4961 	flush_all(s);
4962 	return length;
4963 }
4964 SLAB_ATTR(cpu_partial);
4965 
4966 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4967 {
4968 	if (!s->ctor)
4969 		return 0;
4970 	return sprintf(buf, "%pS\n", s->ctor);
4971 }
4972 SLAB_ATTR_RO(ctor);
4973 
4974 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4975 {
4976 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4977 }
4978 SLAB_ATTR_RO(aliases);
4979 
4980 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4981 {
4982 	return show_slab_objects(s, buf, SO_PARTIAL);
4983 }
4984 SLAB_ATTR_RO(partial);
4985 
4986 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4987 {
4988 	return show_slab_objects(s, buf, SO_CPU);
4989 }
4990 SLAB_ATTR_RO(cpu_slabs);
4991 
4992 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4993 {
4994 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4995 }
4996 SLAB_ATTR_RO(objects);
4997 
4998 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4999 {
5000 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5001 }
5002 SLAB_ATTR_RO(objects_partial);
5003 
5004 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5005 {
5006 	int objects = 0;
5007 	int pages = 0;
5008 	int cpu;
5009 	int len;
5010 
5011 	for_each_online_cpu(cpu) {
5012 		struct page *page;
5013 
5014 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5015 
5016 		if (page) {
5017 			pages += page->pages;
5018 			objects += page->pobjects;
5019 		}
5020 	}
5021 
5022 	len = sprintf(buf, "%d(%d)", objects, pages);
5023 
5024 #ifdef CONFIG_SMP
5025 	for_each_online_cpu(cpu) {
5026 		struct page *page;
5027 
5028 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5029 
5030 		if (page && len < PAGE_SIZE - 20)
5031 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5032 				page->pobjects, page->pages);
5033 	}
5034 #endif
5035 	return len + sprintf(buf + len, "\n");
5036 }
5037 SLAB_ATTR_RO(slabs_cpu_partial);
5038 
5039 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5040 {
5041 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5042 }
5043 
5044 static ssize_t reclaim_account_store(struct kmem_cache *s,
5045 				const char *buf, size_t length)
5046 {
5047 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5048 	if (buf[0] == '1')
5049 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5050 	return length;
5051 }
5052 SLAB_ATTR(reclaim_account);
5053 
5054 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5055 {
5056 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5057 }
5058 SLAB_ATTR_RO(hwcache_align);
5059 
5060 #ifdef CONFIG_ZONE_DMA
5061 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5062 {
5063 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5064 }
5065 SLAB_ATTR_RO(cache_dma);
5066 #endif
5067 
5068 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5069 {
5070 	return sprintf(buf, "%u\n", s->usersize);
5071 }
5072 SLAB_ATTR_RO(usersize);
5073 
5074 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5075 {
5076 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5077 }
5078 SLAB_ATTR_RO(destroy_by_rcu);
5079 
5080 #ifdef CONFIG_SLUB_DEBUG
5081 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5082 {
5083 	return show_slab_objects(s, buf, SO_ALL);
5084 }
5085 SLAB_ATTR_RO(slabs);
5086 
5087 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5088 {
5089 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5090 }
5091 SLAB_ATTR_RO(total_objects);
5092 
5093 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5094 {
5095 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5096 }
5097 
5098 static ssize_t sanity_checks_store(struct kmem_cache *s,
5099 				const char *buf, size_t length)
5100 {
5101 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5102 	if (buf[0] == '1') {
5103 		s->flags &= ~__CMPXCHG_DOUBLE;
5104 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5105 	}
5106 	return length;
5107 }
5108 SLAB_ATTR(sanity_checks);
5109 
5110 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5111 {
5112 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5113 }
5114 
5115 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5116 							size_t length)
5117 {
5118 	/*
5119 	 * Tracing a merged cache is going to give confusing results
5120 	 * as well as cause other issues like converting a mergeable
5121 	 * cache into an umergeable one.
5122 	 */
5123 	if (s->refcount > 1)
5124 		return -EINVAL;
5125 
5126 	s->flags &= ~SLAB_TRACE;
5127 	if (buf[0] == '1') {
5128 		s->flags &= ~__CMPXCHG_DOUBLE;
5129 		s->flags |= SLAB_TRACE;
5130 	}
5131 	return length;
5132 }
5133 SLAB_ATTR(trace);
5134 
5135 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5136 {
5137 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5138 }
5139 
5140 static ssize_t red_zone_store(struct kmem_cache *s,
5141 				const char *buf, size_t length)
5142 {
5143 	if (any_slab_objects(s))
5144 		return -EBUSY;
5145 
5146 	s->flags &= ~SLAB_RED_ZONE;
5147 	if (buf[0] == '1') {
5148 		s->flags |= SLAB_RED_ZONE;
5149 	}
5150 	calculate_sizes(s, -1);
5151 	return length;
5152 }
5153 SLAB_ATTR(red_zone);
5154 
5155 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5156 {
5157 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5158 }
5159 
5160 static ssize_t poison_store(struct kmem_cache *s,
5161 				const char *buf, size_t length)
5162 {
5163 	if (any_slab_objects(s))
5164 		return -EBUSY;
5165 
5166 	s->flags &= ~SLAB_POISON;
5167 	if (buf[0] == '1') {
5168 		s->flags |= SLAB_POISON;
5169 	}
5170 	calculate_sizes(s, -1);
5171 	return length;
5172 }
5173 SLAB_ATTR(poison);
5174 
5175 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5176 {
5177 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5178 }
5179 
5180 static ssize_t store_user_store(struct kmem_cache *s,
5181 				const char *buf, size_t length)
5182 {
5183 	if (any_slab_objects(s))
5184 		return -EBUSY;
5185 
5186 	s->flags &= ~SLAB_STORE_USER;
5187 	if (buf[0] == '1') {
5188 		s->flags &= ~__CMPXCHG_DOUBLE;
5189 		s->flags |= SLAB_STORE_USER;
5190 	}
5191 	calculate_sizes(s, -1);
5192 	return length;
5193 }
5194 SLAB_ATTR(store_user);
5195 
5196 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5197 {
5198 	return 0;
5199 }
5200 
5201 static ssize_t validate_store(struct kmem_cache *s,
5202 			const char *buf, size_t length)
5203 {
5204 	int ret = -EINVAL;
5205 
5206 	if (buf[0] == '1') {
5207 		ret = validate_slab_cache(s);
5208 		if (ret >= 0)
5209 			ret = length;
5210 	}
5211 	return ret;
5212 }
5213 SLAB_ATTR(validate);
5214 
5215 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5216 {
5217 	if (!(s->flags & SLAB_STORE_USER))
5218 		return -ENOSYS;
5219 	return list_locations(s, buf, TRACK_ALLOC);
5220 }
5221 SLAB_ATTR_RO(alloc_calls);
5222 
5223 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5224 {
5225 	if (!(s->flags & SLAB_STORE_USER))
5226 		return -ENOSYS;
5227 	return list_locations(s, buf, TRACK_FREE);
5228 }
5229 SLAB_ATTR_RO(free_calls);
5230 #endif /* CONFIG_SLUB_DEBUG */
5231 
5232 #ifdef CONFIG_FAILSLAB
5233 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5234 {
5235 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5236 }
5237 
5238 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5239 							size_t length)
5240 {
5241 	if (s->refcount > 1)
5242 		return -EINVAL;
5243 
5244 	s->flags &= ~SLAB_FAILSLAB;
5245 	if (buf[0] == '1')
5246 		s->flags |= SLAB_FAILSLAB;
5247 	return length;
5248 }
5249 SLAB_ATTR(failslab);
5250 #endif
5251 
5252 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5253 {
5254 	return 0;
5255 }
5256 
5257 static ssize_t shrink_store(struct kmem_cache *s,
5258 			const char *buf, size_t length)
5259 {
5260 	if (buf[0] == '1')
5261 		kmem_cache_shrink(s);
5262 	else
5263 		return -EINVAL;
5264 	return length;
5265 }
5266 SLAB_ATTR(shrink);
5267 
5268 #ifdef CONFIG_NUMA
5269 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5270 {
5271 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5272 }
5273 
5274 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5275 				const char *buf, size_t length)
5276 {
5277 	unsigned int ratio;
5278 	int err;
5279 
5280 	err = kstrtouint(buf, 10, &ratio);
5281 	if (err)
5282 		return err;
5283 	if (ratio > 100)
5284 		return -ERANGE;
5285 
5286 	s->remote_node_defrag_ratio = ratio * 10;
5287 
5288 	return length;
5289 }
5290 SLAB_ATTR(remote_node_defrag_ratio);
5291 #endif
5292 
5293 #ifdef CONFIG_SLUB_STATS
5294 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5295 {
5296 	unsigned long sum  = 0;
5297 	int cpu;
5298 	int len;
5299 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5300 
5301 	if (!data)
5302 		return -ENOMEM;
5303 
5304 	for_each_online_cpu(cpu) {
5305 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5306 
5307 		data[cpu] = x;
5308 		sum += x;
5309 	}
5310 
5311 	len = sprintf(buf, "%lu", sum);
5312 
5313 #ifdef CONFIG_SMP
5314 	for_each_online_cpu(cpu) {
5315 		if (data[cpu] && len < PAGE_SIZE - 20)
5316 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5317 	}
5318 #endif
5319 	kfree(data);
5320 	return len + sprintf(buf + len, "\n");
5321 }
5322 
5323 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5324 {
5325 	int cpu;
5326 
5327 	for_each_online_cpu(cpu)
5328 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5329 }
5330 
5331 #define STAT_ATTR(si, text) 					\
5332 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5333 {								\
5334 	return show_stat(s, buf, si);				\
5335 }								\
5336 static ssize_t text##_store(struct kmem_cache *s,		\
5337 				const char *buf, size_t length)	\
5338 {								\
5339 	if (buf[0] != '0')					\
5340 		return -EINVAL;					\
5341 	clear_stat(s, si);					\
5342 	return length;						\
5343 }								\
5344 SLAB_ATTR(text);						\
5345 
5346 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5347 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5348 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5349 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5350 STAT_ATTR(FREE_FROZEN, free_frozen);
5351 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5352 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5353 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5354 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5355 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5356 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5357 STAT_ATTR(FREE_SLAB, free_slab);
5358 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5359 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5360 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5361 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5362 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5363 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5364 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5365 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5366 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5367 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5368 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5369 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5370 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5371 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5372 #endif
5373 
5374 static struct attribute *slab_attrs[] = {
5375 	&slab_size_attr.attr,
5376 	&object_size_attr.attr,
5377 	&objs_per_slab_attr.attr,
5378 	&order_attr.attr,
5379 	&min_partial_attr.attr,
5380 	&cpu_partial_attr.attr,
5381 	&objects_attr.attr,
5382 	&objects_partial_attr.attr,
5383 	&partial_attr.attr,
5384 	&cpu_slabs_attr.attr,
5385 	&ctor_attr.attr,
5386 	&aliases_attr.attr,
5387 	&align_attr.attr,
5388 	&hwcache_align_attr.attr,
5389 	&reclaim_account_attr.attr,
5390 	&destroy_by_rcu_attr.attr,
5391 	&shrink_attr.attr,
5392 	&slabs_cpu_partial_attr.attr,
5393 #ifdef CONFIG_SLUB_DEBUG
5394 	&total_objects_attr.attr,
5395 	&slabs_attr.attr,
5396 	&sanity_checks_attr.attr,
5397 	&trace_attr.attr,
5398 	&red_zone_attr.attr,
5399 	&poison_attr.attr,
5400 	&store_user_attr.attr,
5401 	&validate_attr.attr,
5402 	&alloc_calls_attr.attr,
5403 	&free_calls_attr.attr,
5404 #endif
5405 #ifdef CONFIG_ZONE_DMA
5406 	&cache_dma_attr.attr,
5407 #endif
5408 #ifdef CONFIG_NUMA
5409 	&remote_node_defrag_ratio_attr.attr,
5410 #endif
5411 #ifdef CONFIG_SLUB_STATS
5412 	&alloc_fastpath_attr.attr,
5413 	&alloc_slowpath_attr.attr,
5414 	&free_fastpath_attr.attr,
5415 	&free_slowpath_attr.attr,
5416 	&free_frozen_attr.attr,
5417 	&free_add_partial_attr.attr,
5418 	&free_remove_partial_attr.attr,
5419 	&alloc_from_partial_attr.attr,
5420 	&alloc_slab_attr.attr,
5421 	&alloc_refill_attr.attr,
5422 	&alloc_node_mismatch_attr.attr,
5423 	&free_slab_attr.attr,
5424 	&cpuslab_flush_attr.attr,
5425 	&deactivate_full_attr.attr,
5426 	&deactivate_empty_attr.attr,
5427 	&deactivate_to_head_attr.attr,
5428 	&deactivate_to_tail_attr.attr,
5429 	&deactivate_remote_frees_attr.attr,
5430 	&deactivate_bypass_attr.attr,
5431 	&order_fallback_attr.attr,
5432 	&cmpxchg_double_fail_attr.attr,
5433 	&cmpxchg_double_cpu_fail_attr.attr,
5434 	&cpu_partial_alloc_attr.attr,
5435 	&cpu_partial_free_attr.attr,
5436 	&cpu_partial_node_attr.attr,
5437 	&cpu_partial_drain_attr.attr,
5438 #endif
5439 #ifdef CONFIG_FAILSLAB
5440 	&failslab_attr.attr,
5441 #endif
5442 	&usersize_attr.attr,
5443 
5444 	NULL
5445 };
5446 
5447 static const struct attribute_group slab_attr_group = {
5448 	.attrs = slab_attrs,
5449 };
5450 
5451 static ssize_t slab_attr_show(struct kobject *kobj,
5452 				struct attribute *attr,
5453 				char *buf)
5454 {
5455 	struct slab_attribute *attribute;
5456 	struct kmem_cache *s;
5457 	int err;
5458 
5459 	attribute = to_slab_attr(attr);
5460 	s = to_slab(kobj);
5461 
5462 	if (!attribute->show)
5463 		return -EIO;
5464 
5465 	err = attribute->show(s, buf);
5466 
5467 	return err;
5468 }
5469 
5470 static ssize_t slab_attr_store(struct kobject *kobj,
5471 				struct attribute *attr,
5472 				const char *buf, size_t len)
5473 {
5474 	struct slab_attribute *attribute;
5475 	struct kmem_cache *s;
5476 	int err;
5477 
5478 	attribute = to_slab_attr(attr);
5479 	s = to_slab(kobj);
5480 
5481 	if (!attribute->store)
5482 		return -EIO;
5483 
5484 	err = attribute->store(s, buf, len);
5485 #ifdef CONFIG_MEMCG
5486 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5487 		struct kmem_cache *c;
5488 
5489 		mutex_lock(&slab_mutex);
5490 		if (s->max_attr_size < len)
5491 			s->max_attr_size = len;
5492 
5493 		/*
5494 		 * This is a best effort propagation, so this function's return
5495 		 * value will be determined by the parent cache only. This is
5496 		 * basically because not all attributes will have a well
5497 		 * defined semantics for rollbacks - most of the actions will
5498 		 * have permanent effects.
5499 		 *
5500 		 * Returning the error value of any of the children that fail
5501 		 * is not 100 % defined, in the sense that users seeing the
5502 		 * error code won't be able to know anything about the state of
5503 		 * the cache.
5504 		 *
5505 		 * Only returning the error code for the parent cache at least
5506 		 * has well defined semantics. The cache being written to
5507 		 * directly either failed or succeeded, in which case we loop
5508 		 * through the descendants with best-effort propagation.
5509 		 */
5510 		for_each_memcg_cache(c, s)
5511 			attribute->store(c, buf, len);
5512 		mutex_unlock(&slab_mutex);
5513 	}
5514 #endif
5515 	return err;
5516 }
5517 
5518 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5519 {
5520 #ifdef CONFIG_MEMCG
5521 	int i;
5522 	char *buffer = NULL;
5523 	struct kmem_cache *root_cache;
5524 
5525 	if (is_root_cache(s))
5526 		return;
5527 
5528 	root_cache = s->memcg_params.root_cache;
5529 
5530 	/*
5531 	 * This mean this cache had no attribute written. Therefore, no point
5532 	 * in copying default values around
5533 	 */
5534 	if (!root_cache->max_attr_size)
5535 		return;
5536 
5537 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5538 		char mbuf[64];
5539 		char *buf;
5540 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5541 		ssize_t len;
5542 
5543 		if (!attr || !attr->store || !attr->show)
5544 			continue;
5545 
5546 		/*
5547 		 * It is really bad that we have to allocate here, so we will
5548 		 * do it only as a fallback. If we actually allocate, though,
5549 		 * we can just use the allocated buffer until the end.
5550 		 *
5551 		 * Most of the slub attributes will tend to be very small in
5552 		 * size, but sysfs allows buffers up to a page, so they can
5553 		 * theoretically happen.
5554 		 */
5555 		if (buffer)
5556 			buf = buffer;
5557 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5558 			buf = mbuf;
5559 		else {
5560 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5561 			if (WARN_ON(!buffer))
5562 				continue;
5563 			buf = buffer;
5564 		}
5565 
5566 		len = attr->show(root_cache, buf);
5567 		if (len > 0)
5568 			attr->store(s, buf, len);
5569 	}
5570 
5571 	if (buffer)
5572 		free_page((unsigned long)buffer);
5573 #endif
5574 }
5575 
5576 static void kmem_cache_release(struct kobject *k)
5577 {
5578 	slab_kmem_cache_release(to_slab(k));
5579 }
5580 
5581 static const struct sysfs_ops slab_sysfs_ops = {
5582 	.show = slab_attr_show,
5583 	.store = slab_attr_store,
5584 };
5585 
5586 static struct kobj_type slab_ktype = {
5587 	.sysfs_ops = &slab_sysfs_ops,
5588 	.release = kmem_cache_release,
5589 };
5590 
5591 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5592 {
5593 	struct kobj_type *ktype = get_ktype(kobj);
5594 
5595 	if (ktype == &slab_ktype)
5596 		return 1;
5597 	return 0;
5598 }
5599 
5600 static const struct kset_uevent_ops slab_uevent_ops = {
5601 	.filter = uevent_filter,
5602 };
5603 
5604 static struct kset *slab_kset;
5605 
5606 static inline struct kset *cache_kset(struct kmem_cache *s)
5607 {
5608 #ifdef CONFIG_MEMCG
5609 	if (!is_root_cache(s))
5610 		return s->memcg_params.root_cache->memcg_kset;
5611 #endif
5612 	return slab_kset;
5613 }
5614 
5615 #define ID_STR_LENGTH 64
5616 
5617 /* Create a unique string id for a slab cache:
5618  *
5619  * Format	:[flags-]size
5620  */
5621 static char *create_unique_id(struct kmem_cache *s)
5622 {
5623 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5624 	char *p = name;
5625 
5626 	BUG_ON(!name);
5627 
5628 	*p++ = ':';
5629 	/*
5630 	 * First flags affecting slabcache operations. We will only
5631 	 * get here for aliasable slabs so we do not need to support
5632 	 * too many flags. The flags here must cover all flags that
5633 	 * are matched during merging to guarantee that the id is
5634 	 * unique.
5635 	 */
5636 	if (s->flags & SLAB_CACHE_DMA)
5637 		*p++ = 'd';
5638 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5639 		*p++ = 'a';
5640 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5641 		*p++ = 'F';
5642 	if (s->flags & SLAB_ACCOUNT)
5643 		*p++ = 'A';
5644 	if (p != name + 1)
5645 		*p++ = '-';
5646 	p += sprintf(p, "%07u", s->size);
5647 
5648 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5649 	return name;
5650 }
5651 
5652 static void sysfs_slab_remove_workfn(struct work_struct *work)
5653 {
5654 	struct kmem_cache *s =
5655 		container_of(work, struct kmem_cache, kobj_remove_work);
5656 
5657 	if (!s->kobj.state_in_sysfs)
5658 		/*
5659 		 * For a memcg cache, this may be called during
5660 		 * deactivation and again on shutdown.  Remove only once.
5661 		 * A cache is never shut down before deactivation is
5662 		 * complete, so no need to worry about synchronization.
5663 		 */
5664 		goto out;
5665 
5666 #ifdef CONFIG_MEMCG
5667 	kset_unregister(s->memcg_kset);
5668 #endif
5669 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5670 out:
5671 	kobject_put(&s->kobj);
5672 }
5673 
5674 static int sysfs_slab_add(struct kmem_cache *s)
5675 {
5676 	int err;
5677 	const char *name;
5678 	struct kset *kset = cache_kset(s);
5679 	int unmergeable = slab_unmergeable(s);
5680 
5681 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5682 
5683 	if (!kset) {
5684 		kobject_init(&s->kobj, &slab_ktype);
5685 		return 0;
5686 	}
5687 
5688 	if (!unmergeable && disable_higher_order_debug &&
5689 			(slub_debug & DEBUG_METADATA_FLAGS))
5690 		unmergeable = 1;
5691 
5692 	if (unmergeable) {
5693 		/*
5694 		 * Slabcache can never be merged so we can use the name proper.
5695 		 * This is typically the case for debug situations. In that
5696 		 * case we can catch duplicate names easily.
5697 		 */
5698 		sysfs_remove_link(&slab_kset->kobj, s->name);
5699 		name = s->name;
5700 	} else {
5701 		/*
5702 		 * Create a unique name for the slab as a target
5703 		 * for the symlinks.
5704 		 */
5705 		name = create_unique_id(s);
5706 	}
5707 
5708 	s->kobj.kset = kset;
5709 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5710 	if (err)
5711 		goto out;
5712 
5713 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5714 	if (err)
5715 		goto out_del_kobj;
5716 
5717 #ifdef CONFIG_MEMCG
5718 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5719 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5720 		if (!s->memcg_kset) {
5721 			err = -ENOMEM;
5722 			goto out_del_kobj;
5723 		}
5724 	}
5725 #endif
5726 
5727 	kobject_uevent(&s->kobj, KOBJ_ADD);
5728 	if (!unmergeable) {
5729 		/* Setup first alias */
5730 		sysfs_slab_alias(s, s->name);
5731 	}
5732 out:
5733 	if (!unmergeable)
5734 		kfree(name);
5735 	return err;
5736 out_del_kobj:
5737 	kobject_del(&s->kobj);
5738 	goto out;
5739 }
5740 
5741 static void sysfs_slab_remove(struct kmem_cache *s)
5742 {
5743 	if (slab_state < FULL)
5744 		/*
5745 		 * Sysfs has not been setup yet so no need to remove the
5746 		 * cache from sysfs.
5747 		 */
5748 		return;
5749 
5750 	kobject_get(&s->kobj);
5751 	schedule_work(&s->kobj_remove_work);
5752 }
5753 
5754 void sysfs_slab_unlink(struct kmem_cache *s)
5755 {
5756 	if (slab_state >= FULL)
5757 		kobject_del(&s->kobj);
5758 }
5759 
5760 void sysfs_slab_release(struct kmem_cache *s)
5761 {
5762 	if (slab_state >= FULL)
5763 		kobject_put(&s->kobj);
5764 }
5765 
5766 /*
5767  * Need to buffer aliases during bootup until sysfs becomes
5768  * available lest we lose that information.
5769  */
5770 struct saved_alias {
5771 	struct kmem_cache *s;
5772 	const char *name;
5773 	struct saved_alias *next;
5774 };
5775 
5776 static struct saved_alias *alias_list;
5777 
5778 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5779 {
5780 	struct saved_alias *al;
5781 
5782 	if (slab_state == FULL) {
5783 		/*
5784 		 * If we have a leftover link then remove it.
5785 		 */
5786 		sysfs_remove_link(&slab_kset->kobj, name);
5787 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5788 	}
5789 
5790 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5791 	if (!al)
5792 		return -ENOMEM;
5793 
5794 	al->s = s;
5795 	al->name = name;
5796 	al->next = alias_list;
5797 	alias_list = al;
5798 	return 0;
5799 }
5800 
5801 static int __init slab_sysfs_init(void)
5802 {
5803 	struct kmem_cache *s;
5804 	int err;
5805 
5806 	mutex_lock(&slab_mutex);
5807 
5808 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5809 	if (!slab_kset) {
5810 		mutex_unlock(&slab_mutex);
5811 		pr_err("Cannot register slab subsystem.\n");
5812 		return -ENOSYS;
5813 	}
5814 
5815 	slab_state = FULL;
5816 
5817 	list_for_each_entry(s, &slab_caches, list) {
5818 		err = sysfs_slab_add(s);
5819 		if (err)
5820 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5821 			       s->name);
5822 	}
5823 
5824 	while (alias_list) {
5825 		struct saved_alias *al = alias_list;
5826 
5827 		alias_list = alias_list->next;
5828 		err = sysfs_slab_alias(al->s, al->name);
5829 		if (err)
5830 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5831 			       al->name);
5832 		kfree(al);
5833 	}
5834 
5835 	mutex_unlock(&slab_mutex);
5836 	resiliency_test();
5837 	return 0;
5838 }
5839 
5840 __initcall(slab_sysfs_init);
5841 #endif /* CONFIG_SYSFS */
5842 
5843 /*
5844  * The /proc/slabinfo ABI
5845  */
5846 #ifdef CONFIG_SLUB_DEBUG
5847 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5848 {
5849 	unsigned long nr_slabs = 0;
5850 	unsigned long nr_objs = 0;
5851 	unsigned long nr_free = 0;
5852 	int node;
5853 	struct kmem_cache_node *n;
5854 
5855 	for_each_kmem_cache_node(s, node, n) {
5856 		nr_slabs += node_nr_slabs(n);
5857 		nr_objs += node_nr_objs(n);
5858 		nr_free += count_partial(n, count_free);
5859 	}
5860 
5861 	sinfo->active_objs = nr_objs - nr_free;
5862 	sinfo->num_objs = nr_objs;
5863 	sinfo->active_slabs = nr_slabs;
5864 	sinfo->num_slabs = nr_slabs;
5865 	sinfo->objects_per_slab = oo_objects(s->oo);
5866 	sinfo->cache_order = oo_order(s->oo);
5867 }
5868 
5869 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5870 {
5871 }
5872 
5873 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5874 		       size_t count, loff_t *ppos)
5875 {
5876 	return -EIO;
5877 }
5878 #endif /* CONFIG_SLUB_DEBUG */
5879