xref: /openbmc/linux/mm/slub.c (revision dbf4d133)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * page->frozen		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 void *fixup_red_left(struct kmem_cache *s, void *p)
127 {
128 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 		p += s->red_left_pad;
130 
131 	return p;
132 }
133 
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135 {
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 	return !kmem_cache_debug(s);
138 #else
139 	return false;
140 #endif
141 }
142 
143 /*
144  * Issues still to be resolved:
145  *
146  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147  *
148  * - Variable sizing of the per node arrays
149  */
150 
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153 
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
156 
157 /*
158  * Mininum number of partial slabs. These will be left on the partial
159  * lists even if they are empty. kmem_cache_shrink may reclaim them.
160  */
161 #define MIN_PARTIAL 5
162 
163 /*
164  * Maximum number of desirable partial slabs.
165  * The existence of more partial slabs makes kmem_cache_shrink
166  * sort the partial list by the number of objects in use.
167  */
168 #define MAX_PARTIAL 10
169 
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 				SLAB_POISON | SLAB_STORE_USER)
172 
173 /*
174  * These debug flags cannot use CMPXCHG because there might be consistency
175  * issues when checking or reading debug information
176  */
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 				SLAB_TRACE)
179 
180 
181 /*
182  * Debugging flags that require metadata to be stored in the slab.  These get
183  * disabled when slub_debug=O is used and a cache's min order increases with
184  * metadata.
185  */
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
187 
188 #define OO_SHIFT	16
189 #define OO_MASK		((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
191 
192 /* Internal SLUB flags */
193 /* Poison object */
194 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
197 
198 /*
199  * Tracking user of a slab.
200  */
201 #define TRACK_ADDRS_COUNT 16
202 struct track {
203 	unsigned long addr;	/* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
206 #endif
207 	int cpu;		/* Was running on cpu */
208 	int pid;		/* Pid context */
209 	unsigned long when;	/* When did the operation occur */
210 };
211 
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
213 
214 #ifdef CONFIG_SYSFS
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
219 #else
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 							{ return 0; }
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225 #endif
226 
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 	/*
231 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 	 * avoid this_cpu_add()'s irq-disable overhead.
233 	 */
234 	raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237 
238 /********************************************************************
239  * 			Core slab cache functions
240  *******************************************************************/
241 
242 /*
243  * Returns freelist pointer (ptr). With hardening, this is obfuscated
244  * with an XOR of the address where the pointer is held and a per-cache
245  * random number.
246  */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 				 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 	/*
252 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 	 * Normally, this doesn't cause any issues, as both set_freepointer()
254 	 * and get_freepointer() are called with a pointer with the same tag.
255 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 	 * example, when __free_slub() iterates over objects in a cache, it
257 	 * passes untagged pointers to check_object(). check_object() in turns
258 	 * calls get_freepointer() with an untagged pointer, which causes the
259 	 * freepointer to be restored incorrectly.
260 	 */
261 	return (void *)((unsigned long)ptr ^ s->random ^
262 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 #else
264 	return ptr;
265 #endif
266 }
267 
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 					 void *ptr_addr)
271 {
272 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 			    (unsigned long)ptr_addr);
274 }
275 
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 	return freelist_dereference(s, object + s->offset);
279 }
280 
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 	prefetch(object + s->offset);
284 }
285 
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 	unsigned long freepointer_addr;
289 	void *p;
290 
291 	if (!debug_pagealloc_enabled_static())
292 		return get_freepointer(s, object);
293 
294 	freepointer_addr = (unsigned long)object + s->offset;
295 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 	return freelist_ptr(s, p, freepointer_addr);
297 }
298 
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
302 
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 	BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306 
307 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309 
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 	for (__p = fixup_red_left(__s, __addr); \
313 		__p < (__addr) + (__objects) * (__s)->size; \
314 		__p += (__s)->size)
315 
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
318 {
319 	return (kasan_reset_tag(p) - addr) / s->size;
320 }
321 
322 static inline unsigned int order_objects(unsigned int order, unsigned int size)
323 {
324 	return ((unsigned int)PAGE_SIZE << order) / size;
325 }
326 
327 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328 		unsigned int size)
329 {
330 	struct kmem_cache_order_objects x = {
331 		(order << OO_SHIFT) + order_objects(order, size)
332 	};
333 
334 	return x;
335 }
336 
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
338 {
339 	return x.x >> OO_SHIFT;
340 }
341 
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
343 {
344 	return x.x & OO_MASK;
345 }
346 
347 /*
348  * Per slab locking using the pagelock
349  */
350 static __always_inline void slab_lock(struct page *page)
351 {
352 	VM_BUG_ON_PAGE(PageTail(page), page);
353 	bit_spin_lock(PG_locked, &page->flags);
354 }
355 
356 static __always_inline void slab_unlock(struct page *page)
357 {
358 	VM_BUG_ON_PAGE(PageTail(page), page);
359 	__bit_spin_unlock(PG_locked, &page->flags);
360 }
361 
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 		void *freelist_old, unsigned long counters_old,
365 		void *freelist_new, unsigned long counters_new,
366 		const char *n)
367 {
368 	VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 	if (s->flags & __CMPXCHG_DOUBLE) {
372 		if (cmpxchg_double(&page->freelist, &page->counters,
373 				   freelist_old, counters_old,
374 				   freelist_new, counters_new))
375 			return true;
376 	} else
377 #endif
378 	{
379 		slab_lock(page);
380 		if (page->freelist == freelist_old &&
381 					page->counters == counters_old) {
382 			page->freelist = freelist_new;
383 			page->counters = counters_new;
384 			slab_unlock(page);
385 			return true;
386 		}
387 		slab_unlock(page);
388 	}
389 
390 	cpu_relax();
391 	stat(s, CMPXCHG_DOUBLE_FAIL);
392 
393 #ifdef SLUB_DEBUG_CMPXCHG
394 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
395 #endif
396 
397 	return false;
398 }
399 
400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 		void *freelist_old, unsigned long counters_old,
402 		void *freelist_new, unsigned long counters_new,
403 		const char *n)
404 {
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 	if (s->flags & __CMPXCHG_DOUBLE) {
408 		if (cmpxchg_double(&page->freelist, &page->counters,
409 				   freelist_old, counters_old,
410 				   freelist_new, counters_new))
411 			return true;
412 	} else
413 #endif
414 	{
415 		unsigned long flags;
416 
417 		local_irq_save(flags);
418 		slab_lock(page);
419 		if (page->freelist == freelist_old &&
420 					page->counters == counters_old) {
421 			page->freelist = freelist_new;
422 			page->counters = counters_new;
423 			slab_unlock(page);
424 			local_irq_restore(flags);
425 			return true;
426 		}
427 		slab_unlock(page);
428 		local_irq_restore(flags);
429 	}
430 
431 	cpu_relax();
432 	stat(s, CMPXCHG_DOUBLE_FAIL);
433 
434 #ifdef SLUB_DEBUG_CMPXCHG
435 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
436 #endif
437 
438 	return false;
439 }
440 
441 #ifdef CONFIG_SLUB_DEBUG
442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443 static DEFINE_SPINLOCK(object_map_lock);
444 
445 /*
446  * Determine a map of object in use on a page.
447  *
448  * Node listlock must be held to guarantee that the page does
449  * not vanish from under us.
450  */
451 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
452 	__acquires(&object_map_lock)
453 {
454 	void *p;
455 	void *addr = page_address(page);
456 
457 	VM_BUG_ON(!irqs_disabled());
458 
459 	spin_lock(&object_map_lock);
460 
461 	bitmap_zero(object_map, page->objects);
462 
463 	for (p = page->freelist; p; p = get_freepointer(s, p))
464 		set_bit(slab_index(p, s, addr), object_map);
465 
466 	return object_map;
467 }
468 
469 static void put_map(unsigned long *map) __releases(&object_map_lock)
470 {
471 	VM_BUG_ON(map != object_map);
472 	lockdep_assert_held(&object_map_lock);
473 
474 	spin_unlock(&object_map_lock);
475 }
476 
477 static inline unsigned int size_from_object(struct kmem_cache *s)
478 {
479 	if (s->flags & SLAB_RED_ZONE)
480 		return s->size - s->red_left_pad;
481 
482 	return s->size;
483 }
484 
485 static inline void *restore_red_left(struct kmem_cache *s, void *p)
486 {
487 	if (s->flags & SLAB_RED_ZONE)
488 		p -= s->red_left_pad;
489 
490 	return p;
491 }
492 
493 /*
494  * Debug settings:
495  */
496 #if defined(CONFIG_SLUB_DEBUG_ON)
497 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
498 #else
499 static slab_flags_t slub_debug;
500 #endif
501 
502 static char *slub_debug_slabs;
503 static int disable_higher_order_debug;
504 
505 /*
506  * slub is about to manipulate internal object metadata.  This memory lies
507  * outside the range of the allocated object, so accessing it would normally
508  * be reported by kasan as a bounds error.  metadata_access_enable() is used
509  * to tell kasan that these accesses are OK.
510  */
511 static inline void metadata_access_enable(void)
512 {
513 	kasan_disable_current();
514 }
515 
516 static inline void metadata_access_disable(void)
517 {
518 	kasan_enable_current();
519 }
520 
521 /*
522  * Object debugging
523  */
524 
525 /* Verify that a pointer has an address that is valid within a slab page */
526 static inline int check_valid_pointer(struct kmem_cache *s,
527 				struct page *page, void *object)
528 {
529 	void *base;
530 
531 	if (!object)
532 		return 1;
533 
534 	base = page_address(page);
535 	object = kasan_reset_tag(object);
536 	object = restore_red_left(s, object);
537 	if (object < base || object >= base + page->objects * s->size ||
538 		(object - base) % s->size) {
539 		return 0;
540 	}
541 
542 	return 1;
543 }
544 
545 static void print_section(char *level, char *text, u8 *addr,
546 			  unsigned int length)
547 {
548 	metadata_access_enable();
549 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
550 			length, 1);
551 	metadata_access_disable();
552 }
553 
554 /*
555  * See comment in calculate_sizes().
556  */
557 static inline bool freeptr_outside_object(struct kmem_cache *s)
558 {
559 	return s->offset >= s->inuse;
560 }
561 
562 /*
563  * Return offset of the end of info block which is inuse + free pointer if
564  * not overlapping with object.
565  */
566 static inline unsigned int get_info_end(struct kmem_cache *s)
567 {
568 	if (freeptr_outside_object(s))
569 		return s->inuse + sizeof(void *);
570 	else
571 		return s->inuse;
572 }
573 
574 static struct track *get_track(struct kmem_cache *s, void *object,
575 	enum track_item alloc)
576 {
577 	struct track *p;
578 
579 	p = object + get_info_end(s);
580 
581 	return p + alloc;
582 }
583 
584 static void set_track(struct kmem_cache *s, void *object,
585 			enum track_item alloc, unsigned long addr)
586 {
587 	struct track *p = get_track(s, object, alloc);
588 
589 	if (addr) {
590 #ifdef CONFIG_STACKTRACE
591 		unsigned int nr_entries;
592 
593 		metadata_access_enable();
594 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
595 		metadata_access_disable();
596 
597 		if (nr_entries < TRACK_ADDRS_COUNT)
598 			p->addrs[nr_entries] = 0;
599 #endif
600 		p->addr = addr;
601 		p->cpu = smp_processor_id();
602 		p->pid = current->pid;
603 		p->when = jiffies;
604 	} else {
605 		memset(p, 0, sizeof(struct track));
606 	}
607 }
608 
609 static void init_tracking(struct kmem_cache *s, void *object)
610 {
611 	if (!(s->flags & SLAB_STORE_USER))
612 		return;
613 
614 	set_track(s, object, TRACK_FREE, 0UL);
615 	set_track(s, object, TRACK_ALLOC, 0UL);
616 }
617 
618 static void print_track(const char *s, struct track *t, unsigned long pr_time)
619 {
620 	if (!t->addr)
621 		return;
622 
623 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
624 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
625 #ifdef CONFIG_STACKTRACE
626 	{
627 		int i;
628 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
629 			if (t->addrs[i])
630 				pr_err("\t%pS\n", (void *)t->addrs[i]);
631 			else
632 				break;
633 	}
634 #endif
635 }
636 
637 static void print_tracking(struct kmem_cache *s, void *object)
638 {
639 	unsigned long pr_time = jiffies;
640 	if (!(s->flags & SLAB_STORE_USER))
641 		return;
642 
643 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
644 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
645 }
646 
647 static void print_page_info(struct page *page)
648 {
649 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
650 	       page, page->objects, page->inuse, page->freelist, page->flags);
651 
652 }
653 
654 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
655 {
656 	struct va_format vaf;
657 	va_list args;
658 
659 	va_start(args, fmt);
660 	vaf.fmt = fmt;
661 	vaf.va = &args;
662 	pr_err("=============================================================================\n");
663 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
664 	pr_err("-----------------------------------------------------------------------------\n\n");
665 
666 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
667 	va_end(args);
668 }
669 
670 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
671 {
672 	struct va_format vaf;
673 	va_list args;
674 
675 	va_start(args, fmt);
676 	vaf.fmt = fmt;
677 	vaf.va = &args;
678 	pr_err("FIX %s: %pV\n", s->name, &vaf);
679 	va_end(args);
680 }
681 
682 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
683 {
684 	unsigned int off;	/* Offset of last byte */
685 	u8 *addr = page_address(page);
686 
687 	print_tracking(s, p);
688 
689 	print_page_info(page);
690 
691 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
692 	       p, p - addr, get_freepointer(s, p));
693 
694 	if (s->flags & SLAB_RED_ZONE)
695 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
696 			      s->red_left_pad);
697 	else if (p > addr + 16)
698 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
699 
700 	print_section(KERN_ERR, "Object ", p,
701 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
702 	if (s->flags & SLAB_RED_ZONE)
703 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
704 			s->inuse - s->object_size);
705 
706 	off = get_info_end(s);
707 
708 	if (s->flags & SLAB_STORE_USER)
709 		off += 2 * sizeof(struct track);
710 
711 	off += kasan_metadata_size(s);
712 
713 	if (off != size_from_object(s))
714 		/* Beginning of the filler is the free pointer */
715 		print_section(KERN_ERR, "Padding ", p + off,
716 			      size_from_object(s) - off);
717 
718 	dump_stack();
719 }
720 
721 void object_err(struct kmem_cache *s, struct page *page,
722 			u8 *object, char *reason)
723 {
724 	slab_bug(s, "%s", reason);
725 	print_trailer(s, page, object);
726 }
727 
728 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
729 			const char *fmt, ...)
730 {
731 	va_list args;
732 	char buf[100];
733 
734 	va_start(args, fmt);
735 	vsnprintf(buf, sizeof(buf), fmt, args);
736 	va_end(args);
737 	slab_bug(s, "%s", buf);
738 	print_page_info(page);
739 	dump_stack();
740 }
741 
742 static void init_object(struct kmem_cache *s, void *object, u8 val)
743 {
744 	u8 *p = object;
745 
746 	if (s->flags & SLAB_RED_ZONE)
747 		memset(p - s->red_left_pad, val, s->red_left_pad);
748 
749 	if (s->flags & __OBJECT_POISON) {
750 		memset(p, POISON_FREE, s->object_size - 1);
751 		p[s->object_size - 1] = POISON_END;
752 	}
753 
754 	if (s->flags & SLAB_RED_ZONE)
755 		memset(p + s->object_size, val, s->inuse - s->object_size);
756 }
757 
758 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
759 						void *from, void *to)
760 {
761 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
762 	memset(from, data, to - from);
763 }
764 
765 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
766 			u8 *object, char *what,
767 			u8 *start, unsigned int value, unsigned int bytes)
768 {
769 	u8 *fault;
770 	u8 *end;
771 	u8 *addr = page_address(page);
772 
773 	metadata_access_enable();
774 	fault = memchr_inv(start, value, bytes);
775 	metadata_access_disable();
776 	if (!fault)
777 		return 1;
778 
779 	end = start + bytes;
780 	while (end > fault && end[-1] == value)
781 		end--;
782 
783 	slab_bug(s, "%s overwritten", what);
784 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
785 					fault, end - 1, fault - addr,
786 					fault[0], value);
787 	print_trailer(s, page, object);
788 
789 	restore_bytes(s, what, value, fault, end);
790 	return 0;
791 }
792 
793 /*
794  * Object layout:
795  *
796  * object address
797  * 	Bytes of the object to be managed.
798  * 	If the freepointer may overlay the object then the free
799  *	pointer is at the middle of the object.
800  *
801  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
802  * 	0xa5 (POISON_END)
803  *
804  * object + s->object_size
805  * 	Padding to reach word boundary. This is also used for Redzoning.
806  * 	Padding is extended by another word if Redzoning is enabled and
807  * 	object_size == inuse.
808  *
809  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
810  * 	0xcc (RED_ACTIVE) for objects in use.
811  *
812  * object + s->inuse
813  * 	Meta data starts here.
814  *
815  * 	A. Free pointer (if we cannot overwrite object on free)
816  * 	B. Tracking data for SLAB_STORE_USER
817  * 	C. Padding to reach required alignment boundary or at mininum
818  * 		one word if debugging is on to be able to detect writes
819  * 		before the word boundary.
820  *
821  *	Padding is done using 0x5a (POISON_INUSE)
822  *
823  * object + s->size
824  * 	Nothing is used beyond s->size.
825  *
826  * If slabcaches are merged then the object_size and inuse boundaries are mostly
827  * ignored. And therefore no slab options that rely on these boundaries
828  * may be used with merged slabcaches.
829  */
830 
831 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
832 {
833 	unsigned long off = get_info_end(s);	/* The end of info */
834 
835 	if (s->flags & SLAB_STORE_USER)
836 		/* We also have user information there */
837 		off += 2 * sizeof(struct track);
838 
839 	off += kasan_metadata_size(s);
840 
841 	if (size_from_object(s) == off)
842 		return 1;
843 
844 	return check_bytes_and_report(s, page, p, "Object padding",
845 			p + off, POISON_INUSE, size_from_object(s) - off);
846 }
847 
848 /* Check the pad bytes at the end of a slab page */
849 static int slab_pad_check(struct kmem_cache *s, struct page *page)
850 {
851 	u8 *start;
852 	u8 *fault;
853 	u8 *end;
854 	u8 *pad;
855 	int length;
856 	int remainder;
857 
858 	if (!(s->flags & SLAB_POISON))
859 		return 1;
860 
861 	start = page_address(page);
862 	length = page_size(page);
863 	end = start + length;
864 	remainder = length % s->size;
865 	if (!remainder)
866 		return 1;
867 
868 	pad = end - remainder;
869 	metadata_access_enable();
870 	fault = memchr_inv(pad, POISON_INUSE, remainder);
871 	metadata_access_disable();
872 	if (!fault)
873 		return 1;
874 	while (end > fault && end[-1] == POISON_INUSE)
875 		end--;
876 
877 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
878 			fault, end - 1, fault - start);
879 	print_section(KERN_ERR, "Padding ", pad, remainder);
880 
881 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
882 	return 0;
883 }
884 
885 static int check_object(struct kmem_cache *s, struct page *page,
886 					void *object, u8 val)
887 {
888 	u8 *p = object;
889 	u8 *endobject = object + s->object_size;
890 
891 	if (s->flags & SLAB_RED_ZONE) {
892 		if (!check_bytes_and_report(s, page, object, "Redzone",
893 			object - s->red_left_pad, val, s->red_left_pad))
894 			return 0;
895 
896 		if (!check_bytes_and_report(s, page, object, "Redzone",
897 			endobject, val, s->inuse - s->object_size))
898 			return 0;
899 	} else {
900 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
901 			check_bytes_and_report(s, page, p, "Alignment padding",
902 				endobject, POISON_INUSE,
903 				s->inuse - s->object_size);
904 		}
905 	}
906 
907 	if (s->flags & SLAB_POISON) {
908 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
909 			(!check_bytes_and_report(s, page, p, "Poison", p,
910 					POISON_FREE, s->object_size - 1) ||
911 			 !check_bytes_and_report(s, page, p, "Poison",
912 				p + s->object_size - 1, POISON_END, 1)))
913 			return 0;
914 		/*
915 		 * check_pad_bytes cleans up on its own.
916 		 */
917 		check_pad_bytes(s, page, p);
918 	}
919 
920 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
921 		/*
922 		 * Object and freepointer overlap. Cannot check
923 		 * freepointer while object is allocated.
924 		 */
925 		return 1;
926 
927 	/* Check free pointer validity */
928 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
929 		object_err(s, page, p, "Freepointer corrupt");
930 		/*
931 		 * No choice but to zap it and thus lose the remainder
932 		 * of the free objects in this slab. May cause
933 		 * another error because the object count is now wrong.
934 		 */
935 		set_freepointer(s, p, NULL);
936 		return 0;
937 	}
938 	return 1;
939 }
940 
941 static int check_slab(struct kmem_cache *s, struct page *page)
942 {
943 	int maxobj;
944 
945 	VM_BUG_ON(!irqs_disabled());
946 
947 	if (!PageSlab(page)) {
948 		slab_err(s, page, "Not a valid slab page");
949 		return 0;
950 	}
951 
952 	maxobj = order_objects(compound_order(page), s->size);
953 	if (page->objects > maxobj) {
954 		slab_err(s, page, "objects %u > max %u",
955 			page->objects, maxobj);
956 		return 0;
957 	}
958 	if (page->inuse > page->objects) {
959 		slab_err(s, page, "inuse %u > max %u",
960 			page->inuse, page->objects);
961 		return 0;
962 	}
963 	/* Slab_pad_check fixes things up after itself */
964 	slab_pad_check(s, page);
965 	return 1;
966 }
967 
968 /*
969  * Determine if a certain object on a page is on the freelist. Must hold the
970  * slab lock to guarantee that the chains are in a consistent state.
971  */
972 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
973 {
974 	int nr = 0;
975 	void *fp;
976 	void *object = NULL;
977 	int max_objects;
978 
979 	fp = page->freelist;
980 	while (fp && nr <= page->objects) {
981 		if (fp == search)
982 			return 1;
983 		if (!check_valid_pointer(s, page, fp)) {
984 			if (object) {
985 				object_err(s, page, object,
986 					"Freechain corrupt");
987 				set_freepointer(s, object, NULL);
988 			} else {
989 				slab_err(s, page, "Freepointer corrupt");
990 				page->freelist = NULL;
991 				page->inuse = page->objects;
992 				slab_fix(s, "Freelist cleared");
993 				return 0;
994 			}
995 			break;
996 		}
997 		object = fp;
998 		fp = get_freepointer(s, object);
999 		nr++;
1000 	}
1001 
1002 	max_objects = order_objects(compound_order(page), s->size);
1003 	if (max_objects > MAX_OBJS_PER_PAGE)
1004 		max_objects = MAX_OBJS_PER_PAGE;
1005 
1006 	if (page->objects != max_objects) {
1007 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1008 			 page->objects, max_objects);
1009 		page->objects = max_objects;
1010 		slab_fix(s, "Number of objects adjusted.");
1011 	}
1012 	if (page->inuse != page->objects - nr) {
1013 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1014 			 page->inuse, page->objects - nr);
1015 		page->inuse = page->objects - nr;
1016 		slab_fix(s, "Object count adjusted.");
1017 	}
1018 	return search == NULL;
1019 }
1020 
1021 static void trace(struct kmem_cache *s, struct page *page, void *object,
1022 								int alloc)
1023 {
1024 	if (s->flags & SLAB_TRACE) {
1025 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1026 			s->name,
1027 			alloc ? "alloc" : "free",
1028 			object, page->inuse,
1029 			page->freelist);
1030 
1031 		if (!alloc)
1032 			print_section(KERN_INFO, "Object ", (void *)object,
1033 					s->object_size);
1034 
1035 		dump_stack();
1036 	}
1037 }
1038 
1039 /*
1040  * Tracking of fully allocated slabs for debugging purposes.
1041  */
1042 static void add_full(struct kmem_cache *s,
1043 	struct kmem_cache_node *n, struct page *page)
1044 {
1045 	if (!(s->flags & SLAB_STORE_USER))
1046 		return;
1047 
1048 	lockdep_assert_held(&n->list_lock);
1049 	list_add(&page->slab_list, &n->full);
1050 }
1051 
1052 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1053 {
1054 	if (!(s->flags & SLAB_STORE_USER))
1055 		return;
1056 
1057 	lockdep_assert_held(&n->list_lock);
1058 	list_del(&page->slab_list);
1059 }
1060 
1061 /* Tracking of the number of slabs for debugging purposes */
1062 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1063 {
1064 	struct kmem_cache_node *n = get_node(s, node);
1065 
1066 	return atomic_long_read(&n->nr_slabs);
1067 }
1068 
1069 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1070 {
1071 	return atomic_long_read(&n->nr_slabs);
1072 }
1073 
1074 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1075 {
1076 	struct kmem_cache_node *n = get_node(s, node);
1077 
1078 	/*
1079 	 * May be called early in order to allocate a slab for the
1080 	 * kmem_cache_node structure. Solve the chicken-egg
1081 	 * dilemma by deferring the increment of the count during
1082 	 * bootstrap (see early_kmem_cache_node_alloc).
1083 	 */
1084 	if (likely(n)) {
1085 		atomic_long_inc(&n->nr_slabs);
1086 		atomic_long_add(objects, &n->total_objects);
1087 	}
1088 }
1089 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1090 {
1091 	struct kmem_cache_node *n = get_node(s, node);
1092 
1093 	atomic_long_dec(&n->nr_slabs);
1094 	atomic_long_sub(objects, &n->total_objects);
1095 }
1096 
1097 /* Object debug checks for alloc/free paths */
1098 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1099 								void *object)
1100 {
1101 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1102 		return;
1103 
1104 	init_object(s, object, SLUB_RED_INACTIVE);
1105 	init_tracking(s, object);
1106 }
1107 
1108 static
1109 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1110 {
1111 	if (!(s->flags & SLAB_POISON))
1112 		return;
1113 
1114 	metadata_access_enable();
1115 	memset(addr, POISON_INUSE, page_size(page));
1116 	metadata_access_disable();
1117 }
1118 
1119 static inline int alloc_consistency_checks(struct kmem_cache *s,
1120 					struct page *page, void *object)
1121 {
1122 	if (!check_slab(s, page))
1123 		return 0;
1124 
1125 	if (!check_valid_pointer(s, page, object)) {
1126 		object_err(s, page, object, "Freelist Pointer check fails");
1127 		return 0;
1128 	}
1129 
1130 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1131 		return 0;
1132 
1133 	return 1;
1134 }
1135 
1136 static noinline int alloc_debug_processing(struct kmem_cache *s,
1137 					struct page *page,
1138 					void *object, unsigned long addr)
1139 {
1140 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1141 		if (!alloc_consistency_checks(s, page, object))
1142 			goto bad;
1143 	}
1144 
1145 	/* Success perform special debug activities for allocs */
1146 	if (s->flags & SLAB_STORE_USER)
1147 		set_track(s, object, TRACK_ALLOC, addr);
1148 	trace(s, page, object, 1);
1149 	init_object(s, object, SLUB_RED_ACTIVE);
1150 	return 1;
1151 
1152 bad:
1153 	if (PageSlab(page)) {
1154 		/*
1155 		 * If this is a slab page then lets do the best we can
1156 		 * to avoid issues in the future. Marking all objects
1157 		 * as used avoids touching the remaining objects.
1158 		 */
1159 		slab_fix(s, "Marking all objects used");
1160 		page->inuse = page->objects;
1161 		page->freelist = NULL;
1162 	}
1163 	return 0;
1164 }
1165 
1166 static inline int free_consistency_checks(struct kmem_cache *s,
1167 		struct page *page, void *object, unsigned long addr)
1168 {
1169 	if (!check_valid_pointer(s, page, object)) {
1170 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1171 		return 0;
1172 	}
1173 
1174 	if (on_freelist(s, page, object)) {
1175 		object_err(s, page, object, "Object already free");
1176 		return 0;
1177 	}
1178 
1179 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1180 		return 0;
1181 
1182 	if (unlikely(s != page->slab_cache)) {
1183 		if (!PageSlab(page)) {
1184 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1185 				 object);
1186 		} else if (!page->slab_cache) {
1187 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1188 			       object);
1189 			dump_stack();
1190 		} else
1191 			object_err(s, page, object,
1192 					"page slab pointer corrupt.");
1193 		return 0;
1194 	}
1195 	return 1;
1196 }
1197 
1198 /* Supports checking bulk free of a constructed freelist */
1199 static noinline int free_debug_processing(
1200 	struct kmem_cache *s, struct page *page,
1201 	void *head, void *tail, int bulk_cnt,
1202 	unsigned long addr)
1203 {
1204 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1205 	void *object = head;
1206 	int cnt = 0;
1207 	unsigned long uninitialized_var(flags);
1208 	int ret = 0;
1209 
1210 	spin_lock_irqsave(&n->list_lock, flags);
1211 	slab_lock(page);
1212 
1213 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1214 		if (!check_slab(s, page))
1215 			goto out;
1216 	}
1217 
1218 next_object:
1219 	cnt++;
1220 
1221 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1222 		if (!free_consistency_checks(s, page, object, addr))
1223 			goto out;
1224 	}
1225 
1226 	if (s->flags & SLAB_STORE_USER)
1227 		set_track(s, object, TRACK_FREE, addr);
1228 	trace(s, page, object, 0);
1229 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1230 	init_object(s, object, SLUB_RED_INACTIVE);
1231 
1232 	/* Reached end of constructed freelist yet? */
1233 	if (object != tail) {
1234 		object = get_freepointer(s, object);
1235 		goto next_object;
1236 	}
1237 	ret = 1;
1238 
1239 out:
1240 	if (cnt != bulk_cnt)
1241 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1242 			 bulk_cnt, cnt);
1243 
1244 	slab_unlock(page);
1245 	spin_unlock_irqrestore(&n->list_lock, flags);
1246 	if (!ret)
1247 		slab_fix(s, "Object at 0x%p not freed", object);
1248 	return ret;
1249 }
1250 
1251 static int __init setup_slub_debug(char *str)
1252 {
1253 	slub_debug = DEBUG_DEFAULT_FLAGS;
1254 	if (*str++ != '=' || !*str)
1255 		/*
1256 		 * No options specified. Switch on full debugging.
1257 		 */
1258 		goto out;
1259 
1260 	if (*str == ',')
1261 		/*
1262 		 * No options but restriction on slabs. This means full
1263 		 * debugging for slabs matching a pattern.
1264 		 */
1265 		goto check_slabs;
1266 
1267 	slub_debug = 0;
1268 	if (*str == '-')
1269 		/*
1270 		 * Switch off all debugging measures.
1271 		 */
1272 		goto out;
1273 
1274 	/*
1275 	 * Determine which debug features should be switched on
1276 	 */
1277 	for (; *str && *str != ','; str++) {
1278 		switch (tolower(*str)) {
1279 		case 'f':
1280 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1281 			break;
1282 		case 'z':
1283 			slub_debug |= SLAB_RED_ZONE;
1284 			break;
1285 		case 'p':
1286 			slub_debug |= SLAB_POISON;
1287 			break;
1288 		case 'u':
1289 			slub_debug |= SLAB_STORE_USER;
1290 			break;
1291 		case 't':
1292 			slub_debug |= SLAB_TRACE;
1293 			break;
1294 		case 'a':
1295 			slub_debug |= SLAB_FAILSLAB;
1296 			break;
1297 		case 'o':
1298 			/*
1299 			 * Avoid enabling debugging on caches if its minimum
1300 			 * order would increase as a result.
1301 			 */
1302 			disable_higher_order_debug = 1;
1303 			break;
1304 		default:
1305 			pr_err("slub_debug option '%c' unknown. skipped\n",
1306 			       *str);
1307 		}
1308 	}
1309 
1310 check_slabs:
1311 	if (*str == ',')
1312 		slub_debug_slabs = str + 1;
1313 out:
1314 	if ((static_branch_unlikely(&init_on_alloc) ||
1315 	     static_branch_unlikely(&init_on_free)) &&
1316 	    (slub_debug & SLAB_POISON))
1317 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1318 	return 1;
1319 }
1320 
1321 __setup("slub_debug", setup_slub_debug);
1322 
1323 /*
1324  * kmem_cache_flags - apply debugging options to the cache
1325  * @object_size:	the size of an object without meta data
1326  * @flags:		flags to set
1327  * @name:		name of the cache
1328  * @ctor:		constructor function
1329  *
1330  * Debug option(s) are applied to @flags. In addition to the debug
1331  * option(s), if a slab name (or multiple) is specified i.e.
1332  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1333  * then only the select slabs will receive the debug option(s).
1334  */
1335 slab_flags_t kmem_cache_flags(unsigned int object_size,
1336 	slab_flags_t flags, const char *name,
1337 	void (*ctor)(void *))
1338 {
1339 	char *iter;
1340 	size_t len;
1341 
1342 	/* If slub_debug = 0, it folds into the if conditional. */
1343 	if (!slub_debug_slabs)
1344 		return flags | slub_debug;
1345 
1346 	len = strlen(name);
1347 	iter = slub_debug_slabs;
1348 	while (*iter) {
1349 		char *end, *glob;
1350 		size_t cmplen;
1351 
1352 		end = strchrnul(iter, ',');
1353 
1354 		glob = strnchr(iter, end - iter, '*');
1355 		if (glob)
1356 			cmplen = glob - iter;
1357 		else
1358 			cmplen = max_t(size_t, len, (end - iter));
1359 
1360 		if (!strncmp(name, iter, cmplen)) {
1361 			flags |= slub_debug;
1362 			break;
1363 		}
1364 
1365 		if (!*end)
1366 			break;
1367 		iter = end + 1;
1368 	}
1369 
1370 	return flags;
1371 }
1372 #else /* !CONFIG_SLUB_DEBUG */
1373 static inline void setup_object_debug(struct kmem_cache *s,
1374 			struct page *page, void *object) {}
1375 static inline
1376 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1377 
1378 static inline int alloc_debug_processing(struct kmem_cache *s,
1379 	struct page *page, void *object, unsigned long addr) { return 0; }
1380 
1381 static inline int free_debug_processing(
1382 	struct kmem_cache *s, struct page *page,
1383 	void *head, void *tail, int bulk_cnt,
1384 	unsigned long addr) { return 0; }
1385 
1386 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1387 			{ return 1; }
1388 static inline int check_object(struct kmem_cache *s, struct page *page,
1389 			void *object, u8 val) { return 1; }
1390 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1391 					struct page *page) {}
1392 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1393 					struct page *page) {}
1394 slab_flags_t kmem_cache_flags(unsigned int object_size,
1395 	slab_flags_t flags, const char *name,
1396 	void (*ctor)(void *))
1397 {
1398 	return flags;
1399 }
1400 #define slub_debug 0
1401 
1402 #define disable_higher_order_debug 0
1403 
1404 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1405 							{ return 0; }
1406 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1407 							{ return 0; }
1408 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1409 							int objects) {}
1410 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1411 							int objects) {}
1412 
1413 #endif /* CONFIG_SLUB_DEBUG */
1414 
1415 /*
1416  * Hooks for other subsystems that check memory allocations. In a typical
1417  * production configuration these hooks all should produce no code at all.
1418  */
1419 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1420 {
1421 	ptr = kasan_kmalloc_large(ptr, size, flags);
1422 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1423 	kmemleak_alloc(ptr, size, 1, flags);
1424 	return ptr;
1425 }
1426 
1427 static __always_inline void kfree_hook(void *x)
1428 {
1429 	kmemleak_free(x);
1430 	kasan_kfree_large(x, _RET_IP_);
1431 }
1432 
1433 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1434 {
1435 	kmemleak_free_recursive(x, s->flags);
1436 
1437 	/*
1438 	 * Trouble is that we may no longer disable interrupts in the fast path
1439 	 * So in order to make the debug calls that expect irqs to be
1440 	 * disabled we need to disable interrupts temporarily.
1441 	 */
1442 #ifdef CONFIG_LOCKDEP
1443 	{
1444 		unsigned long flags;
1445 
1446 		local_irq_save(flags);
1447 		debug_check_no_locks_freed(x, s->object_size);
1448 		local_irq_restore(flags);
1449 	}
1450 #endif
1451 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1452 		debug_check_no_obj_freed(x, s->object_size);
1453 
1454 	/* KASAN might put x into memory quarantine, delaying its reuse */
1455 	return kasan_slab_free(s, x, _RET_IP_);
1456 }
1457 
1458 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1459 					   void **head, void **tail)
1460 {
1461 
1462 	void *object;
1463 	void *next = *head;
1464 	void *old_tail = *tail ? *tail : *head;
1465 	int rsize;
1466 
1467 	/* Head and tail of the reconstructed freelist */
1468 	*head = NULL;
1469 	*tail = NULL;
1470 
1471 	do {
1472 		object = next;
1473 		next = get_freepointer(s, object);
1474 
1475 		if (slab_want_init_on_free(s)) {
1476 			/*
1477 			 * Clear the object and the metadata, but don't touch
1478 			 * the redzone.
1479 			 */
1480 			memset(object, 0, s->object_size);
1481 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1482 							   : 0;
1483 			memset((char *)object + s->inuse, 0,
1484 			       s->size - s->inuse - rsize);
1485 
1486 		}
1487 		/* If object's reuse doesn't have to be delayed */
1488 		if (!slab_free_hook(s, object)) {
1489 			/* Move object to the new freelist */
1490 			set_freepointer(s, object, *head);
1491 			*head = object;
1492 			if (!*tail)
1493 				*tail = object;
1494 		}
1495 	} while (object != old_tail);
1496 
1497 	if (*head == *tail)
1498 		*tail = NULL;
1499 
1500 	return *head != NULL;
1501 }
1502 
1503 static void *setup_object(struct kmem_cache *s, struct page *page,
1504 				void *object)
1505 {
1506 	setup_object_debug(s, page, object);
1507 	object = kasan_init_slab_obj(s, object);
1508 	if (unlikely(s->ctor)) {
1509 		kasan_unpoison_object_data(s, object);
1510 		s->ctor(object);
1511 		kasan_poison_object_data(s, object);
1512 	}
1513 	return object;
1514 }
1515 
1516 /*
1517  * Slab allocation and freeing
1518  */
1519 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1520 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1521 {
1522 	struct page *page;
1523 	unsigned int order = oo_order(oo);
1524 
1525 	if (node == NUMA_NO_NODE)
1526 		page = alloc_pages(flags, order);
1527 	else
1528 		page = __alloc_pages_node(node, flags, order);
1529 
1530 	if (page && charge_slab_page(page, flags, order, s)) {
1531 		__free_pages(page, order);
1532 		page = NULL;
1533 	}
1534 
1535 	return page;
1536 }
1537 
1538 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1539 /* Pre-initialize the random sequence cache */
1540 static int init_cache_random_seq(struct kmem_cache *s)
1541 {
1542 	unsigned int count = oo_objects(s->oo);
1543 	int err;
1544 
1545 	/* Bailout if already initialised */
1546 	if (s->random_seq)
1547 		return 0;
1548 
1549 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1550 	if (err) {
1551 		pr_err("SLUB: Unable to initialize free list for %s\n",
1552 			s->name);
1553 		return err;
1554 	}
1555 
1556 	/* Transform to an offset on the set of pages */
1557 	if (s->random_seq) {
1558 		unsigned int i;
1559 
1560 		for (i = 0; i < count; i++)
1561 			s->random_seq[i] *= s->size;
1562 	}
1563 	return 0;
1564 }
1565 
1566 /* Initialize each random sequence freelist per cache */
1567 static void __init init_freelist_randomization(void)
1568 {
1569 	struct kmem_cache *s;
1570 
1571 	mutex_lock(&slab_mutex);
1572 
1573 	list_for_each_entry(s, &slab_caches, list)
1574 		init_cache_random_seq(s);
1575 
1576 	mutex_unlock(&slab_mutex);
1577 }
1578 
1579 /* Get the next entry on the pre-computed freelist randomized */
1580 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1581 				unsigned long *pos, void *start,
1582 				unsigned long page_limit,
1583 				unsigned long freelist_count)
1584 {
1585 	unsigned int idx;
1586 
1587 	/*
1588 	 * If the target page allocation failed, the number of objects on the
1589 	 * page might be smaller than the usual size defined by the cache.
1590 	 */
1591 	do {
1592 		idx = s->random_seq[*pos];
1593 		*pos += 1;
1594 		if (*pos >= freelist_count)
1595 			*pos = 0;
1596 	} while (unlikely(idx >= page_limit));
1597 
1598 	return (char *)start + idx;
1599 }
1600 
1601 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1602 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1603 {
1604 	void *start;
1605 	void *cur;
1606 	void *next;
1607 	unsigned long idx, pos, page_limit, freelist_count;
1608 
1609 	if (page->objects < 2 || !s->random_seq)
1610 		return false;
1611 
1612 	freelist_count = oo_objects(s->oo);
1613 	pos = get_random_int() % freelist_count;
1614 
1615 	page_limit = page->objects * s->size;
1616 	start = fixup_red_left(s, page_address(page));
1617 
1618 	/* First entry is used as the base of the freelist */
1619 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1620 				freelist_count);
1621 	cur = setup_object(s, page, cur);
1622 	page->freelist = cur;
1623 
1624 	for (idx = 1; idx < page->objects; idx++) {
1625 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1626 			freelist_count);
1627 		next = setup_object(s, page, next);
1628 		set_freepointer(s, cur, next);
1629 		cur = next;
1630 	}
1631 	set_freepointer(s, cur, NULL);
1632 
1633 	return true;
1634 }
1635 #else
1636 static inline int init_cache_random_seq(struct kmem_cache *s)
1637 {
1638 	return 0;
1639 }
1640 static inline void init_freelist_randomization(void) { }
1641 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1642 {
1643 	return false;
1644 }
1645 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1646 
1647 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1648 {
1649 	struct page *page;
1650 	struct kmem_cache_order_objects oo = s->oo;
1651 	gfp_t alloc_gfp;
1652 	void *start, *p, *next;
1653 	int idx;
1654 	bool shuffle;
1655 
1656 	flags &= gfp_allowed_mask;
1657 
1658 	if (gfpflags_allow_blocking(flags))
1659 		local_irq_enable();
1660 
1661 	flags |= s->allocflags;
1662 
1663 	/*
1664 	 * Let the initial higher-order allocation fail under memory pressure
1665 	 * so we fall-back to the minimum order allocation.
1666 	 */
1667 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1668 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1669 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1670 
1671 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1672 	if (unlikely(!page)) {
1673 		oo = s->min;
1674 		alloc_gfp = flags;
1675 		/*
1676 		 * Allocation may have failed due to fragmentation.
1677 		 * Try a lower order alloc if possible
1678 		 */
1679 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1680 		if (unlikely(!page))
1681 			goto out;
1682 		stat(s, ORDER_FALLBACK);
1683 	}
1684 
1685 	page->objects = oo_objects(oo);
1686 
1687 	page->slab_cache = s;
1688 	__SetPageSlab(page);
1689 	if (page_is_pfmemalloc(page))
1690 		SetPageSlabPfmemalloc(page);
1691 
1692 	kasan_poison_slab(page);
1693 
1694 	start = page_address(page);
1695 
1696 	setup_page_debug(s, page, start);
1697 
1698 	shuffle = shuffle_freelist(s, page);
1699 
1700 	if (!shuffle) {
1701 		start = fixup_red_left(s, start);
1702 		start = setup_object(s, page, start);
1703 		page->freelist = start;
1704 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1705 			next = p + s->size;
1706 			next = setup_object(s, page, next);
1707 			set_freepointer(s, p, next);
1708 			p = next;
1709 		}
1710 		set_freepointer(s, p, NULL);
1711 	}
1712 
1713 	page->inuse = page->objects;
1714 	page->frozen = 1;
1715 
1716 out:
1717 	if (gfpflags_allow_blocking(flags))
1718 		local_irq_disable();
1719 	if (!page)
1720 		return NULL;
1721 
1722 	inc_slabs_node(s, page_to_nid(page), page->objects);
1723 
1724 	return page;
1725 }
1726 
1727 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1728 {
1729 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1730 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1731 		flags &= ~GFP_SLAB_BUG_MASK;
1732 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1733 				invalid_mask, &invalid_mask, flags, &flags);
1734 		dump_stack();
1735 	}
1736 
1737 	return allocate_slab(s,
1738 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1739 }
1740 
1741 static void __free_slab(struct kmem_cache *s, struct page *page)
1742 {
1743 	int order = compound_order(page);
1744 	int pages = 1 << order;
1745 
1746 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1747 		void *p;
1748 
1749 		slab_pad_check(s, page);
1750 		for_each_object(p, s, page_address(page),
1751 						page->objects)
1752 			check_object(s, page, p, SLUB_RED_INACTIVE);
1753 	}
1754 
1755 	__ClearPageSlabPfmemalloc(page);
1756 	__ClearPageSlab(page);
1757 
1758 	page->mapping = NULL;
1759 	if (current->reclaim_state)
1760 		current->reclaim_state->reclaimed_slab += pages;
1761 	uncharge_slab_page(page, order, s);
1762 	__free_pages(page, order);
1763 }
1764 
1765 static void rcu_free_slab(struct rcu_head *h)
1766 {
1767 	struct page *page = container_of(h, struct page, rcu_head);
1768 
1769 	__free_slab(page->slab_cache, page);
1770 }
1771 
1772 static void free_slab(struct kmem_cache *s, struct page *page)
1773 {
1774 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1775 		call_rcu(&page->rcu_head, rcu_free_slab);
1776 	} else
1777 		__free_slab(s, page);
1778 }
1779 
1780 static void discard_slab(struct kmem_cache *s, struct page *page)
1781 {
1782 	dec_slabs_node(s, page_to_nid(page), page->objects);
1783 	free_slab(s, page);
1784 }
1785 
1786 /*
1787  * Management of partially allocated slabs.
1788  */
1789 static inline void
1790 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1791 {
1792 	n->nr_partial++;
1793 	if (tail == DEACTIVATE_TO_TAIL)
1794 		list_add_tail(&page->slab_list, &n->partial);
1795 	else
1796 		list_add(&page->slab_list, &n->partial);
1797 }
1798 
1799 static inline void add_partial(struct kmem_cache_node *n,
1800 				struct page *page, int tail)
1801 {
1802 	lockdep_assert_held(&n->list_lock);
1803 	__add_partial(n, page, tail);
1804 }
1805 
1806 static inline void remove_partial(struct kmem_cache_node *n,
1807 					struct page *page)
1808 {
1809 	lockdep_assert_held(&n->list_lock);
1810 	list_del(&page->slab_list);
1811 	n->nr_partial--;
1812 }
1813 
1814 /*
1815  * Remove slab from the partial list, freeze it and
1816  * return the pointer to the freelist.
1817  *
1818  * Returns a list of objects or NULL if it fails.
1819  */
1820 static inline void *acquire_slab(struct kmem_cache *s,
1821 		struct kmem_cache_node *n, struct page *page,
1822 		int mode, int *objects)
1823 {
1824 	void *freelist;
1825 	unsigned long counters;
1826 	struct page new;
1827 
1828 	lockdep_assert_held(&n->list_lock);
1829 
1830 	/*
1831 	 * Zap the freelist and set the frozen bit.
1832 	 * The old freelist is the list of objects for the
1833 	 * per cpu allocation list.
1834 	 */
1835 	freelist = page->freelist;
1836 	counters = page->counters;
1837 	new.counters = counters;
1838 	*objects = new.objects - new.inuse;
1839 	if (mode) {
1840 		new.inuse = page->objects;
1841 		new.freelist = NULL;
1842 	} else {
1843 		new.freelist = freelist;
1844 	}
1845 
1846 	VM_BUG_ON(new.frozen);
1847 	new.frozen = 1;
1848 
1849 	if (!__cmpxchg_double_slab(s, page,
1850 			freelist, counters,
1851 			new.freelist, new.counters,
1852 			"acquire_slab"))
1853 		return NULL;
1854 
1855 	remove_partial(n, page);
1856 	WARN_ON(!freelist);
1857 	return freelist;
1858 }
1859 
1860 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1861 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1862 
1863 /*
1864  * Try to allocate a partial slab from a specific node.
1865  */
1866 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1867 				struct kmem_cache_cpu *c, gfp_t flags)
1868 {
1869 	struct page *page, *page2;
1870 	void *object = NULL;
1871 	unsigned int available = 0;
1872 	int objects;
1873 
1874 	/*
1875 	 * Racy check. If we mistakenly see no partial slabs then we
1876 	 * just allocate an empty slab. If we mistakenly try to get a
1877 	 * partial slab and there is none available then get_partials()
1878 	 * will return NULL.
1879 	 */
1880 	if (!n || !n->nr_partial)
1881 		return NULL;
1882 
1883 	spin_lock(&n->list_lock);
1884 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1885 		void *t;
1886 
1887 		if (!pfmemalloc_match(page, flags))
1888 			continue;
1889 
1890 		t = acquire_slab(s, n, page, object == NULL, &objects);
1891 		if (!t)
1892 			break;
1893 
1894 		available += objects;
1895 		if (!object) {
1896 			c->page = page;
1897 			stat(s, ALLOC_FROM_PARTIAL);
1898 			object = t;
1899 		} else {
1900 			put_cpu_partial(s, page, 0);
1901 			stat(s, CPU_PARTIAL_NODE);
1902 		}
1903 		if (!kmem_cache_has_cpu_partial(s)
1904 			|| available > slub_cpu_partial(s) / 2)
1905 			break;
1906 
1907 	}
1908 	spin_unlock(&n->list_lock);
1909 	return object;
1910 }
1911 
1912 /*
1913  * Get a page from somewhere. Search in increasing NUMA distances.
1914  */
1915 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1916 		struct kmem_cache_cpu *c)
1917 {
1918 #ifdef CONFIG_NUMA
1919 	struct zonelist *zonelist;
1920 	struct zoneref *z;
1921 	struct zone *zone;
1922 	enum zone_type high_zoneidx = gfp_zone(flags);
1923 	void *object;
1924 	unsigned int cpuset_mems_cookie;
1925 
1926 	/*
1927 	 * The defrag ratio allows a configuration of the tradeoffs between
1928 	 * inter node defragmentation and node local allocations. A lower
1929 	 * defrag_ratio increases the tendency to do local allocations
1930 	 * instead of attempting to obtain partial slabs from other nodes.
1931 	 *
1932 	 * If the defrag_ratio is set to 0 then kmalloc() always
1933 	 * returns node local objects. If the ratio is higher then kmalloc()
1934 	 * may return off node objects because partial slabs are obtained
1935 	 * from other nodes and filled up.
1936 	 *
1937 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1938 	 * (which makes defrag_ratio = 1000) then every (well almost)
1939 	 * allocation will first attempt to defrag slab caches on other nodes.
1940 	 * This means scanning over all nodes to look for partial slabs which
1941 	 * may be expensive if we do it every time we are trying to find a slab
1942 	 * with available objects.
1943 	 */
1944 	if (!s->remote_node_defrag_ratio ||
1945 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1946 		return NULL;
1947 
1948 	do {
1949 		cpuset_mems_cookie = read_mems_allowed_begin();
1950 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1951 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1952 			struct kmem_cache_node *n;
1953 
1954 			n = get_node(s, zone_to_nid(zone));
1955 
1956 			if (n && cpuset_zone_allowed(zone, flags) &&
1957 					n->nr_partial > s->min_partial) {
1958 				object = get_partial_node(s, n, c, flags);
1959 				if (object) {
1960 					/*
1961 					 * Don't check read_mems_allowed_retry()
1962 					 * here - if mems_allowed was updated in
1963 					 * parallel, that was a harmless race
1964 					 * between allocation and the cpuset
1965 					 * update
1966 					 */
1967 					return object;
1968 				}
1969 			}
1970 		}
1971 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1972 #endif	/* CONFIG_NUMA */
1973 	return NULL;
1974 }
1975 
1976 /*
1977  * Get a partial page, lock it and return it.
1978  */
1979 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1980 		struct kmem_cache_cpu *c)
1981 {
1982 	void *object;
1983 	int searchnode = node;
1984 
1985 	if (node == NUMA_NO_NODE)
1986 		searchnode = numa_mem_id();
1987 
1988 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1989 	if (object || node != NUMA_NO_NODE)
1990 		return object;
1991 
1992 	return get_any_partial(s, flags, c);
1993 }
1994 
1995 #ifdef CONFIG_PREEMPTION
1996 /*
1997  * Calculate the next globally unique transaction for disambiguiation
1998  * during cmpxchg. The transactions start with the cpu number and are then
1999  * incremented by CONFIG_NR_CPUS.
2000  */
2001 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2002 #else
2003 /*
2004  * No preemption supported therefore also no need to check for
2005  * different cpus.
2006  */
2007 #define TID_STEP 1
2008 #endif
2009 
2010 static inline unsigned long next_tid(unsigned long tid)
2011 {
2012 	return tid + TID_STEP;
2013 }
2014 
2015 #ifdef SLUB_DEBUG_CMPXCHG
2016 static inline unsigned int tid_to_cpu(unsigned long tid)
2017 {
2018 	return tid % TID_STEP;
2019 }
2020 
2021 static inline unsigned long tid_to_event(unsigned long tid)
2022 {
2023 	return tid / TID_STEP;
2024 }
2025 #endif
2026 
2027 static inline unsigned int init_tid(int cpu)
2028 {
2029 	return cpu;
2030 }
2031 
2032 static inline void note_cmpxchg_failure(const char *n,
2033 		const struct kmem_cache *s, unsigned long tid)
2034 {
2035 #ifdef SLUB_DEBUG_CMPXCHG
2036 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2037 
2038 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2039 
2040 #ifdef CONFIG_PREEMPTION
2041 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2042 		pr_warn("due to cpu change %d -> %d\n",
2043 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2044 	else
2045 #endif
2046 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2047 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2048 			tid_to_event(tid), tid_to_event(actual_tid));
2049 	else
2050 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2051 			actual_tid, tid, next_tid(tid));
2052 #endif
2053 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2054 }
2055 
2056 static void init_kmem_cache_cpus(struct kmem_cache *s)
2057 {
2058 	int cpu;
2059 
2060 	for_each_possible_cpu(cpu)
2061 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2062 }
2063 
2064 /*
2065  * Remove the cpu slab
2066  */
2067 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2068 				void *freelist, struct kmem_cache_cpu *c)
2069 {
2070 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2071 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2072 	int lock = 0;
2073 	enum slab_modes l = M_NONE, m = M_NONE;
2074 	void *nextfree;
2075 	int tail = DEACTIVATE_TO_HEAD;
2076 	struct page new;
2077 	struct page old;
2078 
2079 	if (page->freelist) {
2080 		stat(s, DEACTIVATE_REMOTE_FREES);
2081 		tail = DEACTIVATE_TO_TAIL;
2082 	}
2083 
2084 	/*
2085 	 * Stage one: Free all available per cpu objects back
2086 	 * to the page freelist while it is still frozen. Leave the
2087 	 * last one.
2088 	 *
2089 	 * There is no need to take the list->lock because the page
2090 	 * is still frozen.
2091 	 */
2092 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2093 		void *prior;
2094 		unsigned long counters;
2095 
2096 		do {
2097 			prior = page->freelist;
2098 			counters = page->counters;
2099 			set_freepointer(s, freelist, prior);
2100 			new.counters = counters;
2101 			new.inuse--;
2102 			VM_BUG_ON(!new.frozen);
2103 
2104 		} while (!__cmpxchg_double_slab(s, page,
2105 			prior, counters,
2106 			freelist, new.counters,
2107 			"drain percpu freelist"));
2108 
2109 		freelist = nextfree;
2110 	}
2111 
2112 	/*
2113 	 * Stage two: Ensure that the page is unfrozen while the
2114 	 * list presence reflects the actual number of objects
2115 	 * during unfreeze.
2116 	 *
2117 	 * We setup the list membership and then perform a cmpxchg
2118 	 * with the count. If there is a mismatch then the page
2119 	 * is not unfrozen but the page is on the wrong list.
2120 	 *
2121 	 * Then we restart the process which may have to remove
2122 	 * the page from the list that we just put it on again
2123 	 * because the number of objects in the slab may have
2124 	 * changed.
2125 	 */
2126 redo:
2127 
2128 	old.freelist = page->freelist;
2129 	old.counters = page->counters;
2130 	VM_BUG_ON(!old.frozen);
2131 
2132 	/* Determine target state of the slab */
2133 	new.counters = old.counters;
2134 	if (freelist) {
2135 		new.inuse--;
2136 		set_freepointer(s, freelist, old.freelist);
2137 		new.freelist = freelist;
2138 	} else
2139 		new.freelist = old.freelist;
2140 
2141 	new.frozen = 0;
2142 
2143 	if (!new.inuse && n->nr_partial >= s->min_partial)
2144 		m = M_FREE;
2145 	else if (new.freelist) {
2146 		m = M_PARTIAL;
2147 		if (!lock) {
2148 			lock = 1;
2149 			/*
2150 			 * Taking the spinlock removes the possibility
2151 			 * that acquire_slab() will see a slab page that
2152 			 * is frozen
2153 			 */
2154 			spin_lock(&n->list_lock);
2155 		}
2156 	} else {
2157 		m = M_FULL;
2158 		if (kmem_cache_debug(s) && !lock) {
2159 			lock = 1;
2160 			/*
2161 			 * This also ensures that the scanning of full
2162 			 * slabs from diagnostic functions will not see
2163 			 * any frozen slabs.
2164 			 */
2165 			spin_lock(&n->list_lock);
2166 		}
2167 	}
2168 
2169 	if (l != m) {
2170 		if (l == M_PARTIAL)
2171 			remove_partial(n, page);
2172 		else if (l == M_FULL)
2173 			remove_full(s, n, page);
2174 
2175 		if (m == M_PARTIAL)
2176 			add_partial(n, page, tail);
2177 		else if (m == M_FULL)
2178 			add_full(s, n, page);
2179 	}
2180 
2181 	l = m;
2182 	if (!__cmpxchg_double_slab(s, page,
2183 				old.freelist, old.counters,
2184 				new.freelist, new.counters,
2185 				"unfreezing slab"))
2186 		goto redo;
2187 
2188 	if (lock)
2189 		spin_unlock(&n->list_lock);
2190 
2191 	if (m == M_PARTIAL)
2192 		stat(s, tail);
2193 	else if (m == M_FULL)
2194 		stat(s, DEACTIVATE_FULL);
2195 	else if (m == M_FREE) {
2196 		stat(s, DEACTIVATE_EMPTY);
2197 		discard_slab(s, page);
2198 		stat(s, FREE_SLAB);
2199 	}
2200 
2201 	c->page = NULL;
2202 	c->freelist = NULL;
2203 }
2204 
2205 /*
2206  * Unfreeze all the cpu partial slabs.
2207  *
2208  * This function must be called with interrupts disabled
2209  * for the cpu using c (or some other guarantee must be there
2210  * to guarantee no concurrent accesses).
2211  */
2212 static void unfreeze_partials(struct kmem_cache *s,
2213 		struct kmem_cache_cpu *c)
2214 {
2215 #ifdef CONFIG_SLUB_CPU_PARTIAL
2216 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2217 	struct page *page, *discard_page = NULL;
2218 
2219 	while ((page = slub_percpu_partial(c))) {
2220 		struct page new;
2221 		struct page old;
2222 
2223 		slub_set_percpu_partial(c, page);
2224 
2225 		n2 = get_node(s, page_to_nid(page));
2226 		if (n != n2) {
2227 			if (n)
2228 				spin_unlock(&n->list_lock);
2229 
2230 			n = n2;
2231 			spin_lock(&n->list_lock);
2232 		}
2233 
2234 		do {
2235 
2236 			old.freelist = page->freelist;
2237 			old.counters = page->counters;
2238 			VM_BUG_ON(!old.frozen);
2239 
2240 			new.counters = old.counters;
2241 			new.freelist = old.freelist;
2242 
2243 			new.frozen = 0;
2244 
2245 		} while (!__cmpxchg_double_slab(s, page,
2246 				old.freelist, old.counters,
2247 				new.freelist, new.counters,
2248 				"unfreezing slab"));
2249 
2250 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2251 			page->next = discard_page;
2252 			discard_page = page;
2253 		} else {
2254 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2255 			stat(s, FREE_ADD_PARTIAL);
2256 		}
2257 	}
2258 
2259 	if (n)
2260 		spin_unlock(&n->list_lock);
2261 
2262 	while (discard_page) {
2263 		page = discard_page;
2264 		discard_page = discard_page->next;
2265 
2266 		stat(s, DEACTIVATE_EMPTY);
2267 		discard_slab(s, page);
2268 		stat(s, FREE_SLAB);
2269 	}
2270 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2271 }
2272 
2273 /*
2274  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2275  * partial page slot if available.
2276  *
2277  * If we did not find a slot then simply move all the partials to the
2278  * per node partial list.
2279  */
2280 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2281 {
2282 #ifdef CONFIG_SLUB_CPU_PARTIAL
2283 	struct page *oldpage;
2284 	int pages;
2285 	int pobjects;
2286 
2287 	preempt_disable();
2288 	do {
2289 		pages = 0;
2290 		pobjects = 0;
2291 		oldpage = this_cpu_read(s->cpu_slab->partial);
2292 
2293 		if (oldpage) {
2294 			pobjects = oldpage->pobjects;
2295 			pages = oldpage->pages;
2296 			if (drain && pobjects > slub_cpu_partial(s)) {
2297 				unsigned long flags;
2298 				/*
2299 				 * partial array is full. Move the existing
2300 				 * set to the per node partial list.
2301 				 */
2302 				local_irq_save(flags);
2303 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2304 				local_irq_restore(flags);
2305 				oldpage = NULL;
2306 				pobjects = 0;
2307 				pages = 0;
2308 				stat(s, CPU_PARTIAL_DRAIN);
2309 			}
2310 		}
2311 
2312 		pages++;
2313 		pobjects += page->objects - page->inuse;
2314 
2315 		page->pages = pages;
2316 		page->pobjects = pobjects;
2317 		page->next = oldpage;
2318 
2319 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2320 								!= oldpage);
2321 	if (unlikely(!slub_cpu_partial(s))) {
2322 		unsigned long flags;
2323 
2324 		local_irq_save(flags);
2325 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2326 		local_irq_restore(flags);
2327 	}
2328 	preempt_enable();
2329 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2330 }
2331 
2332 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2333 {
2334 	stat(s, CPUSLAB_FLUSH);
2335 	deactivate_slab(s, c->page, c->freelist, c);
2336 
2337 	c->tid = next_tid(c->tid);
2338 }
2339 
2340 /*
2341  * Flush cpu slab.
2342  *
2343  * Called from IPI handler with interrupts disabled.
2344  */
2345 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2346 {
2347 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2348 
2349 	if (c->page)
2350 		flush_slab(s, c);
2351 
2352 	unfreeze_partials(s, c);
2353 }
2354 
2355 static void flush_cpu_slab(void *d)
2356 {
2357 	struct kmem_cache *s = d;
2358 
2359 	__flush_cpu_slab(s, smp_processor_id());
2360 }
2361 
2362 static bool has_cpu_slab(int cpu, void *info)
2363 {
2364 	struct kmem_cache *s = info;
2365 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2366 
2367 	return c->page || slub_percpu_partial(c);
2368 }
2369 
2370 static void flush_all(struct kmem_cache *s)
2371 {
2372 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2373 }
2374 
2375 /*
2376  * Use the cpu notifier to insure that the cpu slabs are flushed when
2377  * necessary.
2378  */
2379 static int slub_cpu_dead(unsigned int cpu)
2380 {
2381 	struct kmem_cache *s;
2382 	unsigned long flags;
2383 
2384 	mutex_lock(&slab_mutex);
2385 	list_for_each_entry(s, &slab_caches, list) {
2386 		local_irq_save(flags);
2387 		__flush_cpu_slab(s, cpu);
2388 		local_irq_restore(flags);
2389 	}
2390 	mutex_unlock(&slab_mutex);
2391 	return 0;
2392 }
2393 
2394 /*
2395  * Check if the objects in a per cpu structure fit numa
2396  * locality expectations.
2397  */
2398 static inline int node_match(struct page *page, int node)
2399 {
2400 #ifdef CONFIG_NUMA
2401 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2402 		return 0;
2403 #endif
2404 	return 1;
2405 }
2406 
2407 #ifdef CONFIG_SLUB_DEBUG
2408 static int count_free(struct page *page)
2409 {
2410 	return page->objects - page->inuse;
2411 }
2412 
2413 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2414 {
2415 	return atomic_long_read(&n->total_objects);
2416 }
2417 #endif /* CONFIG_SLUB_DEBUG */
2418 
2419 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2420 static unsigned long count_partial(struct kmem_cache_node *n,
2421 					int (*get_count)(struct page *))
2422 {
2423 	unsigned long flags;
2424 	unsigned long x = 0;
2425 	struct page *page;
2426 
2427 	spin_lock_irqsave(&n->list_lock, flags);
2428 	list_for_each_entry(page, &n->partial, slab_list)
2429 		x += get_count(page);
2430 	spin_unlock_irqrestore(&n->list_lock, flags);
2431 	return x;
2432 }
2433 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2434 
2435 static noinline void
2436 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2437 {
2438 #ifdef CONFIG_SLUB_DEBUG
2439 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2440 				      DEFAULT_RATELIMIT_BURST);
2441 	int node;
2442 	struct kmem_cache_node *n;
2443 
2444 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2445 		return;
2446 
2447 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2448 		nid, gfpflags, &gfpflags);
2449 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2450 		s->name, s->object_size, s->size, oo_order(s->oo),
2451 		oo_order(s->min));
2452 
2453 	if (oo_order(s->min) > get_order(s->object_size))
2454 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2455 			s->name);
2456 
2457 	for_each_kmem_cache_node(s, node, n) {
2458 		unsigned long nr_slabs;
2459 		unsigned long nr_objs;
2460 		unsigned long nr_free;
2461 
2462 		nr_free  = count_partial(n, count_free);
2463 		nr_slabs = node_nr_slabs(n);
2464 		nr_objs  = node_nr_objs(n);
2465 
2466 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2467 			node, nr_slabs, nr_objs, nr_free);
2468 	}
2469 #endif
2470 }
2471 
2472 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2473 			int node, struct kmem_cache_cpu **pc)
2474 {
2475 	void *freelist;
2476 	struct kmem_cache_cpu *c = *pc;
2477 	struct page *page;
2478 
2479 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2480 
2481 	freelist = get_partial(s, flags, node, c);
2482 
2483 	if (freelist)
2484 		return freelist;
2485 
2486 	page = new_slab(s, flags, node);
2487 	if (page) {
2488 		c = raw_cpu_ptr(s->cpu_slab);
2489 		if (c->page)
2490 			flush_slab(s, c);
2491 
2492 		/*
2493 		 * No other reference to the page yet so we can
2494 		 * muck around with it freely without cmpxchg
2495 		 */
2496 		freelist = page->freelist;
2497 		page->freelist = NULL;
2498 
2499 		stat(s, ALLOC_SLAB);
2500 		c->page = page;
2501 		*pc = c;
2502 	}
2503 
2504 	return freelist;
2505 }
2506 
2507 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2508 {
2509 	if (unlikely(PageSlabPfmemalloc(page)))
2510 		return gfp_pfmemalloc_allowed(gfpflags);
2511 
2512 	return true;
2513 }
2514 
2515 /*
2516  * Check the page->freelist of a page and either transfer the freelist to the
2517  * per cpu freelist or deactivate the page.
2518  *
2519  * The page is still frozen if the return value is not NULL.
2520  *
2521  * If this function returns NULL then the page has been unfrozen.
2522  *
2523  * This function must be called with interrupt disabled.
2524  */
2525 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2526 {
2527 	struct page new;
2528 	unsigned long counters;
2529 	void *freelist;
2530 
2531 	do {
2532 		freelist = page->freelist;
2533 		counters = page->counters;
2534 
2535 		new.counters = counters;
2536 		VM_BUG_ON(!new.frozen);
2537 
2538 		new.inuse = page->objects;
2539 		new.frozen = freelist != NULL;
2540 
2541 	} while (!__cmpxchg_double_slab(s, page,
2542 		freelist, counters,
2543 		NULL, new.counters,
2544 		"get_freelist"));
2545 
2546 	return freelist;
2547 }
2548 
2549 /*
2550  * Slow path. The lockless freelist is empty or we need to perform
2551  * debugging duties.
2552  *
2553  * Processing is still very fast if new objects have been freed to the
2554  * regular freelist. In that case we simply take over the regular freelist
2555  * as the lockless freelist and zap the regular freelist.
2556  *
2557  * If that is not working then we fall back to the partial lists. We take the
2558  * first element of the freelist as the object to allocate now and move the
2559  * rest of the freelist to the lockless freelist.
2560  *
2561  * And if we were unable to get a new slab from the partial slab lists then
2562  * we need to allocate a new slab. This is the slowest path since it involves
2563  * a call to the page allocator and the setup of a new slab.
2564  *
2565  * Version of __slab_alloc to use when we know that interrupts are
2566  * already disabled (which is the case for bulk allocation).
2567  */
2568 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2569 			  unsigned long addr, struct kmem_cache_cpu *c)
2570 {
2571 	void *freelist;
2572 	struct page *page;
2573 
2574 	page = c->page;
2575 	if (!page) {
2576 		/*
2577 		 * if the node is not online or has no normal memory, just
2578 		 * ignore the node constraint
2579 		 */
2580 		if (unlikely(node != NUMA_NO_NODE &&
2581 			     !node_state(node, N_NORMAL_MEMORY)))
2582 			node = NUMA_NO_NODE;
2583 		goto new_slab;
2584 	}
2585 redo:
2586 
2587 	if (unlikely(!node_match(page, node))) {
2588 		/*
2589 		 * same as above but node_match() being false already
2590 		 * implies node != NUMA_NO_NODE
2591 		 */
2592 		if (!node_state(node, N_NORMAL_MEMORY)) {
2593 			node = NUMA_NO_NODE;
2594 			goto redo;
2595 		} else {
2596 			stat(s, ALLOC_NODE_MISMATCH);
2597 			deactivate_slab(s, page, c->freelist, c);
2598 			goto new_slab;
2599 		}
2600 	}
2601 
2602 	/*
2603 	 * By rights, we should be searching for a slab page that was
2604 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2605 	 * information when the page leaves the per-cpu allocator
2606 	 */
2607 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2608 		deactivate_slab(s, page, c->freelist, c);
2609 		goto new_slab;
2610 	}
2611 
2612 	/* must check again c->freelist in case of cpu migration or IRQ */
2613 	freelist = c->freelist;
2614 	if (freelist)
2615 		goto load_freelist;
2616 
2617 	freelist = get_freelist(s, page);
2618 
2619 	if (!freelist) {
2620 		c->page = NULL;
2621 		stat(s, DEACTIVATE_BYPASS);
2622 		goto new_slab;
2623 	}
2624 
2625 	stat(s, ALLOC_REFILL);
2626 
2627 load_freelist:
2628 	/*
2629 	 * freelist is pointing to the list of objects to be used.
2630 	 * page is pointing to the page from which the objects are obtained.
2631 	 * That page must be frozen for per cpu allocations to work.
2632 	 */
2633 	VM_BUG_ON(!c->page->frozen);
2634 	c->freelist = get_freepointer(s, freelist);
2635 	c->tid = next_tid(c->tid);
2636 	return freelist;
2637 
2638 new_slab:
2639 
2640 	if (slub_percpu_partial(c)) {
2641 		page = c->page = slub_percpu_partial(c);
2642 		slub_set_percpu_partial(c, page);
2643 		stat(s, CPU_PARTIAL_ALLOC);
2644 		goto redo;
2645 	}
2646 
2647 	freelist = new_slab_objects(s, gfpflags, node, &c);
2648 
2649 	if (unlikely(!freelist)) {
2650 		slab_out_of_memory(s, gfpflags, node);
2651 		return NULL;
2652 	}
2653 
2654 	page = c->page;
2655 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2656 		goto load_freelist;
2657 
2658 	/* Only entered in the debug case */
2659 	if (kmem_cache_debug(s) &&
2660 			!alloc_debug_processing(s, page, freelist, addr))
2661 		goto new_slab;	/* Slab failed checks. Next slab needed */
2662 
2663 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2664 	return freelist;
2665 }
2666 
2667 /*
2668  * Another one that disabled interrupt and compensates for possible
2669  * cpu changes by refetching the per cpu area pointer.
2670  */
2671 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2672 			  unsigned long addr, struct kmem_cache_cpu *c)
2673 {
2674 	void *p;
2675 	unsigned long flags;
2676 
2677 	local_irq_save(flags);
2678 #ifdef CONFIG_PREEMPTION
2679 	/*
2680 	 * We may have been preempted and rescheduled on a different
2681 	 * cpu before disabling interrupts. Need to reload cpu area
2682 	 * pointer.
2683 	 */
2684 	c = this_cpu_ptr(s->cpu_slab);
2685 #endif
2686 
2687 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2688 	local_irq_restore(flags);
2689 	return p;
2690 }
2691 
2692 /*
2693  * If the object has been wiped upon free, make sure it's fully initialized by
2694  * zeroing out freelist pointer.
2695  */
2696 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2697 						   void *obj)
2698 {
2699 	if (unlikely(slab_want_init_on_free(s)) && obj)
2700 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2701 }
2702 
2703 /*
2704  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2705  * have the fastpath folded into their functions. So no function call
2706  * overhead for requests that can be satisfied on the fastpath.
2707  *
2708  * The fastpath works by first checking if the lockless freelist can be used.
2709  * If not then __slab_alloc is called for slow processing.
2710  *
2711  * Otherwise we can simply pick the next object from the lockless free list.
2712  */
2713 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2714 		gfp_t gfpflags, int node, unsigned long addr)
2715 {
2716 	void *object;
2717 	struct kmem_cache_cpu *c;
2718 	struct page *page;
2719 	unsigned long tid;
2720 
2721 	s = slab_pre_alloc_hook(s, gfpflags);
2722 	if (!s)
2723 		return NULL;
2724 redo:
2725 	/*
2726 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2727 	 * enabled. We may switch back and forth between cpus while
2728 	 * reading from one cpu area. That does not matter as long
2729 	 * as we end up on the original cpu again when doing the cmpxchg.
2730 	 *
2731 	 * We should guarantee that tid and kmem_cache are retrieved on
2732 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2733 	 * to check if it is matched or not.
2734 	 */
2735 	do {
2736 		tid = this_cpu_read(s->cpu_slab->tid);
2737 		c = raw_cpu_ptr(s->cpu_slab);
2738 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2739 		 unlikely(tid != READ_ONCE(c->tid)));
2740 
2741 	/*
2742 	 * Irqless object alloc/free algorithm used here depends on sequence
2743 	 * of fetching cpu_slab's data. tid should be fetched before anything
2744 	 * on c to guarantee that object and page associated with previous tid
2745 	 * won't be used with current tid. If we fetch tid first, object and
2746 	 * page could be one associated with next tid and our alloc/free
2747 	 * request will be failed. In this case, we will retry. So, no problem.
2748 	 */
2749 	barrier();
2750 
2751 	/*
2752 	 * The transaction ids are globally unique per cpu and per operation on
2753 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2754 	 * occurs on the right processor and that there was no operation on the
2755 	 * linked list in between.
2756 	 */
2757 
2758 	object = c->freelist;
2759 	page = c->page;
2760 	if (unlikely(!object || !node_match(page, node))) {
2761 		object = __slab_alloc(s, gfpflags, node, addr, c);
2762 		stat(s, ALLOC_SLOWPATH);
2763 	} else {
2764 		void *next_object = get_freepointer_safe(s, object);
2765 
2766 		/*
2767 		 * The cmpxchg will only match if there was no additional
2768 		 * operation and if we are on the right processor.
2769 		 *
2770 		 * The cmpxchg does the following atomically (without lock
2771 		 * semantics!)
2772 		 * 1. Relocate first pointer to the current per cpu area.
2773 		 * 2. Verify that tid and freelist have not been changed
2774 		 * 3. If they were not changed replace tid and freelist
2775 		 *
2776 		 * Since this is without lock semantics the protection is only
2777 		 * against code executing on this cpu *not* from access by
2778 		 * other cpus.
2779 		 */
2780 		if (unlikely(!this_cpu_cmpxchg_double(
2781 				s->cpu_slab->freelist, s->cpu_slab->tid,
2782 				object, tid,
2783 				next_object, next_tid(tid)))) {
2784 
2785 			note_cmpxchg_failure("slab_alloc", s, tid);
2786 			goto redo;
2787 		}
2788 		prefetch_freepointer(s, next_object);
2789 		stat(s, ALLOC_FASTPATH);
2790 	}
2791 
2792 	maybe_wipe_obj_freeptr(s, object);
2793 
2794 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2795 		memset(object, 0, s->object_size);
2796 
2797 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2798 
2799 	return object;
2800 }
2801 
2802 static __always_inline void *slab_alloc(struct kmem_cache *s,
2803 		gfp_t gfpflags, unsigned long addr)
2804 {
2805 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2806 }
2807 
2808 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2809 {
2810 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2811 
2812 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2813 				s->size, gfpflags);
2814 
2815 	return ret;
2816 }
2817 EXPORT_SYMBOL(kmem_cache_alloc);
2818 
2819 #ifdef CONFIG_TRACING
2820 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2821 {
2822 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2823 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2824 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2825 	return ret;
2826 }
2827 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2828 #endif
2829 
2830 #ifdef CONFIG_NUMA
2831 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2832 {
2833 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2834 
2835 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2836 				    s->object_size, s->size, gfpflags, node);
2837 
2838 	return ret;
2839 }
2840 EXPORT_SYMBOL(kmem_cache_alloc_node);
2841 
2842 #ifdef CONFIG_TRACING
2843 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2844 				    gfp_t gfpflags,
2845 				    int node, size_t size)
2846 {
2847 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2848 
2849 	trace_kmalloc_node(_RET_IP_, ret,
2850 			   size, s->size, gfpflags, node);
2851 
2852 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2853 	return ret;
2854 }
2855 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2856 #endif
2857 #endif	/* CONFIG_NUMA */
2858 
2859 /*
2860  * Slow path handling. This may still be called frequently since objects
2861  * have a longer lifetime than the cpu slabs in most processing loads.
2862  *
2863  * So we still attempt to reduce cache line usage. Just take the slab
2864  * lock and free the item. If there is no additional partial page
2865  * handling required then we can return immediately.
2866  */
2867 static void __slab_free(struct kmem_cache *s, struct page *page,
2868 			void *head, void *tail, int cnt,
2869 			unsigned long addr)
2870 
2871 {
2872 	void *prior;
2873 	int was_frozen;
2874 	struct page new;
2875 	unsigned long counters;
2876 	struct kmem_cache_node *n = NULL;
2877 	unsigned long uninitialized_var(flags);
2878 
2879 	stat(s, FREE_SLOWPATH);
2880 
2881 	if (kmem_cache_debug(s) &&
2882 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2883 		return;
2884 
2885 	do {
2886 		if (unlikely(n)) {
2887 			spin_unlock_irqrestore(&n->list_lock, flags);
2888 			n = NULL;
2889 		}
2890 		prior = page->freelist;
2891 		counters = page->counters;
2892 		set_freepointer(s, tail, prior);
2893 		new.counters = counters;
2894 		was_frozen = new.frozen;
2895 		new.inuse -= cnt;
2896 		if ((!new.inuse || !prior) && !was_frozen) {
2897 
2898 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2899 
2900 				/*
2901 				 * Slab was on no list before and will be
2902 				 * partially empty
2903 				 * We can defer the list move and instead
2904 				 * freeze it.
2905 				 */
2906 				new.frozen = 1;
2907 
2908 			} else { /* Needs to be taken off a list */
2909 
2910 				n = get_node(s, page_to_nid(page));
2911 				/*
2912 				 * Speculatively acquire the list_lock.
2913 				 * If the cmpxchg does not succeed then we may
2914 				 * drop the list_lock without any processing.
2915 				 *
2916 				 * Otherwise the list_lock will synchronize with
2917 				 * other processors updating the list of slabs.
2918 				 */
2919 				spin_lock_irqsave(&n->list_lock, flags);
2920 
2921 			}
2922 		}
2923 
2924 	} while (!cmpxchg_double_slab(s, page,
2925 		prior, counters,
2926 		head, new.counters,
2927 		"__slab_free"));
2928 
2929 	if (likely(!n)) {
2930 
2931 		/*
2932 		 * If we just froze the page then put it onto the
2933 		 * per cpu partial list.
2934 		 */
2935 		if (new.frozen && !was_frozen) {
2936 			put_cpu_partial(s, page, 1);
2937 			stat(s, CPU_PARTIAL_FREE);
2938 		}
2939 		/*
2940 		 * The list lock was not taken therefore no list
2941 		 * activity can be necessary.
2942 		 */
2943 		if (was_frozen)
2944 			stat(s, FREE_FROZEN);
2945 		return;
2946 	}
2947 
2948 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2949 		goto slab_empty;
2950 
2951 	/*
2952 	 * Objects left in the slab. If it was not on the partial list before
2953 	 * then add it.
2954 	 */
2955 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2956 		remove_full(s, n, page);
2957 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2958 		stat(s, FREE_ADD_PARTIAL);
2959 	}
2960 	spin_unlock_irqrestore(&n->list_lock, flags);
2961 	return;
2962 
2963 slab_empty:
2964 	if (prior) {
2965 		/*
2966 		 * Slab on the partial list.
2967 		 */
2968 		remove_partial(n, page);
2969 		stat(s, FREE_REMOVE_PARTIAL);
2970 	} else {
2971 		/* Slab must be on the full list */
2972 		remove_full(s, n, page);
2973 	}
2974 
2975 	spin_unlock_irqrestore(&n->list_lock, flags);
2976 	stat(s, FREE_SLAB);
2977 	discard_slab(s, page);
2978 }
2979 
2980 /*
2981  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2982  * can perform fastpath freeing without additional function calls.
2983  *
2984  * The fastpath is only possible if we are freeing to the current cpu slab
2985  * of this processor. This typically the case if we have just allocated
2986  * the item before.
2987  *
2988  * If fastpath is not possible then fall back to __slab_free where we deal
2989  * with all sorts of special processing.
2990  *
2991  * Bulk free of a freelist with several objects (all pointing to the
2992  * same page) possible by specifying head and tail ptr, plus objects
2993  * count (cnt). Bulk free indicated by tail pointer being set.
2994  */
2995 static __always_inline void do_slab_free(struct kmem_cache *s,
2996 				struct page *page, void *head, void *tail,
2997 				int cnt, unsigned long addr)
2998 {
2999 	void *tail_obj = tail ? : head;
3000 	struct kmem_cache_cpu *c;
3001 	unsigned long tid;
3002 redo:
3003 	/*
3004 	 * Determine the currently cpus per cpu slab.
3005 	 * The cpu may change afterward. However that does not matter since
3006 	 * data is retrieved via this pointer. If we are on the same cpu
3007 	 * during the cmpxchg then the free will succeed.
3008 	 */
3009 	do {
3010 		tid = this_cpu_read(s->cpu_slab->tid);
3011 		c = raw_cpu_ptr(s->cpu_slab);
3012 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3013 		 unlikely(tid != READ_ONCE(c->tid)));
3014 
3015 	/* Same with comment on barrier() in slab_alloc_node() */
3016 	barrier();
3017 
3018 	if (likely(page == c->page)) {
3019 		void **freelist = READ_ONCE(c->freelist);
3020 
3021 		set_freepointer(s, tail_obj, freelist);
3022 
3023 		if (unlikely(!this_cpu_cmpxchg_double(
3024 				s->cpu_slab->freelist, s->cpu_slab->tid,
3025 				freelist, tid,
3026 				head, next_tid(tid)))) {
3027 
3028 			note_cmpxchg_failure("slab_free", s, tid);
3029 			goto redo;
3030 		}
3031 		stat(s, FREE_FASTPATH);
3032 	} else
3033 		__slab_free(s, page, head, tail_obj, cnt, addr);
3034 
3035 }
3036 
3037 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3038 				      void *head, void *tail, int cnt,
3039 				      unsigned long addr)
3040 {
3041 	/*
3042 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3043 	 * to remove objects, whose reuse must be delayed.
3044 	 */
3045 	if (slab_free_freelist_hook(s, &head, &tail))
3046 		do_slab_free(s, page, head, tail, cnt, addr);
3047 }
3048 
3049 #ifdef CONFIG_KASAN_GENERIC
3050 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3051 {
3052 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3053 }
3054 #endif
3055 
3056 void kmem_cache_free(struct kmem_cache *s, void *x)
3057 {
3058 	s = cache_from_obj(s, x);
3059 	if (!s)
3060 		return;
3061 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3062 	trace_kmem_cache_free(_RET_IP_, x);
3063 }
3064 EXPORT_SYMBOL(kmem_cache_free);
3065 
3066 struct detached_freelist {
3067 	struct page *page;
3068 	void *tail;
3069 	void *freelist;
3070 	int cnt;
3071 	struct kmem_cache *s;
3072 };
3073 
3074 /*
3075  * This function progressively scans the array with free objects (with
3076  * a limited look ahead) and extract objects belonging to the same
3077  * page.  It builds a detached freelist directly within the given
3078  * page/objects.  This can happen without any need for
3079  * synchronization, because the objects are owned by running process.
3080  * The freelist is build up as a single linked list in the objects.
3081  * The idea is, that this detached freelist can then be bulk
3082  * transferred to the real freelist(s), but only requiring a single
3083  * synchronization primitive.  Look ahead in the array is limited due
3084  * to performance reasons.
3085  */
3086 static inline
3087 int build_detached_freelist(struct kmem_cache *s, size_t size,
3088 			    void **p, struct detached_freelist *df)
3089 {
3090 	size_t first_skipped_index = 0;
3091 	int lookahead = 3;
3092 	void *object;
3093 	struct page *page;
3094 
3095 	/* Always re-init detached_freelist */
3096 	df->page = NULL;
3097 
3098 	do {
3099 		object = p[--size];
3100 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3101 	} while (!object && size);
3102 
3103 	if (!object)
3104 		return 0;
3105 
3106 	page = virt_to_head_page(object);
3107 	if (!s) {
3108 		/* Handle kalloc'ed objects */
3109 		if (unlikely(!PageSlab(page))) {
3110 			BUG_ON(!PageCompound(page));
3111 			kfree_hook(object);
3112 			__free_pages(page, compound_order(page));
3113 			p[size] = NULL; /* mark object processed */
3114 			return size;
3115 		}
3116 		/* Derive kmem_cache from object */
3117 		df->s = page->slab_cache;
3118 	} else {
3119 		df->s = cache_from_obj(s, object); /* Support for memcg */
3120 	}
3121 
3122 	/* Start new detached freelist */
3123 	df->page = page;
3124 	set_freepointer(df->s, object, NULL);
3125 	df->tail = object;
3126 	df->freelist = object;
3127 	p[size] = NULL; /* mark object processed */
3128 	df->cnt = 1;
3129 
3130 	while (size) {
3131 		object = p[--size];
3132 		if (!object)
3133 			continue; /* Skip processed objects */
3134 
3135 		/* df->page is always set at this point */
3136 		if (df->page == virt_to_head_page(object)) {
3137 			/* Opportunity build freelist */
3138 			set_freepointer(df->s, object, df->freelist);
3139 			df->freelist = object;
3140 			df->cnt++;
3141 			p[size] = NULL; /* mark object processed */
3142 
3143 			continue;
3144 		}
3145 
3146 		/* Limit look ahead search */
3147 		if (!--lookahead)
3148 			break;
3149 
3150 		if (!first_skipped_index)
3151 			first_skipped_index = size + 1;
3152 	}
3153 
3154 	return first_skipped_index;
3155 }
3156 
3157 /* Note that interrupts must be enabled when calling this function. */
3158 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3159 {
3160 	if (WARN_ON(!size))
3161 		return;
3162 
3163 	do {
3164 		struct detached_freelist df;
3165 
3166 		size = build_detached_freelist(s, size, p, &df);
3167 		if (!df.page)
3168 			continue;
3169 
3170 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3171 	} while (likely(size));
3172 }
3173 EXPORT_SYMBOL(kmem_cache_free_bulk);
3174 
3175 /* Note that interrupts must be enabled when calling this function. */
3176 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3177 			  void **p)
3178 {
3179 	struct kmem_cache_cpu *c;
3180 	int i;
3181 
3182 	/* memcg and kmem_cache debug support */
3183 	s = slab_pre_alloc_hook(s, flags);
3184 	if (unlikely(!s))
3185 		return false;
3186 	/*
3187 	 * Drain objects in the per cpu slab, while disabling local
3188 	 * IRQs, which protects against PREEMPT and interrupts
3189 	 * handlers invoking normal fastpath.
3190 	 */
3191 	local_irq_disable();
3192 	c = this_cpu_ptr(s->cpu_slab);
3193 
3194 	for (i = 0; i < size; i++) {
3195 		void *object = c->freelist;
3196 
3197 		if (unlikely(!object)) {
3198 			/*
3199 			 * We may have removed an object from c->freelist using
3200 			 * the fastpath in the previous iteration; in that case,
3201 			 * c->tid has not been bumped yet.
3202 			 * Since ___slab_alloc() may reenable interrupts while
3203 			 * allocating memory, we should bump c->tid now.
3204 			 */
3205 			c->tid = next_tid(c->tid);
3206 
3207 			/*
3208 			 * Invoking slow path likely have side-effect
3209 			 * of re-populating per CPU c->freelist
3210 			 */
3211 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3212 					    _RET_IP_, c);
3213 			if (unlikely(!p[i]))
3214 				goto error;
3215 
3216 			c = this_cpu_ptr(s->cpu_slab);
3217 			maybe_wipe_obj_freeptr(s, p[i]);
3218 
3219 			continue; /* goto for-loop */
3220 		}
3221 		c->freelist = get_freepointer(s, object);
3222 		p[i] = object;
3223 		maybe_wipe_obj_freeptr(s, p[i]);
3224 	}
3225 	c->tid = next_tid(c->tid);
3226 	local_irq_enable();
3227 
3228 	/* Clear memory outside IRQ disabled fastpath loop */
3229 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3230 		int j;
3231 
3232 		for (j = 0; j < i; j++)
3233 			memset(p[j], 0, s->object_size);
3234 	}
3235 
3236 	/* memcg and kmem_cache debug support */
3237 	slab_post_alloc_hook(s, flags, size, p);
3238 	return i;
3239 error:
3240 	local_irq_enable();
3241 	slab_post_alloc_hook(s, flags, i, p);
3242 	__kmem_cache_free_bulk(s, i, p);
3243 	return 0;
3244 }
3245 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3246 
3247 
3248 /*
3249  * Object placement in a slab is made very easy because we always start at
3250  * offset 0. If we tune the size of the object to the alignment then we can
3251  * get the required alignment by putting one properly sized object after
3252  * another.
3253  *
3254  * Notice that the allocation order determines the sizes of the per cpu
3255  * caches. Each processor has always one slab available for allocations.
3256  * Increasing the allocation order reduces the number of times that slabs
3257  * must be moved on and off the partial lists and is therefore a factor in
3258  * locking overhead.
3259  */
3260 
3261 /*
3262  * Mininum / Maximum order of slab pages. This influences locking overhead
3263  * and slab fragmentation. A higher order reduces the number of partial slabs
3264  * and increases the number of allocations possible without having to
3265  * take the list_lock.
3266  */
3267 static unsigned int slub_min_order;
3268 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3269 static unsigned int slub_min_objects;
3270 
3271 /*
3272  * Calculate the order of allocation given an slab object size.
3273  *
3274  * The order of allocation has significant impact on performance and other
3275  * system components. Generally order 0 allocations should be preferred since
3276  * order 0 does not cause fragmentation in the page allocator. Larger objects
3277  * be problematic to put into order 0 slabs because there may be too much
3278  * unused space left. We go to a higher order if more than 1/16th of the slab
3279  * would be wasted.
3280  *
3281  * In order to reach satisfactory performance we must ensure that a minimum
3282  * number of objects is in one slab. Otherwise we may generate too much
3283  * activity on the partial lists which requires taking the list_lock. This is
3284  * less a concern for large slabs though which are rarely used.
3285  *
3286  * slub_max_order specifies the order where we begin to stop considering the
3287  * number of objects in a slab as critical. If we reach slub_max_order then
3288  * we try to keep the page order as low as possible. So we accept more waste
3289  * of space in favor of a small page order.
3290  *
3291  * Higher order allocations also allow the placement of more objects in a
3292  * slab and thereby reduce object handling overhead. If the user has
3293  * requested a higher mininum order then we start with that one instead of
3294  * the smallest order which will fit the object.
3295  */
3296 static inline unsigned int slab_order(unsigned int size,
3297 		unsigned int min_objects, unsigned int max_order,
3298 		unsigned int fract_leftover)
3299 {
3300 	unsigned int min_order = slub_min_order;
3301 	unsigned int order;
3302 
3303 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3304 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3305 
3306 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3307 			order <= max_order; order++) {
3308 
3309 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3310 		unsigned int rem;
3311 
3312 		rem = slab_size % size;
3313 
3314 		if (rem <= slab_size / fract_leftover)
3315 			break;
3316 	}
3317 
3318 	return order;
3319 }
3320 
3321 static inline int calculate_order(unsigned int size)
3322 {
3323 	unsigned int order;
3324 	unsigned int min_objects;
3325 	unsigned int max_objects;
3326 
3327 	/*
3328 	 * Attempt to find best configuration for a slab. This
3329 	 * works by first attempting to generate a layout with
3330 	 * the best configuration and backing off gradually.
3331 	 *
3332 	 * First we increase the acceptable waste in a slab. Then
3333 	 * we reduce the minimum objects required in a slab.
3334 	 */
3335 	min_objects = slub_min_objects;
3336 	if (!min_objects)
3337 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3338 	max_objects = order_objects(slub_max_order, size);
3339 	min_objects = min(min_objects, max_objects);
3340 
3341 	while (min_objects > 1) {
3342 		unsigned int fraction;
3343 
3344 		fraction = 16;
3345 		while (fraction >= 4) {
3346 			order = slab_order(size, min_objects,
3347 					slub_max_order, fraction);
3348 			if (order <= slub_max_order)
3349 				return order;
3350 			fraction /= 2;
3351 		}
3352 		min_objects--;
3353 	}
3354 
3355 	/*
3356 	 * We were unable to place multiple objects in a slab. Now
3357 	 * lets see if we can place a single object there.
3358 	 */
3359 	order = slab_order(size, 1, slub_max_order, 1);
3360 	if (order <= slub_max_order)
3361 		return order;
3362 
3363 	/*
3364 	 * Doh this slab cannot be placed using slub_max_order.
3365 	 */
3366 	order = slab_order(size, 1, MAX_ORDER, 1);
3367 	if (order < MAX_ORDER)
3368 		return order;
3369 	return -ENOSYS;
3370 }
3371 
3372 static void
3373 init_kmem_cache_node(struct kmem_cache_node *n)
3374 {
3375 	n->nr_partial = 0;
3376 	spin_lock_init(&n->list_lock);
3377 	INIT_LIST_HEAD(&n->partial);
3378 #ifdef CONFIG_SLUB_DEBUG
3379 	atomic_long_set(&n->nr_slabs, 0);
3380 	atomic_long_set(&n->total_objects, 0);
3381 	INIT_LIST_HEAD(&n->full);
3382 #endif
3383 }
3384 
3385 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3386 {
3387 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3388 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3389 
3390 	/*
3391 	 * Must align to double word boundary for the double cmpxchg
3392 	 * instructions to work; see __pcpu_double_call_return_bool().
3393 	 */
3394 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3395 				     2 * sizeof(void *));
3396 
3397 	if (!s->cpu_slab)
3398 		return 0;
3399 
3400 	init_kmem_cache_cpus(s);
3401 
3402 	return 1;
3403 }
3404 
3405 static struct kmem_cache *kmem_cache_node;
3406 
3407 /*
3408  * No kmalloc_node yet so do it by hand. We know that this is the first
3409  * slab on the node for this slabcache. There are no concurrent accesses
3410  * possible.
3411  *
3412  * Note that this function only works on the kmem_cache_node
3413  * when allocating for the kmem_cache_node. This is used for bootstrapping
3414  * memory on a fresh node that has no slab structures yet.
3415  */
3416 static void early_kmem_cache_node_alloc(int node)
3417 {
3418 	struct page *page;
3419 	struct kmem_cache_node *n;
3420 
3421 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3422 
3423 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3424 
3425 	BUG_ON(!page);
3426 	if (page_to_nid(page) != node) {
3427 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3428 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3429 	}
3430 
3431 	n = page->freelist;
3432 	BUG_ON(!n);
3433 #ifdef CONFIG_SLUB_DEBUG
3434 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3435 	init_tracking(kmem_cache_node, n);
3436 #endif
3437 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3438 		      GFP_KERNEL);
3439 	page->freelist = get_freepointer(kmem_cache_node, n);
3440 	page->inuse = 1;
3441 	page->frozen = 0;
3442 	kmem_cache_node->node[node] = n;
3443 	init_kmem_cache_node(n);
3444 	inc_slabs_node(kmem_cache_node, node, page->objects);
3445 
3446 	/*
3447 	 * No locks need to be taken here as it has just been
3448 	 * initialized and there is no concurrent access.
3449 	 */
3450 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3451 }
3452 
3453 static void free_kmem_cache_nodes(struct kmem_cache *s)
3454 {
3455 	int node;
3456 	struct kmem_cache_node *n;
3457 
3458 	for_each_kmem_cache_node(s, node, n) {
3459 		s->node[node] = NULL;
3460 		kmem_cache_free(kmem_cache_node, n);
3461 	}
3462 }
3463 
3464 void __kmem_cache_release(struct kmem_cache *s)
3465 {
3466 	cache_random_seq_destroy(s);
3467 	free_percpu(s->cpu_slab);
3468 	free_kmem_cache_nodes(s);
3469 }
3470 
3471 static int init_kmem_cache_nodes(struct kmem_cache *s)
3472 {
3473 	int node;
3474 
3475 	for_each_node_state(node, N_NORMAL_MEMORY) {
3476 		struct kmem_cache_node *n;
3477 
3478 		if (slab_state == DOWN) {
3479 			early_kmem_cache_node_alloc(node);
3480 			continue;
3481 		}
3482 		n = kmem_cache_alloc_node(kmem_cache_node,
3483 						GFP_KERNEL, node);
3484 
3485 		if (!n) {
3486 			free_kmem_cache_nodes(s);
3487 			return 0;
3488 		}
3489 
3490 		init_kmem_cache_node(n);
3491 		s->node[node] = n;
3492 	}
3493 	return 1;
3494 }
3495 
3496 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3497 {
3498 	if (min < MIN_PARTIAL)
3499 		min = MIN_PARTIAL;
3500 	else if (min > MAX_PARTIAL)
3501 		min = MAX_PARTIAL;
3502 	s->min_partial = min;
3503 }
3504 
3505 static void set_cpu_partial(struct kmem_cache *s)
3506 {
3507 #ifdef CONFIG_SLUB_CPU_PARTIAL
3508 	/*
3509 	 * cpu_partial determined the maximum number of objects kept in the
3510 	 * per cpu partial lists of a processor.
3511 	 *
3512 	 * Per cpu partial lists mainly contain slabs that just have one
3513 	 * object freed. If they are used for allocation then they can be
3514 	 * filled up again with minimal effort. The slab will never hit the
3515 	 * per node partial lists and therefore no locking will be required.
3516 	 *
3517 	 * This setting also determines
3518 	 *
3519 	 * A) The number of objects from per cpu partial slabs dumped to the
3520 	 *    per node list when we reach the limit.
3521 	 * B) The number of objects in cpu partial slabs to extract from the
3522 	 *    per node list when we run out of per cpu objects. We only fetch
3523 	 *    50% to keep some capacity around for frees.
3524 	 */
3525 	if (!kmem_cache_has_cpu_partial(s))
3526 		slub_set_cpu_partial(s, 0);
3527 	else if (s->size >= PAGE_SIZE)
3528 		slub_set_cpu_partial(s, 2);
3529 	else if (s->size >= 1024)
3530 		slub_set_cpu_partial(s, 6);
3531 	else if (s->size >= 256)
3532 		slub_set_cpu_partial(s, 13);
3533 	else
3534 		slub_set_cpu_partial(s, 30);
3535 #endif
3536 }
3537 
3538 /*
3539  * calculate_sizes() determines the order and the distribution of data within
3540  * a slab object.
3541  */
3542 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3543 {
3544 	slab_flags_t flags = s->flags;
3545 	unsigned int size = s->object_size;
3546 	unsigned int freepointer_area;
3547 	unsigned int order;
3548 
3549 	/*
3550 	 * Round up object size to the next word boundary. We can only
3551 	 * place the free pointer at word boundaries and this determines
3552 	 * the possible location of the free pointer.
3553 	 */
3554 	size = ALIGN(size, sizeof(void *));
3555 	/*
3556 	 * This is the area of the object where a freepointer can be
3557 	 * safely written. If redzoning adds more to the inuse size, we
3558 	 * can't use that portion for writing the freepointer, so
3559 	 * s->offset must be limited within this for the general case.
3560 	 */
3561 	freepointer_area = size;
3562 
3563 #ifdef CONFIG_SLUB_DEBUG
3564 	/*
3565 	 * Determine if we can poison the object itself. If the user of
3566 	 * the slab may touch the object after free or before allocation
3567 	 * then we should never poison the object itself.
3568 	 */
3569 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3570 			!s->ctor)
3571 		s->flags |= __OBJECT_POISON;
3572 	else
3573 		s->flags &= ~__OBJECT_POISON;
3574 
3575 
3576 	/*
3577 	 * If we are Redzoning then check if there is some space between the
3578 	 * end of the object and the free pointer. If not then add an
3579 	 * additional word to have some bytes to store Redzone information.
3580 	 */
3581 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3582 		size += sizeof(void *);
3583 #endif
3584 
3585 	/*
3586 	 * With that we have determined the number of bytes in actual use
3587 	 * by the object. This is the potential offset to the free pointer.
3588 	 */
3589 	s->inuse = size;
3590 
3591 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3592 		s->ctor)) {
3593 		/*
3594 		 * Relocate free pointer after the object if it is not
3595 		 * permitted to overwrite the first word of the object on
3596 		 * kmem_cache_free.
3597 		 *
3598 		 * This is the case if we do RCU, have a constructor or
3599 		 * destructor or are poisoning the objects.
3600 		 *
3601 		 * The assumption that s->offset >= s->inuse means free
3602 		 * pointer is outside of the object is used in the
3603 		 * freeptr_outside_object() function. If that is no
3604 		 * longer true, the function needs to be modified.
3605 		 */
3606 		s->offset = size;
3607 		size += sizeof(void *);
3608 	} else if (freepointer_area > sizeof(void *)) {
3609 		/*
3610 		 * Store freelist pointer near middle of object to keep
3611 		 * it away from the edges of the object to avoid small
3612 		 * sized over/underflows from neighboring allocations.
3613 		 */
3614 		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3615 	}
3616 
3617 #ifdef CONFIG_SLUB_DEBUG
3618 	if (flags & SLAB_STORE_USER)
3619 		/*
3620 		 * Need to store information about allocs and frees after
3621 		 * the object.
3622 		 */
3623 		size += 2 * sizeof(struct track);
3624 #endif
3625 
3626 	kasan_cache_create(s, &size, &s->flags);
3627 #ifdef CONFIG_SLUB_DEBUG
3628 	if (flags & SLAB_RED_ZONE) {
3629 		/*
3630 		 * Add some empty padding so that we can catch
3631 		 * overwrites from earlier objects rather than let
3632 		 * tracking information or the free pointer be
3633 		 * corrupted if a user writes before the start
3634 		 * of the object.
3635 		 */
3636 		size += sizeof(void *);
3637 
3638 		s->red_left_pad = sizeof(void *);
3639 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3640 		size += s->red_left_pad;
3641 	}
3642 #endif
3643 
3644 	/*
3645 	 * SLUB stores one object immediately after another beginning from
3646 	 * offset 0. In order to align the objects we have to simply size
3647 	 * each object to conform to the alignment.
3648 	 */
3649 	size = ALIGN(size, s->align);
3650 	s->size = size;
3651 	if (forced_order >= 0)
3652 		order = forced_order;
3653 	else
3654 		order = calculate_order(size);
3655 
3656 	if ((int)order < 0)
3657 		return 0;
3658 
3659 	s->allocflags = 0;
3660 	if (order)
3661 		s->allocflags |= __GFP_COMP;
3662 
3663 	if (s->flags & SLAB_CACHE_DMA)
3664 		s->allocflags |= GFP_DMA;
3665 
3666 	if (s->flags & SLAB_CACHE_DMA32)
3667 		s->allocflags |= GFP_DMA32;
3668 
3669 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3670 		s->allocflags |= __GFP_RECLAIMABLE;
3671 
3672 	/*
3673 	 * Determine the number of objects per slab
3674 	 */
3675 	s->oo = oo_make(order, size);
3676 	s->min = oo_make(get_order(size), size);
3677 	if (oo_objects(s->oo) > oo_objects(s->max))
3678 		s->max = s->oo;
3679 
3680 	return !!oo_objects(s->oo);
3681 }
3682 
3683 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3684 {
3685 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3686 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3687 	s->random = get_random_long();
3688 #endif
3689 
3690 	if (!calculate_sizes(s, -1))
3691 		goto error;
3692 	if (disable_higher_order_debug) {
3693 		/*
3694 		 * Disable debugging flags that store metadata if the min slab
3695 		 * order increased.
3696 		 */
3697 		if (get_order(s->size) > get_order(s->object_size)) {
3698 			s->flags &= ~DEBUG_METADATA_FLAGS;
3699 			s->offset = 0;
3700 			if (!calculate_sizes(s, -1))
3701 				goto error;
3702 		}
3703 	}
3704 
3705 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3706     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3707 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3708 		/* Enable fast mode */
3709 		s->flags |= __CMPXCHG_DOUBLE;
3710 #endif
3711 
3712 	/*
3713 	 * The larger the object size is, the more pages we want on the partial
3714 	 * list to avoid pounding the page allocator excessively.
3715 	 */
3716 	set_min_partial(s, ilog2(s->size) / 2);
3717 
3718 	set_cpu_partial(s);
3719 
3720 #ifdef CONFIG_NUMA
3721 	s->remote_node_defrag_ratio = 1000;
3722 #endif
3723 
3724 	/* Initialize the pre-computed randomized freelist if slab is up */
3725 	if (slab_state >= UP) {
3726 		if (init_cache_random_seq(s))
3727 			goto error;
3728 	}
3729 
3730 	if (!init_kmem_cache_nodes(s))
3731 		goto error;
3732 
3733 	if (alloc_kmem_cache_cpus(s))
3734 		return 0;
3735 
3736 	free_kmem_cache_nodes(s);
3737 error:
3738 	return -EINVAL;
3739 }
3740 
3741 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3742 							const char *text)
3743 {
3744 #ifdef CONFIG_SLUB_DEBUG
3745 	void *addr = page_address(page);
3746 	void *p;
3747 	unsigned long *map;
3748 
3749 	slab_err(s, page, text, s->name);
3750 	slab_lock(page);
3751 
3752 	map = get_map(s, page);
3753 	for_each_object(p, s, addr, page->objects) {
3754 
3755 		if (!test_bit(slab_index(p, s, addr), map)) {
3756 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3757 			print_tracking(s, p);
3758 		}
3759 	}
3760 	put_map(map);
3761 
3762 	slab_unlock(page);
3763 #endif
3764 }
3765 
3766 /*
3767  * Attempt to free all partial slabs on a node.
3768  * This is called from __kmem_cache_shutdown(). We must take list_lock
3769  * because sysfs file might still access partial list after the shutdowning.
3770  */
3771 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3772 {
3773 	LIST_HEAD(discard);
3774 	struct page *page, *h;
3775 
3776 	BUG_ON(irqs_disabled());
3777 	spin_lock_irq(&n->list_lock);
3778 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3779 		if (!page->inuse) {
3780 			remove_partial(n, page);
3781 			list_add(&page->slab_list, &discard);
3782 		} else {
3783 			list_slab_objects(s, page,
3784 			"Objects remaining in %s on __kmem_cache_shutdown()");
3785 		}
3786 	}
3787 	spin_unlock_irq(&n->list_lock);
3788 
3789 	list_for_each_entry_safe(page, h, &discard, slab_list)
3790 		discard_slab(s, page);
3791 }
3792 
3793 bool __kmem_cache_empty(struct kmem_cache *s)
3794 {
3795 	int node;
3796 	struct kmem_cache_node *n;
3797 
3798 	for_each_kmem_cache_node(s, node, n)
3799 		if (n->nr_partial || slabs_node(s, node))
3800 			return false;
3801 	return true;
3802 }
3803 
3804 /*
3805  * Release all resources used by a slab cache.
3806  */
3807 int __kmem_cache_shutdown(struct kmem_cache *s)
3808 {
3809 	int node;
3810 	struct kmem_cache_node *n;
3811 
3812 	flush_all(s);
3813 	/* Attempt to free all objects */
3814 	for_each_kmem_cache_node(s, node, n) {
3815 		free_partial(s, n);
3816 		if (n->nr_partial || slabs_node(s, node))
3817 			return 1;
3818 	}
3819 	sysfs_slab_remove(s);
3820 	return 0;
3821 }
3822 
3823 /********************************************************************
3824  *		Kmalloc subsystem
3825  *******************************************************************/
3826 
3827 static int __init setup_slub_min_order(char *str)
3828 {
3829 	get_option(&str, (int *)&slub_min_order);
3830 
3831 	return 1;
3832 }
3833 
3834 __setup("slub_min_order=", setup_slub_min_order);
3835 
3836 static int __init setup_slub_max_order(char *str)
3837 {
3838 	get_option(&str, (int *)&slub_max_order);
3839 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3840 
3841 	return 1;
3842 }
3843 
3844 __setup("slub_max_order=", setup_slub_max_order);
3845 
3846 static int __init setup_slub_min_objects(char *str)
3847 {
3848 	get_option(&str, (int *)&slub_min_objects);
3849 
3850 	return 1;
3851 }
3852 
3853 __setup("slub_min_objects=", setup_slub_min_objects);
3854 
3855 void *__kmalloc(size_t size, gfp_t flags)
3856 {
3857 	struct kmem_cache *s;
3858 	void *ret;
3859 
3860 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3861 		return kmalloc_large(size, flags);
3862 
3863 	s = kmalloc_slab(size, flags);
3864 
3865 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3866 		return s;
3867 
3868 	ret = slab_alloc(s, flags, _RET_IP_);
3869 
3870 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3871 
3872 	ret = kasan_kmalloc(s, ret, size, flags);
3873 
3874 	return ret;
3875 }
3876 EXPORT_SYMBOL(__kmalloc);
3877 
3878 #ifdef CONFIG_NUMA
3879 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3880 {
3881 	struct page *page;
3882 	void *ptr = NULL;
3883 	unsigned int order = get_order(size);
3884 
3885 	flags |= __GFP_COMP;
3886 	page = alloc_pages_node(node, flags, order);
3887 	if (page) {
3888 		ptr = page_address(page);
3889 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3890 				    1 << order);
3891 	}
3892 
3893 	return kmalloc_large_node_hook(ptr, size, flags);
3894 }
3895 
3896 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3897 {
3898 	struct kmem_cache *s;
3899 	void *ret;
3900 
3901 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3902 		ret = kmalloc_large_node(size, flags, node);
3903 
3904 		trace_kmalloc_node(_RET_IP_, ret,
3905 				   size, PAGE_SIZE << get_order(size),
3906 				   flags, node);
3907 
3908 		return ret;
3909 	}
3910 
3911 	s = kmalloc_slab(size, flags);
3912 
3913 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3914 		return s;
3915 
3916 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3917 
3918 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3919 
3920 	ret = kasan_kmalloc(s, ret, size, flags);
3921 
3922 	return ret;
3923 }
3924 EXPORT_SYMBOL(__kmalloc_node);
3925 #endif	/* CONFIG_NUMA */
3926 
3927 #ifdef CONFIG_HARDENED_USERCOPY
3928 /*
3929  * Rejects incorrectly sized objects and objects that are to be copied
3930  * to/from userspace but do not fall entirely within the containing slab
3931  * cache's usercopy region.
3932  *
3933  * Returns NULL if check passes, otherwise const char * to name of cache
3934  * to indicate an error.
3935  */
3936 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3937 			 bool to_user)
3938 {
3939 	struct kmem_cache *s;
3940 	unsigned int offset;
3941 	size_t object_size;
3942 
3943 	ptr = kasan_reset_tag(ptr);
3944 
3945 	/* Find object and usable object size. */
3946 	s = page->slab_cache;
3947 
3948 	/* Reject impossible pointers. */
3949 	if (ptr < page_address(page))
3950 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3951 			       to_user, 0, n);
3952 
3953 	/* Find offset within object. */
3954 	offset = (ptr - page_address(page)) % s->size;
3955 
3956 	/* Adjust for redzone and reject if within the redzone. */
3957 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3958 		if (offset < s->red_left_pad)
3959 			usercopy_abort("SLUB object in left red zone",
3960 				       s->name, to_user, offset, n);
3961 		offset -= s->red_left_pad;
3962 	}
3963 
3964 	/* Allow address range falling entirely within usercopy region. */
3965 	if (offset >= s->useroffset &&
3966 	    offset - s->useroffset <= s->usersize &&
3967 	    n <= s->useroffset - offset + s->usersize)
3968 		return;
3969 
3970 	/*
3971 	 * If the copy is still within the allocated object, produce
3972 	 * a warning instead of rejecting the copy. This is intended
3973 	 * to be a temporary method to find any missing usercopy
3974 	 * whitelists.
3975 	 */
3976 	object_size = slab_ksize(s);
3977 	if (usercopy_fallback &&
3978 	    offset <= object_size && n <= object_size - offset) {
3979 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3980 		return;
3981 	}
3982 
3983 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3984 }
3985 #endif /* CONFIG_HARDENED_USERCOPY */
3986 
3987 size_t __ksize(const void *object)
3988 {
3989 	struct page *page;
3990 
3991 	if (unlikely(object == ZERO_SIZE_PTR))
3992 		return 0;
3993 
3994 	page = virt_to_head_page(object);
3995 
3996 	if (unlikely(!PageSlab(page))) {
3997 		WARN_ON(!PageCompound(page));
3998 		return page_size(page);
3999 	}
4000 
4001 	return slab_ksize(page->slab_cache);
4002 }
4003 EXPORT_SYMBOL(__ksize);
4004 
4005 void kfree(const void *x)
4006 {
4007 	struct page *page;
4008 	void *object = (void *)x;
4009 
4010 	trace_kfree(_RET_IP_, x);
4011 
4012 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4013 		return;
4014 
4015 	page = virt_to_head_page(x);
4016 	if (unlikely(!PageSlab(page))) {
4017 		unsigned int order = compound_order(page);
4018 
4019 		BUG_ON(!PageCompound(page));
4020 		kfree_hook(object);
4021 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
4022 				    -(1 << order));
4023 		__free_pages(page, order);
4024 		return;
4025 	}
4026 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4027 }
4028 EXPORT_SYMBOL(kfree);
4029 
4030 #define SHRINK_PROMOTE_MAX 32
4031 
4032 /*
4033  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4034  * up most to the head of the partial lists. New allocations will then
4035  * fill those up and thus they can be removed from the partial lists.
4036  *
4037  * The slabs with the least items are placed last. This results in them
4038  * being allocated from last increasing the chance that the last objects
4039  * are freed in them.
4040  */
4041 int __kmem_cache_shrink(struct kmem_cache *s)
4042 {
4043 	int node;
4044 	int i;
4045 	struct kmem_cache_node *n;
4046 	struct page *page;
4047 	struct page *t;
4048 	struct list_head discard;
4049 	struct list_head promote[SHRINK_PROMOTE_MAX];
4050 	unsigned long flags;
4051 	int ret = 0;
4052 
4053 	flush_all(s);
4054 	for_each_kmem_cache_node(s, node, n) {
4055 		INIT_LIST_HEAD(&discard);
4056 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4057 			INIT_LIST_HEAD(promote + i);
4058 
4059 		spin_lock_irqsave(&n->list_lock, flags);
4060 
4061 		/*
4062 		 * Build lists of slabs to discard or promote.
4063 		 *
4064 		 * Note that concurrent frees may occur while we hold the
4065 		 * list_lock. page->inuse here is the upper limit.
4066 		 */
4067 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4068 			int free = page->objects - page->inuse;
4069 
4070 			/* Do not reread page->inuse */
4071 			barrier();
4072 
4073 			/* We do not keep full slabs on the list */
4074 			BUG_ON(free <= 0);
4075 
4076 			if (free == page->objects) {
4077 				list_move(&page->slab_list, &discard);
4078 				n->nr_partial--;
4079 			} else if (free <= SHRINK_PROMOTE_MAX)
4080 				list_move(&page->slab_list, promote + free - 1);
4081 		}
4082 
4083 		/*
4084 		 * Promote the slabs filled up most to the head of the
4085 		 * partial list.
4086 		 */
4087 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4088 			list_splice(promote + i, &n->partial);
4089 
4090 		spin_unlock_irqrestore(&n->list_lock, flags);
4091 
4092 		/* Release empty slabs */
4093 		list_for_each_entry_safe(page, t, &discard, slab_list)
4094 			discard_slab(s, page);
4095 
4096 		if (slabs_node(s, node))
4097 			ret = 1;
4098 	}
4099 
4100 	return ret;
4101 }
4102 
4103 #ifdef CONFIG_MEMCG
4104 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4105 {
4106 	/*
4107 	 * Called with all the locks held after a sched RCU grace period.
4108 	 * Even if @s becomes empty after shrinking, we can't know that @s
4109 	 * doesn't have allocations already in-flight and thus can't
4110 	 * destroy @s until the associated memcg is released.
4111 	 *
4112 	 * However, let's remove the sysfs files for empty caches here.
4113 	 * Each cache has a lot of interface files which aren't
4114 	 * particularly useful for empty draining caches; otherwise, we can
4115 	 * easily end up with millions of unnecessary sysfs files on
4116 	 * systems which have a lot of memory and transient cgroups.
4117 	 */
4118 	if (!__kmem_cache_shrink(s))
4119 		sysfs_slab_remove(s);
4120 }
4121 
4122 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4123 {
4124 	/*
4125 	 * Disable empty slabs caching. Used to avoid pinning offline
4126 	 * memory cgroups by kmem pages that can be freed.
4127 	 */
4128 	slub_set_cpu_partial(s, 0);
4129 	s->min_partial = 0;
4130 }
4131 #endif	/* CONFIG_MEMCG */
4132 
4133 static int slab_mem_going_offline_callback(void *arg)
4134 {
4135 	struct kmem_cache *s;
4136 
4137 	mutex_lock(&slab_mutex);
4138 	list_for_each_entry(s, &slab_caches, list)
4139 		__kmem_cache_shrink(s);
4140 	mutex_unlock(&slab_mutex);
4141 
4142 	return 0;
4143 }
4144 
4145 static void slab_mem_offline_callback(void *arg)
4146 {
4147 	struct kmem_cache_node *n;
4148 	struct kmem_cache *s;
4149 	struct memory_notify *marg = arg;
4150 	int offline_node;
4151 
4152 	offline_node = marg->status_change_nid_normal;
4153 
4154 	/*
4155 	 * If the node still has available memory. we need kmem_cache_node
4156 	 * for it yet.
4157 	 */
4158 	if (offline_node < 0)
4159 		return;
4160 
4161 	mutex_lock(&slab_mutex);
4162 	list_for_each_entry(s, &slab_caches, list) {
4163 		n = get_node(s, offline_node);
4164 		if (n) {
4165 			/*
4166 			 * if n->nr_slabs > 0, slabs still exist on the node
4167 			 * that is going down. We were unable to free them,
4168 			 * and offline_pages() function shouldn't call this
4169 			 * callback. So, we must fail.
4170 			 */
4171 			BUG_ON(slabs_node(s, offline_node));
4172 
4173 			s->node[offline_node] = NULL;
4174 			kmem_cache_free(kmem_cache_node, n);
4175 		}
4176 	}
4177 	mutex_unlock(&slab_mutex);
4178 }
4179 
4180 static int slab_mem_going_online_callback(void *arg)
4181 {
4182 	struct kmem_cache_node *n;
4183 	struct kmem_cache *s;
4184 	struct memory_notify *marg = arg;
4185 	int nid = marg->status_change_nid_normal;
4186 	int ret = 0;
4187 
4188 	/*
4189 	 * If the node's memory is already available, then kmem_cache_node is
4190 	 * already created. Nothing to do.
4191 	 */
4192 	if (nid < 0)
4193 		return 0;
4194 
4195 	/*
4196 	 * We are bringing a node online. No memory is available yet. We must
4197 	 * allocate a kmem_cache_node structure in order to bring the node
4198 	 * online.
4199 	 */
4200 	mutex_lock(&slab_mutex);
4201 	list_for_each_entry(s, &slab_caches, list) {
4202 		/*
4203 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4204 		 *      since memory is not yet available from the node that
4205 		 *      is brought up.
4206 		 */
4207 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4208 		if (!n) {
4209 			ret = -ENOMEM;
4210 			goto out;
4211 		}
4212 		init_kmem_cache_node(n);
4213 		s->node[nid] = n;
4214 	}
4215 out:
4216 	mutex_unlock(&slab_mutex);
4217 	return ret;
4218 }
4219 
4220 static int slab_memory_callback(struct notifier_block *self,
4221 				unsigned long action, void *arg)
4222 {
4223 	int ret = 0;
4224 
4225 	switch (action) {
4226 	case MEM_GOING_ONLINE:
4227 		ret = slab_mem_going_online_callback(arg);
4228 		break;
4229 	case MEM_GOING_OFFLINE:
4230 		ret = slab_mem_going_offline_callback(arg);
4231 		break;
4232 	case MEM_OFFLINE:
4233 	case MEM_CANCEL_ONLINE:
4234 		slab_mem_offline_callback(arg);
4235 		break;
4236 	case MEM_ONLINE:
4237 	case MEM_CANCEL_OFFLINE:
4238 		break;
4239 	}
4240 	if (ret)
4241 		ret = notifier_from_errno(ret);
4242 	else
4243 		ret = NOTIFY_OK;
4244 	return ret;
4245 }
4246 
4247 static struct notifier_block slab_memory_callback_nb = {
4248 	.notifier_call = slab_memory_callback,
4249 	.priority = SLAB_CALLBACK_PRI,
4250 };
4251 
4252 /********************************************************************
4253  *			Basic setup of slabs
4254  *******************************************************************/
4255 
4256 /*
4257  * Used for early kmem_cache structures that were allocated using
4258  * the page allocator. Allocate them properly then fix up the pointers
4259  * that may be pointing to the wrong kmem_cache structure.
4260  */
4261 
4262 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4263 {
4264 	int node;
4265 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4266 	struct kmem_cache_node *n;
4267 
4268 	memcpy(s, static_cache, kmem_cache->object_size);
4269 
4270 	/*
4271 	 * This runs very early, and only the boot processor is supposed to be
4272 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4273 	 * IPIs around.
4274 	 */
4275 	__flush_cpu_slab(s, smp_processor_id());
4276 	for_each_kmem_cache_node(s, node, n) {
4277 		struct page *p;
4278 
4279 		list_for_each_entry(p, &n->partial, slab_list)
4280 			p->slab_cache = s;
4281 
4282 #ifdef CONFIG_SLUB_DEBUG
4283 		list_for_each_entry(p, &n->full, slab_list)
4284 			p->slab_cache = s;
4285 #endif
4286 	}
4287 	slab_init_memcg_params(s);
4288 	list_add(&s->list, &slab_caches);
4289 	memcg_link_cache(s, NULL);
4290 	return s;
4291 }
4292 
4293 void __init kmem_cache_init(void)
4294 {
4295 	static __initdata struct kmem_cache boot_kmem_cache,
4296 		boot_kmem_cache_node;
4297 
4298 	if (debug_guardpage_minorder())
4299 		slub_max_order = 0;
4300 
4301 	kmem_cache_node = &boot_kmem_cache_node;
4302 	kmem_cache = &boot_kmem_cache;
4303 
4304 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4305 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4306 
4307 	register_hotmemory_notifier(&slab_memory_callback_nb);
4308 
4309 	/* Able to allocate the per node structures */
4310 	slab_state = PARTIAL;
4311 
4312 	create_boot_cache(kmem_cache, "kmem_cache",
4313 			offsetof(struct kmem_cache, node) +
4314 				nr_node_ids * sizeof(struct kmem_cache_node *),
4315 		       SLAB_HWCACHE_ALIGN, 0, 0);
4316 
4317 	kmem_cache = bootstrap(&boot_kmem_cache);
4318 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4319 
4320 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4321 	setup_kmalloc_cache_index_table();
4322 	create_kmalloc_caches(0);
4323 
4324 	/* Setup random freelists for each cache */
4325 	init_freelist_randomization();
4326 
4327 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4328 				  slub_cpu_dead);
4329 
4330 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4331 		cache_line_size(),
4332 		slub_min_order, slub_max_order, slub_min_objects,
4333 		nr_cpu_ids, nr_node_ids);
4334 }
4335 
4336 void __init kmem_cache_init_late(void)
4337 {
4338 }
4339 
4340 struct kmem_cache *
4341 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4342 		   slab_flags_t flags, void (*ctor)(void *))
4343 {
4344 	struct kmem_cache *s, *c;
4345 
4346 	s = find_mergeable(size, align, flags, name, ctor);
4347 	if (s) {
4348 		s->refcount++;
4349 
4350 		/*
4351 		 * Adjust the object sizes so that we clear
4352 		 * the complete object on kzalloc.
4353 		 */
4354 		s->object_size = max(s->object_size, size);
4355 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4356 
4357 		for_each_memcg_cache(c, s) {
4358 			c->object_size = s->object_size;
4359 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4360 		}
4361 
4362 		if (sysfs_slab_alias(s, name)) {
4363 			s->refcount--;
4364 			s = NULL;
4365 		}
4366 	}
4367 
4368 	return s;
4369 }
4370 
4371 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4372 {
4373 	int err;
4374 
4375 	err = kmem_cache_open(s, flags);
4376 	if (err)
4377 		return err;
4378 
4379 	/* Mutex is not taken during early boot */
4380 	if (slab_state <= UP)
4381 		return 0;
4382 
4383 	memcg_propagate_slab_attrs(s);
4384 	err = sysfs_slab_add(s);
4385 	if (err)
4386 		__kmem_cache_release(s);
4387 
4388 	return err;
4389 }
4390 
4391 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4392 {
4393 	struct kmem_cache *s;
4394 	void *ret;
4395 
4396 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4397 		return kmalloc_large(size, gfpflags);
4398 
4399 	s = kmalloc_slab(size, gfpflags);
4400 
4401 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4402 		return s;
4403 
4404 	ret = slab_alloc(s, gfpflags, caller);
4405 
4406 	/* Honor the call site pointer we received. */
4407 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4408 
4409 	return ret;
4410 }
4411 
4412 #ifdef CONFIG_NUMA
4413 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4414 					int node, unsigned long caller)
4415 {
4416 	struct kmem_cache *s;
4417 	void *ret;
4418 
4419 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4420 		ret = kmalloc_large_node(size, gfpflags, node);
4421 
4422 		trace_kmalloc_node(caller, ret,
4423 				   size, PAGE_SIZE << get_order(size),
4424 				   gfpflags, node);
4425 
4426 		return ret;
4427 	}
4428 
4429 	s = kmalloc_slab(size, gfpflags);
4430 
4431 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4432 		return s;
4433 
4434 	ret = slab_alloc_node(s, gfpflags, node, caller);
4435 
4436 	/* Honor the call site pointer we received. */
4437 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4438 
4439 	return ret;
4440 }
4441 #endif
4442 
4443 #ifdef CONFIG_SYSFS
4444 static int count_inuse(struct page *page)
4445 {
4446 	return page->inuse;
4447 }
4448 
4449 static int count_total(struct page *page)
4450 {
4451 	return page->objects;
4452 }
4453 #endif
4454 
4455 #ifdef CONFIG_SLUB_DEBUG
4456 static void validate_slab(struct kmem_cache *s, struct page *page)
4457 {
4458 	void *p;
4459 	void *addr = page_address(page);
4460 	unsigned long *map;
4461 
4462 	slab_lock(page);
4463 
4464 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4465 		goto unlock;
4466 
4467 	/* Now we know that a valid freelist exists */
4468 	map = get_map(s, page);
4469 	for_each_object(p, s, addr, page->objects) {
4470 		u8 val = test_bit(slab_index(p, s, addr), map) ?
4471 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4472 
4473 		if (!check_object(s, page, p, val))
4474 			break;
4475 	}
4476 	put_map(map);
4477 unlock:
4478 	slab_unlock(page);
4479 }
4480 
4481 static int validate_slab_node(struct kmem_cache *s,
4482 		struct kmem_cache_node *n)
4483 {
4484 	unsigned long count = 0;
4485 	struct page *page;
4486 	unsigned long flags;
4487 
4488 	spin_lock_irqsave(&n->list_lock, flags);
4489 
4490 	list_for_each_entry(page, &n->partial, slab_list) {
4491 		validate_slab(s, page);
4492 		count++;
4493 	}
4494 	if (count != n->nr_partial)
4495 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4496 		       s->name, count, n->nr_partial);
4497 
4498 	if (!(s->flags & SLAB_STORE_USER))
4499 		goto out;
4500 
4501 	list_for_each_entry(page, &n->full, slab_list) {
4502 		validate_slab(s, page);
4503 		count++;
4504 	}
4505 	if (count != atomic_long_read(&n->nr_slabs))
4506 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4507 		       s->name, count, atomic_long_read(&n->nr_slabs));
4508 
4509 out:
4510 	spin_unlock_irqrestore(&n->list_lock, flags);
4511 	return count;
4512 }
4513 
4514 static long validate_slab_cache(struct kmem_cache *s)
4515 {
4516 	int node;
4517 	unsigned long count = 0;
4518 	struct kmem_cache_node *n;
4519 
4520 	flush_all(s);
4521 	for_each_kmem_cache_node(s, node, n)
4522 		count += validate_slab_node(s, n);
4523 
4524 	return count;
4525 }
4526 /*
4527  * Generate lists of code addresses where slabcache objects are allocated
4528  * and freed.
4529  */
4530 
4531 struct location {
4532 	unsigned long count;
4533 	unsigned long addr;
4534 	long long sum_time;
4535 	long min_time;
4536 	long max_time;
4537 	long min_pid;
4538 	long max_pid;
4539 	DECLARE_BITMAP(cpus, NR_CPUS);
4540 	nodemask_t nodes;
4541 };
4542 
4543 struct loc_track {
4544 	unsigned long max;
4545 	unsigned long count;
4546 	struct location *loc;
4547 };
4548 
4549 static void free_loc_track(struct loc_track *t)
4550 {
4551 	if (t->max)
4552 		free_pages((unsigned long)t->loc,
4553 			get_order(sizeof(struct location) * t->max));
4554 }
4555 
4556 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4557 {
4558 	struct location *l;
4559 	int order;
4560 
4561 	order = get_order(sizeof(struct location) * max);
4562 
4563 	l = (void *)__get_free_pages(flags, order);
4564 	if (!l)
4565 		return 0;
4566 
4567 	if (t->count) {
4568 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4569 		free_loc_track(t);
4570 	}
4571 	t->max = max;
4572 	t->loc = l;
4573 	return 1;
4574 }
4575 
4576 static int add_location(struct loc_track *t, struct kmem_cache *s,
4577 				const struct track *track)
4578 {
4579 	long start, end, pos;
4580 	struct location *l;
4581 	unsigned long caddr;
4582 	unsigned long age = jiffies - track->when;
4583 
4584 	start = -1;
4585 	end = t->count;
4586 
4587 	for ( ; ; ) {
4588 		pos = start + (end - start + 1) / 2;
4589 
4590 		/*
4591 		 * There is nothing at "end". If we end up there
4592 		 * we need to add something to before end.
4593 		 */
4594 		if (pos == end)
4595 			break;
4596 
4597 		caddr = t->loc[pos].addr;
4598 		if (track->addr == caddr) {
4599 
4600 			l = &t->loc[pos];
4601 			l->count++;
4602 			if (track->when) {
4603 				l->sum_time += age;
4604 				if (age < l->min_time)
4605 					l->min_time = age;
4606 				if (age > l->max_time)
4607 					l->max_time = age;
4608 
4609 				if (track->pid < l->min_pid)
4610 					l->min_pid = track->pid;
4611 				if (track->pid > l->max_pid)
4612 					l->max_pid = track->pid;
4613 
4614 				cpumask_set_cpu(track->cpu,
4615 						to_cpumask(l->cpus));
4616 			}
4617 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4618 			return 1;
4619 		}
4620 
4621 		if (track->addr < caddr)
4622 			end = pos;
4623 		else
4624 			start = pos;
4625 	}
4626 
4627 	/*
4628 	 * Not found. Insert new tracking element.
4629 	 */
4630 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4631 		return 0;
4632 
4633 	l = t->loc + pos;
4634 	if (pos < t->count)
4635 		memmove(l + 1, l,
4636 			(t->count - pos) * sizeof(struct location));
4637 	t->count++;
4638 	l->count = 1;
4639 	l->addr = track->addr;
4640 	l->sum_time = age;
4641 	l->min_time = age;
4642 	l->max_time = age;
4643 	l->min_pid = track->pid;
4644 	l->max_pid = track->pid;
4645 	cpumask_clear(to_cpumask(l->cpus));
4646 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4647 	nodes_clear(l->nodes);
4648 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4649 	return 1;
4650 }
4651 
4652 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4653 		struct page *page, enum track_item alloc)
4654 {
4655 	void *addr = page_address(page);
4656 	void *p;
4657 	unsigned long *map;
4658 
4659 	map = get_map(s, page);
4660 	for_each_object(p, s, addr, page->objects)
4661 		if (!test_bit(slab_index(p, s, addr), map))
4662 			add_location(t, s, get_track(s, p, alloc));
4663 	put_map(map);
4664 }
4665 
4666 static int list_locations(struct kmem_cache *s, char *buf,
4667 					enum track_item alloc)
4668 {
4669 	int len = 0;
4670 	unsigned long i;
4671 	struct loc_track t = { 0, 0, NULL };
4672 	int node;
4673 	struct kmem_cache_node *n;
4674 
4675 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4676 			     GFP_KERNEL)) {
4677 		return sprintf(buf, "Out of memory\n");
4678 	}
4679 	/* Push back cpu slabs */
4680 	flush_all(s);
4681 
4682 	for_each_kmem_cache_node(s, node, n) {
4683 		unsigned long flags;
4684 		struct page *page;
4685 
4686 		if (!atomic_long_read(&n->nr_slabs))
4687 			continue;
4688 
4689 		spin_lock_irqsave(&n->list_lock, flags);
4690 		list_for_each_entry(page, &n->partial, slab_list)
4691 			process_slab(&t, s, page, alloc);
4692 		list_for_each_entry(page, &n->full, slab_list)
4693 			process_slab(&t, s, page, alloc);
4694 		spin_unlock_irqrestore(&n->list_lock, flags);
4695 	}
4696 
4697 	for (i = 0; i < t.count; i++) {
4698 		struct location *l = &t.loc[i];
4699 
4700 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4701 			break;
4702 		len += sprintf(buf + len, "%7ld ", l->count);
4703 
4704 		if (l->addr)
4705 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4706 		else
4707 			len += sprintf(buf + len, "<not-available>");
4708 
4709 		if (l->sum_time != l->min_time) {
4710 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4711 				l->min_time,
4712 				(long)div_u64(l->sum_time, l->count),
4713 				l->max_time);
4714 		} else
4715 			len += sprintf(buf + len, " age=%ld",
4716 				l->min_time);
4717 
4718 		if (l->min_pid != l->max_pid)
4719 			len += sprintf(buf + len, " pid=%ld-%ld",
4720 				l->min_pid, l->max_pid);
4721 		else
4722 			len += sprintf(buf + len, " pid=%ld",
4723 				l->min_pid);
4724 
4725 		if (num_online_cpus() > 1 &&
4726 				!cpumask_empty(to_cpumask(l->cpus)) &&
4727 				len < PAGE_SIZE - 60)
4728 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4729 					 " cpus=%*pbl",
4730 					 cpumask_pr_args(to_cpumask(l->cpus)));
4731 
4732 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4733 				len < PAGE_SIZE - 60)
4734 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4735 					 " nodes=%*pbl",
4736 					 nodemask_pr_args(&l->nodes));
4737 
4738 		len += sprintf(buf + len, "\n");
4739 	}
4740 
4741 	free_loc_track(&t);
4742 	if (!t.count)
4743 		len += sprintf(buf, "No data\n");
4744 	return len;
4745 }
4746 #endif	/* CONFIG_SLUB_DEBUG */
4747 
4748 #ifdef SLUB_RESILIENCY_TEST
4749 static void __init resiliency_test(void)
4750 {
4751 	u8 *p;
4752 	int type = KMALLOC_NORMAL;
4753 
4754 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4755 
4756 	pr_err("SLUB resiliency testing\n");
4757 	pr_err("-----------------------\n");
4758 	pr_err("A. Corruption after allocation\n");
4759 
4760 	p = kzalloc(16, GFP_KERNEL);
4761 	p[16] = 0x12;
4762 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4763 	       p + 16);
4764 
4765 	validate_slab_cache(kmalloc_caches[type][4]);
4766 
4767 	/* Hmmm... The next two are dangerous */
4768 	p = kzalloc(32, GFP_KERNEL);
4769 	p[32 + sizeof(void *)] = 0x34;
4770 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4771 	       p);
4772 	pr_err("If allocated object is overwritten then not detectable\n\n");
4773 
4774 	validate_slab_cache(kmalloc_caches[type][5]);
4775 	p = kzalloc(64, GFP_KERNEL);
4776 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4777 	*p = 0x56;
4778 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4779 	       p);
4780 	pr_err("If allocated object is overwritten then not detectable\n\n");
4781 	validate_slab_cache(kmalloc_caches[type][6]);
4782 
4783 	pr_err("\nB. Corruption after free\n");
4784 	p = kzalloc(128, GFP_KERNEL);
4785 	kfree(p);
4786 	*p = 0x78;
4787 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4788 	validate_slab_cache(kmalloc_caches[type][7]);
4789 
4790 	p = kzalloc(256, GFP_KERNEL);
4791 	kfree(p);
4792 	p[50] = 0x9a;
4793 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4794 	validate_slab_cache(kmalloc_caches[type][8]);
4795 
4796 	p = kzalloc(512, GFP_KERNEL);
4797 	kfree(p);
4798 	p[512] = 0xab;
4799 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4800 	validate_slab_cache(kmalloc_caches[type][9]);
4801 }
4802 #else
4803 #ifdef CONFIG_SYSFS
4804 static void resiliency_test(void) {};
4805 #endif
4806 #endif	/* SLUB_RESILIENCY_TEST */
4807 
4808 #ifdef CONFIG_SYSFS
4809 enum slab_stat_type {
4810 	SL_ALL,			/* All slabs */
4811 	SL_PARTIAL,		/* Only partially allocated slabs */
4812 	SL_CPU,			/* Only slabs used for cpu caches */
4813 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4814 	SL_TOTAL		/* Determine object capacity not slabs */
4815 };
4816 
4817 #define SO_ALL		(1 << SL_ALL)
4818 #define SO_PARTIAL	(1 << SL_PARTIAL)
4819 #define SO_CPU		(1 << SL_CPU)
4820 #define SO_OBJECTS	(1 << SL_OBJECTS)
4821 #define SO_TOTAL	(1 << SL_TOTAL)
4822 
4823 #ifdef CONFIG_MEMCG
4824 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4825 
4826 static int __init setup_slub_memcg_sysfs(char *str)
4827 {
4828 	int v;
4829 
4830 	if (get_option(&str, &v) > 0)
4831 		memcg_sysfs_enabled = v;
4832 
4833 	return 1;
4834 }
4835 
4836 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4837 #endif
4838 
4839 static ssize_t show_slab_objects(struct kmem_cache *s,
4840 			    char *buf, unsigned long flags)
4841 {
4842 	unsigned long total = 0;
4843 	int node;
4844 	int x;
4845 	unsigned long *nodes;
4846 
4847 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4848 	if (!nodes)
4849 		return -ENOMEM;
4850 
4851 	if (flags & SO_CPU) {
4852 		int cpu;
4853 
4854 		for_each_possible_cpu(cpu) {
4855 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4856 							       cpu);
4857 			int node;
4858 			struct page *page;
4859 
4860 			page = READ_ONCE(c->page);
4861 			if (!page)
4862 				continue;
4863 
4864 			node = page_to_nid(page);
4865 			if (flags & SO_TOTAL)
4866 				x = page->objects;
4867 			else if (flags & SO_OBJECTS)
4868 				x = page->inuse;
4869 			else
4870 				x = 1;
4871 
4872 			total += x;
4873 			nodes[node] += x;
4874 
4875 			page = slub_percpu_partial_read_once(c);
4876 			if (page) {
4877 				node = page_to_nid(page);
4878 				if (flags & SO_TOTAL)
4879 					WARN_ON_ONCE(1);
4880 				else if (flags & SO_OBJECTS)
4881 					WARN_ON_ONCE(1);
4882 				else
4883 					x = page->pages;
4884 				total += x;
4885 				nodes[node] += x;
4886 			}
4887 		}
4888 	}
4889 
4890 	/*
4891 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4892 	 * already held which will conflict with an existing lock order:
4893 	 *
4894 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4895 	 *
4896 	 * We don't really need mem_hotplug_lock (to hold off
4897 	 * slab_mem_going_offline_callback) here because slab's memory hot
4898 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4899 	 */
4900 
4901 #ifdef CONFIG_SLUB_DEBUG
4902 	if (flags & SO_ALL) {
4903 		struct kmem_cache_node *n;
4904 
4905 		for_each_kmem_cache_node(s, node, n) {
4906 
4907 			if (flags & SO_TOTAL)
4908 				x = atomic_long_read(&n->total_objects);
4909 			else if (flags & SO_OBJECTS)
4910 				x = atomic_long_read(&n->total_objects) -
4911 					count_partial(n, count_free);
4912 			else
4913 				x = atomic_long_read(&n->nr_slabs);
4914 			total += x;
4915 			nodes[node] += x;
4916 		}
4917 
4918 	} else
4919 #endif
4920 	if (flags & SO_PARTIAL) {
4921 		struct kmem_cache_node *n;
4922 
4923 		for_each_kmem_cache_node(s, node, n) {
4924 			if (flags & SO_TOTAL)
4925 				x = count_partial(n, count_total);
4926 			else if (flags & SO_OBJECTS)
4927 				x = count_partial(n, count_inuse);
4928 			else
4929 				x = n->nr_partial;
4930 			total += x;
4931 			nodes[node] += x;
4932 		}
4933 	}
4934 	x = sprintf(buf, "%lu", total);
4935 #ifdef CONFIG_NUMA
4936 	for (node = 0; node < nr_node_ids; node++)
4937 		if (nodes[node])
4938 			x += sprintf(buf + x, " N%d=%lu",
4939 					node, nodes[node]);
4940 #endif
4941 	kfree(nodes);
4942 	return x + sprintf(buf + x, "\n");
4943 }
4944 
4945 #ifdef CONFIG_SLUB_DEBUG
4946 static int any_slab_objects(struct kmem_cache *s)
4947 {
4948 	int node;
4949 	struct kmem_cache_node *n;
4950 
4951 	for_each_kmem_cache_node(s, node, n)
4952 		if (atomic_long_read(&n->total_objects))
4953 			return 1;
4954 
4955 	return 0;
4956 }
4957 #endif
4958 
4959 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4960 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4961 
4962 struct slab_attribute {
4963 	struct attribute attr;
4964 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4965 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4966 };
4967 
4968 #define SLAB_ATTR_RO(_name) \
4969 	static struct slab_attribute _name##_attr = \
4970 	__ATTR(_name, 0400, _name##_show, NULL)
4971 
4972 #define SLAB_ATTR(_name) \
4973 	static struct slab_attribute _name##_attr =  \
4974 	__ATTR(_name, 0600, _name##_show, _name##_store)
4975 
4976 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4977 {
4978 	return sprintf(buf, "%u\n", s->size);
4979 }
4980 SLAB_ATTR_RO(slab_size);
4981 
4982 static ssize_t align_show(struct kmem_cache *s, char *buf)
4983 {
4984 	return sprintf(buf, "%u\n", s->align);
4985 }
4986 SLAB_ATTR_RO(align);
4987 
4988 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4989 {
4990 	return sprintf(buf, "%u\n", s->object_size);
4991 }
4992 SLAB_ATTR_RO(object_size);
4993 
4994 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4995 {
4996 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4997 }
4998 SLAB_ATTR_RO(objs_per_slab);
4999 
5000 static ssize_t order_store(struct kmem_cache *s,
5001 				const char *buf, size_t length)
5002 {
5003 	unsigned int order;
5004 	int err;
5005 
5006 	err = kstrtouint(buf, 10, &order);
5007 	if (err)
5008 		return err;
5009 
5010 	if (order > slub_max_order || order < slub_min_order)
5011 		return -EINVAL;
5012 
5013 	calculate_sizes(s, order);
5014 	return length;
5015 }
5016 
5017 static ssize_t order_show(struct kmem_cache *s, char *buf)
5018 {
5019 	return sprintf(buf, "%u\n", oo_order(s->oo));
5020 }
5021 SLAB_ATTR(order);
5022 
5023 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5024 {
5025 	return sprintf(buf, "%lu\n", s->min_partial);
5026 }
5027 
5028 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5029 				 size_t length)
5030 {
5031 	unsigned long min;
5032 	int err;
5033 
5034 	err = kstrtoul(buf, 10, &min);
5035 	if (err)
5036 		return err;
5037 
5038 	set_min_partial(s, min);
5039 	return length;
5040 }
5041 SLAB_ATTR(min_partial);
5042 
5043 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5044 {
5045 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5046 }
5047 
5048 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5049 				 size_t length)
5050 {
5051 	unsigned int objects;
5052 	int err;
5053 
5054 	err = kstrtouint(buf, 10, &objects);
5055 	if (err)
5056 		return err;
5057 	if (objects && !kmem_cache_has_cpu_partial(s))
5058 		return -EINVAL;
5059 
5060 	slub_set_cpu_partial(s, objects);
5061 	flush_all(s);
5062 	return length;
5063 }
5064 SLAB_ATTR(cpu_partial);
5065 
5066 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5067 {
5068 	if (!s->ctor)
5069 		return 0;
5070 	return sprintf(buf, "%pS\n", s->ctor);
5071 }
5072 SLAB_ATTR_RO(ctor);
5073 
5074 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5075 {
5076 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5077 }
5078 SLAB_ATTR_RO(aliases);
5079 
5080 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5081 {
5082 	return show_slab_objects(s, buf, SO_PARTIAL);
5083 }
5084 SLAB_ATTR_RO(partial);
5085 
5086 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5087 {
5088 	return show_slab_objects(s, buf, SO_CPU);
5089 }
5090 SLAB_ATTR_RO(cpu_slabs);
5091 
5092 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5093 {
5094 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5095 }
5096 SLAB_ATTR_RO(objects);
5097 
5098 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5099 {
5100 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5101 }
5102 SLAB_ATTR_RO(objects_partial);
5103 
5104 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5105 {
5106 	int objects = 0;
5107 	int pages = 0;
5108 	int cpu;
5109 	int len;
5110 
5111 	for_each_online_cpu(cpu) {
5112 		struct page *page;
5113 
5114 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5115 
5116 		if (page) {
5117 			pages += page->pages;
5118 			objects += page->pobjects;
5119 		}
5120 	}
5121 
5122 	len = sprintf(buf, "%d(%d)", objects, pages);
5123 
5124 #ifdef CONFIG_SMP
5125 	for_each_online_cpu(cpu) {
5126 		struct page *page;
5127 
5128 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5129 
5130 		if (page && len < PAGE_SIZE - 20)
5131 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5132 				page->pobjects, page->pages);
5133 	}
5134 #endif
5135 	return len + sprintf(buf + len, "\n");
5136 }
5137 SLAB_ATTR_RO(slabs_cpu_partial);
5138 
5139 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5140 {
5141 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5142 }
5143 
5144 static ssize_t reclaim_account_store(struct kmem_cache *s,
5145 				const char *buf, size_t length)
5146 {
5147 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5148 	if (buf[0] == '1')
5149 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5150 	return length;
5151 }
5152 SLAB_ATTR(reclaim_account);
5153 
5154 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5155 {
5156 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5157 }
5158 SLAB_ATTR_RO(hwcache_align);
5159 
5160 #ifdef CONFIG_ZONE_DMA
5161 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5162 {
5163 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5164 }
5165 SLAB_ATTR_RO(cache_dma);
5166 #endif
5167 
5168 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5169 {
5170 	return sprintf(buf, "%u\n", s->usersize);
5171 }
5172 SLAB_ATTR_RO(usersize);
5173 
5174 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5175 {
5176 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5177 }
5178 SLAB_ATTR_RO(destroy_by_rcu);
5179 
5180 #ifdef CONFIG_SLUB_DEBUG
5181 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5182 {
5183 	return show_slab_objects(s, buf, SO_ALL);
5184 }
5185 SLAB_ATTR_RO(slabs);
5186 
5187 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5188 {
5189 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5190 }
5191 SLAB_ATTR_RO(total_objects);
5192 
5193 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5194 {
5195 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5196 }
5197 
5198 static ssize_t sanity_checks_store(struct kmem_cache *s,
5199 				const char *buf, size_t length)
5200 {
5201 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5202 	if (buf[0] == '1') {
5203 		s->flags &= ~__CMPXCHG_DOUBLE;
5204 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5205 	}
5206 	return length;
5207 }
5208 SLAB_ATTR(sanity_checks);
5209 
5210 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5211 {
5212 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5213 }
5214 
5215 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5216 							size_t length)
5217 {
5218 	/*
5219 	 * Tracing a merged cache is going to give confusing results
5220 	 * as well as cause other issues like converting a mergeable
5221 	 * cache into an umergeable one.
5222 	 */
5223 	if (s->refcount > 1)
5224 		return -EINVAL;
5225 
5226 	s->flags &= ~SLAB_TRACE;
5227 	if (buf[0] == '1') {
5228 		s->flags &= ~__CMPXCHG_DOUBLE;
5229 		s->flags |= SLAB_TRACE;
5230 	}
5231 	return length;
5232 }
5233 SLAB_ATTR(trace);
5234 
5235 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5236 {
5237 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5238 }
5239 
5240 static ssize_t red_zone_store(struct kmem_cache *s,
5241 				const char *buf, size_t length)
5242 {
5243 	if (any_slab_objects(s))
5244 		return -EBUSY;
5245 
5246 	s->flags &= ~SLAB_RED_ZONE;
5247 	if (buf[0] == '1') {
5248 		s->flags |= SLAB_RED_ZONE;
5249 	}
5250 	calculate_sizes(s, -1);
5251 	return length;
5252 }
5253 SLAB_ATTR(red_zone);
5254 
5255 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5256 {
5257 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5258 }
5259 
5260 static ssize_t poison_store(struct kmem_cache *s,
5261 				const char *buf, size_t length)
5262 {
5263 	if (any_slab_objects(s))
5264 		return -EBUSY;
5265 
5266 	s->flags &= ~SLAB_POISON;
5267 	if (buf[0] == '1') {
5268 		s->flags |= SLAB_POISON;
5269 	}
5270 	calculate_sizes(s, -1);
5271 	return length;
5272 }
5273 SLAB_ATTR(poison);
5274 
5275 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5276 {
5277 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5278 }
5279 
5280 static ssize_t store_user_store(struct kmem_cache *s,
5281 				const char *buf, size_t length)
5282 {
5283 	if (any_slab_objects(s))
5284 		return -EBUSY;
5285 
5286 	s->flags &= ~SLAB_STORE_USER;
5287 	if (buf[0] == '1') {
5288 		s->flags &= ~__CMPXCHG_DOUBLE;
5289 		s->flags |= SLAB_STORE_USER;
5290 	}
5291 	calculate_sizes(s, -1);
5292 	return length;
5293 }
5294 SLAB_ATTR(store_user);
5295 
5296 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5297 {
5298 	return 0;
5299 }
5300 
5301 static ssize_t validate_store(struct kmem_cache *s,
5302 			const char *buf, size_t length)
5303 {
5304 	int ret = -EINVAL;
5305 
5306 	if (buf[0] == '1') {
5307 		ret = validate_slab_cache(s);
5308 		if (ret >= 0)
5309 			ret = length;
5310 	}
5311 	return ret;
5312 }
5313 SLAB_ATTR(validate);
5314 
5315 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5316 {
5317 	if (!(s->flags & SLAB_STORE_USER))
5318 		return -ENOSYS;
5319 	return list_locations(s, buf, TRACK_ALLOC);
5320 }
5321 SLAB_ATTR_RO(alloc_calls);
5322 
5323 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5324 {
5325 	if (!(s->flags & SLAB_STORE_USER))
5326 		return -ENOSYS;
5327 	return list_locations(s, buf, TRACK_FREE);
5328 }
5329 SLAB_ATTR_RO(free_calls);
5330 #endif /* CONFIG_SLUB_DEBUG */
5331 
5332 #ifdef CONFIG_FAILSLAB
5333 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5334 {
5335 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5336 }
5337 
5338 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5339 							size_t length)
5340 {
5341 	if (s->refcount > 1)
5342 		return -EINVAL;
5343 
5344 	s->flags &= ~SLAB_FAILSLAB;
5345 	if (buf[0] == '1')
5346 		s->flags |= SLAB_FAILSLAB;
5347 	return length;
5348 }
5349 SLAB_ATTR(failslab);
5350 #endif
5351 
5352 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5353 {
5354 	return 0;
5355 }
5356 
5357 static ssize_t shrink_store(struct kmem_cache *s,
5358 			const char *buf, size_t length)
5359 {
5360 	if (buf[0] == '1')
5361 		kmem_cache_shrink_all(s);
5362 	else
5363 		return -EINVAL;
5364 	return length;
5365 }
5366 SLAB_ATTR(shrink);
5367 
5368 #ifdef CONFIG_NUMA
5369 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5370 {
5371 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5372 }
5373 
5374 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5375 				const char *buf, size_t length)
5376 {
5377 	unsigned int ratio;
5378 	int err;
5379 
5380 	err = kstrtouint(buf, 10, &ratio);
5381 	if (err)
5382 		return err;
5383 	if (ratio > 100)
5384 		return -ERANGE;
5385 
5386 	s->remote_node_defrag_ratio = ratio * 10;
5387 
5388 	return length;
5389 }
5390 SLAB_ATTR(remote_node_defrag_ratio);
5391 #endif
5392 
5393 #ifdef CONFIG_SLUB_STATS
5394 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5395 {
5396 	unsigned long sum  = 0;
5397 	int cpu;
5398 	int len;
5399 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5400 
5401 	if (!data)
5402 		return -ENOMEM;
5403 
5404 	for_each_online_cpu(cpu) {
5405 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5406 
5407 		data[cpu] = x;
5408 		sum += x;
5409 	}
5410 
5411 	len = sprintf(buf, "%lu", sum);
5412 
5413 #ifdef CONFIG_SMP
5414 	for_each_online_cpu(cpu) {
5415 		if (data[cpu] && len < PAGE_SIZE - 20)
5416 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5417 	}
5418 #endif
5419 	kfree(data);
5420 	return len + sprintf(buf + len, "\n");
5421 }
5422 
5423 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5424 {
5425 	int cpu;
5426 
5427 	for_each_online_cpu(cpu)
5428 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5429 }
5430 
5431 #define STAT_ATTR(si, text) 					\
5432 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5433 {								\
5434 	return show_stat(s, buf, si);				\
5435 }								\
5436 static ssize_t text##_store(struct kmem_cache *s,		\
5437 				const char *buf, size_t length)	\
5438 {								\
5439 	if (buf[0] != '0')					\
5440 		return -EINVAL;					\
5441 	clear_stat(s, si);					\
5442 	return length;						\
5443 }								\
5444 SLAB_ATTR(text);						\
5445 
5446 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5447 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5448 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5449 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5450 STAT_ATTR(FREE_FROZEN, free_frozen);
5451 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5452 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5453 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5454 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5455 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5456 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5457 STAT_ATTR(FREE_SLAB, free_slab);
5458 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5459 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5460 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5461 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5462 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5463 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5464 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5465 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5466 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5467 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5468 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5469 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5470 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5471 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5472 #endif	/* CONFIG_SLUB_STATS */
5473 
5474 static struct attribute *slab_attrs[] = {
5475 	&slab_size_attr.attr,
5476 	&object_size_attr.attr,
5477 	&objs_per_slab_attr.attr,
5478 	&order_attr.attr,
5479 	&min_partial_attr.attr,
5480 	&cpu_partial_attr.attr,
5481 	&objects_attr.attr,
5482 	&objects_partial_attr.attr,
5483 	&partial_attr.attr,
5484 	&cpu_slabs_attr.attr,
5485 	&ctor_attr.attr,
5486 	&aliases_attr.attr,
5487 	&align_attr.attr,
5488 	&hwcache_align_attr.attr,
5489 	&reclaim_account_attr.attr,
5490 	&destroy_by_rcu_attr.attr,
5491 	&shrink_attr.attr,
5492 	&slabs_cpu_partial_attr.attr,
5493 #ifdef CONFIG_SLUB_DEBUG
5494 	&total_objects_attr.attr,
5495 	&slabs_attr.attr,
5496 	&sanity_checks_attr.attr,
5497 	&trace_attr.attr,
5498 	&red_zone_attr.attr,
5499 	&poison_attr.attr,
5500 	&store_user_attr.attr,
5501 	&validate_attr.attr,
5502 	&alloc_calls_attr.attr,
5503 	&free_calls_attr.attr,
5504 #endif
5505 #ifdef CONFIG_ZONE_DMA
5506 	&cache_dma_attr.attr,
5507 #endif
5508 #ifdef CONFIG_NUMA
5509 	&remote_node_defrag_ratio_attr.attr,
5510 #endif
5511 #ifdef CONFIG_SLUB_STATS
5512 	&alloc_fastpath_attr.attr,
5513 	&alloc_slowpath_attr.attr,
5514 	&free_fastpath_attr.attr,
5515 	&free_slowpath_attr.attr,
5516 	&free_frozen_attr.attr,
5517 	&free_add_partial_attr.attr,
5518 	&free_remove_partial_attr.attr,
5519 	&alloc_from_partial_attr.attr,
5520 	&alloc_slab_attr.attr,
5521 	&alloc_refill_attr.attr,
5522 	&alloc_node_mismatch_attr.attr,
5523 	&free_slab_attr.attr,
5524 	&cpuslab_flush_attr.attr,
5525 	&deactivate_full_attr.attr,
5526 	&deactivate_empty_attr.attr,
5527 	&deactivate_to_head_attr.attr,
5528 	&deactivate_to_tail_attr.attr,
5529 	&deactivate_remote_frees_attr.attr,
5530 	&deactivate_bypass_attr.attr,
5531 	&order_fallback_attr.attr,
5532 	&cmpxchg_double_fail_attr.attr,
5533 	&cmpxchg_double_cpu_fail_attr.attr,
5534 	&cpu_partial_alloc_attr.attr,
5535 	&cpu_partial_free_attr.attr,
5536 	&cpu_partial_node_attr.attr,
5537 	&cpu_partial_drain_attr.attr,
5538 #endif
5539 #ifdef CONFIG_FAILSLAB
5540 	&failslab_attr.attr,
5541 #endif
5542 	&usersize_attr.attr,
5543 
5544 	NULL
5545 };
5546 
5547 static const struct attribute_group slab_attr_group = {
5548 	.attrs = slab_attrs,
5549 };
5550 
5551 static ssize_t slab_attr_show(struct kobject *kobj,
5552 				struct attribute *attr,
5553 				char *buf)
5554 {
5555 	struct slab_attribute *attribute;
5556 	struct kmem_cache *s;
5557 	int err;
5558 
5559 	attribute = to_slab_attr(attr);
5560 	s = to_slab(kobj);
5561 
5562 	if (!attribute->show)
5563 		return -EIO;
5564 
5565 	err = attribute->show(s, buf);
5566 
5567 	return err;
5568 }
5569 
5570 static ssize_t slab_attr_store(struct kobject *kobj,
5571 				struct attribute *attr,
5572 				const char *buf, size_t len)
5573 {
5574 	struct slab_attribute *attribute;
5575 	struct kmem_cache *s;
5576 	int err;
5577 
5578 	attribute = to_slab_attr(attr);
5579 	s = to_slab(kobj);
5580 
5581 	if (!attribute->store)
5582 		return -EIO;
5583 
5584 	err = attribute->store(s, buf, len);
5585 #ifdef CONFIG_MEMCG
5586 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5587 		struct kmem_cache *c;
5588 
5589 		mutex_lock(&slab_mutex);
5590 		if (s->max_attr_size < len)
5591 			s->max_attr_size = len;
5592 
5593 		/*
5594 		 * This is a best effort propagation, so this function's return
5595 		 * value will be determined by the parent cache only. This is
5596 		 * basically because not all attributes will have a well
5597 		 * defined semantics for rollbacks - most of the actions will
5598 		 * have permanent effects.
5599 		 *
5600 		 * Returning the error value of any of the children that fail
5601 		 * is not 100 % defined, in the sense that users seeing the
5602 		 * error code won't be able to know anything about the state of
5603 		 * the cache.
5604 		 *
5605 		 * Only returning the error code for the parent cache at least
5606 		 * has well defined semantics. The cache being written to
5607 		 * directly either failed or succeeded, in which case we loop
5608 		 * through the descendants with best-effort propagation.
5609 		 */
5610 		for_each_memcg_cache(c, s)
5611 			attribute->store(c, buf, len);
5612 		mutex_unlock(&slab_mutex);
5613 	}
5614 #endif
5615 	return err;
5616 }
5617 
5618 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5619 {
5620 #ifdef CONFIG_MEMCG
5621 	int i;
5622 	char *buffer = NULL;
5623 	struct kmem_cache *root_cache;
5624 
5625 	if (is_root_cache(s))
5626 		return;
5627 
5628 	root_cache = s->memcg_params.root_cache;
5629 
5630 	/*
5631 	 * This mean this cache had no attribute written. Therefore, no point
5632 	 * in copying default values around
5633 	 */
5634 	if (!root_cache->max_attr_size)
5635 		return;
5636 
5637 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5638 		char mbuf[64];
5639 		char *buf;
5640 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5641 		ssize_t len;
5642 
5643 		if (!attr || !attr->store || !attr->show)
5644 			continue;
5645 
5646 		/*
5647 		 * It is really bad that we have to allocate here, so we will
5648 		 * do it only as a fallback. If we actually allocate, though,
5649 		 * we can just use the allocated buffer until the end.
5650 		 *
5651 		 * Most of the slub attributes will tend to be very small in
5652 		 * size, but sysfs allows buffers up to a page, so they can
5653 		 * theoretically happen.
5654 		 */
5655 		if (buffer)
5656 			buf = buffer;
5657 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5658 			buf = mbuf;
5659 		else {
5660 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5661 			if (WARN_ON(!buffer))
5662 				continue;
5663 			buf = buffer;
5664 		}
5665 
5666 		len = attr->show(root_cache, buf);
5667 		if (len > 0)
5668 			attr->store(s, buf, len);
5669 	}
5670 
5671 	if (buffer)
5672 		free_page((unsigned long)buffer);
5673 #endif	/* CONFIG_MEMCG */
5674 }
5675 
5676 static void kmem_cache_release(struct kobject *k)
5677 {
5678 	slab_kmem_cache_release(to_slab(k));
5679 }
5680 
5681 static const struct sysfs_ops slab_sysfs_ops = {
5682 	.show = slab_attr_show,
5683 	.store = slab_attr_store,
5684 };
5685 
5686 static struct kobj_type slab_ktype = {
5687 	.sysfs_ops = &slab_sysfs_ops,
5688 	.release = kmem_cache_release,
5689 };
5690 
5691 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5692 {
5693 	struct kobj_type *ktype = get_ktype(kobj);
5694 
5695 	if (ktype == &slab_ktype)
5696 		return 1;
5697 	return 0;
5698 }
5699 
5700 static const struct kset_uevent_ops slab_uevent_ops = {
5701 	.filter = uevent_filter,
5702 };
5703 
5704 static struct kset *slab_kset;
5705 
5706 static inline struct kset *cache_kset(struct kmem_cache *s)
5707 {
5708 #ifdef CONFIG_MEMCG
5709 	if (!is_root_cache(s))
5710 		return s->memcg_params.root_cache->memcg_kset;
5711 #endif
5712 	return slab_kset;
5713 }
5714 
5715 #define ID_STR_LENGTH 64
5716 
5717 /* Create a unique string id for a slab cache:
5718  *
5719  * Format	:[flags-]size
5720  */
5721 static char *create_unique_id(struct kmem_cache *s)
5722 {
5723 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5724 	char *p = name;
5725 
5726 	BUG_ON(!name);
5727 
5728 	*p++ = ':';
5729 	/*
5730 	 * First flags affecting slabcache operations. We will only
5731 	 * get here for aliasable slabs so we do not need to support
5732 	 * too many flags. The flags here must cover all flags that
5733 	 * are matched during merging to guarantee that the id is
5734 	 * unique.
5735 	 */
5736 	if (s->flags & SLAB_CACHE_DMA)
5737 		*p++ = 'd';
5738 	if (s->flags & SLAB_CACHE_DMA32)
5739 		*p++ = 'D';
5740 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5741 		*p++ = 'a';
5742 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5743 		*p++ = 'F';
5744 	if (s->flags & SLAB_ACCOUNT)
5745 		*p++ = 'A';
5746 	if (p != name + 1)
5747 		*p++ = '-';
5748 	p += sprintf(p, "%07u", s->size);
5749 
5750 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5751 	return name;
5752 }
5753 
5754 static void sysfs_slab_remove_workfn(struct work_struct *work)
5755 {
5756 	struct kmem_cache *s =
5757 		container_of(work, struct kmem_cache, kobj_remove_work);
5758 
5759 	if (!s->kobj.state_in_sysfs)
5760 		/*
5761 		 * For a memcg cache, this may be called during
5762 		 * deactivation and again on shutdown.  Remove only once.
5763 		 * A cache is never shut down before deactivation is
5764 		 * complete, so no need to worry about synchronization.
5765 		 */
5766 		goto out;
5767 
5768 #ifdef CONFIG_MEMCG
5769 	kset_unregister(s->memcg_kset);
5770 #endif
5771 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5772 out:
5773 	kobject_put(&s->kobj);
5774 }
5775 
5776 static int sysfs_slab_add(struct kmem_cache *s)
5777 {
5778 	int err;
5779 	const char *name;
5780 	struct kset *kset = cache_kset(s);
5781 	int unmergeable = slab_unmergeable(s);
5782 
5783 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5784 
5785 	if (!kset) {
5786 		kobject_init(&s->kobj, &slab_ktype);
5787 		return 0;
5788 	}
5789 
5790 	if (!unmergeable && disable_higher_order_debug &&
5791 			(slub_debug & DEBUG_METADATA_FLAGS))
5792 		unmergeable = 1;
5793 
5794 	if (unmergeable) {
5795 		/*
5796 		 * Slabcache can never be merged so we can use the name proper.
5797 		 * This is typically the case for debug situations. In that
5798 		 * case we can catch duplicate names easily.
5799 		 */
5800 		sysfs_remove_link(&slab_kset->kobj, s->name);
5801 		name = s->name;
5802 	} else {
5803 		/*
5804 		 * Create a unique name for the slab as a target
5805 		 * for the symlinks.
5806 		 */
5807 		name = create_unique_id(s);
5808 	}
5809 
5810 	s->kobj.kset = kset;
5811 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5812 	if (err)
5813 		goto out;
5814 
5815 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5816 	if (err)
5817 		goto out_del_kobj;
5818 
5819 #ifdef CONFIG_MEMCG
5820 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5821 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5822 		if (!s->memcg_kset) {
5823 			err = -ENOMEM;
5824 			goto out_del_kobj;
5825 		}
5826 	}
5827 #endif
5828 
5829 	kobject_uevent(&s->kobj, KOBJ_ADD);
5830 	if (!unmergeable) {
5831 		/* Setup first alias */
5832 		sysfs_slab_alias(s, s->name);
5833 	}
5834 out:
5835 	if (!unmergeable)
5836 		kfree(name);
5837 	return err;
5838 out_del_kobj:
5839 	kobject_del(&s->kobj);
5840 	goto out;
5841 }
5842 
5843 static void sysfs_slab_remove(struct kmem_cache *s)
5844 {
5845 	if (slab_state < FULL)
5846 		/*
5847 		 * Sysfs has not been setup yet so no need to remove the
5848 		 * cache from sysfs.
5849 		 */
5850 		return;
5851 
5852 	kobject_get(&s->kobj);
5853 	schedule_work(&s->kobj_remove_work);
5854 }
5855 
5856 void sysfs_slab_unlink(struct kmem_cache *s)
5857 {
5858 	if (slab_state >= FULL)
5859 		kobject_del(&s->kobj);
5860 }
5861 
5862 void sysfs_slab_release(struct kmem_cache *s)
5863 {
5864 	if (slab_state >= FULL)
5865 		kobject_put(&s->kobj);
5866 }
5867 
5868 /*
5869  * Need to buffer aliases during bootup until sysfs becomes
5870  * available lest we lose that information.
5871  */
5872 struct saved_alias {
5873 	struct kmem_cache *s;
5874 	const char *name;
5875 	struct saved_alias *next;
5876 };
5877 
5878 static struct saved_alias *alias_list;
5879 
5880 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5881 {
5882 	struct saved_alias *al;
5883 
5884 	if (slab_state == FULL) {
5885 		/*
5886 		 * If we have a leftover link then remove it.
5887 		 */
5888 		sysfs_remove_link(&slab_kset->kobj, name);
5889 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5890 	}
5891 
5892 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5893 	if (!al)
5894 		return -ENOMEM;
5895 
5896 	al->s = s;
5897 	al->name = name;
5898 	al->next = alias_list;
5899 	alias_list = al;
5900 	return 0;
5901 }
5902 
5903 static int __init slab_sysfs_init(void)
5904 {
5905 	struct kmem_cache *s;
5906 	int err;
5907 
5908 	mutex_lock(&slab_mutex);
5909 
5910 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5911 	if (!slab_kset) {
5912 		mutex_unlock(&slab_mutex);
5913 		pr_err("Cannot register slab subsystem.\n");
5914 		return -ENOSYS;
5915 	}
5916 
5917 	slab_state = FULL;
5918 
5919 	list_for_each_entry(s, &slab_caches, list) {
5920 		err = sysfs_slab_add(s);
5921 		if (err)
5922 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5923 			       s->name);
5924 	}
5925 
5926 	while (alias_list) {
5927 		struct saved_alias *al = alias_list;
5928 
5929 		alias_list = alias_list->next;
5930 		err = sysfs_slab_alias(al->s, al->name);
5931 		if (err)
5932 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5933 			       al->name);
5934 		kfree(al);
5935 	}
5936 
5937 	mutex_unlock(&slab_mutex);
5938 	resiliency_test();
5939 	return 0;
5940 }
5941 
5942 __initcall(slab_sysfs_init);
5943 #endif /* CONFIG_SYSFS */
5944 
5945 /*
5946  * The /proc/slabinfo ABI
5947  */
5948 #ifdef CONFIG_SLUB_DEBUG
5949 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5950 {
5951 	unsigned long nr_slabs = 0;
5952 	unsigned long nr_objs = 0;
5953 	unsigned long nr_free = 0;
5954 	int node;
5955 	struct kmem_cache_node *n;
5956 
5957 	for_each_kmem_cache_node(s, node, n) {
5958 		nr_slabs += node_nr_slabs(n);
5959 		nr_objs += node_nr_objs(n);
5960 		nr_free += count_partial(n, count_free);
5961 	}
5962 
5963 	sinfo->active_objs = nr_objs - nr_free;
5964 	sinfo->num_objs = nr_objs;
5965 	sinfo->active_slabs = nr_slabs;
5966 	sinfo->num_slabs = nr_slabs;
5967 	sinfo->objects_per_slab = oo_objects(s->oo);
5968 	sinfo->cache_order = oo_order(s->oo);
5969 }
5970 
5971 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5972 {
5973 }
5974 
5975 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5976 		       size_t count, loff_t *ppos)
5977 {
5978 	return -EIO;
5979 }
5980 #endif /* CONFIG_SLUB_DEBUG */
5981