1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * page->frozen The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 #ifdef CONFIG_SLUB_DEBUG 118 #ifdef CONFIG_SLUB_DEBUG_ON 119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 120 #else 121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 122 #endif 123 #endif 124 125 static inline bool kmem_cache_debug(struct kmem_cache *s) 126 { 127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 128 } 129 130 void *fixup_red_left(struct kmem_cache *s, void *p) 131 { 132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 133 p += s->red_left_pad; 134 135 return p; 136 } 137 138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 139 { 140 #ifdef CONFIG_SLUB_CPU_PARTIAL 141 return !kmem_cache_debug(s); 142 #else 143 return false; 144 #endif 145 } 146 147 /* 148 * Issues still to be resolved: 149 * 150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 151 * 152 * - Variable sizing of the per node arrays 153 */ 154 155 /* Enable to test recovery from slab corruption on boot */ 156 #undef SLUB_RESILIENCY_TEST 157 158 /* Enable to log cmpxchg failures */ 159 #undef SLUB_DEBUG_CMPXCHG 160 161 /* 162 * Mininum number of partial slabs. These will be left on the partial 163 * lists even if they are empty. kmem_cache_shrink may reclaim them. 164 */ 165 #define MIN_PARTIAL 5 166 167 /* 168 * Maximum number of desirable partial slabs. 169 * The existence of more partial slabs makes kmem_cache_shrink 170 * sort the partial list by the number of objects in use. 171 */ 172 #define MAX_PARTIAL 10 173 174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 175 SLAB_POISON | SLAB_STORE_USER) 176 177 /* 178 * These debug flags cannot use CMPXCHG because there might be consistency 179 * issues when checking or reading debug information 180 */ 181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 182 SLAB_TRACE) 183 184 185 /* 186 * Debugging flags that require metadata to be stored in the slab. These get 187 * disabled when slub_debug=O is used and a cache's min order increases with 188 * metadata. 189 */ 190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 191 192 #define OO_SHIFT 16 193 #define OO_MASK ((1 << OO_SHIFT) - 1) 194 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 195 196 /* Internal SLUB flags */ 197 /* Poison object */ 198 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 199 /* Use cmpxchg_double */ 200 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 201 202 /* 203 * Tracking user of a slab. 204 */ 205 #define TRACK_ADDRS_COUNT 16 206 struct track { 207 unsigned long addr; /* Called from address */ 208 #ifdef CONFIG_STACKTRACE 209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 210 #endif 211 int cpu; /* Was running on cpu */ 212 int pid; /* Pid context */ 213 unsigned long when; /* When did the operation occur */ 214 }; 215 216 enum track_item { TRACK_ALLOC, TRACK_FREE }; 217 218 #ifdef CONFIG_SYSFS 219 static int sysfs_slab_add(struct kmem_cache *); 220 static int sysfs_slab_alias(struct kmem_cache *, const char *); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 #endif 226 227 static inline void stat(const struct kmem_cache *s, enum stat_item si) 228 { 229 #ifdef CONFIG_SLUB_STATS 230 /* 231 * The rmw is racy on a preemptible kernel but this is acceptable, so 232 * avoid this_cpu_add()'s irq-disable overhead. 233 */ 234 raw_cpu_inc(s->cpu_slab->stat[si]); 235 #endif 236 } 237 238 /******************************************************************** 239 * Core slab cache functions 240 *******************************************************************/ 241 242 /* 243 * Returns freelist pointer (ptr). With hardening, this is obfuscated 244 * with an XOR of the address where the pointer is held and a per-cache 245 * random number. 246 */ 247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 248 unsigned long ptr_addr) 249 { 250 #ifdef CONFIG_SLAB_FREELIST_HARDENED 251 /* 252 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 253 * Normally, this doesn't cause any issues, as both set_freepointer() 254 * and get_freepointer() are called with a pointer with the same tag. 255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 256 * example, when __free_slub() iterates over objects in a cache, it 257 * passes untagged pointers to check_object(). check_object() in turns 258 * calls get_freepointer() with an untagged pointer, which causes the 259 * freepointer to be restored incorrectly. 260 */ 261 return (void *)((unsigned long)ptr ^ s->random ^ 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 263 #else 264 return ptr; 265 #endif 266 } 267 268 /* Returns the freelist pointer recorded at location ptr_addr. */ 269 static inline void *freelist_dereference(const struct kmem_cache *s, 270 void *ptr_addr) 271 { 272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 273 (unsigned long)ptr_addr); 274 } 275 276 static inline void *get_freepointer(struct kmem_cache *s, void *object) 277 { 278 object = kasan_reset_tag(object); 279 return freelist_dereference(s, object + s->offset); 280 } 281 282 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 283 { 284 prefetch(object + s->offset); 285 } 286 287 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 288 { 289 unsigned long freepointer_addr; 290 void *p; 291 292 if (!debug_pagealloc_enabled_static()) 293 return get_freepointer(s, object); 294 295 freepointer_addr = (unsigned long)object + s->offset; 296 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 297 return freelist_ptr(s, p, freepointer_addr); 298 } 299 300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 301 { 302 unsigned long freeptr_addr = (unsigned long)object + s->offset; 303 304 #ifdef CONFIG_SLAB_FREELIST_HARDENED 305 BUG_ON(object == fp); /* naive detection of double free or corruption */ 306 #endif 307 308 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 310 } 311 312 /* Loop over all objects in a slab */ 313 #define for_each_object(__p, __s, __addr, __objects) \ 314 for (__p = fixup_red_left(__s, __addr); \ 315 __p < (__addr) + (__objects) * (__s)->size; \ 316 __p += (__s)->size) 317 318 static inline unsigned int order_objects(unsigned int order, unsigned int size) 319 { 320 return ((unsigned int)PAGE_SIZE << order) / size; 321 } 322 323 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 324 unsigned int size) 325 { 326 struct kmem_cache_order_objects x = { 327 (order << OO_SHIFT) + order_objects(order, size) 328 }; 329 330 return x; 331 } 332 333 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 334 { 335 return x.x >> OO_SHIFT; 336 } 337 338 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 339 { 340 return x.x & OO_MASK; 341 } 342 343 /* 344 * Per slab locking using the pagelock 345 */ 346 static __always_inline void slab_lock(struct page *page) 347 { 348 VM_BUG_ON_PAGE(PageTail(page), page); 349 bit_spin_lock(PG_locked, &page->flags); 350 } 351 352 static __always_inline void slab_unlock(struct page *page) 353 { 354 VM_BUG_ON_PAGE(PageTail(page), page); 355 __bit_spin_unlock(PG_locked, &page->flags); 356 } 357 358 /* Interrupts must be disabled (for the fallback code to work right) */ 359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 360 void *freelist_old, unsigned long counters_old, 361 void *freelist_new, unsigned long counters_new, 362 const char *n) 363 { 364 VM_BUG_ON(!irqs_disabled()); 365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 367 if (s->flags & __CMPXCHG_DOUBLE) { 368 if (cmpxchg_double(&page->freelist, &page->counters, 369 freelist_old, counters_old, 370 freelist_new, counters_new)) 371 return true; 372 } else 373 #endif 374 { 375 slab_lock(page); 376 if (page->freelist == freelist_old && 377 page->counters == counters_old) { 378 page->freelist = freelist_new; 379 page->counters = counters_new; 380 slab_unlock(page); 381 return true; 382 } 383 slab_unlock(page); 384 } 385 386 cpu_relax(); 387 stat(s, CMPXCHG_DOUBLE_FAIL); 388 389 #ifdef SLUB_DEBUG_CMPXCHG 390 pr_info("%s %s: cmpxchg double redo ", n, s->name); 391 #endif 392 393 return false; 394 } 395 396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 397 void *freelist_old, unsigned long counters_old, 398 void *freelist_new, unsigned long counters_new, 399 const char *n) 400 { 401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 402 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 403 if (s->flags & __CMPXCHG_DOUBLE) { 404 if (cmpxchg_double(&page->freelist, &page->counters, 405 freelist_old, counters_old, 406 freelist_new, counters_new)) 407 return true; 408 } else 409 #endif 410 { 411 unsigned long flags; 412 413 local_irq_save(flags); 414 slab_lock(page); 415 if (page->freelist == freelist_old && 416 page->counters == counters_old) { 417 page->freelist = freelist_new; 418 page->counters = counters_new; 419 slab_unlock(page); 420 local_irq_restore(flags); 421 return true; 422 } 423 slab_unlock(page); 424 local_irq_restore(flags); 425 } 426 427 cpu_relax(); 428 stat(s, CMPXCHG_DOUBLE_FAIL); 429 430 #ifdef SLUB_DEBUG_CMPXCHG 431 pr_info("%s %s: cmpxchg double redo ", n, s->name); 432 #endif 433 434 return false; 435 } 436 437 #ifdef CONFIG_SLUB_DEBUG 438 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 439 static DEFINE_SPINLOCK(object_map_lock); 440 441 /* 442 * Determine a map of object in use on a page. 443 * 444 * Node listlock must be held to guarantee that the page does 445 * not vanish from under us. 446 */ 447 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 448 __acquires(&object_map_lock) 449 { 450 void *p; 451 void *addr = page_address(page); 452 453 VM_BUG_ON(!irqs_disabled()); 454 455 spin_lock(&object_map_lock); 456 457 bitmap_zero(object_map, page->objects); 458 459 for (p = page->freelist; p; p = get_freepointer(s, p)) 460 set_bit(__obj_to_index(s, addr, p), object_map); 461 462 return object_map; 463 } 464 465 static void put_map(unsigned long *map) __releases(&object_map_lock) 466 { 467 VM_BUG_ON(map != object_map); 468 spin_unlock(&object_map_lock); 469 } 470 471 static inline unsigned int size_from_object(struct kmem_cache *s) 472 { 473 if (s->flags & SLAB_RED_ZONE) 474 return s->size - s->red_left_pad; 475 476 return s->size; 477 } 478 479 static inline void *restore_red_left(struct kmem_cache *s, void *p) 480 { 481 if (s->flags & SLAB_RED_ZONE) 482 p -= s->red_left_pad; 483 484 return p; 485 } 486 487 /* 488 * Debug settings: 489 */ 490 #if defined(CONFIG_SLUB_DEBUG_ON) 491 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 492 #else 493 static slab_flags_t slub_debug; 494 #endif 495 496 static char *slub_debug_string; 497 static int disable_higher_order_debug; 498 499 /* 500 * slub is about to manipulate internal object metadata. This memory lies 501 * outside the range of the allocated object, so accessing it would normally 502 * be reported by kasan as a bounds error. metadata_access_enable() is used 503 * to tell kasan that these accesses are OK. 504 */ 505 static inline void metadata_access_enable(void) 506 { 507 kasan_disable_current(); 508 } 509 510 static inline void metadata_access_disable(void) 511 { 512 kasan_enable_current(); 513 } 514 515 /* 516 * Object debugging 517 */ 518 519 /* Verify that a pointer has an address that is valid within a slab page */ 520 static inline int check_valid_pointer(struct kmem_cache *s, 521 struct page *page, void *object) 522 { 523 void *base; 524 525 if (!object) 526 return 1; 527 528 base = page_address(page); 529 object = kasan_reset_tag(object); 530 object = restore_red_left(s, object); 531 if (object < base || object >= base + page->objects * s->size || 532 (object - base) % s->size) { 533 return 0; 534 } 535 536 return 1; 537 } 538 539 static void print_section(char *level, char *text, u8 *addr, 540 unsigned int length) 541 { 542 metadata_access_enable(); 543 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS, 544 16, 1, addr, length, 1); 545 metadata_access_disable(); 546 } 547 548 /* 549 * See comment in calculate_sizes(). 550 */ 551 static inline bool freeptr_outside_object(struct kmem_cache *s) 552 { 553 return s->offset >= s->inuse; 554 } 555 556 /* 557 * Return offset of the end of info block which is inuse + free pointer if 558 * not overlapping with object. 559 */ 560 static inline unsigned int get_info_end(struct kmem_cache *s) 561 { 562 if (freeptr_outside_object(s)) 563 return s->inuse + sizeof(void *); 564 else 565 return s->inuse; 566 } 567 568 static struct track *get_track(struct kmem_cache *s, void *object, 569 enum track_item alloc) 570 { 571 struct track *p; 572 573 p = object + get_info_end(s); 574 575 return kasan_reset_tag(p + alloc); 576 } 577 578 static void set_track(struct kmem_cache *s, void *object, 579 enum track_item alloc, unsigned long addr) 580 { 581 struct track *p = get_track(s, object, alloc); 582 583 if (addr) { 584 #ifdef CONFIG_STACKTRACE 585 unsigned int nr_entries; 586 587 metadata_access_enable(); 588 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), 589 TRACK_ADDRS_COUNT, 3); 590 metadata_access_disable(); 591 592 if (nr_entries < TRACK_ADDRS_COUNT) 593 p->addrs[nr_entries] = 0; 594 #endif 595 p->addr = addr; 596 p->cpu = smp_processor_id(); 597 p->pid = current->pid; 598 p->when = jiffies; 599 } else { 600 memset(p, 0, sizeof(struct track)); 601 } 602 } 603 604 static void init_tracking(struct kmem_cache *s, void *object) 605 { 606 if (!(s->flags & SLAB_STORE_USER)) 607 return; 608 609 set_track(s, object, TRACK_FREE, 0UL); 610 set_track(s, object, TRACK_ALLOC, 0UL); 611 } 612 613 static void print_track(const char *s, struct track *t, unsigned long pr_time) 614 { 615 if (!t->addr) 616 return; 617 618 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 619 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 620 #ifdef CONFIG_STACKTRACE 621 { 622 int i; 623 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 624 if (t->addrs[i]) 625 pr_err("\t%pS\n", (void *)t->addrs[i]); 626 else 627 break; 628 } 629 #endif 630 } 631 632 void print_tracking(struct kmem_cache *s, void *object) 633 { 634 unsigned long pr_time = jiffies; 635 if (!(s->flags & SLAB_STORE_USER)) 636 return; 637 638 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 639 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 640 } 641 642 static void print_page_info(struct page *page) 643 { 644 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 645 page, page->objects, page->inuse, page->freelist, page->flags); 646 647 } 648 649 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 650 { 651 struct va_format vaf; 652 va_list args; 653 654 va_start(args, fmt); 655 vaf.fmt = fmt; 656 vaf.va = &args; 657 pr_err("=============================================================================\n"); 658 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 659 pr_err("-----------------------------------------------------------------------------\n\n"); 660 661 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 662 va_end(args); 663 } 664 665 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 666 { 667 struct va_format vaf; 668 va_list args; 669 670 va_start(args, fmt); 671 vaf.fmt = fmt; 672 vaf.va = &args; 673 pr_err("FIX %s: %pV\n", s->name, &vaf); 674 va_end(args); 675 } 676 677 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 678 void **freelist, void *nextfree) 679 { 680 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 681 !check_valid_pointer(s, page, nextfree) && freelist) { 682 object_err(s, page, *freelist, "Freechain corrupt"); 683 *freelist = NULL; 684 slab_fix(s, "Isolate corrupted freechain"); 685 return true; 686 } 687 688 return false; 689 } 690 691 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 692 { 693 unsigned int off; /* Offset of last byte */ 694 u8 *addr = page_address(page); 695 696 print_tracking(s, p); 697 698 print_page_info(page); 699 700 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 701 p, p - addr, get_freepointer(s, p)); 702 703 if (s->flags & SLAB_RED_ZONE) 704 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 705 s->red_left_pad); 706 else if (p > addr + 16) 707 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 708 709 print_section(KERN_ERR, "Object ", p, 710 min_t(unsigned int, s->object_size, PAGE_SIZE)); 711 if (s->flags & SLAB_RED_ZONE) 712 print_section(KERN_ERR, "Redzone ", p + s->object_size, 713 s->inuse - s->object_size); 714 715 off = get_info_end(s); 716 717 if (s->flags & SLAB_STORE_USER) 718 off += 2 * sizeof(struct track); 719 720 off += kasan_metadata_size(s); 721 722 if (off != size_from_object(s)) 723 /* Beginning of the filler is the free pointer */ 724 print_section(KERN_ERR, "Padding ", p + off, 725 size_from_object(s) - off); 726 727 dump_stack(); 728 } 729 730 void object_err(struct kmem_cache *s, struct page *page, 731 u8 *object, char *reason) 732 { 733 slab_bug(s, "%s", reason); 734 print_trailer(s, page, object); 735 } 736 737 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 738 const char *fmt, ...) 739 { 740 va_list args; 741 char buf[100]; 742 743 va_start(args, fmt); 744 vsnprintf(buf, sizeof(buf), fmt, args); 745 va_end(args); 746 slab_bug(s, "%s", buf); 747 print_page_info(page); 748 dump_stack(); 749 } 750 751 static void init_object(struct kmem_cache *s, void *object, u8 val) 752 { 753 u8 *p = kasan_reset_tag(object); 754 755 if (s->flags & SLAB_RED_ZONE) 756 memset(p - s->red_left_pad, val, s->red_left_pad); 757 758 if (s->flags & __OBJECT_POISON) { 759 memset(p, POISON_FREE, s->object_size - 1); 760 p[s->object_size - 1] = POISON_END; 761 } 762 763 if (s->flags & SLAB_RED_ZONE) 764 memset(p + s->object_size, val, s->inuse - s->object_size); 765 } 766 767 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 768 void *from, void *to) 769 { 770 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 771 memset(from, data, to - from); 772 } 773 774 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 775 u8 *object, char *what, 776 u8 *start, unsigned int value, unsigned int bytes) 777 { 778 u8 *fault; 779 u8 *end; 780 u8 *addr = page_address(page); 781 782 metadata_access_enable(); 783 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 784 metadata_access_disable(); 785 if (!fault) 786 return 1; 787 788 end = start + bytes; 789 while (end > fault && end[-1] == value) 790 end--; 791 792 slab_bug(s, "%s overwritten", what); 793 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 794 fault, end - 1, fault - addr, 795 fault[0], value); 796 print_trailer(s, page, object); 797 798 restore_bytes(s, what, value, fault, end); 799 return 0; 800 } 801 802 /* 803 * Object layout: 804 * 805 * object address 806 * Bytes of the object to be managed. 807 * If the freepointer may overlay the object then the free 808 * pointer is at the middle of the object. 809 * 810 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 811 * 0xa5 (POISON_END) 812 * 813 * object + s->object_size 814 * Padding to reach word boundary. This is also used for Redzoning. 815 * Padding is extended by another word if Redzoning is enabled and 816 * object_size == inuse. 817 * 818 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 819 * 0xcc (RED_ACTIVE) for objects in use. 820 * 821 * object + s->inuse 822 * Meta data starts here. 823 * 824 * A. Free pointer (if we cannot overwrite object on free) 825 * B. Tracking data for SLAB_STORE_USER 826 * C. Padding to reach required alignment boundary or at mininum 827 * one word if debugging is on to be able to detect writes 828 * before the word boundary. 829 * 830 * Padding is done using 0x5a (POISON_INUSE) 831 * 832 * object + s->size 833 * Nothing is used beyond s->size. 834 * 835 * If slabcaches are merged then the object_size and inuse boundaries are mostly 836 * ignored. And therefore no slab options that rely on these boundaries 837 * may be used with merged slabcaches. 838 */ 839 840 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 841 { 842 unsigned long off = get_info_end(s); /* The end of info */ 843 844 if (s->flags & SLAB_STORE_USER) 845 /* We also have user information there */ 846 off += 2 * sizeof(struct track); 847 848 off += kasan_metadata_size(s); 849 850 if (size_from_object(s) == off) 851 return 1; 852 853 return check_bytes_and_report(s, page, p, "Object padding", 854 p + off, POISON_INUSE, size_from_object(s) - off); 855 } 856 857 /* Check the pad bytes at the end of a slab page */ 858 static int slab_pad_check(struct kmem_cache *s, struct page *page) 859 { 860 u8 *start; 861 u8 *fault; 862 u8 *end; 863 u8 *pad; 864 int length; 865 int remainder; 866 867 if (!(s->flags & SLAB_POISON)) 868 return 1; 869 870 start = page_address(page); 871 length = page_size(page); 872 end = start + length; 873 remainder = length % s->size; 874 if (!remainder) 875 return 1; 876 877 pad = end - remainder; 878 metadata_access_enable(); 879 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 880 metadata_access_disable(); 881 if (!fault) 882 return 1; 883 while (end > fault && end[-1] == POISON_INUSE) 884 end--; 885 886 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 887 fault, end - 1, fault - start); 888 print_section(KERN_ERR, "Padding ", pad, remainder); 889 890 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 891 return 0; 892 } 893 894 static int check_object(struct kmem_cache *s, struct page *page, 895 void *object, u8 val) 896 { 897 u8 *p = object; 898 u8 *endobject = object + s->object_size; 899 900 if (s->flags & SLAB_RED_ZONE) { 901 if (!check_bytes_and_report(s, page, object, "Redzone", 902 object - s->red_left_pad, val, s->red_left_pad)) 903 return 0; 904 905 if (!check_bytes_and_report(s, page, object, "Redzone", 906 endobject, val, s->inuse - s->object_size)) 907 return 0; 908 } else { 909 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 910 check_bytes_and_report(s, page, p, "Alignment padding", 911 endobject, POISON_INUSE, 912 s->inuse - s->object_size); 913 } 914 } 915 916 if (s->flags & SLAB_POISON) { 917 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 918 (!check_bytes_and_report(s, page, p, "Poison", p, 919 POISON_FREE, s->object_size - 1) || 920 !check_bytes_and_report(s, page, p, "Poison", 921 p + s->object_size - 1, POISON_END, 1))) 922 return 0; 923 /* 924 * check_pad_bytes cleans up on its own. 925 */ 926 check_pad_bytes(s, page, p); 927 } 928 929 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 930 /* 931 * Object and freepointer overlap. Cannot check 932 * freepointer while object is allocated. 933 */ 934 return 1; 935 936 /* Check free pointer validity */ 937 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 938 object_err(s, page, p, "Freepointer corrupt"); 939 /* 940 * No choice but to zap it and thus lose the remainder 941 * of the free objects in this slab. May cause 942 * another error because the object count is now wrong. 943 */ 944 set_freepointer(s, p, NULL); 945 return 0; 946 } 947 return 1; 948 } 949 950 static int check_slab(struct kmem_cache *s, struct page *page) 951 { 952 int maxobj; 953 954 VM_BUG_ON(!irqs_disabled()); 955 956 if (!PageSlab(page)) { 957 slab_err(s, page, "Not a valid slab page"); 958 return 0; 959 } 960 961 maxobj = order_objects(compound_order(page), s->size); 962 if (page->objects > maxobj) { 963 slab_err(s, page, "objects %u > max %u", 964 page->objects, maxobj); 965 return 0; 966 } 967 if (page->inuse > page->objects) { 968 slab_err(s, page, "inuse %u > max %u", 969 page->inuse, page->objects); 970 return 0; 971 } 972 /* Slab_pad_check fixes things up after itself */ 973 slab_pad_check(s, page); 974 return 1; 975 } 976 977 /* 978 * Determine if a certain object on a page is on the freelist. Must hold the 979 * slab lock to guarantee that the chains are in a consistent state. 980 */ 981 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 982 { 983 int nr = 0; 984 void *fp; 985 void *object = NULL; 986 int max_objects; 987 988 fp = page->freelist; 989 while (fp && nr <= page->objects) { 990 if (fp == search) 991 return 1; 992 if (!check_valid_pointer(s, page, fp)) { 993 if (object) { 994 object_err(s, page, object, 995 "Freechain corrupt"); 996 set_freepointer(s, object, NULL); 997 } else { 998 slab_err(s, page, "Freepointer corrupt"); 999 page->freelist = NULL; 1000 page->inuse = page->objects; 1001 slab_fix(s, "Freelist cleared"); 1002 return 0; 1003 } 1004 break; 1005 } 1006 object = fp; 1007 fp = get_freepointer(s, object); 1008 nr++; 1009 } 1010 1011 max_objects = order_objects(compound_order(page), s->size); 1012 if (max_objects > MAX_OBJS_PER_PAGE) 1013 max_objects = MAX_OBJS_PER_PAGE; 1014 1015 if (page->objects != max_objects) { 1016 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 1017 page->objects, max_objects); 1018 page->objects = max_objects; 1019 slab_fix(s, "Number of objects adjusted."); 1020 } 1021 if (page->inuse != page->objects - nr) { 1022 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1023 page->inuse, page->objects - nr); 1024 page->inuse = page->objects - nr; 1025 slab_fix(s, "Object count adjusted."); 1026 } 1027 return search == NULL; 1028 } 1029 1030 static void trace(struct kmem_cache *s, struct page *page, void *object, 1031 int alloc) 1032 { 1033 if (s->flags & SLAB_TRACE) { 1034 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1035 s->name, 1036 alloc ? "alloc" : "free", 1037 object, page->inuse, 1038 page->freelist); 1039 1040 if (!alloc) 1041 print_section(KERN_INFO, "Object ", (void *)object, 1042 s->object_size); 1043 1044 dump_stack(); 1045 } 1046 } 1047 1048 /* 1049 * Tracking of fully allocated slabs for debugging purposes. 1050 */ 1051 static void add_full(struct kmem_cache *s, 1052 struct kmem_cache_node *n, struct page *page) 1053 { 1054 if (!(s->flags & SLAB_STORE_USER)) 1055 return; 1056 1057 lockdep_assert_held(&n->list_lock); 1058 list_add(&page->slab_list, &n->full); 1059 } 1060 1061 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1062 { 1063 if (!(s->flags & SLAB_STORE_USER)) 1064 return; 1065 1066 lockdep_assert_held(&n->list_lock); 1067 list_del(&page->slab_list); 1068 } 1069 1070 /* Tracking of the number of slabs for debugging purposes */ 1071 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1072 { 1073 struct kmem_cache_node *n = get_node(s, node); 1074 1075 return atomic_long_read(&n->nr_slabs); 1076 } 1077 1078 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1079 { 1080 return atomic_long_read(&n->nr_slabs); 1081 } 1082 1083 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1084 { 1085 struct kmem_cache_node *n = get_node(s, node); 1086 1087 /* 1088 * May be called early in order to allocate a slab for the 1089 * kmem_cache_node structure. Solve the chicken-egg 1090 * dilemma by deferring the increment of the count during 1091 * bootstrap (see early_kmem_cache_node_alloc). 1092 */ 1093 if (likely(n)) { 1094 atomic_long_inc(&n->nr_slabs); 1095 atomic_long_add(objects, &n->total_objects); 1096 } 1097 } 1098 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1099 { 1100 struct kmem_cache_node *n = get_node(s, node); 1101 1102 atomic_long_dec(&n->nr_slabs); 1103 atomic_long_sub(objects, &n->total_objects); 1104 } 1105 1106 /* Object debug checks for alloc/free paths */ 1107 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1108 void *object) 1109 { 1110 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1111 return; 1112 1113 init_object(s, object, SLUB_RED_INACTIVE); 1114 init_tracking(s, object); 1115 } 1116 1117 static 1118 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1119 { 1120 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1121 return; 1122 1123 metadata_access_enable(); 1124 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page)); 1125 metadata_access_disable(); 1126 } 1127 1128 static inline int alloc_consistency_checks(struct kmem_cache *s, 1129 struct page *page, void *object) 1130 { 1131 if (!check_slab(s, page)) 1132 return 0; 1133 1134 if (!check_valid_pointer(s, page, object)) { 1135 object_err(s, page, object, "Freelist Pointer check fails"); 1136 return 0; 1137 } 1138 1139 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1140 return 0; 1141 1142 return 1; 1143 } 1144 1145 static noinline int alloc_debug_processing(struct kmem_cache *s, 1146 struct page *page, 1147 void *object, unsigned long addr) 1148 { 1149 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1150 if (!alloc_consistency_checks(s, page, object)) 1151 goto bad; 1152 } 1153 1154 /* Success perform special debug activities for allocs */ 1155 if (s->flags & SLAB_STORE_USER) 1156 set_track(s, object, TRACK_ALLOC, addr); 1157 trace(s, page, object, 1); 1158 init_object(s, object, SLUB_RED_ACTIVE); 1159 return 1; 1160 1161 bad: 1162 if (PageSlab(page)) { 1163 /* 1164 * If this is a slab page then lets do the best we can 1165 * to avoid issues in the future. Marking all objects 1166 * as used avoids touching the remaining objects. 1167 */ 1168 slab_fix(s, "Marking all objects used"); 1169 page->inuse = page->objects; 1170 page->freelist = NULL; 1171 } 1172 return 0; 1173 } 1174 1175 static inline int free_consistency_checks(struct kmem_cache *s, 1176 struct page *page, void *object, unsigned long addr) 1177 { 1178 if (!check_valid_pointer(s, page, object)) { 1179 slab_err(s, page, "Invalid object pointer 0x%p", object); 1180 return 0; 1181 } 1182 1183 if (on_freelist(s, page, object)) { 1184 object_err(s, page, object, "Object already free"); 1185 return 0; 1186 } 1187 1188 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1189 return 0; 1190 1191 if (unlikely(s != page->slab_cache)) { 1192 if (!PageSlab(page)) { 1193 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1194 object); 1195 } else if (!page->slab_cache) { 1196 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1197 object); 1198 dump_stack(); 1199 } else 1200 object_err(s, page, object, 1201 "page slab pointer corrupt."); 1202 return 0; 1203 } 1204 return 1; 1205 } 1206 1207 /* Supports checking bulk free of a constructed freelist */ 1208 static noinline int free_debug_processing( 1209 struct kmem_cache *s, struct page *page, 1210 void *head, void *tail, int bulk_cnt, 1211 unsigned long addr) 1212 { 1213 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1214 void *object = head; 1215 int cnt = 0; 1216 unsigned long flags; 1217 int ret = 0; 1218 1219 spin_lock_irqsave(&n->list_lock, flags); 1220 slab_lock(page); 1221 1222 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1223 if (!check_slab(s, page)) 1224 goto out; 1225 } 1226 1227 next_object: 1228 cnt++; 1229 1230 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1231 if (!free_consistency_checks(s, page, object, addr)) 1232 goto out; 1233 } 1234 1235 if (s->flags & SLAB_STORE_USER) 1236 set_track(s, object, TRACK_FREE, addr); 1237 trace(s, page, object, 0); 1238 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1239 init_object(s, object, SLUB_RED_INACTIVE); 1240 1241 /* Reached end of constructed freelist yet? */ 1242 if (object != tail) { 1243 object = get_freepointer(s, object); 1244 goto next_object; 1245 } 1246 ret = 1; 1247 1248 out: 1249 if (cnt != bulk_cnt) 1250 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1251 bulk_cnt, cnt); 1252 1253 slab_unlock(page); 1254 spin_unlock_irqrestore(&n->list_lock, flags); 1255 if (!ret) 1256 slab_fix(s, "Object at 0x%p not freed", object); 1257 return ret; 1258 } 1259 1260 /* 1261 * Parse a block of slub_debug options. Blocks are delimited by ';' 1262 * 1263 * @str: start of block 1264 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1265 * @slabs: return start of list of slabs, or NULL when there's no list 1266 * @init: assume this is initial parsing and not per-kmem-create parsing 1267 * 1268 * returns the start of next block if there's any, or NULL 1269 */ 1270 static char * 1271 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1272 { 1273 bool higher_order_disable = false; 1274 1275 /* Skip any completely empty blocks */ 1276 while (*str && *str == ';') 1277 str++; 1278 1279 if (*str == ',') { 1280 /* 1281 * No options but restriction on slabs. This means full 1282 * debugging for slabs matching a pattern. 1283 */ 1284 *flags = DEBUG_DEFAULT_FLAGS; 1285 goto check_slabs; 1286 } 1287 *flags = 0; 1288 1289 /* Determine which debug features should be switched on */ 1290 for (; *str && *str != ',' && *str != ';'; str++) { 1291 switch (tolower(*str)) { 1292 case '-': 1293 *flags = 0; 1294 break; 1295 case 'f': 1296 *flags |= SLAB_CONSISTENCY_CHECKS; 1297 break; 1298 case 'z': 1299 *flags |= SLAB_RED_ZONE; 1300 break; 1301 case 'p': 1302 *flags |= SLAB_POISON; 1303 break; 1304 case 'u': 1305 *flags |= SLAB_STORE_USER; 1306 break; 1307 case 't': 1308 *flags |= SLAB_TRACE; 1309 break; 1310 case 'a': 1311 *flags |= SLAB_FAILSLAB; 1312 break; 1313 case 'o': 1314 /* 1315 * Avoid enabling debugging on caches if its minimum 1316 * order would increase as a result. 1317 */ 1318 higher_order_disable = true; 1319 break; 1320 default: 1321 if (init) 1322 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1323 } 1324 } 1325 check_slabs: 1326 if (*str == ',') 1327 *slabs = ++str; 1328 else 1329 *slabs = NULL; 1330 1331 /* Skip over the slab list */ 1332 while (*str && *str != ';') 1333 str++; 1334 1335 /* Skip any completely empty blocks */ 1336 while (*str && *str == ';') 1337 str++; 1338 1339 if (init && higher_order_disable) 1340 disable_higher_order_debug = 1; 1341 1342 if (*str) 1343 return str; 1344 else 1345 return NULL; 1346 } 1347 1348 static int __init setup_slub_debug(char *str) 1349 { 1350 slab_flags_t flags; 1351 char *saved_str; 1352 char *slab_list; 1353 bool global_slub_debug_changed = false; 1354 bool slab_list_specified = false; 1355 1356 slub_debug = DEBUG_DEFAULT_FLAGS; 1357 if (*str++ != '=' || !*str) 1358 /* 1359 * No options specified. Switch on full debugging. 1360 */ 1361 goto out; 1362 1363 saved_str = str; 1364 while (str) { 1365 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1366 1367 if (!slab_list) { 1368 slub_debug = flags; 1369 global_slub_debug_changed = true; 1370 } else { 1371 slab_list_specified = true; 1372 } 1373 } 1374 1375 /* 1376 * For backwards compatibility, a single list of flags with list of 1377 * slabs means debugging is only enabled for those slabs, so the global 1378 * slub_debug should be 0. We can extended that to multiple lists as 1379 * long as there is no option specifying flags without a slab list. 1380 */ 1381 if (slab_list_specified) { 1382 if (!global_slub_debug_changed) 1383 slub_debug = 0; 1384 slub_debug_string = saved_str; 1385 } 1386 out: 1387 if (slub_debug != 0 || slub_debug_string) 1388 static_branch_enable(&slub_debug_enabled); 1389 if ((static_branch_unlikely(&init_on_alloc) || 1390 static_branch_unlikely(&init_on_free)) && 1391 (slub_debug & SLAB_POISON)) 1392 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1393 return 1; 1394 } 1395 1396 __setup("slub_debug", setup_slub_debug); 1397 1398 /* 1399 * kmem_cache_flags - apply debugging options to the cache 1400 * @object_size: the size of an object without meta data 1401 * @flags: flags to set 1402 * @name: name of the cache 1403 * @ctor: constructor function 1404 * 1405 * Debug option(s) are applied to @flags. In addition to the debug 1406 * option(s), if a slab name (or multiple) is specified i.e. 1407 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1408 * then only the select slabs will receive the debug option(s). 1409 */ 1410 slab_flags_t kmem_cache_flags(unsigned int object_size, 1411 slab_flags_t flags, const char *name, 1412 void (*ctor)(void *)) 1413 { 1414 char *iter; 1415 size_t len; 1416 char *next_block; 1417 slab_flags_t block_flags; 1418 1419 len = strlen(name); 1420 next_block = slub_debug_string; 1421 /* Go through all blocks of debug options, see if any matches our slab's name */ 1422 while (next_block) { 1423 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1424 if (!iter) 1425 continue; 1426 /* Found a block that has a slab list, search it */ 1427 while (*iter) { 1428 char *end, *glob; 1429 size_t cmplen; 1430 1431 end = strchrnul(iter, ','); 1432 if (next_block && next_block < end) 1433 end = next_block - 1; 1434 1435 glob = strnchr(iter, end - iter, '*'); 1436 if (glob) 1437 cmplen = glob - iter; 1438 else 1439 cmplen = max_t(size_t, len, (end - iter)); 1440 1441 if (!strncmp(name, iter, cmplen)) { 1442 flags |= block_flags; 1443 return flags; 1444 } 1445 1446 if (!*end || *end == ';') 1447 break; 1448 iter = end + 1; 1449 } 1450 } 1451 1452 return flags | slub_debug; 1453 } 1454 #else /* !CONFIG_SLUB_DEBUG */ 1455 static inline void setup_object_debug(struct kmem_cache *s, 1456 struct page *page, void *object) {} 1457 static inline 1458 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1459 1460 static inline int alloc_debug_processing(struct kmem_cache *s, 1461 struct page *page, void *object, unsigned long addr) { return 0; } 1462 1463 static inline int free_debug_processing( 1464 struct kmem_cache *s, struct page *page, 1465 void *head, void *tail, int bulk_cnt, 1466 unsigned long addr) { return 0; } 1467 1468 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1469 { return 1; } 1470 static inline int check_object(struct kmem_cache *s, struct page *page, 1471 void *object, u8 val) { return 1; } 1472 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1473 struct page *page) {} 1474 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1475 struct page *page) {} 1476 slab_flags_t kmem_cache_flags(unsigned int object_size, 1477 slab_flags_t flags, const char *name, 1478 void (*ctor)(void *)) 1479 { 1480 return flags; 1481 } 1482 #define slub_debug 0 1483 1484 #define disable_higher_order_debug 0 1485 1486 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1487 { return 0; } 1488 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1489 { return 0; } 1490 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1491 int objects) {} 1492 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1493 int objects) {} 1494 1495 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 1496 void **freelist, void *nextfree) 1497 { 1498 return false; 1499 } 1500 #endif /* CONFIG_SLUB_DEBUG */ 1501 1502 /* 1503 * Hooks for other subsystems that check memory allocations. In a typical 1504 * production configuration these hooks all should produce no code at all. 1505 */ 1506 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1507 { 1508 ptr = kasan_kmalloc_large(ptr, size, flags); 1509 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1510 kmemleak_alloc(ptr, size, 1, flags); 1511 return ptr; 1512 } 1513 1514 static __always_inline void kfree_hook(void *x) 1515 { 1516 kmemleak_free(x); 1517 kasan_kfree_large(x, _RET_IP_); 1518 } 1519 1520 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1521 { 1522 kmemleak_free_recursive(x, s->flags); 1523 1524 /* 1525 * Trouble is that we may no longer disable interrupts in the fast path 1526 * So in order to make the debug calls that expect irqs to be 1527 * disabled we need to disable interrupts temporarily. 1528 */ 1529 #ifdef CONFIG_LOCKDEP 1530 { 1531 unsigned long flags; 1532 1533 local_irq_save(flags); 1534 debug_check_no_locks_freed(x, s->object_size); 1535 local_irq_restore(flags); 1536 } 1537 #endif 1538 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1539 debug_check_no_obj_freed(x, s->object_size); 1540 1541 /* Use KCSAN to help debug racy use-after-free. */ 1542 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1543 __kcsan_check_access(x, s->object_size, 1544 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1545 1546 /* KASAN might put x into memory quarantine, delaying its reuse */ 1547 return kasan_slab_free(s, x, _RET_IP_); 1548 } 1549 1550 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1551 void **head, void **tail) 1552 { 1553 1554 void *object; 1555 void *next = *head; 1556 void *old_tail = *tail ? *tail : *head; 1557 int rsize; 1558 1559 /* Head and tail of the reconstructed freelist */ 1560 *head = NULL; 1561 *tail = NULL; 1562 1563 do { 1564 object = next; 1565 next = get_freepointer(s, object); 1566 1567 if (slab_want_init_on_free(s)) { 1568 /* 1569 * Clear the object and the metadata, but don't touch 1570 * the redzone. 1571 */ 1572 memset(kasan_reset_tag(object), 0, s->object_size); 1573 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1574 : 0; 1575 memset((char *)kasan_reset_tag(object) + s->inuse, 0, 1576 s->size - s->inuse - rsize); 1577 1578 } 1579 /* If object's reuse doesn't have to be delayed */ 1580 if (!slab_free_hook(s, object)) { 1581 /* Move object to the new freelist */ 1582 set_freepointer(s, object, *head); 1583 *head = object; 1584 if (!*tail) 1585 *tail = object; 1586 } 1587 } while (object != old_tail); 1588 1589 if (*head == *tail) 1590 *tail = NULL; 1591 1592 return *head != NULL; 1593 } 1594 1595 static void *setup_object(struct kmem_cache *s, struct page *page, 1596 void *object) 1597 { 1598 setup_object_debug(s, page, object); 1599 object = kasan_init_slab_obj(s, object); 1600 if (unlikely(s->ctor)) { 1601 kasan_unpoison_object_data(s, object); 1602 s->ctor(object); 1603 kasan_poison_object_data(s, object); 1604 } 1605 return object; 1606 } 1607 1608 /* 1609 * Slab allocation and freeing 1610 */ 1611 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1612 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1613 { 1614 struct page *page; 1615 unsigned int order = oo_order(oo); 1616 1617 if (node == NUMA_NO_NODE) 1618 page = alloc_pages(flags, order); 1619 else 1620 page = __alloc_pages_node(node, flags, order); 1621 1622 return page; 1623 } 1624 1625 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1626 /* Pre-initialize the random sequence cache */ 1627 static int init_cache_random_seq(struct kmem_cache *s) 1628 { 1629 unsigned int count = oo_objects(s->oo); 1630 int err; 1631 1632 /* Bailout if already initialised */ 1633 if (s->random_seq) 1634 return 0; 1635 1636 err = cache_random_seq_create(s, count, GFP_KERNEL); 1637 if (err) { 1638 pr_err("SLUB: Unable to initialize free list for %s\n", 1639 s->name); 1640 return err; 1641 } 1642 1643 /* Transform to an offset on the set of pages */ 1644 if (s->random_seq) { 1645 unsigned int i; 1646 1647 for (i = 0; i < count; i++) 1648 s->random_seq[i] *= s->size; 1649 } 1650 return 0; 1651 } 1652 1653 /* Initialize each random sequence freelist per cache */ 1654 static void __init init_freelist_randomization(void) 1655 { 1656 struct kmem_cache *s; 1657 1658 mutex_lock(&slab_mutex); 1659 1660 list_for_each_entry(s, &slab_caches, list) 1661 init_cache_random_seq(s); 1662 1663 mutex_unlock(&slab_mutex); 1664 } 1665 1666 /* Get the next entry on the pre-computed freelist randomized */ 1667 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1668 unsigned long *pos, void *start, 1669 unsigned long page_limit, 1670 unsigned long freelist_count) 1671 { 1672 unsigned int idx; 1673 1674 /* 1675 * If the target page allocation failed, the number of objects on the 1676 * page might be smaller than the usual size defined by the cache. 1677 */ 1678 do { 1679 idx = s->random_seq[*pos]; 1680 *pos += 1; 1681 if (*pos >= freelist_count) 1682 *pos = 0; 1683 } while (unlikely(idx >= page_limit)); 1684 1685 return (char *)start + idx; 1686 } 1687 1688 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1689 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1690 { 1691 void *start; 1692 void *cur; 1693 void *next; 1694 unsigned long idx, pos, page_limit, freelist_count; 1695 1696 if (page->objects < 2 || !s->random_seq) 1697 return false; 1698 1699 freelist_count = oo_objects(s->oo); 1700 pos = get_random_int() % freelist_count; 1701 1702 page_limit = page->objects * s->size; 1703 start = fixup_red_left(s, page_address(page)); 1704 1705 /* First entry is used as the base of the freelist */ 1706 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1707 freelist_count); 1708 cur = setup_object(s, page, cur); 1709 page->freelist = cur; 1710 1711 for (idx = 1; idx < page->objects; idx++) { 1712 next = next_freelist_entry(s, page, &pos, start, page_limit, 1713 freelist_count); 1714 next = setup_object(s, page, next); 1715 set_freepointer(s, cur, next); 1716 cur = next; 1717 } 1718 set_freepointer(s, cur, NULL); 1719 1720 return true; 1721 } 1722 #else 1723 static inline int init_cache_random_seq(struct kmem_cache *s) 1724 { 1725 return 0; 1726 } 1727 static inline void init_freelist_randomization(void) { } 1728 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1729 { 1730 return false; 1731 } 1732 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1733 1734 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1735 { 1736 struct page *page; 1737 struct kmem_cache_order_objects oo = s->oo; 1738 gfp_t alloc_gfp; 1739 void *start, *p, *next; 1740 int idx; 1741 bool shuffle; 1742 1743 flags &= gfp_allowed_mask; 1744 1745 if (gfpflags_allow_blocking(flags)) 1746 local_irq_enable(); 1747 1748 flags |= s->allocflags; 1749 1750 /* 1751 * Let the initial higher-order allocation fail under memory pressure 1752 * so we fall-back to the minimum order allocation. 1753 */ 1754 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1755 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1756 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1757 1758 page = alloc_slab_page(s, alloc_gfp, node, oo); 1759 if (unlikely(!page)) { 1760 oo = s->min; 1761 alloc_gfp = flags; 1762 /* 1763 * Allocation may have failed due to fragmentation. 1764 * Try a lower order alloc if possible 1765 */ 1766 page = alloc_slab_page(s, alloc_gfp, node, oo); 1767 if (unlikely(!page)) 1768 goto out; 1769 stat(s, ORDER_FALLBACK); 1770 } 1771 1772 page->objects = oo_objects(oo); 1773 1774 account_slab_page(page, oo_order(oo), s); 1775 1776 page->slab_cache = s; 1777 __SetPageSlab(page); 1778 if (page_is_pfmemalloc(page)) 1779 SetPageSlabPfmemalloc(page); 1780 1781 kasan_poison_slab(page); 1782 1783 start = page_address(page); 1784 1785 setup_page_debug(s, page, start); 1786 1787 shuffle = shuffle_freelist(s, page); 1788 1789 if (!shuffle) { 1790 start = fixup_red_left(s, start); 1791 start = setup_object(s, page, start); 1792 page->freelist = start; 1793 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1794 next = p + s->size; 1795 next = setup_object(s, page, next); 1796 set_freepointer(s, p, next); 1797 p = next; 1798 } 1799 set_freepointer(s, p, NULL); 1800 } 1801 1802 page->inuse = page->objects; 1803 page->frozen = 1; 1804 1805 out: 1806 if (gfpflags_allow_blocking(flags)) 1807 local_irq_disable(); 1808 if (!page) 1809 return NULL; 1810 1811 inc_slabs_node(s, page_to_nid(page), page->objects); 1812 1813 return page; 1814 } 1815 1816 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1817 { 1818 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 1819 flags = kmalloc_fix_flags(flags); 1820 1821 return allocate_slab(s, 1822 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1823 } 1824 1825 static void __free_slab(struct kmem_cache *s, struct page *page) 1826 { 1827 int order = compound_order(page); 1828 int pages = 1 << order; 1829 1830 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 1831 void *p; 1832 1833 slab_pad_check(s, page); 1834 for_each_object(p, s, page_address(page), 1835 page->objects) 1836 check_object(s, page, p, SLUB_RED_INACTIVE); 1837 } 1838 1839 __ClearPageSlabPfmemalloc(page); 1840 __ClearPageSlab(page); 1841 /* In union with page->mapping where page allocator expects NULL */ 1842 page->slab_cache = NULL; 1843 if (current->reclaim_state) 1844 current->reclaim_state->reclaimed_slab += pages; 1845 unaccount_slab_page(page, order, s); 1846 __free_pages(page, order); 1847 } 1848 1849 static void rcu_free_slab(struct rcu_head *h) 1850 { 1851 struct page *page = container_of(h, struct page, rcu_head); 1852 1853 __free_slab(page->slab_cache, page); 1854 } 1855 1856 static void free_slab(struct kmem_cache *s, struct page *page) 1857 { 1858 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1859 call_rcu(&page->rcu_head, rcu_free_slab); 1860 } else 1861 __free_slab(s, page); 1862 } 1863 1864 static void discard_slab(struct kmem_cache *s, struct page *page) 1865 { 1866 dec_slabs_node(s, page_to_nid(page), page->objects); 1867 free_slab(s, page); 1868 } 1869 1870 /* 1871 * Management of partially allocated slabs. 1872 */ 1873 static inline void 1874 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1875 { 1876 n->nr_partial++; 1877 if (tail == DEACTIVATE_TO_TAIL) 1878 list_add_tail(&page->slab_list, &n->partial); 1879 else 1880 list_add(&page->slab_list, &n->partial); 1881 } 1882 1883 static inline void add_partial(struct kmem_cache_node *n, 1884 struct page *page, int tail) 1885 { 1886 lockdep_assert_held(&n->list_lock); 1887 __add_partial(n, page, tail); 1888 } 1889 1890 static inline void remove_partial(struct kmem_cache_node *n, 1891 struct page *page) 1892 { 1893 lockdep_assert_held(&n->list_lock); 1894 list_del(&page->slab_list); 1895 n->nr_partial--; 1896 } 1897 1898 /* 1899 * Remove slab from the partial list, freeze it and 1900 * return the pointer to the freelist. 1901 * 1902 * Returns a list of objects or NULL if it fails. 1903 */ 1904 static inline void *acquire_slab(struct kmem_cache *s, 1905 struct kmem_cache_node *n, struct page *page, 1906 int mode, int *objects) 1907 { 1908 void *freelist; 1909 unsigned long counters; 1910 struct page new; 1911 1912 lockdep_assert_held(&n->list_lock); 1913 1914 /* 1915 * Zap the freelist and set the frozen bit. 1916 * The old freelist is the list of objects for the 1917 * per cpu allocation list. 1918 */ 1919 freelist = page->freelist; 1920 counters = page->counters; 1921 new.counters = counters; 1922 *objects = new.objects - new.inuse; 1923 if (mode) { 1924 new.inuse = page->objects; 1925 new.freelist = NULL; 1926 } else { 1927 new.freelist = freelist; 1928 } 1929 1930 VM_BUG_ON(new.frozen); 1931 new.frozen = 1; 1932 1933 if (!__cmpxchg_double_slab(s, page, 1934 freelist, counters, 1935 new.freelist, new.counters, 1936 "acquire_slab")) 1937 return NULL; 1938 1939 remove_partial(n, page); 1940 WARN_ON(!freelist); 1941 return freelist; 1942 } 1943 1944 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1945 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1946 1947 /* 1948 * Try to allocate a partial slab from a specific node. 1949 */ 1950 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1951 struct kmem_cache_cpu *c, gfp_t flags) 1952 { 1953 struct page *page, *page2; 1954 void *object = NULL; 1955 unsigned int available = 0; 1956 int objects; 1957 1958 /* 1959 * Racy check. If we mistakenly see no partial slabs then we 1960 * just allocate an empty slab. If we mistakenly try to get a 1961 * partial slab and there is none available then get_partial() 1962 * will return NULL. 1963 */ 1964 if (!n || !n->nr_partial) 1965 return NULL; 1966 1967 spin_lock(&n->list_lock); 1968 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1969 void *t; 1970 1971 if (!pfmemalloc_match(page, flags)) 1972 continue; 1973 1974 t = acquire_slab(s, n, page, object == NULL, &objects); 1975 if (!t) 1976 continue; /* cmpxchg raced */ 1977 1978 available += objects; 1979 if (!object) { 1980 c->page = page; 1981 stat(s, ALLOC_FROM_PARTIAL); 1982 object = t; 1983 } else { 1984 put_cpu_partial(s, page, 0); 1985 stat(s, CPU_PARTIAL_NODE); 1986 } 1987 if (!kmem_cache_has_cpu_partial(s) 1988 || available > slub_cpu_partial(s) / 2) 1989 break; 1990 1991 } 1992 spin_unlock(&n->list_lock); 1993 return object; 1994 } 1995 1996 /* 1997 * Get a page from somewhere. Search in increasing NUMA distances. 1998 */ 1999 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2000 struct kmem_cache_cpu *c) 2001 { 2002 #ifdef CONFIG_NUMA 2003 struct zonelist *zonelist; 2004 struct zoneref *z; 2005 struct zone *zone; 2006 enum zone_type highest_zoneidx = gfp_zone(flags); 2007 void *object; 2008 unsigned int cpuset_mems_cookie; 2009 2010 /* 2011 * The defrag ratio allows a configuration of the tradeoffs between 2012 * inter node defragmentation and node local allocations. A lower 2013 * defrag_ratio increases the tendency to do local allocations 2014 * instead of attempting to obtain partial slabs from other nodes. 2015 * 2016 * If the defrag_ratio is set to 0 then kmalloc() always 2017 * returns node local objects. If the ratio is higher then kmalloc() 2018 * may return off node objects because partial slabs are obtained 2019 * from other nodes and filled up. 2020 * 2021 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2022 * (which makes defrag_ratio = 1000) then every (well almost) 2023 * allocation will first attempt to defrag slab caches on other nodes. 2024 * This means scanning over all nodes to look for partial slabs which 2025 * may be expensive if we do it every time we are trying to find a slab 2026 * with available objects. 2027 */ 2028 if (!s->remote_node_defrag_ratio || 2029 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2030 return NULL; 2031 2032 do { 2033 cpuset_mems_cookie = read_mems_allowed_begin(); 2034 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2035 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2036 struct kmem_cache_node *n; 2037 2038 n = get_node(s, zone_to_nid(zone)); 2039 2040 if (n && cpuset_zone_allowed(zone, flags) && 2041 n->nr_partial > s->min_partial) { 2042 object = get_partial_node(s, n, c, flags); 2043 if (object) { 2044 /* 2045 * Don't check read_mems_allowed_retry() 2046 * here - if mems_allowed was updated in 2047 * parallel, that was a harmless race 2048 * between allocation and the cpuset 2049 * update 2050 */ 2051 return object; 2052 } 2053 } 2054 } 2055 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2056 #endif /* CONFIG_NUMA */ 2057 return NULL; 2058 } 2059 2060 /* 2061 * Get a partial page, lock it and return it. 2062 */ 2063 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2064 struct kmem_cache_cpu *c) 2065 { 2066 void *object; 2067 int searchnode = node; 2068 2069 if (node == NUMA_NO_NODE) 2070 searchnode = numa_mem_id(); 2071 2072 object = get_partial_node(s, get_node(s, searchnode), c, flags); 2073 if (object || node != NUMA_NO_NODE) 2074 return object; 2075 2076 return get_any_partial(s, flags, c); 2077 } 2078 2079 #ifdef CONFIG_PREEMPTION 2080 /* 2081 * Calculate the next globally unique transaction for disambiguation 2082 * during cmpxchg. The transactions start with the cpu number and are then 2083 * incremented by CONFIG_NR_CPUS. 2084 */ 2085 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2086 #else 2087 /* 2088 * No preemption supported therefore also no need to check for 2089 * different cpus. 2090 */ 2091 #define TID_STEP 1 2092 #endif 2093 2094 static inline unsigned long next_tid(unsigned long tid) 2095 { 2096 return tid + TID_STEP; 2097 } 2098 2099 #ifdef SLUB_DEBUG_CMPXCHG 2100 static inline unsigned int tid_to_cpu(unsigned long tid) 2101 { 2102 return tid % TID_STEP; 2103 } 2104 2105 static inline unsigned long tid_to_event(unsigned long tid) 2106 { 2107 return tid / TID_STEP; 2108 } 2109 #endif 2110 2111 static inline unsigned int init_tid(int cpu) 2112 { 2113 return cpu; 2114 } 2115 2116 static inline void note_cmpxchg_failure(const char *n, 2117 const struct kmem_cache *s, unsigned long tid) 2118 { 2119 #ifdef SLUB_DEBUG_CMPXCHG 2120 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2121 2122 pr_info("%s %s: cmpxchg redo ", n, s->name); 2123 2124 #ifdef CONFIG_PREEMPTION 2125 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2126 pr_warn("due to cpu change %d -> %d\n", 2127 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2128 else 2129 #endif 2130 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2131 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2132 tid_to_event(tid), tid_to_event(actual_tid)); 2133 else 2134 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2135 actual_tid, tid, next_tid(tid)); 2136 #endif 2137 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2138 } 2139 2140 static void init_kmem_cache_cpus(struct kmem_cache *s) 2141 { 2142 int cpu; 2143 2144 for_each_possible_cpu(cpu) 2145 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2146 } 2147 2148 /* 2149 * Remove the cpu slab 2150 */ 2151 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2152 void *freelist, struct kmem_cache_cpu *c) 2153 { 2154 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2155 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2156 int lock = 0; 2157 enum slab_modes l = M_NONE, m = M_NONE; 2158 void *nextfree; 2159 int tail = DEACTIVATE_TO_HEAD; 2160 struct page new; 2161 struct page old; 2162 2163 if (page->freelist) { 2164 stat(s, DEACTIVATE_REMOTE_FREES); 2165 tail = DEACTIVATE_TO_TAIL; 2166 } 2167 2168 /* 2169 * Stage one: Free all available per cpu objects back 2170 * to the page freelist while it is still frozen. Leave the 2171 * last one. 2172 * 2173 * There is no need to take the list->lock because the page 2174 * is still frozen. 2175 */ 2176 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2177 void *prior; 2178 unsigned long counters; 2179 2180 /* 2181 * If 'nextfree' is invalid, it is possible that the object at 2182 * 'freelist' is already corrupted. So isolate all objects 2183 * starting at 'freelist'. 2184 */ 2185 if (freelist_corrupted(s, page, &freelist, nextfree)) 2186 break; 2187 2188 do { 2189 prior = page->freelist; 2190 counters = page->counters; 2191 set_freepointer(s, freelist, prior); 2192 new.counters = counters; 2193 new.inuse--; 2194 VM_BUG_ON(!new.frozen); 2195 2196 } while (!__cmpxchg_double_slab(s, page, 2197 prior, counters, 2198 freelist, new.counters, 2199 "drain percpu freelist")); 2200 2201 freelist = nextfree; 2202 } 2203 2204 /* 2205 * Stage two: Ensure that the page is unfrozen while the 2206 * list presence reflects the actual number of objects 2207 * during unfreeze. 2208 * 2209 * We setup the list membership and then perform a cmpxchg 2210 * with the count. If there is a mismatch then the page 2211 * is not unfrozen but the page is on the wrong list. 2212 * 2213 * Then we restart the process which may have to remove 2214 * the page from the list that we just put it on again 2215 * because the number of objects in the slab may have 2216 * changed. 2217 */ 2218 redo: 2219 2220 old.freelist = page->freelist; 2221 old.counters = page->counters; 2222 VM_BUG_ON(!old.frozen); 2223 2224 /* Determine target state of the slab */ 2225 new.counters = old.counters; 2226 if (freelist) { 2227 new.inuse--; 2228 set_freepointer(s, freelist, old.freelist); 2229 new.freelist = freelist; 2230 } else 2231 new.freelist = old.freelist; 2232 2233 new.frozen = 0; 2234 2235 if (!new.inuse && n->nr_partial >= s->min_partial) 2236 m = M_FREE; 2237 else if (new.freelist) { 2238 m = M_PARTIAL; 2239 if (!lock) { 2240 lock = 1; 2241 /* 2242 * Taking the spinlock removes the possibility 2243 * that acquire_slab() will see a slab page that 2244 * is frozen 2245 */ 2246 spin_lock(&n->list_lock); 2247 } 2248 } else { 2249 m = M_FULL; 2250 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { 2251 lock = 1; 2252 /* 2253 * This also ensures that the scanning of full 2254 * slabs from diagnostic functions will not see 2255 * any frozen slabs. 2256 */ 2257 spin_lock(&n->list_lock); 2258 } 2259 } 2260 2261 if (l != m) { 2262 if (l == M_PARTIAL) 2263 remove_partial(n, page); 2264 else if (l == M_FULL) 2265 remove_full(s, n, page); 2266 2267 if (m == M_PARTIAL) 2268 add_partial(n, page, tail); 2269 else if (m == M_FULL) 2270 add_full(s, n, page); 2271 } 2272 2273 l = m; 2274 if (!__cmpxchg_double_slab(s, page, 2275 old.freelist, old.counters, 2276 new.freelist, new.counters, 2277 "unfreezing slab")) 2278 goto redo; 2279 2280 if (lock) 2281 spin_unlock(&n->list_lock); 2282 2283 if (m == M_PARTIAL) 2284 stat(s, tail); 2285 else if (m == M_FULL) 2286 stat(s, DEACTIVATE_FULL); 2287 else if (m == M_FREE) { 2288 stat(s, DEACTIVATE_EMPTY); 2289 discard_slab(s, page); 2290 stat(s, FREE_SLAB); 2291 } 2292 2293 c->page = NULL; 2294 c->freelist = NULL; 2295 } 2296 2297 /* 2298 * Unfreeze all the cpu partial slabs. 2299 * 2300 * This function must be called with interrupts disabled 2301 * for the cpu using c (or some other guarantee must be there 2302 * to guarantee no concurrent accesses). 2303 */ 2304 static void unfreeze_partials(struct kmem_cache *s, 2305 struct kmem_cache_cpu *c) 2306 { 2307 #ifdef CONFIG_SLUB_CPU_PARTIAL 2308 struct kmem_cache_node *n = NULL, *n2 = NULL; 2309 struct page *page, *discard_page = NULL; 2310 2311 while ((page = slub_percpu_partial(c))) { 2312 struct page new; 2313 struct page old; 2314 2315 slub_set_percpu_partial(c, page); 2316 2317 n2 = get_node(s, page_to_nid(page)); 2318 if (n != n2) { 2319 if (n) 2320 spin_unlock(&n->list_lock); 2321 2322 n = n2; 2323 spin_lock(&n->list_lock); 2324 } 2325 2326 do { 2327 2328 old.freelist = page->freelist; 2329 old.counters = page->counters; 2330 VM_BUG_ON(!old.frozen); 2331 2332 new.counters = old.counters; 2333 new.freelist = old.freelist; 2334 2335 new.frozen = 0; 2336 2337 } while (!__cmpxchg_double_slab(s, page, 2338 old.freelist, old.counters, 2339 new.freelist, new.counters, 2340 "unfreezing slab")); 2341 2342 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2343 page->next = discard_page; 2344 discard_page = page; 2345 } else { 2346 add_partial(n, page, DEACTIVATE_TO_TAIL); 2347 stat(s, FREE_ADD_PARTIAL); 2348 } 2349 } 2350 2351 if (n) 2352 spin_unlock(&n->list_lock); 2353 2354 while (discard_page) { 2355 page = discard_page; 2356 discard_page = discard_page->next; 2357 2358 stat(s, DEACTIVATE_EMPTY); 2359 discard_slab(s, page); 2360 stat(s, FREE_SLAB); 2361 } 2362 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2363 } 2364 2365 /* 2366 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2367 * partial page slot if available. 2368 * 2369 * If we did not find a slot then simply move all the partials to the 2370 * per node partial list. 2371 */ 2372 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2373 { 2374 #ifdef CONFIG_SLUB_CPU_PARTIAL 2375 struct page *oldpage; 2376 int pages; 2377 int pobjects; 2378 2379 preempt_disable(); 2380 do { 2381 pages = 0; 2382 pobjects = 0; 2383 oldpage = this_cpu_read(s->cpu_slab->partial); 2384 2385 if (oldpage) { 2386 pobjects = oldpage->pobjects; 2387 pages = oldpage->pages; 2388 if (drain && pobjects > slub_cpu_partial(s)) { 2389 unsigned long flags; 2390 /* 2391 * partial array is full. Move the existing 2392 * set to the per node partial list. 2393 */ 2394 local_irq_save(flags); 2395 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2396 local_irq_restore(flags); 2397 oldpage = NULL; 2398 pobjects = 0; 2399 pages = 0; 2400 stat(s, CPU_PARTIAL_DRAIN); 2401 } 2402 } 2403 2404 pages++; 2405 pobjects += page->objects - page->inuse; 2406 2407 page->pages = pages; 2408 page->pobjects = pobjects; 2409 page->next = oldpage; 2410 2411 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2412 != oldpage); 2413 if (unlikely(!slub_cpu_partial(s))) { 2414 unsigned long flags; 2415 2416 local_irq_save(flags); 2417 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2418 local_irq_restore(flags); 2419 } 2420 preempt_enable(); 2421 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2422 } 2423 2424 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2425 { 2426 stat(s, CPUSLAB_FLUSH); 2427 deactivate_slab(s, c->page, c->freelist, c); 2428 2429 c->tid = next_tid(c->tid); 2430 } 2431 2432 /* 2433 * Flush cpu slab. 2434 * 2435 * Called from IPI handler with interrupts disabled. 2436 */ 2437 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2438 { 2439 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2440 2441 if (c->page) 2442 flush_slab(s, c); 2443 2444 unfreeze_partials(s, c); 2445 } 2446 2447 static void flush_cpu_slab(void *d) 2448 { 2449 struct kmem_cache *s = d; 2450 2451 __flush_cpu_slab(s, smp_processor_id()); 2452 } 2453 2454 static bool has_cpu_slab(int cpu, void *info) 2455 { 2456 struct kmem_cache *s = info; 2457 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2458 2459 return c->page || slub_percpu_partial(c); 2460 } 2461 2462 static void flush_all(struct kmem_cache *s) 2463 { 2464 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); 2465 } 2466 2467 /* 2468 * Use the cpu notifier to insure that the cpu slabs are flushed when 2469 * necessary. 2470 */ 2471 static int slub_cpu_dead(unsigned int cpu) 2472 { 2473 struct kmem_cache *s; 2474 unsigned long flags; 2475 2476 mutex_lock(&slab_mutex); 2477 list_for_each_entry(s, &slab_caches, list) { 2478 local_irq_save(flags); 2479 __flush_cpu_slab(s, cpu); 2480 local_irq_restore(flags); 2481 } 2482 mutex_unlock(&slab_mutex); 2483 return 0; 2484 } 2485 2486 /* 2487 * Check if the objects in a per cpu structure fit numa 2488 * locality expectations. 2489 */ 2490 static inline int node_match(struct page *page, int node) 2491 { 2492 #ifdef CONFIG_NUMA 2493 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2494 return 0; 2495 #endif 2496 return 1; 2497 } 2498 2499 #ifdef CONFIG_SLUB_DEBUG 2500 static int count_free(struct page *page) 2501 { 2502 return page->objects - page->inuse; 2503 } 2504 2505 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2506 { 2507 return atomic_long_read(&n->total_objects); 2508 } 2509 #endif /* CONFIG_SLUB_DEBUG */ 2510 2511 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2512 static unsigned long count_partial(struct kmem_cache_node *n, 2513 int (*get_count)(struct page *)) 2514 { 2515 unsigned long flags; 2516 unsigned long x = 0; 2517 struct page *page; 2518 2519 spin_lock_irqsave(&n->list_lock, flags); 2520 list_for_each_entry(page, &n->partial, slab_list) 2521 x += get_count(page); 2522 spin_unlock_irqrestore(&n->list_lock, flags); 2523 return x; 2524 } 2525 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2526 2527 static noinline void 2528 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2529 { 2530 #ifdef CONFIG_SLUB_DEBUG 2531 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2532 DEFAULT_RATELIMIT_BURST); 2533 int node; 2534 struct kmem_cache_node *n; 2535 2536 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2537 return; 2538 2539 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2540 nid, gfpflags, &gfpflags); 2541 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2542 s->name, s->object_size, s->size, oo_order(s->oo), 2543 oo_order(s->min)); 2544 2545 if (oo_order(s->min) > get_order(s->object_size)) 2546 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2547 s->name); 2548 2549 for_each_kmem_cache_node(s, node, n) { 2550 unsigned long nr_slabs; 2551 unsigned long nr_objs; 2552 unsigned long nr_free; 2553 2554 nr_free = count_partial(n, count_free); 2555 nr_slabs = node_nr_slabs(n); 2556 nr_objs = node_nr_objs(n); 2557 2558 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2559 node, nr_slabs, nr_objs, nr_free); 2560 } 2561 #endif 2562 } 2563 2564 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2565 int node, struct kmem_cache_cpu **pc) 2566 { 2567 void *freelist; 2568 struct kmem_cache_cpu *c = *pc; 2569 struct page *page; 2570 2571 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2572 2573 freelist = get_partial(s, flags, node, c); 2574 2575 if (freelist) 2576 return freelist; 2577 2578 page = new_slab(s, flags, node); 2579 if (page) { 2580 c = raw_cpu_ptr(s->cpu_slab); 2581 if (c->page) 2582 flush_slab(s, c); 2583 2584 /* 2585 * No other reference to the page yet so we can 2586 * muck around with it freely without cmpxchg 2587 */ 2588 freelist = page->freelist; 2589 page->freelist = NULL; 2590 2591 stat(s, ALLOC_SLAB); 2592 c->page = page; 2593 *pc = c; 2594 } 2595 2596 return freelist; 2597 } 2598 2599 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2600 { 2601 if (unlikely(PageSlabPfmemalloc(page))) 2602 return gfp_pfmemalloc_allowed(gfpflags); 2603 2604 return true; 2605 } 2606 2607 /* 2608 * Check the page->freelist of a page and either transfer the freelist to the 2609 * per cpu freelist or deactivate the page. 2610 * 2611 * The page is still frozen if the return value is not NULL. 2612 * 2613 * If this function returns NULL then the page has been unfrozen. 2614 * 2615 * This function must be called with interrupt disabled. 2616 */ 2617 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2618 { 2619 struct page new; 2620 unsigned long counters; 2621 void *freelist; 2622 2623 do { 2624 freelist = page->freelist; 2625 counters = page->counters; 2626 2627 new.counters = counters; 2628 VM_BUG_ON(!new.frozen); 2629 2630 new.inuse = page->objects; 2631 new.frozen = freelist != NULL; 2632 2633 } while (!__cmpxchg_double_slab(s, page, 2634 freelist, counters, 2635 NULL, new.counters, 2636 "get_freelist")); 2637 2638 return freelist; 2639 } 2640 2641 /* 2642 * Slow path. The lockless freelist is empty or we need to perform 2643 * debugging duties. 2644 * 2645 * Processing is still very fast if new objects have been freed to the 2646 * regular freelist. In that case we simply take over the regular freelist 2647 * as the lockless freelist and zap the regular freelist. 2648 * 2649 * If that is not working then we fall back to the partial lists. We take the 2650 * first element of the freelist as the object to allocate now and move the 2651 * rest of the freelist to the lockless freelist. 2652 * 2653 * And if we were unable to get a new slab from the partial slab lists then 2654 * we need to allocate a new slab. This is the slowest path since it involves 2655 * a call to the page allocator and the setup of a new slab. 2656 * 2657 * Version of __slab_alloc to use when we know that interrupts are 2658 * already disabled (which is the case for bulk allocation). 2659 */ 2660 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2661 unsigned long addr, struct kmem_cache_cpu *c) 2662 { 2663 void *freelist; 2664 struct page *page; 2665 2666 stat(s, ALLOC_SLOWPATH); 2667 2668 page = c->page; 2669 if (!page) { 2670 /* 2671 * if the node is not online or has no normal memory, just 2672 * ignore the node constraint 2673 */ 2674 if (unlikely(node != NUMA_NO_NODE && 2675 !node_state(node, N_NORMAL_MEMORY))) 2676 node = NUMA_NO_NODE; 2677 goto new_slab; 2678 } 2679 redo: 2680 2681 if (unlikely(!node_match(page, node))) { 2682 /* 2683 * same as above but node_match() being false already 2684 * implies node != NUMA_NO_NODE 2685 */ 2686 if (!node_state(node, N_NORMAL_MEMORY)) { 2687 node = NUMA_NO_NODE; 2688 goto redo; 2689 } else { 2690 stat(s, ALLOC_NODE_MISMATCH); 2691 deactivate_slab(s, page, c->freelist, c); 2692 goto new_slab; 2693 } 2694 } 2695 2696 /* 2697 * By rights, we should be searching for a slab page that was 2698 * PFMEMALLOC but right now, we are losing the pfmemalloc 2699 * information when the page leaves the per-cpu allocator 2700 */ 2701 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2702 deactivate_slab(s, page, c->freelist, c); 2703 goto new_slab; 2704 } 2705 2706 /* must check again c->freelist in case of cpu migration or IRQ */ 2707 freelist = c->freelist; 2708 if (freelist) 2709 goto load_freelist; 2710 2711 freelist = get_freelist(s, page); 2712 2713 if (!freelist) { 2714 c->page = NULL; 2715 stat(s, DEACTIVATE_BYPASS); 2716 goto new_slab; 2717 } 2718 2719 stat(s, ALLOC_REFILL); 2720 2721 load_freelist: 2722 /* 2723 * freelist is pointing to the list of objects to be used. 2724 * page is pointing to the page from which the objects are obtained. 2725 * That page must be frozen for per cpu allocations to work. 2726 */ 2727 VM_BUG_ON(!c->page->frozen); 2728 c->freelist = get_freepointer(s, freelist); 2729 c->tid = next_tid(c->tid); 2730 return freelist; 2731 2732 new_slab: 2733 2734 if (slub_percpu_partial(c)) { 2735 page = c->page = slub_percpu_partial(c); 2736 slub_set_percpu_partial(c, page); 2737 stat(s, CPU_PARTIAL_ALLOC); 2738 goto redo; 2739 } 2740 2741 freelist = new_slab_objects(s, gfpflags, node, &c); 2742 2743 if (unlikely(!freelist)) { 2744 slab_out_of_memory(s, gfpflags, node); 2745 return NULL; 2746 } 2747 2748 page = c->page; 2749 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2750 goto load_freelist; 2751 2752 /* Only entered in the debug case */ 2753 if (kmem_cache_debug(s) && 2754 !alloc_debug_processing(s, page, freelist, addr)) 2755 goto new_slab; /* Slab failed checks. Next slab needed */ 2756 2757 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2758 return freelist; 2759 } 2760 2761 /* 2762 * Another one that disabled interrupt and compensates for possible 2763 * cpu changes by refetching the per cpu area pointer. 2764 */ 2765 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2766 unsigned long addr, struct kmem_cache_cpu *c) 2767 { 2768 void *p; 2769 unsigned long flags; 2770 2771 local_irq_save(flags); 2772 #ifdef CONFIG_PREEMPTION 2773 /* 2774 * We may have been preempted and rescheduled on a different 2775 * cpu before disabling interrupts. Need to reload cpu area 2776 * pointer. 2777 */ 2778 c = this_cpu_ptr(s->cpu_slab); 2779 #endif 2780 2781 p = ___slab_alloc(s, gfpflags, node, addr, c); 2782 local_irq_restore(flags); 2783 return p; 2784 } 2785 2786 /* 2787 * If the object has been wiped upon free, make sure it's fully initialized by 2788 * zeroing out freelist pointer. 2789 */ 2790 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2791 void *obj) 2792 { 2793 if (unlikely(slab_want_init_on_free(s)) && obj) 2794 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 2795 0, sizeof(void *)); 2796 } 2797 2798 /* 2799 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2800 * have the fastpath folded into their functions. So no function call 2801 * overhead for requests that can be satisfied on the fastpath. 2802 * 2803 * The fastpath works by first checking if the lockless freelist can be used. 2804 * If not then __slab_alloc is called for slow processing. 2805 * 2806 * Otherwise we can simply pick the next object from the lockless free list. 2807 */ 2808 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2809 gfp_t gfpflags, int node, unsigned long addr) 2810 { 2811 void *object; 2812 struct kmem_cache_cpu *c; 2813 struct page *page; 2814 unsigned long tid; 2815 struct obj_cgroup *objcg = NULL; 2816 2817 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); 2818 if (!s) 2819 return NULL; 2820 redo: 2821 /* 2822 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2823 * enabled. We may switch back and forth between cpus while 2824 * reading from one cpu area. That does not matter as long 2825 * as we end up on the original cpu again when doing the cmpxchg. 2826 * 2827 * We should guarantee that tid and kmem_cache are retrieved on 2828 * the same cpu. It could be different if CONFIG_PREEMPTION so we need 2829 * to check if it is matched or not. 2830 */ 2831 do { 2832 tid = this_cpu_read(s->cpu_slab->tid); 2833 c = raw_cpu_ptr(s->cpu_slab); 2834 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2835 unlikely(tid != READ_ONCE(c->tid))); 2836 2837 /* 2838 * Irqless object alloc/free algorithm used here depends on sequence 2839 * of fetching cpu_slab's data. tid should be fetched before anything 2840 * on c to guarantee that object and page associated with previous tid 2841 * won't be used with current tid. If we fetch tid first, object and 2842 * page could be one associated with next tid and our alloc/free 2843 * request will be failed. In this case, we will retry. So, no problem. 2844 */ 2845 barrier(); 2846 2847 /* 2848 * The transaction ids are globally unique per cpu and per operation on 2849 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2850 * occurs on the right processor and that there was no operation on the 2851 * linked list in between. 2852 */ 2853 2854 object = c->freelist; 2855 page = c->page; 2856 if (unlikely(!object || !page || !node_match(page, node))) { 2857 object = __slab_alloc(s, gfpflags, node, addr, c); 2858 } else { 2859 void *next_object = get_freepointer_safe(s, object); 2860 2861 /* 2862 * The cmpxchg will only match if there was no additional 2863 * operation and if we are on the right processor. 2864 * 2865 * The cmpxchg does the following atomically (without lock 2866 * semantics!) 2867 * 1. Relocate first pointer to the current per cpu area. 2868 * 2. Verify that tid and freelist have not been changed 2869 * 3. If they were not changed replace tid and freelist 2870 * 2871 * Since this is without lock semantics the protection is only 2872 * against code executing on this cpu *not* from access by 2873 * other cpus. 2874 */ 2875 if (unlikely(!this_cpu_cmpxchg_double( 2876 s->cpu_slab->freelist, s->cpu_slab->tid, 2877 object, tid, 2878 next_object, next_tid(tid)))) { 2879 2880 note_cmpxchg_failure("slab_alloc", s, tid); 2881 goto redo; 2882 } 2883 prefetch_freepointer(s, next_object); 2884 stat(s, ALLOC_FASTPATH); 2885 } 2886 2887 maybe_wipe_obj_freeptr(s, object); 2888 2889 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2890 memset(kasan_reset_tag(object), 0, s->object_size); 2891 2892 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object); 2893 2894 return object; 2895 } 2896 2897 static __always_inline void *slab_alloc(struct kmem_cache *s, 2898 gfp_t gfpflags, unsigned long addr) 2899 { 2900 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2901 } 2902 2903 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2904 { 2905 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2906 2907 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2908 s->size, gfpflags); 2909 2910 return ret; 2911 } 2912 EXPORT_SYMBOL(kmem_cache_alloc); 2913 2914 #ifdef CONFIG_TRACING 2915 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2916 { 2917 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2918 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2919 ret = kasan_kmalloc(s, ret, size, gfpflags); 2920 return ret; 2921 } 2922 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2923 #endif 2924 2925 #ifdef CONFIG_NUMA 2926 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2927 { 2928 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2929 2930 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2931 s->object_size, s->size, gfpflags, node); 2932 2933 return ret; 2934 } 2935 EXPORT_SYMBOL(kmem_cache_alloc_node); 2936 2937 #ifdef CONFIG_TRACING 2938 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2939 gfp_t gfpflags, 2940 int node, size_t size) 2941 { 2942 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2943 2944 trace_kmalloc_node(_RET_IP_, ret, 2945 size, s->size, gfpflags, node); 2946 2947 ret = kasan_kmalloc(s, ret, size, gfpflags); 2948 return ret; 2949 } 2950 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2951 #endif 2952 #endif /* CONFIG_NUMA */ 2953 2954 /* 2955 * Slow path handling. This may still be called frequently since objects 2956 * have a longer lifetime than the cpu slabs in most processing loads. 2957 * 2958 * So we still attempt to reduce cache line usage. Just take the slab 2959 * lock and free the item. If there is no additional partial page 2960 * handling required then we can return immediately. 2961 */ 2962 static void __slab_free(struct kmem_cache *s, struct page *page, 2963 void *head, void *tail, int cnt, 2964 unsigned long addr) 2965 2966 { 2967 void *prior; 2968 int was_frozen; 2969 struct page new; 2970 unsigned long counters; 2971 struct kmem_cache_node *n = NULL; 2972 unsigned long flags; 2973 2974 stat(s, FREE_SLOWPATH); 2975 2976 if (kmem_cache_debug(s) && 2977 !free_debug_processing(s, page, head, tail, cnt, addr)) 2978 return; 2979 2980 do { 2981 if (unlikely(n)) { 2982 spin_unlock_irqrestore(&n->list_lock, flags); 2983 n = NULL; 2984 } 2985 prior = page->freelist; 2986 counters = page->counters; 2987 set_freepointer(s, tail, prior); 2988 new.counters = counters; 2989 was_frozen = new.frozen; 2990 new.inuse -= cnt; 2991 if ((!new.inuse || !prior) && !was_frozen) { 2992 2993 if (kmem_cache_has_cpu_partial(s) && !prior) { 2994 2995 /* 2996 * Slab was on no list before and will be 2997 * partially empty 2998 * We can defer the list move and instead 2999 * freeze it. 3000 */ 3001 new.frozen = 1; 3002 3003 } else { /* Needs to be taken off a list */ 3004 3005 n = get_node(s, page_to_nid(page)); 3006 /* 3007 * Speculatively acquire the list_lock. 3008 * If the cmpxchg does not succeed then we may 3009 * drop the list_lock without any processing. 3010 * 3011 * Otherwise the list_lock will synchronize with 3012 * other processors updating the list of slabs. 3013 */ 3014 spin_lock_irqsave(&n->list_lock, flags); 3015 3016 } 3017 } 3018 3019 } while (!cmpxchg_double_slab(s, page, 3020 prior, counters, 3021 head, new.counters, 3022 "__slab_free")); 3023 3024 if (likely(!n)) { 3025 3026 if (likely(was_frozen)) { 3027 /* 3028 * The list lock was not taken therefore no list 3029 * activity can be necessary. 3030 */ 3031 stat(s, FREE_FROZEN); 3032 } else if (new.frozen) { 3033 /* 3034 * If we just froze the page then put it onto the 3035 * per cpu partial list. 3036 */ 3037 put_cpu_partial(s, page, 1); 3038 stat(s, CPU_PARTIAL_FREE); 3039 } 3040 3041 return; 3042 } 3043 3044 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3045 goto slab_empty; 3046 3047 /* 3048 * Objects left in the slab. If it was not on the partial list before 3049 * then add it. 3050 */ 3051 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3052 remove_full(s, n, page); 3053 add_partial(n, page, DEACTIVATE_TO_TAIL); 3054 stat(s, FREE_ADD_PARTIAL); 3055 } 3056 spin_unlock_irqrestore(&n->list_lock, flags); 3057 return; 3058 3059 slab_empty: 3060 if (prior) { 3061 /* 3062 * Slab on the partial list. 3063 */ 3064 remove_partial(n, page); 3065 stat(s, FREE_REMOVE_PARTIAL); 3066 } else { 3067 /* Slab must be on the full list */ 3068 remove_full(s, n, page); 3069 } 3070 3071 spin_unlock_irqrestore(&n->list_lock, flags); 3072 stat(s, FREE_SLAB); 3073 discard_slab(s, page); 3074 } 3075 3076 /* 3077 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3078 * can perform fastpath freeing without additional function calls. 3079 * 3080 * The fastpath is only possible if we are freeing to the current cpu slab 3081 * of this processor. This typically the case if we have just allocated 3082 * the item before. 3083 * 3084 * If fastpath is not possible then fall back to __slab_free where we deal 3085 * with all sorts of special processing. 3086 * 3087 * Bulk free of a freelist with several objects (all pointing to the 3088 * same page) possible by specifying head and tail ptr, plus objects 3089 * count (cnt). Bulk free indicated by tail pointer being set. 3090 */ 3091 static __always_inline void do_slab_free(struct kmem_cache *s, 3092 struct page *page, void *head, void *tail, 3093 int cnt, unsigned long addr) 3094 { 3095 void *tail_obj = tail ? : head; 3096 struct kmem_cache_cpu *c; 3097 unsigned long tid; 3098 3099 memcg_slab_free_hook(s, &head, 1); 3100 redo: 3101 /* 3102 * Determine the currently cpus per cpu slab. 3103 * The cpu may change afterward. However that does not matter since 3104 * data is retrieved via this pointer. If we are on the same cpu 3105 * during the cmpxchg then the free will succeed. 3106 */ 3107 do { 3108 tid = this_cpu_read(s->cpu_slab->tid); 3109 c = raw_cpu_ptr(s->cpu_slab); 3110 } while (IS_ENABLED(CONFIG_PREEMPTION) && 3111 unlikely(tid != READ_ONCE(c->tid))); 3112 3113 /* Same with comment on barrier() in slab_alloc_node() */ 3114 barrier(); 3115 3116 if (likely(page == c->page)) { 3117 void **freelist = READ_ONCE(c->freelist); 3118 3119 set_freepointer(s, tail_obj, freelist); 3120 3121 if (unlikely(!this_cpu_cmpxchg_double( 3122 s->cpu_slab->freelist, s->cpu_slab->tid, 3123 freelist, tid, 3124 head, next_tid(tid)))) { 3125 3126 note_cmpxchg_failure("slab_free", s, tid); 3127 goto redo; 3128 } 3129 stat(s, FREE_FASTPATH); 3130 } else 3131 __slab_free(s, page, head, tail_obj, cnt, addr); 3132 3133 } 3134 3135 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3136 void *head, void *tail, int cnt, 3137 unsigned long addr) 3138 { 3139 /* 3140 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3141 * to remove objects, whose reuse must be delayed. 3142 */ 3143 if (slab_free_freelist_hook(s, &head, &tail)) 3144 do_slab_free(s, page, head, tail, cnt, addr); 3145 } 3146 3147 #ifdef CONFIG_KASAN_GENERIC 3148 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3149 { 3150 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3151 } 3152 #endif 3153 3154 void kmem_cache_free(struct kmem_cache *s, void *x) 3155 { 3156 s = cache_from_obj(s, x); 3157 if (!s) 3158 return; 3159 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3160 trace_kmem_cache_free(_RET_IP_, x); 3161 } 3162 EXPORT_SYMBOL(kmem_cache_free); 3163 3164 struct detached_freelist { 3165 struct page *page; 3166 void *tail; 3167 void *freelist; 3168 int cnt; 3169 struct kmem_cache *s; 3170 }; 3171 3172 /* 3173 * This function progressively scans the array with free objects (with 3174 * a limited look ahead) and extract objects belonging to the same 3175 * page. It builds a detached freelist directly within the given 3176 * page/objects. This can happen without any need for 3177 * synchronization, because the objects are owned by running process. 3178 * The freelist is build up as a single linked list in the objects. 3179 * The idea is, that this detached freelist can then be bulk 3180 * transferred to the real freelist(s), but only requiring a single 3181 * synchronization primitive. Look ahead in the array is limited due 3182 * to performance reasons. 3183 */ 3184 static inline 3185 int build_detached_freelist(struct kmem_cache *s, size_t size, 3186 void **p, struct detached_freelist *df) 3187 { 3188 size_t first_skipped_index = 0; 3189 int lookahead = 3; 3190 void *object; 3191 struct page *page; 3192 3193 /* Always re-init detached_freelist */ 3194 df->page = NULL; 3195 3196 do { 3197 object = p[--size]; 3198 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3199 } while (!object && size); 3200 3201 if (!object) 3202 return 0; 3203 3204 page = virt_to_head_page(object); 3205 if (!s) { 3206 /* Handle kalloc'ed objects */ 3207 if (unlikely(!PageSlab(page))) { 3208 BUG_ON(!PageCompound(page)); 3209 kfree_hook(object); 3210 __free_pages(page, compound_order(page)); 3211 p[size] = NULL; /* mark object processed */ 3212 return size; 3213 } 3214 /* Derive kmem_cache from object */ 3215 df->s = page->slab_cache; 3216 } else { 3217 df->s = cache_from_obj(s, object); /* Support for memcg */ 3218 } 3219 3220 /* Start new detached freelist */ 3221 df->page = page; 3222 set_freepointer(df->s, object, NULL); 3223 df->tail = object; 3224 df->freelist = object; 3225 p[size] = NULL; /* mark object processed */ 3226 df->cnt = 1; 3227 3228 while (size) { 3229 object = p[--size]; 3230 if (!object) 3231 continue; /* Skip processed objects */ 3232 3233 /* df->page is always set at this point */ 3234 if (df->page == virt_to_head_page(object)) { 3235 /* Opportunity build freelist */ 3236 set_freepointer(df->s, object, df->freelist); 3237 df->freelist = object; 3238 df->cnt++; 3239 p[size] = NULL; /* mark object processed */ 3240 3241 continue; 3242 } 3243 3244 /* Limit look ahead search */ 3245 if (!--lookahead) 3246 break; 3247 3248 if (!first_skipped_index) 3249 first_skipped_index = size + 1; 3250 } 3251 3252 return first_skipped_index; 3253 } 3254 3255 /* Note that interrupts must be enabled when calling this function. */ 3256 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3257 { 3258 if (WARN_ON(!size)) 3259 return; 3260 3261 memcg_slab_free_hook(s, p, size); 3262 do { 3263 struct detached_freelist df; 3264 3265 size = build_detached_freelist(s, size, p, &df); 3266 if (!df.page) 3267 continue; 3268 3269 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3270 } while (likely(size)); 3271 } 3272 EXPORT_SYMBOL(kmem_cache_free_bulk); 3273 3274 /* Note that interrupts must be enabled when calling this function. */ 3275 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3276 void **p) 3277 { 3278 struct kmem_cache_cpu *c; 3279 int i; 3280 struct obj_cgroup *objcg = NULL; 3281 3282 /* memcg and kmem_cache debug support */ 3283 s = slab_pre_alloc_hook(s, &objcg, size, flags); 3284 if (unlikely(!s)) 3285 return false; 3286 /* 3287 * Drain objects in the per cpu slab, while disabling local 3288 * IRQs, which protects against PREEMPT and interrupts 3289 * handlers invoking normal fastpath. 3290 */ 3291 local_irq_disable(); 3292 c = this_cpu_ptr(s->cpu_slab); 3293 3294 for (i = 0; i < size; i++) { 3295 void *object = c->freelist; 3296 3297 if (unlikely(!object)) { 3298 /* 3299 * We may have removed an object from c->freelist using 3300 * the fastpath in the previous iteration; in that case, 3301 * c->tid has not been bumped yet. 3302 * Since ___slab_alloc() may reenable interrupts while 3303 * allocating memory, we should bump c->tid now. 3304 */ 3305 c->tid = next_tid(c->tid); 3306 3307 /* 3308 * Invoking slow path likely have side-effect 3309 * of re-populating per CPU c->freelist 3310 */ 3311 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3312 _RET_IP_, c); 3313 if (unlikely(!p[i])) 3314 goto error; 3315 3316 c = this_cpu_ptr(s->cpu_slab); 3317 maybe_wipe_obj_freeptr(s, p[i]); 3318 3319 continue; /* goto for-loop */ 3320 } 3321 c->freelist = get_freepointer(s, object); 3322 p[i] = object; 3323 maybe_wipe_obj_freeptr(s, p[i]); 3324 } 3325 c->tid = next_tid(c->tid); 3326 local_irq_enable(); 3327 3328 /* Clear memory outside IRQ disabled fastpath loop */ 3329 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3330 int j; 3331 3332 for (j = 0; j < i; j++) 3333 memset(kasan_reset_tag(p[j]), 0, s->object_size); 3334 } 3335 3336 /* memcg and kmem_cache debug support */ 3337 slab_post_alloc_hook(s, objcg, flags, size, p); 3338 return i; 3339 error: 3340 local_irq_enable(); 3341 slab_post_alloc_hook(s, objcg, flags, i, p); 3342 __kmem_cache_free_bulk(s, i, p); 3343 return 0; 3344 } 3345 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3346 3347 3348 /* 3349 * Object placement in a slab is made very easy because we always start at 3350 * offset 0. If we tune the size of the object to the alignment then we can 3351 * get the required alignment by putting one properly sized object after 3352 * another. 3353 * 3354 * Notice that the allocation order determines the sizes of the per cpu 3355 * caches. Each processor has always one slab available for allocations. 3356 * Increasing the allocation order reduces the number of times that slabs 3357 * must be moved on and off the partial lists and is therefore a factor in 3358 * locking overhead. 3359 */ 3360 3361 /* 3362 * Mininum / Maximum order of slab pages. This influences locking overhead 3363 * and slab fragmentation. A higher order reduces the number of partial slabs 3364 * and increases the number of allocations possible without having to 3365 * take the list_lock. 3366 */ 3367 static unsigned int slub_min_order; 3368 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3369 static unsigned int slub_min_objects; 3370 3371 /* 3372 * Calculate the order of allocation given an slab object size. 3373 * 3374 * The order of allocation has significant impact on performance and other 3375 * system components. Generally order 0 allocations should be preferred since 3376 * order 0 does not cause fragmentation in the page allocator. Larger objects 3377 * be problematic to put into order 0 slabs because there may be too much 3378 * unused space left. We go to a higher order if more than 1/16th of the slab 3379 * would be wasted. 3380 * 3381 * In order to reach satisfactory performance we must ensure that a minimum 3382 * number of objects is in one slab. Otherwise we may generate too much 3383 * activity on the partial lists which requires taking the list_lock. This is 3384 * less a concern for large slabs though which are rarely used. 3385 * 3386 * slub_max_order specifies the order where we begin to stop considering the 3387 * number of objects in a slab as critical. If we reach slub_max_order then 3388 * we try to keep the page order as low as possible. So we accept more waste 3389 * of space in favor of a small page order. 3390 * 3391 * Higher order allocations also allow the placement of more objects in a 3392 * slab and thereby reduce object handling overhead. If the user has 3393 * requested a higher mininum order then we start with that one instead of 3394 * the smallest order which will fit the object. 3395 */ 3396 static inline unsigned int slab_order(unsigned int size, 3397 unsigned int min_objects, unsigned int max_order, 3398 unsigned int fract_leftover) 3399 { 3400 unsigned int min_order = slub_min_order; 3401 unsigned int order; 3402 3403 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3404 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3405 3406 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3407 order <= max_order; order++) { 3408 3409 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3410 unsigned int rem; 3411 3412 rem = slab_size % size; 3413 3414 if (rem <= slab_size / fract_leftover) 3415 break; 3416 } 3417 3418 return order; 3419 } 3420 3421 static inline int calculate_order(unsigned int size) 3422 { 3423 unsigned int order; 3424 unsigned int min_objects; 3425 unsigned int max_objects; 3426 unsigned int nr_cpus; 3427 3428 /* 3429 * Attempt to find best configuration for a slab. This 3430 * works by first attempting to generate a layout with 3431 * the best configuration and backing off gradually. 3432 * 3433 * First we increase the acceptable waste in a slab. Then 3434 * we reduce the minimum objects required in a slab. 3435 */ 3436 min_objects = slub_min_objects; 3437 if (!min_objects) { 3438 /* 3439 * Some architectures will only update present cpus when 3440 * onlining them, so don't trust the number if it's just 1. But 3441 * we also don't want to use nr_cpu_ids always, as on some other 3442 * architectures, there can be many possible cpus, but never 3443 * onlined. Here we compromise between trying to avoid too high 3444 * order on systems that appear larger than they are, and too 3445 * low order on systems that appear smaller than they are. 3446 */ 3447 nr_cpus = num_present_cpus(); 3448 if (nr_cpus <= 1) 3449 nr_cpus = nr_cpu_ids; 3450 min_objects = 4 * (fls(nr_cpus) + 1); 3451 } 3452 max_objects = order_objects(slub_max_order, size); 3453 min_objects = min(min_objects, max_objects); 3454 3455 while (min_objects > 1) { 3456 unsigned int fraction; 3457 3458 fraction = 16; 3459 while (fraction >= 4) { 3460 order = slab_order(size, min_objects, 3461 slub_max_order, fraction); 3462 if (order <= slub_max_order) 3463 return order; 3464 fraction /= 2; 3465 } 3466 min_objects--; 3467 } 3468 3469 /* 3470 * We were unable to place multiple objects in a slab. Now 3471 * lets see if we can place a single object there. 3472 */ 3473 order = slab_order(size, 1, slub_max_order, 1); 3474 if (order <= slub_max_order) 3475 return order; 3476 3477 /* 3478 * Doh this slab cannot be placed using slub_max_order. 3479 */ 3480 order = slab_order(size, 1, MAX_ORDER, 1); 3481 if (order < MAX_ORDER) 3482 return order; 3483 return -ENOSYS; 3484 } 3485 3486 static void 3487 init_kmem_cache_node(struct kmem_cache_node *n) 3488 { 3489 n->nr_partial = 0; 3490 spin_lock_init(&n->list_lock); 3491 INIT_LIST_HEAD(&n->partial); 3492 #ifdef CONFIG_SLUB_DEBUG 3493 atomic_long_set(&n->nr_slabs, 0); 3494 atomic_long_set(&n->total_objects, 0); 3495 INIT_LIST_HEAD(&n->full); 3496 #endif 3497 } 3498 3499 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3500 { 3501 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3502 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3503 3504 /* 3505 * Must align to double word boundary for the double cmpxchg 3506 * instructions to work; see __pcpu_double_call_return_bool(). 3507 */ 3508 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3509 2 * sizeof(void *)); 3510 3511 if (!s->cpu_slab) 3512 return 0; 3513 3514 init_kmem_cache_cpus(s); 3515 3516 return 1; 3517 } 3518 3519 static struct kmem_cache *kmem_cache_node; 3520 3521 /* 3522 * No kmalloc_node yet so do it by hand. We know that this is the first 3523 * slab on the node for this slabcache. There are no concurrent accesses 3524 * possible. 3525 * 3526 * Note that this function only works on the kmem_cache_node 3527 * when allocating for the kmem_cache_node. This is used for bootstrapping 3528 * memory on a fresh node that has no slab structures yet. 3529 */ 3530 static void early_kmem_cache_node_alloc(int node) 3531 { 3532 struct page *page; 3533 struct kmem_cache_node *n; 3534 3535 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3536 3537 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3538 3539 BUG_ON(!page); 3540 if (page_to_nid(page) != node) { 3541 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3542 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3543 } 3544 3545 n = page->freelist; 3546 BUG_ON(!n); 3547 #ifdef CONFIG_SLUB_DEBUG 3548 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3549 init_tracking(kmem_cache_node, n); 3550 #endif 3551 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3552 GFP_KERNEL); 3553 page->freelist = get_freepointer(kmem_cache_node, n); 3554 page->inuse = 1; 3555 page->frozen = 0; 3556 kmem_cache_node->node[node] = n; 3557 init_kmem_cache_node(n); 3558 inc_slabs_node(kmem_cache_node, node, page->objects); 3559 3560 /* 3561 * No locks need to be taken here as it has just been 3562 * initialized and there is no concurrent access. 3563 */ 3564 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3565 } 3566 3567 static void free_kmem_cache_nodes(struct kmem_cache *s) 3568 { 3569 int node; 3570 struct kmem_cache_node *n; 3571 3572 for_each_kmem_cache_node(s, node, n) { 3573 s->node[node] = NULL; 3574 kmem_cache_free(kmem_cache_node, n); 3575 } 3576 } 3577 3578 void __kmem_cache_release(struct kmem_cache *s) 3579 { 3580 cache_random_seq_destroy(s); 3581 free_percpu(s->cpu_slab); 3582 free_kmem_cache_nodes(s); 3583 } 3584 3585 static int init_kmem_cache_nodes(struct kmem_cache *s) 3586 { 3587 int node; 3588 3589 for_each_node_state(node, N_NORMAL_MEMORY) { 3590 struct kmem_cache_node *n; 3591 3592 if (slab_state == DOWN) { 3593 early_kmem_cache_node_alloc(node); 3594 continue; 3595 } 3596 n = kmem_cache_alloc_node(kmem_cache_node, 3597 GFP_KERNEL, node); 3598 3599 if (!n) { 3600 free_kmem_cache_nodes(s); 3601 return 0; 3602 } 3603 3604 init_kmem_cache_node(n); 3605 s->node[node] = n; 3606 } 3607 return 1; 3608 } 3609 3610 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3611 { 3612 if (min < MIN_PARTIAL) 3613 min = MIN_PARTIAL; 3614 else if (min > MAX_PARTIAL) 3615 min = MAX_PARTIAL; 3616 s->min_partial = min; 3617 } 3618 3619 static void set_cpu_partial(struct kmem_cache *s) 3620 { 3621 #ifdef CONFIG_SLUB_CPU_PARTIAL 3622 /* 3623 * cpu_partial determined the maximum number of objects kept in the 3624 * per cpu partial lists of a processor. 3625 * 3626 * Per cpu partial lists mainly contain slabs that just have one 3627 * object freed. If they are used for allocation then they can be 3628 * filled up again with minimal effort. The slab will never hit the 3629 * per node partial lists and therefore no locking will be required. 3630 * 3631 * This setting also determines 3632 * 3633 * A) The number of objects from per cpu partial slabs dumped to the 3634 * per node list when we reach the limit. 3635 * B) The number of objects in cpu partial slabs to extract from the 3636 * per node list when we run out of per cpu objects. We only fetch 3637 * 50% to keep some capacity around for frees. 3638 */ 3639 if (!kmem_cache_has_cpu_partial(s)) 3640 slub_set_cpu_partial(s, 0); 3641 else if (s->size >= PAGE_SIZE) 3642 slub_set_cpu_partial(s, 2); 3643 else if (s->size >= 1024) 3644 slub_set_cpu_partial(s, 6); 3645 else if (s->size >= 256) 3646 slub_set_cpu_partial(s, 13); 3647 else 3648 slub_set_cpu_partial(s, 30); 3649 #endif 3650 } 3651 3652 /* 3653 * calculate_sizes() determines the order and the distribution of data within 3654 * a slab object. 3655 */ 3656 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3657 { 3658 slab_flags_t flags = s->flags; 3659 unsigned int size = s->object_size; 3660 unsigned int freepointer_area; 3661 unsigned int order; 3662 3663 /* 3664 * Round up object size to the next word boundary. We can only 3665 * place the free pointer at word boundaries and this determines 3666 * the possible location of the free pointer. 3667 */ 3668 size = ALIGN(size, sizeof(void *)); 3669 /* 3670 * This is the area of the object where a freepointer can be 3671 * safely written. If redzoning adds more to the inuse size, we 3672 * can't use that portion for writing the freepointer, so 3673 * s->offset must be limited within this for the general case. 3674 */ 3675 freepointer_area = size; 3676 3677 #ifdef CONFIG_SLUB_DEBUG 3678 /* 3679 * Determine if we can poison the object itself. If the user of 3680 * the slab may touch the object after free or before allocation 3681 * then we should never poison the object itself. 3682 */ 3683 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3684 !s->ctor) 3685 s->flags |= __OBJECT_POISON; 3686 else 3687 s->flags &= ~__OBJECT_POISON; 3688 3689 3690 /* 3691 * If we are Redzoning then check if there is some space between the 3692 * end of the object and the free pointer. If not then add an 3693 * additional word to have some bytes to store Redzone information. 3694 */ 3695 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3696 size += sizeof(void *); 3697 #endif 3698 3699 /* 3700 * With that we have determined the number of bytes in actual use 3701 * by the object. This is the potential offset to the free pointer. 3702 */ 3703 s->inuse = size; 3704 3705 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3706 s->ctor)) { 3707 /* 3708 * Relocate free pointer after the object if it is not 3709 * permitted to overwrite the first word of the object on 3710 * kmem_cache_free. 3711 * 3712 * This is the case if we do RCU, have a constructor or 3713 * destructor or are poisoning the objects. 3714 * 3715 * The assumption that s->offset >= s->inuse means free 3716 * pointer is outside of the object is used in the 3717 * freeptr_outside_object() function. If that is no 3718 * longer true, the function needs to be modified. 3719 */ 3720 s->offset = size; 3721 size += sizeof(void *); 3722 } else if (freepointer_area > sizeof(void *)) { 3723 /* 3724 * Store freelist pointer near middle of object to keep 3725 * it away from the edges of the object to avoid small 3726 * sized over/underflows from neighboring allocations. 3727 */ 3728 s->offset = ALIGN(freepointer_area / 2, sizeof(void *)); 3729 } 3730 3731 #ifdef CONFIG_SLUB_DEBUG 3732 if (flags & SLAB_STORE_USER) 3733 /* 3734 * Need to store information about allocs and frees after 3735 * the object. 3736 */ 3737 size += 2 * sizeof(struct track); 3738 #endif 3739 3740 kasan_cache_create(s, &size, &s->flags); 3741 #ifdef CONFIG_SLUB_DEBUG 3742 if (flags & SLAB_RED_ZONE) { 3743 /* 3744 * Add some empty padding so that we can catch 3745 * overwrites from earlier objects rather than let 3746 * tracking information or the free pointer be 3747 * corrupted if a user writes before the start 3748 * of the object. 3749 */ 3750 size += sizeof(void *); 3751 3752 s->red_left_pad = sizeof(void *); 3753 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3754 size += s->red_left_pad; 3755 } 3756 #endif 3757 3758 /* 3759 * SLUB stores one object immediately after another beginning from 3760 * offset 0. In order to align the objects we have to simply size 3761 * each object to conform to the alignment. 3762 */ 3763 size = ALIGN(size, s->align); 3764 s->size = size; 3765 s->reciprocal_size = reciprocal_value(size); 3766 if (forced_order >= 0) 3767 order = forced_order; 3768 else 3769 order = calculate_order(size); 3770 3771 if ((int)order < 0) 3772 return 0; 3773 3774 s->allocflags = 0; 3775 if (order) 3776 s->allocflags |= __GFP_COMP; 3777 3778 if (s->flags & SLAB_CACHE_DMA) 3779 s->allocflags |= GFP_DMA; 3780 3781 if (s->flags & SLAB_CACHE_DMA32) 3782 s->allocflags |= GFP_DMA32; 3783 3784 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3785 s->allocflags |= __GFP_RECLAIMABLE; 3786 3787 /* 3788 * Determine the number of objects per slab 3789 */ 3790 s->oo = oo_make(order, size); 3791 s->min = oo_make(get_order(size), size); 3792 if (oo_objects(s->oo) > oo_objects(s->max)) 3793 s->max = s->oo; 3794 3795 return !!oo_objects(s->oo); 3796 } 3797 3798 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3799 { 3800 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3801 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3802 s->random = get_random_long(); 3803 #endif 3804 3805 if (!calculate_sizes(s, -1)) 3806 goto error; 3807 if (disable_higher_order_debug) { 3808 /* 3809 * Disable debugging flags that store metadata if the min slab 3810 * order increased. 3811 */ 3812 if (get_order(s->size) > get_order(s->object_size)) { 3813 s->flags &= ~DEBUG_METADATA_FLAGS; 3814 s->offset = 0; 3815 if (!calculate_sizes(s, -1)) 3816 goto error; 3817 } 3818 } 3819 3820 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3821 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3822 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3823 /* Enable fast mode */ 3824 s->flags |= __CMPXCHG_DOUBLE; 3825 #endif 3826 3827 /* 3828 * The larger the object size is, the more pages we want on the partial 3829 * list to avoid pounding the page allocator excessively. 3830 */ 3831 set_min_partial(s, ilog2(s->size) / 2); 3832 3833 set_cpu_partial(s); 3834 3835 #ifdef CONFIG_NUMA 3836 s->remote_node_defrag_ratio = 1000; 3837 #endif 3838 3839 /* Initialize the pre-computed randomized freelist if slab is up */ 3840 if (slab_state >= UP) { 3841 if (init_cache_random_seq(s)) 3842 goto error; 3843 } 3844 3845 if (!init_kmem_cache_nodes(s)) 3846 goto error; 3847 3848 if (alloc_kmem_cache_cpus(s)) 3849 return 0; 3850 3851 free_kmem_cache_nodes(s); 3852 error: 3853 return -EINVAL; 3854 } 3855 3856 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3857 const char *text) 3858 { 3859 #ifdef CONFIG_SLUB_DEBUG 3860 void *addr = page_address(page); 3861 unsigned long *map; 3862 void *p; 3863 3864 slab_err(s, page, text, s->name); 3865 slab_lock(page); 3866 3867 map = get_map(s, page); 3868 for_each_object(p, s, addr, page->objects) { 3869 3870 if (!test_bit(__obj_to_index(s, addr, p), map)) { 3871 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3872 print_tracking(s, p); 3873 } 3874 } 3875 put_map(map); 3876 slab_unlock(page); 3877 #endif 3878 } 3879 3880 /* 3881 * Attempt to free all partial slabs on a node. 3882 * This is called from __kmem_cache_shutdown(). We must take list_lock 3883 * because sysfs file might still access partial list after the shutdowning. 3884 */ 3885 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3886 { 3887 LIST_HEAD(discard); 3888 struct page *page, *h; 3889 3890 BUG_ON(irqs_disabled()); 3891 spin_lock_irq(&n->list_lock); 3892 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3893 if (!page->inuse) { 3894 remove_partial(n, page); 3895 list_add(&page->slab_list, &discard); 3896 } else { 3897 list_slab_objects(s, page, 3898 "Objects remaining in %s on __kmem_cache_shutdown()"); 3899 } 3900 } 3901 spin_unlock_irq(&n->list_lock); 3902 3903 list_for_each_entry_safe(page, h, &discard, slab_list) 3904 discard_slab(s, page); 3905 } 3906 3907 bool __kmem_cache_empty(struct kmem_cache *s) 3908 { 3909 int node; 3910 struct kmem_cache_node *n; 3911 3912 for_each_kmem_cache_node(s, node, n) 3913 if (n->nr_partial || slabs_node(s, node)) 3914 return false; 3915 return true; 3916 } 3917 3918 /* 3919 * Release all resources used by a slab cache. 3920 */ 3921 int __kmem_cache_shutdown(struct kmem_cache *s) 3922 { 3923 int node; 3924 struct kmem_cache_node *n; 3925 3926 flush_all(s); 3927 /* Attempt to free all objects */ 3928 for_each_kmem_cache_node(s, node, n) { 3929 free_partial(s, n); 3930 if (n->nr_partial || slabs_node(s, node)) 3931 return 1; 3932 } 3933 return 0; 3934 } 3935 3936 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page) 3937 { 3938 void *base; 3939 int __maybe_unused i; 3940 unsigned int objnr; 3941 void *objp; 3942 void *objp0; 3943 struct kmem_cache *s = page->slab_cache; 3944 struct track __maybe_unused *trackp; 3945 3946 kpp->kp_ptr = object; 3947 kpp->kp_page = page; 3948 kpp->kp_slab_cache = s; 3949 base = page_address(page); 3950 objp0 = kasan_reset_tag(object); 3951 #ifdef CONFIG_SLUB_DEBUG 3952 objp = restore_red_left(s, objp0); 3953 #else 3954 objp = objp0; 3955 #endif 3956 objnr = obj_to_index(s, page, objp); 3957 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 3958 objp = base + s->size * objnr; 3959 kpp->kp_objp = objp; 3960 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) || 3961 !(s->flags & SLAB_STORE_USER)) 3962 return; 3963 #ifdef CONFIG_SLUB_DEBUG 3964 trackp = get_track(s, objp, TRACK_ALLOC); 3965 kpp->kp_ret = (void *)trackp->addr; 3966 #ifdef CONFIG_STACKTRACE 3967 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { 3968 kpp->kp_stack[i] = (void *)trackp->addrs[i]; 3969 if (!kpp->kp_stack[i]) 3970 break; 3971 } 3972 #endif 3973 #endif 3974 } 3975 3976 /******************************************************************** 3977 * Kmalloc subsystem 3978 *******************************************************************/ 3979 3980 static int __init setup_slub_min_order(char *str) 3981 { 3982 get_option(&str, (int *)&slub_min_order); 3983 3984 return 1; 3985 } 3986 3987 __setup("slub_min_order=", setup_slub_min_order); 3988 3989 static int __init setup_slub_max_order(char *str) 3990 { 3991 get_option(&str, (int *)&slub_max_order); 3992 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3993 3994 return 1; 3995 } 3996 3997 __setup("slub_max_order=", setup_slub_max_order); 3998 3999 static int __init setup_slub_min_objects(char *str) 4000 { 4001 get_option(&str, (int *)&slub_min_objects); 4002 4003 return 1; 4004 } 4005 4006 __setup("slub_min_objects=", setup_slub_min_objects); 4007 4008 void *__kmalloc(size_t size, gfp_t flags) 4009 { 4010 struct kmem_cache *s; 4011 void *ret; 4012 4013 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4014 return kmalloc_large(size, flags); 4015 4016 s = kmalloc_slab(size, flags); 4017 4018 if (unlikely(ZERO_OR_NULL_PTR(s))) 4019 return s; 4020 4021 ret = slab_alloc(s, flags, _RET_IP_); 4022 4023 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 4024 4025 ret = kasan_kmalloc(s, ret, size, flags); 4026 4027 return ret; 4028 } 4029 EXPORT_SYMBOL(__kmalloc); 4030 4031 #ifdef CONFIG_NUMA 4032 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4033 { 4034 struct page *page; 4035 void *ptr = NULL; 4036 unsigned int order = get_order(size); 4037 4038 flags |= __GFP_COMP; 4039 page = alloc_pages_node(node, flags, order); 4040 if (page) { 4041 ptr = page_address(page); 4042 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, 4043 PAGE_SIZE << order); 4044 } 4045 4046 return kmalloc_large_node_hook(ptr, size, flags); 4047 } 4048 4049 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4050 { 4051 struct kmem_cache *s; 4052 void *ret; 4053 4054 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4055 ret = kmalloc_large_node(size, flags, node); 4056 4057 trace_kmalloc_node(_RET_IP_, ret, 4058 size, PAGE_SIZE << get_order(size), 4059 flags, node); 4060 4061 return ret; 4062 } 4063 4064 s = kmalloc_slab(size, flags); 4065 4066 if (unlikely(ZERO_OR_NULL_PTR(s))) 4067 return s; 4068 4069 ret = slab_alloc_node(s, flags, node, _RET_IP_); 4070 4071 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 4072 4073 ret = kasan_kmalloc(s, ret, size, flags); 4074 4075 return ret; 4076 } 4077 EXPORT_SYMBOL(__kmalloc_node); 4078 #endif /* CONFIG_NUMA */ 4079 4080 #ifdef CONFIG_HARDENED_USERCOPY 4081 /* 4082 * Rejects incorrectly sized objects and objects that are to be copied 4083 * to/from userspace but do not fall entirely within the containing slab 4084 * cache's usercopy region. 4085 * 4086 * Returns NULL if check passes, otherwise const char * to name of cache 4087 * to indicate an error. 4088 */ 4089 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4090 bool to_user) 4091 { 4092 struct kmem_cache *s; 4093 unsigned int offset; 4094 size_t object_size; 4095 4096 ptr = kasan_reset_tag(ptr); 4097 4098 /* Find object and usable object size. */ 4099 s = page->slab_cache; 4100 4101 /* Reject impossible pointers. */ 4102 if (ptr < page_address(page)) 4103 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4104 to_user, 0, n); 4105 4106 /* Find offset within object. */ 4107 offset = (ptr - page_address(page)) % s->size; 4108 4109 /* Adjust for redzone and reject if within the redzone. */ 4110 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4111 if (offset < s->red_left_pad) 4112 usercopy_abort("SLUB object in left red zone", 4113 s->name, to_user, offset, n); 4114 offset -= s->red_left_pad; 4115 } 4116 4117 /* Allow address range falling entirely within usercopy region. */ 4118 if (offset >= s->useroffset && 4119 offset - s->useroffset <= s->usersize && 4120 n <= s->useroffset - offset + s->usersize) 4121 return; 4122 4123 /* 4124 * If the copy is still within the allocated object, produce 4125 * a warning instead of rejecting the copy. This is intended 4126 * to be a temporary method to find any missing usercopy 4127 * whitelists. 4128 */ 4129 object_size = slab_ksize(s); 4130 if (usercopy_fallback && 4131 offset <= object_size && n <= object_size - offset) { 4132 usercopy_warn("SLUB object", s->name, to_user, offset, n); 4133 return; 4134 } 4135 4136 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4137 } 4138 #endif /* CONFIG_HARDENED_USERCOPY */ 4139 4140 size_t __ksize(const void *object) 4141 { 4142 struct page *page; 4143 4144 if (unlikely(object == ZERO_SIZE_PTR)) 4145 return 0; 4146 4147 page = virt_to_head_page(object); 4148 4149 if (unlikely(!PageSlab(page))) { 4150 WARN_ON(!PageCompound(page)); 4151 return page_size(page); 4152 } 4153 4154 return slab_ksize(page->slab_cache); 4155 } 4156 EXPORT_SYMBOL(__ksize); 4157 4158 void kfree(const void *x) 4159 { 4160 struct page *page; 4161 void *object = (void *)x; 4162 4163 trace_kfree(_RET_IP_, x); 4164 4165 if (unlikely(ZERO_OR_NULL_PTR(x))) 4166 return; 4167 4168 page = virt_to_head_page(x); 4169 if (unlikely(!PageSlab(page))) { 4170 unsigned int order = compound_order(page); 4171 4172 BUG_ON(!PageCompound(page)); 4173 kfree_hook(object); 4174 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, 4175 -(PAGE_SIZE << order)); 4176 __free_pages(page, order); 4177 return; 4178 } 4179 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 4180 } 4181 EXPORT_SYMBOL(kfree); 4182 4183 #define SHRINK_PROMOTE_MAX 32 4184 4185 /* 4186 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4187 * up most to the head of the partial lists. New allocations will then 4188 * fill those up and thus they can be removed from the partial lists. 4189 * 4190 * The slabs with the least items are placed last. This results in them 4191 * being allocated from last increasing the chance that the last objects 4192 * are freed in them. 4193 */ 4194 int __kmem_cache_shrink(struct kmem_cache *s) 4195 { 4196 int node; 4197 int i; 4198 struct kmem_cache_node *n; 4199 struct page *page; 4200 struct page *t; 4201 struct list_head discard; 4202 struct list_head promote[SHRINK_PROMOTE_MAX]; 4203 unsigned long flags; 4204 int ret = 0; 4205 4206 flush_all(s); 4207 for_each_kmem_cache_node(s, node, n) { 4208 INIT_LIST_HEAD(&discard); 4209 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4210 INIT_LIST_HEAD(promote + i); 4211 4212 spin_lock_irqsave(&n->list_lock, flags); 4213 4214 /* 4215 * Build lists of slabs to discard or promote. 4216 * 4217 * Note that concurrent frees may occur while we hold the 4218 * list_lock. page->inuse here is the upper limit. 4219 */ 4220 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4221 int free = page->objects - page->inuse; 4222 4223 /* Do not reread page->inuse */ 4224 barrier(); 4225 4226 /* We do not keep full slabs on the list */ 4227 BUG_ON(free <= 0); 4228 4229 if (free == page->objects) { 4230 list_move(&page->slab_list, &discard); 4231 n->nr_partial--; 4232 } else if (free <= SHRINK_PROMOTE_MAX) 4233 list_move(&page->slab_list, promote + free - 1); 4234 } 4235 4236 /* 4237 * Promote the slabs filled up most to the head of the 4238 * partial list. 4239 */ 4240 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4241 list_splice(promote + i, &n->partial); 4242 4243 spin_unlock_irqrestore(&n->list_lock, flags); 4244 4245 /* Release empty slabs */ 4246 list_for_each_entry_safe(page, t, &discard, slab_list) 4247 discard_slab(s, page); 4248 4249 if (slabs_node(s, node)) 4250 ret = 1; 4251 } 4252 4253 return ret; 4254 } 4255 4256 static int slab_mem_going_offline_callback(void *arg) 4257 { 4258 struct kmem_cache *s; 4259 4260 mutex_lock(&slab_mutex); 4261 list_for_each_entry(s, &slab_caches, list) 4262 __kmem_cache_shrink(s); 4263 mutex_unlock(&slab_mutex); 4264 4265 return 0; 4266 } 4267 4268 static void slab_mem_offline_callback(void *arg) 4269 { 4270 struct kmem_cache_node *n; 4271 struct kmem_cache *s; 4272 struct memory_notify *marg = arg; 4273 int offline_node; 4274 4275 offline_node = marg->status_change_nid_normal; 4276 4277 /* 4278 * If the node still has available memory. we need kmem_cache_node 4279 * for it yet. 4280 */ 4281 if (offline_node < 0) 4282 return; 4283 4284 mutex_lock(&slab_mutex); 4285 list_for_each_entry(s, &slab_caches, list) { 4286 n = get_node(s, offline_node); 4287 if (n) { 4288 /* 4289 * if n->nr_slabs > 0, slabs still exist on the node 4290 * that is going down. We were unable to free them, 4291 * and offline_pages() function shouldn't call this 4292 * callback. So, we must fail. 4293 */ 4294 BUG_ON(slabs_node(s, offline_node)); 4295 4296 s->node[offline_node] = NULL; 4297 kmem_cache_free(kmem_cache_node, n); 4298 } 4299 } 4300 mutex_unlock(&slab_mutex); 4301 } 4302 4303 static int slab_mem_going_online_callback(void *arg) 4304 { 4305 struct kmem_cache_node *n; 4306 struct kmem_cache *s; 4307 struct memory_notify *marg = arg; 4308 int nid = marg->status_change_nid_normal; 4309 int ret = 0; 4310 4311 /* 4312 * If the node's memory is already available, then kmem_cache_node is 4313 * already created. Nothing to do. 4314 */ 4315 if (nid < 0) 4316 return 0; 4317 4318 /* 4319 * We are bringing a node online. No memory is available yet. We must 4320 * allocate a kmem_cache_node structure in order to bring the node 4321 * online. 4322 */ 4323 mutex_lock(&slab_mutex); 4324 list_for_each_entry(s, &slab_caches, list) { 4325 /* 4326 * XXX: kmem_cache_alloc_node will fallback to other nodes 4327 * since memory is not yet available from the node that 4328 * is brought up. 4329 */ 4330 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4331 if (!n) { 4332 ret = -ENOMEM; 4333 goto out; 4334 } 4335 init_kmem_cache_node(n); 4336 s->node[nid] = n; 4337 } 4338 out: 4339 mutex_unlock(&slab_mutex); 4340 return ret; 4341 } 4342 4343 static int slab_memory_callback(struct notifier_block *self, 4344 unsigned long action, void *arg) 4345 { 4346 int ret = 0; 4347 4348 switch (action) { 4349 case MEM_GOING_ONLINE: 4350 ret = slab_mem_going_online_callback(arg); 4351 break; 4352 case MEM_GOING_OFFLINE: 4353 ret = slab_mem_going_offline_callback(arg); 4354 break; 4355 case MEM_OFFLINE: 4356 case MEM_CANCEL_ONLINE: 4357 slab_mem_offline_callback(arg); 4358 break; 4359 case MEM_ONLINE: 4360 case MEM_CANCEL_OFFLINE: 4361 break; 4362 } 4363 if (ret) 4364 ret = notifier_from_errno(ret); 4365 else 4366 ret = NOTIFY_OK; 4367 return ret; 4368 } 4369 4370 static struct notifier_block slab_memory_callback_nb = { 4371 .notifier_call = slab_memory_callback, 4372 .priority = SLAB_CALLBACK_PRI, 4373 }; 4374 4375 /******************************************************************** 4376 * Basic setup of slabs 4377 *******************************************************************/ 4378 4379 /* 4380 * Used for early kmem_cache structures that were allocated using 4381 * the page allocator. Allocate them properly then fix up the pointers 4382 * that may be pointing to the wrong kmem_cache structure. 4383 */ 4384 4385 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4386 { 4387 int node; 4388 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4389 struct kmem_cache_node *n; 4390 4391 memcpy(s, static_cache, kmem_cache->object_size); 4392 4393 /* 4394 * This runs very early, and only the boot processor is supposed to be 4395 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4396 * IPIs around. 4397 */ 4398 __flush_cpu_slab(s, smp_processor_id()); 4399 for_each_kmem_cache_node(s, node, n) { 4400 struct page *p; 4401 4402 list_for_each_entry(p, &n->partial, slab_list) 4403 p->slab_cache = s; 4404 4405 #ifdef CONFIG_SLUB_DEBUG 4406 list_for_each_entry(p, &n->full, slab_list) 4407 p->slab_cache = s; 4408 #endif 4409 } 4410 list_add(&s->list, &slab_caches); 4411 return s; 4412 } 4413 4414 void __init kmem_cache_init(void) 4415 { 4416 static __initdata struct kmem_cache boot_kmem_cache, 4417 boot_kmem_cache_node; 4418 4419 if (debug_guardpage_minorder()) 4420 slub_max_order = 0; 4421 4422 kmem_cache_node = &boot_kmem_cache_node; 4423 kmem_cache = &boot_kmem_cache; 4424 4425 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4426 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4427 4428 register_hotmemory_notifier(&slab_memory_callback_nb); 4429 4430 /* Able to allocate the per node structures */ 4431 slab_state = PARTIAL; 4432 4433 create_boot_cache(kmem_cache, "kmem_cache", 4434 offsetof(struct kmem_cache, node) + 4435 nr_node_ids * sizeof(struct kmem_cache_node *), 4436 SLAB_HWCACHE_ALIGN, 0, 0); 4437 4438 kmem_cache = bootstrap(&boot_kmem_cache); 4439 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4440 4441 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4442 setup_kmalloc_cache_index_table(); 4443 create_kmalloc_caches(0); 4444 4445 /* Setup random freelists for each cache */ 4446 init_freelist_randomization(); 4447 4448 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4449 slub_cpu_dead); 4450 4451 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4452 cache_line_size(), 4453 slub_min_order, slub_max_order, slub_min_objects, 4454 nr_cpu_ids, nr_node_ids); 4455 } 4456 4457 void __init kmem_cache_init_late(void) 4458 { 4459 } 4460 4461 struct kmem_cache * 4462 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4463 slab_flags_t flags, void (*ctor)(void *)) 4464 { 4465 struct kmem_cache *s; 4466 4467 s = find_mergeable(size, align, flags, name, ctor); 4468 if (s) { 4469 s->refcount++; 4470 4471 /* 4472 * Adjust the object sizes so that we clear 4473 * the complete object on kzalloc. 4474 */ 4475 s->object_size = max(s->object_size, size); 4476 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4477 4478 if (sysfs_slab_alias(s, name)) { 4479 s->refcount--; 4480 s = NULL; 4481 } 4482 } 4483 4484 return s; 4485 } 4486 4487 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4488 { 4489 int err; 4490 4491 err = kmem_cache_open(s, flags); 4492 if (err) 4493 return err; 4494 4495 /* Mutex is not taken during early boot */ 4496 if (slab_state <= UP) 4497 return 0; 4498 4499 err = sysfs_slab_add(s); 4500 if (err) 4501 __kmem_cache_release(s); 4502 4503 return err; 4504 } 4505 4506 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4507 { 4508 struct kmem_cache *s; 4509 void *ret; 4510 4511 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4512 return kmalloc_large(size, gfpflags); 4513 4514 s = kmalloc_slab(size, gfpflags); 4515 4516 if (unlikely(ZERO_OR_NULL_PTR(s))) 4517 return s; 4518 4519 ret = slab_alloc(s, gfpflags, caller); 4520 4521 /* Honor the call site pointer we received. */ 4522 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4523 4524 return ret; 4525 } 4526 EXPORT_SYMBOL(__kmalloc_track_caller); 4527 4528 #ifdef CONFIG_NUMA 4529 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4530 int node, unsigned long caller) 4531 { 4532 struct kmem_cache *s; 4533 void *ret; 4534 4535 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4536 ret = kmalloc_large_node(size, gfpflags, node); 4537 4538 trace_kmalloc_node(caller, ret, 4539 size, PAGE_SIZE << get_order(size), 4540 gfpflags, node); 4541 4542 return ret; 4543 } 4544 4545 s = kmalloc_slab(size, gfpflags); 4546 4547 if (unlikely(ZERO_OR_NULL_PTR(s))) 4548 return s; 4549 4550 ret = slab_alloc_node(s, gfpflags, node, caller); 4551 4552 /* Honor the call site pointer we received. */ 4553 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4554 4555 return ret; 4556 } 4557 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4558 #endif 4559 4560 #ifdef CONFIG_SYSFS 4561 static int count_inuse(struct page *page) 4562 { 4563 return page->inuse; 4564 } 4565 4566 static int count_total(struct page *page) 4567 { 4568 return page->objects; 4569 } 4570 #endif 4571 4572 #ifdef CONFIG_SLUB_DEBUG 4573 static void validate_slab(struct kmem_cache *s, struct page *page) 4574 { 4575 void *p; 4576 void *addr = page_address(page); 4577 unsigned long *map; 4578 4579 slab_lock(page); 4580 4581 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4582 goto unlock; 4583 4584 /* Now we know that a valid freelist exists */ 4585 map = get_map(s, page); 4586 for_each_object(p, s, addr, page->objects) { 4587 u8 val = test_bit(__obj_to_index(s, addr, p), map) ? 4588 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4589 4590 if (!check_object(s, page, p, val)) 4591 break; 4592 } 4593 put_map(map); 4594 unlock: 4595 slab_unlock(page); 4596 } 4597 4598 static int validate_slab_node(struct kmem_cache *s, 4599 struct kmem_cache_node *n) 4600 { 4601 unsigned long count = 0; 4602 struct page *page; 4603 unsigned long flags; 4604 4605 spin_lock_irqsave(&n->list_lock, flags); 4606 4607 list_for_each_entry(page, &n->partial, slab_list) { 4608 validate_slab(s, page); 4609 count++; 4610 } 4611 if (count != n->nr_partial) 4612 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4613 s->name, count, n->nr_partial); 4614 4615 if (!(s->flags & SLAB_STORE_USER)) 4616 goto out; 4617 4618 list_for_each_entry(page, &n->full, slab_list) { 4619 validate_slab(s, page); 4620 count++; 4621 } 4622 if (count != atomic_long_read(&n->nr_slabs)) 4623 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4624 s->name, count, atomic_long_read(&n->nr_slabs)); 4625 4626 out: 4627 spin_unlock_irqrestore(&n->list_lock, flags); 4628 return count; 4629 } 4630 4631 static long validate_slab_cache(struct kmem_cache *s) 4632 { 4633 int node; 4634 unsigned long count = 0; 4635 struct kmem_cache_node *n; 4636 4637 flush_all(s); 4638 for_each_kmem_cache_node(s, node, n) 4639 count += validate_slab_node(s, n); 4640 4641 return count; 4642 } 4643 /* 4644 * Generate lists of code addresses where slabcache objects are allocated 4645 * and freed. 4646 */ 4647 4648 struct location { 4649 unsigned long count; 4650 unsigned long addr; 4651 long long sum_time; 4652 long min_time; 4653 long max_time; 4654 long min_pid; 4655 long max_pid; 4656 DECLARE_BITMAP(cpus, NR_CPUS); 4657 nodemask_t nodes; 4658 }; 4659 4660 struct loc_track { 4661 unsigned long max; 4662 unsigned long count; 4663 struct location *loc; 4664 }; 4665 4666 static void free_loc_track(struct loc_track *t) 4667 { 4668 if (t->max) 4669 free_pages((unsigned long)t->loc, 4670 get_order(sizeof(struct location) * t->max)); 4671 } 4672 4673 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4674 { 4675 struct location *l; 4676 int order; 4677 4678 order = get_order(sizeof(struct location) * max); 4679 4680 l = (void *)__get_free_pages(flags, order); 4681 if (!l) 4682 return 0; 4683 4684 if (t->count) { 4685 memcpy(l, t->loc, sizeof(struct location) * t->count); 4686 free_loc_track(t); 4687 } 4688 t->max = max; 4689 t->loc = l; 4690 return 1; 4691 } 4692 4693 static int add_location(struct loc_track *t, struct kmem_cache *s, 4694 const struct track *track) 4695 { 4696 long start, end, pos; 4697 struct location *l; 4698 unsigned long caddr; 4699 unsigned long age = jiffies - track->when; 4700 4701 start = -1; 4702 end = t->count; 4703 4704 for ( ; ; ) { 4705 pos = start + (end - start + 1) / 2; 4706 4707 /* 4708 * There is nothing at "end". If we end up there 4709 * we need to add something to before end. 4710 */ 4711 if (pos == end) 4712 break; 4713 4714 caddr = t->loc[pos].addr; 4715 if (track->addr == caddr) { 4716 4717 l = &t->loc[pos]; 4718 l->count++; 4719 if (track->when) { 4720 l->sum_time += age; 4721 if (age < l->min_time) 4722 l->min_time = age; 4723 if (age > l->max_time) 4724 l->max_time = age; 4725 4726 if (track->pid < l->min_pid) 4727 l->min_pid = track->pid; 4728 if (track->pid > l->max_pid) 4729 l->max_pid = track->pid; 4730 4731 cpumask_set_cpu(track->cpu, 4732 to_cpumask(l->cpus)); 4733 } 4734 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4735 return 1; 4736 } 4737 4738 if (track->addr < caddr) 4739 end = pos; 4740 else 4741 start = pos; 4742 } 4743 4744 /* 4745 * Not found. Insert new tracking element. 4746 */ 4747 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4748 return 0; 4749 4750 l = t->loc + pos; 4751 if (pos < t->count) 4752 memmove(l + 1, l, 4753 (t->count - pos) * sizeof(struct location)); 4754 t->count++; 4755 l->count = 1; 4756 l->addr = track->addr; 4757 l->sum_time = age; 4758 l->min_time = age; 4759 l->max_time = age; 4760 l->min_pid = track->pid; 4761 l->max_pid = track->pid; 4762 cpumask_clear(to_cpumask(l->cpus)); 4763 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4764 nodes_clear(l->nodes); 4765 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4766 return 1; 4767 } 4768 4769 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4770 struct page *page, enum track_item alloc) 4771 { 4772 void *addr = page_address(page); 4773 void *p; 4774 unsigned long *map; 4775 4776 map = get_map(s, page); 4777 for_each_object(p, s, addr, page->objects) 4778 if (!test_bit(__obj_to_index(s, addr, p), map)) 4779 add_location(t, s, get_track(s, p, alloc)); 4780 put_map(map); 4781 } 4782 4783 static int list_locations(struct kmem_cache *s, char *buf, 4784 enum track_item alloc) 4785 { 4786 int len = 0; 4787 unsigned long i; 4788 struct loc_track t = { 0, 0, NULL }; 4789 int node; 4790 struct kmem_cache_node *n; 4791 4792 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4793 GFP_KERNEL)) { 4794 return sysfs_emit(buf, "Out of memory\n"); 4795 } 4796 /* Push back cpu slabs */ 4797 flush_all(s); 4798 4799 for_each_kmem_cache_node(s, node, n) { 4800 unsigned long flags; 4801 struct page *page; 4802 4803 if (!atomic_long_read(&n->nr_slabs)) 4804 continue; 4805 4806 spin_lock_irqsave(&n->list_lock, flags); 4807 list_for_each_entry(page, &n->partial, slab_list) 4808 process_slab(&t, s, page, alloc); 4809 list_for_each_entry(page, &n->full, slab_list) 4810 process_slab(&t, s, page, alloc); 4811 spin_unlock_irqrestore(&n->list_lock, flags); 4812 } 4813 4814 for (i = 0; i < t.count; i++) { 4815 struct location *l = &t.loc[i]; 4816 4817 len += sysfs_emit_at(buf, len, "%7ld ", l->count); 4818 4819 if (l->addr) 4820 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr); 4821 else 4822 len += sysfs_emit_at(buf, len, "<not-available>"); 4823 4824 if (l->sum_time != l->min_time) 4825 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld", 4826 l->min_time, 4827 (long)div_u64(l->sum_time, 4828 l->count), 4829 l->max_time); 4830 else 4831 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time); 4832 4833 if (l->min_pid != l->max_pid) 4834 len += sysfs_emit_at(buf, len, " pid=%ld-%ld", 4835 l->min_pid, l->max_pid); 4836 else 4837 len += sysfs_emit_at(buf, len, " pid=%ld", 4838 l->min_pid); 4839 4840 if (num_online_cpus() > 1 && 4841 !cpumask_empty(to_cpumask(l->cpus))) 4842 len += sysfs_emit_at(buf, len, " cpus=%*pbl", 4843 cpumask_pr_args(to_cpumask(l->cpus))); 4844 4845 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 4846 len += sysfs_emit_at(buf, len, " nodes=%*pbl", 4847 nodemask_pr_args(&l->nodes)); 4848 4849 len += sysfs_emit_at(buf, len, "\n"); 4850 } 4851 4852 free_loc_track(&t); 4853 if (!t.count) 4854 len += sysfs_emit_at(buf, len, "No data\n"); 4855 4856 return len; 4857 } 4858 #endif /* CONFIG_SLUB_DEBUG */ 4859 4860 #ifdef SLUB_RESILIENCY_TEST 4861 static void __init resiliency_test(void) 4862 { 4863 u8 *p; 4864 int type = KMALLOC_NORMAL; 4865 4866 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4867 4868 pr_err("SLUB resiliency testing\n"); 4869 pr_err("-----------------------\n"); 4870 pr_err("A. Corruption after allocation\n"); 4871 4872 p = kzalloc(16, GFP_KERNEL); 4873 p[16] = 0x12; 4874 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4875 p + 16); 4876 4877 validate_slab_cache(kmalloc_caches[type][4]); 4878 4879 /* Hmmm... The next two are dangerous */ 4880 p = kzalloc(32, GFP_KERNEL); 4881 p[32 + sizeof(void *)] = 0x34; 4882 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4883 p); 4884 pr_err("If allocated object is overwritten then not detectable\n\n"); 4885 4886 validate_slab_cache(kmalloc_caches[type][5]); 4887 p = kzalloc(64, GFP_KERNEL); 4888 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4889 *p = 0x56; 4890 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4891 p); 4892 pr_err("If allocated object is overwritten then not detectable\n\n"); 4893 validate_slab_cache(kmalloc_caches[type][6]); 4894 4895 pr_err("\nB. Corruption after free\n"); 4896 p = kzalloc(128, GFP_KERNEL); 4897 kfree(p); 4898 *p = 0x78; 4899 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4900 validate_slab_cache(kmalloc_caches[type][7]); 4901 4902 p = kzalloc(256, GFP_KERNEL); 4903 kfree(p); 4904 p[50] = 0x9a; 4905 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4906 validate_slab_cache(kmalloc_caches[type][8]); 4907 4908 p = kzalloc(512, GFP_KERNEL); 4909 kfree(p); 4910 p[512] = 0xab; 4911 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4912 validate_slab_cache(kmalloc_caches[type][9]); 4913 } 4914 #else 4915 #ifdef CONFIG_SYSFS 4916 static void resiliency_test(void) {}; 4917 #endif 4918 #endif /* SLUB_RESILIENCY_TEST */ 4919 4920 #ifdef CONFIG_SYSFS 4921 enum slab_stat_type { 4922 SL_ALL, /* All slabs */ 4923 SL_PARTIAL, /* Only partially allocated slabs */ 4924 SL_CPU, /* Only slabs used for cpu caches */ 4925 SL_OBJECTS, /* Determine allocated objects not slabs */ 4926 SL_TOTAL /* Determine object capacity not slabs */ 4927 }; 4928 4929 #define SO_ALL (1 << SL_ALL) 4930 #define SO_PARTIAL (1 << SL_PARTIAL) 4931 #define SO_CPU (1 << SL_CPU) 4932 #define SO_OBJECTS (1 << SL_OBJECTS) 4933 #define SO_TOTAL (1 << SL_TOTAL) 4934 4935 #ifdef CONFIG_MEMCG 4936 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4937 4938 static int __init setup_slub_memcg_sysfs(char *str) 4939 { 4940 int v; 4941 4942 if (get_option(&str, &v) > 0) 4943 memcg_sysfs_enabled = v; 4944 4945 return 1; 4946 } 4947 4948 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4949 #endif 4950 4951 static ssize_t show_slab_objects(struct kmem_cache *s, 4952 char *buf, unsigned long flags) 4953 { 4954 unsigned long total = 0; 4955 int node; 4956 int x; 4957 unsigned long *nodes; 4958 int len = 0; 4959 4960 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4961 if (!nodes) 4962 return -ENOMEM; 4963 4964 if (flags & SO_CPU) { 4965 int cpu; 4966 4967 for_each_possible_cpu(cpu) { 4968 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4969 cpu); 4970 int node; 4971 struct page *page; 4972 4973 page = READ_ONCE(c->page); 4974 if (!page) 4975 continue; 4976 4977 node = page_to_nid(page); 4978 if (flags & SO_TOTAL) 4979 x = page->objects; 4980 else if (flags & SO_OBJECTS) 4981 x = page->inuse; 4982 else 4983 x = 1; 4984 4985 total += x; 4986 nodes[node] += x; 4987 4988 page = slub_percpu_partial_read_once(c); 4989 if (page) { 4990 node = page_to_nid(page); 4991 if (flags & SO_TOTAL) 4992 WARN_ON_ONCE(1); 4993 else if (flags & SO_OBJECTS) 4994 WARN_ON_ONCE(1); 4995 else 4996 x = page->pages; 4997 total += x; 4998 nodes[node] += x; 4999 } 5000 } 5001 } 5002 5003 /* 5004 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5005 * already held which will conflict with an existing lock order: 5006 * 5007 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5008 * 5009 * We don't really need mem_hotplug_lock (to hold off 5010 * slab_mem_going_offline_callback) here because slab's memory hot 5011 * unplug code doesn't destroy the kmem_cache->node[] data. 5012 */ 5013 5014 #ifdef CONFIG_SLUB_DEBUG 5015 if (flags & SO_ALL) { 5016 struct kmem_cache_node *n; 5017 5018 for_each_kmem_cache_node(s, node, n) { 5019 5020 if (flags & SO_TOTAL) 5021 x = atomic_long_read(&n->total_objects); 5022 else if (flags & SO_OBJECTS) 5023 x = atomic_long_read(&n->total_objects) - 5024 count_partial(n, count_free); 5025 else 5026 x = atomic_long_read(&n->nr_slabs); 5027 total += x; 5028 nodes[node] += x; 5029 } 5030 5031 } else 5032 #endif 5033 if (flags & SO_PARTIAL) { 5034 struct kmem_cache_node *n; 5035 5036 for_each_kmem_cache_node(s, node, n) { 5037 if (flags & SO_TOTAL) 5038 x = count_partial(n, count_total); 5039 else if (flags & SO_OBJECTS) 5040 x = count_partial(n, count_inuse); 5041 else 5042 x = n->nr_partial; 5043 total += x; 5044 nodes[node] += x; 5045 } 5046 } 5047 5048 len += sysfs_emit_at(buf, len, "%lu", total); 5049 #ifdef CONFIG_NUMA 5050 for (node = 0; node < nr_node_ids; node++) { 5051 if (nodes[node]) 5052 len += sysfs_emit_at(buf, len, " N%d=%lu", 5053 node, nodes[node]); 5054 } 5055 #endif 5056 len += sysfs_emit_at(buf, len, "\n"); 5057 kfree(nodes); 5058 5059 return len; 5060 } 5061 5062 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5063 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5064 5065 struct slab_attribute { 5066 struct attribute attr; 5067 ssize_t (*show)(struct kmem_cache *s, char *buf); 5068 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5069 }; 5070 5071 #define SLAB_ATTR_RO(_name) \ 5072 static struct slab_attribute _name##_attr = \ 5073 __ATTR(_name, 0400, _name##_show, NULL) 5074 5075 #define SLAB_ATTR(_name) \ 5076 static struct slab_attribute _name##_attr = \ 5077 __ATTR(_name, 0600, _name##_show, _name##_store) 5078 5079 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5080 { 5081 return sysfs_emit(buf, "%u\n", s->size); 5082 } 5083 SLAB_ATTR_RO(slab_size); 5084 5085 static ssize_t align_show(struct kmem_cache *s, char *buf) 5086 { 5087 return sysfs_emit(buf, "%u\n", s->align); 5088 } 5089 SLAB_ATTR_RO(align); 5090 5091 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5092 { 5093 return sysfs_emit(buf, "%u\n", s->object_size); 5094 } 5095 SLAB_ATTR_RO(object_size); 5096 5097 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5098 { 5099 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5100 } 5101 SLAB_ATTR_RO(objs_per_slab); 5102 5103 static ssize_t order_show(struct kmem_cache *s, char *buf) 5104 { 5105 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5106 } 5107 SLAB_ATTR_RO(order); 5108 5109 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5110 { 5111 return sysfs_emit(buf, "%lu\n", s->min_partial); 5112 } 5113 5114 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5115 size_t length) 5116 { 5117 unsigned long min; 5118 int err; 5119 5120 err = kstrtoul(buf, 10, &min); 5121 if (err) 5122 return err; 5123 5124 set_min_partial(s, min); 5125 return length; 5126 } 5127 SLAB_ATTR(min_partial); 5128 5129 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5130 { 5131 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s)); 5132 } 5133 5134 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5135 size_t length) 5136 { 5137 unsigned int objects; 5138 int err; 5139 5140 err = kstrtouint(buf, 10, &objects); 5141 if (err) 5142 return err; 5143 if (objects && !kmem_cache_has_cpu_partial(s)) 5144 return -EINVAL; 5145 5146 slub_set_cpu_partial(s, objects); 5147 flush_all(s); 5148 return length; 5149 } 5150 SLAB_ATTR(cpu_partial); 5151 5152 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5153 { 5154 if (!s->ctor) 5155 return 0; 5156 return sysfs_emit(buf, "%pS\n", s->ctor); 5157 } 5158 SLAB_ATTR_RO(ctor); 5159 5160 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5161 { 5162 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5163 } 5164 SLAB_ATTR_RO(aliases); 5165 5166 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5167 { 5168 return show_slab_objects(s, buf, SO_PARTIAL); 5169 } 5170 SLAB_ATTR_RO(partial); 5171 5172 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5173 { 5174 return show_slab_objects(s, buf, SO_CPU); 5175 } 5176 SLAB_ATTR_RO(cpu_slabs); 5177 5178 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5179 { 5180 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5181 } 5182 SLAB_ATTR_RO(objects); 5183 5184 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5185 { 5186 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5187 } 5188 SLAB_ATTR_RO(objects_partial); 5189 5190 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5191 { 5192 int objects = 0; 5193 int pages = 0; 5194 int cpu; 5195 int len = 0; 5196 5197 for_each_online_cpu(cpu) { 5198 struct page *page; 5199 5200 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5201 5202 if (page) { 5203 pages += page->pages; 5204 objects += page->pobjects; 5205 } 5206 } 5207 5208 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages); 5209 5210 #ifdef CONFIG_SMP 5211 for_each_online_cpu(cpu) { 5212 struct page *page; 5213 5214 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5215 if (page) 5216 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5217 cpu, page->pobjects, page->pages); 5218 } 5219 #endif 5220 len += sysfs_emit_at(buf, len, "\n"); 5221 5222 return len; 5223 } 5224 SLAB_ATTR_RO(slabs_cpu_partial); 5225 5226 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5227 { 5228 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5229 } 5230 SLAB_ATTR_RO(reclaim_account); 5231 5232 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5233 { 5234 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5235 } 5236 SLAB_ATTR_RO(hwcache_align); 5237 5238 #ifdef CONFIG_ZONE_DMA 5239 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5240 { 5241 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5242 } 5243 SLAB_ATTR_RO(cache_dma); 5244 #endif 5245 5246 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5247 { 5248 return sysfs_emit(buf, "%u\n", s->usersize); 5249 } 5250 SLAB_ATTR_RO(usersize); 5251 5252 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5253 { 5254 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5255 } 5256 SLAB_ATTR_RO(destroy_by_rcu); 5257 5258 #ifdef CONFIG_SLUB_DEBUG 5259 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5260 { 5261 return show_slab_objects(s, buf, SO_ALL); 5262 } 5263 SLAB_ATTR_RO(slabs); 5264 5265 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5266 { 5267 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5268 } 5269 SLAB_ATTR_RO(total_objects); 5270 5271 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5272 { 5273 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5274 } 5275 SLAB_ATTR_RO(sanity_checks); 5276 5277 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5278 { 5279 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5280 } 5281 SLAB_ATTR_RO(trace); 5282 5283 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5284 { 5285 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5286 } 5287 5288 SLAB_ATTR_RO(red_zone); 5289 5290 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5291 { 5292 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5293 } 5294 5295 SLAB_ATTR_RO(poison); 5296 5297 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5298 { 5299 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5300 } 5301 5302 SLAB_ATTR_RO(store_user); 5303 5304 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5305 { 5306 return 0; 5307 } 5308 5309 static ssize_t validate_store(struct kmem_cache *s, 5310 const char *buf, size_t length) 5311 { 5312 int ret = -EINVAL; 5313 5314 if (buf[0] == '1') { 5315 ret = validate_slab_cache(s); 5316 if (ret >= 0) 5317 ret = length; 5318 } 5319 return ret; 5320 } 5321 SLAB_ATTR(validate); 5322 5323 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5324 { 5325 if (!(s->flags & SLAB_STORE_USER)) 5326 return -ENOSYS; 5327 return list_locations(s, buf, TRACK_ALLOC); 5328 } 5329 SLAB_ATTR_RO(alloc_calls); 5330 5331 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5332 { 5333 if (!(s->flags & SLAB_STORE_USER)) 5334 return -ENOSYS; 5335 return list_locations(s, buf, TRACK_FREE); 5336 } 5337 SLAB_ATTR_RO(free_calls); 5338 #endif /* CONFIG_SLUB_DEBUG */ 5339 5340 #ifdef CONFIG_FAILSLAB 5341 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5342 { 5343 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5344 } 5345 SLAB_ATTR_RO(failslab); 5346 #endif 5347 5348 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5349 { 5350 return 0; 5351 } 5352 5353 static ssize_t shrink_store(struct kmem_cache *s, 5354 const char *buf, size_t length) 5355 { 5356 if (buf[0] == '1') 5357 kmem_cache_shrink(s); 5358 else 5359 return -EINVAL; 5360 return length; 5361 } 5362 SLAB_ATTR(shrink); 5363 5364 #ifdef CONFIG_NUMA 5365 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5366 { 5367 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5368 } 5369 5370 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5371 const char *buf, size_t length) 5372 { 5373 unsigned int ratio; 5374 int err; 5375 5376 err = kstrtouint(buf, 10, &ratio); 5377 if (err) 5378 return err; 5379 if (ratio > 100) 5380 return -ERANGE; 5381 5382 s->remote_node_defrag_ratio = ratio * 10; 5383 5384 return length; 5385 } 5386 SLAB_ATTR(remote_node_defrag_ratio); 5387 #endif 5388 5389 #ifdef CONFIG_SLUB_STATS 5390 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5391 { 5392 unsigned long sum = 0; 5393 int cpu; 5394 int len = 0; 5395 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5396 5397 if (!data) 5398 return -ENOMEM; 5399 5400 for_each_online_cpu(cpu) { 5401 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5402 5403 data[cpu] = x; 5404 sum += x; 5405 } 5406 5407 len += sysfs_emit_at(buf, len, "%lu", sum); 5408 5409 #ifdef CONFIG_SMP 5410 for_each_online_cpu(cpu) { 5411 if (data[cpu]) 5412 len += sysfs_emit_at(buf, len, " C%d=%u", 5413 cpu, data[cpu]); 5414 } 5415 #endif 5416 kfree(data); 5417 len += sysfs_emit_at(buf, len, "\n"); 5418 5419 return len; 5420 } 5421 5422 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5423 { 5424 int cpu; 5425 5426 for_each_online_cpu(cpu) 5427 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5428 } 5429 5430 #define STAT_ATTR(si, text) \ 5431 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5432 { \ 5433 return show_stat(s, buf, si); \ 5434 } \ 5435 static ssize_t text##_store(struct kmem_cache *s, \ 5436 const char *buf, size_t length) \ 5437 { \ 5438 if (buf[0] != '0') \ 5439 return -EINVAL; \ 5440 clear_stat(s, si); \ 5441 return length; \ 5442 } \ 5443 SLAB_ATTR(text); \ 5444 5445 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5446 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5447 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5448 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5449 STAT_ATTR(FREE_FROZEN, free_frozen); 5450 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5451 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5452 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5453 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5454 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5455 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5456 STAT_ATTR(FREE_SLAB, free_slab); 5457 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5458 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5459 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5460 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5461 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5462 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5463 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5464 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5465 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5466 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5467 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5468 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5469 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5470 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5471 #endif /* CONFIG_SLUB_STATS */ 5472 5473 static struct attribute *slab_attrs[] = { 5474 &slab_size_attr.attr, 5475 &object_size_attr.attr, 5476 &objs_per_slab_attr.attr, 5477 &order_attr.attr, 5478 &min_partial_attr.attr, 5479 &cpu_partial_attr.attr, 5480 &objects_attr.attr, 5481 &objects_partial_attr.attr, 5482 &partial_attr.attr, 5483 &cpu_slabs_attr.attr, 5484 &ctor_attr.attr, 5485 &aliases_attr.attr, 5486 &align_attr.attr, 5487 &hwcache_align_attr.attr, 5488 &reclaim_account_attr.attr, 5489 &destroy_by_rcu_attr.attr, 5490 &shrink_attr.attr, 5491 &slabs_cpu_partial_attr.attr, 5492 #ifdef CONFIG_SLUB_DEBUG 5493 &total_objects_attr.attr, 5494 &slabs_attr.attr, 5495 &sanity_checks_attr.attr, 5496 &trace_attr.attr, 5497 &red_zone_attr.attr, 5498 &poison_attr.attr, 5499 &store_user_attr.attr, 5500 &validate_attr.attr, 5501 &alloc_calls_attr.attr, 5502 &free_calls_attr.attr, 5503 #endif 5504 #ifdef CONFIG_ZONE_DMA 5505 &cache_dma_attr.attr, 5506 #endif 5507 #ifdef CONFIG_NUMA 5508 &remote_node_defrag_ratio_attr.attr, 5509 #endif 5510 #ifdef CONFIG_SLUB_STATS 5511 &alloc_fastpath_attr.attr, 5512 &alloc_slowpath_attr.attr, 5513 &free_fastpath_attr.attr, 5514 &free_slowpath_attr.attr, 5515 &free_frozen_attr.attr, 5516 &free_add_partial_attr.attr, 5517 &free_remove_partial_attr.attr, 5518 &alloc_from_partial_attr.attr, 5519 &alloc_slab_attr.attr, 5520 &alloc_refill_attr.attr, 5521 &alloc_node_mismatch_attr.attr, 5522 &free_slab_attr.attr, 5523 &cpuslab_flush_attr.attr, 5524 &deactivate_full_attr.attr, 5525 &deactivate_empty_attr.attr, 5526 &deactivate_to_head_attr.attr, 5527 &deactivate_to_tail_attr.attr, 5528 &deactivate_remote_frees_attr.attr, 5529 &deactivate_bypass_attr.attr, 5530 &order_fallback_attr.attr, 5531 &cmpxchg_double_fail_attr.attr, 5532 &cmpxchg_double_cpu_fail_attr.attr, 5533 &cpu_partial_alloc_attr.attr, 5534 &cpu_partial_free_attr.attr, 5535 &cpu_partial_node_attr.attr, 5536 &cpu_partial_drain_attr.attr, 5537 #endif 5538 #ifdef CONFIG_FAILSLAB 5539 &failslab_attr.attr, 5540 #endif 5541 &usersize_attr.attr, 5542 5543 NULL 5544 }; 5545 5546 static const struct attribute_group slab_attr_group = { 5547 .attrs = slab_attrs, 5548 }; 5549 5550 static ssize_t slab_attr_show(struct kobject *kobj, 5551 struct attribute *attr, 5552 char *buf) 5553 { 5554 struct slab_attribute *attribute; 5555 struct kmem_cache *s; 5556 int err; 5557 5558 attribute = to_slab_attr(attr); 5559 s = to_slab(kobj); 5560 5561 if (!attribute->show) 5562 return -EIO; 5563 5564 err = attribute->show(s, buf); 5565 5566 return err; 5567 } 5568 5569 static ssize_t slab_attr_store(struct kobject *kobj, 5570 struct attribute *attr, 5571 const char *buf, size_t len) 5572 { 5573 struct slab_attribute *attribute; 5574 struct kmem_cache *s; 5575 int err; 5576 5577 attribute = to_slab_attr(attr); 5578 s = to_slab(kobj); 5579 5580 if (!attribute->store) 5581 return -EIO; 5582 5583 err = attribute->store(s, buf, len); 5584 return err; 5585 } 5586 5587 static void kmem_cache_release(struct kobject *k) 5588 { 5589 slab_kmem_cache_release(to_slab(k)); 5590 } 5591 5592 static const struct sysfs_ops slab_sysfs_ops = { 5593 .show = slab_attr_show, 5594 .store = slab_attr_store, 5595 }; 5596 5597 static struct kobj_type slab_ktype = { 5598 .sysfs_ops = &slab_sysfs_ops, 5599 .release = kmem_cache_release, 5600 }; 5601 5602 static struct kset *slab_kset; 5603 5604 static inline struct kset *cache_kset(struct kmem_cache *s) 5605 { 5606 return slab_kset; 5607 } 5608 5609 #define ID_STR_LENGTH 64 5610 5611 /* Create a unique string id for a slab cache: 5612 * 5613 * Format :[flags-]size 5614 */ 5615 static char *create_unique_id(struct kmem_cache *s) 5616 { 5617 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5618 char *p = name; 5619 5620 BUG_ON(!name); 5621 5622 *p++ = ':'; 5623 /* 5624 * First flags affecting slabcache operations. We will only 5625 * get here for aliasable slabs so we do not need to support 5626 * too many flags. The flags here must cover all flags that 5627 * are matched during merging to guarantee that the id is 5628 * unique. 5629 */ 5630 if (s->flags & SLAB_CACHE_DMA) 5631 *p++ = 'd'; 5632 if (s->flags & SLAB_CACHE_DMA32) 5633 *p++ = 'D'; 5634 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5635 *p++ = 'a'; 5636 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5637 *p++ = 'F'; 5638 if (s->flags & SLAB_ACCOUNT) 5639 *p++ = 'A'; 5640 if (p != name + 1) 5641 *p++ = '-'; 5642 p += sprintf(p, "%07u", s->size); 5643 5644 BUG_ON(p > name + ID_STR_LENGTH - 1); 5645 return name; 5646 } 5647 5648 static int sysfs_slab_add(struct kmem_cache *s) 5649 { 5650 int err; 5651 const char *name; 5652 struct kset *kset = cache_kset(s); 5653 int unmergeable = slab_unmergeable(s); 5654 5655 if (!kset) { 5656 kobject_init(&s->kobj, &slab_ktype); 5657 return 0; 5658 } 5659 5660 if (!unmergeable && disable_higher_order_debug && 5661 (slub_debug & DEBUG_METADATA_FLAGS)) 5662 unmergeable = 1; 5663 5664 if (unmergeable) { 5665 /* 5666 * Slabcache can never be merged so we can use the name proper. 5667 * This is typically the case for debug situations. In that 5668 * case we can catch duplicate names easily. 5669 */ 5670 sysfs_remove_link(&slab_kset->kobj, s->name); 5671 name = s->name; 5672 } else { 5673 /* 5674 * Create a unique name for the slab as a target 5675 * for the symlinks. 5676 */ 5677 name = create_unique_id(s); 5678 } 5679 5680 s->kobj.kset = kset; 5681 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5682 if (err) 5683 goto out; 5684 5685 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5686 if (err) 5687 goto out_del_kobj; 5688 5689 if (!unmergeable) { 5690 /* Setup first alias */ 5691 sysfs_slab_alias(s, s->name); 5692 } 5693 out: 5694 if (!unmergeable) 5695 kfree(name); 5696 return err; 5697 out_del_kobj: 5698 kobject_del(&s->kobj); 5699 goto out; 5700 } 5701 5702 void sysfs_slab_unlink(struct kmem_cache *s) 5703 { 5704 if (slab_state >= FULL) 5705 kobject_del(&s->kobj); 5706 } 5707 5708 void sysfs_slab_release(struct kmem_cache *s) 5709 { 5710 if (slab_state >= FULL) 5711 kobject_put(&s->kobj); 5712 } 5713 5714 /* 5715 * Need to buffer aliases during bootup until sysfs becomes 5716 * available lest we lose that information. 5717 */ 5718 struct saved_alias { 5719 struct kmem_cache *s; 5720 const char *name; 5721 struct saved_alias *next; 5722 }; 5723 5724 static struct saved_alias *alias_list; 5725 5726 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5727 { 5728 struct saved_alias *al; 5729 5730 if (slab_state == FULL) { 5731 /* 5732 * If we have a leftover link then remove it. 5733 */ 5734 sysfs_remove_link(&slab_kset->kobj, name); 5735 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5736 } 5737 5738 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5739 if (!al) 5740 return -ENOMEM; 5741 5742 al->s = s; 5743 al->name = name; 5744 al->next = alias_list; 5745 alias_list = al; 5746 return 0; 5747 } 5748 5749 static int __init slab_sysfs_init(void) 5750 { 5751 struct kmem_cache *s; 5752 int err; 5753 5754 mutex_lock(&slab_mutex); 5755 5756 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 5757 if (!slab_kset) { 5758 mutex_unlock(&slab_mutex); 5759 pr_err("Cannot register slab subsystem.\n"); 5760 return -ENOSYS; 5761 } 5762 5763 slab_state = FULL; 5764 5765 list_for_each_entry(s, &slab_caches, list) { 5766 err = sysfs_slab_add(s); 5767 if (err) 5768 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5769 s->name); 5770 } 5771 5772 while (alias_list) { 5773 struct saved_alias *al = alias_list; 5774 5775 alias_list = alias_list->next; 5776 err = sysfs_slab_alias(al->s, al->name); 5777 if (err) 5778 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5779 al->name); 5780 kfree(al); 5781 } 5782 5783 mutex_unlock(&slab_mutex); 5784 resiliency_test(); 5785 return 0; 5786 } 5787 5788 __initcall(slab_sysfs_init); 5789 #endif /* CONFIG_SYSFS */ 5790 5791 /* 5792 * The /proc/slabinfo ABI 5793 */ 5794 #ifdef CONFIG_SLUB_DEBUG 5795 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5796 { 5797 unsigned long nr_slabs = 0; 5798 unsigned long nr_objs = 0; 5799 unsigned long nr_free = 0; 5800 int node; 5801 struct kmem_cache_node *n; 5802 5803 for_each_kmem_cache_node(s, node, n) { 5804 nr_slabs += node_nr_slabs(n); 5805 nr_objs += node_nr_objs(n); 5806 nr_free += count_partial(n, count_free); 5807 } 5808 5809 sinfo->active_objs = nr_objs - nr_free; 5810 sinfo->num_objs = nr_objs; 5811 sinfo->active_slabs = nr_slabs; 5812 sinfo->num_slabs = nr_slabs; 5813 sinfo->objects_per_slab = oo_objects(s->oo); 5814 sinfo->cache_order = oo_order(s->oo); 5815 } 5816 5817 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5818 { 5819 } 5820 5821 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5822 size_t count, loff_t *ppos) 5823 { 5824 return -EIO; 5825 } 5826 #endif /* CONFIG_SLUB_DEBUG */ 5827