xref: /openbmc/linux/mm/slub.c (revision d9fd5a71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * page->frozen		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 #ifdef CONFIG_SLUB_DEBUG
118 #ifdef CONFIG_SLUB_DEBUG_ON
119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120 #else
121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122 #endif
123 #endif
124 
125 static inline bool kmem_cache_debug(struct kmem_cache *s)
126 {
127 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
128 }
129 
130 void *fixup_red_left(struct kmem_cache *s, void *p)
131 {
132 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
133 		p += s->red_left_pad;
134 
135 	return p;
136 }
137 
138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139 {
140 #ifdef CONFIG_SLUB_CPU_PARTIAL
141 	return !kmem_cache_debug(s);
142 #else
143 	return false;
144 #endif
145 }
146 
147 /*
148  * Issues still to be resolved:
149  *
150  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151  *
152  * - Variable sizing of the per node arrays
153  */
154 
155 /* Enable to test recovery from slab corruption on boot */
156 #undef SLUB_RESILIENCY_TEST
157 
158 /* Enable to log cmpxchg failures */
159 #undef SLUB_DEBUG_CMPXCHG
160 
161 /*
162  * Mininum number of partial slabs. These will be left on the partial
163  * lists even if they are empty. kmem_cache_shrink may reclaim them.
164  */
165 #define MIN_PARTIAL 5
166 
167 /*
168  * Maximum number of desirable partial slabs.
169  * The existence of more partial slabs makes kmem_cache_shrink
170  * sort the partial list by the number of objects in use.
171  */
172 #define MAX_PARTIAL 10
173 
174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
175 				SLAB_POISON | SLAB_STORE_USER)
176 
177 /*
178  * These debug flags cannot use CMPXCHG because there might be consistency
179  * issues when checking or reading debug information
180  */
181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 				SLAB_TRACE)
183 
184 
185 /*
186  * Debugging flags that require metadata to be stored in the slab.  These get
187  * disabled when slub_debug=O is used and a cache's min order increases with
188  * metadata.
189  */
190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191 
192 #define OO_SHIFT	16
193 #define OO_MASK		((1 << OO_SHIFT) - 1)
194 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
195 
196 /* Internal SLUB flags */
197 /* Poison object */
198 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
199 /* Use cmpxchg_double */
200 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
201 
202 /*
203  * Tracking user of a slab.
204  */
205 #define TRACK_ADDRS_COUNT 16
206 struct track {
207 	unsigned long addr;	/* Called from address */
208 #ifdef CONFIG_STACKTRACE
209 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
210 #endif
211 	int cpu;		/* Was running on cpu */
212 	int pid;		/* Pid context */
213 	unsigned long when;	/* When did the operation occur */
214 };
215 
216 enum track_item { TRACK_ALLOC, TRACK_FREE };
217 
218 #ifdef CONFIG_SYSFS
219 static int sysfs_slab_add(struct kmem_cache *);
220 static int sysfs_slab_alias(struct kmem_cache *, const char *);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 #endif
226 
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 	/*
231 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 	 * avoid this_cpu_add()'s irq-disable overhead.
233 	 */
234 	raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237 
238 /********************************************************************
239  * 			Core slab cache functions
240  *******************************************************************/
241 
242 /*
243  * Returns freelist pointer (ptr). With hardening, this is obfuscated
244  * with an XOR of the address where the pointer is held and a per-cache
245  * random number.
246  */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 				 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 	/*
252 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
253 	 * Normally, this doesn't cause any issues, as both set_freepointer()
254 	 * and get_freepointer() are called with a pointer with the same tag.
255 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 	 * example, when __free_slub() iterates over objects in a cache, it
257 	 * passes untagged pointers to check_object(). check_object() in turns
258 	 * calls get_freepointer() with an untagged pointer, which causes the
259 	 * freepointer to be restored incorrectly.
260 	 */
261 	return (void *)((unsigned long)ptr ^ s->random ^
262 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 #else
264 	return ptr;
265 #endif
266 }
267 
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 					 void *ptr_addr)
271 {
272 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 			    (unsigned long)ptr_addr);
274 }
275 
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 	object = kasan_reset_tag(object);
279 	return freelist_dereference(s, object + s->offset);
280 }
281 
282 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283 {
284 	prefetch(object + s->offset);
285 }
286 
287 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288 {
289 	unsigned long freepointer_addr;
290 	void *p;
291 
292 	if (!debug_pagealloc_enabled_static())
293 		return get_freepointer(s, object);
294 
295 	freepointer_addr = (unsigned long)object + s->offset;
296 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
297 	return freelist_ptr(s, p, freepointer_addr);
298 }
299 
300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
303 
304 #ifdef CONFIG_SLAB_FREELIST_HARDENED
305 	BUG_ON(object == fp); /* naive detection of double free or corruption */
306 #endif
307 
308 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
309 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 }
311 
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 	for (__p = fixup_red_left(__s, __addr); \
315 		__p < (__addr) + (__objects) * (__s)->size; \
316 		__p += (__s)->size)
317 
318 static inline unsigned int order_objects(unsigned int order, unsigned int size)
319 {
320 	return ((unsigned int)PAGE_SIZE << order) / size;
321 }
322 
323 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
324 		unsigned int size)
325 {
326 	struct kmem_cache_order_objects x = {
327 		(order << OO_SHIFT) + order_objects(order, size)
328 	};
329 
330 	return x;
331 }
332 
333 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
334 {
335 	return x.x >> OO_SHIFT;
336 }
337 
338 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
339 {
340 	return x.x & OO_MASK;
341 }
342 
343 /*
344  * Per slab locking using the pagelock
345  */
346 static __always_inline void slab_lock(struct page *page)
347 {
348 	VM_BUG_ON_PAGE(PageTail(page), page);
349 	bit_spin_lock(PG_locked, &page->flags);
350 }
351 
352 static __always_inline void slab_unlock(struct page *page)
353 {
354 	VM_BUG_ON_PAGE(PageTail(page), page);
355 	__bit_spin_unlock(PG_locked, &page->flags);
356 }
357 
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 		void *freelist_old, unsigned long counters_old,
361 		void *freelist_new, unsigned long counters_new,
362 		const char *n)
363 {
364 	VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 	if (s->flags & __CMPXCHG_DOUBLE) {
368 		if (cmpxchg_double(&page->freelist, &page->counters,
369 				   freelist_old, counters_old,
370 				   freelist_new, counters_new))
371 			return true;
372 	} else
373 #endif
374 	{
375 		slab_lock(page);
376 		if (page->freelist == freelist_old &&
377 					page->counters == counters_old) {
378 			page->freelist = freelist_new;
379 			page->counters = counters_new;
380 			slab_unlock(page);
381 			return true;
382 		}
383 		slab_unlock(page);
384 	}
385 
386 	cpu_relax();
387 	stat(s, CMPXCHG_DOUBLE_FAIL);
388 
389 #ifdef SLUB_DEBUG_CMPXCHG
390 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
391 #endif
392 
393 	return false;
394 }
395 
396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 		void *freelist_old, unsigned long counters_old,
398 		void *freelist_new, unsigned long counters_new,
399 		const char *n)
400 {
401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403 	if (s->flags & __CMPXCHG_DOUBLE) {
404 		if (cmpxchg_double(&page->freelist, &page->counters,
405 				   freelist_old, counters_old,
406 				   freelist_new, counters_new))
407 			return true;
408 	} else
409 #endif
410 	{
411 		unsigned long flags;
412 
413 		local_irq_save(flags);
414 		slab_lock(page);
415 		if (page->freelist == freelist_old &&
416 					page->counters == counters_old) {
417 			page->freelist = freelist_new;
418 			page->counters = counters_new;
419 			slab_unlock(page);
420 			local_irq_restore(flags);
421 			return true;
422 		}
423 		slab_unlock(page);
424 		local_irq_restore(flags);
425 	}
426 
427 	cpu_relax();
428 	stat(s, CMPXCHG_DOUBLE_FAIL);
429 
430 #ifdef SLUB_DEBUG_CMPXCHG
431 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433 
434 	return false;
435 }
436 
437 #ifdef CONFIG_SLUB_DEBUG
438 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
439 static DEFINE_SPINLOCK(object_map_lock);
440 
441 /*
442  * Determine a map of object in use on a page.
443  *
444  * Node listlock must be held to guarantee that the page does
445  * not vanish from under us.
446  */
447 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
448 	__acquires(&object_map_lock)
449 {
450 	void *p;
451 	void *addr = page_address(page);
452 
453 	VM_BUG_ON(!irqs_disabled());
454 
455 	spin_lock(&object_map_lock);
456 
457 	bitmap_zero(object_map, page->objects);
458 
459 	for (p = page->freelist; p; p = get_freepointer(s, p))
460 		set_bit(__obj_to_index(s, addr, p), object_map);
461 
462 	return object_map;
463 }
464 
465 static void put_map(unsigned long *map) __releases(&object_map_lock)
466 {
467 	VM_BUG_ON(map != object_map);
468 	spin_unlock(&object_map_lock);
469 }
470 
471 static inline unsigned int size_from_object(struct kmem_cache *s)
472 {
473 	if (s->flags & SLAB_RED_ZONE)
474 		return s->size - s->red_left_pad;
475 
476 	return s->size;
477 }
478 
479 static inline void *restore_red_left(struct kmem_cache *s, void *p)
480 {
481 	if (s->flags & SLAB_RED_ZONE)
482 		p -= s->red_left_pad;
483 
484 	return p;
485 }
486 
487 /*
488  * Debug settings:
489  */
490 #if defined(CONFIG_SLUB_DEBUG_ON)
491 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
492 #else
493 static slab_flags_t slub_debug;
494 #endif
495 
496 static char *slub_debug_string;
497 static int disable_higher_order_debug;
498 
499 /*
500  * slub is about to manipulate internal object metadata.  This memory lies
501  * outside the range of the allocated object, so accessing it would normally
502  * be reported by kasan as a bounds error.  metadata_access_enable() is used
503  * to tell kasan that these accesses are OK.
504  */
505 static inline void metadata_access_enable(void)
506 {
507 	kasan_disable_current();
508 }
509 
510 static inline void metadata_access_disable(void)
511 {
512 	kasan_enable_current();
513 }
514 
515 /*
516  * Object debugging
517  */
518 
519 /* Verify that a pointer has an address that is valid within a slab page */
520 static inline int check_valid_pointer(struct kmem_cache *s,
521 				struct page *page, void *object)
522 {
523 	void *base;
524 
525 	if (!object)
526 		return 1;
527 
528 	base = page_address(page);
529 	object = kasan_reset_tag(object);
530 	object = restore_red_left(s, object);
531 	if (object < base || object >= base + page->objects * s->size ||
532 		(object - base) % s->size) {
533 		return 0;
534 	}
535 
536 	return 1;
537 }
538 
539 static void print_section(char *level, char *text, u8 *addr,
540 			  unsigned int length)
541 {
542 	metadata_access_enable();
543 	print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
544 			16, 1, addr, length, 1);
545 	metadata_access_disable();
546 }
547 
548 /*
549  * See comment in calculate_sizes().
550  */
551 static inline bool freeptr_outside_object(struct kmem_cache *s)
552 {
553 	return s->offset >= s->inuse;
554 }
555 
556 /*
557  * Return offset of the end of info block which is inuse + free pointer if
558  * not overlapping with object.
559  */
560 static inline unsigned int get_info_end(struct kmem_cache *s)
561 {
562 	if (freeptr_outside_object(s))
563 		return s->inuse + sizeof(void *);
564 	else
565 		return s->inuse;
566 }
567 
568 static struct track *get_track(struct kmem_cache *s, void *object,
569 	enum track_item alloc)
570 {
571 	struct track *p;
572 
573 	p = object + get_info_end(s);
574 
575 	return kasan_reset_tag(p + alloc);
576 }
577 
578 static void set_track(struct kmem_cache *s, void *object,
579 			enum track_item alloc, unsigned long addr)
580 {
581 	struct track *p = get_track(s, object, alloc);
582 
583 	if (addr) {
584 #ifdef CONFIG_STACKTRACE
585 		unsigned int nr_entries;
586 
587 		metadata_access_enable();
588 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
589 					      TRACK_ADDRS_COUNT, 3);
590 		metadata_access_disable();
591 
592 		if (nr_entries < TRACK_ADDRS_COUNT)
593 			p->addrs[nr_entries] = 0;
594 #endif
595 		p->addr = addr;
596 		p->cpu = smp_processor_id();
597 		p->pid = current->pid;
598 		p->when = jiffies;
599 	} else {
600 		memset(p, 0, sizeof(struct track));
601 	}
602 }
603 
604 static void init_tracking(struct kmem_cache *s, void *object)
605 {
606 	if (!(s->flags & SLAB_STORE_USER))
607 		return;
608 
609 	set_track(s, object, TRACK_FREE, 0UL);
610 	set_track(s, object, TRACK_ALLOC, 0UL);
611 }
612 
613 static void print_track(const char *s, struct track *t, unsigned long pr_time)
614 {
615 	if (!t->addr)
616 		return;
617 
618 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
619 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
620 #ifdef CONFIG_STACKTRACE
621 	{
622 		int i;
623 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
624 			if (t->addrs[i])
625 				pr_err("\t%pS\n", (void *)t->addrs[i]);
626 			else
627 				break;
628 	}
629 #endif
630 }
631 
632 void print_tracking(struct kmem_cache *s, void *object)
633 {
634 	unsigned long pr_time = jiffies;
635 	if (!(s->flags & SLAB_STORE_USER))
636 		return;
637 
638 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
639 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
640 }
641 
642 static void print_page_info(struct page *page)
643 {
644 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
645 	       page, page->objects, page->inuse, page->freelist, page->flags);
646 
647 }
648 
649 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
650 {
651 	struct va_format vaf;
652 	va_list args;
653 
654 	va_start(args, fmt);
655 	vaf.fmt = fmt;
656 	vaf.va = &args;
657 	pr_err("=============================================================================\n");
658 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
659 	pr_err("-----------------------------------------------------------------------------\n\n");
660 
661 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
662 	va_end(args);
663 }
664 
665 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
666 {
667 	struct va_format vaf;
668 	va_list args;
669 
670 	va_start(args, fmt);
671 	vaf.fmt = fmt;
672 	vaf.va = &args;
673 	pr_err("FIX %s: %pV\n", s->name, &vaf);
674 	va_end(args);
675 }
676 
677 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
678 			       void **freelist, void *nextfree)
679 {
680 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
681 	    !check_valid_pointer(s, page, nextfree) && freelist) {
682 		object_err(s, page, *freelist, "Freechain corrupt");
683 		*freelist = NULL;
684 		slab_fix(s, "Isolate corrupted freechain");
685 		return true;
686 	}
687 
688 	return false;
689 }
690 
691 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
692 {
693 	unsigned int off;	/* Offset of last byte */
694 	u8 *addr = page_address(page);
695 
696 	print_tracking(s, p);
697 
698 	print_page_info(page);
699 
700 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
701 	       p, p - addr, get_freepointer(s, p));
702 
703 	if (s->flags & SLAB_RED_ZONE)
704 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
705 			      s->red_left_pad);
706 	else if (p > addr + 16)
707 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
708 
709 	print_section(KERN_ERR, "Object ", p,
710 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
711 	if (s->flags & SLAB_RED_ZONE)
712 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
713 			s->inuse - s->object_size);
714 
715 	off = get_info_end(s);
716 
717 	if (s->flags & SLAB_STORE_USER)
718 		off += 2 * sizeof(struct track);
719 
720 	off += kasan_metadata_size(s);
721 
722 	if (off != size_from_object(s))
723 		/* Beginning of the filler is the free pointer */
724 		print_section(KERN_ERR, "Padding ", p + off,
725 			      size_from_object(s) - off);
726 
727 	dump_stack();
728 }
729 
730 void object_err(struct kmem_cache *s, struct page *page,
731 			u8 *object, char *reason)
732 {
733 	slab_bug(s, "%s", reason);
734 	print_trailer(s, page, object);
735 }
736 
737 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
738 			const char *fmt, ...)
739 {
740 	va_list args;
741 	char buf[100];
742 
743 	va_start(args, fmt);
744 	vsnprintf(buf, sizeof(buf), fmt, args);
745 	va_end(args);
746 	slab_bug(s, "%s", buf);
747 	print_page_info(page);
748 	dump_stack();
749 }
750 
751 static void init_object(struct kmem_cache *s, void *object, u8 val)
752 {
753 	u8 *p = kasan_reset_tag(object);
754 
755 	if (s->flags & SLAB_RED_ZONE)
756 		memset(p - s->red_left_pad, val, s->red_left_pad);
757 
758 	if (s->flags & __OBJECT_POISON) {
759 		memset(p, POISON_FREE, s->object_size - 1);
760 		p[s->object_size - 1] = POISON_END;
761 	}
762 
763 	if (s->flags & SLAB_RED_ZONE)
764 		memset(p + s->object_size, val, s->inuse - s->object_size);
765 }
766 
767 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
768 						void *from, void *to)
769 {
770 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
771 	memset(from, data, to - from);
772 }
773 
774 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
775 			u8 *object, char *what,
776 			u8 *start, unsigned int value, unsigned int bytes)
777 {
778 	u8 *fault;
779 	u8 *end;
780 	u8 *addr = page_address(page);
781 
782 	metadata_access_enable();
783 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
784 	metadata_access_disable();
785 	if (!fault)
786 		return 1;
787 
788 	end = start + bytes;
789 	while (end > fault && end[-1] == value)
790 		end--;
791 
792 	slab_bug(s, "%s overwritten", what);
793 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
794 					fault, end - 1, fault - addr,
795 					fault[0], value);
796 	print_trailer(s, page, object);
797 
798 	restore_bytes(s, what, value, fault, end);
799 	return 0;
800 }
801 
802 /*
803  * Object layout:
804  *
805  * object address
806  * 	Bytes of the object to be managed.
807  * 	If the freepointer may overlay the object then the free
808  *	pointer is at the middle of the object.
809  *
810  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
811  * 	0xa5 (POISON_END)
812  *
813  * object + s->object_size
814  * 	Padding to reach word boundary. This is also used for Redzoning.
815  * 	Padding is extended by another word if Redzoning is enabled and
816  * 	object_size == inuse.
817  *
818  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
819  * 	0xcc (RED_ACTIVE) for objects in use.
820  *
821  * object + s->inuse
822  * 	Meta data starts here.
823  *
824  * 	A. Free pointer (if we cannot overwrite object on free)
825  * 	B. Tracking data for SLAB_STORE_USER
826  * 	C. Padding to reach required alignment boundary or at mininum
827  * 		one word if debugging is on to be able to detect writes
828  * 		before the word boundary.
829  *
830  *	Padding is done using 0x5a (POISON_INUSE)
831  *
832  * object + s->size
833  * 	Nothing is used beyond s->size.
834  *
835  * If slabcaches are merged then the object_size and inuse boundaries are mostly
836  * ignored. And therefore no slab options that rely on these boundaries
837  * may be used with merged slabcaches.
838  */
839 
840 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
841 {
842 	unsigned long off = get_info_end(s);	/* The end of info */
843 
844 	if (s->flags & SLAB_STORE_USER)
845 		/* We also have user information there */
846 		off += 2 * sizeof(struct track);
847 
848 	off += kasan_metadata_size(s);
849 
850 	if (size_from_object(s) == off)
851 		return 1;
852 
853 	return check_bytes_and_report(s, page, p, "Object padding",
854 			p + off, POISON_INUSE, size_from_object(s) - off);
855 }
856 
857 /* Check the pad bytes at the end of a slab page */
858 static int slab_pad_check(struct kmem_cache *s, struct page *page)
859 {
860 	u8 *start;
861 	u8 *fault;
862 	u8 *end;
863 	u8 *pad;
864 	int length;
865 	int remainder;
866 
867 	if (!(s->flags & SLAB_POISON))
868 		return 1;
869 
870 	start = page_address(page);
871 	length = page_size(page);
872 	end = start + length;
873 	remainder = length % s->size;
874 	if (!remainder)
875 		return 1;
876 
877 	pad = end - remainder;
878 	metadata_access_enable();
879 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
880 	metadata_access_disable();
881 	if (!fault)
882 		return 1;
883 	while (end > fault && end[-1] == POISON_INUSE)
884 		end--;
885 
886 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
887 			fault, end - 1, fault - start);
888 	print_section(KERN_ERR, "Padding ", pad, remainder);
889 
890 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
891 	return 0;
892 }
893 
894 static int check_object(struct kmem_cache *s, struct page *page,
895 					void *object, u8 val)
896 {
897 	u8 *p = object;
898 	u8 *endobject = object + s->object_size;
899 
900 	if (s->flags & SLAB_RED_ZONE) {
901 		if (!check_bytes_and_report(s, page, object, "Redzone",
902 			object - s->red_left_pad, val, s->red_left_pad))
903 			return 0;
904 
905 		if (!check_bytes_and_report(s, page, object, "Redzone",
906 			endobject, val, s->inuse - s->object_size))
907 			return 0;
908 	} else {
909 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
910 			check_bytes_and_report(s, page, p, "Alignment padding",
911 				endobject, POISON_INUSE,
912 				s->inuse - s->object_size);
913 		}
914 	}
915 
916 	if (s->flags & SLAB_POISON) {
917 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
918 			(!check_bytes_and_report(s, page, p, "Poison", p,
919 					POISON_FREE, s->object_size - 1) ||
920 			 !check_bytes_and_report(s, page, p, "Poison",
921 				p + s->object_size - 1, POISON_END, 1)))
922 			return 0;
923 		/*
924 		 * check_pad_bytes cleans up on its own.
925 		 */
926 		check_pad_bytes(s, page, p);
927 	}
928 
929 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
930 		/*
931 		 * Object and freepointer overlap. Cannot check
932 		 * freepointer while object is allocated.
933 		 */
934 		return 1;
935 
936 	/* Check free pointer validity */
937 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
938 		object_err(s, page, p, "Freepointer corrupt");
939 		/*
940 		 * No choice but to zap it and thus lose the remainder
941 		 * of the free objects in this slab. May cause
942 		 * another error because the object count is now wrong.
943 		 */
944 		set_freepointer(s, p, NULL);
945 		return 0;
946 	}
947 	return 1;
948 }
949 
950 static int check_slab(struct kmem_cache *s, struct page *page)
951 {
952 	int maxobj;
953 
954 	VM_BUG_ON(!irqs_disabled());
955 
956 	if (!PageSlab(page)) {
957 		slab_err(s, page, "Not a valid slab page");
958 		return 0;
959 	}
960 
961 	maxobj = order_objects(compound_order(page), s->size);
962 	if (page->objects > maxobj) {
963 		slab_err(s, page, "objects %u > max %u",
964 			page->objects, maxobj);
965 		return 0;
966 	}
967 	if (page->inuse > page->objects) {
968 		slab_err(s, page, "inuse %u > max %u",
969 			page->inuse, page->objects);
970 		return 0;
971 	}
972 	/* Slab_pad_check fixes things up after itself */
973 	slab_pad_check(s, page);
974 	return 1;
975 }
976 
977 /*
978  * Determine if a certain object on a page is on the freelist. Must hold the
979  * slab lock to guarantee that the chains are in a consistent state.
980  */
981 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
982 {
983 	int nr = 0;
984 	void *fp;
985 	void *object = NULL;
986 	int max_objects;
987 
988 	fp = page->freelist;
989 	while (fp && nr <= page->objects) {
990 		if (fp == search)
991 			return 1;
992 		if (!check_valid_pointer(s, page, fp)) {
993 			if (object) {
994 				object_err(s, page, object,
995 					"Freechain corrupt");
996 				set_freepointer(s, object, NULL);
997 			} else {
998 				slab_err(s, page, "Freepointer corrupt");
999 				page->freelist = NULL;
1000 				page->inuse = page->objects;
1001 				slab_fix(s, "Freelist cleared");
1002 				return 0;
1003 			}
1004 			break;
1005 		}
1006 		object = fp;
1007 		fp = get_freepointer(s, object);
1008 		nr++;
1009 	}
1010 
1011 	max_objects = order_objects(compound_order(page), s->size);
1012 	if (max_objects > MAX_OBJS_PER_PAGE)
1013 		max_objects = MAX_OBJS_PER_PAGE;
1014 
1015 	if (page->objects != max_objects) {
1016 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1017 			 page->objects, max_objects);
1018 		page->objects = max_objects;
1019 		slab_fix(s, "Number of objects adjusted.");
1020 	}
1021 	if (page->inuse != page->objects - nr) {
1022 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1023 			 page->inuse, page->objects - nr);
1024 		page->inuse = page->objects - nr;
1025 		slab_fix(s, "Object count adjusted.");
1026 	}
1027 	return search == NULL;
1028 }
1029 
1030 static void trace(struct kmem_cache *s, struct page *page, void *object,
1031 								int alloc)
1032 {
1033 	if (s->flags & SLAB_TRACE) {
1034 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1035 			s->name,
1036 			alloc ? "alloc" : "free",
1037 			object, page->inuse,
1038 			page->freelist);
1039 
1040 		if (!alloc)
1041 			print_section(KERN_INFO, "Object ", (void *)object,
1042 					s->object_size);
1043 
1044 		dump_stack();
1045 	}
1046 }
1047 
1048 /*
1049  * Tracking of fully allocated slabs for debugging purposes.
1050  */
1051 static void add_full(struct kmem_cache *s,
1052 	struct kmem_cache_node *n, struct page *page)
1053 {
1054 	if (!(s->flags & SLAB_STORE_USER))
1055 		return;
1056 
1057 	lockdep_assert_held(&n->list_lock);
1058 	list_add(&page->slab_list, &n->full);
1059 }
1060 
1061 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1062 {
1063 	if (!(s->flags & SLAB_STORE_USER))
1064 		return;
1065 
1066 	lockdep_assert_held(&n->list_lock);
1067 	list_del(&page->slab_list);
1068 }
1069 
1070 /* Tracking of the number of slabs for debugging purposes */
1071 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1072 {
1073 	struct kmem_cache_node *n = get_node(s, node);
1074 
1075 	return atomic_long_read(&n->nr_slabs);
1076 }
1077 
1078 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1079 {
1080 	return atomic_long_read(&n->nr_slabs);
1081 }
1082 
1083 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1084 {
1085 	struct kmem_cache_node *n = get_node(s, node);
1086 
1087 	/*
1088 	 * May be called early in order to allocate a slab for the
1089 	 * kmem_cache_node structure. Solve the chicken-egg
1090 	 * dilemma by deferring the increment of the count during
1091 	 * bootstrap (see early_kmem_cache_node_alloc).
1092 	 */
1093 	if (likely(n)) {
1094 		atomic_long_inc(&n->nr_slabs);
1095 		atomic_long_add(objects, &n->total_objects);
1096 	}
1097 }
1098 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1099 {
1100 	struct kmem_cache_node *n = get_node(s, node);
1101 
1102 	atomic_long_dec(&n->nr_slabs);
1103 	atomic_long_sub(objects, &n->total_objects);
1104 }
1105 
1106 /* Object debug checks for alloc/free paths */
1107 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1108 								void *object)
1109 {
1110 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1111 		return;
1112 
1113 	init_object(s, object, SLUB_RED_INACTIVE);
1114 	init_tracking(s, object);
1115 }
1116 
1117 static
1118 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1119 {
1120 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1121 		return;
1122 
1123 	metadata_access_enable();
1124 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1125 	metadata_access_disable();
1126 }
1127 
1128 static inline int alloc_consistency_checks(struct kmem_cache *s,
1129 					struct page *page, void *object)
1130 {
1131 	if (!check_slab(s, page))
1132 		return 0;
1133 
1134 	if (!check_valid_pointer(s, page, object)) {
1135 		object_err(s, page, object, "Freelist Pointer check fails");
1136 		return 0;
1137 	}
1138 
1139 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1140 		return 0;
1141 
1142 	return 1;
1143 }
1144 
1145 static noinline int alloc_debug_processing(struct kmem_cache *s,
1146 					struct page *page,
1147 					void *object, unsigned long addr)
1148 {
1149 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1150 		if (!alloc_consistency_checks(s, page, object))
1151 			goto bad;
1152 	}
1153 
1154 	/* Success perform special debug activities for allocs */
1155 	if (s->flags & SLAB_STORE_USER)
1156 		set_track(s, object, TRACK_ALLOC, addr);
1157 	trace(s, page, object, 1);
1158 	init_object(s, object, SLUB_RED_ACTIVE);
1159 	return 1;
1160 
1161 bad:
1162 	if (PageSlab(page)) {
1163 		/*
1164 		 * If this is a slab page then lets do the best we can
1165 		 * to avoid issues in the future. Marking all objects
1166 		 * as used avoids touching the remaining objects.
1167 		 */
1168 		slab_fix(s, "Marking all objects used");
1169 		page->inuse = page->objects;
1170 		page->freelist = NULL;
1171 	}
1172 	return 0;
1173 }
1174 
1175 static inline int free_consistency_checks(struct kmem_cache *s,
1176 		struct page *page, void *object, unsigned long addr)
1177 {
1178 	if (!check_valid_pointer(s, page, object)) {
1179 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1180 		return 0;
1181 	}
1182 
1183 	if (on_freelist(s, page, object)) {
1184 		object_err(s, page, object, "Object already free");
1185 		return 0;
1186 	}
1187 
1188 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1189 		return 0;
1190 
1191 	if (unlikely(s != page->slab_cache)) {
1192 		if (!PageSlab(page)) {
1193 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1194 				 object);
1195 		} else if (!page->slab_cache) {
1196 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1197 			       object);
1198 			dump_stack();
1199 		} else
1200 			object_err(s, page, object,
1201 					"page slab pointer corrupt.");
1202 		return 0;
1203 	}
1204 	return 1;
1205 }
1206 
1207 /* Supports checking bulk free of a constructed freelist */
1208 static noinline int free_debug_processing(
1209 	struct kmem_cache *s, struct page *page,
1210 	void *head, void *tail, int bulk_cnt,
1211 	unsigned long addr)
1212 {
1213 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1214 	void *object = head;
1215 	int cnt = 0;
1216 	unsigned long flags;
1217 	int ret = 0;
1218 
1219 	spin_lock_irqsave(&n->list_lock, flags);
1220 	slab_lock(page);
1221 
1222 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1223 		if (!check_slab(s, page))
1224 			goto out;
1225 	}
1226 
1227 next_object:
1228 	cnt++;
1229 
1230 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1231 		if (!free_consistency_checks(s, page, object, addr))
1232 			goto out;
1233 	}
1234 
1235 	if (s->flags & SLAB_STORE_USER)
1236 		set_track(s, object, TRACK_FREE, addr);
1237 	trace(s, page, object, 0);
1238 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1239 	init_object(s, object, SLUB_RED_INACTIVE);
1240 
1241 	/* Reached end of constructed freelist yet? */
1242 	if (object != tail) {
1243 		object = get_freepointer(s, object);
1244 		goto next_object;
1245 	}
1246 	ret = 1;
1247 
1248 out:
1249 	if (cnt != bulk_cnt)
1250 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1251 			 bulk_cnt, cnt);
1252 
1253 	slab_unlock(page);
1254 	spin_unlock_irqrestore(&n->list_lock, flags);
1255 	if (!ret)
1256 		slab_fix(s, "Object at 0x%p not freed", object);
1257 	return ret;
1258 }
1259 
1260 /*
1261  * Parse a block of slub_debug options. Blocks are delimited by ';'
1262  *
1263  * @str:    start of block
1264  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1265  * @slabs:  return start of list of slabs, or NULL when there's no list
1266  * @init:   assume this is initial parsing and not per-kmem-create parsing
1267  *
1268  * returns the start of next block if there's any, or NULL
1269  */
1270 static char *
1271 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1272 {
1273 	bool higher_order_disable = false;
1274 
1275 	/* Skip any completely empty blocks */
1276 	while (*str && *str == ';')
1277 		str++;
1278 
1279 	if (*str == ',') {
1280 		/*
1281 		 * No options but restriction on slabs. This means full
1282 		 * debugging for slabs matching a pattern.
1283 		 */
1284 		*flags = DEBUG_DEFAULT_FLAGS;
1285 		goto check_slabs;
1286 	}
1287 	*flags = 0;
1288 
1289 	/* Determine which debug features should be switched on */
1290 	for (; *str && *str != ',' && *str != ';'; str++) {
1291 		switch (tolower(*str)) {
1292 		case '-':
1293 			*flags = 0;
1294 			break;
1295 		case 'f':
1296 			*flags |= SLAB_CONSISTENCY_CHECKS;
1297 			break;
1298 		case 'z':
1299 			*flags |= SLAB_RED_ZONE;
1300 			break;
1301 		case 'p':
1302 			*flags |= SLAB_POISON;
1303 			break;
1304 		case 'u':
1305 			*flags |= SLAB_STORE_USER;
1306 			break;
1307 		case 't':
1308 			*flags |= SLAB_TRACE;
1309 			break;
1310 		case 'a':
1311 			*flags |= SLAB_FAILSLAB;
1312 			break;
1313 		case 'o':
1314 			/*
1315 			 * Avoid enabling debugging on caches if its minimum
1316 			 * order would increase as a result.
1317 			 */
1318 			higher_order_disable = true;
1319 			break;
1320 		default:
1321 			if (init)
1322 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1323 		}
1324 	}
1325 check_slabs:
1326 	if (*str == ',')
1327 		*slabs = ++str;
1328 	else
1329 		*slabs = NULL;
1330 
1331 	/* Skip over the slab list */
1332 	while (*str && *str != ';')
1333 		str++;
1334 
1335 	/* Skip any completely empty blocks */
1336 	while (*str && *str == ';')
1337 		str++;
1338 
1339 	if (init && higher_order_disable)
1340 		disable_higher_order_debug = 1;
1341 
1342 	if (*str)
1343 		return str;
1344 	else
1345 		return NULL;
1346 }
1347 
1348 static int __init setup_slub_debug(char *str)
1349 {
1350 	slab_flags_t flags;
1351 	char *saved_str;
1352 	char *slab_list;
1353 	bool global_slub_debug_changed = false;
1354 	bool slab_list_specified = false;
1355 
1356 	slub_debug = DEBUG_DEFAULT_FLAGS;
1357 	if (*str++ != '=' || !*str)
1358 		/*
1359 		 * No options specified. Switch on full debugging.
1360 		 */
1361 		goto out;
1362 
1363 	saved_str = str;
1364 	while (str) {
1365 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1366 
1367 		if (!slab_list) {
1368 			slub_debug = flags;
1369 			global_slub_debug_changed = true;
1370 		} else {
1371 			slab_list_specified = true;
1372 		}
1373 	}
1374 
1375 	/*
1376 	 * For backwards compatibility, a single list of flags with list of
1377 	 * slabs means debugging is only enabled for those slabs, so the global
1378 	 * slub_debug should be 0. We can extended that to multiple lists as
1379 	 * long as there is no option specifying flags without a slab list.
1380 	 */
1381 	if (slab_list_specified) {
1382 		if (!global_slub_debug_changed)
1383 			slub_debug = 0;
1384 		slub_debug_string = saved_str;
1385 	}
1386 out:
1387 	if (slub_debug != 0 || slub_debug_string)
1388 		static_branch_enable(&slub_debug_enabled);
1389 	if ((static_branch_unlikely(&init_on_alloc) ||
1390 	     static_branch_unlikely(&init_on_free)) &&
1391 	    (slub_debug & SLAB_POISON))
1392 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1393 	return 1;
1394 }
1395 
1396 __setup("slub_debug", setup_slub_debug);
1397 
1398 /*
1399  * kmem_cache_flags - apply debugging options to the cache
1400  * @object_size:	the size of an object without meta data
1401  * @flags:		flags to set
1402  * @name:		name of the cache
1403  * @ctor:		constructor function
1404  *
1405  * Debug option(s) are applied to @flags. In addition to the debug
1406  * option(s), if a slab name (or multiple) is specified i.e.
1407  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1408  * then only the select slabs will receive the debug option(s).
1409  */
1410 slab_flags_t kmem_cache_flags(unsigned int object_size,
1411 	slab_flags_t flags, const char *name,
1412 	void (*ctor)(void *))
1413 {
1414 	char *iter;
1415 	size_t len;
1416 	char *next_block;
1417 	slab_flags_t block_flags;
1418 
1419 	len = strlen(name);
1420 	next_block = slub_debug_string;
1421 	/* Go through all blocks of debug options, see if any matches our slab's name */
1422 	while (next_block) {
1423 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1424 		if (!iter)
1425 			continue;
1426 		/* Found a block that has a slab list, search it */
1427 		while (*iter) {
1428 			char *end, *glob;
1429 			size_t cmplen;
1430 
1431 			end = strchrnul(iter, ',');
1432 			if (next_block && next_block < end)
1433 				end = next_block - 1;
1434 
1435 			glob = strnchr(iter, end - iter, '*');
1436 			if (glob)
1437 				cmplen = glob - iter;
1438 			else
1439 				cmplen = max_t(size_t, len, (end - iter));
1440 
1441 			if (!strncmp(name, iter, cmplen)) {
1442 				flags |= block_flags;
1443 				return flags;
1444 			}
1445 
1446 			if (!*end || *end == ';')
1447 				break;
1448 			iter = end + 1;
1449 		}
1450 	}
1451 
1452 	return flags | slub_debug;
1453 }
1454 #else /* !CONFIG_SLUB_DEBUG */
1455 static inline void setup_object_debug(struct kmem_cache *s,
1456 			struct page *page, void *object) {}
1457 static inline
1458 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1459 
1460 static inline int alloc_debug_processing(struct kmem_cache *s,
1461 	struct page *page, void *object, unsigned long addr) { return 0; }
1462 
1463 static inline int free_debug_processing(
1464 	struct kmem_cache *s, struct page *page,
1465 	void *head, void *tail, int bulk_cnt,
1466 	unsigned long addr) { return 0; }
1467 
1468 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1469 			{ return 1; }
1470 static inline int check_object(struct kmem_cache *s, struct page *page,
1471 			void *object, u8 val) { return 1; }
1472 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1473 					struct page *page) {}
1474 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1475 					struct page *page) {}
1476 slab_flags_t kmem_cache_flags(unsigned int object_size,
1477 	slab_flags_t flags, const char *name,
1478 	void (*ctor)(void *))
1479 {
1480 	return flags;
1481 }
1482 #define slub_debug 0
1483 
1484 #define disable_higher_order_debug 0
1485 
1486 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1487 							{ return 0; }
1488 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1489 							{ return 0; }
1490 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1491 							int objects) {}
1492 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1493 							int objects) {}
1494 
1495 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1496 			       void **freelist, void *nextfree)
1497 {
1498 	return false;
1499 }
1500 #endif /* CONFIG_SLUB_DEBUG */
1501 
1502 /*
1503  * Hooks for other subsystems that check memory allocations. In a typical
1504  * production configuration these hooks all should produce no code at all.
1505  */
1506 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1507 {
1508 	ptr = kasan_kmalloc_large(ptr, size, flags);
1509 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1510 	kmemleak_alloc(ptr, size, 1, flags);
1511 	return ptr;
1512 }
1513 
1514 static __always_inline void kfree_hook(void *x)
1515 {
1516 	kmemleak_free(x);
1517 	kasan_kfree_large(x, _RET_IP_);
1518 }
1519 
1520 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1521 {
1522 	kmemleak_free_recursive(x, s->flags);
1523 
1524 	/*
1525 	 * Trouble is that we may no longer disable interrupts in the fast path
1526 	 * So in order to make the debug calls that expect irqs to be
1527 	 * disabled we need to disable interrupts temporarily.
1528 	 */
1529 #ifdef CONFIG_LOCKDEP
1530 	{
1531 		unsigned long flags;
1532 
1533 		local_irq_save(flags);
1534 		debug_check_no_locks_freed(x, s->object_size);
1535 		local_irq_restore(flags);
1536 	}
1537 #endif
1538 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1539 		debug_check_no_obj_freed(x, s->object_size);
1540 
1541 	/* Use KCSAN to help debug racy use-after-free. */
1542 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1543 		__kcsan_check_access(x, s->object_size,
1544 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1545 
1546 	/* KASAN might put x into memory quarantine, delaying its reuse */
1547 	return kasan_slab_free(s, x, _RET_IP_);
1548 }
1549 
1550 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1551 					   void **head, void **tail)
1552 {
1553 
1554 	void *object;
1555 	void *next = *head;
1556 	void *old_tail = *tail ? *tail : *head;
1557 	int rsize;
1558 
1559 	/* Head and tail of the reconstructed freelist */
1560 	*head = NULL;
1561 	*tail = NULL;
1562 
1563 	do {
1564 		object = next;
1565 		next = get_freepointer(s, object);
1566 
1567 		if (slab_want_init_on_free(s)) {
1568 			/*
1569 			 * Clear the object and the metadata, but don't touch
1570 			 * the redzone.
1571 			 */
1572 			memset(kasan_reset_tag(object), 0, s->object_size);
1573 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1574 							   : 0;
1575 			memset((char *)kasan_reset_tag(object) + s->inuse, 0,
1576 			       s->size - s->inuse - rsize);
1577 
1578 		}
1579 		/* If object's reuse doesn't have to be delayed */
1580 		if (!slab_free_hook(s, object)) {
1581 			/* Move object to the new freelist */
1582 			set_freepointer(s, object, *head);
1583 			*head = object;
1584 			if (!*tail)
1585 				*tail = object;
1586 		}
1587 	} while (object != old_tail);
1588 
1589 	if (*head == *tail)
1590 		*tail = NULL;
1591 
1592 	return *head != NULL;
1593 }
1594 
1595 static void *setup_object(struct kmem_cache *s, struct page *page,
1596 				void *object)
1597 {
1598 	setup_object_debug(s, page, object);
1599 	object = kasan_init_slab_obj(s, object);
1600 	if (unlikely(s->ctor)) {
1601 		kasan_unpoison_object_data(s, object);
1602 		s->ctor(object);
1603 		kasan_poison_object_data(s, object);
1604 	}
1605 	return object;
1606 }
1607 
1608 /*
1609  * Slab allocation and freeing
1610  */
1611 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1612 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1613 {
1614 	struct page *page;
1615 	unsigned int order = oo_order(oo);
1616 
1617 	if (node == NUMA_NO_NODE)
1618 		page = alloc_pages(flags, order);
1619 	else
1620 		page = __alloc_pages_node(node, flags, order);
1621 
1622 	return page;
1623 }
1624 
1625 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1626 /* Pre-initialize the random sequence cache */
1627 static int init_cache_random_seq(struct kmem_cache *s)
1628 {
1629 	unsigned int count = oo_objects(s->oo);
1630 	int err;
1631 
1632 	/* Bailout if already initialised */
1633 	if (s->random_seq)
1634 		return 0;
1635 
1636 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1637 	if (err) {
1638 		pr_err("SLUB: Unable to initialize free list for %s\n",
1639 			s->name);
1640 		return err;
1641 	}
1642 
1643 	/* Transform to an offset on the set of pages */
1644 	if (s->random_seq) {
1645 		unsigned int i;
1646 
1647 		for (i = 0; i < count; i++)
1648 			s->random_seq[i] *= s->size;
1649 	}
1650 	return 0;
1651 }
1652 
1653 /* Initialize each random sequence freelist per cache */
1654 static void __init init_freelist_randomization(void)
1655 {
1656 	struct kmem_cache *s;
1657 
1658 	mutex_lock(&slab_mutex);
1659 
1660 	list_for_each_entry(s, &slab_caches, list)
1661 		init_cache_random_seq(s);
1662 
1663 	mutex_unlock(&slab_mutex);
1664 }
1665 
1666 /* Get the next entry on the pre-computed freelist randomized */
1667 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1668 				unsigned long *pos, void *start,
1669 				unsigned long page_limit,
1670 				unsigned long freelist_count)
1671 {
1672 	unsigned int idx;
1673 
1674 	/*
1675 	 * If the target page allocation failed, the number of objects on the
1676 	 * page might be smaller than the usual size defined by the cache.
1677 	 */
1678 	do {
1679 		idx = s->random_seq[*pos];
1680 		*pos += 1;
1681 		if (*pos >= freelist_count)
1682 			*pos = 0;
1683 	} while (unlikely(idx >= page_limit));
1684 
1685 	return (char *)start + idx;
1686 }
1687 
1688 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1689 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1690 {
1691 	void *start;
1692 	void *cur;
1693 	void *next;
1694 	unsigned long idx, pos, page_limit, freelist_count;
1695 
1696 	if (page->objects < 2 || !s->random_seq)
1697 		return false;
1698 
1699 	freelist_count = oo_objects(s->oo);
1700 	pos = get_random_int() % freelist_count;
1701 
1702 	page_limit = page->objects * s->size;
1703 	start = fixup_red_left(s, page_address(page));
1704 
1705 	/* First entry is used as the base of the freelist */
1706 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1707 				freelist_count);
1708 	cur = setup_object(s, page, cur);
1709 	page->freelist = cur;
1710 
1711 	for (idx = 1; idx < page->objects; idx++) {
1712 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1713 			freelist_count);
1714 		next = setup_object(s, page, next);
1715 		set_freepointer(s, cur, next);
1716 		cur = next;
1717 	}
1718 	set_freepointer(s, cur, NULL);
1719 
1720 	return true;
1721 }
1722 #else
1723 static inline int init_cache_random_seq(struct kmem_cache *s)
1724 {
1725 	return 0;
1726 }
1727 static inline void init_freelist_randomization(void) { }
1728 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1729 {
1730 	return false;
1731 }
1732 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1733 
1734 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1735 {
1736 	struct page *page;
1737 	struct kmem_cache_order_objects oo = s->oo;
1738 	gfp_t alloc_gfp;
1739 	void *start, *p, *next;
1740 	int idx;
1741 	bool shuffle;
1742 
1743 	flags &= gfp_allowed_mask;
1744 
1745 	if (gfpflags_allow_blocking(flags))
1746 		local_irq_enable();
1747 
1748 	flags |= s->allocflags;
1749 
1750 	/*
1751 	 * Let the initial higher-order allocation fail under memory pressure
1752 	 * so we fall-back to the minimum order allocation.
1753 	 */
1754 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1755 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1756 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1757 
1758 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1759 	if (unlikely(!page)) {
1760 		oo = s->min;
1761 		alloc_gfp = flags;
1762 		/*
1763 		 * Allocation may have failed due to fragmentation.
1764 		 * Try a lower order alloc if possible
1765 		 */
1766 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1767 		if (unlikely(!page))
1768 			goto out;
1769 		stat(s, ORDER_FALLBACK);
1770 	}
1771 
1772 	page->objects = oo_objects(oo);
1773 
1774 	account_slab_page(page, oo_order(oo), s);
1775 
1776 	page->slab_cache = s;
1777 	__SetPageSlab(page);
1778 	if (page_is_pfmemalloc(page))
1779 		SetPageSlabPfmemalloc(page);
1780 
1781 	kasan_poison_slab(page);
1782 
1783 	start = page_address(page);
1784 
1785 	setup_page_debug(s, page, start);
1786 
1787 	shuffle = shuffle_freelist(s, page);
1788 
1789 	if (!shuffle) {
1790 		start = fixup_red_left(s, start);
1791 		start = setup_object(s, page, start);
1792 		page->freelist = start;
1793 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1794 			next = p + s->size;
1795 			next = setup_object(s, page, next);
1796 			set_freepointer(s, p, next);
1797 			p = next;
1798 		}
1799 		set_freepointer(s, p, NULL);
1800 	}
1801 
1802 	page->inuse = page->objects;
1803 	page->frozen = 1;
1804 
1805 out:
1806 	if (gfpflags_allow_blocking(flags))
1807 		local_irq_disable();
1808 	if (!page)
1809 		return NULL;
1810 
1811 	inc_slabs_node(s, page_to_nid(page), page->objects);
1812 
1813 	return page;
1814 }
1815 
1816 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1817 {
1818 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1819 		flags = kmalloc_fix_flags(flags);
1820 
1821 	return allocate_slab(s,
1822 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1823 }
1824 
1825 static void __free_slab(struct kmem_cache *s, struct page *page)
1826 {
1827 	int order = compound_order(page);
1828 	int pages = 1 << order;
1829 
1830 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1831 		void *p;
1832 
1833 		slab_pad_check(s, page);
1834 		for_each_object(p, s, page_address(page),
1835 						page->objects)
1836 			check_object(s, page, p, SLUB_RED_INACTIVE);
1837 	}
1838 
1839 	__ClearPageSlabPfmemalloc(page);
1840 	__ClearPageSlab(page);
1841 	/* In union with page->mapping where page allocator expects NULL */
1842 	page->slab_cache = NULL;
1843 	if (current->reclaim_state)
1844 		current->reclaim_state->reclaimed_slab += pages;
1845 	unaccount_slab_page(page, order, s);
1846 	__free_pages(page, order);
1847 }
1848 
1849 static void rcu_free_slab(struct rcu_head *h)
1850 {
1851 	struct page *page = container_of(h, struct page, rcu_head);
1852 
1853 	__free_slab(page->slab_cache, page);
1854 }
1855 
1856 static void free_slab(struct kmem_cache *s, struct page *page)
1857 {
1858 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1859 		call_rcu(&page->rcu_head, rcu_free_slab);
1860 	} else
1861 		__free_slab(s, page);
1862 }
1863 
1864 static void discard_slab(struct kmem_cache *s, struct page *page)
1865 {
1866 	dec_slabs_node(s, page_to_nid(page), page->objects);
1867 	free_slab(s, page);
1868 }
1869 
1870 /*
1871  * Management of partially allocated slabs.
1872  */
1873 static inline void
1874 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1875 {
1876 	n->nr_partial++;
1877 	if (tail == DEACTIVATE_TO_TAIL)
1878 		list_add_tail(&page->slab_list, &n->partial);
1879 	else
1880 		list_add(&page->slab_list, &n->partial);
1881 }
1882 
1883 static inline void add_partial(struct kmem_cache_node *n,
1884 				struct page *page, int tail)
1885 {
1886 	lockdep_assert_held(&n->list_lock);
1887 	__add_partial(n, page, tail);
1888 }
1889 
1890 static inline void remove_partial(struct kmem_cache_node *n,
1891 					struct page *page)
1892 {
1893 	lockdep_assert_held(&n->list_lock);
1894 	list_del(&page->slab_list);
1895 	n->nr_partial--;
1896 }
1897 
1898 /*
1899  * Remove slab from the partial list, freeze it and
1900  * return the pointer to the freelist.
1901  *
1902  * Returns a list of objects or NULL if it fails.
1903  */
1904 static inline void *acquire_slab(struct kmem_cache *s,
1905 		struct kmem_cache_node *n, struct page *page,
1906 		int mode, int *objects)
1907 {
1908 	void *freelist;
1909 	unsigned long counters;
1910 	struct page new;
1911 
1912 	lockdep_assert_held(&n->list_lock);
1913 
1914 	/*
1915 	 * Zap the freelist and set the frozen bit.
1916 	 * The old freelist is the list of objects for the
1917 	 * per cpu allocation list.
1918 	 */
1919 	freelist = page->freelist;
1920 	counters = page->counters;
1921 	new.counters = counters;
1922 	*objects = new.objects - new.inuse;
1923 	if (mode) {
1924 		new.inuse = page->objects;
1925 		new.freelist = NULL;
1926 	} else {
1927 		new.freelist = freelist;
1928 	}
1929 
1930 	VM_BUG_ON(new.frozen);
1931 	new.frozen = 1;
1932 
1933 	if (!__cmpxchg_double_slab(s, page,
1934 			freelist, counters,
1935 			new.freelist, new.counters,
1936 			"acquire_slab"))
1937 		return NULL;
1938 
1939 	remove_partial(n, page);
1940 	WARN_ON(!freelist);
1941 	return freelist;
1942 }
1943 
1944 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1945 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1946 
1947 /*
1948  * Try to allocate a partial slab from a specific node.
1949  */
1950 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1951 				struct kmem_cache_cpu *c, gfp_t flags)
1952 {
1953 	struct page *page, *page2;
1954 	void *object = NULL;
1955 	unsigned int available = 0;
1956 	int objects;
1957 
1958 	/*
1959 	 * Racy check. If we mistakenly see no partial slabs then we
1960 	 * just allocate an empty slab. If we mistakenly try to get a
1961 	 * partial slab and there is none available then get_partial()
1962 	 * will return NULL.
1963 	 */
1964 	if (!n || !n->nr_partial)
1965 		return NULL;
1966 
1967 	spin_lock(&n->list_lock);
1968 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1969 		void *t;
1970 
1971 		if (!pfmemalloc_match(page, flags))
1972 			continue;
1973 
1974 		t = acquire_slab(s, n, page, object == NULL, &objects);
1975 		if (!t)
1976 			continue; /* cmpxchg raced */
1977 
1978 		available += objects;
1979 		if (!object) {
1980 			c->page = page;
1981 			stat(s, ALLOC_FROM_PARTIAL);
1982 			object = t;
1983 		} else {
1984 			put_cpu_partial(s, page, 0);
1985 			stat(s, CPU_PARTIAL_NODE);
1986 		}
1987 		if (!kmem_cache_has_cpu_partial(s)
1988 			|| available > slub_cpu_partial(s) / 2)
1989 			break;
1990 
1991 	}
1992 	spin_unlock(&n->list_lock);
1993 	return object;
1994 }
1995 
1996 /*
1997  * Get a page from somewhere. Search in increasing NUMA distances.
1998  */
1999 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2000 		struct kmem_cache_cpu *c)
2001 {
2002 #ifdef CONFIG_NUMA
2003 	struct zonelist *zonelist;
2004 	struct zoneref *z;
2005 	struct zone *zone;
2006 	enum zone_type highest_zoneidx = gfp_zone(flags);
2007 	void *object;
2008 	unsigned int cpuset_mems_cookie;
2009 
2010 	/*
2011 	 * The defrag ratio allows a configuration of the tradeoffs between
2012 	 * inter node defragmentation and node local allocations. A lower
2013 	 * defrag_ratio increases the tendency to do local allocations
2014 	 * instead of attempting to obtain partial slabs from other nodes.
2015 	 *
2016 	 * If the defrag_ratio is set to 0 then kmalloc() always
2017 	 * returns node local objects. If the ratio is higher then kmalloc()
2018 	 * may return off node objects because partial slabs are obtained
2019 	 * from other nodes and filled up.
2020 	 *
2021 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2022 	 * (which makes defrag_ratio = 1000) then every (well almost)
2023 	 * allocation will first attempt to defrag slab caches on other nodes.
2024 	 * This means scanning over all nodes to look for partial slabs which
2025 	 * may be expensive if we do it every time we are trying to find a slab
2026 	 * with available objects.
2027 	 */
2028 	if (!s->remote_node_defrag_ratio ||
2029 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2030 		return NULL;
2031 
2032 	do {
2033 		cpuset_mems_cookie = read_mems_allowed_begin();
2034 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2035 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2036 			struct kmem_cache_node *n;
2037 
2038 			n = get_node(s, zone_to_nid(zone));
2039 
2040 			if (n && cpuset_zone_allowed(zone, flags) &&
2041 					n->nr_partial > s->min_partial) {
2042 				object = get_partial_node(s, n, c, flags);
2043 				if (object) {
2044 					/*
2045 					 * Don't check read_mems_allowed_retry()
2046 					 * here - if mems_allowed was updated in
2047 					 * parallel, that was a harmless race
2048 					 * between allocation and the cpuset
2049 					 * update
2050 					 */
2051 					return object;
2052 				}
2053 			}
2054 		}
2055 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2056 #endif	/* CONFIG_NUMA */
2057 	return NULL;
2058 }
2059 
2060 /*
2061  * Get a partial page, lock it and return it.
2062  */
2063 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2064 		struct kmem_cache_cpu *c)
2065 {
2066 	void *object;
2067 	int searchnode = node;
2068 
2069 	if (node == NUMA_NO_NODE)
2070 		searchnode = numa_mem_id();
2071 
2072 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2073 	if (object || node != NUMA_NO_NODE)
2074 		return object;
2075 
2076 	return get_any_partial(s, flags, c);
2077 }
2078 
2079 #ifdef CONFIG_PREEMPTION
2080 /*
2081  * Calculate the next globally unique transaction for disambiguation
2082  * during cmpxchg. The transactions start with the cpu number and are then
2083  * incremented by CONFIG_NR_CPUS.
2084  */
2085 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2086 #else
2087 /*
2088  * No preemption supported therefore also no need to check for
2089  * different cpus.
2090  */
2091 #define TID_STEP 1
2092 #endif
2093 
2094 static inline unsigned long next_tid(unsigned long tid)
2095 {
2096 	return tid + TID_STEP;
2097 }
2098 
2099 #ifdef SLUB_DEBUG_CMPXCHG
2100 static inline unsigned int tid_to_cpu(unsigned long tid)
2101 {
2102 	return tid % TID_STEP;
2103 }
2104 
2105 static inline unsigned long tid_to_event(unsigned long tid)
2106 {
2107 	return tid / TID_STEP;
2108 }
2109 #endif
2110 
2111 static inline unsigned int init_tid(int cpu)
2112 {
2113 	return cpu;
2114 }
2115 
2116 static inline void note_cmpxchg_failure(const char *n,
2117 		const struct kmem_cache *s, unsigned long tid)
2118 {
2119 #ifdef SLUB_DEBUG_CMPXCHG
2120 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2121 
2122 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2123 
2124 #ifdef CONFIG_PREEMPTION
2125 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2126 		pr_warn("due to cpu change %d -> %d\n",
2127 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2128 	else
2129 #endif
2130 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2131 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2132 			tid_to_event(tid), tid_to_event(actual_tid));
2133 	else
2134 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2135 			actual_tid, tid, next_tid(tid));
2136 #endif
2137 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2138 }
2139 
2140 static void init_kmem_cache_cpus(struct kmem_cache *s)
2141 {
2142 	int cpu;
2143 
2144 	for_each_possible_cpu(cpu)
2145 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2146 }
2147 
2148 /*
2149  * Remove the cpu slab
2150  */
2151 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2152 				void *freelist, struct kmem_cache_cpu *c)
2153 {
2154 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2155 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2156 	int lock = 0;
2157 	enum slab_modes l = M_NONE, m = M_NONE;
2158 	void *nextfree;
2159 	int tail = DEACTIVATE_TO_HEAD;
2160 	struct page new;
2161 	struct page old;
2162 
2163 	if (page->freelist) {
2164 		stat(s, DEACTIVATE_REMOTE_FREES);
2165 		tail = DEACTIVATE_TO_TAIL;
2166 	}
2167 
2168 	/*
2169 	 * Stage one: Free all available per cpu objects back
2170 	 * to the page freelist while it is still frozen. Leave the
2171 	 * last one.
2172 	 *
2173 	 * There is no need to take the list->lock because the page
2174 	 * is still frozen.
2175 	 */
2176 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2177 		void *prior;
2178 		unsigned long counters;
2179 
2180 		/*
2181 		 * If 'nextfree' is invalid, it is possible that the object at
2182 		 * 'freelist' is already corrupted.  So isolate all objects
2183 		 * starting at 'freelist'.
2184 		 */
2185 		if (freelist_corrupted(s, page, &freelist, nextfree))
2186 			break;
2187 
2188 		do {
2189 			prior = page->freelist;
2190 			counters = page->counters;
2191 			set_freepointer(s, freelist, prior);
2192 			new.counters = counters;
2193 			new.inuse--;
2194 			VM_BUG_ON(!new.frozen);
2195 
2196 		} while (!__cmpxchg_double_slab(s, page,
2197 			prior, counters,
2198 			freelist, new.counters,
2199 			"drain percpu freelist"));
2200 
2201 		freelist = nextfree;
2202 	}
2203 
2204 	/*
2205 	 * Stage two: Ensure that the page is unfrozen while the
2206 	 * list presence reflects the actual number of objects
2207 	 * during unfreeze.
2208 	 *
2209 	 * We setup the list membership and then perform a cmpxchg
2210 	 * with the count. If there is a mismatch then the page
2211 	 * is not unfrozen but the page is on the wrong list.
2212 	 *
2213 	 * Then we restart the process which may have to remove
2214 	 * the page from the list that we just put it on again
2215 	 * because the number of objects in the slab may have
2216 	 * changed.
2217 	 */
2218 redo:
2219 
2220 	old.freelist = page->freelist;
2221 	old.counters = page->counters;
2222 	VM_BUG_ON(!old.frozen);
2223 
2224 	/* Determine target state of the slab */
2225 	new.counters = old.counters;
2226 	if (freelist) {
2227 		new.inuse--;
2228 		set_freepointer(s, freelist, old.freelist);
2229 		new.freelist = freelist;
2230 	} else
2231 		new.freelist = old.freelist;
2232 
2233 	new.frozen = 0;
2234 
2235 	if (!new.inuse && n->nr_partial >= s->min_partial)
2236 		m = M_FREE;
2237 	else if (new.freelist) {
2238 		m = M_PARTIAL;
2239 		if (!lock) {
2240 			lock = 1;
2241 			/*
2242 			 * Taking the spinlock removes the possibility
2243 			 * that acquire_slab() will see a slab page that
2244 			 * is frozen
2245 			 */
2246 			spin_lock(&n->list_lock);
2247 		}
2248 	} else {
2249 		m = M_FULL;
2250 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2251 			lock = 1;
2252 			/*
2253 			 * This also ensures that the scanning of full
2254 			 * slabs from diagnostic functions will not see
2255 			 * any frozen slabs.
2256 			 */
2257 			spin_lock(&n->list_lock);
2258 		}
2259 	}
2260 
2261 	if (l != m) {
2262 		if (l == M_PARTIAL)
2263 			remove_partial(n, page);
2264 		else if (l == M_FULL)
2265 			remove_full(s, n, page);
2266 
2267 		if (m == M_PARTIAL)
2268 			add_partial(n, page, tail);
2269 		else if (m == M_FULL)
2270 			add_full(s, n, page);
2271 	}
2272 
2273 	l = m;
2274 	if (!__cmpxchg_double_slab(s, page,
2275 				old.freelist, old.counters,
2276 				new.freelist, new.counters,
2277 				"unfreezing slab"))
2278 		goto redo;
2279 
2280 	if (lock)
2281 		spin_unlock(&n->list_lock);
2282 
2283 	if (m == M_PARTIAL)
2284 		stat(s, tail);
2285 	else if (m == M_FULL)
2286 		stat(s, DEACTIVATE_FULL);
2287 	else if (m == M_FREE) {
2288 		stat(s, DEACTIVATE_EMPTY);
2289 		discard_slab(s, page);
2290 		stat(s, FREE_SLAB);
2291 	}
2292 
2293 	c->page = NULL;
2294 	c->freelist = NULL;
2295 }
2296 
2297 /*
2298  * Unfreeze all the cpu partial slabs.
2299  *
2300  * This function must be called with interrupts disabled
2301  * for the cpu using c (or some other guarantee must be there
2302  * to guarantee no concurrent accesses).
2303  */
2304 static void unfreeze_partials(struct kmem_cache *s,
2305 		struct kmem_cache_cpu *c)
2306 {
2307 #ifdef CONFIG_SLUB_CPU_PARTIAL
2308 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2309 	struct page *page, *discard_page = NULL;
2310 
2311 	while ((page = slub_percpu_partial(c))) {
2312 		struct page new;
2313 		struct page old;
2314 
2315 		slub_set_percpu_partial(c, page);
2316 
2317 		n2 = get_node(s, page_to_nid(page));
2318 		if (n != n2) {
2319 			if (n)
2320 				spin_unlock(&n->list_lock);
2321 
2322 			n = n2;
2323 			spin_lock(&n->list_lock);
2324 		}
2325 
2326 		do {
2327 
2328 			old.freelist = page->freelist;
2329 			old.counters = page->counters;
2330 			VM_BUG_ON(!old.frozen);
2331 
2332 			new.counters = old.counters;
2333 			new.freelist = old.freelist;
2334 
2335 			new.frozen = 0;
2336 
2337 		} while (!__cmpxchg_double_slab(s, page,
2338 				old.freelist, old.counters,
2339 				new.freelist, new.counters,
2340 				"unfreezing slab"));
2341 
2342 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2343 			page->next = discard_page;
2344 			discard_page = page;
2345 		} else {
2346 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2347 			stat(s, FREE_ADD_PARTIAL);
2348 		}
2349 	}
2350 
2351 	if (n)
2352 		spin_unlock(&n->list_lock);
2353 
2354 	while (discard_page) {
2355 		page = discard_page;
2356 		discard_page = discard_page->next;
2357 
2358 		stat(s, DEACTIVATE_EMPTY);
2359 		discard_slab(s, page);
2360 		stat(s, FREE_SLAB);
2361 	}
2362 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2363 }
2364 
2365 /*
2366  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2367  * partial page slot if available.
2368  *
2369  * If we did not find a slot then simply move all the partials to the
2370  * per node partial list.
2371  */
2372 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2373 {
2374 #ifdef CONFIG_SLUB_CPU_PARTIAL
2375 	struct page *oldpage;
2376 	int pages;
2377 	int pobjects;
2378 
2379 	preempt_disable();
2380 	do {
2381 		pages = 0;
2382 		pobjects = 0;
2383 		oldpage = this_cpu_read(s->cpu_slab->partial);
2384 
2385 		if (oldpage) {
2386 			pobjects = oldpage->pobjects;
2387 			pages = oldpage->pages;
2388 			if (drain && pobjects > slub_cpu_partial(s)) {
2389 				unsigned long flags;
2390 				/*
2391 				 * partial array is full. Move the existing
2392 				 * set to the per node partial list.
2393 				 */
2394 				local_irq_save(flags);
2395 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2396 				local_irq_restore(flags);
2397 				oldpage = NULL;
2398 				pobjects = 0;
2399 				pages = 0;
2400 				stat(s, CPU_PARTIAL_DRAIN);
2401 			}
2402 		}
2403 
2404 		pages++;
2405 		pobjects += page->objects - page->inuse;
2406 
2407 		page->pages = pages;
2408 		page->pobjects = pobjects;
2409 		page->next = oldpage;
2410 
2411 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2412 								!= oldpage);
2413 	if (unlikely(!slub_cpu_partial(s))) {
2414 		unsigned long flags;
2415 
2416 		local_irq_save(flags);
2417 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2418 		local_irq_restore(flags);
2419 	}
2420 	preempt_enable();
2421 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2422 }
2423 
2424 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2425 {
2426 	stat(s, CPUSLAB_FLUSH);
2427 	deactivate_slab(s, c->page, c->freelist, c);
2428 
2429 	c->tid = next_tid(c->tid);
2430 }
2431 
2432 /*
2433  * Flush cpu slab.
2434  *
2435  * Called from IPI handler with interrupts disabled.
2436  */
2437 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2438 {
2439 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2440 
2441 	if (c->page)
2442 		flush_slab(s, c);
2443 
2444 	unfreeze_partials(s, c);
2445 }
2446 
2447 static void flush_cpu_slab(void *d)
2448 {
2449 	struct kmem_cache *s = d;
2450 
2451 	__flush_cpu_slab(s, smp_processor_id());
2452 }
2453 
2454 static bool has_cpu_slab(int cpu, void *info)
2455 {
2456 	struct kmem_cache *s = info;
2457 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2458 
2459 	return c->page || slub_percpu_partial(c);
2460 }
2461 
2462 static void flush_all(struct kmem_cache *s)
2463 {
2464 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2465 }
2466 
2467 /*
2468  * Use the cpu notifier to insure that the cpu slabs are flushed when
2469  * necessary.
2470  */
2471 static int slub_cpu_dead(unsigned int cpu)
2472 {
2473 	struct kmem_cache *s;
2474 	unsigned long flags;
2475 
2476 	mutex_lock(&slab_mutex);
2477 	list_for_each_entry(s, &slab_caches, list) {
2478 		local_irq_save(flags);
2479 		__flush_cpu_slab(s, cpu);
2480 		local_irq_restore(flags);
2481 	}
2482 	mutex_unlock(&slab_mutex);
2483 	return 0;
2484 }
2485 
2486 /*
2487  * Check if the objects in a per cpu structure fit numa
2488  * locality expectations.
2489  */
2490 static inline int node_match(struct page *page, int node)
2491 {
2492 #ifdef CONFIG_NUMA
2493 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2494 		return 0;
2495 #endif
2496 	return 1;
2497 }
2498 
2499 #ifdef CONFIG_SLUB_DEBUG
2500 static int count_free(struct page *page)
2501 {
2502 	return page->objects - page->inuse;
2503 }
2504 
2505 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2506 {
2507 	return atomic_long_read(&n->total_objects);
2508 }
2509 #endif /* CONFIG_SLUB_DEBUG */
2510 
2511 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2512 static unsigned long count_partial(struct kmem_cache_node *n,
2513 					int (*get_count)(struct page *))
2514 {
2515 	unsigned long flags;
2516 	unsigned long x = 0;
2517 	struct page *page;
2518 
2519 	spin_lock_irqsave(&n->list_lock, flags);
2520 	list_for_each_entry(page, &n->partial, slab_list)
2521 		x += get_count(page);
2522 	spin_unlock_irqrestore(&n->list_lock, flags);
2523 	return x;
2524 }
2525 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2526 
2527 static noinline void
2528 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2529 {
2530 #ifdef CONFIG_SLUB_DEBUG
2531 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2532 				      DEFAULT_RATELIMIT_BURST);
2533 	int node;
2534 	struct kmem_cache_node *n;
2535 
2536 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2537 		return;
2538 
2539 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2540 		nid, gfpflags, &gfpflags);
2541 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2542 		s->name, s->object_size, s->size, oo_order(s->oo),
2543 		oo_order(s->min));
2544 
2545 	if (oo_order(s->min) > get_order(s->object_size))
2546 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2547 			s->name);
2548 
2549 	for_each_kmem_cache_node(s, node, n) {
2550 		unsigned long nr_slabs;
2551 		unsigned long nr_objs;
2552 		unsigned long nr_free;
2553 
2554 		nr_free  = count_partial(n, count_free);
2555 		nr_slabs = node_nr_slabs(n);
2556 		nr_objs  = node_nr_objs(n);
2557 
2558 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2559 			node, nr_slabs, nr_objs, nr_free);
2560 	}
2561 #endif
2562 }
2563 
2564 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2565 			int node, struct kmem_cache_cpu **pc)
2566 {
2567 	void *freelist;
2568 	struct kmem_cache_cpu *c = *pc;
2569 	struct page *page;
2570 
2571 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2572 
2573 	freelist = get_partial(s, flags, node, c);
2574 
2575 	if (freelist)
2576 		return freelist;
2577 
2578 	page = new_slab(s, flags, node);
2579 	if (page) {
2580 		c = raw_cpu_ptr(s->cpu_slab);
2581 		if (c->page)
2582 			flush_slab(s, c);
2583 
2584 		/*
2585 		 * No other reference to the page yet so we can
2586 		 * muck around with it freely without cmpxchg
2587 		 */
2588 		freelist = page->freelist;
2589 		page->freelist = NULL;
2590 
2591 		stat(s, ALLOC_SLAB);
2592 		c->page = page;
2593 		*pc = c;
2594 	}
2595 
2596 	return freelist;
2597 }
2598 
2599 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2600 {
2601 	if (unlikely(PageSlabPfmemalloc(page)))
2602 		return gfp_pfmemalloc_allowed(gfpflags);
2603 
2604 	return true;
2605 }
2606 
2607 /*
2608  * Check the page->freelist of a page and either transfer the freelist to the
2609  * per cpu freelist or deactivate the page.
2610  *
2611  * The page is still frozen if the return value is not NULL.
2612  *
2613  * If this function returns NULL then the page has been unfrozen.
2614  *
2615  * This function must be called with interrupt disabled.
2616  */
2617 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2618 {
2619 	struct page new;
2620 	unsigned long counters;
2621 	void *freelist;
2622 
2623 	do {
2624 		freelist = page->freelist;
2625 		counters = page->counters;
2626 
2627 		new.counters = counters;
2628 		VM_BUG_ON(!new.frozen);
2629 
2630 		new.inuse = page->objects;
2631 		new.frozen = freelist != NULL;
2632 
2633 	} while (!__cmpxchg_double_slab(s, page,
2634 		freelist, counters,
2635 		NULL, new.counters,
2636 		"get_freelist"));
2637 
2638 	return freelist;
2639 }
2640 
2641 /*
2642  * Slow path. The lockless freelist is empty or we need to perform
2643  * debugging duties.
2644  *
2645  * Processing is still very fast if new objects have been freed to the
2646  * regular freelist. In that case we simply take over the regular freelist
2647  * as the lockless freelist and zap the regular freelist.
2648  *
2649  * If that is not working then we fall back to the partial lists. We take the
2650  * first element of the freelist as the object to allocate now and move the
2651  * rest of the freelist to the lockless freelist.
2652  *
2653  * And if we were unable to get a new slab from the partial slab lists then
2654  * we need to allocate a new slab. This is the slowest path since it involves
2655  * a call to the page allocator and the setup of a new slab.
2656  *
2657  * Version of __slab_alloc to use when we know that interrupts are
2658  * already disabled (which is the case for bulk allocation).
2659  */
2660 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2661 			  unsigned long addr, struct kmem_cache_cpu *c)
2662 {
2663 	void *freelist;
2664 	struct page *page;
2665 
2666 	stat(s, ALLOC_SLOWPATH);
2667 
2668 	page = c->page;
2669 	if (!page) {
2670 		/*
2671 		 * if the node is not online or has no normal memory, just
2672 		 * ignore the node constraint
2673 		 */
2674 		if (unlikely(node != NUMA_NO_NODE &&
2675 			     !node_state(node, N_NORMAL_MEMORY)))
2676 			node = NUMA_NO_NODE;
2677 		goto new_slab;
2678 	}
2679 redo:
2680 
2681 	if (unlikely(!node_match(page, node))) {
2682 		/*
2683 		 * same as above but node_match() being false already
2684 		 * implies node != NUMA_NO_NODE
2685 		 */
2686 		if (!node_state(node, N_NORMAL_MEMORY)) {
2687 			node = NUMA_NO_NODE;
2688 			goto redo;
2689 		} else {
2690 			stat(s, ALLOC_NODE_MISMATCH);
2691 			deactivate_slab(s, page, c->freelist, c);
2692 			goto new_slab;
2693 		}
2694 	}
2695 
2696 	/*
2697 	 * By rights, we should be searching for a slab page that was
2698 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2699 	 * information when the page leaves the per-cpu allocator
2700 	 */
2701 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2702 		deactivate_slab(s, page, c->freelist, c);
2703 		goto new_slab;
2704 	}
2705 
2706 	/* must check again c->freelist in case of cpu migration or IRQ */
2707 	freelist = c->freelist;
2708 	if (freelist)
2709 		goto load_freelist;
2710 
2711 	freelist = get_freelist(s, page);
2712 
2713 	if (!freelist) {
2714 		c->page = NULL;
2715 		stat(s, DEACTIVATE_BYPASS);
2716 		goto new_slab;
2717 	}
2718 
2719 	stat(s, ALLOC_REFILL);
2720 
2721 load_freelist:
2722 	/*
2723 	 * freelist is pointing to the list of objects to be used.
2724 	 * page is pointing to the page from which the objects are obtained.
2725 	 * That page must be frozen for per cpu allocations to work.
2726 	 */
2727 	VM_BUG_ON(!c->page->frozen);
2728 	c->freelist = get_freepointer(s, freelist);
2729 	c->tid = next_tid(c->tid);
2730 	return freelist;
2731 
2732 new_slab:
2733 
2734 	if (slub_percpu_partial(c)) {
2735 		page = c->page = slub_percpu_partial(c);
2736 		slub_set_percpu_partial(c, page);
2737 		stat(s, CPU_PARTIAL_ALLOC);
2738 		goto redo;
2739 	}
2740 
2741 	freelist = new_slab_objects(s, gfpflags, node, &c);
2742 
2743 	if (unlikely(!freelist)) {
2744 		slab_out_of_memory(s, gfpflags, node);
2745 		return NULL;
2746 	}
2747 
2748 	page = c->page;
2749 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2750 		goto load_freelist;
2751 
2752 	/* Only entered in the debug case */
2753 	if (kmem_cache_debug(s) &&
2754 			!alloc_debug_processing(s, page, freelist, addr))
2755 		goto new_slab;	/* Slab failed checks. Next slab needed */
2756 
2757 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2758 	return freelist;
2759 }
2760 
2761 /*
2762  * Another one that disabled interrupt and compensates for possible
2763  * cpu changes by refetching the per cpu area pointer.
2764  */
2765 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2766 			  unsigned long addr, struct kmem_cache_cpu *c)
2767 {
2768 	void *p;
2769 	unsigned long flags;
2770 
2771 	local_irq_save(flags);
2772 #ifdef CONFIG_PREEMPTION
2773 	/*
2774 	 * We may have been preempted and rescheduled on a different
2775 	 * cpu before disabling interrupts. Need to reload cpu area
2776 	 * pointer.
2777 	 */
2778 	c = this_cpu_ptr(s->cpu_slab);
2779 #endif
2780 
2781 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2782 	local_irq_restore(flags);
2783 	return p;
2784 }
2785 
2786 /*
2787  * If the object has been wiped upon free, make sure it's fully initialized by
2788  * zeroing out freelist pointer.
2789  */
2790 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2791 						   void *obj)
2792 {
2793 	if (unlikely(slab_want_init_on_free(s)) && obj)
2794 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2795 			0, sizeof(void *));
2796 }
2797 
2798 /*
2799  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2800  * have the fastpath folded into their functions. So no function call
2801  * overhead for requests that can be satisfied on the fastpath.
2802  *
2803  * The fastpath works by first checking if the lockless freelist can be used.
2804  * If not then __slab_alloc is called for slow processing.
2805  *
2806  * Otherwise we can simply pick the next object from the lockless free list.
2807  */
2808 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2809 		gfp_t gfpflags, int node, unsigned long addr)
2810 {
2811 	void *object;
2812 	struct kmem_cache_cpu *c;
2813 	struct page *page;
2814 	unsigned long tid;
2815 	struct obj_cgroup *objcg = NULL;
2816 
2817 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2818 	if (!s)
2819 		return NULL;
2820 redo:
2821 	/*
2822 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2823 	 * enabled. We may switch back and forth between cpus while
2824 	 * reading from one cpu area. That does not matter as long
2825 	 * as we end up on the original cpu again when doing the cmpxchg.
2826 	 *
2827 	 * We should guarantee that tid and kmem_cache are retrieved on
2828 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2829 	 * to check if it is matched or not.
2830 	 */
2831 	do {
2832 		tid = this_cpu_read(s->cpu_slab->tid);
2833 		c = raw_cpu_ptr(s->cpu_slab);
2834 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2835 		 unlikely(tid != READ_ONCE(c->tid)));
2836 
2837 	/*
2838 	 * Irqless object alloc/free algorithm used here depends on sequence
2839 	 * of fetching cpu_slab's data. tid should be fetched before anything
2840 	 * on c to guarantee that object and page associated with previous tid
2841 	 * won't be used with current tid. If we fetch tid first, object and
2842 	 * page could be one associated with next tid and our alloc/free
2843 	 * request will be failed. In this case, we will retry. So, no problem.
2844 	 */
2845 	barrier();
2846 
2847 	/*
2848 	 * The transaction ids are globally unique per cpu and per operation on
2849 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2850 	 * occurs on the right processor and that there was no operation on the
2851 	 * linked list in between.
2852 	 */
2853 
2854 	object = c->freelist;
2855 	page = c->page;
2856 	if (unlikely(!object || !page || !node_match(page, node))) {
2857 		object = __slab_alloc(s, gfpflags, node, addr, c);
2858 	} else {
2859 		void *next_object = get_freepointer_safe(s, object);
2860 
2861 		/*
2862 		 * The cmpxchg will only match if there was no additional
2863 		 * operation and if we are on the right processor.
2864 		 *
2865 		 * The cmpxchg does the following atomically (without lock
2866 		 * semantics!)
2867 		 * 1. Relocate first pointer to the current per cpu area.
2868 		 * 2. Verify that tid and freelist have not been changed
2869 		 * 3. If they were not changed replace tid and freelist
2870 		 *
2871 		 * Since this is without lock semantics the protection is only
2872 		 * against code executing on this cpu *not* from access by
2873 		 * other cpus.
2874 		 */
2875 		if (unlikely(!this_cpu_cmpxchg_double(
2876 				s->cpu_slab->freelist, s->cpu_slab->tid,
2877 				object, tid,
2878 				next_object, next_tid(tid)))) {
2879 
2880 			note_cmpxchg_failure("slab_alloc", s, tid);
2881 			goto redo;
2882 		}
2883 		prefetch_freepointer(s, next_object);
2884 		stat(s, ALLOC_FASTPATH);
2885 	}
2886 
2887 	maybe_wipe_obj_freeptr(s, object);
2888 
2889 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2890 		memset(kasan_reset_tag(object), 0, s->object_size);
2891 
2892 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2893 
2894 	return object;
2895 }
2896 
2897 static __always_inline void *slab_alloc(struct kmem_cache *s,
2898 		gfp_t gfpflags, unsigned long addr)
2899 {
2900 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2901 }
2902 
2903 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2904 {
2905 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2906 
2907 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2908 				s->size, gfpflags);
2909 
2910 	return ret;
2911 }
2912 EXPORT_SYMBOL(kmem_cache_alloc);
2913 
2914 #ifdef CONFIG_TRACING
2915 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2916 {
2917 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2918 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2919 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2920 	return ret;
2921 }
2922 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2923 #endif
2924 
2925 #ifdef CONFIG_NUMA
2926 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2927 {
2928 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2929 
2930 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2931 				    s->object_size, s->size, gfpflags, node);
2932 
2933 	return ret;
2934 }
2935 EXPORT_SYMBOL(kmem_cache_alloc_node);
2936 
2937 #ifdef CONFIG_TRACING
2938 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2939 				    gfp_t gfpflags,
2940 				    int node, size_t size)
2941 {
2942 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2943 
2944 	trace_kmalloc_node(_RET_IP_, ret,
2945 			   size, s->size, gfpflags, node);
2946 
2947 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2948 	return ret;
2949 }
2950 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2951 #endif
2952 #endif	/* CONFIG_NUMA */
2953 
2954 /*
2955  * Slow path handling. This may still be called frequently since objects
2956  * have a longer lifetime than the cpu slabs in most processing loads.
2957  *
2958  * So we still attempt to reduce cache line usage. Just take the slab
2959  * lock and free the item. If there is no additional partial page
2960  * handling required then we can return immediately.
2961  */
2962 static void __slab_free(struct kmem_cache *s, struct page *page,
2963 			void *head, void *tail, int cnt,
2964 			unsigned long addr)
2965 
2966 {
2967 	void *prior;
2968 	int was_frozen;
2969 	struct page new;
2970 	unsigned long counters;
2971 	struct kmem_cache_node *n = NULL;
2972 	unsigned long flags;
2973 
2974 	stat(s, FREE_SLOWPATH);
2975 
2976 	if (kmem_cache_debug(s) &&
2977 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2978 		return;
2979 
2980 	do {
2981 		if (unlikely(n)) {
2982 			spin_unlock_irqrestore(&n->list_lock, flags);
2983 			n = NULL;
2984 		}
2985 		prior = page->freelist;
2986 		counters = page->counters;
2987 		set_freepointer(s, tail, prior);
2988 		new.counters = counters;
2989 		was_frozen = new.frozen;
2990 		new.inuse -= cnt;
2991 		if ((!new.inuse || !prior) && !was_frozen) {
2992 
2993 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2994 
2995 				/*
2996 				 * Slab was on no list before and will be
2997 				 * partially empty
2998 				 * We can defer the list move and instead
2999 				 * freeze it.
3000 				 */
3001 				new.frozen = 1;
3002 
3003 			} else { /* Needs to be taken off a list */
3004 
3005 				n = get_node(s, page_to_nid(page));
3006 				/*
3007 				 * Speculatively acquire the list_lock.
3008 				 * If the cmpxchg does not succeed then we may
3009 				 * drop the list_lock without any processing.
3010 				 *
3011 				 * Otherwise the list_lock will synchronize with
3012 				 * other processors updating the list of slabs.
3013 				 */
3014 				spin_lock_irqsave(&n->list_lock, flags);
3015 
3016 			}
3017 		}
3018 
3019 	} while (!cmpxchg_double_slab(s, page,
3020 		prior, counters,
3021 		head, new.counters,
3022 		"__slab_free"));
3023 
3024 	if (likely(!n)) {
3025 
3026 		if (likely(was_frozen)) {
3027 			/*
3028 			 * The list lock was not taken therefore no list
3029 			 * activity can be necessary.
3030 			 */
3031 			stat(s, FREE_FROZEN);
3032 		} else if (new.frozen) {
3033 			/*
3034 			 * If we just froze the page then put it onto the
3035 			 * per cpu partial list.
3036 			 */
3037 			put_cpu_partial(s, page, 1);
3038 			stat(s, CPU_PARTIAL_FREE);
3039 		}
3040 
3041 		return;
3042 	}
3043 
3044 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3045 		goto slab_empty;
3046 
3047 	/*
3048 	 * Objects left in the slab. If it was not on the partial list before
3049 	 * then add it.
3050 	 */
3051 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3052 		remove_full(s, n, page);
3053 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3054 		stat(s, FREE_ADD_PARTIAL);
3055 	}
3056 	spin_unlock_irqrestore(&n->list_lock, flags);
3057 	return;
3058 
3059 slab_empty:
3060 	if (prior) {
3061 		/*
3062 		 * Slab on the partial list.
3063 		 */
3064 		remove_partial(n, page);
3065 		stat(s, FREE_REMOVE_PARTIAL);
3066 	} else {
3067 		/* Slab must be on the full list */
3068 		remove_full(s, n, page);
3069 	}
3070 
3071 	spin_unlock_irqrestore(&n->list_lock, flags);
3072 	stat(s, FREE_SLAB);
3073 	discard_slab(s, page);
3074 }
3075 
3076 /*
3077  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3078  * can perform fastpath freeing without additional function calls.
3079  *
3080  * The fastpath is only possible if we are freeing to the current cpu slab
3081  * of this processor. This typically the case if we have just allocated
3082  * the item before.
3083  *
3084  * If fastpath is not possible then fall back to __slab_free where we deal
3085  * with all sorts of special processing.
3086  *
3087  * Bulk free of a freelist with several objects (all pointing to the
3088  * same page) possible by specifying head and tail ptr, plus objects
3089  * count (cnt). Bulk free indicated by tail pointer being set.
3090  */
3091 static __always_inline void do_slab_free(struct kmem_cache *s,
3092 				struct page *page, void *head, void *tail,
3093 				int cnt, unsigned long addr)
3094 {
3095 	void *tail_obj = tail ? : head;
3096 	struct kmem_cache_cpu *c;
3097 	unsigned long tid;
3098 
3099 	memcg_slab_free_hook(s, &head, 1);
3100 redo:
3101 	/*
3102 	 * Determine the currently cpus per cpu slab.
3103 	 * The cpu may change afterward. However that does not matter since
3104 	 * data is retrieved via this pointer. If we are on the same cpu
3105 	 * during the cmpxchg then the free will succeed.
3106 	 */
3107 	do {
3108 		tid = this_cpu_read(s->cpu_slab->tid);
3109 		c = raw_cpu_ptr(s->cpu_slab);
3110 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3111 		 unlikely(tid != READ_ONCE(c->tid)));
3112 
3113 	/* Same with comment on barrier() in slab_alloc_node() */
3114 	barrier();
3115 
3116 	if (likely(page == c->page)) {
3117 		void **freelist = READ_ONCE(c->freelist);
3118 
3119 		set_freepointer(s, tail_obj, freelist);
3120 
3121 		if (unlikely(!this_cpu_cmpxchg_double(
3122 				s->cpu_slab->freelist, s->cpu_slab->tid,
3123 				freelist, tid,
3124 				head, next_tid(tid)))) {
3125 
3126 			note_cmpxchg_failure("slab_free", s, tid);
3127 			goto redo;
3128 		}
3129 		stat(s, FREE_FASTPATH);
3130 	} else
3131 		__slab_free(s, page, head, tail_obj, cnt, addr);
3132 
3133 }
3134 
3135 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3136 				      void *head, void *tail, int cnt,
3137 				      unsigned long addr)
3138 {
3139 	/*
3140 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3141 	 * to remove objects, whose reuse must be delayed.
3142 	 */
3143 	if (slab_free_freelist_hook(s, &head, &tail))
3144 		do_slab_free(s, page, head, tail, cnt, addr);
3145 }
3146 
3147 #ifdef CONFIG_KASAN_GENERIC
3148 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3149 {
3150 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3151 }
3152 #endif
3153 
3154 void kmem_cache_free(struct kmem_cache *s, void *x)
3155 {
3156 	s = cache_from_obj(s, x);
3157 	if (!s)
3158 		return;
3159 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3160 	trace_kmem_cache_free(_RET_IP_, x);
3161 }
3162 EXPORT_SYMBOL(kmem_cache_free);
3163 
3164 struct detached_freelist {
3165 	struct page *page;
3166 	void *tail;
3167 	void *freelist;
3168 	int cnt;
3169 	struct kmem_cache *s;
3170 };
3171 
3172 /*
3173  * This function progressively scans the array with free objects (with
3174  * a limited look ahead) and extract objects belonging to the same
3175  * page.  It builds a detached freelist directly within the given
3176  * page/objects.  This can happen without any need for
3177  * synchronization, because the objects are owned by running process.
3178  * The freelist is build up as a single linked list in the objects.
3179  * The idea is, that this detached freelist can then be bulk
3180  * transferred to the real freelist(s), but only requiring a single
3181  * synchronization primitive.  Look ahead in the array is limited due
3182  * to performance reasons.
3183  */
3184 static inline
3185 int build_detached_freelist(struct kmem_cache *s, size_t size,
3186 			    void **p, struct detached_freelist *df)
3187 {
3188 	size_t first_skipped_index = 0;
3189 	int lookahead = 3;
3190 	void *object;
3191 	struct page *page;
3192 
3193 	/* Always re-init detached_freelist */
3194 	df->page = NULL;
3195 
3196 	do {
3197 		object = p[--size];
3198 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3199 	} while (!object && size);
3200 
3201 	if (!object)
3202 		return 0;
3203 
3204 	page = virt_to_head_page(object);
3205 	if (!s) {
3206 		/* Handle kalloc'ed objects */
3207 		if (unlikely(!PageSlab(page))) {
3208 			BUG_ON(!PageCompound(page));
3209 			kfree_hook(object);
3210 			__free_pages(page, compound_order(page));
3211 			p[size] = NULL; /* mark object processed */
3212 			return size;
3213 		}
3214 		/* Derive kmem_cache from object */
3215 		df->s = page->slab_cache;
3216 	} else {
3217 		df->s = cache_from_obj(s, object); /* Support for memcg */
3218 	}
3219 
3220 	/* Start new detached freelist */
3221 	df->page = page;
3222 	set_freepointer(df->s, object, NULL);
3223 	df->tail = object;
3224 	df->freelist = object;
3225 	p[size] = NULL; /* mark object processed */
3226 	df->cnt = 1;
3227 
3228 	while (size) {
3229 		object = p[--size];
3230 		if (!object)
3231 			continue; /* Skip processed objects */
3232 
3233 		/* df->page is always set at this point */
3234 		if (df->page == virt_to_head_page(object)) {
3235 			/* Opportunity build freelist */
3236 			set_freepointer(df->s, object, df->freelist);
3237 			df->freelist = object;
3238 			df->cnt++;
3239 			p[size] = NULL; /* mark object processed */
3240 
3241 			continue;
3242 		}
3243 
3244 		/* Limit look ahead search */
3245 		if (!--lookahead)
3246 			break;
3247 
3248 		if (!first_skipped_index)
3249 			first_skipped_index = size + 1;
3250 	}
3251 
3252 	return first_skipped_index;
3253 }
3254 
3255 /* Note that interrupts must be enabled when calling this function. */
3256 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3257 {
3258 	if (WARN_ON(!size))
3259 		return;
3260 
3261 	memcg_slab_free_hook(s, p, size);
3262 	do {
3263 		struct detached_freelist df;
3264 
3265 		size = build_detached_freelist(s, size, p, &df);
3266 		if (!df.page)
3267 			continue;
3268 
3269 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3270 	} while (likely(size));
3271 }
3272 EXPORT_SYMBOL(kmem_cache_free_bulk);
3273 
3274 /* Note that interrupts must be enabled when calling this function. */
3275 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3276 			  void **p)
3277 {
3278 	struct kmem_cache_cpu *c;
3279 	int i;
3280 	struct obj_cgroup *objcg = NULL;
3281 
3282 	/* memcg and kmem_cache debug support */
3283 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3284 	if (unlikely(!s))
3285 		return false;
3286 	/*
3287 	 * Drain objects in the per cpu slab, while disabling local
3288 	 * IRQs, which protects against PREEMPT and interrupts
3289 	 * handlers invoking normal fastpath.
3290 	 */
3291 	local_irq_disable();
3292 	c = this_cpu_ptr(s->cpu_slab);
3293 
3294 	for (i = 0; i < size; i++) {
3295 		void *object = c->freelist;
3296 
3297 		if (unlikely(!object)) {
3298 			/*
3299 			 * We may have removed an object from c->freelist using
3300 			 * the fastpath in the previous iteration; in that case,
3301 			 * c->tid has not been bumped yet.
3302 			 * Since ___slab_alloc() may reenable interrupts while
3303 			 * allocating memory, we should bump c->tid now.
3304 			 */
3305 			c->tid = next_tid(c->tid);
3306 
3307 			/*
3308 			 * Invoking slow path likely have side-effect
3309 			 * of re-populating per CPU c->freelist
3310 			 */
3311 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3312 					    _RET_IP_, c);
3313 			if (unlikely(!p[i]))
3314 				goto error;
3315 
3316 			c = this_cpu_ptr(s->cpu_slab);
3317 			maybe_wipe_obj_freeptr(s, p[i]);
3318 
3319 			continue; /* goto for-loop */
3320 		}
3321 		c->freelist = get_freepointer(s, object);
3322 		p[i] = object;
3323 		maybe_wipe_obj_freeptr(s, p[i]);
3324 	}
3325 	c->tid = next_tid(c->tid);
3326 	local_irq_enable();
3327 
3328 	/* Clear memory outside IRQ disabled fastpath loop */
3329 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3330 		int j;
3331 
3332 		for (j = 0; j < i; j++)
3333 			memset(kasan_reset_tag(p[j]), 0, s->object_size);
3334 	}
3335 
3336 	/* memcg and kmem_cache debug support */
3337 	slab_post_alloc_hook(s, objcg, flags, size, p);
3338 	return i;
3339 error:
3340 	local_irq_enable();
3341 	slab_post_alloc_hook(s, objcg, flags, i, p);
3342 	__kmem_cache_free_bulk(s, i, p);
3343 	return 0;
3344 }
3345 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3346 
3347 
3348 /*
3349  * Object placement in a slab is made very easy because we always start at
3350  * offset 0. If we tune the size of the object to the alignment then we can
3351  * get the required alignment by putting one properly sized object after
3352  * another.
3353  *
3354  * Notice that the allocation order determines the sizes of the per cpu
3355  * caches. Each processor has always one slab available for allocations.
3356  * Increasing the allocation order reduces the number of times that slabs
3357  * must be moved on and off the partial lists and is therefore a factor in
3358  * locking overhead.
3359  */
3360 
3361 /*
3362  * Mininum / Maximum order of slab pages. This influences locking overhead
3363  * and slab fragmentation. A higher order reduces the number of partial slabs
3364  * and increases the number of allocations possible without having to
3365  * take the list_lock.
3366  */
3367 static unsigned int slub_min_order;
3368 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3369 static unsigned int slub_min_objects;
3370 
3371 /*
3372  * Calculate the order of allocation given an slab object size.
3373  *
3374  * The order of allocation has significant impact on performance and other
3375  * system components. Generally order 0 allocations should be preferred since
3376  * order 0 does not cause fragmentation in the page allocator. Larger objects
3377  * be problematic to put into order 0 slabs because there may be too much
3378  * unused space left. We go to a higher order if more than 1/16th of the slab
3379  * would be wasted.
3380  *
3381  * In order to reach satisfactory performance we must ensure that a minimum
3382  * number of objects is in one slab. Otherwise we may generate too much
3383  * activity on the partial lists which requires taking the list_lock. This is
3384  * less a concern for large slabs though which are rarely used.
3385  *
3386  * slub_max_order specifies the order where we begin to stop considering the
3387  * number of objects in a slab as critical. If we reach slub_max_order then
3388  * we try to keep the page order as low as possible. So we accept more waste
3389  * of space in favor of a small page order.
3390  *
3391  * Higher order allocations also allow the placement of more objects in a
3392  * slab and thereby reduce object handling overhead. If the user has
3393  * requested a higher mininum order then we start with that one instead of
3394  * the smallest order which will fit the object.
3395  */
3396 static inline unsigned int slab_order(unsigned int size,
3397 		unsigned int min_objects, unsigned int max_order,
3398 		unsigned int fract_leftover)
3399 {
3400 	unsigned int min_order = slub_min_order;
3401 	unsigned int order;
3402 
3403 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3404 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3405 
3406 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3407 			order <= max_order; order++) {
3408 
3409 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3410 		unsigned int rem;
3411 
3412 		rem = slab_size % size;
3413 
3414 		if (rem <= slab_size / fract_leftover)
3415 			break;
3416 	}
3417 
3418 	return order;
3419 }
3420 
3421 static inline int calculate_order(unsigned int size)
3422 {
3423 	unsigned int order;
3424 	unsigned int min_objects;
3425 	unsigned int max_objects;
3426 	unsigned int nr_cpus;
3427 
3428 	/*
3429 	 * Attempt to find best configuration for a slab. This
3430 	 * works by first attempting to generate a layout with
3431 	 * the best configuration and backing off gradually.
3432 	 *
3433 	 * First we increase the acceptable waste in a slab. Then
3434 	 * we reduce the minimum objects required in a slab.
3435 	 */
3436 	min_objects = slub_min_objects;
3437 	if (!min_objects) {
3438 		/*
3439 		 * Some architectures will only update present cpus when
3440 		 * onlining them, so don't trust the number if it's just 1. But
3441 		 * we also don't want to use nr_cpu_ids always, as on some other
3442 		 * architectures, there can be many possible cpus, but never
3443 		 * onlined. Here we compromise between trying to avoid too high
3444 		 * order on systems that appear larger than they are, and too
3445 		 * low order on systems that appear smaller than they are.
3446 		 */
3447 		nr_cpus = num_present_cpus();
3448 		if (nr_cpus <= 1)
3449 			nr_cpus = nr_cpu_ids;
3450 		min_objects = 4 * (fls(nr_cpus) + 1);
3451 	}
3452 	max_objects = order_objects(slub_max_order, size);
3453 	min_objects = min(min_objects, max_objects);
3454 
3455 	while (min_objects > 1) {
3456 		unsigned int fraction;
3457 
3458 		fraction = 16;
3459 		while (fraction >= 4) {
3460 			order = slab_order(size, min_objects,
3461 					slub_max_order, fraction);
3462 			if (order <= slub_max_order)
3463 				return order;
3464 			fraction /= 2;
3465 		}
3466 		min_objects--;
3467 	}
3468 
3469 	/*
3470 	 * We were unable to place multiple objects in a slab. Now
3471 	 * lets see if we can place a single object there.
3472 	 */
3473 	order = slab_order(size, 1, slub_max_order, 1);
3474 	if (order <= slub_max_order)
3475 		return order;
3476 
3477 	/*
3478 	 * Doh this slab cannot be placed using slub_max_order.
3479 	 */
3480 	order = slab_order(size, 1, MAX_ORDER, 1);
3481 	if (order < MAX_ORDER)
3482 		return order;
3483 	return -ENOSYS;
3484 }
3485 
3486 static void
3487 init_kmem_cache_node(struct kmem_cache_node *n)
3488 {
3489 	n->nr_partial = 0;
3490 	spin_lock_init(&n->list_lock);
3491 	INIT_LIST_HEAD(&n->partial);
3492 #ifdef CONFIG_SLUB_DEBUG
3493 	atomic_long_set(&n->nr_slabs, 0);
3494 	atomic_long_set(&n->total_objects, 0);
3495 	INIT_LIST_HEAD(&n->full);
3496 #endif
3497 }
3498 
3499 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3500 {
3501 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3502 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3503 
3504 	/*
3505 	 * Must align to double word boundary for the double cmpxchg
3506 	 * instructions to work; see __pcpu_double_call_return_bool().
3507 	 */
3508 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3509 				     2 * sizeof(void *));
3510 
3511 	if (!s->cpu_slab)
3512 		return 0;
3513 
3514 	init_kmem_cache_cpus(s);
3515 
3516 	return 1;
3517 }
3518 
3519 static struct kmem_cache *kmem_cache_node;
3520 
3521 /*
3522  * No kmalloc_node yet so do it by hand. We know that this is the first
3523  * slab on the node for this slabcache. There are no concurrent accesses
3524  * possible.
3525  *
3526  * Note that this function only works on the kmem_cache_node
3527  * when allocating for the kmem_cache_node. This is used for bootstrapping
3528  * memory on a fresh node that has no slab structures yet.
3529  */
3530 static void early_kmem_cache_node_alloc(int node)
3531 {
3532 	struct page *page;
3533 	struct kmem_cache_node *n;
3534 
3535 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3536 
3537 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3538 
3539 	BUG_ON(!page);
3540 	if (page_to_nid(page) != node) {
3541 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3542 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3543 	}
3544 
3545 	n = page->freelist;
3546 	BUG_ON(!n);
3547 #ifdef CONFIG_SLUB_DEBUG
3548 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3549 	init_tracking(kmem_cache_node, n);
3550 #endif
3551 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3552 		      GFP_KERNEL);
3553 	page->freelist = get_freepointer(kmem_cache_node, n);
3554 	page->inuse = 1;
3555 	page->frozen = 0;
3556 	kmem_cache_node->node[node] = n;
3557 	init_kmem_cache_node(n);
3558 	inc_slabs_node(kmem_cache_node, node, page->objects);
3559 
3560 	/*
3561 	 * No locks need to be taken here as it has just been
3562 	 * initialized and there is no concurrent access.
3563 	 */
3564 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3565 }
3566 
3567 static void free_kmem_cache_nodes(struct kmem_cache *s)
3568 {
3569 	int node;
3570 	struct kmem_cache_node *n;
3571 
3572 	for_each_kmem_cache_node(s, node, n) {
3573 		s->node[node] = NULL;
3574 		kmem_cache_free(kmem_cache_node, n);
3575 	}
3576 }
3577 
3578 void __kmem_cache_release(struct kmem_cache *s)
3579 {
3580 	cache_random_seq_destroy(s);
3581 	free_percpu(s->cpu_slab);
3582 	free_kmem_cache_nodes(s);
3583 }
3584 
3585 static int init_kmem_cache_nodes(struct kmem_cache *s)
3586 {
3587 	int node;
3588 
3589 	for_each_node_state(node, N_NORMAL_MEMORY) {
3590 		struct kmem_cache_node *n;
3591 
3592 		if (slab_state == DOWN) {
3593 			early_kmem_cache_node_alloc(node);
3594 			continue;
3595 		}
3596 		n = kmem_cache_alloc_node(kmem_cache_node,
3597 						GFP_KERNEL, node);
3598 
3599 		if (!n) {
3600 			free_kmem_cache_nodes(s);
3601 			return 0;
3602 		}
3603 
3604 		init_kmem_cache_node(n);
3605 		s->node[node] = n;
3606 	}
3607 	return 1;
3608 }
3609 
3610 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3611 {
3612 	if (min < MIN_PARTIAL)
3613 		min = MIN_PARTIAL;
3614 	else if (min > MAX_PARTIAL)
3615 		min = MAX_PARTIAL;
3616 	s->min_partial = min;
3617 }
3618 
3619 static void set_cpu_partial(struct kmem_cache *s)
3620 {
3621 #ifdef CONFIG_SLUB_CPU_PARTIAL
3622 	/*
3623 	 * cpu_partial determined the maximum number of objects kept in the
3624 	 * per cpu partial lists of a processor.
3625 	 *
3626 	 * Per cpu partial lists mainly contain slabs that just have one
3627 	 * object freed. If they are used for allocation then they can be
3628 	 * filled up again with minimal effort. The slab will never hit the
3629 	 * per node partial lists and therefore no locking will be required.
3630 	 *
3631 	 * This setting also determines
3632 	 *
3633 	 * A) The number of objects from per cpu partial slabs dumped to the
3634 	 *    per node list when we reach the limit.
3635 	 * B) The number of objects in cpu partial slabs to extract from the
3636 	 *    per node list when we run out of per cpu objects. We only fetch
3637 	 *    50% to keep some capacity around for frees.
3638 	 */
3639 	if (!kmem_cache_has_cpu_partial(s))
3640 		slub_set_cpu_partial(s, 0);
3641 	else if (s->size >= PAGE_SIZE)
3642 		slub_set_cpu_partial(s, 2);
3643 	else if (s->size >= 1024)
3644 		slub_set_cpu_partial(s, 6);
3645 	else if (s->size >= 256)
3646 		slub_set_cpu_partial(s, 13);
3647 	else
3648 		slub_set_cpu_partial(s, 30);
3649 #endif
3650 }
3651 
3652 /*
3653  * calculate_sizes() determines the order and the distribution of data within
3654  * a slab object.
3655  */
3656 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3657 {
3658 	slab_flags_t flags = s->flags;
3659 	unsigned int size = s->object_size;
3660 	unsigned int freepointer_area;
3661 	unsigned int order;
3662 
3663 	/*
3664 	 * Round up object size to the next word boundary. We can only
3665 	 * place the free pointer at word boundaries and this determines
3666 	 * the possible location of the free pointer.
3667 	 */
3668 	size = ALIGN(size, sizeof(void *));
3669 	/*
3670 	 * This is the area of the object where a freepointer can be
3671 	 * safely written. If redzoning adds more to the inuse size, we
3672 	 * can't use that portion for writing the freepointer, so
3673 	 * s->offset must be limited within this for the general case.
3674 	 */
3675 	freepointer_area = size;
3676 
3677 #ifdef CONFIG_SLUB_DEBUG
3678 	/*
3679 	 * Determine if we can poison the object itself. If the user of
3680 	 * the slab may touch the object after free or before allocation
3681 	 * then we should never poison the object itself.
3682 	 */
3683 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3684 			!s->ctor)
3685 		s->flags |= __OBJECT_POISON;
3686 	else
3687 		s->flags &= ~__OBJECT_POISON;
3688 
3689 
3690 	/*
3691 	 * If we are Redzoning then check if there is some space between the
3692 	 * end of the object and the free pointer. If not then add an
3693 	 * additional word to have some bytes to store Redzone information.
3694 	 */
3695 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3696 		size += sizeof(void *);
3697 #endif
3698 
3699 	/*
3700 	 * With that we have determined the number of bytes in actual use
3701 	 * by the object. This is the potential offset to the free pointer.
3702 	 */
3703 	s->inuse = size;
3704 
3705 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3706 		s->ctor)) {
3707 		/*
3708 		 * Relocate free pointer after the object if it is not
3709 		 * permitted to overwrite the first word of the object on
3710 		 * kmem_cache_free.
3711 		 *
3712 		 * This is the case if we do RCU, have a constructor or
3713 		 * destructor or are poisoning the objects.
3714 		 *
3715 		 * The assumption that s->offset >= s->inuse means free
3716 		 * pointer is outside of the object is used in the
3717 		 * freeptr_outside_object() function. If that is no
3718 		 * longer true, the function needs to be modified.
3719 		 */
3720 		s->offset = size;
3721 		size += sizeof(void *);
3722 	} else if (freepointer_area > sizeof(void *)) {
3723 		/*
3724 		 * Store freelist pointer near middle of object to keep
3725 		 * it away from the edges of the object to avoid small
3726 		 * sized over/underflows from neighboring allocations.
3727 		 */
3728 		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3729 	}
3730 
3731 #ifdef CONFIG_SLUB_DEBUG
3732 	if (flags & SLAB_STORE_USER)
3733 		/*
3734 		 * Need to store information about allocs and frees after
3735 		 * the object.
3736 		 */
3737 		size += 2 * sizeof(struct track);
3738 #endif
3739 
3740 	kasan_cache_create(s, &size, &s->flags);
3741 #ifdef CONFIG_SLUB_DEBUG
3742 	if (flags & SLAB_RED_ZONE) {
3743 		/*
3744 		 * Add some empty padding so that we can catch
3745 		 * overwrites from earlier objects rather than let
3746 		 * tracking information or the free pointer be
3747 		 * corrupted if a user writes before the start
3748 		 * of the object.
3749 		 */
3750 		size += sizeof(void *);
3751 
3752 		s->red_left_pad = sizeof(void *);
3753 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3754 		size += s->red_left_pad;
3755 	}
3756 #endif
3757 
3758 	/*
3759 	 * SLUB stores one object immediately after another beginning from
3760 	 * offset 0. In order to align the objects we have to simply size
3761 	 * each object to conform to the alignment.
3762 	 */
3763 	size = ALIGN(size, s->align);
3764 	s->size = size;
3765 	s->reciprocal_size = reciprocal_value(size);
3766 	if (forced_order >= 0)
3767 		order = forced_order;
3768 	else
3769 		order = calculate_order(size);
3770 
3771 	if ((int)order < 0)
3772 		return 0;
3773 
3774 	s->allocflags = 0;
3775 	if (order)
3776 		s->allocflags |= __GFP_COMP;
3777 
3778 	if (s->flags & SLAB_CACHE_DMA)
3779 		s->allocflags |= GFP_DMA;
3780 
3781 	if (s->flags & SLAB_CACHE_DMA32)
3782 		s->allocflags |= GFP_DMA32;
3783 
3784 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3785 		s->allocflags |= __GFP_RECLAIMABLE;
3786 
3787 	/*
3788 	 * Determine the number of objects per slab
3789 	 */
3790 	s->oo = oo_make(order, size);
3791 	s->min = oo_make(get_order(size), size);
3792 	if (oo_objects(s->oo) > oo_objects(s->max))
3793 		s->max = s->oo;
3794 
3795 	return !!oo_objects(s->oo);
3796 }
3797 
3798 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3799 {
3800 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3801 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3802 	s->random = get_random_long();
3803 #endif
3804 
3805 	if (!calculate_sizes(s, -1))
3806 		goto error;
3807 	if (disable_higher_order_debug) {
3808 		/*
3809 		 * Disable debugging flags that store metadata if the min slab
3810 		 * order increased.
3811 		 */
3812 		if (get_order(s->size) > get_order(s->object_size)) {
3813 			s->flags &= ~DEBUG_METADATA_FLAGS;
3814 			s->offset = 0;
3815 			if (!calculate_sizes(s, -1))
3816 				goto error;
3817 		}
3818 	}
3819 
3820 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3821     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3822 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3823 		/* Enable fast mode */
3824 		s->flags |= __CMPXCHG_DOUBLE;
3825 #endif
3826 
3827 	/*
3828 	 * The larger the object size is, the more pages we want on the partial
3829 	 * list to avoid pounding the page allocator excessively.
3830 	 */
3831 	set_min_partial(s, ilog2(s->size) / 2);
3832 
3833 	set_cpu_partial(s);
3834 
3835 #ifdef CONFIG_NUMA
3836 	s->remote_node_defrag_ratio = 1000;
3837 #endif
3838 
3839 	/* Initialize the pre-computed randomized freelist if slab is up */
3840 	if (slab_state >= UP) {
3841 		if (init_cache_random_seq(s))
3842 			goto error;
3843 	}
3844 
3845 	if (!init_kmem_cache_nodes(s))
3846 		goto error;
3847 
3848 	if (alloc_kmem_cache_cpus(s))
3849 		return 0;
3850 
3851 	free_kmem_cache_nodes(s);
3852 error:
3853 	return -EINVAL;
3854 }
3855 
3856 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3857 			      const char *text)
3858 {
3859 #ifdef CONFIG_SLUB_DEBUG
3860 	void *addr = page_address(page);
3861 	unsigned long *map;
3862 	void *p;
3863 
3864 	slab_err(s, page, text, s->name);
3865 	slab_lock(page);
3866 
3867 	map = get_map(s, page);
3868 	for_each_object(p, s, addr, page->objects) {
3869 
3870 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3871 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3872 			print_tracking(s, p);
3873 		}
3874 	}
3875 	put_map(map);
3876 	slab_unlock(page);
3877 #endif
3878 }
3879 
3880 /*
3881  * Attempt to free all partial slabs on a node.
3882  * This is called from __kmem_cache_shutdown(). We must take list_lock
3883  * because sysfs file might still access partial list after the shutdowning.
3884  */
3885 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3886 {
3887 	LIST_HEAD(discard);
3888 	struct page *page, *h;
3889 
3890 	BUG_ON(irqs_disabled());
3891 	spin_lock_irq(&n->list_lock);
3892 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3893 		if (!page->inuse) {
3894 			remove_partial(n, page);
3895 			list_add(&page->slab_list, &discard);
3896 		} else {
3897 			list_slab_objects(s, page,
3898 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3899 		}
3900 	}
3901 	spin_unlock_irq(&n->list_lock);
3902 
3903 	list_for_each_entry_safe(page, h, &discard, slab_list)
3904 		discard_slab(s, page);
3905 }
3906 
3907 bool __kmem_cache_empty(struct kmem_cache *s)
3908 {
3909 	int node;
3910 	struct kmem_cache_node *n;
3911 
3912 	for_each_kmem_cache_node(s, node, n)
3913 		if (n->nr_partial || slabs_node(s, node))
3914 			return false;
3915 	return true;
3916 }
3917 
3918 /*
3919  * Release all resources used by a slab cache.
3920  */
3921 int __kmem_cache_shutdown(struct kmem_cache *s)
3922 {
3923 	int node;
3924 	struct kmem_cache_node *n;
3925 
3926 	flush_all(s);
3927 	/* Attempt to free all objects */
3928 	for_each_kmem_cache_node(s, node, n) {
3929 		free_partial(s, n);
3930 		if (n->nr_partial || slabs_node(s, node))
3931 			return 1;
3932 	}
3933 	return 0;
3934 }
3935 
3936 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3937 {
3938 	void *base;
3939 	int __maybe_unused i;
3940 	unsigned int objnr;
3941 	void *objp;
3942 	void *objp0;
3943 	struct kmem_cache *s = page->slab_cache;
3944 	struct track __maybe_unused *trackp;
3945 
3946 	kpp->kp_ptr = object;
3947 	kpp->kp_page = page;
3948 	kpp->kp_slab_cache = s;
3949 	base = page_address(page);
3950 	objp0 = kasan_reset_tag(object);
3951 #ifdef CONFIG_SLUB_DEBUG
3952 	objp = restore_red_left(s, objp0);
3953 #else
3954 	objp = objp0;
3955 #endif
3956 	objnr = obj_to_index(s, page, objp);
3957 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3958 	objp = base + s->size * objnr;
3959 	kpp->kp_objp = objp;
3960 	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
3961 	    !(s->flags & SLAB_STORE_USER))
3962 		return;
3963 #ifdef CONFIG_SLUB_DEBUG
3964 	trackp = get_track(s, objp, TRACK_ALLOC);
3965 	kpp->kp_ret = (void *)trackp->addr;
3966 #ifdef CONFIG_STACKTRACE
3967 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
3968 		kpp->kp_stack[i] = (void *)trackp->addrs[i];
3969 		if (!kpp->kp_stack[i])
3970 			break;
3971 	}
3972 #endif
3973 #endif
3974 }
3975 
3976 /********************************************************************
3977  *		Kmalloc subsystem
3978  *******************************************************************/
3979 
3980 static int __init setup_slub_min_order(char *str)
3981 {
3982 	get_option(&str, (int *)&slub_min_order);
3983 
3984 	return 1;
3985 }
3986 
3987 __setup("slub_min_order=", setup_slub_min_order);
3988 
3989 static int __init setup_slub_max_order(char *str)
3990 {
3991 	get_option(&str, (int *)&slub_max_order);
3992 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3993 
3994 	return 1;
3995 }
3996 
3997 __setup("slub_max_order=", setup_slub_max_order);
3998 
3999 static int __init setup_slub_min_objects(char *str)
4000 {
4001 	get_option(&str, (int *)&slub_min_objects);
4002 
4003 	return 1;
4004 }
4005 
4006 __setup("slub_min_objects=", setup_slub_min_objects);
4007 
4008 void *__kmalloc(size_t size, gfp_t flags)
4009 {
4010 	struct kmem_cache *s;
4011 	void *ret;
4012 
4013 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4014 		return kmalloc_large(size, flags);
4015 
4016 	s = kmalloc_slab(size, flags);
4017 
4018 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4019 		return s;
4020 
4021 	ret = slab_alloc(s, flags, _RET_IP_);
4022 
4023 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4024 
4025 	ret = kasan_kmalloc(s, ret, size, flags);
4026 
4027 	return ret;
4028 }
4029 EXPORT_SYMBOL(__kmalloc);
4030 
4031 #ifdef CONFIG_NUMA
4032 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4033 {
4034 	struct page *page;
4035 	void *ptr = NULL;
4036 	unsigned int order = get_order(size);
4037 
4038 	flags |= __GFP_COMP;
4039 	page = alloc_pages_node(node, flags, order);
4040 	if (page) {
4041 		ptr = page_address(page);
4042 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4043 				    PAGE_SIZE << order);
4044 	}
4045 
4046 	return kmalloc_large_node_hook(ptr, size, flags);
4047 }
4048 
4049 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4050 {
4051 	struct kmem_cache *s;
4052 	void *ret;
4053 
4054 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4055 		ret = kmalloc_large_node(size, flags, node);
4056 
4057 		trace_kmalloc_node(_RET_IP_, ret,
4058 				   size, PAGE_SIZE << get_order(size),
4059 				   flags, node);
4060 
4061 		return ret;
4062 	}
4063 
4064 	s = kmalloc_slab(size, flags);
4065 
4066 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4067 		return s;
4068 
4069 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
4070 
4071 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4072 
4073 	ret = kasan_kmalloc(s, ret, size, flags);
4074 
4075 	return ret;
4076 }
4077 EXPORT_SYMBOL(__kmalloc_node);
4078 #endif	/* CONFIG_NUMA */
4079 
4080 #ifdef CONFIG_HARDENED_USERCOPY
4081 /*
4082  * Rejects incorrectly sized objects and objects that are to be copied
4083  * to/from userspace but do not fall entirely within the containing slab
4084  * cache's usercopy region.
4085  *
4086  * Returns NULL if check passes, otherwise const char * to name of cache
4087  * to indicate an error.
4088  */
4089 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4090 			 bool to_user)
4091 {
4092 	struct kmem_cache *s;
4093 	unsigned int offset;
4094 	size_t object_size;
4095 
4096 	ptr = kasan_reset_tag(ptr);
4097 
4098 	/* Find object and usable object size. */
4099 	s = page->slab_cache;
4100 
4101 	/* Reject impossible pointers. */
4102 	if (ptr < page_address(page))
4103 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4104 			       to_user, 0, n);
4105 
4106 	/* Find offset within object. */
4107 	offset = (ptr - page_address(page)) % s->size;
4108 
4109 	/* Adjust for redzone and reject if within the redzone. */
4110 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4111 		if (offset < s->red_left_pad)
4112 			usercopy_abort("SLUB object in left red zone",
4113 				       s->name, to_user, offset, n);
4114 		offset -= s->red_left_pad;
4115 	}
4116 
4117 	/* Allow address range falling entirely within usercopy region. */
4118 	if (offset >= s->useroffset &&
4119 	    offset - s->useroffset <= s->usersize &&
4120 	    n <= s->useroffset - offset + s->usersize)
4121 		return;
4122 
4123 	/*
4124 	 * If the copy is still within the allocated object, produce
4125 	 * a warning instead of rejecting the copy. This is intended
4126 	 * to be a temporary method to find any missing usercopy
4127 	 * whitelists.
4128 	 */
4129 	object_size = slab_ksize(s);
4130 	if (usercopy_fallback &&
4131 	    offset <= object_size && n <= object_size - offset) {
4132 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4133 		return;
4134 	}
4135 
4136 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4137 }
4138 #endif /* CONFIG_HARDENED_USERCOPY */
4139 
4140 size_t __ksize(const void *object)
4141 {
4142 	struct page *page;
4143 
4144 	if (unlikely(object == ZERO_SIZE_PTR))
4145 		return 0;
4146 
4147 	page = virt_to_head_page(object);
4148 
4149 	if (unlikely(!PageSlab(page))) {
4150 		WARN_ON(!PageCompound(page));
4151 		return page_size(page);
4152 	}
4153 
4154 	return slab_ksize(page->slab_cache);
4155 }
4156 EXPORT_SYMBOL(__ksize);
4157 
4158 void kfree(const void *x)
4159 {
4160 	struct page *page;
4161 	void *object = (void *)x;
4162 
4163 	trace_kfree(_RET_IP_, x);
4164 
4165 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4166 		return;
4167 
4168 	page = virt_to_head_page(x);
4169 	if (unlikely(!PageSlab(page))) {
4170 		unsigned int order = compound_order(page);
4171 
4172 		BUG_ON(!PageCompound(page));
4173 		kfree_hook(object);
4174 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4175 				    -(PAGE_SIZE << order));
4176 		__free_pages(page, order);
4177 		return;
4178 	}
4179 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4180 }
4181 EXPORT_SYMBOL(kfree);
4182 
4183 #define SHRINK_PROMOTE_MAX 32
4184 
4185 /*
4186  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4187  * up most to the head of the partial lists. New allocations will then
4188  * fill those up and thus they can be removed from the partial lists.
4189  *
4190  * The slabs with the least items are placed last. This results in them
4191  * being allocated from last increasing the chance that the last objects
4192  * are freed in them.
4193  */
4194 int __kmem_cache_shrink(struct kmem_cache *s)
4195 {
4196 	int node;
4197 	int i;
4198 	struct kmem_cache_node *n;
4199 	struct page *page;
4200 	struct page *t;
4201 	struct list_head discard;
4202 	struct list_head promote[SHRINK_PROMOTE_MAX];
4203 	unsigned long flags;
4204 	int ret = 0;
4205 
4206 	flush_all(s);
4207 	for_each_kmem_cache_node(s, node, n) {
4208 		INIT_LIST_HEAD(&discard);
4209 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4210 			INIT_LIST_HEAD(promote + i);
4211 
4212 		spin_lock_irqsave(&n->list_lock, flags);
4213 
4214 		/*
4215 		 * Build lists of slabs to discard or promote.
4216 		 *
4217 		 * Note that concurrent frees may occur while we hold the
4218 		 * list_lock. page->inuse here is the upper limit.
4219 		 */
4220 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4221 			int free = page->objects - page->inuse;
4222 
4223 			/* Do not reread page->inuse */
4224 			barrier();
4225 
4226 			/* We do not keep full slabs on the list */
4227 			BUG_ON(free <= 0);
4228 
4229 			if (free == page->objects) {
4230 				list_move(&page->slab_list, &discard);
4231 				n->nr_partial--;
4232 			} else if (free <= SHRINK_PROMOTE_MAX)
4233 				list_move(&page->slab_list, promote + free - 1);
4234 		}
4235 
4236 		/*
4237 		 * Promote the slabs filled up most to the head of the
4238 		 * partial list.
4239 		 */
4240 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4241 			list_splice(promote + i, &n->partial);
4242 
4243 		spin_unlock_irqrestore(&n->list_lock, flags);
4244 
4245 		/* Release empty slabs */
4246 		list_for_each_entry_safe(page, t, &discard, slab_list)
4247 			discard_slab(s, page);
4248 
4249 		if (slabs_node(s, node))
4250 			ret = 1;
4251 	}
4252 
4253 	return ret;
4254 }
4255 
4256 static int slab_mem_going_offline_callback(void *arg)
4257 {
4258 	struct kmem_cache *s;
4259 
4260 	mutex_lock(&slab_mutex);
4261 	list_for_each_entry(s, &slab_caches, list)
4262 		__kmem_cache_shrink(s);
4263 	mutex_unlock(&slab_mutex);
4264 
4265 	return 0;
4266 }
4267 
4268 static void slab_mem_offline_callback(void *arg)
4269 {
4270 	struct kmem_cache_node *n;
4271 	struct kmem_cache *s;
4272 	struct memory_notify *marg = arg;
4273 	int offline_node;
4274 
4275 	offline_node = marg->status_change_nid_normal;
4276 
4277 	/*
4278 	 * If the node still has available memory. we need kmem_cache_node
4279 	 * for it yet.
4280 	 */
4281 	if (offline_node < 0)
4282 		return;
4283 
4284 	mutex_lock(&slab_mutex);
4285 	list_for_each_entry(s, &slab_caches, list) {
4286 		n = get_node(s, offline_node);
4287 		if (n) {
4288 			/*
4289 			 * if n->nr_slabs > 0, slabs still exist on the node
4290 			 * that is going down. We were unable to free them,
4291 			 * and offline_pages() function shouldn't call this
4292 			 * callback. So, we must fail.
4293 			 */
4294 			BUG_ON(slabs_node(s, offline_node));
4295 
4296 			s->node[offline_node] = NULL;
4297 			kmem_cache_free(kmem_cache_node, n);
4298 		}
4299 	}
4300 	mutex_unlock(&slab_mutex);
4301 }
4302 
4303 static int slab_mem_going_online_callback(void *arg)
4304 {
4305 	struct kmem_cache_node *n;
4306 	struct kmem_cache *s;
4307 	struct memory_notify *marg = arg;
4308 	int nid = marg->status_change_nid_normal;
4309 	int ret = 0;
4310 
4311 	/*
4312 	 * If the node's memory is already available, then kmem_cache_node is
4313 	 * already created. Nothing to do.
4314 	 */
4315 	if (nid < 0)
4316 		return 0;
4317 
4318 	/*
4319 	 * We are bringing a node online. No memory is available yet. We must
4320 	 * allocate a kmem_cache_node structure in order to bring the node
4321 	 * online.
4322 	 */
4323 	mutex_lock(&slab_mutex);
4324 	list_for_each_entry(s, &slab_caches, list) {
4325 		/*
4326 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4327 		 *      since memory is not yet available from the node that
4328 		 *      is brought up.
4329 		 */
4330 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4331 		if (!n) {
4332 			ret = -ENOMEM;
4333 			goto out;
4334 		}
4335 		init_kmem_cache_node(n);
4336 		s->node[nid] = n;
4337 	}
4338 out:
4339 	mutex_unlock(&slab_mutex);
4340 	return ret;
4341 }
4342 
4343 static int slab_memory_callback(struct notifier_block *self,
4344 				unsigned long action, void *arg)
4345 {
4346 	int ret = 0;
4347 
4348 	switch (action) {
4349 	case MEM_GOING_ONLINE:
4350 		ret = slab_mem_going_online_callback(arg);
4351 		break;
4352 	case MEM_GOING_OFFLINE:
4353 		ret = slab_mem_going_offline_callback(arg);
4354 		break;
4355 	case MEM_OFFLINE:
4356 	case MEM_CANCEL_ONLINE:
4357 		slab_mem_offline_callback(arg);
4358 		break;
4359 	case MEM_ONLINE:
4360 	case MEM_CANCEL_OFFLINE:
4361 		break;
4362 	}
4363 	if (ret)
4364 		ret = notifier_from_errno(ret);
4365 	else
4366 		ret = NOTIFY_OK;
4367 	return ret;
4368 }
4369 
4370 static struct notifier_block slab_memory_callback_nb = {
4371 	.notifier_call = slab_memory_callback,
4372 	.priority = SLAB_CALLBACK_PRI,
4373 };
4374 
4375 /********************************************************************
4376  *			Basic setup of slabs
4377  *******************************************************************/
4378 
4379 /*
4380  * Used for early kmem_cache structures that were allocated using
4381  * the page allocator. Allocate them properly then fix up the pointers
4382  * that may be pointing to the wrong kmem_cache structure.
4383  */
4384 
4385 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4386 {
4387 	int node;
4388 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4389 	struct kmem_cache_node *n;
4390 
4391 	memcpy(s, static_cache, kmem_cache->object_size);
4392 
4393 	/*
4394 	 * This runs very early, and only the boot processor is supposed to be
4395 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4396 	 * IPIs around.
4397 	 */
4398 	__flush_cpu_slab(s, smp_processor_id());
4399 	for_each_kmem_cache_node(s, node, n) {
4400 		struct page *p;
4401 
4402 		list_for_each_entry(p, &n->partial, slab_list)
4403 			p->slab_cache = s;
4404 
4405 #ifdef CONFIG_SLUB_DEBUG
4406 		list_for_each_entry(p, &n->full, slab_list)
4407 			p->slab_cache = s;
4408 #endif
4409 	}
4410 	list_add(&s->list, &slab_caches);
4411 	return s;
4412 }
4413 
4414 void __init kmem_cache_init(void)
4415 {
4416 	static __initdata struct kmem_cache boot_kmem_cache,
4417 		boot_kmem_cache_node;
4418 
4419 	if (debug_guardpage_minorder())
4420 		slub_max_order = 0;
4421 
4422 	kmem_cache_node = &boot_kmem_cache_node;
4423 	kmem_cache = &boot_kmem_cache;
4424 
4425 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4426 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4427 
4428 	register_hotmemory_notifier(&slab_memory_callback_nb);
4429 
4430 	/* Able to allocate the per node structures */
4431 	slab_state = PARTIAL;
4432 
4433 	create_boot_cache(kmem_cache, "kmem_cache",
4434 			offsetof(struct kmem_cache, node) +
4435 				nr_node_ids * sizeof(struct kmem_cache_node *),
4436 		       SLAB_HWCACHE_ALIGN, 0, 0);
4437 
4438 	kmem_cache = bootstrap(&boot_kmem_cache);
4439 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4440 
4441 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4442 	setup_kmalloc_cache_index_table();
4443 	create_kmalloc_caches(0);
4444 
4445 	/* Setup random freelists for each cache */
4446 	init_freelist_randomization();
4447 
4448 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4449 				  slub_cpu_dead);
4450 
4451 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4452 		cache_line_size(),
4453 		slub_min_order, slub_max_order, slub_min_objects,
4454 		nr_cpu_ids, nr_node_ids);
4455 }
4456 
4457 void __init kmem_cache_init_late(void)
4458 {
4459 }
4460 
4461 struct kmem_cache *
4462 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4463 		   slab_flags_t flags, void (*ctor)(void *))
4464 {
4465 	struct kmem_cache *s;
4466 
4467 	s = find_mergeable(size, align, flags, name, ctor);
4468 	if (s) {
4469 		s->refcount++;
4470 
4471 		/*
4472 		 * Adjust the object sizes so that we clear
4473 		 * the complete object on kzalloc.
4474 		 */
4475 		s->object_size = max(s->object_size, size);
4476 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4477 
4478 		if (sysfs_slab_alias(s, name)) {
4479 			s->refcount--;
4480 			s = NULL;
4481 		}
4482 	}
4483 
4484 	return s;
4485 }
4486 
4487 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4488 {
4489 	int err;
4490 
4491 	err = kmem_cache_open(s, flags);
4492 	if (err)
4493 		return err;
4494 
4495 	/* Mutex is not taken during early boot */
4496 	if (slab_state <= UP)
4497 		return 0;
4498 
4499 	err = sysfs_slab_add(s);
4500 	if (err)
4501 		__kmem_cache_release(s);
4502 
4503 	return err;
4504 }
4505 
4506 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4507 {
4508 	struct kmem_cache *s;
4509 	void *ret;
4510 
4511 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4512 		return kmalloc_large(size, gfpflags);
4513 
4514 	s = kmalloc_slab(size, gfpflags);
4515 
4516 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4517 		return s;
4518 
4519 	ret = slab_alloc(s, gfpflags, caller);
4520 
4521 	/* Honor the call site pointer we received. */
4522 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4523 
4524 	return ret;
4525 }
4526 EXPORT_SYMBOL(__kmalloc_track_caller);
4527 
4528 #ifdef CONFIG_NUMA
4529 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4530 					int node, unsigned long caller)
4531 {
4532 	struct kmem_cache *s;
4533 	void *ret;
4534 
4535 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4536 		ret = kmalloc_large_node(size, gfpflags, node);
4537 
4538 		trace_kmalloc_node(caller, ret,
4539 				   size, PAGE_SIZE << get_order(size),
4540 				   gfpflags, node);
4541 
4542 		return ret;
4543 	}
4544 
4545 	s = kmalloc_slab(size, gfpflags);
4546 
4547 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4548 		return s;
4549 
4550 	ret = slab_alloc_node(s, gfpflags, node, caller);
4551 
4552 	/* Honor the call site pointer we received. */
4553 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4554 
4555 	return ret;
4556 }
4557 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4558 #endif
4559 
4560 #ifdef CONFIG_SYSFS
4561 static int count_inuse(struct page *page)
4562 {
4563 	return page->inuse;
4564 }
4565 
4566 static int count_total(struct page *page)
4567 {
4568 	return page->objects;
4569 }
4570 #endif
4571 
4572 #ifdef CONFIG_SLUB_DEBUG
4573 static void validate_slab(struct kmem_cache *s, struct page *page)
4574 {
4575 	void *p;
4576 	void *addr = page_address(page);
4577 	unsigned long *map;
4578 
4579 	slab_lock(page);
4580 
4581 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4582 		goto unlock;
4583 
4584 	/* Now we know that a valid freelist exists */
4585 	map = get_map(s, page);
4586 	for_each_object(p, s, addr, page->objects) {
4587 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4588 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4589 
4590 		if (!check_object(s, page, p, val))
4591 			break;
4592 	}
4593 	put_map(map);
4594 unlock:
4595 	slab_unlock(page);
4596 }
4597 
4598 static int validate_slab_node(struct kmem_cache *s,
4599 		struct kmem_cache_node *n)
4600 {
4601 	unsigned long count = 0;
4602 	struct page *page;
4603 	unsigned long flags;
4604 
4605 	spin_lock_irqsave(&n->list_lock, flags);
4606 
4607 	list_for_each_entry(page, &n->partial, slab_list) {
4608 		validate_slab(s, page);
4609 		count++;
4610 	}
4611 	if (count != n->nr_partial)
4612 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4613 		       s->name, count, n->nr_partial);
4614 
4615 	if (!(s->flags & SLAB_STORE_USER))
4616 		goto out;
4617 
4618 	list_for_each_entry(page, &n->full, slab_list) {
4619 		validate_slab(s, page);
4620 		count++;
4621 	}
4622 	if (count != atomic_long_read(&n->nr_slabs))
4623 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4624 		       s->name, count, atomic_long_read(&n->nr_slabs));
4625 
4626 out:
4627 	spin_unlock_irqrestore(&n->list_lock, flags);
4628 	return count;
4629 }
4630 
4631 static long validate_slab_cache(struct kmem_cache *s)
4632 {
4633 	int node;
4634 	unsigned long count = 0;
4635 	struct kmem_cache_node *n;
4636 
4637 	flush_all(s);
4638 	for_each_kmem_cache_node(s, node, n)
4639 		count += validate_slab_node(s, n);
4640 
4641 	return count;
4642 }
4643 /*
4644  * Generate lists of code addresses where slabcache objects are allocated
4645  * and freed.
4646  */
4647 
4648 struct location {
4649 	unsigned long count;
4650 	unsigned long addr;
4651 	long long sum_time;
4652 	long min_time;
4653 	long max_time;
4654 	long min_pid;
4655 	long max_pid;
4656 	DECLARE_BITMAP(cpus, NR_CPUS);
4657 	nodemask_t nodes;
4658 };
4659 
4660 struct loc_track {
4661 	unsigned long max;
4662 	unsigned long count;
4663 	struct location *loc;
4664 };
4665 
4666 static void free_loc_track(struct loc_track *t)
4667 {
4668 	if (t->max)
4669 		free_pages((unsigned long)t->loc,
4670 			get_order(sizeof(struct location) * t->max));
4671 }
4672 
4673 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4674 {
4675 	struct location *l;
4676 	int order;
4677 
4678 	order = get_order(sizeof(struct location) * max);
4679 
4680 	l = (void *)__get_free_pages(flags, order);
4681 	if (!l)
4682 		return 0;
4683 
4684 	if (t->count) {
4685 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4686 		free_loc_track(t);
4687 	}
4688 	t->max = max;
4689 	t->loc = l;
4690 	return 1;
4691 }
4692 
4693 static int add_location(struct loc_track *t, struct kmem_cache *s,
4694 				const struct track *track)
4695 {
4696 	long start, end, pos;
4697 	struct location *l;
4698 	unsigned long caddr;
4699 	unsigned long age = jiffies - track->when;
4700 
4701 	start = -1;
4702 	end = t->count;
4703 
4704 	for ( ; ; ) {
4705 		pos = start + (end - start + 1) / 2;
4706 
4707 		/*
4708 		 * There is nothing at "end". If we end up there
4709 		 * we need to add something to before end.
4710 		 */
4711 		if (pos == end)
4712 			break;
4713 
4714 		caddr = t->loc[pos].addr;
4715 		if (track->addr == caddr) {
4716 
4717 			l = &t->loc[pos];
4718 			l->count++;
4719 			if (track->when) {
4720 				l->sum_time += age;
4721 				if (age < l->min_time)
4722 					l->min_time = age;
4723 				if (age > l->max_time)
4724 					l->max_time = age;
4725 
4726 				if (track->pid < l->min_pid)
4727 					l->min_pid = track->pid;
4728 				if (track->pid > l->max_pid)
4729 					l->max_pid = track->pid;
4730 
4731 				cpumask_set_cpu(track->cpu,
4732 						to_cpumask(l->cpus));
4733 			}
4734 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4735 			return 1;
4736 		}
4737 
4738 		if (track->addr < caddr)
4739 			end = pos;
4740 		else
4741 			start = pos;
4742 	}
4743 
4744 	/*
4745 	 * Not found. Insert new tracking element.
4746 	 */
4747 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4748 		return 0;
4749 
4750 	l = t->loc + pos;
4751 	if (pos < t->count)
4752 		memmove(l + 1, l,
4753 			(t->count - pos) * sizeof(struct location));
4754 	t->count++;
4755 	l->count = 1;
4756 	l->addr = track->addr;
4757 	l->sum_time = age;
4758 	l->min_time = age;
4759 	l->max_time = age;
4760 	l->min_pid = track->pid;
4761 	l->max_pid = track->pid;
4762 	cpumask_clear(to_cpumask(l->cpus));
4763 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4764 	nodes_clear(l->nodes);
4765 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4766 	return 1;
4767 }
4768 
4769 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4770 		struct page *page, enum track_item alloc)
4771 {
4772 	void *addr = page_address(page);
4773 	void *p;
4774 	unsigned long *map;
4775 
4776 	map = get_map(s, page);
4777 	for_each_object(p, s, addr, page->objects)
4778 		if (!test_bit(__obj_to_index(s, addr, p), map))
4779 			add_location(t, s, get_track(s, p, alloc));
4780 	put_map(map);
4781 }
4782 
4783 static int list_locations(struct kmem_cache *s, char *buf,
4784 			  enum track_item alloc)
4785 {
4786 	int len = 0;
4787 	unsigned long i;
4788 	struct loc_track t = { 0, 0, NULL };
4789 	int node;
4790 	struct kmem_cache_node *n;
4791 
4792 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4793 			     GFP_KERNEL)) {
4794 		return sysfs_emit(buf, "Out of memory\n");
4795 	}
4796 	/* Push back cpu slabs */
4797 	flush_all(s);
4798 
4799 	for_each_kmem_cache_node(s, node, n) {
4800 		unsigned long flags;
4801 		struct page *page;
4802 
4803 		if (!atomic_long_read(&n->nr_slabs))
4804 			continue;
4805 
4806 		spin_lock_irqsave(&n->list_lock, flags);
4807 		list_for_each_entry(page, &n->partial, slab_list)
4808 			process_slab(&t, s, page, alloc);
4809 		list_for_each_entry(page, &n->full, slab_list)
4810 			process_slab(&t, s, page, alloc);
4811 		spin_unlock_irqrestore(&n->list_lock, flags);
4812 	}
4813 
4814 	for (i = 0; i < t.count; i++) {
4815 		struct location *l = &t.loc[i];
4816 
4817 		len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4818 
4819 		if (l->addr)
4820 			len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4821 		else
4822 			len += sysfs_emit_at(buf, len, "<not-available>");
4823 
4824 		if (l->sum_time != l->min_time)
4825 			len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4826 					     l->min_time,
4827 					     (long)div_u64(l->sum_time,
4828 							   l->count),
4829 					     l->max_time);
4830 		else
4831 			len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4832 
4833 		if (l->min_pid != l->max_pid)
4834 			len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4835 					     l->min_pid, l->max_pid);
4836 		else
4837 			len += sysfs_emit_at(buf, len, " pid=%ld",
4838 					     l->min_pid);
4839 
4840 		if (num_online_cpus() > 1 &&
4841 		    !cpumask_empty(to_cpumask(l->cpus)))
4842 			len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4843 					     cpumask_pr_args(to_cpumask(l->cpus)));
4844 
4845 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4846 			len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4847 					     nodemask_pr_args(&l->nodes));
4848 
4849 		len += sysfs_emit_at(buf, len, "\n");
4850 	}
4851 
4852 	free_loc_track(&t);
4853 	if (!t.count)
4854 		len += sysfs_emit_at(buf, len, "No data\n");
4855 
4856 	return len;
4857 }
4858 #endif	/* CONFIG_SLUB_DEBUG */
4859 
4860 #ifdef SLUB_RESILIENCY_TEST
4861 static void __init resiliency_test(void)
4862 {
4863 	u8 *p;
4864 	int type = KMALLOC_NORMAL;
4865 
4866 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4867 
4868 	pr_err("SLUB resiliency testing\n");
4869 	pr_err("-----------------------\n");
4870 	pr_err("A. Corruption after allocation\n");
4871 
4872 	p = kzalloc(16, GFP_KERNEL);
4873 	p[16] = 0x12;
4874 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4875 	       p + 16);
4876 
4877 	validate_slab_cache(kmalloc_caches[type][4]);
4878 
4879 	/* Hmmm... The next two are dangerous */
4880 	p = kzalloc(32, GFP_KERNEL);
4881 	p[32 + sizeof(void *)] = 0x34;
4882 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4883 	       p);
4884 	pr_err("If allocated object is overwritten then not detectable\n\n");
4885 
4886 	validate_slab_cache(kmalloc_caches[type][5]);
4887 	p = kzalloc(64, GFP_KERNEL);
4888 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4889 	*p = 0x56;
4890 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4891 	       p);
4892 	pr_err("If allocated object is overwritten then not detectable\n\n");
4893 	validate_slab_cache(kmalloc_caches[type][6]);
4894 
4895 	pr_err("\nB. Corruption after free\n");
4896 	p = kzalloc(128, GFP_KERNEL);
4897 	kfree(p);
4898 	*p = 0x78;
4899 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4900 	validate_slab_cache(kmalloc_caches[type][7]);
4901 
4902 	p = kzalloc(256, GFP_KERNEL);
4903 	kfree(p);
4904 	p[50] = 0x9a;
4905 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4906 	validate_slab_cache(kmalloc_caches[type][8]);
4907 
4908 	p = kzalloc(512, GFP_KERNEL);
4909 	kfree(p);
4910 	p[512] = 0xab;
4911 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4912 	validate_slab_cache(kmalloc_caches[type][9]);
4913 }
4914 #else
4915 #ifdef CONFIG_SYSFS
4916 static void resiliency_test(void) {};
4917 #endif
4918 #endif	/* SLUB_RESILIENCY_TEST */
4919 
4920 #ifdef CONFIG_SYSFS
4921 enum slab_stat_type {
4922 	SL_ALL,			/* All slabs */
4923 	SL_PARTIAL,		/* Only partially allocated slabs */
4924 	SL_CPU,			/* Only slabs used for cpu caches */
4925 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4926 	SL_TOTAL		/* Determine object capacity not slabs */
4927 };
4928 
4929 #define SO_ALL		(1 << SL_ALL)
4930 #define SO_PARTIAL	(1 << SL_PARTIAL)
4931 #define SO_CPU		(1 << SL_CPU)
4932 #define SO_OBJECTS	(1 << SL_OBJECTS)
4933 #define SO_TOTAL	(1 << SL_TOTAL)
4934 
4935 #ifdef CONFIG_MEMCG
4936 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4937 
4938 static int __init setup_slub_memcg_sysfs(char *str)
4939 {
4940 	int v;
4941 
4942 	if (get_option(&str, &v) > 0)
4943 		memcg_sysfs_enabled = v;
4944 
4945 	return 1;
4946 }
4947 
4948 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4949 #endif
4950 
4951 static ssize_t show_slab_objects(struct kmem_cache *s,
4952 				 char *buf, unsigned long flags)
4953 {
4954 	unsigned long total = 0;
4955 	int node;
4956 	int x;
4957 	unsigned long *nodes;
4958 	int len = 0;
4959 
4960 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4961 	if (!nodes)
4962 		return -ENOMEM;
4963 
4964 	if (flags & SO_CPU) {
4965 		int cpu;
4966 
4967 		for_each_possible_cpu(cpu) {
4968 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4969 							       cpu);
4970 			int node;
4971 			struct page *page;
4972 
4973 			page = READ_ONCE(c->page);
4974 			if (!page)
4975 				continue;
4976 
4977 			node = page_to_nid(page);
4978 			if (flags & SO_TOTAL)
4979 				x = page->objects;
4980 			else if (flags & SO_OBJECTS)
4981 				x = page->inuse;
4982 			else
4983 				x = 1;
4984 
4985 			total += x;
4986 			nodes[node] += x;
4987 
4988 			page = slub_percpu_partial_read_once(c);
4989 			if (page) {
4990 				node = page_to_nid(page);
4991 				if (flags & SO_TOTAL)
4992 					WARN_ON_ONCE(1);
4993 				else if (flags & SO_OBJECTS)
4994 					WARN_ON_ONCE(1);
4995 				else
4996 					x = page->pages;
4997 				total += x;
4998 				nodes[node] += x;
4999 			}
5000 		}
5001 	}
5002 
5003 	/*
5004 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5005 	 * already held which will conflict with an existing lock order:
5006 	 *
5007 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5008 	 *
5009 	 * We don't really need mem_hotplug_lock (to hold off
5010 	 * slab_mem_going_offline_callback) here because slab's memory hot
5011 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5012 	 */
5013 
5014 #ifdef CONFIG_SLUB_DEBUG
5015 	if (flags & SO_ALL) {
5016 		struct kmem_cache_node *n;
5017 
5018 		for_each_kmem_cache_node(s, node, n) {
5019 
5020 			if (flags & SO_TOTAL)
5021 				x = atomic_long_read(&n->total_objects);
5022 			else if (flags & SO_OBJECTS)
5023 				x = atomic_long_read(&n->total_objects) -
5024 					count_partial(n, count_free);
5025 			else
5026 				x = atomic_long_read(&n->nr_slabs);
5027 			total += x;
5028 			nodes[node] += x;
5029 		}
5030 
5031 	} else
5032 #endif
5033 	if (flags & SO_PARTIAL) {
5034 		struct kmem_cache_node *n;
5035 
5036 		for_each_kmem_cache_node(s, node, n) {
5037 			if (flags & SO_TOTAL)
5038 				x = count_partial(n, count_total);
5039 			else if (flags & SO_OBJECTS)
5040 				x = count_partial(n, count_inuse);
5041 			else
5042 				x = n->nr_partial;
5043 			total += x;
5044 			nodes[node] += x;
5045 		}
5046 	}
5047 
5048 	len += sysfs_emit_at(buf, len, "%lu", total);
5049 #ifdef CONFIG_NUMA
5050 	for (node = 0; node < nr_node_ids; node++) {
5051 		if (nodes[node])
5052 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5053 					     node, nodes[node]);
5054 	}
5055 #endif
5056 	len += sysfs_emit_at(buf, len, "\n");
5057 	kfree(nodes);
5058 
5059 	return len;
5060 }
5061 
5062 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5063 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5064 
5065 struct slab_attribute {
5066 	struct attribute attr;
5067 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5068 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5069 };
5070 
5071 #define SLAB_ATTR_RO(_name) \
5072 	static struct slab_attribute _name##_attr = \
5073 	__ATTR(_name, 0400, _name##_show, NULL)
5074 
5075 #define SLAB_ATTR(_name) \
5076 	static struct slab_attribute _name##_attr =  \
5077 	__ATTR(_name, 0600, _name##_show, _name##_store)
5078 
5079 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5080 {
5081 	return sysfs_emit(buf, "%u\n", s->size);
5082 }
5083 SLAB_ATTR_RO(slab_size);
5084 
5085 static ssize_t align_show(struct kmem_cache *s, char *buf)
5086 {
5087 	return sysfs_emit(buf, "%u\n", s->align);
5088 }
5089 SLAB_ATTR_RO(align);
5090 
5091 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5092 {
5093 	return sysfs_emit(buf, "%u\n", s->object_size);
5094 }
5095 SLAB_ATTR_RO(object_size);
5096 
5097 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5098 {
5099 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5100 }
5101 SLAB_ATTR_RO(objs_per_slab);
5102 
5103 static ssize_t order_show(struct kmem_cache *s, char *buf)
5104 {
5105 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5106 }
5107 SLAB_ATTR_RO(order);
5108 
5109 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5110 {
5111 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5112 }
5113 
5114 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5115 				 size_t length)
5116 {
5117 	unsigned long min;
5118 	int err;
5119 
5120 	err = kstrtoul(buf, 10, &min);
5121 	if (err)
5122 		return err;
5123 
5124 	set_min_partial(s, min);
5125 	return length;
5126 }
5127 SLAB_ATTR(min_partial);
5128 
5129 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5130 {
5131 	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5132 }
5133 
5134 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5135 				 size_t length)
5136 {
5137 	unsigned int objects;
5138 	int err;
5139 
5140 	err = kstrtouint(buf, 10, &objects);
5141 	if (err)
5142 		return err;
5143 	if (objects && !kmem_cache_has_cpu_partial(s))
5144 		return -EINVAL;
5145 
5146 	slub_set_cpu_partial(s, objects);
5147 	flush_all(s);
5148 	return length;
5149 }
5150 SLAB_ATTR(cpu_partial);
5151 
5152 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5153 {
5154 	if (!s->ctor)
5155 		return 0;
5156 	return sysfs_emit(buf, "%pS\n", s->ctor);
5157 }
5158 SLAB_ATTR_RO(ctor);
5159 
5160 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5161 {
5162 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5163 }
5164 SLAB_ATTR_RO(aliases);
5165 
5166 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5167 {
5168 	return show_slab_objects(s, buf, SO_PARTIAL);
5169 }
5170 SLAB_ATTR_RO(partial);
5171 
5172 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5173 {
5174 	return show_slab_objects(s, buf, SO_CPU);
5175 }
5176 SLAB_ATTR_RO(cpu_slabs);
5177 
5178 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5179 {
5180 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5181 }
5182 SLAB_ATTR_RO(objects);
5183 
5184 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5185 {
5186 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5187 }
5188 SLAB_ATTR_RO(objects_partial);
5189 
5190 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5191 {
5192 	int objects = 0;
5193 	int pages = 0;
5194 	int cpu;
5195 	int len = 0;
5196 
5197 	for_each_online_cpu(cpu) {
5198 		struct page *page;
5199 
5200 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5201 
5202 		if (page) {
5203 			pages += page->pages;
5204 			objects += page->pobjects;
5205 		}
5206 	}
5207 
5208 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5209 
5210 #ifdef CONFIG_SMP
5211 	for_each_online_cpu(cpu) {
5212 		struct page *page;
5213 
5214 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5215 		if (page)
5216 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5217 					     cpu, page->pobjects, page->pages);
5218 	}
5219 #endif
5220 	len += sysfs_emit_at(buf, len, "\n");
5221 
5222 	return len;
5223 }
5224 SLAB_ATTR_RO(slabs_cpu_partial);
5225 
5226 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5227 {
5228 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5229 }
5230 SLAB_ATTR_RO(reclaim_account);
5231 
5232 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5233 {
5234 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5235 }
5236 SLAB_ATTR_RO(hwcache_align);
5237 
5238 #ifdef CONFIG_ZONE_DMA
5239 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5240 {
5241 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5242 }
5243 SLAB_ATTR_RO(cache_dma);
5244 #endif
5245 
5246 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5247 {
5248 	return sysfs_emit(buf, "%u\n", s->usersize);
5249 }
5250 SLAB_ATTR_RO(usersize);
5251 
5252 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5253 {
5254 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5255 }
5256 SLAB_ATTR_RO(destroy_by_rcu);
5257 
5258 #ifdef CONFIG_SLUB_DEBUG
5259 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5260 {
5261 	return show_slab_objects(s, buf, SO_ALL);
5262 }
5263 SLAB_ATTR_RO(slabs);
5264 
5265 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5266 {
5267 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5268 }
5269 SLAB_ATTR_RO(total_objects);
5270 
5271 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5272 {
5273 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5274 }
5275 SLAB_ATTR_RO(sanity_checks);
5276 
5277 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5278 {
5279 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5280 }
5281 SLAB_ATTR_RO(trace);
5282 
5283 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5284 {
5285 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5286 }
5287 
5288 SLAB_ATTR_RO(red_zone);
5289 
5290 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5291 {
5292 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5293 }
5294 
5295 SLAB_ATTR_RO(poison);
5296 
5297 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5298 {
5299 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5300 }
5301 
5302 SLAB_ATTR_RO(store_user);
5303 
5304 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5305 {
5306 	return 0;
5307 }
5308 
5309 static ssize_t validate_store(struct kmem_cache *s,
5310 			const char *buf, size_t length)
5311 {
5312 	int ret = -EINVAL;
5313 
5314 	if (buf[0] == '1') {
5315 		ret = validate_slab_cache(s);
5316 		if (ret >= 0)
5317 			ret = length;
5318 	}
5319 	return ret;
5320 }
5321 SLAB_ATTR(validate);
5322 
5323 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5324 {
5325 	if (!(s->flags & SLAB_STORE_USER))
5326 		return -ENOSYS;
5327 	return list_locations(s, buf, TRACK_ALLOC);
5328 }
5329 SLAB_ATTR_RO(alloc_calls);
5330 
5331 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5332 {
5333 	if (!(s->flags & SLAB_STORE_USER))
5334 		return -ENOSYS;
5335 	return list_locations(s, buf, TRACK_FREE);
5336 }
5337 SLAB_ATTR_RO(free_calls);
5338 #endif /* CONFIG_SLUB_DEBUG */
5339 
5340 #ifdef CONFIG_FAILSLAB
5341 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5342 {
5343 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5344 }
5345 SLAB_ATTR_RO(failslab);
5346 #endif
5347 
5348 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5349 {
5350 	return 0;
5351 }
5352 
5353 static ssize_t shrink_store(struct kmem_cache *s,
5354 			const char *buf, size_t length)
5355 {
5356 	if (buf[0] == '1')
5357 		kmem_cache_shrink(s);
5358 	else
5359 		return -EINVAL;
5360 	return length;
5361 }
5362 SLAB_ATTR(shrink);
5363 
5364 #ifdef CONFIG_NUMA
5365 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5366 {
5367 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5368 }
5369 
5370 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5371 				const char *buf, size_t length)
5372 {
5373 	unsigned int ratio;
5374 	int err;
5375 
5376 	err = kstrtouint(buf, 10, &ratio);
5377 	if (err)
5378 		return err;
5379 	if (ratio > 100)
5380 		return -ERANGE;
5381 
5382 	s->remote_node_defrag_ratio = ratio * 10;
5383 
5384 	return length;
5385 }
5386 SLAB_ATTR(remote_node_defrag_ratio);
5387 #endif
5388 
5389 #ifdef CONFIG_SLUB_STATS
5390 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5391 {
5392 	unsigned long sum  = 0;
5393 	int cpu;
5394 	int len = 0;
5395 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5396 
5397 	if (!data)
5398 		return -ENOMEM;
5399 
5400 	for_each_online_cpu(cpu) {
5401 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5402 
5403 		data[cpu] = x;
5404 		sum += x;
5405 	}
5406 
5407 	len += sysfs_emit_at(buf, len, "%lu", sum);
5408 
5409 #ifdef CONFIG_SMP
5410 	for_each_online_cpu(cpu) {
5411 		if (data[cpu])
5412 			len += sysfs_emit_at(buf, len, " C%d=%u",
5413 					     cpu, data[cpu]);
5414 	}
5415 #endif
5416 	kfree(data);
5417 	len += sysfs_emit_at(buf, len, "\n");
5418 
5419 	return len;
5420 }
5421 
5422 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5423 {
5424 	int cpu;
5425 
5426 	for_each_online_cpu(cpu)
5427 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5428 }
5429 
5430 #define STAT_ATTR(si, text) 					\
5431 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5432 {								\
5433 	return show_stat(s, buf, si);				\
5434 }								\
5435 static ssize_t text##_store(struct kmem_cache *s,		\
5436 				const char *buf, size_t length)	\
5437 {								\
5438 	if (buf[0] != '0')					\
5439 		return -EINVAL;					\
5440 	clear_stat(s, si);					\
5441 	return length;						\
5442 }								\
5443 SLAB_ATTR(text);						\
5444 
5445 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5446 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5447 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5448 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5449 STAT_ATTR(FREE_FROZEN, free_frozen);
5450 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5451 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5452 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5453 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5454 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5455 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5456 STAT_ATTR(FREE_SLAB, free_slab);
5457 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5458 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5459 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5460 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5461 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5462 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5463 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5464 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5465 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5466 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5467 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5468 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5469 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5470 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5471 #endif	/* CONFIG_SLUB_STATS */
5472 
5473 static struct attribute *slab_attrs[] = {
5474 	&slab_size_attr.attr,
5475 	&object_size_attr.attr,
5476 	&objs_per_slab_attr.attr,
5477 	&order_attr.attr,
5478 	&min_partial_attr.attr,
5479 	&cpu_partial_attr.attr,
5480 	&objects_attr.attr,
5481 	&objects_partial_attr.attr,
5482 	&partial_attr.attr,
5483 	&cpu_slabs_attr.attr,
5484 	&ctor_attr.attr,
5485 	&aliases_attr.attr,
5486 	&align_attr.attr,
5487 	&hwcache_align_attr.attr,
5488 	&reclaim_account_attr.attr,
5489 	&destroy_by_rcu_attr.attr,
5490 	&shrink_attr.attr,
5491 	&slabs_cpu_partial_attr.attr,
5492 #ifdef CONFIG_SLUB_DEBUG
5493 	&total_objects_attr.attr,
5494 	&slabs_attr.attr,
5495 	&sanity_checks_attr.attr,
5496 	&trace_attr.attr,
5497 	&red_zone_attr.attr,
5498 	&poison_attr.attr,
5499 	&store_user_attr.attr,
5500 	&validate_attr.attr,
5501 	&alloc_calls_attr.attr,
5502 	&free_calls_attr.attr,
5503 #endif
5504 #ifdef CONFIG_ZONE_DMA
5505 	&cache_dma_attr.attr,
5506 #endif
5507 #ifdef CONFIG_NUMA
5508 	&remote_node_defrag_ratio_attr.attr,
5509 #endif
5510 #ifdef CONFIG_SLUB_STATS
5511 	&alloc_fastpath_attr.attr,
5512 	&alloc_slowpath_attr.attr,
5513 	&free_fastpath_attr.attr,
5514 	&free_slowpath_attr.attr,
5515 	&free_frozen_attr.attr,
5516 	&free_add_partial_attr.attr,
5517 	&free_remove_partial_attr.attr,
5518 	&alloc_from_partial_attr.attr,
5519 	&alloc_slab_attr.attr,
5520 	&alloc_refill_attr.attr,
5521 	&alloc_node_mismatch_attr.attr,
5522 	&free_slab_attr.attr,
5523 	&cpuslab_flush_attr.attr,
5524 	&deactivate_full_attr.attr,
5525 	&deactivate_empty_attr.attr,
5526 	&deactivate_to_head_attr.attr,
5527 	&deactivate_to_tail_attr.attr,
5528 	&deactivate_remote_frees_attr.attr,
5529 	&deactivate_bypass_attr.attr,
5530 	&order_fallback_attr.attr,
5531 	&cmpxchg_double_fail_attr.attr,
5532 	&cmpxchg_double_cpu_fail_attr.attr,
5533 	&cpu_partial_alloc_attr.attr,
5534 	&cpu_partial_free_attr.attr,
5535 	&cpu_partial_node_attr.attr,
5536 	&cpu_partial_drain_attr.attr,
5537 #endif
5538 #ifdef CONFIG_FAILSLAB
5539 	&failslab_attr.attr,
5540 #endif
5541 	&usersize_attr.attr,
5542 
5543 	NULL
5544 };
5545 
5546 static const struct attribute_group slab_attr_group = {
5547 	.attrs = slab_attrs,
5548 };
5549 
5550 static ssize_t slab_attr_show(struct kobject *kobj,
5551 				struct attribute *attr,
5552 				char *buf)
5553 {
5554 	struct slab_attribute *attribute;
5555 	struct kmem_cache *s;
5556 	int err;
5557 
5558 	attribute = to_slab_attr(attr);
5559 	s = to_slab(kobj);
5560 
5561 	if (!attribute->show)
5562 		return -EIO;
5563 
5564 	err = attribute->show(s, buf);
5565 
5566 	return err;
5567 }
5568 
5569 static ssize_t slab_attr_store(struct kobject *kobj,
5570 				struct attribute *attr,
5571 				const char *buf, size_t len)
5572 {
5573 	struct slab_attribute *attribute;
5574 	struct kmem_cache *s;
5575 	int err;
5576 
5577 	attribute = to_slab_attr(attr);
5578 	s = to_slab(kobj);
5579 
5580 	if (!attribute->store)
5581 		return -EIO;
5582 
5583 	err = attribute->store(s, buf, len);
5584 	return err;
5585 }
5586 
5587 static void kmem_cache_release(struct kobject *k)
5588 {
5589 	slab_kmem_cache_release(to_slab(k));
5590 }
5591 
5592 static const struct sysfs_ops slab_sysfs_ops = {
5593 	.show = slab_attr_show,
5594 	.store = slab_attr_store,
5595 };
5596 
5597 static struct kobj_type slab_ktype = {
5598 	.sysfs_ops = &slab_sysfs_ops,
5599 	.release = kmem_cache_release,
5600 };
5601 
5602 static struct kset *slab_kset;
5603 
5604 static inline struct kset *cache_kset(struct kmem_cache *s)
5605 {
5606 	return slab_kset;
5607 }
5608 
5609 #define ID_STR_LENGTH 64
5610 
5611 /* Create a unique string id for a slab cache:
5612  *
5613  * Format	:[flags-]size
5614  */
5615 static char *create_unique_id(struct kmem_cache *s)
5616 {
5617 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5618 	char *p = name;
5619 
5620 	BUG_ON(!name);
5621 
5622 	*p++ = ':';
5623 	/*
5624 	 * First flags affecting slabcache operations. We will only
5625 	 * get here for aliasable slabs so we do not need to support
5626 	 * too many flags. The flags here must cover all flags that
5627 	 * are matched during merging to guarantee that the id is
5628 	 * unique.
5629 	 */
5630 	if (s->flags & SLAB_CACHE_DMA)
5631 		*p++ = 'd';
5632 	if (s->flags & SLAB_CACHE_DMA32)
5633 		*p++ = 'D';
5634 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5635 		*p++ = 'a';
5636 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5637 		*p++ = 'F';
5638 	if (s->flags & SLAB_ACCOUNT)
5639 		*p++ = 'A';
5640 	if (p != name + 1)
5641 		*p++ = '-';
5642 	p += sprintf(p, "%07u", s->size);
5643 
5644 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5645 	return name;
5646 }
5647 
5648 static int sysfs_slab_add(struct kmem_cache *s)
5649 {
5650 	int err;
5651 	const char *name;
5652 	struct kset *kset = cache_kset(s);
5653 	int unmergeable = slab_unmergeable(s);
5654 
5655 	if (!kset) {
5656 		kobject_init(&s->kobj, &slab_ktype);
5657 		return 0;
5658 	}
5659 
5660 	if (!unmergeable && disable_higher_order_debug &&
5661 			(slub_debug & DEBUG_METADATA_FLAGS))
5662 		unmergeable = 1;
5663 
5664 	if (unmergeable) {
5665 		/*
5666 		 * Slabcache can never be merged so we can use the name proper.
5667 		 * This is typically the case for debug situations. In that
5668 		 * case we can catch duplicate names easily.
5669 		 */
5670 		sysfs_remove_link(&slab_kset->kobj, s->name);
5671 		name = s->name;
5672 	} else {
5673 		/*
5674 		 * Create a unique name for the slab as a target
5675 		 * for the symlinks.
5676 		 */
5677 		name = create_unique_id(s);
5678 	}
5679 
5680 	s->kobj.kset = kset;
5681 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5682 	if (err)
5683 		goto out;
5684 
5685 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5686 	if (err)
5687 		goto out_del_kobj;
5688 
5689 	if (!unmergeable) {
5690 		/* Setup first alias */
5691 		sysfs_slab_alias(s, s->name);
5692 	}
5693 out:
5694 	if (!unmergeable)
5695 		kfree(name);
5696 	return err;
5697 out_del_kobj:
5698 	kobject_del(&s->kobj);
5699 	goto out;
5700 }
5701 
5702 void sysfs_slab_unlink(struct kmem_cache *s)
5703 {
5704 	if (slab_state >= FULL)
5705 		kobject_del(&s->kobj);
5706 }
5707 
5708 void sysfs_slab_release(struct kmem_cache *s)
5709 {
5710 	if (slab_state >= FULL)
5711 		kobject_put(&s->kobj);
5712 }
5713 
5714 /*
5715  * Need to buffer aliases during bootup until sysfs becomes
5716  * available lest we lose that information.
5717  */
5718 struct saved_alias {
5719 	struct kmem_cache *s;
5720 	const char *name;
5721 	struct saved_alias *next;
5722 };
5723 
5724 static struct saved_alias *alias_list;
5725 
5726 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5727 {
5728 	struct saved_alias *al;
5729 
5730 	if (slab_state == FULL) {
5731 		/*
5732 		 * If we have a leftover link then remove it.
5733 		 */
5734 		sysfs_remove_link(&slab_kset->kobj, name);
5735 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5736 	}
5737 
5738 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5739 	if (!al)
5740 		return -ENOMEM;
5741 
5742 	al->s = s;
5743 	al->name = name;
5744 	al->next = alias_list;
5745 	alias_list = al;
5746 	return 0;
5747 }
5748 
5749 static int __init slab_sysfs_init(void)
5750 {
5751 	struct kmem_cache *s;
5752 	int err;
5753 
5754 	mutex_lock(&slab_mutex);
5755 
5756 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5757 	if (!slab_kset) {
5758 		mutex_unlock(&slab_mutex);
5759 		pr_err("Cannot register slab subsystem.\n");
5760 		return -ENOSYS;
5761 	}
5762 
5763 	slab_state = FULL;
5764 
5765 	list_for_each_entry(s, &slab_caches, list) {
5766 		err = sysfs_slab_add(s);
5767 		if (err)
5768 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5769 			       s->name);
5770 	}
5771 
5772 	while (alias_list) {
5773 		struct saved_alias *al = alias_list;
5774 
5775 		alias_list = alias_list->next;
5776 		err = sysfs_slab_alias(al->s, al->name);
5777 		if (err)
5778 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5779 			       al->name);
5780 		kfree(al);
5781 	}
5782 
5783 	mutex_unlock(&slab_mutex);
5784 	resiliency_test();
5785 	return 0;
5786 }
5787 
5788 __initcall(slab_sysfs_init);
5789 #endif /* CONFIG_SYSFS */
5790 
5791 /*
5792  * The /proc/slabinfo ABI
5793  */
5794 #ifdef CONFIG_SLUB_DEBUG
5795 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5796 {
5797 	unsigned long nr_slabs = 0;
5798 	unsigned long nr_objs = 0;
5799 	unsigned long nr_free = 0;
5800 	int node;
5801 	struct kmem_cache_node *n;
5802 
5803 	for_each_kmem_cache_node(s, node, n) {
5804 		nr_slabs += node_nr_slabs(n);
5805 		nr_objs += node_nr_objs(n);
5806 		nr_free += count_partial(n, count_free);
5807 	}
5808 
5809 	sinfo->active_objs = nr_objs - nr_free;
5810 	sinfo->num_objs = nr_objs;
5811 	sinfo->active_slabs = nr_slabs;
5812 	sinfo->num_slabs = nr_slabs;
5813 	sinfo->objects_per_slab = oo_objects(s->oo);
5814 	sinfo->cache_order = oo_order(s->oo);
5815 }
5816 
5817 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5818 {
5819 }
5820 
5821 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5822 		       size_t count, loff_t *ppos)
5823 {
5824 	return -EIO;
5825 }
5826 #endif /* CONFIG_SLUB_DEBUG */
5827