xref: /openbmc/linux/mm/slub.c (revision d5532ee7)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30 
31 /*
32  * Lock order:
33  *   1. slab_lock(page)
34  *   2. slab->list_lock
35  *
36  *   The slab_lock protects operations on the object of a particular
37  *   slab and its metadata in the page struct. If the slab lock
38  *   has been taken then no allocations nor frees can be performed
39  *   on the objects in the slab nor can the slab be added or removed
40  *   from the partial or full lists since this would mean modifying
41  *   the page_struct of the slab.
42  *
43  *   The list_lock protects the partial and full list on each node and
44  *   the partial slab counter. If taken then no new slabs may be added or
45  *   removed from the lists nor make the number of partial slabs be modified.
46  *   (Note that the total number of slabs is an atomic value that may be
47  *   modified without taking the list lock).
48  *
49  *   The list_lock is a centralized lock and thus we avoid taking it as
50  *   much as possible. As long as SLUB does not have to handle partial
51  *   slabs, operations can continue without any centralized lock. F.e.
52  *   allocating a long series of objects that fill up slabs does not require
53  *   the list lock.
54  *
55  *   The lock order is sometimes inverted when we are trying to get a slab
56  *   off a list. We take the list_lock and then look for a page on the list
57  *   to use. While we do that objects in the slabs may be freed. We can
58  *   only operate on the slab if we have also taken the slab_lock. So we use
59  *   a slab_trylock() on the slab. If trylock was successful then no frees
60  *   can occur anymore and we can use the slab for allocations etc. If the
61  *   slab_trylock() does not succeed then frees are in progress in the slab and
62  *   we must stay away from it for a while since we may cause a bouncing
63  *   cacheline if we try to acquire the lock. So go onto the next slab.
64  *   If all pages are busy then we may allocate a new slab instead of reusing
65  *   a partial slab. A new slab has noone operating on it and thus there is
66  *   no danger of cacheline contention.
67  *
68  *   Interrupts are disabled during allocation and deallocation in order to
69  *   make the slab allocator safe to use in the context of an irq. In addition
70  *   interrupts are disabled to ensure that the processor does not change
71  *   while handling per_cpu slabs, due to kernel preemption.
72  *
73  * SLUB assigns one slab for allocation to each processor.
74  * Allocations only occur from these slabs called cpu slabs.
75  *
76  * Slabs with free elements are kept on a partial list and during regular
77  * operations no list for full slabs is used. If an object in a full slab is
78  * freed then the slab will show up again on the partial lists.
79  * We track full slabs for debugging purposes though because otherwise we
80  * cannot scan all objects.
81  *
82  * Slabs are freed when they become empty. Teardown and setup is
83  * minimal so we rely on the page allocators per cpu caches for
84  * fast frees and allocs.
85  *
86  * Overloading of page flags that are otherwise used for LRU management.
87  *
88  * PageActive 		The slab is frozen and exempt from list processing.
89  * 			This means that the slab is dedicated to a purpose
90  * 			such as satisfying allocations for a specific
91  * 			processor. Objects may be freed in the slab while
92  * 			it is frozen but slab_free will then skip the usual
93  * 			list operations. It is up to the processor holding
94  * 			the slab to integrate the slab into the slab lists
95  * 			when the slab is no longer needed.
96  *
97  * 			One use of this flag is to mark slabs that are
98  * 			used for allocations. Then such a slab becomes a cpu
99  * 			slab. The cpu slab may be equipped with an additional
100  * 			freelist that allows lockless access to
101  * 			free objects in addition to the regular freelist
102  * 			that requires the slab lock.
103  *
104  * PageError		Slab requires special handling due to debug
105  * 			options set. This moves	slab handling out of
106  * 			the fast path and disables lockless freelists.
107  */
108 
109 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 		SLAB_TRACE | SLAB_DEBUG_FREE)
111 
112 static inline int kmem_cache_debug(struct kmem_cache *s)
113 {
114 #ifdef CONFIG_SLUB_DEBUG
115 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
116 #else
117 	return 0;
118 #endif
119 }
120 
121 /*
122  * Issues still to be resolved:
123  *
124  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125  *
126  * - Variable sizing of the per node arrays
127  */
128 
129 /* Enable to test recovery from slab corruption on boot */
130 #undef SLUB_RESILIENCY_TEST
131 
132 /*
133  * Mininum number of partial slabs. These will be left on the partial
134  * lists even if they are empty. kmem_cache_shrink may reclaim them.
135  */
136 #define MIN_PARTIAL 5
137 
138 /*
139  * Maximum number of desirable partial slabs.
140  * The existence of more partial slabs makes kmem_cache_shrink
141  * sort the partial list by the number of objects in the.
142  */
143 #define MAX_PARTIAL 10
144 
145 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 				SLAB_POISON | SLAB_STORE_USER)
147 
148 /*
149  * Debugging flags that require metadata to be stored in the slab.  These get
150  * disabled when slub_debug=O is used and a cache's min order increases with
151  * metadata.
152  */
153 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
154 
155 /*
156  * Set of flags that will prevent slab merging
157  */
158 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 		SLAB_FAILSLAB)
161 
162 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163 		SLAB_CACHE_DMA | SLAB_NOTRACK)
164 
165 #define OO_SHIFT	16
166 #define OO_MASK		((1 << OO_SHIFT) - 1)
167 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
168 
169 /* Internal SLUB flags */
170 #define __OBJECT_POISON		0x80000000UL /* Poison object */
171 #define __SYSFS_ADD_DEFERRED	0x40000000UL /* Not yet visible via sysfs */
172 
173 static int kmem_size = sizeof(struct kmem_cache);
174 
175 #ifdef CONFIG_SMP
176 static struct notifier_block slab_notifier;
177 #endif
178 
179 static enum {
180 	DOWN,		/* No slab functionality available */
181 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
182 	UP,		/* Everything works but does not show up in sysfs */
183 	SYSFS		/* Sysfs up */
184 } slab_state = DOWN;
185 
186 /* A list of all slab caches on the system */
187 static DECLARE_RWSEM(slub_lock);
188 static LIST_HEAD(slab_caches);
189 
190 /*
191  * Tracking user of a slab.
192  */
193 struct track {
194 	unsigned long addr;	/* Called from address */
195 	int cpu;		/* Was running on cpu */
196 	int pid;		/* Pid context */
197 	unsigned long when;	/* When did the operation occur */
198 };
199 
200 enum track_item { TRACK_ALLOC, TRACK_FREE };
201 
202 #ifdef CONFIG_SLUB_DEBUG
203 static int sysfs_slab_add(struct kmem_cache *);
204 static int sysfs_slab_alias(struct kmem_cache *, const char *);
205 static void sysfs_slab_remove(struct kmem_cache *);
206 
207 #else
208 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
209 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
210 							{ return 0; }
211 static inline void sysfs_slab_remove(struct kmem_cache *s)
212 {
213 	kfree(s);
214 }
215 
216 #endif
217 
218 static inline void stat(struct kmem_cache *s, enum stat_item si)
219 {
220 #ifdef CONFIG_SLUB_STATS
221 	__this_cpu_inc(s->cpu_slab->stat[si]);
222 #endif
223 }
224 
225 /********************************************************************
226  * 			Core slab cache functions
227  *******************************************************************/
228 
229 int slab_is_available(void)
230 {
231 	return slab_state >= UP;
232 }
233 
234 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235 {
236 #ifdef CONFIG_NUMA
237 	return s->node[node];
238 #else
239 	return &s->local_node;
240 #endif
241 }
242 
243 /* Verify that a pointer has an address that is valid within a slab page */
244 static inline int check_valid_pointer(struct kmem_cache *s,
245 				struct page *page, const void *object)
246 {
247 	void *base;
248 
249 	if (!object)
250 		return 1;
251 
252 	base = page_address(page);
253 	if (object < base || object >= base + page->objects * s->size ||
254 		(object - base) % s->size) {
255 		return 0;
256 	}
257 
258 	return 1;
259 }
260 
261 static inline void *get_freepointer(struct kmem_cache *s, void *object)
262 {
263 	return *(void **)(object + s->offset);
264 }
265 
266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267 {
268 	*(void **)(object + s->offset) = fp;
269 }
270 
271 /* Loop over all objects in a slab */
272 #define for_each_object(__p, __s, __addr, __objects) \
273 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 			__p += (__s)->size)
275 
276 /* Scan freelist */
277 #define for_each_free_object(__p, __s, __free) \
278 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
279 
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 	return (p - addr) / s->size;
284 }
285 
286 static inline struct kmem_cache_order_objects oo_make(int order,
287 						unsigned long size)
288 {
289 	struct kmem_cache_order_objects x = {
290 		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
291 	};
292 
293 	return x;
294 }
295 
296 static inline int oo_order(struct kmem_cache_order_objects x)
297 {
298 	return x.x >> OO_SHIFT;
299 }
300 
301 static inline int oo_objects(struct kmem_cache_order_objects x)
302 {
303 	return x.x & OO_MASK;
304 }
305 
306 #ifdef CONFIG_SLUB_DEBUG
307 /*
308  * Debug settings:
309  */
310 #ifdef CONFIG_SLUB_DEBUG_ON
311 static int slub_debug = DEBUG_DEFAULT_FLAGS;
312 #else
313 static int slub_debug;
314 #endif
315 
316 static char *slub_debug_slabs;
317 static int disable_higher_order_debug;
318 
319 /*
320  * Object debugging
321  */
322 static void print_section(char *text, u8 *addr, unsigned int length)
323 {
324 	int i, offset;
325 	int newline = 1;
326 	char ascii[17];
327 
328 	ascii[16] = 0;
329 
330 	for (i = 0; i < length; i++) {
331 		if (newline) {
332 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
333 			newline = 0;
334 		}
335 		printk(KERN_CONT " %02x", addr[i]);
336 		offset = i % 16;
337 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
338 		if (offset == 15) {
339 			printk(KERN_CONT " %s\n", ascii);
340 			newline = 1;
341 		}
342 	}
343 	if (!newline) {
344 		i %= 16;
345 		while (i < 16) {
346 			printk(KERN_CONT "   ");
347 			ascii[i] = ' ';
348 			i++;
349 		}
350 		printk(KERN_CONT " %s\n", ascii);
351 	}
352 }
353 
354 static struct track *get_track(struct kmem_cache *s, void *object,
355 	enum track_item alloc)
356 {
357 	struct track *p;
358 
359 	if (s->offset)
360 		p = object + s->offset + sizeof(void *);
361 	else
362 		p = object + s->inuse;
363 
364 	return p + alloc;
365 }
366 
367 static void set_track(struct kmem_cache *s, void *object,
368 			enum track_item alloc, unsigned long addr)
369 {
370 	struct track *p = get_track(s, object, alloc);
371 
372 	if (addr) {
373 		p->addr = addr;
374 		p->cpu = smp_processor_id();
375 		p->pid = current->pid;
376 		p->when = jiffies;
377 	} else
378 		memset(p, 0, sizeof(struct track));
379 }
380 
381 static void init_tracking(struct kmem_cache *s, void *object)
382 {
383 	if (!(s->flags & SLAB_STORE_USER))
384 		return;
385 
386 	set_track(s, object, TRACK_FREE, 0UL);
387 	set_track(s, object, TRACK_ALLOC, 0UL);
388 }
389 
390 static void print_track(const char *s, struct track *t)
391 {
392 	if (!t->addr)
393 		return;
394 
395 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
396 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
397 }
398 
399 static void print_tracking(struct kmem_cache *s, void *object)
400 {
401 	if (!(s->flags & SLAB_STORE_USER))
402 		return;
403 
404 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
405 	print_track("Freed", get_track(s, object, TRACK_FREE));
406 }
407 
408 static void print_page_info(struct page *page)
409 {
410 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
411 		page, page->objects, page->inuse, page->freelist, page->flags);
412 
413 }
414 
415 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
416 {
417 	va_list args;
418 	char buf[100];
419 
420 	va_start(args, fmt);
421 	vsnprintf(buf, sizeof(buf), fmt, args);
422 	va_end(args);
423 	printk(KERN_ERR "========================================"
424 			"=====================================\n");
425 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
426 	printk(KERN_ERR "----------------------------------------"
427 			"-------------------------------------\n\n");
428 }
429 
430 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
431 {
432 	va_list args;
433 	char buf[100];
434 
435 	va_start(args, fmt);
436 	vsnprintf(buf, sizeof(buf), fmt, args);
437 	va_end(args);
438 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
439 }
440 
441 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
442 {
443 	unsigned int off;	/* Offset of last byte */
444 	u8 *addr = page_address(page);
445 
446 	print_tracking(s, p);
447 
448 	print_page_info(page);
449 
450 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
451 			p, p - addr, get_freepointer(s, p));
452 
453 	if (p > addr + 16)
454 		print_section("Bytes b4", p - 16, 16);
455 
456 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
457 
458 	if (s->flags & SLAB_RED_ZONE)
459 		print_section("Redzone", p + s->objsize,
460 			s->inuse - s->objsize);
461 
462 	if (s->offset)
463 		off = s->offset + sizeof(void *);
464 	else
465 		off = s->inuse;
466 
467 	if (s->flags & SLAB_STORE_USER)
468 		off += 2 * sizeof(struct track);
469 
470 	if (off != s->size)
471 		/* Beginning of the filler is the free pointer */
472 		print_section("Padding", p + off, s->size - off);
473 
474 	dump_stack();
475 }
476 
477 static void object_err(struct kmem_cache *s, struct page *page,
478 			u8 *object, char *reason)
479 {
480 	slab_bug(s, "%s", reason);
481 	print_trailer(s, page, object);
482 }
483 
484 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
485 {
486 	va_list args;
487 	char buf[100];
488 
489 	va_start(args, fmt);
490 	vsnprintf(buf, sizeof(buf), fmt, args);
491 	va_end(args);
492 	slab_bug(s, "%s", buf);
493 	print_page_info(page);
494 	dump_stack();
495 }
496 
497 static void init_object(struct kmem_cache *s, void *object, int active)
498 {
499 	u8 *p = object;
500 
501 	if (s->flags & __OBJECT_POISON) {
502 		memset(p, POISON_FREE, s->objsize - 1);
503 		p[s->objsize - 1] = POISON_END;
504 	}
505 
506 	if (s->flags & SLAB_RED_ZONE)
507 		memset(p + s->objsize,
508 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
509 			s->inuse - s->objsize);
510 }
511 
512 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
513 {
514 	while (bytes) {
515 		if (*start != (u8)value)
516 			return start;
517 		start++;
518 		bytes--;
519 	}
520 	return NULL;
521 }
522 
523 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
524 						void *from, void *to)
525 {
526 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
527 	memset(from, data, to - from);
528 }
529 
530 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
531 			u8 *object, char *what,
532 			u8 *start, unsigned int value, unsigned int bytes)
533 {
534 	u8 *fault;
535 	u8 *end;
536 
537 	fault = check_bytes(start, value, bytes);
538 	if (!fault)
539 		return 1;
540 
541 	end = start + bytes;
542 	while (end > fault && end[-1] == value)
543 		end--;
544 
545 	slab_bug(s, "%s overwritten", what);
546 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
547 					fault, end - 1, fault[0], value);
548 	print_trailer(s, page, object);
549 
550 	restore_bytes(s, what, value, fault, end);
551 	return 0;
552 }
553 
554 /*
555  * Object layout:
556  *
557  * object address
558  * 	Bytes of the object to be managed.
559  * 	If the freepointer may overlay the object then the free
560  * 	pointer is the first word of the object.
561  *
562  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
563  * 	0xa5 (POISON_END)
564  *
565  * object + s->objsize
566  * 	Padding to reach word boundary. This is also used for Redzoning.
567  * 	Padding is extended by another word if Redzoning is enabled and
568  * 	objsize == inuse.
569  *
570  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
571  * 	0xcc (RED_ACTIVE) for objects in use.
572  *
573  * object + s->inuse
574  * 	Meta data starts here.
575  *
576  * 	A. Free pointer (if we cannot overwrite object on free)
577  * 	B. Tracking data for SLAB_STORE_USER
578  * 	C. Padding to reach required alignment boundary or at mininum
579  * 		one word if debugging is on to be able to detect writes
580  * 		before the word boundary.
581  *
582  *	Padding is done using 0x5a (POISON_INUSE)
583  *
584  * object + s->size
585  * 	Nothing is used beyond s->size.
586  *
587  * If slabcaches are merged then the objsize and inuse boundaries are mostly
588  * ignored. And therefore no slab options that rely on these boundaries
589  * may be used with merged slabcaches.
590  */
591 
592 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
593 {
594 	unsigned long off = s->inuse;	/* The end of info */
595 
596 	if (s->offset)
597 		/* Freepointer is placed after the object. */
598 		off += sizeof(void *);
599 
600 	if (s->flags & SLAB_STORE_USER)
601 		/* We also have user information there */
602 		off += 2 * sizeof(struct track);
603 
604 	if (s->size == off)
605 		return 1;
606 
607 	return check_bytes_and_report(s, page, p, "Object padding",
608 				p + off, POISON_INUSE, s->size - off);
609 }
610 
611 /* Check the pad bytes at the end of a slab page */
612 static int slab_pad_check(struct kmem_cache *s, struct page *page)
613 {
614 	u8 *start;
615 	u8 *fault;
616 	u8 *end;
617 	int length;
618 	int remainder;
619 
620 	if (!(s->flags & SLAB_POISON))
621 		return 1;
622 
623 	start = page_address(page);
624 	length = (PAGE_SIZE << compound_order(page));
625 	end = start + length;
626 	remainder = length % s->size;
627 	if (!remainder)
628 		return 1;
629 
630 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
631 	if (!fault)
632 		return 1;
633 	while (end > fault && end[-1] == POISON_INUSE)
634 		end--;
635 
636 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
637 	print_section("Padding", end - remainder, remainder);
638 
639 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
640 	return 0;
641 }
642 
643 static int check_object(struct kmem_cache *s, struct page *page,
644 					void *object, int active)
645 {
646 	u8 *p = object;
647 	u8 *endobject = object + s->objsize;
648 
649 	if (s->flags & SLAB_RED_ZONE) {
650 		unsigned int red =
651 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
652 
653 		if (!check_bytes_and_report(s, page, object, "Redzone",
654 			endobject, red, s->inuse - s->objsize))
655 			return 0;
656 	} else {
657 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
658 			check_bytes_and_report(s, page, p, "Alignment padding",
659 				endobject, POISON_INUSE, s->inuse - s->objsize);
660 		}
661 	}
662 
663 	if (s->flags & SLAB_POISON) {
664 		if (!active && (s->flags & __OBJECT_POISON) &&
665 			(!check_bytes_and_report(s, page, p, "Poison", p,
666 					POISON_FREE, s->objsize - 1) ||
667 			 !check_bytes_and_report(s, page, p, "Poison",
668 				p + s->objsize - 1, POISON_END, 1)))
669 			return 0;
670 		/*
671 		 * check_pad_bytes cleans up on its own.
672 		 */
673 		check_pad_bytes(s, page, p);
674 	}
675 
676 	if (!s->offset && active)
677 		/*
678 		 * Object and freepointer overlap. Cannot check
679 		 * freepointer while object is allocated.
680 		 */
681 		return 1;
682 
683 	/* Check free pointer validity */
684 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
685 		object_err(s, page, p, "Freepointer corrupt");
686 		/*
687 		 * No choice but to zap it and thus lose the remainder
688 		 * of the free objects in this slab. May cause
689 		 * another error because the object count is now wrong.
690 		 */
691 		set_freepointer(s, p, NULL);
692 		return 0;
693 	}
694 	return 1;
695 }
696 
697 static int check_slab(struct kmem_cache *s, struct page *page)
698 {
699 	int maxobj;
700 
701 	VM_BUG_ON(!irqs_disabled());
702 
703 	if (!PageSlab(page)) {
704 		slab_err(s, page, "Not a valid slab page");
705 		return 0;
706 	}
707 
708 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
709 	if (page->objects > maxobj) {
710 		slab_err(s, page, "objects %u > max %u",
711 			s->name, page->objects, maxobj);
712 		return 0;
713 	}
714 	if (page->inuse > page->objects) {
715 		slab_err(s, page, "inuse %u > max %u",
716 			s->name, page->inuse, page->objects);
717 		return 0;
718 	}
719 	/* Slab_pad_check fixes things up after itself */
720 	slab_pad_check(s, page);
721 	return 1;
722 }
723 
724 /*
725  * Determine if a certain object on a page is on the freelist. Must hold the
726  * slab lock to guarantee that the chains are in a consistent state.
727  */
728 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
729 {
730 	int nr = 0;
731 	void *fp = page->freelist;
732 	void *object = NULL;
733 	unsigned long max_objects;
734 
735 	while (fp && nr <= page->objects) {
736 		if (fp == search)
737 			return 1;
738 		if (!check_valid_pointer(s, page, fp)) {
739 			if (object) {
740 				object_err(s, page, object,
741 					"Freechain corrupt");
742 				set_freepointer(s, object, NULL);
743 				break;
744 			} else {
745 				slab_err(s, page, "Freepointer corrupt");
746 				page->freelist = NULL;
747 				page->inuse = page->objects;
748 				slab_fix(s, "Freelist cleared");
749 				return 0;
750 			}
751 			break;
752 		}
753 		object = fp;
754 		fp = get_freepointer(s, object);
755 		nr++;
756 	}
757 
758 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
759 	if (max_objects > MAX_OBJS_PER_PAGE)
760 		max_objects = MAX_OBJS_PER_PAGE;
761 
762 	if (page->objects != max_objects) {
763 		slab_err(s, page, "Wrong number of objects. Found %d but "
764 			"should be %d", page->objects, max_objects);
765 		page->objects = max_objects;
766 		slab_fix(s, "Number of objects adjusted.");
767 	}
768 	if (page->inuse != page->objects - nr) {
769 		slab_err(s, page, "Wrong object count. Counter is %d but "
770 			"counted were %d", page->inuse, page->objects - nr);
771 		page->inuse = page->objects - nr;
772 		slab_fix(s, "Object count adjusted.");
773 	}
774 	return search == NULL;
775 }
776 
777 static void trace(struct kmem_cache *s, struct page *page, void *object,
778 								int alloc)
779 {
780 	if (s->flags & SLAB_TRACE) {
781 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
782 			s->name,
783 			alloc ? "alloc" : "free",
784 			object, page->inuse,
785 			page->freelist);
786 
787 		if (!alloc)
788 			print_section("Object", (void *)object, s->objsize);
789 
790 		dump_stack();
791 	}
792 }
793 
794 /*
795  * Tracking of fully allocated slabs for debugging purposes.
796  */
797 static void add_full(struct kmem_cache_node *n, struct page *page)
798 {
799 	spin_lock(&n->list_lock);
800 	list_add(&page->lru, &n->full);
801 	spin_unlock(&n->list_lock);
802 }
803 
804 static void remove_full(struct kmem_cache *s, struct page *page)
805 {
806 	struct kmem_cache_node *n;
807 
808 	if (!(s->flags & SLAB_STORE_USER))
809 		return;
810 
811 	n = get_node(s, page_to_nid(page));
812 
813 	spin_lock(&n->list_lock);
814 	list_del(&page->lru);
815 	spin_unlock(&n->list_lock);
816 }
817 
818 /* Tracking of the number of slabs for debugging purposes */
819 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
820 {
821 	struct kmem_cache_node *n = get_node(s, node);
822 
823 	return atomic_long_read(&n->nr_slabs);
824 }
825 
826 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
827 {
828 	return atomic_long_read(&n->nr_slabs);
829 }
830 
831 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
832 {
833 	struct kmem_cache_node *n = get_node(s, node);
834 
835 	/*
836 	 * May be called early in order to allocate a slab for the
837 	 * kmem_cache_node structure. Solve the chicken-egg
838 	 * dilemma by deferring the increment of the count during
839 	 * bootstrap (see early_kmem_cache_node_alloc).
840 	 */
841 	if (!NUMA_BUILD || n) {
842 		atomic_long_inc(&n->nr_slabs);
843 		atomic_long_add(objects, &n->total_objects);
844 	}
845 }
846 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
847 {
848 	struct kmem_cache_node *n = get_node(s, node);
849 
850 	atomic_long_dec(&n->nr_slabs);
851 	atomic_long_sub(objects, &n->total_objects);
852 }
853 
854 /* Object debug checks for alloc/free paths */
855 static void setup_object_debug(struct kmem_cache *s, struct page *page,
856 								void *object)
857 {
858 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
859 		return;
860 
861 	init_object(s, object, 0);
862 	init_tracking(s, object);
863 }
864 
865 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
866 					void *object, unsigned long addr)
867 {
868 	if (!check_slab(s, page))
869 		goto bad;
870 
871 	if (!on_freelist(s, page, object)) {
872 		object_err(s, page, object, "Object already allocated");
873 		goto bad;
874 	}
875 
876 	if (!check_valid_pointer(s, page, object)) {
877 		object_err(s, page, object, "Freelist Pointer check fails");
878 		goto bad;
879 	}
880 
881 	if (!check_object(s, page, object, 0))
882 		goto bad;
883 
884 	/* Success perform special debug activities for allocs */
885 	if (s->flags & SLAB_STORE_USER)
886 		set_track(s, object, TRACK_ALLOC, addr);
887 	trace(s, page, object, 1);
888 	init_object(s, object, 1);
889 	return 1;
890 
891 bad:
892 	if (PageSlab(page)) {
893 		/*
894 		 * If this is a slab page then lets do the best we can
895 		 * to avoid issues in the future. Marking all objects
896 		 * as used avoids touching the remaining objects.
897 		 */
898 		slab_fix(s, "Marking all objects used");
899 		page->inuse = page->objects;
900 		page->freelist = NULL;
901 	}
902 	return 0;
903 }
904 
905 static int free_debug_processing(struct kmem_cache *s, struct page *page,
906 					void *object, unsigned long addr)
907 {
908 	if (!check_slab(s, page))
909 		goto fail;
910 
911 	if (!check_valid_pointer(s, page, object)) {
912 		slab_err(s, page, "Invalid object pointer 0x%p", object);
913 		goto fail;
914 	}
915 
916 	if (on_freelist(s, page, object)) {
917 		object_err(s, page, object, "Object already free");
918 		goto fail;
919 	}
920 
921 	if (!check_object(s, page, object, 1))
922 		return 0;
923 
924 	if (unlikely(s != page->slab)) {
925 		if (!PageSlab(page)) {
926 			slab_err(s, page, "Attempt to free object(0x%p) "
927 				"outside of slab", object);
928 		} else if (!page->slab) {
929 			printk(KERN_ERR
930 				"SLUB <none>: no slab for object 0x%p.\n",
931 						object);
932 			dump_stack();
933 		} else
934 			object_err(s, page, object,
935 					"page slab pointer corrupt.");
936 		goto fail;
937 	}
938 
939 	/* Special debug activities for freeing objects */
940 	if (!PageSlubFrozen(page) && !page->freelist)
941 		remove_full(s, page);
942 	if (s->flags & SLAB_STORE_USER)
943 		set_track(s, object, TRACK_FREE, addr);
944 	trace(s, page, object, 0);
945 	init_object(s, object, 0);
946 	return 1;
947 
948 fail:
949 	slab_fix(s, "Object at 0x%p not freed", object);
950 	return 0;
951 }
952 
953 static int __init setup_slub_debug(char *str)
954 {
955 	slub_debug = DEBUG_DEFAULT_FLAGS;
956 	if (*str++ != '=' || !*str)
957 		/*
958 		 * No options specified. Switch on full debugging.
959 		 */
960 		goto out;
961 
962 	if (*str == ',')
963 		/*
964 		 * No options but restriction on slabs. This means full
965 		 * debugging for slabs matching a pattern.
966 		 */
967 		goto check_slabs;
968 
969 	if (tolower(*str) == 'o') {
970 		/*
971 		 * Avoid enabling debugging on caches if its minimum order
972 		 * would increase as a result.
973 		 */
974 		disable_higher_order_debug = 1;
975 		goto out;
976 	}
977 
978 	slub_debug = 0;
979 	if (*str == '-')
980 		/*
981 		 * Switch off all debugging measures.
982 		 */
983 		goto out;
984 
985 	/*
986 	 * Determine which debug features should be switched on
987 	 */
988 	for (; *str && *str != ','; str++) {
989 		switch (tolower(*str)) {
990 		case 'f':
991 			slub_debug |= SLAB_DEBUG_FREE;
992 			break;
993 		case 'z':
994 			slub_debug |= SLAB_RED_ZONE;
995 			break;
996 		case 'p':
997 			slub_debug |= SLAB_POISON;
998 			break;
999 		case 'u':
1000 			slub_debug |= SLAB_STORE_USER;
1001 			break;
1002 		case 't':
1003 			slub_debug |= SLAB_TRACE;
1004 			break;
1005 		case 'a':
1006 			slub_debug |= SLAB_FAILSLAB;
1007 			break;
1008 		default:
1009 			printk(KERN_ERR "slub_debug option '%c' "
1010 				"unknown. skipped\n", *str);
1011 		}
1012 	}
1013 
1014 check_slabs:
1015 	if (*str == ',')
1016 		slub_debug_slabs = str + 1;
1017 out:
1018 	return 1;
1019 }
1020 
1021 __setup("slub_debug", setup_slub_debug);
1022 
1023 static unsigned long kmem_cache_flags(unsigned long objsize,
1024 	unsigned long flags, const char *name,
1025 	void (*ctor)(void *))
1026 {
1027 	/*
1028 	 * Enable debugging if selected on the kernel commandline.
1029 	 */
1030 	if (slub_debug && (!slub_debug_slabs ||
1031 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1032 		flags |= slub_debug;
1033 
1034 	return flags;
1035 }
1036 #else
1037 static inline void setup_object_debug(struct kmem_cache *s,
1038 			struct page *page, void *object) {}
1039 
1040 static inline int alloc_debug_processing(struct kmem_cache *s,
1041 	struct page *page, void *object, unsigned long addr) { return 0; }
1042 
1043 static inline int free_debug_processing(struct kmem_cache *s,
1044 	struct page *page, void *object, unsigned long addr) { return 0; }
1045 
1046 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1047 			{ return 1; }
1048 static inline int check_object(struct kmem_cache *s, struct page *page,
1049 			void *object, int active) { return 1; }
1050 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1051 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1052 	unsigned long flags, const char *name,
1053 	void (*ctor)(void *))
1054 {
1055 	return flags;
1056 }
1057 #define slub_debug 0
1058 
1059 #define disable_higher_order_debug 0
1060 
1061 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1062 							{ return 0; }
1063 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1064 							{ return 0; }
1065 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1066 							int objects) {}
1067 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1068 							int objects) {}
1069 #endif
1070 
1071 /*
1072  * Slab allocation and freeing
1073  */
1074 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1075 					struct kmem_cache_order_objects oo)
1076 {
1077 	int order = oo_order(oo);
1078 
1079 	flags |= __GFP_NOTRACK;
1080 
1081 	if (node == NUMA_NO_NODE)
1082 		return alloc_pages(flags, order);
1083 	else
1084 		return alloc_pages_exact_node(node, flags, order);
1085 }
1086 
1087 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1088 {
1089 	struct page *page;
1090 	struct kmem_cache_order_objects oo = s->oo;
1091 	gfp_t alloc_gfp;
1092 
1093 	flags |= s->allocflags;
1094 
1095 	/*
1096 	 * Let the initial higher-order allocation fail under memory pressure
1097 	 * so we fall-back to the minimum order allocation.
1098 	 */
1099 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1100 
1101 	page = alloc_slab_page(alloc_gfp, node, oo);
1102 	if (unlikely(!page)) {
1103 		oo = s->min;
1104 		/*
1105 		 * Allocation may have failed due to fragmentation.
1106 		 * Try a lower order alloc if possible
1107 		 */
1108 		page = alloc_slab_page(flags, node, oo);
1109 		if (!page)
1110 			return NULL;
1111 
1112 		stat(s, ORDER_FALLBACK);
1113 	}
1114 
1115 	if (kmemcheck_enabled
1116 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1117 		int pages = 1 << oo_order(oo);
1118 
1119 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1120 
1121 		/*
1122 		 * Objects from caches that have a constructor don't get
1123 		 * cleared when they're allocated, so we need to do it here.
1124 		 */
1125 		if (s->ctor)
1126 			kmemcheck_mark_uninitialized_pages(page, pages);
1127 		else
1128 			kmemcheck_mark_unallocated_pages(page, pages);
1129 	}
1130 
1131 	page->objects = oo_objects(oo);
1132 	mod_zone_page_state(page_zone(page),
1133 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1134 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1135 		1 << oo_order(oo));
1136 
1137 	return page;
1138 }
1139 
1140 static void setup_object(struct kmem_cache *s, struct page *page,
1141 				void *object)
1142 {
1143 	setup_object_debug(s, page, object);
1144 	if (unlikely(s->ctor))
1145 		s->ctor(object);
1146 }
1147 
1148 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1149 {
1150 	struct page *page;
1151 	void *start;
1152 	void *last;
1153 	void *p;
1154 
1155 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1156 
1157 	page = allocate_slab(s,
1158 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1159 	if (!page)
1160 		goto out;
1161 
1162 	inc_slabs_node(s, page_to_nid(page), page->objects);
1163 	page->slab = s;
1164 	page->flags |= 1 << PG_slab;
1165 
1166 	start = page_address(page);
1167 
1168 	if (unlikely(s->flags & SLAB_POISON))
1169 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1170 
1171 	last = start;
1172 	for_each_object(p, s, start, page->objects) {
1173 		setup_object(s, page, last);
1174 		set_freepointer(s, last, p);
1175 		last = p;
1176 	}
1177 	setup_object(s, page, last);
1178 	set_freepointer(s, last, NULL);
1179 
1180 	page->freelist = start;
1181 	page->inuse = 0;
1182 out:
1183 	return page;
1184 }
1185 
1186 static void __free_slab(struct kmem_cache *s, struct page *page)
1187 {
1188 	int order = compound_order(page);
1189 	int pages = 1 << order;
1190 
1191 	if (kmem_cache_debug(s)) {
1192 		void *p;
1193 
1194 		slab_pad_check(s, page);
1195 		for_each_object(p, s, page_address(page),
1196 						page->objects)
1197 			check_object(s, page, p, 0);
1198 	}
1199 
1200 	kmemcheck_free_shadow(page, compound_order(page));
1201 
1202 	mod_zone_page_state(page_zone(page),
1203 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1204 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1205 		-pages);
1206 
1207 	__ClearPageSlab(page);
1208 	reset_page_mapcount(page);
1209 	if (current->reclaim_state)
1210 		current->reclaim_state->reclaimed_slab += pages;
1211 	__free_pages(page, order);
1212 }
1213 
1214 static void rcu_free_slab(struct rcu_head *h)
1215 {
1216 	struct page *page;
1217 
1218 	page = container_of((struct list_head *)h, struct page, lru);
1219 	__free_slab(page->slab, page);
1220 }
1221 
1222 static void free_slab(struct kmem_cache *s, struct page *page)
1223 {
1224 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1225 		/*
1226 		 * RCU free overloads the RCU head over the LRU
1227 		 */
1228 		struct rcu_head *head = (void *)&page->lru;
1229 
1230 		call_rcu(head, rcu_free_slab);
1231 	} else
1232 		__free_slab(s, page);
1233 }
1234 
1235 static void discard_slab(struct kmem_cache *s, struct page *page)
1236 {
1237 	dec_slabs_node(s, page_to_nid(page), page->objects);
1238 	free_slab(s, page);
1239 }
1240 
1241 /*
1242  * Per slab locking using the pagelock
1243  */
1244 static __always_inline void slab_lock(struct page *page)
1245 {
1246 	bit_spin_lock(PG_locked, &page->flags);
1247 }
1248 
1249 static __always_inline void slab_unlock(struct page *page)
1250 {
1251 	__bit_spin_unlock(PG_locked, &page->flags);
1252 }
1253 
1254 static __always_inline int slab_trylock(struct page *page)
1255 {
1256 	int rc = 1;
1257 
1258 	rc = bit_spin_trylock(PG_locked, &page->flags);
1259 	return rc;
1260 }
1261 
1262 /*
1263  * Management of partially allocated slabs
1264  */
1265 static void add_partial(struct kmem_cache_node *n,
1266 				struct page *page, int tail)
1267 {
1268 	spin_lock(&n->list_lock);
1269 	n->nr_partial++;
1270 	if (tail)
1271 		list_add_tail(&page->lru, &n->partial);
1272 	else
1273 		list_add(&page->lru, &n->partial);
1274 	spin_unlock(&n->list_lock);
1275 }
1276 
1277 static void remove_partial(struct kmem_cache *s, struct page *page)
1278 {
1279 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1280 
1281 	spin_lock(&n->list_lock);
1282 	list_del(&page->lru);
1283 	n->nr_partial--;
1284 	spin_unlock(&n->list_lock);
1285 }
1286 
1287 /*
1288  * Lock slab and remove from the partial list.
1289  *
1290  * Must hold list_lock.
1291  */
1292 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1293 							struct page *page)
1294 {
1295 	if (slab_trylock(page)) {
1296 		list_del(&page->lru);
1297 		n->nr_partial--;
1298 		__SetPageSlubFrozen(page);
1299 		return 1;
1300 	}
1301 	return 0;
1302 }
1303 
1304 /*
1305  * Try to allocate a partial slab from a specific node.
1306  */
1307 static struct page *get_partial_node(struct kmem_cache_node *n)
1308 {
1309 	struct page *page;
1310 
1311 	/*
1312 	 * Racy check. If we mistakenly see no partial slabs then we
1313 	 * just allocate an empty slab. If we mistakenly try to get a
1314 	 * partial slab and there is none available then get_partials()
1315 	 * will return NULL.
1316 	 */
1317 	if (!n || !n->nr_partial)
1318 		return NULL;
1319 
1320 	spin_lock(&n->list_lock);
1321 	list_for_each_entry(page, &n->partial, lru)
1322 		if (lock_and_freeze_slab(n, page))
1323 			goto out;
1324 	page = NULL;
1325 out:
1326 	spin_unlock(&n->list_lock);
1327 	return page;
1328 }
1329 
1330 /*
1331  * Get a page from somewhere. Search in increasing NUMA distances.
1332  */
1333 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1334 {
1335 #ifdef CONFIG_NUMA
1336 	struct zonelist *zonelist;
1337 	struct zoneref *z;
1338 	struct zone *zone;
1339 	enum zone_type high_zoneidx = gfp_zone(flags);
1340 	struct page *page;
1341 
1342 	/*
1343 	 * The defrag ratio allows a configuration of the tradeoffs between
1344 	 * inter node defragmentation and node local allocations. A lower
1345 	 * defrag_ratio increases the tendency to do local allocations
1346 	 * instead of attempting to obtain partial slabs from other nodes.
1347 	 *
1348 	 * If the defrag_ratio is set to 0 then kmalloc() always
1349 	 * returns node local objects. If the ratio is higher then kmalloc()
1350 	 * may return off node objects because partial slabs are obtained
1351 	 * from other nodes and filled up.
1352 	 *
1353 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1354 	 * defrag_ratio = 1000) then every (well almost) allocation will
1355 	 * first attempt to defrag slab caches on other nodes. This means
1356 	 * scanning over all nodes to look for partial slabs which may be
1357 	 * expensive if we do it every time we are trying to find a slab
1358 	 * with available objects.
1359 	 */
1360 	if (!s->remote_node_defrag_ratio ||
1361 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1362 		return NULL;
1363 
1364 	get_mems_allowed();
1365 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1366 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1367 		struct kmem_cache_node *n;
1368 
1369 		n = get_node(s, zone_to_nid(zone));
1370 
1371 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1372 				n->nr_partial > s->min_partial) {
1373 			page = get_partial_node(n);
1374 			if (page) {
1375 				put_mems_allowed();
1376 				return page;
1377 			}
1378 		}
1379 	}
1380 	put_mems_allowed();
1381 #endif
1382 	return NULL;
1383 }
1384 
1385 /*
1386  * Get a partial page, lock it and return it.
1387  */
1388 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1389 {
1390 	struct page *page;
1391 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1392 
1393 	page = get_partial_node(get_node(s, searchnode));
1394 	if (page || node != -1)
1395 		return page;
1396 
1397 	return get_any_partial(s, flags);
1398 }
1399 
1400 /*
1401  * Move a page back to the lists.
1402  *
1403  * Must be called with the slab lock held.
1404  *
1405  * On exit the slab lock will have been dropped.
1406  */
1407 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1408 {
1409 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1410 
1411 	__ClearPageSlubFrozen(page);
1412 	if (page->inuse) {
1413 
1414 		if (page->freelist) {
1415 			add_partial(n, page, tail);
1416 			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1417 		} else {
1418 			stat(s, DEACTIVATE_FULL);
1419 			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1420 				add_full(n, page);
1421 		}
1422 		slab_unlock(page);
1423 	} else {
1424 		stat(s, DEACTIVATE_EMPTY);
1425 		if (n->nr_partial < s->min_partial) {
1426 			/*
1427 			 * Adding an empty slab to the partial slabs in order
1428 			 * to avoid page allocator overhead. This slab needs
1429 			 * to come after the other slabs with objects in
1430 			 * so that the others get filled first. That way the
1431 			 * size of the partial list stays small.
1432 			 *
1433 			 * kmem_cache_shrink can reclaim any empty slabs from
1434 			 * the partial list.
1435 			 */
1436 			add_partial(n, page, 1);
1437 			slab_unlock(page);
1438 		} else {
1439 			slab_unlock(page);
1440 			stat(s, FREE_SLAB);
1441 			discard_slab(s, page);
1442 		}
1443 	}
1444 }
1445 
1446 /*
1447  * Remove the cpu slab
1448  */
1449 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 {
1451 	struct page *page = c->page;
1452 	int tail = 1;
1453 
1454 	if (page->freelist)
1455 		stat(s, DEACTIVATE_REMOTE_FREES);
1456 	/*
1457 	 * Merge cpu freelist into slab freelist. Typically we get here
1458 	 * because both freelists are empty. So this is unlikely
1459 	 * to occur.
1460 	 */
1461 	while (unlikely(c->freelist)) {
1462 		void **object;
1463 
1464 		tail = 0;	/* Hot objects. Put the slab first */
1465 
1466 		/* Retrieve object from cpu_freelist */
1467 		object = c->freelist;
1468 		c->freelist = get_freepointer(s, c->freelist);
1469 
1470 		/* And put onto the regular freelist */
1471 		set_freepointer(s, object, page->freelist);
1472 		page->freelist = object;
1473 		page->inuse--;
1474 	}
1475 	c->page = NULL;
1476 	unfreeze_slab(s, page, tail);
1477 }
1478 
1479 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1480 {
1481 	stat(s, CPUSLAB_FLUSH);
1482 	slab_lock(c->page);
1483 	deactivate_slab(s, c);
1484 }
1485 
1486 /*
1487  * Flush cpu slab.
1488  *
1489  * Called from IPI handler with interrupts disabled.
1490  */
1491 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1492 {
1493 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1494 
1495 	if (likely(c && c->page))
1496 		flush_slab(s, c);
1497 }
1498 
1499 static void flush_cpu_slab(void *d)
1500 {
1501 	struct kmem_cache *s = d;
1502 
1503 	__flush_cpu_slab(s, smp_processor_id());
1504 }
1505 
1506 static void flush_all(struct kmem_cache *s)
1507 {
1508 	on_each_cpu(flush_cpu_slab, s, 1);
1509 }
1510 
1511 /*
1512  * Check if the objects in a per cpu structure fit numa
1513  * locality expectations.
1514  */
1515 static inline int node_match(struct kmem_cache_cpu *c, int node)
1516 {
1517 #ifdef CONFIG_NUMA
1518 	if (node != NUMA_NO_NODE && c->node != node)
1519 		return 0;
1520 #endif
1521 	return 1;
1522 }
1523 
1524 static int count_free(struct page *page)
1525 {
1526 	return page->objects - page->inuse;
1527 }
1528 
1529 static unsigned long count_partial(struct kmem_cache_node *n,
1530 					int (*get_count)(struct page *))
1531 {
1532 	unsigned long flags;
1533 	unsigned long x = 0;
1534 	struct page *page;
1535 
1536 	spin_lock_irqsave(&n->list_lock, flags);
1537 	list_for_each_entry(page, &n->partial, lru)
1538 		x += get_count(page);
1539 	spin_unlock_irqrestore(&n->list_lock, flags);
1540 	return x;
1541 }
1542 
1543 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1544 {
1545 #ifdef CONFIG_SLUB_DEBUG
1546 	return atomic_long_read(&n->total_objects);
1547 #else
1548 	return 0;
1549 #endif
1550 }
1551 
1552 static noinline void
1553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1554 {
1555 	int node;
1556 
1557 	printk(KERN_WARNING
1558 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1559 		nid, gfpflags);
1560 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1561 		"default order: %d, min order: %d\n", s->name, s->objsize,
1562 		s->size, oo_order(s->oo), oo_order(s->min));
1563 
1564 	if (oo_order(s->min) > get_order(s->objsize))
1565 		printk(KERN_WARNING "  %s debugging increased min order, use "
1566 		       "slub_debug=O to disable.\n", s->name);
1567 
1568 	for_each_online_node(node) {
1569 		struct kmem_cache_node *n = get_node(s, node);
1570 		unsigned long nr_slabs;
1571 		unsigned long nr_objs;
1572 		unsigned long nr_free;
1573 
1574 		if (!n)
1575 			continue;
1576 
1577 		nr_free  = count_partial(n, count_free);
1578 		nr_slabs = node_nr_slabs(n);
1579 		nr_objs  = node_nr_objs(n);
1580 
1581 		printk(KERN_WARNING
1582 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1583 			node, nr_slabs, nr_objs, nr_free);
1584 	}
1585 }
1586 
1587 /*
1588  * Slow path. The lockless freelist is empty or we need to perform
1589  * debugging duties.
1590  *
1591  * Interrupts are disabled.
1592  *
1593  * Processing is still very fast if new objects have been freed to the
1594  * regular freelist. In that case we simply take over the regular freelist
1595  * as the lockless freelist and zap the regular freelist.
1596  *
1597  * If that is not working then we fall back to the partial lists. We take the
1598  * first element of the freelist as the object to allocate now and move the
1599  * rest of the freelist to the lockless freelist.
1600  *
1601  * And if we were unable to get a new slab from the partial slab lists then
1602  * we need to allocate a new slab. This is the slowest path since it involves
1603  * a call to the page allocator and the setup of a new slab.
1604  */
1605 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1606 			  unsigned long addr, struct kmem_cache_cpu *c)
1607 {
1608 	void **object;
1609 	struct page *new;
1610 
1611 	/* We handle __GFP_ZERO in the caller */
1612 	gfpflags &= ~__GFP_ZERO;
1613 
1614 	if (!c->page)
1615 		goto new_slab;
1616 
1617 	slab_lock(c->page);
1618 	if (unlikely(!node_match(c, node)))
1619 		goto another_slab;
1620 
1621 	stat(s, ALLOC_REFILL);
1622 
1623 load_freelist:
1624 	object = c->page->freelist;
1625 	if (unlikely(!object))
1626 		goto another_slab;
1627 	if (kmem_cache_debug(s))
1628 		goto debug;
1629 
1630 	c->freelist = get_freepointer(s, object);
1631 	c->page->inuse = c->page->objects;
1632 	c->page->freelist = NULL;
1633 	c->node = page_to_nid(c->page);
1634 unlock_out:
1635 	slab_unlock(c->page);
1636 	stat(s, ALLOC_SLOWPATH);
1637 	return object;
1638 
1639 another_slab:
1640 	deactivate_slab(s, c);
1641 
1642 new_slab:
1643 	new = get_partial(s, gfpflags, node);
1644 	if (new) {
1645 		c->page = new;
1646 		stat(s, ALLOC_FROM_PARTIAL);
1647 		goto load_freelist;
1648 	}
1649 
1650 	if (gfpflags & __GFP_WAIT)
1651 		local_irq_enable();
1652 
1653 	new = new_slab(s, gfpflags, node);
1654 
1655 	if (gfpflags & __GFP_WAIT)
1656 		local_irq_disable();
1657 
1658 	if (new) {
1659 		c = __this_cpu_ptr(s->cpu_slab);
1660 		stat(s, ALLOC_SLAB);
1661 		if (c->page)
1662 			flush_slab(s, c);
1663 		slab_lock(new);
1664 		__SetPageSlubFrozen(new);
1665 		c->page = new;
1666 		goto load_freelist;
1667 	}
1668 	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1669 		slab_out_of_memory(s, gfpflags, node);
1670 	return NULL;
1671 debug:
1672 	if (!alloc_debug_processing(s, c->page, object, addr))
1673 		goto another_slab;
1674 
1675 	c->page->inuse++;
1676 	c->page->freelist = get_freepointer(s, object);
1677 	c->node = -1;
1678 	goto unlock_out;
1679 }
1680 
1681 /*
1682  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1683  * have the fastpath folded into their functions. So no function call
1684  * overhead for requests that can be satisfied on the fastpath.
1685  *
1686  * The fastpath works by first checking if the lockless freelist can be used.
1687  * If not then __slab_alloc is called for slow processing.
1688  *
1689  * Otherwise we can simply pick the next object from the lockless free list.
1690  */
1691 static __always_inline void *slab_alloc(struct kmem_cache *s,
1692 		gfp_t gfpflags, int node, unsigned long addr)
1693 {
1694 	void **object;
1695 	struct kmem_cache_cpu *c;
1696 	unsigned long flags;
1697 
1698 	gfpflags &= gfp_allowed_mask;
1699 
1700 	lockdep_trace_alloc(gfpflags);
1701 	might_sleep_if(gfpflags & __GFP_WAIT);
1702 
1703 	if (should_failslab(s->objsize, gfpflags, s->flags))
1704 		return NULL;
1705 
1706 	local_irq_save(flags);
1707 	c = __this_cpu_ptr(s->cpu_slab);
1708 	object = c->freelist;
1709 	if (unlikely(!object || !node_match(c, node)))
1710 
1711 		object = __slab_alloc(s, gfpflags, node, addr, c);
1712 
1713 	else {
1714 		c->freelist = get_freepointer(s, object);
1715 		stat(s, ALLOC_FASTPATH);
1716 	}
1717 	local_irq_restore(flags);
1718 
1719 	if (unlikely(gfpflags & __GFP_ZERO) && object)
1720 		memset(object, 0, s->objsize);
1721 
1722 	kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1723 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1724 
1725 	return object;
1726 }
1727 
1728 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1729 {
1730 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1731 
1732 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1733 
1734 	return ret;
1735 }
1736 EXPORT_SYMBOL(kmem_cache_alloc);
1737 
1738 #ifdef CONFIG_TRACING
1739 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1740 {
1741 	return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1742 }
1743 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1744 #endif
1745 
1746 #ifdef CONFIG_NUMA
1747 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1748 {
1749 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1750 
1751 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1752 				    s->objsize, s->size, gfpflags, node);
1753 
1754 	return ret;
1755 }
1756 EXPORT_SYMBOL(kmem_cache_alloc_node);
1757 #endif
1758 
1759 #ifdef CONFIG_TRACING
1760 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1761 				    gfp_t gfpflags,
1762 				    int node)
1763 {
1764 	return slab_alloc(s, gfpflags, node, _RET_IP_);
1765 }
1766 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1767 #endif
1768 
1769 /*
1770  * Slow patch handling. This may still be called frequently since objects
1771  * have a longer lifetime than the cpu slabs in most processing loads.
1772  *
1773  * So we still attempt to reduce cache line usage. Just take the slab
1774  * lock and free the item. If there is no additional partial page
1775  * handling required then we can return immediately.
1776  */
1777 static void __slab_free(struct kmem_cache *s, struct page *page,
1778 			void *x, unsigned long addr)
1779 {
1780 	void *prior;
1781 	void **object = (void *)x;
1782 
1783 	stat(s, FREE_SLOWPATH);
1784 	slab_lock(page);
1785 
1786 	if (kmem_cache_debug(s))
1787 		goto debug;
1788 
1789 checks_ok:
1790 	prior = page->freelist;
1791 	set_freepointer(s, object, prior);
1792 	page->freelist = object;
1793 	page->inuse--;
1794 
1795 	if (unlikely(PageSlubFrozen(page))) {
1796 		stat(s, FREE_FROZEN);
1797 		goto out_unlock;
1798 	}
1799 
1800 	if (unlikely(!page->inuse))
1801 		goto slab_empty;
1802 
1803 	/*
1804 	 * Objects left in the slab. If it was not on the partial list before
1805 	 * then add it.
1806 	 */
1807 	if (unlikely(!prior)) {
1808 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1809 		stat(s, FREE_ADD_PARTIAL);
1810 	}
1811 
1812 out_unlock:
1813 	slab_unlock(page);
1814 	return;
1815 
1816 slab_empty:
1817 	if (prior) {
1818 		/*
1819 		 * Slab still on the partial list.
1820 		 */
1821 		remove_partial(s, page);
1822 		stat(s, FREE_REMOVE_PARTIAL);
1823 	}
1824 	slab_unlock(page);
1825 	stat(s, FREE_SLAB);
1826 	discard_slab(s, page);
1827 	return;
1828 
1829 debug:
1830 	if (!free_debug_processing(s, page, x, addr))
1831 		goto out_unlock;
1832 	goto checks_ok;
1833 }
1834 
1835 /*
1836  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1837  * can perform fastpath freeing without additional function calls.
1838  *
1839  * The fastpath is only possible if we are freeing to the current cpu slab
1840  * of this processor. This typically the case if we have just allocated
1841  * the item before.
1842  *
1843  * If fastpath is not possible then fall back to __slab_free where we deal
1844  * with all sorts of special processing.
1845  */
1846 static __always_inline void slab_free(struct kmem_cache *s,
1847 			struct page *page, void *x, unsigned long addr)
1848 {
1849 	void **object = (void *)x;
1850 	struct kmem_cache_cpu *c;
1851 	unsigned long flags;
1852 
1853 	kmemleak_free_recursive(x, s->flags);
1854 	local_irq_save(flags);
1855 	c = __this_cpu_ptr(s->cpu_slab);
1856 	kmemcheck_slab_free(s, object, s->objsize);
1857 	debug_check_no_locks_freed(object, s->objsize);
1858 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1859 		debug_check_no_obj_freed(object, s->objsize);
1860 	if (likely(page == c->page && c->node >= 0)) {
1861 		set_freepointer(s, object, c->freelist);
1862 		c->freelist = object;
1863 		stat(s, FREE_FASTPATH);
1864 	} else
1865 		__slab_free(s, page, x, addr);
1866 
1867 	local_irq_restore(flags);
1868 }
1869 
1870 void kmem_cache_free(struct kmem_cache *s, void *x)
1871 {
1872 	struct page *page;
1873 
1874 	page = virt_to_head_page(x);
1875 
1876 	slab_free(s, page, x, _RET_IP_);
1877 
1878 	trace_kmem_cache_free(_RET_IP_, x);
1879 }
1880 EXPORT_SYMBOL(kmem_cache_free);
1881 
1882 /* Figure out on which slab page the object resides */
1883 static struct page *get_object_page(const void *x)
1884 {
1885 	struct page *page = virt_to_head_page(x);
1886 
1887 	if (!PageSlab(page))
1888 		return NULL;
1889 
1890 	return page;
1891 }
1892 
1893 /*
1894  * Object placement in a slab is made very easy because we always start at
1895  * offset 0. If we tune the size of the object to the alignment then we can
1896  * get the required alignment by putting one properly sized object after
1897  * another.
1898  *
1899  * Notice that the allocation order determines the sizes of the per cpu
1900  * caches. Each processor has always one slab available for allocations.
1901  * Increasing the allocation order reduces the number of times that slabs
1902  * must be moved on and off the partial lists and is therefore a factor in
1903  * locking overhead.
1904  */
1905 
1906 /*
1907  * Mininum / Maximum order of slab pages. This influences locking overhead
1908  * and slab fragmentation. A higher order reduces the number of partial slabs
1909  * and increases the number of allocations possible without having to
1910  * take the list_lock.
1911  */
1912 static int slub_min_order;
1913 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1914 static int slub_min_objects;
1915 
1916 /*
1917  * Merge control. If this is set then no merging of slab caches will occur.
1918  * (Could be removed. This was introduced to pacify the merge skeptics.)
1919  */
1920 static int slub_nomerge;
1921 
1922 /*
1923  * Calculate the order of allocation given an slab object size.
1924  *
1925  * The order of allocation has significant impact on performance and other
1926  * system components. Generally order 0 allocations should be preferred since
1927  * order 0 does not cause fragmentation in the page allocator. Larger objects
1928  * be problematic to put into order 0 slabs because there may be too much
1929  * unused space left. We go to a higher order if more than 1/16th of the slab
1930  * would be wasted.
1931  *
1932  * In order to reach satisfactory performance we must ensure that a minimum
1933  * number of objects is in one slab. Otherwise we may generate too much
1934  * activity on the partial lists which requires taking the list_lock. This is
1935  * less a concern for large slabs though which are rarely used.
1936  *
1937  * slub_max_order specifies the order where we begin to stop considering the
1938  * number of objects in a slab as critical. If we reach slub_max_order then
1939  * we try to keep the page order as low as possible. So we accept more waste
1940  * of space in favor of a small page order.
1941  *
1942  * Higher order allocations also allow the placement of more objects in a
1943  * slab and thereby reduce object handling overhead. If the user has
1944  * requested a higher mininum order then we start with that one instead of
1945  * the smallest order which will fit the object.
1946  */
1947 static inline int slab_order(int size, int min_objects,
1948 				int max_order, int fract_leftover)
1949 {
1950 	int order;
1951 	int rem;
1952 	int min_order = slub_min_order;
1953 
1954 	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1955 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1956 
1957 	for (order = max(min_order,
1958 				fls(min_objects * size - 1) - PAGE_SHIFT);
1959 			order <= max_order; order++) {
1960 
1961 		unsigned long slab_size = PAGE_SIZE << order;
1962 
1963 		if (slab_size < min_objects * size)
1964 			continue;
1965 
1966 		rem = slab_size % size;
1967 
1968 		if (rem <= slab_size / fract_leftover)
1969 			break;
1970 
1971 	}
1972 
1973 	return order;
1974 }
1975 
1976 static inline int calculate_order(int size)
1977 {
1978 	int order;
1979 	int min_objects;
1980 	int fraction;
1981 	int max_objects;
1982 
1983 	/*
1984 	 * Attempt to find best configuration for a slab. This
1985 	 * works by first attempting to generate a layout with
1986 	 * the best configuration and backing off gradually.
1987 	 *
1988 	 * First we reduce the acceptable waste in a slab. Then
1989 	 * we reduce the minimum objects required in a slab.
1990 	 */
1991 	min_objects = slub_min_objects;
1992 	if (!min_objects)
1993 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1994 	max_objects = (PAGE_SIZE << slub_max_order)/size;
1995 	min_objects = min(min_objects, max_objects);
1996 
1997 	while (min_objects > 1) {
1998 		fraction = 16;
1999 		while (fraction >= 4) {
2000 			order = slab_order(size, min_objects,
2001 						slub_max_order, fraction);
2002 			if (order <= slub_max_order)
2003 				return order;
2004 			fraction /= 2;
2005 		}
2006 		min_objects--;
2007 	}
2008 
2009 	/*
2010 	 * We were unable to place multiple objects in a slab. Now
2011 	 * lets see if we can place a single object there.
2012 	 */
2013 	order = slab_order(size, 1, slub_max_order, 1);
2014 	if (order <= slub_max_order)
2015 		return order;
2016 
2017 	/*
2018 	 * Doh this slab cannot be placed using slub_max_order.
2019 	 */
2020 	order = slab_order(size, 1, MAX_ORDER, 1);
2021 	if (order < MAX_ORDER)
2022 		return order;
2023 	return -ENOSYS;
2024 }
2025 
2026 /*
2027  * Figure out what the alignment of the objects will be.
2028  */
2029 static unsigned long calculate_alignment(unsigned long flags,
2030 		unsigned long align, unsigned long size)
2031 {
2032 	/*
2033 	 * If the user wants hardware cache aligned objects then follow that
2034 	 * suggestion if the object is sufficiently large.
2035 	 *
2036 	 * The hardware cache alignment cannot override the specified
2037 	 * alignment though. If that is greater then use it.
2038 	 */
2039 	if (flags & SLAB_HWCACHE_ALIGN) {
2040 		unsigned long ralign = cache_line_size();
2041 		while (size <= ralign / 2)
2042 			ralign /= 2;
2043 		align = max(align, ralign);
2044 	}
2045 
2046 	if (align < ARCH_SLAB_MINALIGN)
2047 		align = ARCH_SLAB_MINALIGN;
2048 
2049 	return ALIGN(align, sizeof(void *));
2050 }
2051 
2052 static void
2053 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2054 {
2055 	n->nr_partial = 0;
2056 	spin_lock_init(&n->list_lock);
2057 	INIT_LIST_HEAD(&n->partial);
2058 #ifdef CONFIG_SLUB_DEBUG
2059 	atomic_long_set(&n->nr_slabs, 0);
2060 	atomic_long_set(&n->total_objects, 0);
2061 	INIT_LIST_HEAD(&n->full);
2062 #endif
2063 }
2064 
2065 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2066 
2067 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2068 {
2069 	if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2070 		/*
2071 		 * Boot time creation of the kmalloc array. Use static per cpu data
2072 		 * since the per cpu allocator is not available yet.
2073 		 */
2074 		s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2075 	else
2076 		s->cpu_slab =  alloc_percpu(struct kmem_cache_cpu);
2077 
2078 	if (!s->cpu_slab)
2079 		return 0;
2080 
2081 	return 1;
2082 }
2083 
2084 #ifdef CONFIG_NUMA
2085 /*
2086  * No kmalloc_node yet so do it by hand. We know that this is the first
2087  * slab on the node for this slabcache. There are no concurrent accesses
2088  * possible.
2089  *
2090  * Note that this function only works on the kmalloc_node_cache
2091  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2092  * memory on a fresh node that has no slab structures yet.
2093  */
2094 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2095 {
2096 	struct page *page;
2097 	struct kmem_cache_node *n;
2098 	unsigned long flags;
2099 
2100 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2101 
2102 	page = new_slab(kmalloc_caches, gfpflags, node);
2103 
2104 	BUG_ON(!page);
2105 	if (page_to_nid(page) != node) {
2106 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2107 				"node %d\n", node);
2108 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2109 				"in order to be able to continue\n");
2110 	}
2111 
2112 	n = page->freelist;
2113 	BUG_ON(!n);
2114 	page->freelist = get_freepointer(kmalloc_caches, n);
2115 	page->inuse++;
2116 	kmalloc_caches->node[node] = n;
2117 #ifdef CONFIG_SLUB_DEBUG
2118 	init_object(kmalloc_caches, n, 1);
2119 	init_tracking(kmalloc_caches, n);
2120 #endif
2121 	init_kmem_cache_node(n, kmalloc_caches);
2122 	inc_slabs_node(kmalloc_caches, node, page->objects);
2123 
2124 	/*
2125 	 * lockdep requires consistent irq usage for each lock
2126 	 * so even though there cannot be a race this early in
2127 	 * the boot sequence, we still disable irqs.
2128 	 */
2129 	local_irq_save(flags);
2130 	add_partial(n, page, 0);
2131 	local_irq_restore(flags);
2132 }
2133 
2134 static void free_kmem_cache_nodes(struct kmem_cache *s)
2135 {
2136 	int node;
2137 
2138 	for_each_node_state(node, N_NORMAL_MEMORY) {
2139 		struct kmem_cache_node *n = s->node[node];
2140 		if (n)
2141 			kmem_cache_free(kmalloc_caches, n);
2142 		s->node[node] = NULL;
2143 	}
2144 }
2145 
2146 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2147 {
2148 	int node;
2149 
2150 	for_each_node_state(node, N_NORMAL_MEMORY) {
2151 		struct kmem_cache_node *n;
2152 
2153 		if (slab_state == DOWN) {
2154 			early_kmem_cache_node_alloc(gfpflags, node);
2155 			continue;
2156 		}
2157 		n = kmem_cache_alloc_node(kmalloc_caches,
2158 						gfpflags, node);
2159 
2160 		if (!n) {
2161 			free_kmem_cache_nodes(s);
2162 			return 0;
2163 		}
2164 
2165 		s->node[node] = n;
2166 		init_kmem_cache_node(n, s);
2167 	}
2168 	return 1;
2169 }
2170 #else
2171 static void free_kmem_cache_nodes(struct kmem_cache *s)
2172 {
2173 }
2174 
2175 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2176 {
2177 	init_kmem_cache_node(&s->local_node, s);
2178 	return 1;
2179 }
2180 #endif
2181 
2182 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2183 {
2184 	if (min < MIN_PARTIAL)
2185 		min = MIN_PARTIAL;
2186 	else if (min > MAX_PARTIAL)
2187 		min = MAX_PARTIAL;
2188 	s->min_partial = min;
2189 }
2190 
2191 /*
2192  * calculate_sizes() determines the order and the distribution of data within
2193  * a slab object.
2194  */
2195 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2196 {
2197 	unsigned long flags = s->flags;
2198 	unsigned long size = s->objsize;
2199 	unsigned long align = s->align;
2200 	int order;
2201 
2202 	/*
2203 	 * Round up object size to the next word boundary. We can only
2204 	 * place the free pointer at word boundaries and this determines
2205 	 * the possible location of the free pointer.
2206 	 */
2207 	size = ALIGN(size, sizeof(void *));
2208 
2209 #ifdef CONFIG_SLUB_DEBUG
2210 	/*
2211 	 * Determine if we can poison the object itself. If the user of
2212 	 * the slab may touch the object after free or before allocation
2213 	 * then we should never poison the object itself.
2214 	 */
2215 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2216 			!s->ctor)
2217 		s->flags |= __OBJECT_POISON;
2218 	else
2219 		s->flags &= ~__OBJECT_POISON;
2220 
2221 
2222 	/*
2223 	 * If we are Redzoning then check if there is some space between the
2224 	 * end of the object and the free pointer. If not then add an
2225 	 * additional word to have some bytes to store Redzone information.
2226 	 */
2227 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2228 		size += sizeof(void *);
2229 #endif
2230 
2231 	/*
2232 	 * With that we have determined the number of bytes in actual use
2233 	 * by the object. This is the potential offset to the free pointer.
2234 	 */
2235 	s->inuse = size;
2236 
2237 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2238 		s->ctor)) {
2239 		/*
2240 		 * Relocate free pointer after the object if it is not
2241 		 * permitted to overwrite the first word of the object on
2242 		 * kmem_cache_free.
2243 		 *
2244 		 * This is the case if we do RCU, have a constructor or
2245 		 * destructor or are poisoning the objects.
2246 		 */
2247 		s->offset = size;
2248 		size += sizeof(void *);
2249 	}
2250 
2251 #ifdef CONFIG_SLUB_DEBUG
2252 	if (flags & SLAB_STORE_USER)
2253 		/*
2254 		 * Need to store information about allocs and frees after
2255 		 * the object.
2256 		 */
2257 		size += 2 * sizeof(struct track);
2258 
2259 	if (flags & SLAB_RED_ZONE)
2260 		/*
2261 		 * Add some empty padding so that we can catch
2262 		 * overwrites from earlier objects rather than let
2263 		 * tracking information or the free pointer be
2264 		 * corrupted if a user writes before the start
2265 		 * of the object.
2266 		 */
2267 		size += sizeof(void *);
2268 #endif
2269 
2270 	/*
2271 	 * Determine the alignment based on various parameters that the
2272 	 * user specified and the dynamic determination of cache line size
2273 	 * on bootup.
2274 	 */
2275 	align = calculate_alignment(flags, align, s->objsize);
2276 	s->align = align;
2277 
2278 	/*
2279 	 * SLUB stores one object immediately after another beginning from
2280 	 * offset 0. In order to align the objects we have to simply size
2281 	 * each object to conform to the alignment.
2282 	 */
2283 	size = ALIGN(size, align);
2284 	s->size = size;
2285 	if (forced_order >= 0)
2286 		order = forced_order;
2287 	else
2288 		order = calculate_order(size);
2289 
2290 	if (order < 0)
2291 		return 0;
2292 
2293 	s->allocflags = 0;
2294 	if (order)
2295 		s->allocflags |= __GFP_COMP;
2296 
2297 	if (s->flags & SLAB_CACHE_DMA)
2298 		s->allocflags |= SLUB_DMA;
2299 
2300 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2301 		s->allocflags |= __GFP_RECLAIMABLE;
2302 
2303 	/*
2304 	 * Determine the number of objects per slab
2305 	 */
2306 	s->oo = oo_make(order, size);
2307 	s->min = oo_make(get_order(size), size);
2308 	if (oo_objects(s->oo) > oo_objects(s->max))
2309 		s->max = s->oo;
2310 
2311 	return !!oo_objects(s->oo);
2312 
2313 }
2314 
2315 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2316 		const char *name, size_t size,
2317 		size_t align, unsigned long flags,
2318 		void (*ctor)(void *))
2319 {
2320 	memset(s, 0, kmem_size);
2321 	s->name = name;
2322 	s->ctor = ctor;
2323 	s->objsize = size;
2324 	s->align = align;
2325 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2326 
2327 	if (!calculate_sizes(s, -1))
2328 		goto error;
2329 	if (disable_higher_order_debug) {
2330 		/*
2331 		 * Disable debugging flags that store metadata if the min slab
2332 		 * order increased.
2333 		 */
2334 		if (get_order(s->size) > get_order(s->objsize)) {
2335 			s->flags &= ~DEBUG_METADATA_FLAGS;
2336 			s->offset = 0;
2337 			if (!calculate_sizes(s, -1))
2338 				goto error;
2339 		}
2340 	}
2341 
2342 	/*
2343 	 * The larger the object size is, the more pages we want on the partial
2344 	 * list to avoid pounding the page allocator excessively.
2345 	 */
2346 	set_min_partial(s, ilog2(s->size));
2347 	s->refcount = 1;
2348 #ifdef CONFIG_NUMA
2349 	s->remote_node_defrag_ratio = 1000;
2350 #endif
2351 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2352 		goto error;
2353 
2354 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2355 		return 1;
2356 
2357 	free_kmem_cache_nodes(s);
2358 error:
2359 	if (flags & SLAB_PANIC)
2360 		panic("Cannot create slab %s size=%lu realsize=%u "
2361 			"order=%u offset=%u flags=%lx\n",
2362 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2363 			s->offset, flags);
2364 	return 0;
2365 }
2366 
2367 /*
2368  * Check if a given pointer is valid
2369  */
2370 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2371 {
2372 	struct page *page;
2373 
2374 	if (!kern_ptr_validate(object, s->size))
2375 		return 0;
2376 
2377 	page = get_object_page(object);
2378 
2379 	if (!page || s != page->slab)
2380 		/* No slab or wrong slab */
2381 		return 0;
2382 
2383 	if (!check_valid_pointer(s, page, object))
2384 		return 0;
2385 
2386 	/*
2387 	 * We could also check if the object is on the slabs freelist.
2388 	 * But this would be too expensive and it seems that the main
2389 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2390 	 * to a certain slab.
2391 	 */
2392 	return 1;
2393 }
2394 EXPORT_SYMBOL(kmem_ptr_validate);
2395 
2396 /*
2397  * Determine the size of a slab object
2398  */
2399 unsigned int kmem_cache_size(struct kmem_cache *s)
2400 {
2401 	return s->objsize;
2402 }
2403 EXPORT_SYMBOL(kmem_cache_size);
2404 
2405 const char *kmem_cache_name(struct kmem_cache *s)
2406 {
2407 	return s->name;
2408 }
2409 EXPORT_SYMBOL(kmem_cache_name);
2410 
2411 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2412 							const char *text)
2413 {
2414 #ifdef CONFIG_SLUB_DEBUG
2415 	void *addr = page_address(page);
2416 	void *p;
2417 	long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2418 			    GFP_ATOMIC);
2419 
2420 	if (!map)
2421 		return;
2422 	slab_err(s, page, "%s", text);
2423 	slab_lock(page);
2424 	for_each_free_object(p, s, page->freelist)
2425 		set_bit(slab_index(p, s, addr), map);
2426 
2427 	for_each_object(p, s, addr, page->objects) {
2428 
2429 		if (!test_bit(slab_index(p, s, addr), map)) {
2430 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2431 							p, p - addr);
2432 			print_tracking(s, p);
2433 		}
2434 	}
2435 	slab_unlock(page);
2436 	kfree(map);
2437 #endif
2438 }
2439 
2440 /*
2441  * Attempt to free all partial slabs on a node.
2442  */
2443 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2444 {
2445 	unsigned long flags;
2446 	struct page *page, *h;
2447 
2448 	spin_lock_irqsave(&n->list_lock, flags);
2449 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2450 		if (!page->inuse) {
2451 			list_del(&page->lru);
2452 			discard_slab(s, page);
2453 			n->nr_partial--;
2454 		} else {
2455 			list_slab_objects(s, page,
2456 				"Objects remaining on kmem_cache_close()");
2457 		}
2458 	}
2459 	spin_unlock_irqrestore(&n->list_lock, flags);
2460 }
2461 
2462 /*
2463  * Release all resources used by a slab cache.
2464  */
2465 static inline int kmem_cache_close(struct kmem_cache *s)
2466 {
2467 	int node;
2468 
2469 	flush_all(s);
2470 	free_percpu(s->cpu_slab);
2471 	/* Attempt to free all objects */
2472 	for_each_node_state(node, N_NORMAL_MEMORY) {
2473 		struct kmem_cache_node *n = get_node(s, node);
2474 
2475 		free_partial(s, n);
2476 		if (n->nr_partial || slabs_node(s, node))
2477 			return 1;
2478 	}
2479 	free_kmem_cache_nodes(s);
2480 	return 0;
2481 }
2482 
2483 /*
2484  * Close a cache and release the kmem_cache structure
2485  * (must be used for caches created using kmem_cache_create)
2486  */
2487 void kmem_cache_destroy(struct kmem_cache *s)
2488 {
2489 	down_write(&slub_lock);
2490 	s->refcount--;
2491 	if (!s->refcount) {
2492 		list_del(&s->list);
2493 		if (kmem_cache_close(s)) {
2494 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2495 				"still has objects.\n", s->name, __func__);
2496 			dump_stack();
2497 		}
2498 		if (s->flags & SLAB_DESTROY_BY_RCU)
2499 			rcu_barrier();
2500 		sysfs_slab_remove(s);
2501 	}
2502 	up_write(&slub_lock);
2503 }
2504 EXPORT_SYMBOL(kmem_cache_destroy);
2505 
2506 /********************************************************************
2507  *		Kmalloc subsystem
2508  *******************************************************************/
2509 
2510 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2511 EXPORT_SYMBOL(kmalloc_caches);
2512 
2513 static int __init setup_slub_min_order(char *str)
2514 {
2515 	get_option(&str, &slub_min_order);
2516 
2517 	return 1;
2518 }
2519 
2520 __setup("slub_min_order=", setup_slub_min_order);
2521 
2522 static int __init setup_slub_max_order(char *str)
2523 {
2524 	get_option(&str, &slub_max_order);
2525 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2526 
2527 	return 1;
2528 }
2529 
2530 __setup("slub_max_order=", setup_slub_max_order);
2531 
2532 static int __init setup_slub_min_objects(char *str)
2533 {
2534 	get_option(&str, &slub_min_objects);
2535 
2536 	return 1;
2537 }
2538 
2539 __setup("slub_min_objects=", setup_slub_min_objects);
2540 
2541 static int __init setup_slub_nomerge(char *str)
2542 {
2543 	slub_nomerge = 1;
2544 	return 1;
2545 }
2546 
2547 __setup("slub_nomerge", setup_slub_nomerge);
2548 
2549 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2550 		const char *name, int size, gfp_t gfp_flags)
2551 {
2552 	unsigned int flags = 0;
2553 
2554 	if (gfp_flags & SLUB_DMA)
2555 		flags = SLAB_CACHE_DMA;
2556 
2557 	/*
2558 	 * This function is called with IRQs disabled during early-boot on
2559 	 * single CPU so there's no need to take slub_lock here.
2560 	 */
2561 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2562 								flags, NULL))
2563 		goto panic;
2564 
2565 	list_add(&s->list, &slab_caches);
2566 
2567 	if (sysfs_slab_add(s))
2568 		goto panic;
2569 	return s;
2570 
2571 panic:
2572 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2573 }
2574 
2575 #ifdef CONFIG_ZONE_DMA
2576 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2577 
2578 static void sysfs_add_func(struct work_struct *w)
2579 {
2580 	struct kmem_cache *s;
2581 
2582 	down_write(&slub_lock);
2583 	list_for_each_entry(s, &slab_caches, list) {
2584 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2585 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2586 			sysfs_slab_add(s);
2587 		}
2588 	}
2589 	up_write(&slub_lock);
2590 }
2591 
2592 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2593 
2594 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2595 {
2596 	struct kmem_cache *s;
2597 	char *text;
2598 	size_t realsize;
2599 	unsigned long slabflags;
2600 	int i;
2601 
2602 	s = kmalloc_caches_dma[index];
2603 	if (s)
2604 		return s;
2605 
2606 	/* Dynamically create dma cache */
2607 	if (flags & __GFP_WAIT)
2608 		down_write(&slub_lock);
2609 	else {
2610 		if (!down_write_trylock(&slub_lock))
2611 			goto out;
2612 	}
2613 
2614 	if (kmalloc_caches_dma[index])
2615 		goto unlock_out;
2616 
2617 	realsize = kmalloc_caches[index].objsize;
2618 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2619 			 (unsigned int)realsize);
2620 
2621 	s = NULL;
2622 	for (i = 0; i < KMALLOC_CACHES; i++)
2623 		if (!kmalloc_caches[i].size)
2624 			break;
2625 
2626 	BUG_ON(i >= KMALLOC_CACHES);
2627 	s = kmalloc_caches + i;
2628 
2629 	/*
2630 	 * Must defer sysfs creation to a workqueue because we don't know
2631 	 * what context we are called from. Before sysfs comes up, we don't
2632 	 * need to do anything because our sysfs initcall will start by
2633 	 * adding all existing slabs to sysfs.
2634 	 */
2635 	slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2636 	if (slab_state >= SYSFS)
2637 		slabflags |= __SYSFS_ADD_DEFERRED;
2638 
2639 	if (!text || !kmem_cache_open(s, flags, text,
2640 			realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2641 		s->size = 0;
2642 		kfree(text);
2643 		goto unlock_out;
2644 	}
2645 
2646 	list_add(&s->list, &slab_caches);
2647 	kmalloc_caches_dma[index] = s;
2648 
2649 	if (slab_state >= SYSFS)
2650 		schedule_work(&sysfs_add_work);
2651 
2652 unlock_out:
2653 	up_write(&slub_lock);
2654 out:
2655 	return kmalloc_caches_dma[index];
2656 }
2657 #endif
2658 
2659 /*
2660  * Conversion table for small slabs sizes / 8 to the index in the
2661  * kmalloc array. This is necessary for slabs < 192 since we have non power
2662  * of two cache sizes there. The size of larger slabs can be determined using
2663  * fls.
2664  */
2665 static s8 size_index[24] = {
2666 	3,	/* 8 */
2667 	4,	/* 16 */
2668 	5,	/* 24 */
2669 	5,	/* 32 */
2670 	6,	/* 40 */
2671 	6,	/* 48 */
2672 	6,	/* 56 */
2673 	6,	/* 64 */
2674 	1,	/* 72 */
2675 	1,	/* 80 */
2676 	1,	/* 88 */
2677 	1,	/* 96 */
2678 	7,	/* 104 */
2679 	7,	/* 112 */
2680 	7,	/* 120 */
2681 	7,	/* 128 */
2682 	2,	/* 136 */
2683 	2,	/* 144 */
2684 	2,	/* 152 */
2685 	2,	/* 160 */
2686 	2,	/* 168 */
2687 	2,	/* 176 */
2688 	2,	/* 184 */
2689 	2	/* 192 */
2690 };
2691 
2692 static inline int size_index_elem(size_t bytes)
2693 {
2694 	return (bytes - 1) / 8;
2695 }
2696 
2697 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2698 {
2699 	int index;
2700 
2701 	if (size <= 192) {
2702 		if (!size)
2703 			return ZERO_SIZE_PTR;
2704 
2705 		index = size_index[size_index_elem(size)];
2706 	} else
2707 		index = fls(size - 1);
2708 
2709 #ifdef CONFIG_ZONE_DMA
2710 	if (unlikely((flags & SLUB_DMA)))
2711 		return dma_kmalloc_cache(index, flags);
2712 
2713 #endif
2714 	return &kmalloc_caches[index];
2715 }
2716 
2717 void *__kmalloc(size_t size, gfp_t flags)
2718 {
2719 	struct kmem_cache *s;
2720 	void *ret;
2721 
2722 	if (unlikely(size > SLUB_MAX_SIZE))
2723 		return kmalloc_large(size, flags);
2724 
2725 	s = get_slab(size, flags);
2726 
2727 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2728 		return s;
2729 
2730 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2731 
2732 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2733 
2734 	return ret;
2735 }
2736 EXPORT_SYMBOL(__kmalloc);
2737 
2738 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2739 {
2740 	struct page *page;
2741 	void *ptr = NULL;
2742 
2743 	flags |= __GFP_COMP | __GFP_NOTRACK;
2744 	page = alloc_pages_node(node, flags, get_order(size));
2745 	if (page)
2746 		ptr = page_address(page);
2747 
2748 	kmemleak_alloc(ptr, size, 1, flags);
2749 	return ptr;
2750 }
2751 
2752 #ifdef CONFIG_NUMA
2753 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2754 {
2755 	struct kmem_cache *s;
2756 	void *ret;
2757 
2758 	if (unlikely(size > SLUB_MAX_SIZE)) {
2759 		ret = kmalloc_large_node(size, flags, node);
2760 
2761 		trace_kmalloc_node(_RET_IP_, ret,
2762 				   size, PAGE_SIZE << get_order(size),
2763 				   flags, node);
2764 
2765 		return ret;
2766 	}
2767 
2768 	s = get_slab(size, flags);
2769 
2770 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2771 		return s;
2772 
2773 	ret = slab_alloc(s, flags, node, _RET_IP_);
2774 
2775 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2776 
2777 	return ret;
2778 }
2779 EXPORT_SYMBOL(__kmalloc_node);
2780 #endif
2781 
2782 size_t ksize(const void *object)
2783 {
2784 	struct page *page;
2785 	struct kmem_cache *s;
2786 
2787 	if (unlikely(object == ZERO_SIZE_PTR))
2788 		return 0;
2789 
2790 	page = virt_to_head_page(object);
2791 
2792 	if (unlikely(!PageSlab(page))) {
2793 		WARN_ON(!PageCompound(page));
2794 		return PAGE_SIZE << compound_order(page);
2795 	}
2796 	s = page->slab;
2797 
2798 #ifdef CONFIG_SLUB_DEBUG
2799 	/*
2800 	 * Debugging requires use of the padding between object
2801 	 * and whatever may come after it.
2802 	 */
2803 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2804 		return s->objsize;
2805 
2806 #endif
2807 	/*
2808 	 * If we have the need to store the freelist pointer
2809 	 * back there or track user information then we can
2810 	 * only use the space before that information.
2811 	 */
2812 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2813 		return s->inuse;
2814 	/*
2815 	 * Else we can use all the padding etc for the allocation
2816 	 */
2817 	return s->size;
2818 }
2819 EXPORT_SYMBOL(ksize);
2820 
2821 void kfree(const void *x)
2822 {
2823 	struct page *page;
2824 	void *object = (void *)x;
2825 
2826 	trace_kfree(_RET_IP_, x);
2827 
2828 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2829 		return;
2830 
2831 	page = virt_to_head_page(x);
2832 	if (unlikely(!PageSlab(page))) {
2833 		BUG_ON(!PageCompound(page));
2834 		kmemleak_free(x);
2835 		put_page(page);
2836 		return;
2837 	}
2838 	slab_free(page->slab, page, object, _RET_IP_);
2839 }
2840 EXPORT_SYMBOL(kfree);
2841 
2842 /*
2843  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2844  * the remaining slabs by the number of items in use. The slabs with the
2845  * most items in use come first. New allocations will then fill those up
2846  * and thus they can be removed from the partial lists.
2847  *
2848  * The slabs with the least items are placed last. This results in them
2849  * being allocated from last increasing the chance that the last objects
2850  * are freed in them.
2851  */
2852 int kmem_cache_shrink(struct kmem_cache *s)
2853 {
2854 	int node;
2855 	int i;
2856 	struct kmem_cache_node *n;
2857 	struct page *page;
2858 	struct page *t;
2859 	int objects = oo_objects(s->max);
2860 	struct list_head *slabs_by_inuse =
2861 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2862 	unsigned long flags;
2863 
2864 	if (!slabs_by_inuse)
2865 		return -ENOMEM;
2866 
2867 	flush_all(s);
2868 	for_each_node_state(node, N_NORMAL_MEMORY) {
2869 		n = get_node(s, node);
2870 
2871 		if (!n->nr_partial)
2872 			continue;
2873 
2874 		for (i = 0; i < objects; i++)
2875 			INIT_LIST_HEAD(slabs_by_inuse + i);
2876 
2877 		spin_lock_irqsave(&n->list_lock, flags);
2878 
2879 		/*
2880 		 * Build lists indexed by the items in use in each slab.
2881 		 *
2882 		 * Note that concurrent frees may occur while we hold the
2883 		 * list_lock. page->inuse here is the upper limit.
2884 		 */
2885 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2886 			if (!page->inuse && slab_trylock(page)) {
2887 				/*
2888 				 * Must hold slab lock here because slab_free
2889 				 * may have freed the last object and be
2890 				 * waiting to release the slab.
2891 				 */
2892 				list_del(&page->lru);
2893 				n->nr_partial--;
2894 				slab_unlock(page);
2895 				discard_slab(s, page);
2896 			} else {
2897 				list_move(&page->lru,
2898 				slabs_by_inuse + page->inuse);
2899 			}
2900 		}
2901 
2902 		/*
2903 		 * Rebuild the partial list with the slabs filled up most
2904 		 * first and the least used slabs at the end.
2905 		 */
2906 		for (i = objects - 1; i >= 0; i--)
2907 			list_splice(slabs_by_inuse + i, n->partial.prev);
2908 
2909 		spin_unlock_irqrestore(&n->list_lock, flags);
2910 	}
2911 
2912 	kfree(slabs_by_inuse);
2913 	return 0;
2914 }
2915 EXPORT_SYMBOL(kmem_cache_shrink);
2916 
2917 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2918 static int slab_mem_going_offline_callback(void *arg)
2919 {
2920 	struct kmem_cache *s;
2921 
2922 	down_read(&slub_lock);
2923 	list_for_each_entry(s, &slab_caches, list)
2924 		kmem_cache_shrink(s);
2925 	up_read(&slub_lock);
2926 
2927 	return 0;
2928 }
2929 
2930 static void slab_mem_offline_callback(void *arg)
2931 {
2932 	struct kmem_cache_node *n;
2933 	struct kmem_cache *s;
2934 	struct memory_notify *marg = arg;
2935 	int offline_node;
2936 
2937 	offline_node = marg->status_change_nid;
2938 
2939 	/*
2940 	 * If the node still has available memory. we need kmem_cache_node
2941 	 * for it yet.
2942 	 */
2943 	if (offline_node < 0)
2944 		return;
2945 
2946 	down_read(&slub_lock);
2947 	list_for_each_entry(s, &slab_caches, list) {
2948 		n = get_node(s, offline_node);
2949 		if (n) {
2950 			/*
2951 			 * if n->nr_slabs > 0, slabs still exist on the node
2952 			 * that is going down. We were unable to free them,
2953 			 * and offline_pages() function shouldn't call this
2954 			 * callback. So, we must fail.
2955 			 */
2956 			BUG_ON(slabs_node(s, offline_node));
2957 
2958 			s->node[offline_node] = NULL;
2959 			kmem_cache_free(kmalloc_caches, n);
2960 		}
2961 	}
2962 	up_read(&slub_lock);
2963 }
2964 
2965 static int slab_mem_going_online_callback(void *arg)
2966 {
2967 	struct kmem_cache_node *n;
2968 	struct kmem_cache *s;
2969 	struct memory_notify *marg = arg;
2970 	int nid = marg->status_change_nid;
2971 	int ret = 0;
2972 
2973 	/*
2974 	 * If the node's memory is already available, then kmem_cache_node is
2975 	 * already created. Nothing to do.
2976 	 */
2977 	if (nid < 0)
2978 		return 0;
2979 
2980 	/*
2981 	 * We are bringing a node online. No memory is available yet. We must
2982 	 * allocate a kmem_cache_node structure in order to bring the node
2983 	 * online.
2984 	 */
2985 	down_read(&slub_lock);
2986 	list_for_each_entry(s, &slab_caches, list) {
2987 		/*
2988 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2989 		 *      since memory is not yet available from the node that
2990 		 *      is brought up.
2991 		 */
2992 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2993 		if (!n) {
2994 			ret = -ENOMEM;
2995 			goto out;
2996 		}
2997 		init_kmem_cache_node(n, s);
2998 		s->node[nid] = n;
2999 	}
3000 out:
3001 	up_read(&slub_lock);
3002 	return ret;
3003 }
3004 
3005 static int slab_memory_callback(struct notifier_block *self,
3006 				unsigned long action, void *arg)
3007 {
3008 	int ret = 0;
3009 
3010 	switch (action) {
3011 	case MEM_GOING_ONLINE:
3012 		ret = slab_mem_going_online_callback(arg);
3013 		break;
3014 	case MEM_GOING_OFFLINE:
3015 		ret = slab_mem_going_offline_callback(arg);
3016 		break;
3017 	case MEM_OFFLINE:
3018 	case MEM_CANCEL_ONLINE:
3019 		slab_mem_offline_callback(arg);
3020 		break;
3021 	case MEM_ONLINE:
3022 	case MEM_CANCEL_OFFLINE:
3023 		break;
3024 	}
3025 	if (ret)
3026 		ret = notifier_from_errno(ret);
3027 	else
3028 		ret = NOTIFY_OK;
3029 	return ret;
3030 }
3031 
3032 #endif /* CONFIG_MEMORY_HOTPLUG */
3033 
3034 /********************************************************************
3035  *			Basic setup of slabs
3036  *******************************************************************/
3037 
3038 void __init kmem_cache_init(void)
3039 {
3040 	int i;
3041 	int caches = 0;
3042 
3043 #ifdef CONFIG_NUMA
3044 	/*
3045 	 * Must first have the slab cache available for the allocations of the
3046 	 * struct kmem_cache_node's. There is special bootstrap code in
3047 	 * kmem_cache_open for slab_state == DOWN.
3048 	 */
3049 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3050 		sizeof(struct kmem_cache_node), GFP_NOWAIT);
3051 	kmalloc_caches[0].refcount = -1;
3052 	caches++;
3053 
3054 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3055 #endif
3056 
3057 	/* Able to allocate the per node structures */
3058 	slab_state = PARTIAL;
3059 
3060 	/* Caches that are not of the two-to-the-power-of size */
3061 	if (KMALLOC_MIN_SIZE <= 32) {
3062 		create_kmalloc_cache(&kmalloc_caches[1],
3063 				"kmalloc-96", 96, GFP_NOWAIT);
3064 		caches++;
3065 	}
3066 	if (KMALLOC_MIN_SIZE <= 64) {
3067 		create_kmalloc_cache(&kmalloc_caches[2],
3068 				"kmalloc-192", 192, GFP_NOWAIT);
3069 		caches++;
3070 	}
3071 
3072 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3073 		create_kmalloc_cache(&kmalloc_caches[i],
3074 			"kmalloc", 1 << i, GFP_NOWAIT);
3075 		caches++;
3076 	}
3077 
3078 
3079 	/*
3080 	 * Patch up the size_index table if we have strange large alignment
3081 	 * requirements for the kmalloc array. This is only the case for
3082 	 * MIPS it seems. The standard arches will not generate any code here.
3083 	 *
3084 	 * Largest permitted alignment is 256 bytes due to the way we
3085 	 * handle the index determination for the smaller caches.
3086 	 *
3087 	 * Make sure that nothing crazy happens if someone starts tinkering
3088 	 * around with ARCH_KMALLOC_MINALIGN
3089 	 */
3090 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3091 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3092 
3093 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3094 		int elem = size_index_elem(i);
3095 		if (elem >= ARRAY_SIZE(size_index))
3096 			break;
3097 		size_index[elem] = KMALLOC_SHIFT_LOW;
3098 	}
3099 
3100 	if (KMALLOC_MIN_SIZE == 64) {
3101 		/*
3102 		 * The 96 byte size cache is not used if the alignment
3103 		 * is 64 byte.
3104 		 */
3105 		for (i = 64 + 8; i <= 96; i += 8)
3106 			size_index[size_index_elem(i)] = 7;
3107 	} else if (KMALLOC_MIN_SIZE == 128) {
3108 		/*
3109 		 * The 192 byte sized cache is not used if the alignment
3110 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3111 		 * instead.
3112 		 */
3113 		for (i = 128 + 8; i <= 192; i += 8)
3114 			size_index[size_index_elem(i)] = 8;
3115 	}
3116 
3117 	slab_state = UP;
3118 
3119 	/* Provide the correct kmalloc names now that the caches are up */
3120 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3121 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3122 
3123 		BUG_ON(!s);
3124 		kmalloc_caches[i].name = s;
3125 	}
3126 
3127 #ifdef CONFIG_SMP
3128 	register_cpu_notifier(&slab_notifier);
3129 #endif
3130 #ifdef CONFIG_NUMA
3131 	kmem_size = offsetof(struct kmem_cache, node) +
3132 				nr_node_ids * sizeof(struct kmem_cache_node *);
3133 #else
3134 	kmem_size = sizeof(struct kmem_cache);
3135 #endif
3136 
3137 	printk(KERN_INFO
3138 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3139 		" CPUs=%d, Nodes=%d\n",
3140 		caches, cache_line_size(),
3141 		slub_min_order, slub_max_order, slub_min_objects,
3142 		nr_cpu_ids, nr_node_ids);
3143 }
3144 
3145 void __init kmem_cache_init_late(void)
3146 {
3147 }
3148 
3149 /*
3150  * Find a mergeable slab cache
3151  */
3152 static int slab_unmergeable(struct kmem_cache *s)
3153 {
3154 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3155 		return 1;
3156 
3157 	if (s->ctor)
3158 		return 1;
3159 
3160 	/*
3161 	 * We may have set a slab to be unmergeable during bootstrap.
3162 	 */
3163 	if (s->refcount < 0)
3164 		return 1;
3165 
3166 	return 0;
3167 }
3168 
3169 static struct kmem_cache *find_mergeable(size_t size,
3170 		size_t align, unsigned long flags, const char *name,
3171 		void (*ctor)(void *))
3172 {
3173 	struct kmem_cache *s;
3174 
3175 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3176 		return NULL;
3177 
3178 	if (ctor)
3179 		return NULL;
3180 
3181 	size = ALIGN(size, sizeof(void *));
3182 	align = calculate_alignment(flags, align, size);
3183 	size = ALIGN(size, align);
3184 	flags = kmem_cache_flags(size, flags, name, NULL);
3185 
3186 	list_for_each_entry(s, &slab_caches, list) {
3187 		if (slab_unmergeable(s))
3188 			continue;
3189 
3190 		if (size > s->size)
3191 			continue;
3192 
3193 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3194 				continue;
3195 		/*
3196 		 * Check if alignment is compatible.
3197 		 * Courtesy of Adrian Drzewiecki
3198 		 */
3199 		if ((s->size & ~(align - 1)) != s->size)
3200 			continue;
3201 
3202 		if (s->size - size >= sizeof(void *))
3203 			continue;
3204 
3205 		return s;
3206 	}
3207 	return NULL;
3208 }
3209 
3210 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3211 		size_t align, unsigned long flags, void (*ctor)(void *))
3212 {
3213 	struct kmem_cache *s;
3214 
3215 	if (WARN_ON(!name))
3216 		return NULL;
3217 
3218 	down_write(&slub_lock);
3219 	s = find_mergeable(size, align, flags, name, ctor);
3220 	if (s) {
3221 		s->refcount++;
3222 		/*
3223 		 * Adjust the object sizes so that we clear
3224 		 * the complete object on kzalloc.
3225 		 */
3226 		s->objsize = max(s->objsize, (int)size);
3227 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3228 
3229 		if (sysfs_slab_alias(s, name)) {
3230 			s->refcount--;
3231 			goto err;
3232 		}
3233 		up_write(&slub_lock);
3234 		return s;
3235 	}
3236 
3237 	s = kmalloc(kmem_size, GFP_KERNEL);
3238 	if (s) {
3239 		if (kmem_cache_open(s, GFP_KERNEL, name,
3240 				size, align, flags, ctor)) {
3241 			list_add(&s->list, &slab_caches);
3242 			if (sysfs_slab_add(s)) {
3243 				list_del(&s->list);
3244 				kfree(s);
3245 				goto err;
3246 			}
3247 			up_write(&slub_lock);
3248 			return s;
3249 		}
3250 		kfree(s);
3251 	}
3252 	up_write(&slub_lock);
3253 
3254 err:
3255 	if (flags & SLAB_PANIC)
3256 		panic("Cannot create slabcache %s\n", name);
3257 	else
3258 		s = NULL;
3259 	return s;
3260 }
3261 EXPORT_SYMBOL(kmem_cache_create);
3262 
3263 #ifdef CONFIG_SMP
3264 /*
3265  * Use the cpu notifier to insure that the cpu slabs are flushed when
3266  * necessary.
3267  */
3268 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3269 		unsigned long action, void *hcpu)
3270 {
3271 	long cpu = (long)hcpu;
3272 	struct kmem_cache *s;
3273 	unsigned long flags;
3274 
3275 	switch (action) {
3276 	case CPU_UP_CANCELED:
3277 	case CPU_UP_CANCELED_FROZEN:
3278 	case CPU_DEAD:
3279 	case CPU_DEAD_FROZEN:
3280 		down_read(&slub_lock);
3281 		list_for_each_entry(s, &slab_caches, list) {
3282 			local_irq_save(flags);
3283 			__flush_cpu_slab(s, cpu);
3284 			local_irq_restore(flags);
3285 		}
3286 		up_read(&slub_lock);
3287 		break;
3288 	default:
3289 		break;
3290 	}
3291 	return NOTIFY_OK;
3292 }
3293 
3294 static struct notifier_block __cpuinitdata slab_notifier = {
3295 	.notifier_call = slab_cpuup_callback
3296 };
3297 
3298 #endif
3299 
3300 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3301 {
3302 	struct kmem_cache *s;
3303 	void *ret;
3304 
3305 	if (unlikely(size > SLUB_MAX_SIZE))
3306 		return kmalloc_large(size, gfpflags);
3307 
3308 	s = get_slab(size, gfpflags);
3309 
3310 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3311 		return s;
3312 
3313 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3314 
3315 	/* Honor the call site pointer we recieved. */
3316 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3317 
3318 	return ret;
3319 }
3320 
3321 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3322 					int node, unsigned long caller)
3323 {
3324 	struct kmem_cache *s;
3325 	void *ret;
3326 
3327 	if (unlikely(size > SLUB_MAX_SIZE)) {
3328 		ret = kmalloc_large_node(size, gfpflags, node);
3329 
3330 		trace_kmalloc_node(caller, ret,
3331 				   size, PAGE_SIZE << get_order(size),
3332 				   gfpflags, node);
3333 
3334 		return ret;
3335 	}
3336 
3337 	s = get_slab(size, gfpflags);
3338 
3339 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3340 		return s;
3341 
3342 	ret = slab_alloc(s, gfpflags, node, caller);
3343 
3344 	/* Honor the call site pointer we recieved. */
3345 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3346 
3347 	return ret;
3348 }
3349 
3350 #ifdef CONFIG_SLUB_DEBUG
3351 static int count_inuse(struct page *page)
3352 {
3353 	return page->inuse;
3354 }
3355 
3356 static int count_total(struct page *page)
3357 {
3358 	return page->objects;
3359 }
3360 
3361 static int validate_slab(struct kmem_cache *s, struct page *page,
3362 						unsigned long *map)
3363 {
3364 	void *p;
3365 	void *addr = page_address(page);
3366 
3367 	if (!check_slab(s, page) ||
3368 			!on_freelist(s, page, NULL))
3369 		return 0;
3370 
3371 	/* Now we know that a valid freelist exists */
3372 	bitmap_zero(map, page->objects);
3373 
3374 	for_each_free_object(p, s, page->freelist) {
3375 		set_bit(slab_index(p, s, addr), map);
3376 		if (!check_object(s, page, p, 0))
3377 			return 0;
3378 	}
3379 
3380 	for_each_object(p, s, addr, page->objects)
3381 		if (!test_bit(slab_index(p, s, addr), map))
3382 			if (!check_object(s, page, p, 1))
3383 				return 0;
3384 	return 1;
3385 }
3386 
3387 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3388 						unsigned long *map)
3389 {
3390 	if (slab_trylock(page)) {
3391 		validate_slab(s, page, map);
3392 		slab_unlock(page);
3393 	} else
3394 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3395 			s->name, page);
3396 }
3397 
3398 static int validate_slab_node(struct kmem_cache *s,
3399 		struct kmem_cache_node *n, unsigned long *map)
3400 {
3401 	unsigned long count = 0;
3402 	struct page *page;
3403 	unsigned long flags;
3404 
3405 	spin_lock_irqsave(&n->list_lock, flags);
3406 
3407 	list_for_each_entry(page, &n->partial, lru) {
3408 		validate_slab_slab(s, page, map);
3409 		count++;
3410 	}
3411 	if (count != n->nr_partial)
3412 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3413 			"counter=%ld\n", s->name, count, n->nr_partial);
3414 
3415 	if (!(s->flags & SLAB_STORE_USER))
3416 		goto out;
3417 
3418 	list_for_each_entry(page, &n->full, lru) {
3419 		validate_slab_slab(s, page, map);
3420 		count++;
3421 	}
3422 	if (count != atomic_long_read(&n->nr_slabs))
3423 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3424 			"counter=%ld\n", s->name, count,
3425 			atomic_long_read(&n->nr_slabs));
3426 
3427 out:
3428 	spin_unlock_irqrestore(&n->list_lock, flags);
3429 	return count;
3430 }
3431 
3432 static long validate_slab_cache(struct kmem_cache *s)
3433 {
3434 	int node;
3435 	unsigned long count = 0;
3436 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3437 				sizeof(unsigned long), GFP_KERNEL);
3438 
3439 	if (!map)
3440 		return -ENOMEM;
3441 
3442 	flush_all(s);
3443 	for_each_node_state(node, N_NORMAL_MEMORY) {
3444 		struct kmem_cache_node *n = get_node(s, node);
3445 
3446 		count += validate_slab_node(s, n, map);
3447 	}
3448 	kfree(map);
3449 	return count;
3450 }
3451 
3452 #ifdef SLUB_RESILIENCY_TEST
3453 static void resiliency_test(void)
3454 {
3455 	u8 *p;
3456 
3457 	printk(KERN_ERR "SLUB resiliency testing\n");
3458 	printk(KERN_ERR "-----------------------\n");
3459 	printk(KERN_ERR "A. Corruption after allocation\n");
3460 
3461 	p = kzalloc(16, GFP_KERNEL);
3462 	p[16] = 0x12;
3463 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3464 			" 0x12->0x%p\n\n", p + 16);
3465 
3466 	validate_slab_cache(kmalloc_caches + 4);
3467 
3468 	/* Hmmm... The next two are dangerous */
3469 	p = kzalloc(32, GFP_KERNEL);
3470 	p[32 + sizeof(void *)] = 0x34;
3471 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3472 			" 0x34 -> -0x%p\n", p);
3473 	printk(KERN_ERR
3474 		"If allocated object is overwritten then not detectable\n\n");
3475 
3476 	validate_slab_cache(kmalloc_caches + 5);
3477 	p = kzalloc(64, GFP_KERNEL);
3478 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3479 	*p = 0x56;
3480 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3481 									p);
3482 	printk(KERN_ERR
3483 		"If allocated object is overwritten then not detectable\n\n");
3484 	validate_slab_cache(kmalloc_caches + 6);
3485 
3486 	printk(KERN_ERR "\nB. Corruption after free\n");
3487 	p = kzalloc(128, GFP_KERNEL);
3488 	kfree(p);
3489 	*p = 0x78;
3490 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3491 	validate_slab_cache(kmalloc_caches + 7);
3492 
3493 	p = kzalloc(256, GFP_KERNEL);
3494 	kfree(p);
3495 	p[50] = 0x9a;
3496 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3497 			p);
3498 	validate_slab_cache(kmalloc_caches + 8);
3499 
3500 	p = kzalloc(512, GFP_KERNEL);
3501 	kfree(p);
3502 	p[512] = 0xab;
3503 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3504 	validate_slab_cache(kmalloc_caches + 9);
3505 }
3506 #else
3507 static void resiliency_test(void) {};
3508 #endif
3509 
3510 /*
3511  * Generate lists of code addresses where slabcache objects are allocated
3512  * and freed.
3513  */
3514 
3515 struct location {
3516 	unsigned long count;
3517 	unsigned long addr;
3518 	long long sum_time;
3519 	long min_time;
3520 	long max_time;
3521 	long min_pid;
3522 	long max_pid;
3523 	DECLARE_BITMAP(cpus, NR_CPUS);
3524 	nodemask_t nodes;
3525 };
3526 
3527 struct loc_track {
3528 	unsigned long max;
3529 	unsigned long count;
3530 	struct location *loc;
3531 };
3532 
3533 static void free_loc_track(struct loc_track *t)
3534 {
3535 	if (t->max)
3536 		free_pages((unsigned long)t->loc,
3537 			get_order(sizeof(struct location) * t->max));
3538 }
3539 
3540 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3541 {
3542 	struct location *l;
3543 	int order;
3544 
3545 	order = get_order(sizeof(struct location) * max);
3546 
3547 	l = (void *)__get_free_pages(flags, order);
3548 	if (!l)
3549 		return 0;
3550 
3551 	if (t->count) {
3552 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3553 		free_loc_track(t);
3554 	}
3555 	t->max = max;
3556 	t->loc = l;
3557 	return 1;
3558 }
3559 
3560 static int add_location(struct loc_track *t, struct kmem_cache *s,
3561 				const struct track *track)
3562 {
3563 	long start, end, pos;
3564 	struct location *l;
3565 	unsigned long caddr;
3566 	unsigned long age = jiffies - track->when;
3567 
3568 	start = -1;
3569 	end = t->count;
3570 
3571 	for ( ; ; ) {
3572 		pos = start + (end - start + 1) / 2;
3573 
3574 		/*
3575 		 * There is nothing at "end". If we end up there
3576 		 * we need to add something to before end.
3577 		 */
3578 		if (pos == end)
3579 			break;
3580 
3581 		caddr = t->loc[pos].addr;
3582 		if (track->addr == caddr) {
3583 
3584 			l = &t->loc[pos];
3585 			l->count++;
3586 			if (track->when) {
3587 				l->sum_time += age;
3588 				if (age < l->min_time)
3589 					l->min_time = age;
3590 				if (age > l->max_time)
3591 					l->max_time = age;
3592 
3593 				if (track->pid < l->min_pid)
3594 					l->min_pid = track->pid;
3595 				if (track->pid > l->max_pid)
3596 					l->max_pid = track->pid;
3597 
3598 				cpumask_set_cpu(track->cpu,
3599 						to_cpumask(l->cpus));
3600 			}
3601 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3602 			return 1;
3603 		}
3604 
3605 		if (track->addr < caddr)
3606 			end = pos;
3607 		else
3608 			start = pos;
3609 	}
3610 
3611 	/*
3612 	 * Not found. Insert new tracking element.
3613 	 */
3614 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3615 		return 0;
3616 
3617 	l = t->loc + pos;
3618 	if (pos < t->count)
3619 		memmove(l + 1, l,
3620 			(t->count - pos) * sizeof(struct location));
3621 	t->count++;
3622 	l->count = 1;
3623 	l->addr = track->addr;
3624 	l->sum_time = age;
3625 	l->min_time = age;
3626 	l->max_time = age;
3627 	l->min_pid = track->pid;
3628 	l->max_pid = track->pid;
3629 	cpumask_clear(to_cpumask(l->cpus));
3630 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3631 	nodes_clear(l->nodes);
3632 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3633 	return 1;
3634 }
3635 
3636 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3637 		struct page *page, enum track_item alloc,
3638 		long *map)
3639 {
3640 	void *addr = page_address(page);
3641 	void *p;
3642 
3643 	bitmap_zero(map, page->objects);
3644 	for_each_free_object(p, s, page->freelist)
3645 		set_bit(slab_index(p, s, addr), map);
3646 
3647 	for_each_object(p, s, addr, page->objects)
3648 		if (!test_bit(slab_index(p, s, addr), map))
3649 			add_location(t, s, get_track(s, p, alloc));
3650 }
3651 
3652 static int list_locations(struct kmem_cache *s, char *buf,
3653 					enum track_item alloc)
3654 {
3655 	int len = 0;
3656 	unsigned long i;
3657 	struct loc_track t = { 0, 0, NULL };
3658 	int node;
3659 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3660 				     sizeof(unsigned long), GFP_KERNEL);
3661 
3662 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3663 				     GFP_TEMPORARY)) {
3664 		kfree(map);
3665 		return sprintf(buf, "Out of memory\n");
3666 	}
3667 	/* Push back cpu slabs */
3668 	flush_all(s);
3669 
3670 	for_each_node_state(node, N_NORMAL_MEMORY) {
3671 		struct kmem_cache_node *n = get_node(s, node);
3672 		unsigned long flags;
3673 		struct page *page;
3674 
3675 		if (!atomic_long_read(&n->nr_slabs))
3676 			continue;
3677 
3678 		spin_lock_irqsave(&n->list_lock, flags);
3679 		list_for_each_entry(page, &n->partial, lru)
3680 			process_slab(&t, s, page, alloc, map);
3681 		list_for_each_entry(page, &n->full, lru)
3682 			process_slab(&t, s, page, alloc, map);
3683 		spin_unlock_irqrestore(&n->list_lock, flags);
3684 	}
3685 
3686 	for (i = 0; i < t.count; i++) {
3687 		struct location *l = &t.loc[i];
3688 
3689 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3690 			break;
3691 		len += sprintf(buf + len, "%7ld ", l->count);
3692 
3693 		if (l->addr)
3694 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3695 		else
3696 			len += sprintf(buf + len, "<not-available>");
3697 
3698 		if (l->sum_time != l->min_time) {
3699 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3700 				l->min_time,
3701 				(long)div_u64(l->sum_time, l->count),
3702 				l->max_time);
3703 		} else
3704 			len += sprintf(buf + len, " age=%ld",
3705 				l->min_time);
3706 
3707 		if (l->min_pid != l->max_pid)
3708 			len += sprintf(buf + len, " pid=%ld-%ld",
3709 				l->min_pid, l->max_pid);
3710 		else
3711 			len += sprintf(buf + len, " pid=%ld",
3712 				l->min_pid);
3713 
3714 		if (num_online_cpus() > 1 &&
3715 				!cpumask_empty(to_cpumask(l->cpus)) &&
3716 				len < PAGE_SIZE - 60) {
3717 			len += sprintf(buf + len, " cpus=");
3718 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3719 						 to_cpumask(l->cpus));
3720 		}
3721 
3722 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3723 				len < PAGE_SIZE - 60) {
3724 			len += sprintf(buf + len, " nodes=");
3725 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3726 					l->nodes);
3727 		}
3728 
3729 		len += sprintf(buf + len, "\n");
3730 	}
3731 
3732 	free_loc_track(&t);
3733 	kfree(map);
3734 	if (!t.count)
3735 		len += sprintf(buf, "No data\n");
3736 	return len;
3737 }
3738 
3739 enum slab_stat_type {
3740 	SL_ALL,			/* All slabs */
3741 	SL_PARTIAL,		/* Only partially allocated slabs */
3742 	SL_CPU,			/* Only slabs used for cpu caches */
3743 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3744 	SL_TOTAL		/* Determine object capacity not slabs */
3745 };
3746 
3747 #define SO_ALL		(1 << SL_ALL)
3748 #define SO_PARTIAL	(1 << SL_PARTIAL)
3749 #define SO_CPU		(1 << SL_CPU)
3750 #define SO_OBJECTS	(1 << SL_OBJECTS)
3751 #define SO_TOTAL	(1 << SL_TOTAL)
3752 
3753 static ssize_t show_slab_objects(struct kmem_cache *s,
3754 			    char *buf, unsigned long flags)
3755 {
3756 	unsigned long total = 0;
3757 	int node;
3758 	int x;
3759 	unsigned long *nodes;
3760 	unsigned long *per_cpu;
3761 
3762 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3763 	if (!nodes)
3764 		return -ENOMEM;
3765 	per_cpu = nodes + nr_node_ids;
3766 
3767 	if (flags & SO_CPU) {
3768 		int cpu;
3769 
3770 		for_each_possible_cpu(cpu) {
3771 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3772 
3773 			if (!c || c->node < 0)
3774 				continue;
3775 
3776 			if (c->page) {
3777 					if (flags & SO_TOTAL)
3778 						x = c->page->objects;
3779 				else if (flags & SO_OBJECTS)
3780 					x = c->page->inuse;
3781 				else
3782 					x = 1;
3783 
3784 				total += x;
3785 				nodes[c->node] += x;
3786 			}
3787 			per_cpu[c->node]++;
3788 		}
3789 	}
3790 
3791 	if (flags & SO_ALL) {
3792 		for_each_node_state(node, N_NORMAL_MEMORY) {
3793 			struct kmem_cache_node *n = get_node(s, node);
3794 
3795 		if (flags & SO_TOTAL)
3796 			x = atomic_long_read(&n->total_objects);
3797 		else if (flags & SO_OBJECTS)
3798 			x = atomic_long_read(&n->total_objects) -
3799 				count_partial(n, count_free);
3800 
3801 			else
3802 				x = atomic_long_read(&n->nr_slabs);
3803 			total += x;
3804 			nodes[node] += x;
3805 		}
3806 
3807 	} else if (flags & SO_PARTIAL) {
3808 		for_each_node_state(node, N_NORMAL_MEMORY) {
3809 			struct kmem_cache_node *n = get_node(s, node);
3810 
3811 			if (flags & SO_TOTAL)
3812 				x = count_partial(n, count_total);
3813 			else if (flags & SO_OBJECTS)
3814 				x = count_partial(n, count_inuse);
3815 			else
3816 				x = n->nr_partial;
3817 			total += x;
3818 			nodes[node] += x;
3819 		}
3820 	}
3821 	x = sprintf(buf, "%lu", total);
3822 #ifdef CONFIG_NUMA
3823 	for_each_node_state(node, N_NORMAL_MEMORY)
3824 		if (nodes[node])
3825 			x += sprintf(buf + x, " N%d=%lu",
3826 					node, nodes[node]);
3827 #endif
3828 	kfree(nodes);
3829 	return x + sprintf(buf + x, "\n");
3830 }
3831 
3832 static int any_slab_objects(struct kmem_cache *s)
3833 {
3834 	int node;
3835 
3836 	for_each_online_node(node) {
3837 		struct kmem_cache_node *n = get_node(s, node);
3838 
3839 		if (!n)
3840 			continue;
3841 
3842 		if (atomic_long_read(&n->total_objects))
3843 			return 1;
3844 	}
3845 	return 0;
3846 }
3847 
3848 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3849 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3850 
3851 struct slab_attribute {
3852 	struct attribute attr;
3853 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3854 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3855 };
3856 
3857 #define SLAB_ATTR_RO(_name) \
3858 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3859 
3860 #define SLAB_ATTR(_name) \
3861 	static struct slab_attribute _name##_attr =  \
3862 	__ATTR(_name, 0644, _name##_show, _name##_store)
3863 
3864 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3865 {
3866 	return sprintf(buf, "%d\n", s->size);
3867 }
3868 SLAB_ATTR_RO(slab_size);
3869 
3870 static ssize_t align_show(struct kmem_cache *s, char *buf)
3871 {
3872 	return sprintf(buf, "%d\n", s->align);
3873 }
3874 SLAB_ATTR_RO(align);
3875 
3876 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3877 {
3878 	return sprintf(buf, "%d\n", s->objsize);
3879 }
3880 SLAB_ATTR_RO(object_size);
3881 
3882 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3883 {
3884 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3885 }
3886 SLAB_ATTR_RO(objs_per_slab);
3887 
3888 static ssize_t order_store(struct kmem_cache *s,
3889 				const char *buf, size_t length)
3890 {
3891 	unsigned long order;
3892 	int err;
3893 
3894 	err = strict_strtoul(buf, 10, &order);
3895 	if (err)
3896 		return err;
3897 
3898 	if (order > slub_max_order || order < slub_min_order)
3899 		return -EINVAL;
3900 
3901 	calculate_sizes(s, order);
3902 	return length;
3903 }
3904 
3905 static ssize_t order_show(struct kmem_cache *s, char *buf)
3906 {
3907 	return sprintf(buf, "%d\n", oo_order(s->oo));
3908 }
3909 SLAB_ATTR(order);
3910 
3911 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3912 {
3913 	return sprintf(buf, "%lu\n", s->min_partial);
3914 }
3915 
3916 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3917 				 size_t length)
3918 {
3919 	unsigned long min;
3920 	int err;
3921 
3922 	err = strict_strtoul(buf, 10, &min);
3923 	if (err)
3924 		return err;
3925 
3926 	set_min_partial(s, min);
3927 	return length;
3928 }
3929 SLAB_ATTR(min_partial);
3930 
3931 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3932 {
3933 	if (s->ctor) {
3934 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3935 
3936 		return n + sprintf(buf + n, "\n");
3937 	}
3938 	return 0;
3939 }
3940 SLAB_ATTR_RO(ctor);
3941 
3942 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3943 {
3944 	return sprintf(buf, "%d\n", s->refcount - 1);
3945 }
3946 SLAB_ATTR_RO(aliases);
3947 
3948 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3949 {
3950 	return show_slab_objects(s, buf, SO_ALL);
3951 }
3952 SLAB_ATTR_RO(slabs);
3953 
3954 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3955 {
3956 	return show_slab_objects(s, buf, SO_PARTIAL);
3957 }
3958 SLAB_ATTR_RO(partial);
3959 
3960 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3961 {
3962 	return show_slab_objects(s, buf, SO_CPU);
3963 }
3964 SLAB_ATTR_RO(cpu_slabs);
3965 
3966 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3967 {
3968 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3969 }
3970 SLAB_ATTR_RO(objects);
3971 
3972 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3973 {
3974 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3975 }
3976 SLAB_ATTR_RO(objects_partial);
3977 
3978 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3979 {
3980 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3981 }
3982 SLAB_ATTR_RO(total_objects);
3983 
3984 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3985 {
3986 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3987 }
3988 
3989 static ssize_t sanity_checks_store(struct kmem_cache *s,
3990 				const char *buf, size_t length)
3991 {
3992 	s->flags &= ~SLAB_DEBUG_FREE;
3993 	if (buf[0] == '1')
3994 		s->flags |= SLAB_DEBUG_FREE;
3995 	return length;
3996 }
3997 SLAB_ATTR(sanity_checks);
3998 
3999 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4000 {
4001 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4002 }
4003 
4004 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4005 							size_t length)
4006 {
4007 	s->flags &= ~SLAB_TRACE;
4008 	if (buf[0] == '1')
4009 		s->flags |= SLAB_TRACE;
4010 	return length;
4011 }
4012 SLAB_ATTR(trace);
4013 
4014 #ifdef CONFIG_FAILSLAB
4015 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4016 {
4017 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4018 }
4019 
4020 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4021 							size_t length)
4022 {
4023 	s->flags &= ~SLAB_FAILSLAB;
4024 	if (buf[0] == '1')
4025 		s->flags |= SLAB_FAILSLAB;
4026 	return length;
4027 }
4028 SLAB_ATTR(failslab);
4029 #endif
4030 
4031 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4032 {
4033 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4034 }
4035 
4036 static ssize_t reclaim_account_store(struct kmem_cache *s,
4037 				const char *buf, size_t length)
4038 {
4039 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4040 	if (buf[0] == '1')
4041 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4042 	return length;
4043 }
4044 SLAB_ATTR(reclaim_account);
4045 
4046 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4047 {
4048 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4049 }
4050 SLAB_ATTR_RO(hwcache_align);
4051 
4052 #ifdef CONFIG_ZONE_DMA
4053 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4054 {
4055 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4056 }
4057 SLAB_ATTR_RO(cache_dma);
4058 #endif
4059 
4060 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4061 {
4062 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4063 }
4064 SLAB_ATTR_RO(destroy_by_rcu);
4065 
4066 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4067 {
4068 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4069 }
4070 
4071 static ssize_t red_zone_store(struct kmem_cache *s,
4072 				const char *buf, size_t length)
4073 {
4074 	if (any_slab_objects(s))
4075 		return -EBUSY;
4076 
4077 	s->flags &= ~SLAB_RED_ZONE;
4078 	if (buf[0] == '1')
4079 		s->flags |= SLAB_RED_ZONE;
4080 	calculate_sizes(s, -1);
4081 	return length;
4082 }
4083 SLAB_ATTR(red_zone);
4084 
4085 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4086 {
4087 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4088 }
4089 
4090 static ssize_t poison_store(struct kmem_cache *s,
4091 				const char *buf, size_t length)
4092 {
4093 	if (any_slab_objects(s))
4094 		return -EBUSY;
4095 
4096 	s->flags &= ~SLAB_POISON;
4097 	if (buf[0] == '1')
4098 		s->flags |= SLAB_POISON;
4099 	calculate_sizes(s, -1);
4100 	return length;
4101 }
4102 SLAB_ATTR(poison);
4103 
4104 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4105 {
4106 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4107 }
4108 
4109 static ssize_t store_user_store(struct kmem_cache *s,
4110 				const char *buf, size_t length)
4111 {
4112 	if (any_slab_objects(s))
4113 		return -EBUSY;
4114 
4115 	s->flags &= ~SLAB_STORE_USER;
4116 	if (buf[0] == '1')
4117 		s->flags |= SLAB_STORE_USER;
4118 	calculate_sizes(s, -1);
4119 	return length;
4120 }
4121 SLAB_ATTR(store_user);
4122 
4123 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4124 {
4125 	return 0;
4126 }
4127 
4128 static ssize_t validate_store(struct kmem_cache *s,
4129 			const char *buf, size_t length)
4130 {
4131 	int ret = -EINVAL;
4132 
4133 	if (buf[0] == '1') {
4134 		ret = validate_slab_cache(s);
4135 		if (ret >= 0)
4136 			ret = length;
4137 	}
4138 	return ret;
4139 }
4140 SLAB_ATTR(validate);
4141 
4142 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4143 {
4144 	return 0;
4145 }
4146 
4147 static ssize_t shrink_store(struct kmem_cache *s,
4148 			const char *buf, size_t length)
4149 {
4150 	if (buf[0] == '1') {
4151 		int rc = kmem_cache_shrink(s);
4152 
4153 		if (rc)
4154 			return rc;
4155 	} else
4156 		return -EINVAL;
4157 	return length;
4158 }
4159 SLAB_ATTR(shrink);
4160 
4161 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4162 {
4163 	if (!(s->flags & SLAB_STORE_USER))
4164 		return -ENOSYS;
4165 	return list_locations(s, buf, TRACK_ALLOC);
4166 }
4167 SLAB_ATTR_RO(alloc_calls);
4168 
4169 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4170 {
4171 	if (!(s->flags & SLAB_STORE_USER))
4172 		return -ENOSYS;
4173 	return list_locations(s, buf, TRACK_FREE);
4174 }
4175 SLAB_ATTR_RO(free_calls);
4176 
4177 #ifdef CONFIG_NUMA
4178 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4179 {
4180 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4181 }
4182 
4183 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4184 				const char *buf, size_t length)
4185 {
4186 	unsigned long ratio;
4187 	int err;
4188 
4189 	err = strict_strtoul(buf, 10, &ratio);
4190 	if (err)
4191 		return err;
4192 
4193 	if (ratio <= 100)
4194 		s->remote_node_defrag_ratio = ratio * 10;
4195 
4196 	return length;
4197 }
4198 SLAB_ATTR(remote_node_defrag_ratio);
4199 #endif
4200 
4201 #ifdef CONFIG_SLUB_STATS
4202 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4203 {
4204 	unsigned long sum  = 0;
4205 	int cpu;
4206 	int len;
4207 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4208 
4209 	if (!data)
4210 		return -ENOMEM;
4211 
4212 	for_each_online_cpu(cpu) {
4213 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4214 
4215 		data[cpu] = x;
4216 		sum += x;
4217 	}
4218 
4219 	len = sprintf(buf, "%lu", sum);
4220 
4221 #ifdef CONFIG_SMP
4222 	for_each_online_cpu(cpu) {
4223 		if (data[cpu] && len < PAGE_SIZE - 20)
4224 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4225 	}
4226 #endif
4227 	kfree(data);
4228 	return len + sprintf(buf + len, "\n");
4229 }
4230 
4231 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4232 {
4233 	int cpu;
4234 
4235 	for_each_online_cpu(cpu)
4236 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4237 }
4238 
4239 #define STAT_ATTR(si, text) 					\
4240 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4241 {								\
4242 	return show_stat(s, buf, si);				\
4243 }								\
4244 static ssize_t text##_store(struct kmem_cache *s,		\
4245 				const char *buf, size_t length)	\
4246 {								\
4247 	if (buf[0] != '0')					\
4248 		return -EINVAL;					\
4249 	clear_stat(s, si);					\
4250 	return length;						\
4251 }								\
4252 SLAB_ATTR(text);						\
4253 
4254 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4255 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4256 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4257 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4258 STAT_ATTR(FREE_FROZEN, free_frozen);
4259 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4260 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4261 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4262 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4263 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4264 STAT_ATTR(FREE_SLAB, free_slab);
4265 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4266 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4267 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4268 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4269 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4270 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4271 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4272 #endif
4273 
4274 static struct attribute *slab_attrs[] = {
4275 	&slab_size_attr.attr,
4276 	&object_size_attr.attr,
4277 	&objs_per_slab_attr.attr,
4278 	&order_attr.attr,
4279 	&min_partial_attr.attr,
4280 	&objects_attr.attr,
4281 	&objects_partial_attr.attr,
4282 	&total_objects_attr.attr,
4283 	&slabs_attr.attr,
4284 	&partial_attr.attr,
4285 	&cpu_slabs_attr.attr,
4286 	&ctor_attr.attr,
4287 	&aliases_attr.attr,
4288 	&align_attr.attr,
4289 	&sanity_checks_attr.attr,
4290 	&trace_attr.attr,
4291 	&hwcache_align_attr.attr,
4292 	&reclaim_account_attr.attr,
4293 	&destroy_by_rcu_attr.attr,
4294 	&red_zone_attr.attr,
4295 	&poison_attr.attr,
4296 	&store_user_attr.attr,
4297 	&validate_attr.attr,
4298 	&shrink_attr.attr,
4299 	&alloc_calls_attr.attr,
4300 	&free_calls_attr.attr,
4301 #ifdef CONFIG_ZONE_DMA
4302 	&cache_dma_attr.attr,
4303 #endif
4304 #ifdef CONFIG_NUMA
4305 	&remote_node_defrag_ratio_attr.attr,
4306 #endif
4307 #ifdef CONFIG_SLUB_STATS
4308 	&alloc_fastpath_attr.attr,
4309 	&alloc_slowpath_attr.attr,
4310 	&free_fastpath_attr.attr,
4311 	&free_slowpath_attr.attr,
4312 	&free_frozen_attr.attr,
4313 	&free_add_partial_attr.attr,
4314 	&free_remove_partial_attr.attr,
4315 	&alloc_from_partial_attr.attr,
4316 	&alloc_slab_attr.attr,
4317 	&alloc_refill_attr.attr,
4318 	&free_slab_attr.attr,
4319 	&cpuslab_flush_attr.attr,
4320 	&deactivate_full_attr.attr,
4321 	&deactivate_empty_attr.attr,
4322 	&deactivate_to_head_attr.attr,
4323 	&deactivate_to_tail_attr.attr,
4324 	&deactivate_remote_frees_attr.attr,
4325 	&order_fallback_attr.attr,
4326 #endif
4327 #ifdef CONFIG_FAILSLAB
4328 	&failslab_attr.attr,
4329 #endif
4330 
4331 	NULL
4332 };
4333 
4334 static struct attribute_group slab_attr_group = {
4335 	.attrs = slab_attrs,
4336 };
4337 
4338 static ssize_t slab_attr_show(struct kobject *kobj,
4339 				struct attribute *attr,
4340 				char *buf)
4341 {
4342 	struct slab_attribute *attribute;
4343 	struct kmem_cache *s;
4344 	int err;
4345 
4346 	attribute = to_slab_attr(attr);
4347 	s = to_slab(kobj);
4348 
4349 	if (!attribute->show)
4350 		return -EIO;
4351 
4352 	err = attribute->show(s, buf);
4353 
4354 	return err;
4355 }
4356 
4357 static ssize_t slab_attr_store(struct kobject *kobj,
4358 				struct attribute *attr,
4359 				const char *buf, size_t len)
4360 {
4361 	struct slab_attribute *attribute;
4362 	struct kmem_cache *s;
4363 	int err;
4364 
4365 	attribute = to_slab_attr(attr);
4366 	s = to_slab(kobj);
4367 
4368 	if (!attribute->store)
4369 		return -EIO;
4370 
4371 	err = attribute->store(s, buf, len);
4372 
4373 	return err;
4374 }
4375 
4376 static void kmem_cache_release(struct kobject *kobj)
4377 {
4378 	struct kmem_cache *s = to_slab(kobj);
4379 
4380 	kfree(s);
4381 }
4382 
4383 static const struct sysfs_ops slab_sysfs_ops = {
4384 	.show = slab_attr_show,
4385 	.store = slab_attr_store,
4386 };
4387 
4388 static struct kobj_type slab_ktype = {
4389 	.sysfs_ops = &slab_sysfs_ops,
4390 	.release = kmem_cache_release
4391 };
4392 
4393 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4394 {
4395 	struct kobj_type *ktype = get_ktype(kobj);
4396 
4397 	if (ktype == &slab_ktype)
4398 		return 1;
4399 	return 0;
4400 }
4401 
4402 static const struct kset_uevent_ops slab_uevent_ops = {
4403 	.filter = uevent_filter,
4404 };
4405 
4406 static struct kset *slab_kset;
4407 
4408 #define ID_STR_LENGTH 64
4409 
4410 /* Create a unique string id for a slab cache:
4411  *
4412  * Format	:[flags-]size
4413  */
4414 static char *create_unique_id(struct kmem_cache *s)
4415 {
4416 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4417 	char *p = name;
4418 
4419 	BUG_ON(!name);
4420 
4421 	*p++ = ':';
4422 	/*
4423 	 * First flags affecting slabcache operations. We will only
4424 	 * get here for aliasable slabs so we do not need to support
4425 	 * too many flags. The flags here must cover all flags that
4426 	 * are matched during merging to guarantee that the id is
4427 	 * unique.
4428 	 */
4429 	if (s->flags & SLAB_CACHE_DMA)
4430 		*p++ = 'd';
4431 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4432 		*p++ = 'a';
4433 	if (s->flags & SLAB_DEBUG_FREE)
4434 		*p++ = 'F';
4435 	if (!(s->flags & SLAB_NOTRACK))
4436 		*p++ = 't';
4437 	if (p != name + 1)
4438 		*p++ = '-';
4439 	p += sprintf(p, "%07d", s->size);
4440 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4441 	return name;
4442 }
4443 
4444 static int sysfs_slab_add(struct kmem_cache *s)
4445 {
4446 	int err;
4447 	const char *name;
4448 	int unmergeable;
4449 
4450 	if (slab_state < SYSFS)
4451 		/* Defer until later */
4452 		return 0;
4453 
4454 	unmergeable = slab_unmergeable(s);
4455 	if (unmergeable) {
4456 		/*
4457 		 * Slabcache can never be merged so we can use the name proper.
4458 		 * This is typically the case for debug situations. In that
4459 		 * case we can catch duplicate names easily.
4460 		 */
4461 		sysfs_remove_link(&slab_kset->kobj, s->name);
4462 		name = s->name;
4463 	} else {
4464 		/*
4465 		 * Create a unique name for the slab as a target
4466 		 * for the symlinks.
4467 		 */
4468 		name = create_unique_id(s);
4469 	}
4470 
4471 	s->kobj.kset = slab_kset;
4472 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4473 	if (err) {
4474 		kobject_put(&s->kobj);
4475 		return err;
4476 	}
4477 
4478 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4479 	if (err) {
4480 		kobject_del(&s->kobj);
4481 		kobject_put(&s->kobj);
4482 		return err;
4483 	}
4484 	kobject_uevent(&s->kobj, KOBJ_ADD);
4485 	if (!unmergeable) {
4486 		/* Setup first alias */
4487 		sysfs_slab_alias(s, s->name);
4488 		kfree(name);
4489 	}
4490 	return 0;
4491 }
4492 
4493 static void sysfs_slab_remove(struct kmem_cache *s)
4494 {
4495 	if (slab_state < SYSFS)
4496 		/*
4497 		 * Sysfs has not been setup yet so no need to remove the
4498 		 * cache from sysfs.
4499 		 */
4500 		return;
4501 
4502 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4503 	kobject_del(&s->kobj);
4504 	kobject_put(&s->kobj);
4505 }
4506 
4507 /*
4508  * Need to buffer aliases during bootup until sysfs becomes
4509  * available lest we lose that information.
4510  */
4511 struct saved_alias {
4512 	struct kmem_cache *s;
4513 	const char *name;
4514 	struct saved_alias *next;
4515 };
4516 
4517 static struct saved_alias *alias_list;
4518 
4519 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4520 {
4521 	struct saved_alias *al;
4522 
4523 	if (slab_state == SYSFS) {
4524 		/*
4525 		 * If we have a leftover link then remove it.
4526 		 */
4527 		sysfs_remove_link(&slab_kset->kobj, name);
4528 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4529 	}
4530 
4531 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4532 	if (!al)
4533 		return -ENOMEM;
4534 
4535 	al->s = s;
4536 	al->name = name;
4537 	al->next = alias_list;
4538 	alias_list = al;
4539 	return 0;
4540 }
4541 
4542 static int __init slab_sysfs_init(void)
4543 {
4544 	struct kmem_cache *s;
4545 	int err;
4546 
4547 	down_write(&slub_lock);
4548 
4549 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4550 	if (!slab_kset) {
4551 		up_write(&slub_lock);
4552 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4553 		return -ENOSYS;
4554 	}
4555 
4556 	slab_state = SYSFS;
4557 
4558 	list_for_each_entry(s, &slab_caches, list) {
4559 		err = sysfs_slab_add(s);
4560 		if (err)
4561 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4562 						" to sysfs\n", s->name);
4563 	}
4564 
4565 	while (alias_list) {
4566 		struct saved_alias *al = alias_list;
4567 
4568 		alias_list = alias_list->next;
4569 		err = sysfs_slab_alias(al->s, al->name);
4570 		if (err)
4571 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4572 					" %s to sysfs\n", s->name);
4573 		kfree(al);
4574 	}
4575 
4576 	up_write(&slub_lock);
4577 	resiliency_test();
4578 	return 0;
4579 }
4580 
4581 __initcall(slab_sysfs_init);
4582 #endif
4583 
4584 /*
4585  * The /proc/slabinfo ABI
4586  */
4587 #ifdef CONFIG_SLABINFO
4588 static void print_slabinfo_header(struct seq_file *m)
4589 {
4590 	seq_puts(m, "slabinfo - version: 2.1\n");
4591 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4592 		 "<objperslab> <pagesperslab>");
4593 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4594 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4595 	seq_putc(m, '\n');
4596 }
4597 
4598 static void *s_start(struct seq_file *m, loff_t *pos)
4599 {
4600 	loff_t n = *pos;
4601 
4602 	down_read(&slub_lock);
4603 	if (!n)
4604 		print_slabinfo_header(m);
4605 
4606 	return seq_list_start(&slab_caches, *pos);
4607 }
4608 
4609 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4610 {
4611 	return seq_list_next(p, &slab_caches, pos);
4612 }
4613 
4614 static void s_stop(struct seq_file *m, void *p)
4615 {
4616 	up_read(&slub_lock);
4617 }
4618 
4619 static int s_show(struct seq_file *m, void *p)
4620 {
4621 	unsigned long nr_partials = 0;
4622 	unsigned long nr_slabs = 0;
4623 	unsigned long nr_inuse = 0;
4624 	unsigned long nr_objs = 0;
4625 	unsigned long nr_free = 0;
4626 	struct kmem_cache *s;
4627 	int node;
4628 
4629 	s = list_entry(p, struct kmem_cache, list);
4630 
4631 	for_each_online_node(node) {
4632 		struct kmem_cache_node *n = get_node(s, node);
4633 
4634 		if (!n)
4635 			continue;
4636 
4637 		nr_partials += n->nr_partial;
4638 		nr_slabs += atomic_long_read(&n->nr_slabs);
4639 		nr_objs += atomic_long_read(&n->total_objects);
4640 		nr_free += count_partial(n, count_free);
4641 	}
4642 
4643 	nr_inuse = nr_objs - nr_free;
4644 
4645 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4646 		   nr_objs, s->size, oo_objects(s->oo),
4647 		   (1 << oo_order(s->oo)));
4648 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4649 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4650 		   0UL);
4651 	seq_putc(m, '\n');
4652 	return 0;
4653 }
4654 
4655 static const struct seq_operations slabinfo_op = {
4656 	.start = s_start,
4657 	.next = s_next,
4658 	.stop = s_stop,
4659 	.show = s_show,
4660 };
4661 
4662 static int slabinfo_open(struct inode *inode, struct file *file)
4663 {
4664 	return seq_open(file, &slabinfo_op);
4665 }
4666 
4667 static const struct file_operations proc_slabinfo_operations = {
4668 	.open		= slabinfo_open,
4669 	.read		= seq_read,
4670 	.llseek		= seq_lseek,
4671 	.release	= seq_release,
4672 };
4673 
4674 static int __init slab_proc_init(void)
4675 {
4676 	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4677 	return 0;
4678 }
4679 module_init(slab_proc_init);
4680 #endif /* CONFIG_SLABINFO */
4681