1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/swap.h> /* struct reclaim_state */ 13 #include <linux/module.h> 14 #include <linux/bit_spinlock.h> 15 #include <linux/interrupt.h> 16 #include <linux/bitops.h> 17 #include <linux/slab.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/kmemcheck.h> 21 #include <linux/cpu.h> 22 #include <linux/cpuset.h> 23 #include <linux/mempolicy.h> 24 #include <linux/ctype.h> 25 #include <linux/debugobjects.h> 26 #include <linux/kallsyms.h> 27 #include <linux/memory.h> 28 #include <linux/math64.h> 29 #include <linux/fault-inject.h> 30 31 /* 32 * Lock order: 33 * 1. slab_lock(page) 34 * 2. slab->list_lock 35 * 36 * The slab_lock protects operations on the object of a particular 37 * slab and its metadata in the page struct. If the slab lock 38 * has been taken then no allocations nor frees can be performed 39 * on the objects in the slab nor can the slab be added or removed 40 * from the partial or full lists since this would mean modifying 41 * the page_struct of the slab. 42 * 43 * The list_lock protects the partial and full list on each node and 44 * the partial slab counter. If taken then no new slabs may be added or 45 * removed from the lists nor make the number of partial slabs be modified. 46 * (Note that the total number of slabs is an atomic value that may be 47 * modified without taking the list lock). 48 * 49 * The list_lock is a centralized lock and thus we avoid taking it as 50 * much as possible. As long as SLUB does not have to handle partial 51 * slabs, operations can continue without any centralized lock. F.e. 52 * allocating a long series of objects that fill up slabs does not require 53 * the list lock. 54 * 55 * The lock order is sometimes inverted when we are trying to get a slab 56 * off a list. We take the list_lock and then look for a page on the list 57 * to use. While we do that objects in the slabs may be freed. We can 58 * only operate on the slab if we have also taken the slab_lock. So we use 59 * a slab_trylock() on the slab. If trylock was successful then no frees 60 * can occur anymore and we can use the slab for allocations etc. If the 61 * slab_trylock() does not succeed then frees are in progress in the slab and 62 * we must stay away from it for a while since we may cause a bouncing 63 * cacheline if we try to acquire the lock. So go onto the next slab. 64 * If all pages are busy then we may allocate a new slab instead of reusing 65 * a partial slab. A new slab has noone operating on it and thus there is 66 * no danger of cacheline contention. 67 * 68 * Interrupts are disabled during allocation and deallocation in order to 69 * make the slab allocator safe to use in the context of an irq. In addition 70 * interrupts are disabled to ensure that the processor does not change 71 * while handling per_cpu slabs, due to kernel preemption. 72 * 73 * SLUB assigns one slab for allocation to each processor. 74 * Allocations only occur from these slabs called cpu slabs. 75 * 76 * Slabs with free elements are kept on a partial list and during regular 77 * operations no list for full slabs is used. If an object in a full slab is 78 * freed then the slab will show up again on the partial lists. 79 * We track full slabs for debugging purposes though because otherwise we 80 * cannot scan all objects. 81 * 82 * Slabs are freed when they become empty. Teardown and setup is 83 * minimal so we rely on the page allocators per cpu caches for 84 * fast frees and allocs. 85 * 86 * Overloading of page flags that are otherwise used for LRU management. 87 * 88 * PageActive The slab is frozen and exempt from list processing. 89 * This means that the slab is dedicated to a purpose 90 * such as satisfying allocations for a specific 91 * processor. Objects may be freed in the slab while 92 * it is frozen but slab_free will then skip the usual 93 * list operations. It is up to the processor holding 94 * the slab to integrate the slab into the slab lists 95 * when the slab is no longer needed. 96 * 97 * One use of this flag is to mark slabs that are 98 * used for allocations. Then such a slab becomes a cpu 99 * slab. The cpu slab may be equipped with an additional 100 * freelist that allows lockless access to 101 * free objects in addition to the regular freelist 102 * that requires the slab lock. 103 * 104 * PageError Slab requires special handling due to debug 105 * options set. This moves slab handling out of 106 * the fast path and disables lockless freelists. 107 */ 108 109 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 110 SLAB_TRACE | SLAB_DEBUG_FREE) 111 112 static inline int kmem_cache_debug(struct kmem_cache *s) 113 { 114 #ifdef CONFIG_SLUB_DEBUG 115 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 116 #else 117 return 0; 118 #endif 119 } 120 121 /* 122 * Issues still to be resolved: 123 * 124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 125 * 126 * - Variable sizing of the per node arrays 127 */ 128 129 /* Enable to test recovery from slab corruption on boot */ 130 #undef SLUB_RESILIENCY_TEST 131 132 /* 133 * Mininum number of partial slabs. These will be left on the partial 134 * lists even if they are empty. kmem_cache_shrink may reclaim them. 135 */ 136 #define MIN_PARTIAL 5 137 138 /* 139 * Maximum number of desirable partial slabs. 140 * The existence of more partial slabs makes kmem_cache_shrink 141 * sort the partial list by the number of objects in the. 142 */ 143 #define MAX_PARTIAL 10 144 145 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 146 SLAB_POISON | SLAB_STORE_USER) 147 148 /* 149 * Debugging flags that require metadata to be stored in the slab. These get 150 * disabled when slub_debug=O is used and a cache's min order increases with 151 * metadata. 152 */ 153 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 154 155 /* 156 * Set of flags that will prevent slab merging 157 */ 158 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 160 SLAB_FAILSLAB) 161 162 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 163 SLAB_CACHE_DMA | SLAB_NOTRACK) 164 165 #define OO_SHIFT 16 166 #define OO_MASK ((1 << OO_SHIFT) - 1) 167 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 168 169 /* Internal SLUB flags */ 170 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 171 #define __SYSFS_ADD_DEFERRED 0x40000000UL /* Not yet visible via sysfs */ 172 173 static int kmem_size = sizeof(struct kmem_cache); 174 175 #ifdef CONFIG_SMP 176 static struct notifier_block slab_notifier; 177 #endif 178 179 static enum { 180 DOWN, /* No slab functionality available */ 181 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 182 UP, /* Everything works but does not show up in sysfs */ 183 SYSFS /* Sysfs up */ 184 } slab_state = DOWN; 185 186 /* A list of all slab caches on the system */ 187 static DECLARE_RWSEM(slub_lock); 188 static LIST_HEAD(slab_caches); 189 190 /* 191 * Tracking user of a slab. 192 */ 193 struct track { 194 unsigned long addr; /* Called from address */ 195 int cpu; /* Was running on cpu */ 196 int pid; /* Pid context */ 197 unsigned long when; /* When did the operation occur */ 198 }; 199 200 enum track_item { TRACK_ALLOC, TRACK_FREE }; 201 202 #ifdef CONFIG_SLUB_DEBUG 203 static int sysfs_slab_add(struct kmem_cache *); 204 static int sysfs_slab_alias(struct kmem_cache *, const char *); 205 static void sysfs_slab_remove(struct kmem_cache *); 206 207 #else 208 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 209 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 210 { return 0; } 211 static inline void sysfs_slab_remove(struct kmem_cache *s) 212 { 213 kfree(s); 214 } 215 216 #endif 217 218 static inline void stat(struct kmem_cache *s, enum stat_item si) 219 { 220 #ifdef CONFIG_SLUB_STATS 221 __this_cpu_inc(s->cpu_slab->stat[si]); 222 #endif 223 } 224 225 /******************************************************************** 226 * Core slab cache functions 227 *******************************************************************/ 228 229 int slab_is_available(void) 230 { 231 return slab_state >= UP; 232 } 233 234 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 235 { 236 #ifdef CONFIG_NUMA 237 return s->node[node]; 238 #else 239 return &s->local_node; 240 #endif 241 } 242 243 /* Verify that a pointer has an address that is valid within a slab page */ 244 static inline int check_valid_pointer(struct kmem_cache *s, 245 struct page *page, const void *object) 246 { 247 void *base; 248 249 if (!object) 250 return 1; 251 252 base = page_address(page); 253 if (object < base || object >= base + page->objects * s->size || 254 (object - base) % s->size) { 255 return 0; 256 } 257 258 return 1; 259 } 260 261 static inline void *get_freepointer(struct kmem_cache *s, void *object) 262 { 263 return *(void **)(object + s->offset); 264 } 265 266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 267 { 268 *(void **)(object + s->offset) = fp; 269 } 270 271 /* Loop over all objects in a slab */ 272 #define for_each_object(__p, __s, __addr, __objects) \ 273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 274 __p += (__s)->size) 275 276 /* Scan freelist */ 277 #define for_each_free_object(__p, __s, __free) \ 278 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 279 280 /* Determine object index from a given position */ 281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 282 { 283 return (p - addr) / s->size; 284 } 285 286 static inline struct kmem_cache_order_objects oo_make(int order, 287 unsigned long size) 288 { 289 struct kmem_cache_order_objects x = { 290 (order << OO_SHIFT) + (PAGE_SIZE << order) / size 291 }; 292 293 return x; 294 } 295 296 static inline int oo_order(struct kmem_cache_order_objects x) 297 { 298 return x.x >> OO_SHIFT; 299 } 300 301 static inline int oo_objects(struct kmem_cache_order_objects x) 302 { 303 return x.x & OO_MASK; 304 } 305 306 #ifdef CONFIG_SLUB_DEBUG 307 /* 308 * Debug settings: 309 */ 310 #ifdef CONFIG_SLUB_DEBUG_ON 311 static int slub_debug = DEBUG_DEFAULT_FLAGS; 312 #else 313 static int slub_debug; 314 #endif 315 316 static char *slub_debug_slabs; 317 static int disable_higher_order_debug; 318 319 /* 320 * Object debugging 321 */ 322 static void print_section(char *text, u8 *addr, unsigned int length) 323 { 324 int i, offset; 325 int newline = 1; 326 char ascii[17]; 327 328 ascii[16] = 0; 329 330 for (i = 0; i < length; i++) { 331 if (newline) { 332 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 333 newline = 0; 334 } 335 printk(KERN_CONT " %02x", addr[i]); 336 offset = i % 16; 337 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 338 if (offset == 15) { 339 printk(KERN_CONT " %s\n", ascii); 340 newline = 1; 341 } 342 } 343 if (!newline) { 344 i %= 16; 345 while (i < 16) { 346 printk(KERN_CONT " "); 347 ascii[i] = ' '; 348 i++; 349 } 350 printk(KERN_CONT " %s\n", ascii); 351 } 352 } 353 354 static struct track *get_track(struct kmem_cache *s, void *object, 355 enum track_item alloc) 356 { 357 struct track *p; 358 359 if (s->offset) 360 p = object + s->offset + sizeof(void *); 361 else 362 p = object + s->inuse; 363 364 return p + alloc; 365 } 366 367 static void set_track(struct kmem_cache *s, void *object, 368 enum track_item alloc, unsigned long addr) 369 { 370 struct track *p = get_track(s, object, alloc); 371 372 if (addr) { 373 p->addr = addr; 374 p->cpu = smp_processor_id(); 375 p->pid = current->pid; 376 p->when = jiffies; 377 } else 378 memset(p, 0, sizeof(struct track)); 379 } 380 381 static void init_tracking(struct kmem_cache *s, void *object) 382 { 383 if (!(s->flags & SLAB_STORE_USER)) 384 return; 385 386 set_track(s, object, TRACK_FREE, 0UL); 387 set_track(s, object, TRACK_ALLOC, 0UL); 388 } 389 390 static void print_track(const char *s, struct track *t) 391 { 392 if (!t->addr) 393 return; 394 395 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 396 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 397 } 398 399 static void print_tracking(struct kmem_cache *s, void *object) 400 { 401 if (!(s->flags & SLAB_STORE_USER)) 402 return; 403 404 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 405 print_track("Freed", get_track(s, object, TRACK_FREE)); 406 } 407 408 static void print_page_info(struct page *page) 409 { 410 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 411 page, page->objects, page->inuse, page->freelist, page->flags); 412 413 } 414 415 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 416 { 417 va_list args; 418 char buf[100]; 419 420 va_start(args, fmt); 421 vsnprintf(buf, sizeof(buf), fmt, args); 422 va_end(args); 423 printk(KERN_ERR "========================================" 424 "=====================================\n"); 425 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 426 printk(KERN_ERR "----------------------------------------" 427 "-------------------------------------\n\n"); 428 } 429 430 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 431 { 432 va_list args; 433 char buf[100]; 434 435 va_start(args, fmt); 436 vsnprintf(buf, sizeof(buf), fmt, args); 437 va_end(args); 438 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 439 } 440 441 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 442 { 443 unsigned int off; /* Offset of last byte */ 444 u8 *addr = page_address(page); 445 446 print_tracking(s, p); 447 448 print_page_info(page); 449 450 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 451 p, p - addr, get_freepointer(s, p)); 452 453 if (p > addr + 16) 454 print_section("Bytes b4", p - 16, 16); 455 456 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 457 458 if (s->flags & SLAB_RED_ZONE) 459 print_section("Redzone", p + s->objsize, 460 s->inuse - s->objsize); 461 462 if (s->offset) 463 off = s->offset + sizeof(void *); 464 else 465 off = s->inuse; 466 467 if (s->flags & SLAB_STORE_USER) 468 off += 2 * sizeof(struct track); 469 470 if (off != s->size) 471 /* Beginning of the filler is the free pointer */ 472 print_section("Padding", p + off, s->size - off); 473 474 dump_stack(); 475 } 476 477 static void object_err(struct kmem_cache *s, struct page *page, 478 u8 *object, char *reason) 479 { 480 slab_bug(s, "%s", reason); 481 print_trailer(s, page, object); 482 } 483 484 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 485 { 486 va_list args; 487 char buf[100]; 488 489 va_start(args, fmt); 490 vsnprintf(buf, sizeof(buf), fmt, args); 491 va_end(args); 492 slab_bug(s, "%s", buf); 493 print_page_info(page); 494 dump_stack(); 495 } 496 497 static void init_object(struct kmem_cache *s, void *object, int active) 498 { 499 u8 *p = object; 500 501 if (s->flags & __OBJECT_POISON) { 502 memset(p, POISON_FREE, s->objsize - 1); 503 p[s->objsize - 1] = POISON_END; 504 } 505 506 if (s->flags & SLAB_RED_ZONE) 507 memset(p + s->objsize, 508 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 509 s->inuse - s->objsize); 510 } 511 512 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 513 { 514 while (bytes) { 515 if (*start != (u8)value) 516 return start; 517 start++; 518 bytes--; 519 } 520 return NULL; 521 } 522 523 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 524 void *from, void *to) 525 { 526 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 527 memset(from, data, to - from); 528 } 529 530 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 531 u8 *object, char *what, 532 u8 *start, unsigned int value, unsigned int bytes) 533 { 534 u8 *fault; 535 u8 *end; 536 537 fault = check_bytes(start, value, bytes); 538 if (!fault) 539 return 1; 540 541 end = start + bytes; 542 while (end > fault && end[-1] == value) 543 end--; 544 545 slab_bug(s, "%s overwritten", what); 546 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 547 fault, end - 1, fault[0], value); 548 print_trailer(s, page, object); 549 550 restore_bytes(s, what, value, fault, end); 551 return 0; 552 } 553 554 /* 555 * Object layout: 556 * 557 * object address 558 * Bytes of the object to be managed. 559 * If the freepointer may overlay the object then the free 560 * pointer is the first word of the object. 561 * 562 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 563 * 0xa5 (POISON_END) 564 * 565 * object + s->objsize 566 * Padding to reach word boundary. This is also used for Redzoning. 567 * Padding is extended by another word if Redzoning is enabled and 568 * objsize == inuse. 569 * 570 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 571 * 0xcc (RED_ACTIVE) for objects in use. 572 * 573 * object + s->inuse 574 * Meta data starts here. 575 * 576 * A. Free pointer (if we cannot overwrite object on free) 577 * B. Tracking data for SLAB_STORE_USER 578 * C. Padding to reach required alignment boundary or at mininum 579 * one word if debugging is on to be able to detect writes 580 * before the word boundary. 581 * 582 * Padding is done using 0x5a (POISON_INUSE) 583 * 584 * object + s->size 585 * Nothing is used beyond s->size. 586 * 587 * If slabcaches are merged then the objsize and inuse boundaries are mostly 588 * ignored. And therefore no slab options that rely on these boundaries 589 * may be used with merged slabcaches. 590 */ 591 592 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 593 { 594 unsigned long off = s->inuse; /* The end of info */ 595 596 if (s->offset) 597 /* Freepointer is placed after the object. */ 598 off += sizeof(void *); 599 600 if (s->flags & SLAB_STORE_USER) 601 /* We also have user information there */ 602 off += 2 * sizeof(struct track); 603 604 if (s->size == off) 605 return 1; 606 607 return check_bytes_and_report(s, page, p, "Object padding", 608 p + off, POISON_INUSE, s->size - off); 609 } 610 611 /* Check the pad bytes at the end of a slab page */ 612 static int slab_pad_check(struct kmem_cache *s, struct page *page) 613 { 614 u8 *start; 615 u8 *fault; 616 u8 *end; 617 int length; 618 int remainder; 619 620 if (!(s->flags & SLAB_POISON)) 621 return 1; 622 623 start = page_address(page); 624 length = (PAGE_SIZE << compound_order(page)); 625 end = start + length; 626 remainder = length % s->size; 627 if (!remainder) 628 return 1; 629 630 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 631 if (!fault) 632 return 1; 633 while (end > fault && end[-1] == POISON_INUSE) 634 end--; 635 636 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 637 print_section("Padding", end - remainder, remainder); 638 639 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 640 return 0; 641 } 642 643 static int check_object(struct kmem_cache *s, struct page *page, 644 void *object, int active) 645 { 646 u8 *p = object; 647 u8 *endobject = object + s->objsize; 648 649 if (s->flags & SLAB_RED_ZONE) { 650 unsigned int red = 651 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 652 653 if (!check_bytes_and_report(s, page, object, "Redzone", 654 endobject, red, s->inuse - s->objsize)) 655 return 0; 656 } else { 657 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 658 check_bytes_and_report(s, page, p, "Alignment padding", 659 endobject, POISON_INUSE, s->inuse - s->objsize); 660 } 661 } 662 663 if (s->flags & SLAB_POISON) { 664 if (!active && (s->flags & __OBJECT_POISON) && 665 (!check_bytes_and_report(s, page, p, "Poison", p, 666 POISON_FREE, s->objsize - 1) || 667 !check_bytes_and_report(s, page, p, "Poison", 668 p + s->objsize - 1, POISON_END, 1))) 669 return 0; 670 /* 671 * check_pad_bytes cleans up on its own. 672 */ 673 check_pad_bytes(s, page, p); 674 } 675 676 if (!s->offset && active) 677 /* 678 * Object and freepointer overlap. Cannot check 679 * freepointer while object is allocated. 680 */ 681 return 1; 682 683 /* Check free pointer validity */ 684 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 685 object_err(s, page, p, "Freepointer corrupt"); 686 /* 687 * No choice but to zap it and thus lose the remainder 688 * of the free objects in this slab. May cause 689 * another error because the object count is now wrong. 690 */ 691 set_freepointer(s, p, NULL); 692 return 0; 693 } 694 return 1; 695 } 696 697 static int check_slab(struct kmem_cache *s, struct page *page) 698 { 699 int maxobj; 700 701 VM_BUG_ON(!irqs_disabled()); 702 703 if (!PageSlab(page)) { 704 slab_err(s, page, "Not a valid slab page"); 705 return 0; 706 } 707 708 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 709 if (page->objects > maxobj) { 710 slab_err(s, page, "objects %u > max %u", 711 s->name, page->objects, maxobj); 712 return 0; 713 } 714 if (page->inuse > page->objects) { 715 slab_err(s, page, "inuse %u > max %u", 716 s->name, page->inuse, page->objects); 717 return 0; 718 } 719 /* Slab_pad_check fixes things up after itself */ 720 slab_pad_check(s, page); 721 return 1; 722 } 723 724 /* 725 * Determine if a certain object on a page is on the freelist. Must hold the 726 * slab lock to guarantee that the chains are in a consistent state. 727 */ 728 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 729 { 730 int nr = 0; 731 void *fp = page->freelist; 732 void *object = NULL; 733 unsigned long max_objects; 734 735 while (fp && nr <= page->objects) { 736 if (fp == search) 737 return 1; 738 if (!check_valid_pointer(s, page, fp)) { 739 if (object) { 740 object_err(s, page, object, 741 "Freechain corrupt"); 742 set_freepointer(s, object, NULL); 743 break; 744 } else { 745 slab_err(s, page, "Freepointer corrupt"); 746 page->freelist = NULL; 747 page->inuse = page->objects; 748 slab_fix(s, "Freelist cleared"); 749 return 0; 750 } 751 break; 752 } 753 object = fp; 754 fp = get_freepointer(s, object); 755 nr++; 756 } 757 758 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 759 if (max_objects > MAX_OBJS_PER_PAGE) 760 max_objects = MAX_OBJS_PER_PAGE; 761 762 if (page->objects != max_objects) { 763 slab_err(s, page, "Wrong number of objects. Found %d but " 764 "should be %d", page->objects, max_objects); 765 page->objects = max_objects; 766 slab_fix(s, "Number of objects adjusted."); 767 } 768 if (page->inuse != page->objects - nr) { 769 slab_err(s, page, "Wrong object count. Counter is %d but " 770 "counted were %d", page->inuse, page->objects - nr); 771 page->inuse = page->objects - nr; 772 slab_fix(s, "Object count adjusted."); 773 } 774 return search == NULL; 775 } 776 777 static void trace(struct kmem_cache *s, struct page *page, void *object, 778 int alloc) 779 { 780 if (s->flags & SLAB_TRACE) { 781 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 782 s->name, 783 alloc ? "alloc" : "free", 784 object, page->inuse, 785 page->freelist); 786 787 if (!alloc) 788 print_section("Object", (void *)object, s->objsize); 789 790 dump_stack(); 791 } 792 } 793 794 /* 795 * Tracking of fully allocated slabs for debugging purposes. 796 */ 797 static void add_full(struct kmem_cache_node *n, struct page *page) 798 { 799 spin_lock(&n->list_lock); 800 list_add(&page->lru, &n->full); 801 spin_unlock(&n->list_lock); 802 } 803 804 static void remove_full(struct kmem_cache *s, struct page *page) 805 { 806 struct kmem_cache_node *n; 807 808 if (!(s->flags & SLAB_STORE_USER)) 809 return; 810 811 n = get_node(s, page_to_nid(page)); 812 813 spin_lock(&n->list_lock); 814 list_del(&page->lru); 815 spin_unlock(&n->list_lock); 816 } 817 818 /* Tracking of the number of slabs for debugging purposes */ 819 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 820 { 821 struct kmem_cache_node *n = get_node(s, node); 822 823 return atomic_long_read(&n->nr_slabs); 824 } 825 826 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 827 { 828 return atomic_long_read(&n->nr_slabs); 829 } 830 831 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 832 { 833 struct kmem_cache_node *n = get_node(s, node); 834 835 /* 836 * May be called early in order to allocate a slab for the 837 * kmem_cache_node structure. Solve the chicken-egg 838 * dilemma by deferring the increment of the count during 839 * bootstrap (see early_kmem_cache_node_alloc). 840 */ 841 if (!NUMA_BUILD || n) { 842 atomic_long_inc(&n->nr_slabs); 843 atomic_long_add(objects, &n->total_objects); 844 } 845 } 846 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 847 { 848 struct kmem_cache_node *n = get_node(s, node); 849 850 atomic_long_dec(&n->nr_slabs); 851 atomic_long_sub(objects, &n->total_objects); 852 } 853 854 /* Object debug checks for alloc/free paths */ 855 static void setup_object_debug(struct kmem_cache *s, struct page *page, 856 void *object) 857 { 858 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 859 return; 860 861 init_object(s, object, 0); 862 init_tracking(s, object); 863 } 864 865 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 866 void *object, unsigned long addr) 867 { 868 if (!check_slab(s, page)) 869 goto bad; 870 871 if (!on_freelist(s, page, object)) { 872 object_err(s, page, object, "Object already allocated"); 873 goto bad; 874 } 875 876 if (!check_valid_pointer(s, page, object)) { 877 object_err(s, page, object, "Freelist Pointer check fails"); 878 goto bad; 879 } 880 881 if (!check_object(s, page, object, 0)) 882 goto bad; 883 884 /* Success perform special debug activities for allocs */ 885 if (s->flags & SLAB_STORE_USER) 886 set_track(s, object, TRACK_ALLOC, addr); 887 trace(s, page, object, 1); 888 init_object(s, object, 1); 889 return 1; 890 891 bad: 892 if (PageSlab(page)) { 893 /* 894 * If this is a slab page then lets do the best we can 895 * to avoid issues in the future. Marking all objects 896 * as used avoids touching the remaining objects. 897 */ 898 slab_fix(s, "Marking all objects used"); 899 page->inuse = page->objects; 900 page->freelist = NULL; 901 } 902 return 0; 903 } 904 905 static int free_debug_processing(struct kmem_cache *s, struct page *page, 906 void *object, unsigned long addr) 907 { 908 if (!check_slab(s, page)) 909 goto fail; 910 911 if (!check_valid_pointer(s, page, object)) { 912 slab_err(s, page, "Invalid object pointer 0x%p", object); 913 goto fail; 914 } 915 916 if (on_freelist(s, page, object)) { 917 object_err(s, page, object, "Object already free"); 918 goto fail; 919 } 920 921 if (!check_object(s, page, object, 1)) 922 return 0; 923 924 if (unlikely(s != page->slab)) { 925 if (!PageSlab(page)) { 926 slab_err(s, page, "Attempt to free object(0x%p) " 927 "outside of slab", object); 928 } else if (!page->slab) { 929 printk(KERN_ERR 930 "SLUB <none>: no slab for object 0x%p.\n", 931 object); 932 dump_stack(); 933 } else 934 object_err(s, page, object, 935 "page slab pointer corrupt."); 936 goto fail; 937 } 938 939 /* Special debug activities for freeing objects */ 940 if (!PageSlubFrozen(page) && !page->freelist) 941 remove_full(s, page); 942 if (s->flags & SLAB_STORE_USER) 943 set_track(s, object, TRACK_FREE, addr); 944 trace(s, page, object, 0); 945 init_object(s, object, 0); 946 return 1; 947 948 fail: 949 slab_fix(s, "Object at 0x%p not freed", object); 950 return 0; 951 } 952 953 static int __init setup_slub_debug(char *str) 954 { 955 slub_debug = DEBUG_DEFAULT_FLAGS; 956 if (*str++ != '=' || !*str) 957 /* 958 * No options specified. Switch on full debugging. 959 */ 960 goto out; 961 962 if (*str == ',') 963 /* 964 * No options but restriction on slabs. This means full 965 * debugging for slabs matching a pattern. 966 */ 967 goto check_slabs; 968 969 if (tolower(*str) == 'o') { 970 /* 971 * Avoid enabling debugging on caches if its minimum order 972 * would increase as a result. 973 */ 974 disable_higher_order_debug = 1; 975 goto out; 976 } 977 978 slub_debug = 0; 979 if (*str == '-') 980 /* 981 * Switch off all debugging measures. 982 */ 983 goto out; 984 985 /* 986 * Determine which debug features should be switched on 987 */ 988 for (; *str && *str != ','; str++) { 989 switch (tolower(*str)) { 990 case 'f': 991 slub_debug |= SLAB_DEBUG_FREE; 992 break; 993 case 'z': 994 slub_debug |= SLAB_RED_ZONE; 995 break; 996 case 'p': 997 slub_debug |= SLAB_POISON; 998 break; 999 case 'u': 1000 slub_debug |= SLAB_STORE_USER; 1001 break; 1002 case 't': 1003 slub_debug |= SLAB_TRACE; 1004 break; 1005 case 'a': 1006 slub_debug |= SLAB_FAILSLAB; 1007 break; 1008 default: 1009 printk(KERN_ERR "slub_debug option '%c' " 1010 "unknown. skipped\n", *str); 1011 } 1012 } 1013 1014 check_slabs: 1015 if (*str == ',') 1016 slub_debug_slabs = str + 1; 1017 out: 1018 return 1; 1019 } 1020 1021 __setup("slub_debug", setup_slub_debug); 1022 1023 static unsigned long kmem_cache_flags(unsigned long objsize, 1024 unsigned long flags, const char *name, 1025 void (*ctor)(void *)) 1026 { 1027 /* 1028 * Enable debugging if selected on the kernel commandline. 1029 */ 1030 if (slub_debug && (!slub_debug_slabs || 1031 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1032 flags |= slub_debug; 1033 1034 return flags; 1035 } 1036 #else 1037 static inline void setup_object_debug(struct kmem_cache *s, 1038 struct page *page, void *object) {} 1039 1040 static inline int alloc_debug_processing(struct kmem_cache *s, 1041 struct page *page, void *object, unsigned long addr) { return 0; } 1042 1043 static inline int free_debug_processing(struct kmem_cache *s, 1044 struct page *page, void *object, unsigned long addr) { return 0; } 1045 1046 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1047 { return 1; } 1048 static inline int check_object(struct kmem_cache *s, struct page *page, 1049 void *object, int active) { return 1; } 1050 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1051 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1052 unsigned long flags, const char *name, 1053 void (*ctor)(void *)) 1054 { 1055 return flags; 1056 } 1057 #define slub_debug 0 1058 1059 #define disable_higher_order_debug 0 1060 1061 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1062 { return 0; } 1063 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1064 { return 0; } 1065 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1066 int objects) {} 1067 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1068 int objects) {} 1069 #endif 1070 1071 /* 1072 * Slab allocation and freeing 1073 */ 1074 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1075 struct kmem_cache_order_objects oo) 1076 { 1077 int order = oo_order(oo); 1078 1079 flags |= __GFP_NOTRACK; 1080 1081 if (node == NUMA_NO_NODE) 1082 return alloc_pages(flags, order); 1083 else 1084 return alloc_pages_exact_node(node, flags, order); 1085 } 1086 1087 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1088 { 1089 struct page *page; 1090 struct kmem_cache_order_objects oo = s->oo; 1091 gfp_t alloc_gfp; 1092 1093 flags |= s->allocflags; 1094 1095 /* 1096 * Let the initial higher-order allocation fail under memory pressure 1097 * so we fall-back to the minimum order allocation. 1098 */ 1099 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1100 1101 page = alloc_slab_page(alloc_gfp, node, oo); 1102 if (unlikely(!page)) { 1103 oo = s->min; 1104 /* 1105 * Allocation may have failed due to fragmentation. 1106 * Try a lower order alloc if possible 1107 */ 1108 page = alloc_slab_page(flags, node, oo); 1109 if (!page) 1110 return NULL; 1111 1112 stat(s, ORDER_FALLBACK); 1113 } 1114 1115 if (kmemcheck_enabled 1116 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1117 int pages = 1 << oo_order(oo); 1118 1119 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1120 1121 /* 1122 * Objects from caches that have a constructor don't get 1123 * cleared when they're allocated, so we need to do it here. 1124 */ 1125 if (s->ctor) 1126 kmemcheck_mark_uninitialized_pages(page, pages); 1127 else 1128 kmemcheck_mark_unallocated_pages(page, pages); 1129 } 1130 1131 page->objects = oo_objects(oo); 1132 mod_zone_page_state(page_zone(page), 1133 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1134 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1135 1 << oo_order(oo)); 1136 1137 return page; 1138 } 1139 1140 static void setup_object(struct kmem_cache *s, struct page *page, 1141 void *object) 1142 { 1143 setup_object_debug(s, page, object); 1144 if (unlikely(s->ctor)) 1145 s->ctor(object); 1146 } 1147 1148 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1149 { 1150 struct page *page; 1151 void *start; 1152 void *last; 1153 void *p; 1154 1155 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1156 1157 page = allocate_slab(s, 1158 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1159 if (!page) 1160 goto out; 1161 1162 inc_slabs_node(s, page_to_nid(page), page->objects); 1163 page->slab = s; 1164 page->flags |= 1 << PG_slab; 1165 1166 start = page_address(page); 1167 1168 if (unlikely(s->flags & SLAB_POISON)) 1169 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1170 1171 last = start; 1172 for_each_object(p, s, start, page->objects) { 1173 setup_object(s, page, last); 1174 set_freepointer(s, last, p); 1175 last = p; 1176 } 1177 setup_object(s, page, last); 1178 set_freepointer(s, last, NULL); 1179 1180 page->freelist = start; 1181 page->inuse = 0; 1182 out: 1183 return page; 1184 } 1185 1186 static void __free_slab(struct kmem_cache *s, struct page *page) 1187 { 1188 int order = compound_order(page); 1189 int pages = 1 << order; 1190 1191 if (kmem_cache_debug(s)) { 1192 void *p; 1193 1194 slab_pad_check(s, page); 1195 for_each_object(p, s, page_address(page), 1196 page->objects) 1197 check_object(s, page, p, 0); 1198 } 1199 1200 kmemcheck_free_shadow(page, compound_order(page)); 1201 1202 mod_zone_page_state(page_zone(page), 1203 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1204 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1205 -pages); 1206 1207 __ClearPageSlab(page); 1208 reset_page_mapcount(page); 1209 if (current->reclaim_state) 1210 current->reclaim_state->reclaimed_slab += pages; 1211 __free_pages(page, order); 1212 } 1213 1214 static void rcu_free_slab(struct rcu_head *h) 1215 { 1216 struct page *page; 1217 1218 page = container_of((struct list_head *)h, struct page, lru); 1219 __free_slab(page->slab, page); 1220 } 1221 1222 static void free_slab(struct kmem_cache *s, struct page *page) 1223 { 1224 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1225 /* 1226 * RCU free overloads the RCU head over the LRU 1227 */ 1228 struct rcu_head *head = (void *)&page->lru; 1229 1230 call_rcu(head, rcu_free_slab); 1231 } else 1232 __free_slab(s, page); 1233 } 1234 1235 static void discard_slab(struct kmem_cache *s, struct page *page) 1236 { 1237 dec_slabs_node(s, page_to_nid(page), page->objects); 1238 free_slab(s, page); 1239 } 1240 1241 /* 1242 * Per slab locking using the pagelock 1243 */ 1244 static __always_inline void slab_lock(struct page *page) 1245 { 1246 bit_spin_lock(PG_locked, &page->flags); 1247 } 1248 1249 static __always_inline void slab_unlock(struct page *page) 1250 { 1251 __bit_spin_unlock(PG_locked, &page->flags); 1252 } 1253 1254 static __always_inline int slab_trylock(struct page *page) 1255 { 1256 int rc = 1; 1257 1258 rc = bit_spin_trylock(PG_locked, &page->flags); 1259 return rc; 1260 } 1261 1262 /* 1263 * Management of partially allocated slabs 1264 */ 1265 static void add_partial(struct kmem_cache_node *n, 1266 struct page *page, int tail) 1267 { 1268 spin_lock(&n->list_lock); 1269 n->nr_partial++; 1270 if (tail) 1271 list_add_tail(&page->lru, &n->partial); 1272 else 1273 list_add(&page->lru, &n->partial); 1274 spin_unlock(&n->list_lock); 1275 } 1276 1277 static void remove_partial(struct kmem_cache *s, struct page *page) 1278 { 1279 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1280 1281 spin_lock(&n->list_lock); 1282 list_del(&page->lru); 1283 n->nr_partial--; 1284 spin_unlock(&n->list_lock); 1285 } 1286 1287 /* 1288 * Lock slab and remove from the partial list. 1289 * 1290 * Must hold list_lock. 1291 */ 1292 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1293 struct page *page) 1294 { 1295 if (slab_trylock(page)) { 1296 list_del(&page->lru); 1297 n->nr_partial--; 1298 __SetPageSlubFrozen(page); 1299 return 1; 1300 } 1301 return 0; 1302 } 1303 1304 /* 1305 * Try to allocate a partial slab from a specific node. 1306 */ 1307 static struct page *get_partial_node(struct kmem_cache_node *n) 1308 { 1309 struct page *page; 1310 1311 /* 1312 * Racy check. If we mistakenly see no partial slabs then we 1313 * just allocate an empty slab. If we mistakenly try to get a 1314 * partial slab and there is none available then get_partials() 1315 * will return NULL. 1316 */ 1317 if (!n || !n->nr_partial) 1318 return NULL; 1319 1320 spin_lock(&n->list_lock); 1321 list_for_each_entry(page, &n->partial, lru) 1322 if (lock_and_freeze_slab(n, page)) 1323 goto out; 1324 page = NULL; 1325 out: 1326 spin_unlock(&n->list_lock); 1327 return page; 1328 } 1329 1330 /* 1331 * Get a page from somewhere. Search in increasing NUMA distances. 1332 */ 1333 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1334 { 1335 #ifdef CONFIG_NUMA 1336 struct zonelist *zonelist; 1337 struct zoneref *z; 1338 struct zone *zone; 1339 enum zone_type high_zoneidx = gfp_zone(flags); 1340 struct page *page; 1341 1342 /* 1343 * The defrag ratio allows a configuration of the tradeoffs between 1344 * inter node defragmentation and node local allocations. A lower 1345 * defrag_ratio increases the tendency to do local allocations 1346 * instead of attempting to obtain partial slabs from other nodes. 1347 * 1348 * If the defrag_ratio is set to 0 then kmalloc() always 1349 * returns node local objects. If the ratio is higher then kmalloc() 1350 * may return off node objects because partial slabs are obtained 1351 * from other nodes and filled up. 1352 * 1353 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1354 * defrag_ratio = 1000) then every (well almost) allocation will 1355 * first attempt to defrag slab caches on other nodes. This means 1356 * scanning over all nodes to look for partial slabs which may be 1357 * expensive if we do it every time we are trying to find a slab 1358 * with available objects. 1359 */ 1360 if (!s->remote_node_defrag_ratio || 1361 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1362 return NULL; 1363 1364 get_mems_allowed(); 1365 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1366 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1367 struct kmem_cache_node *n; 1368 1369 n = get_node(s, zone_to_nid(zone)); 1370 1371 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1372 n->nr_partial > s->min_partial) { 1373 page = get_partial_node(n); 1374 if (page) { 1375 put_mems_allowed(); 1376 return page; 1377 } 1378 } 1379 } 1380 put_mems_allowed(); 1381 #endif 1382 return NULL; 1383 } 1384 1385 /* 1386 * Get a partial page, lock it and return it. 1387 */ 1388 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1389 { 1390 struct page *page; 1391 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1392 1393 page = get_partial_node(get_node(s, searchnode)); 1394 if (page || node != -1) 1395 return page; 1396 1397 return get_any_partial(s, flags); 1398 } 1399 1400 /* 1401 * Move a page back to the lists. 1402 * 1403 * Must be called with the slab lock held. 1404 * 1405 * On exit the slab lock will have been dropped. 1406 */ 1407 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1408 { 1409 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1410 1411 __ClearPageSlubFrozen(page); 1412 if (page->inuse) { 1413 1414 if (page->freelist) { 1415 add_partial(n, page, tail); 1416 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1417 } else { 1418 stat(s, DEACTIVATE_FULL); 1419 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER)) 1420 add_full(n, page); 1421 } 1422 slab_unlock(page); 1423 } else { 1424 stat(s, DEACTIVATE_EMPTY); 1425 if (n->nr_partial < s->min_partial) { 1426 /* 1427 * Adding an empty slab to the partial slabs in order 1428 * to avoid page allocator overhead. This slab needs 1429 * to come after the other slabs with objects in 1430 * so that the others get filled first. That way the 1431 * size of the partial list stays small. 1432 * 1433 * kmem_cache_shrink can reclaim any empty slabs from 1434 * the partial list. 1435 */ 1436 add_partial(n, page, 1); 1437 slab_unlock(page); 1438 } else { 1439 slab_unlock(page); 1440 stat(s, FREE_SLAB); 1441 discard_slab(s, page); 1442 } 1443 } 1444 } 1445 1446 /* 1447 * Remove the cpu slab 1448 */ 1449 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1450 { 1451 struct page *page = c->page; 1452 int tail = 1; 1453 1454 if (page->freelist) 1455 stat(s, DEACTIVATE_REMOTE_FREES); 1456 /* 1457 * Merge cpu freelist into slab freelist. Typically we get here 1458 * because both freelists are empty. So this is unlikely 1459 * to occur. 1460 */ 1461 while (unlikely(c->freelist)) { 1462 void **object; 1463 1464 tail = 0; /* Hot objects. Put the slab first */ 1465 1466 /* Retrieve object from cpu_freelist */ 1467 object = c->freelist; 1468 c->freelist = get_freepointer(s, c->freelist); 1469 1470 /* And put onto the regular freelist */ 1471 set_freepointer(s, object, page->freelist); 1472 page->freelist = object; 1473 page->inuse--; 1474 } 1475 c->page = NULL; 1476 unfreeze_slab(s, page, tail); 1477 } 1478 1479 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1480 { 1481 stat(s, CPUSLAB_FLUSH); 1482 slab_lock(c->page); 1483 deactivate_slab(s, c); 1484 } 1485 1486 /* 1487 * Flush cpu slab. 1488 * 1489 * Called from IPI handler with interrupts disabled. 1490 */ 1491 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1492 { 1493 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 1494 1495 if (likely(c && c->page)) 1496 flush_slab(s, c); 1497 } 1498 1499 static void flush_cpu_slab(void *d) 1500 { 1501 struct kmem_cache *s = d; 1502 1503 __flush_cpu_slab(s, smp_processor_id()); 1504 } 1505 1506 static void flush_all(struct kmem_cache *s) 1507 { 1508 on_each_cpu(flush_cpu_slab, s, 1); 1509 } 1510 1511 /* 1512 * Check if the objects in a per cpu structure fit numa 1513 * locality expectations. 1514 */ 1515 static inline int node_match(struct kmem_cache_cpu *c, int node) 1516 { 1517 #ifdef CONFIG_NUMA 1518 if (node != NUMA_NO_NODE && c->node != node) 1519 return 0; 1520 #endif 1521 return 1; 1522 } 1523 1524 static int count_free(struct page *page) 1525 { 1526 return page->objects - page->inuse; 1527 } 1528 1529 static unsigned long count_partial(struct kmem_cache_node *n, 1530 int (*get_count)(struct page *)) 1531 { 1532 unsigned long flags; 1533 unsigned long x = 0; 1534 struct page *page; 1535 1536 spin_lock_irqsave(&n->list_lock, flags); 1537 list_for_each_entry(page, &n->partial, lru) 1538 x += get_count(page); 1539 spin_unlock_irqrestore(&n->list_lock, flags); 1540 return x; 1541 } 1542 1543 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 1544 { 1545 #ifdef CONFIG_SLUB_DEBUG 1546 return atomic_long_read(&n->total_objects); 1547 #else 1548 return 0; 1549 #endif 1550 } 1551 1552 static noinline void 1553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 1554 { 1555 int node; 1556 1557 printk(KERN_WARNING 1558 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1559 nid, gfpflags); 1560 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 1561 "default order: %d, min order: %d\n", s->name, s->objsize, 1562 s->size, oo_order(s->oo), oo_order(s->min)); 1563 1564 if (oo_order(s->min) > get_order(s->objsize)) 1565 printk(KERN_WARNING " %s debugging increased min order, use " 1566 "slub_debug=O to disable.\n", s->name); 1567 1568 for_each_online_node(node) { 1569 struct kmem_cache_node *n = get_node(s, node); 1570 unsigned long nr_slabs; 1571 unsigned long nr_objs; 1572 unsigned long nr_free; 1573 1574 if (!n) 1575 continue; 1576 1577 nr_free = count_partial(n, count_free); 1578 nr_slabs = node_nr_slabs(n); 1579 nr_objs = node_nr_objs(n); 1580 1581 printk(KERN_WARNING 1582 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 1583 node, nr_slabs, nr_objs, nr_free); 1584 } 1585 } 1586 1587 /* 1588 * Slow path. The lockless freelist is empty or we need to perform 1589 * debugging duties. 1590 * 1591 * Interrupts are disabled. 1592 * 1593 * Processing is still very fast if new objects have been freed to the 1594 * regular freelist. In that case we simply take over the regular freelist 1595 * as the lockless freelist and zap the regular freelist. 1596 * 1597 * If that is not working then we fall back to the partial lists. We take the 1598 * first element of the freelist as the object to allocate now and move the 1599 * rest of the freelist to the lockless freelist. 1600 * 1601 * And if we were unable to get a new slab from the partial slab lists then 1602 * we need to allocate a new slab. This is the slowest path since it involves 1603 * a call to the page allocator and the setup of a new slab. 1604 */ 1605 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1606 unsigned long addr, struct kmem_cache_cpu *c) 1607 { 1608 void **object; 1609 struct page *new; 1610 1611 /* We handle __GFP_ZERO in the caller */ 1612 gfpflags &= ~__GFP_ZERO; 1613 1614 if (!c->page) 1615 goto new_slab; 1616 1617 slab_lock(c->page); 1618 if (unlikely(!node_match(c, node))) 1619 goto another_slab; 1620 1621 stat(s, ALLOC_REFILL); 1622 1623 load_freelist: 1624 object = c->page->freelist; 1625 if (unlikely(!object)) 1626 goto another_slab; 1627 if (kmem_cache_debug(s)) 1628 goto debug; 1629 1630 c->freelist = get_freepointer(s, object); 1631 c->page->inuse = c->page->objects; 1632 c->page->freelist = NULL; 1633 c->node = page_to_nid(c->page); 1634 unlock_out: 1635 slab_unlock(c->page); 1636 stat(s, ALLOC_SLOWPATH); 1637 return object; 1638 1639 another_slab: 1640 deactivate_slab(s, c); 1641 1642 new_slab: 1643 new = get_partial(s, gfpflags, node); 1644 if (new) { 1645 c->page = new; 1646 stat(s, ALLOC_FROM_PARTIAL); 1647 goto load_freelist; 1648 } 1649 1650 if (gfpflags & __GFP_WAIT) 1651 local_irq_enable(); 1652 1653 new = new_slab(s, gfpflags, node); 1654 1655 if (gfpflags & __GFP_WAIT) 1656 local_irq_disable(); 1657 1658 if (new) { 1659 c = __this_cpu_ptr(s->cpu_slab); 1660 stat(s, ALLOC_SLAB); 1661 if (c->page) 1662 flush_slab(s, c); 1663 slab_lock(new); 1664 __SetPageSlubFrozen(new); 1665 c->page = new; 1666 goto load_freelist; 1667 } 1668 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 1669 slab_out_of_memory(s, gfpflags, node); 1670 return NULL; 1671 debug: 1672 if (!alloc_debug_processing(s, c->page, object, addr)) 1673 goto another_slab; 1674 1675 c->page->inuse++; 1676 c->page->freelist = get_freepointer(s, object); 1677 c->node = -1; 1678 goto unlock_out; 1679 } 1680 1681 /* 1682 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1683 * have the fastpath folded into their functions. So no function call 1684 * overhead for requests that can be satisfied on the fastpath. 1685 * 1686 * The fastpath works by first checking if the lockless freelist can be used. 1687 * If not then __slab_alloc is called for slow processing. 1688 * 1689 * Otherwise we can simply pick the next object from the lockless free list. 1690 */ 1691 static __always_inline void *slab_alloc(struct kmem_cache *s, 1692 gfp_t gfpflags, int node, unsigned long addr) 1693 { 1694 void **object; 1695 struct kmem_cache_cpu *c; 1696 unsigned long flags; 1697 1698 gfpflags &= gfp_allowed_mask; 1699 1700 lockdep_trace_alloc(gfpflags); 1701 might_sleep_if(gfpflags & __GFP_WAIT); 1702 1703 if (should_failslab(s->objsize, gfpflags, s->flags)) 1704 return NULL; 1705 1706 local_irq_save(flags); 1707 c = __this_cpu_ptr(s->cpu_slab); 1708 object = c->freelist; 1709 if (unlikely(!object || !node_match(c, node))) 1710 1711 object = __slab_alloc(s, gfpflags, node, addr, c); 1712 1713 else { 1714 c->freelist = get_freepointer(s, object); 1715 stat(s, ALLOC_FASTPATH); 1716 } 1717 local_irq_restore(flags); 1718 1719 if (unlikely(gfpflags & __GFP_ZERO) && object) 1720 memset(object, 0, s->objsize); 1721 1722 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize); 1723 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags); 1724 1725 return object; 1726 } 1727 1728 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1729 { 1730 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 1731 1732 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 1733 1734 return ret; 1735 } 1736 EXPORT_SYMBOL(kmem_cache_alloc); 1737 1738 #ifdef CONFIG_TRACING 1739 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) 1740 { 1741 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 1742 } 1743 EXPORT_SYMBOL(kmem_cache_alloc_notrace); 1744 #endif 1745 1746 #ifdef CONFIG_NUMA 1747 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1748 { 1749 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 1750 1751 trace_kmem_cache_alloc_node(_RET_IP_, ret, 1752 s->objsize, s->size, gfpflags, node); 1753 1754 return ret; 1755 } 1756 EXPORT_SYMBOL(kmem_cache_alloc_node); 1757 #endif 1758 1759 #ifdef CONFIG_TRACING 1760 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, 1761 gfp_t gfpflags, 1762 int node) 1763 { 1764 return slab_alloc(s, gfpflags, node, _RET_IP_); 1765 } 1766 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); 1767 #endif 1768 1769 /* 1770 * Slow patch handling. This may still be called frequently since objects 1771 * have a longer lifetime than the cpu slabs in most processing loads. 1772 * 1773 * So we still attempt to reduce cache line usage. Just take the slab 1774 * lock and free the item. If there is no additional partial page 1775 * handling required then we can return immediately. 1776 */ 1777 static void __slab_free(struct kmem_cache *s, struct page *page, 1778 void *x, unsigned long addr) 1779 { 1780 void *prior; 1781 void **object = (void *)x; 1782 1783 stat(s, FREE_SLOWPATH); 1784 slab_lock(page); 1785 1786 if (kmem_cache_debug(s)) 1787 goto debug; 1788 1789 checks_ok: 1790 prior = page->freelist; 1791 set_freepointer(s, object, prior); 1792 page->freelist = object; 1793 page->inuse--; 1794 1795 if (unlikely(PageSlubFrozen(page))) { 1796 stat(s, FREE_FROZEN); 1797 goto out_unlock; 1798 } 1799 1800 if (unlikely(!page->inuse)) 1801 goto slab_empty; 1802 1803 /* 1804 * Objects left in the slab. If it was not on the partial list before 1805 * then add it. 1806 */ 1807 if (unlikely(!prior)) { 1808 add_partial(get_node(s, page_to_nid(page)), page, 1); 1809 stat(s, FREE_ADD_PARTIAL); 1810 } 1811 1812 out_unlock: 1813 slab_unlock(page); 1814 return; 1815 1816 slab_empty: 1817 if (prior) { 1818 /* 1819 * Slab still on the partial list. 1820 */ 1821 remove_partial(s, page); 1822 stat(s, FREE_REMOVE_PARTIAL); 1823 } 1824 slab_unlock(page); 1825 stat(s, FREE_SLAB); 1826 discard_slab(s, page); 1827 return; 1828 1829 debug: 1830 if (!free_debug_processing(s, page, x, addr)) 1831 goto out_unlock; 1832 goto checks_ok; 1833 } 1834 1835 /* 1836 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1837 * can perform fastpath freeing without additional function calls. 1838 * 1839 * The fastpath is only possible if we are freeing to the current cpu slab 1840 * of this processor. This typically the case if we have just allocated 1841 * the item before. 1842 * 1843 * If fastpath is not possible then fall back to __slab_free where we deal 1844 * with all sorts of special processing. 1845 */ 1846 static __always_inline void slab_free(struct kmem_cache *s, 1847 struct page *page, void *x, unsigned long addr) 1848 { 1849 void **object = (void *)x; 1850 struct kmem_cache_cpu *c; 1851 unsigned long flags; 1852 1853 kmemleak_free_recursive(x, s->flags); 1854 local_irq_save(flags); 1855 c = __this_cpu_ptr(s->cpu_slab); 1856 kmemcheck_slab_free(s, object, s->objsize); 1857 debug_check_no_locks_freed(object, s->objsize); 1858 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1859 debug_check_no_obj_freed(object, s->objsize); 1860 if (likely(page == c->page && c->node >= 0)) { 1861 set_freepointer(s, object, c->freelist); 1862 c->freelist = object; 1863 stat(s, FREE_FASTPATH); 1864 } else 1865 __slab_free(s, page, x, addr); 1866 1867 local_irq_restore(flags); 1868 } 1869 1870 void kmem_cache_free(struct kmem_cache *s, void *x) 1871 { 1872 struct page *page; 1873 1874 page = virt_to_head_page(x); 1875 1876 slab_free(s, page, x, _RET_IP_); 1877 1878 trace_kmem_cache_free(_RET_IP_, x); 1879 } 1880 EXPORT_SYMBOL(kmem_cache_free); 1881 1882 /* Figure out on which slab page the object resides */ 1883 static struct page *get_object_page(const void *x) 1884 { 1885 struct page *page = virt_to_head_page(x); 1886 1887 if (!PageSlab(page)) 1888 return NULL; 1889 1890 return page; 1891 } 1892 1893 /* 1894 * Object placement in a slab is made very easy because we always start at 1895 * offset 0. If we tune the size of the object to the alignment then we can 1896 * get the required alignment by putting one properly sized object after 1897 * another. 1898 * 1899 * Notice that the allocation order determines the sizes of the per cpu 1900 * caches. Each processor has always one slab available for allocations. 1901 * Increasing the allocation order reduces the number of times that slabs 1902 * must be moved on and off the partial lists and is therefore a factor in 1903 * locking overhead. 1904 */ 1905 1906 /* 1907 * Mininum / Maximum order of slab pages. This influences locking overhead 1908 * and slab fragmentation. A higher order reduces the number of partial slabs 1909 * and increases the number of allocations possible without having to 1910 * take the list_lock. 1911 */ 1912 static int slub_min_order; 1913 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1914 static int slub_min_objects; 1915 1916 /* 1917 * Merge control. If this is set then no merging of slab caches will occur. 1918 * (Could be removed. This was introduced to pacify the merge skeptics.) 1919 */ 1920 static int slub_nomerge; 1921 1922 /* 1923 * Calculate the order of allocation given an slab object size. 1924 * 1925 * The order of allocation has significant impact on performance and other 1926 * system components. Generally order 0 allocations should be preferred since 1927 * order 0 does not cause fragmentation in the page allocator. Larger objects 1928 * be problematic to put into order 0 slabs because there may be too much 1929 * unused space left. We go to a higher order if more than 1/16th of the slab 1930 * would be wasted. 1931 * 1932 * In order to reach satisfactory performance we must ensure that a minimum 1933 * number of objects is in one slab. Otherwise we may generate too much 1934 * activity on the partial lists which requires taking the list_lock. This is 1935 * less a concern for large slabs though which are rarely used. 1936 * 1937 * slub_max_order specifies the order where we begin to stop considering the 1938 * number of objects in a slab as critical. If we reach slub_max_order then 1939 * we try to keep the page order as low as possible. So we accept more waste 1940 * of space in favor of a small page order. 1941 * 1942 * Higher order allocations also allow the placement of more objects in a 1943 * slab and thereby reduce object handling overhead. If the user has 1944 * requested a higher mininum order then we start with that one instead of 1945 * the smallest order which will fit the object. 1946 */ 1947 static inline int slab_order(int size, int min_objects, 1948 int max_order, int fract_leftover) 1949 { 1950 int order; 1951 int rem; 1952 int min_order = slub_min_order; 1953 1954 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) 1955 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 1956 1957 for (order = max(min_order, 1958 fls(min_objects * size - 1) - PAGE_SHIFT); 1959 order <= max_order; order++) { 1960 1961 unsigned long slab_size = PAGE_SIZE << order; 1962 1963 if (slab_size < min_objects * size) 1964 continue; 1965 1966 rem = slab_size % size; 1967 1968 if (rem <= slab_size / fract_leftover) 1969 break; 1970 1971 } 1972 1973 return order; 1974 } 1975 1976 static inline int calculate_order(int size) 1977 { 1978 int order; 1979 int min_objects; 1980 int fraction; 1981 int max_objects; 1982 1983 /* 1984 * Attempt to find best configuration for a slab. This 1985 * works by first attempting to generate a layout with 1986 * the best configuration and backing off gradually. 1987 * 1988 * First we reduce the acceptable waste in a slab. Then 1989 * we reduce the minimum objects required in a slab. 1990 */ 1991 min_objects = slub_min_objects; 1992 if (!min_objects) 1993 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1994 max_objects = (PAGE_SIZE << slub_max_order)/size; 1995 min_objects = min(min_objects, max_objects); 1996 1997 while (min_objects > 1) { 1998 fraction = 16; 1999 while (fraction >= 4) { 2000 order = slab_order(size, min_objects, 2001 slub_max_order, fraction); 2002 if (order <= slub_max_order) 2003 return order; 2004 fraction /= 2; 2005 } 2006 min_objects--; 2007 } 2008 2009 /* 2010 * We were unable to place multiple objects in a slab. Now 2011 * lets see if we can place a single object there. 2012 */ 2013 order = slab_order(size, 1, slub_max_order, 1); 2014 if (order <= slub_max_order) 2015 return order; 2016 2017 /* 2018 * Doh this slab cannot be placed using slub_max_order. 2019 */ 2020 order = slab_order(size, 1, MAX_ORDER, 1); 2021 if (order < MAX_ORDER) 2022 return order; 2023 return -ENOSYS; 2024 } 2025 2026 /* 2027 * Figure out what the alignment of the objects will be. 2028 */ 2029 static unsigned long calculate_alignment(unsigned long flags, 2030 unsigned long align, unsigned long size) 2031 { 2032 /* 2033 * If the user wants hardware cache aligned objects then follow that 2034 * suggestion if the object is sufficiently large. 2035 * 2036 * The hardware cache alignment cannot override the specified 2037 * alignment though. If that is greater then use it. 2038 */ 2039 if (flags & SLAB_HWCACHE_ALIGN) { 2040 unsigned long ralign = cache_line_size(); 2041 while (size <= ralign / 2) 2042 ralign /= 2; 2043 align = max(align, ralign); 2044 } 2045 2046 if (align < ARCH_SLAB_MINALIGN) 2047 align = ARCH_SLAB_MINALIGN; 2048 2049 return ALIGN(align, sizeof(void *)); 2050 } 2051 2052 static void 2053 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 2054 { 2055 n->nr_partial = 0; 2056 spin_lock_init(&n->list_lock); 2057 INIT_LIST_HEAD(&n->partial); 2058 #ifdef CONFIG_SLUB_DEBUG 2059 atomic_long_set(&n->nr_slabs, 0); 2060 atomic_long_set(&n->total_objects, 0); 2061 INIT_LIST_HEAD(&n->full); 2062 #endif 2063 } 2064 2065 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]); 2066 2067 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2068 { 2069 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches) 2070 /* 2071 * Boot time creation of the kmalloc array. Use static per cpu data 2072 * since the per cpu allocator is not available yet. 2073 */ 2074 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches); 2075 else 2076 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu); 2077 2078 if (!s->cpu_slab) 2079 return 0; 2080 2081 return 1; 2082 } 2083 2084 #ifdef CONFIG_NUMA 2085 /* 2086 * No kmalloc_node yet so do it by hand. We know that this is the first 2087 * slab on the node for this slabcache. There are no concurrent accesses 2088 * possible. 2089 * 2090 * Note that this function only works on the kmalloc_node_cache 2091 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2092 * memory on a fresh node that has no slab structures yet. 2093 */ 2094 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) 2095 { 2096 struct page *page; 2097 struct kmem_cache_node *n; 2098 unsigned long flags; 2099 2100 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2101 2102 page = new_slab(kmalloc_caches, gfpflags, node); 2103 2104 BUG_ON(!page); 2105 if (page_to_nid(page) != node) { 2106 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2107 "node %d\n", node); 2108 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2109 "in order to be able to continue\n"); 2110 } 2111 2112 n = page->freelist; 2113 BUG_ON(!n); 2114 page->freelist = get_freepointer(kmalloc_caches, n); 2115 page->inuse++; 2116 kmalloc_caches->node[node] = n; 2117 #ifdef CONFIG_SLUB_DEBUG 2118 init_object(kmalloc_caches, n, 1); 2119 init_tracking(kmalloc_caches, n); 2120 #endif 2121 init_kmem_cache_node(n, kmalloc_caches); 2122 inc_slabs_node(kmalloc_caches, node, page->objects); 2123 2124 /* 2125 * lockdep requires consistent irq usage for each lock 2126 * so even though there cannot be a race this early in 2127 * the boot sequence, we still disable irqs. 2128 */ 2129 local_irq_save(flags); 2130 add_partial(n, page, 0); 2131 local_irq_restore(flags); 2132 } 2133 2134 static void free_kmem_cache_nodes(struct kmem_cache *s) 2135 { 2136 int node; 2137 2138 for_each_node_state(node, N_NORMAL_MEMORY) { 2139 struct kmem_cache_node *n = s->node[node]; 2140 if (n) 2141 kmem_cache_free(kmalloc_caches, n); 2142 s->node[node] = NULL; 2143 } 2144 } 2145 2146 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2147 { 2148 int node; 2149 2150 for_each_node_state(node, N_NORMAL_MEMORY) { 2151 struct kmem_cache_node *n; 2152 2153 if (slab_state == DOWN) { 2154 early_kmem_cache_node_alloc(gfpflags, node); 2155 continue; 2156 } 2157 n = kmem_cache_alloc_node(kmalloc_caches, 2158 gfpflags, node); 2159 2160 if (!n) { 2161 free_kmem_cache_nodes(s); 2162 return 0; 2163 } 2164 2165 s->node[node] = n; 2166 init_kmem_cache_node(n, s); 2167 } 2168 return 1; 2169 } 2170 #else 2171 static void free_kmem_cache_nodes(struct kmem_cache *s) 2172 { 2173 } 2174 2175 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2176 { 2177 init_kmem_cache_node(&s->local_node, s); 2178 return 1; 2179 } 2180 #endif 2181 2182 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2183 { 2184 if (min < MIN_PARTIAL) 2185 min = MIN_PARTIAL; 2186 else if (min > MAX_PARTIAL) 2187 min = MAX_PARTIAL; 2188 s->min_partial = min; 2189 } 2190 2191 /* 2192 * calculate_sizes() determines the order and the distribution of data within 2193 * a slab object. 2194 */ 2195 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2196 { 2197 unsigned long flags = s->flags; 2198 unsigned long size = s->objsize; 2199 unsigned long align = s->align; 2200 int order; 2201 2202 /* 2203 * Round up object size to the next word boundary. We can only 2204 * place the free pointer at word boundaries and this determines 2205 * the possible location of the free pointer. 2206 */ 2207 size = ALIGN(size, sizeof(void *)); 2208 2209 #ifdef CONFIG_SLUB_DEBUG 2210 /* 2211 * Determine if we can poison the object itself. If the user of 2212 * the slab may touch the object after free or before allocation 2213 * then we should never poison the object itself. 2214 */ 2215 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2216 !s->ctor) 2217 s->flags |= __OBJECT_POISON; 2218 else 2219 s->flags &= ~__OBJECT_POISON; 2220 2221 2222 /* 2223 * If we are Redzoning then check if there is some space between the 2224 * end of the object and the free pointer. If not then add an 2225 * additional word to have some bytes to store Redzone information. 2226 */ 2227 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2228 size += sizeof(void *); 2229 #endif 2230 2231 /* 2232 * With that we have determined the number of bytes in actual use 2233 * by the object. This is the potential offset to the free pointer. 2234 */ 2235 s->inuse = size; 2236 2237 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2238 s->ctor)) { 2239 /* 2240 * Relocate free pointer after the object if it is not 2241 * permitted to overwrite the first word of the object on 2242 * kmem_cache_free. 2243 * 2244 * This is the case if we do RCU, have a constructor or 2245 * destructor or are poisoning the objects. 2246 */ 2247 s->offset = size; 2248 size += sizeof(void *); 2249 } 2250 2251 #ifdef CONFIG_SLUB_DEBUG 2252 if (flags & SLAB_STORE_USER) 2253 /* 2254 * Need to store information about allocs and frees after 2255 * the object. 2256 */ 2257 size += 2 * sizeof(struct track); 2258 2259 if (flags & SLAB_RED_ZONE) 2260 /* 2261 * Add some empty padding so that we can catch 2262 * overwrites from earlier objects rather than let 2263 * tracking information or the free pointer be 2264 * corrupted if a user writes before the start 2265 * of the object. 2266 */ 2267 size += sizeof(void *); 2268 #endif 2269 2270 /* 2271 * Determine the alignment based on various parameters that the 2272 * user specified and the dynamic determination of cache line size 2273 * on bootup. 2274 */ 2275 align = calculate_alignment(flags, align, s->objsize); 2276 s->align = align; 2277 2278 /* 2279 * SLUB stores one object immediately after another beginning from 2280 * offset 0. In order to align the objects we have to simply size 2281 * each object to conform to the alignment. 2282 */ 2283 size = ALIGN(size, align); 2284 s->size = size; 2285 if (forced_order >= 0) 2286 order = forced_order; 2287 else 2288 order = calculate_order(size); 2289 2290 if (order < 0) 2291 return 0; 2292 2293 s->allocflags = 0; 2294 if (order) 2295 s->allocflags |= __GFP_COMP; 2296 2297 if (s->flags & SLAB_CACHE_DMA) 2298 s->allocflags |= SLUB_DMA; 2299 2300 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2301 s->allocflags |= __GFP_RECLAIMABLE; 2302 2303 /* 2304 * Determine the number of objects per slab 2305 */ 2306 s->oo = oo_make(order, size); 2307 s->min = oo_make(get_order(size), size); 2308 if (oo_objects(s->oo) > oo_objects(s->max)) 2309 s->max = s->oo; 2310 2311 return !!oo_objects(s->oo); 2312 2313 } 2314 2315 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2316 const char *name, size_t size, 2317 size_t align, unsigned long flags, 2318 void (*ctor)(void *)) 2319 { 2320 memset(s, 0, kmem_size); 2321 s->name = name; 2322 s->ctor = ctor; 2323 s->objsize = size; 2324 s->align = align; 2325 s->flags = kmem_cache_flags(size, flags, name, ctor); 2326 2327 if (!calculate_sizes(s, -1)) 2328 goto error; 2329 if (disable_higher_order_debug) { 2330 /* 2331 * Disable debugging flags that store metadata if the min slab 2332 * order increased. 2333 */ 2334 if (get_order(s->size) > get_order(s->objsize)) { 2335 s->flags &= ~DEBUG_METADATA_FLAGS; 2336 s->offset = 0; 2337 if (!calculate_sizes(s, -1)) 2338 goto error; 2339 } 2340 } 2341 2342 /* 2343 * The larger the object size is, the more pages we want on the partial 2344 * list to avoid pounding the page allocator excessively. 2345 */ 2346 set_min_partial(s, ilog2(s->size)); 2347 s->refcount = 1; 2348 #ifdef CONFIG_NUMA 2349 s->remote_node_defrag_ratio = 1000; 2350 #endif 2351 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2352 goto error; 2353 2354 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2355 return 1; 2356 2357 free_kmem_cache_nodes(s); 2358 error: 2359 if (flags & SLAB_PANIC) 2360 panic("Cannot create slab %s size=%lu realsize=%u " 2361 "order=%u offset=%u flags=%lx\n", 2362 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2363 s->offset, flags); 2364 return 0; 2365 } 2366 2367 /* 2368 * Check if a given pointer is valid 2369 */ 2370 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2371 { 2372 struct page *page; 2373 2374 if (!kern_ptr_validate(object, s->size)) 2375 return 0; 2376 2377 page = get_object_page(object); 2378 2379 if (!page || s != page->slab) 2380 /* No slab or wrong slab */ 2381 return 0; 2382 2383 if (!check_valid_pointer(s, page, object)) 2384 return 0; 2385 2386 /* 2387 * We could also check if the object is on the slabs freelist. 2388 * But this would be too expensive and it seems that the main 2389 * purpose of kmem_ptr_valid() is to check if the object belongs 2390 * to a certain slab. 2391 */ 2392 return 1; 2393 } 2394 EXPORT_SYMBOL(kmem_ptr_validate); 2395 2396 /* 2397 * Determine the size of a slab object 2398 */ 2399 unsigned int kmem_cache_size(struct kmem_cache *s) 2400 { 2401 return s->objsize; 2402 } 2403 EXPORT_SYMBOL(kmem_cache_size); 2404 2405 const char *kmem_cache_name(struct kmem_cache *s) 2406 { 2407 return s->name; 2408 } 2409 EXPORT_SYMBOL(kmem_cache_name); 2410 2411 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2412 const char *text) 2413 { 2414 #ifdef CONFIG_SLUB_DEBUG 2415 void *addr = page_address(page); 2416 void *p; 2417 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long), 2418 GFP_ATOMIC); 2419 2420 if (!map) 2421 return; 2422 slab_err(s, page, "%s", text); 2423 slab_lock(page); 2424 for_each_free_object(p, s, page->freelist) 2425 set_bit(slab_index(p, s, addr), map); 2426 2427 for_each_object(p, s, addr, page->objects) { 2428 2429 if (!test_bit(slab_index(p, s, addr), map)) { 2430 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2431 p, p - addr); 2432 print_tracking(s, p); 2433 } 2434 } 2435 slab_unlock(page); 2436 kfree(map); 2437 #endif 2438 } 2439 2440 /* 2441 * Attempt to free all partial slabs on a node. 2442 */ 2443 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2444 { 2445 unsigned long flags; 2446 struct page *page, *h; 2447 2448 spin_lock_irqsave(&n->list_lock, flags); 2449 list_for_each_entry_safe(page, h, &n->partial, lru) { 2450 if (!page->inuse) { 2451 list_del(&page->lru); 2452 discard_slab(s, page); 2453 n->nr_partial--; 2454 } else { 2455 list_slab_objects(s, page, 2456 "Objects remaining on kmem_cache_close()"); 2457 } 2458 } 2459 spin_unlock_irqrestore(&n->list_lock, flags); 2460 } 2461 2462 /* 2463 * Release all resources used by a slab cache. 2464 */ 2465 static inline int kmem_cache_close(struct kmem_cache *s) 2466 { 2467 int node; 2468 2469 flush_all(s); 2470 free_percpu(s->cpu_slab); 2471 /* Attempt to free all objects */ 2472 for_each_node_state(node, N_NORMAL_MEMORY) { 2473 struct kmem_cache_node *n = get_node(s, node); 2474 2475 free_partial(s, n); 2476 if (n->nr_partial || slabs_node(s, node)) 2477 return 1; 2478 } 2479 free_kmem_cache_nodes(s); 2480 return 0; 2481 } 2482 2483 /* 2484 * Close a cache and release the kmem_cache structure 2485 * (must be used for caches created using kmem_cache_create) 2486 */ 2487 void kmem_cache_destroy(struct kmem_cache *s) 2488 { 2489 down_write(&slub_lock); 2490 s->refcount--; 2491 if (!s->refcount) { 2492 list_del(&s->list); 2493 if (kmem_cache_close(s)) { 2494 printk(KERN_ERR "SLUB %s: %s called for cache that " 2495 "still has objects.\n", s->name, __func__); 2496 dump_stack(); 2497 } 2498 if (s->flags & SLAB_DESTROY_BY_RCU) 2499 rcu_barrier(); 2500 sysfs_slab_remove(s); 2501 } 2502 up_write(&slub_lock); 2503 } 2504 EXPORT_SYMBOL(kmem_cache_destroy); 2505 2506 /******************************************************************** 2507 * Kmalloc subsystem 2508 *******************************************************************/ 2509 2510 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned; 2511 EXPORT_SYMBOL(kmalloc_caches); 2512 2513 static int __init setup_slub_min_order(char *str) 2514 { 2515 get_option(&str, &slub_min_order); 2516 2517 return 1; 2518 } 2519 2520 __setup("slub_min_order=", setup_slub_min_order); 2521 2522 static int __init setup_slub_max_order(char *str) 2523 { 2524 get_option(&str, &slub_max_order); 2525 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 2526 2527 return 1; 2528 } 2529 2530 __setup("slub_max_order=", setup_slub_max_order); 2531 2532 static int __init setup_slub_min_objects(char *str) 2533 { 2534 get_option(&str, &slub_min_objects); 2535 2536 return 1; 2537 } 2538 2539 __setup("slub_min_objects=", setup_slub_min_objects); 2540 2541 static int __init setup_slub_nomerge(char *str) 2542 { 2543 slub_nomerge = 1; 2544 return 1; 2545 } 2546 2547 __setup("slub_nomerge", setup_slub_nomerge); 2548 2549 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2550 const char *name, int size, gfp_t gfp_flags) 2551 { 2552 unsigned int flags = 0; 2553 2554 if (gfp_flags & SLUB_DMA) 2555 flags = SLAB_CACHE_DMA; 2556 2557 /* 2558 * This function is called with IRQs disabled during early-boot on 2559 * single CPU so there's no need to take slub_lock here. 2560 */ 2561 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2562 flags, NULL)) 2563 goto panic; 2564 2565 list_add(&s->list, &slab_caches); 2566 2567 if (sysfs_slab_add(s)) 2568 goto panic; 2569 return s; 2570 2571 panic: 2572 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2573 } 2574 2575 #ifdef CONFIG_ZONE_DMA 2576 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; 2577 2578 static void sysfs_add_func(struct work_struct *w) 2579 { 2580 struct kmem_cache *s; 2581 2582 down_write(&slub_lock); 2583 list_for_each_entry(s, &slab_caches, list) { 2584 if (s->flags & __SYSFS_ADD_DEFERRED) { 2585 s->flags &= ~__SYSFS_ADD_DEFERRED; 2586 sysfs_slab_add(s); 2587 } 2588 } 2589 up_write(&slub_lock); 2590 } 2591 2592 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2593 2594 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2595 { 2596 struct kmem_cache *s; 2597 char *text; 2598 size_t realsize; 2599 unsigned long slabflags; 2600 int i; 2601 2602 s = kmalloc_caches_dma[index]; 2603 if (s) 2604 return s; 2605 2606 /* Dynamically create dma cache */ 2607 if (flags & __GFP_WAIT) 2608 down_write(&slub_lock); 2609 else { 2610 if (!down_write_trylock(&slub_lock)) 2611 goto out; 2612 } 2613 2614 if (kmalloc_caches_dma[index]) 2615 goto unlock_out; 2616 2617 realsize = kmalloc_caches[index].objsize; 2618 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2619 (unsigned int)realsize); 2620 2621 s = NULL; 2622 for (i = 0; i < KMALLOC_CACHES; i++) 2623 if (!kmalloc_caches[i].size) 2624 break; 2625 2626 BUG_ON(i >= KMALLOC_CACHES); 2627 s = kmalloc_caches + i; 2628 2629 /* 2630 * Must defer sysfs creation to a workqueue because we don't know 2631 * what context we are called from. Before sysfs comes up, we don't 2632 * need to do anything because our sysfs initcall will start by 2633 * adding all existing slabs to sysfs. 2634 */ 2635 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK; 2636 if (slab_state >= SYSFS) 2637 slabflags |= __SYSFS_ADD_DEFERRED; 2638 2639 if (!text || !kmem_cache_open(s, flags, text, 2640 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) { 2641 s->size = 0; 2642 kfree(text); 2643 goto unlock_out; 2644 } 2645 2646 list_add(&s->list, &slab_caches); 2647 kmalloc_caches_dma[index] = s; 2648 2649 if (slab_state >= SYSFS) 2650 schedule_work(&sysfs_add_work); 2651 2652 unlock_out: 2653 up_write(&slub_lock); 2654 out: 2655 return kmalloc_caches_dma[index]; 2656 } 2657 #endif 2658 2659 /* 2660 * Conversion table for small slabs sizes / 8 to the index in the 2661 * kmalloc array. This is necessary for slabs < 192 since we have non power 2662 * of two cache sizes there. The size of larger slabs can be determined using 2663 * fls. 2664 */ 2665 static s8 size_index[24] = { 2666 3, /* 8 */ 2667 4, /* 16 */ 2668 5, /* 24 */ 2669 5, /* 32 */ 2670 6, /* 40 */ 2671 6, /* 48 */ 2672 6, /* 56 */ 2673 6, /* 64 */ 2674 1, /* 72 */ 2675 1, /* 80 */ 2676 1, /* 88 */ 2677 1, /* 96 */ 2678 7, /* 104 */ 2679 7, /* 112 */ 2680 7, /* 120 */ 2681 7, /* 128 */ 2682 2, /* 136 */ 2683 2, /* 144 */ 2684 2, /* 152 */ 2685 2, /* 160 */ 2686 2, /* 168 */ 2687 2, /* 176 */ 2688 2, /* 184 */ 2689 2 /* 192 */ 2690 }; 2691 2692 static inline int size_index_elem(size_t bytes) 2693 { 2694 return (bytes - 1) / 8; 2695 } 2696 2697 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2698 { 2699 int index; 2700 2701 if (size <= 192) { 2702 if (!size) 2703 return ZERO_SIZE_PTR; 2704 2705 index = size_index[size_index_elem(size)]; 2706 } else 2707 index = fls(size - 1); 2708 2709 #ifdef CONFIG_ZONE_DMA 2710 if (unlikely((flags & SLUB_DMA))) 2711 return dma_kmalloc_cache(index, flags); 2712 2713 #endif 2714 return &kmalloc_caches[index]; 2715 } 2716 2717 void *__kmalloc(size_t size, gfp_t flags) 2718 { 2719 struct kmem_cache *s; 2720 void *ret; 2721 2722 if (unlikely(size > SLUB_MAX_SIZE)) 2723 return kmalloc_large(size, flags); 2724 2725 s = get_slab(size, flags); 2726 2727 if (unlikely(ZERO_OR_NULL_PTR(s))) 2728 return s; 2729 2730 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); 2731 2732 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 2733 2734 return ret; 2735 } 2736 EXPORT_SYMBOL(__kmalloc); 2737 2738 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2739 { 2740 struct page *page; 2741 void *ptr = NULL; 2742 2743 flags |= __GFP_COMP | __GFP_NOTRACK; 2744 page = alloc_pages_node(node, flags, get_order(size)); 2745 if (page) 2746 ptr = page_address(page); 2747 2748 kmemleak_alloc(ptr, size, 1, flags); 2749 return ptr; 2750 } 2751 2752 #ifdef CONFIG_NUMA 2753 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2754 { 2755 struct kmem_cache *s; 2756 void *ret; 2757 2758 if (unlikely(size > SLUB_MAX_SIZE)) { 2759 ret = kmalloc_large_node(size, flags, node); 2760 2761 trace_kmalloc_node(_RET_IP_, ret, 2762 size, PAGE_SIZE << get_order(size), 2763 flags, node); 2764 2765 return ret; 2766 } 2767 2768 s = get_slab(size, flags); 2769 2770 if (unlikely(ZERO_OR_NULL_PTR(s))) 2771 return s; 2772 2773 ret = slab_alloc(s, flags, node, _RET_IP_); 2774 2775 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 2776 2777 return ret; 2778 } 2779 EXPORT_SYMBOL(__kmalloc_node); 2780 #endif 2781 2782 size_t ksize(const void *object) 2783 { 2784 struct page *page; 2785 struct kmem_cache *s; 2786 2787 if (unlikely(object == ZERO_SIZE_PTR)) 2788 return 0; 2789 2790 page = virt_to_head_page(object); 2791 2792 if (unlikely(!PageSlab(page))) { 2793 WARN_ON(!PageCompound(page)); 2794 return PAGE_SIZE << compound_order(page); 2795 } 2796 s = page->slab; 2797 2798 #ifdef CONFIG_SLUB_DEBUG 2799 /* 2800 * Debugging requires use of the padding between object 2801 * and whatever may come after it. 2802 */ 2803 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2804 return s->objsize; 2805 2806 #endif 2807 /* 2808 * If we have the need to store the freelist pointer 2809 * back there or track user information then we can 2810 * only use the space before that information. 2811 */ 2812 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2813 return s->inuse; 2814 /* 2815 * Else we can use all the padding etc for the allocation 2816 */ 2817 return s->size; 2818 } 2819 EXPORT_SYMBOL(ksize); 2820 2821 void kfree(const void *x) 2822 { 2823 struct page *page; 2824 void *object = (void *)x; 2825 2826 trace_kfree(_RET_IP_, x); 2827 2828 if (unlikely(ZERO_OR_NULL_PTR(x))) 2829 return; 2830 2831 page = virt_to_head_page(x); 2832 if (unlikely(!PageSlab(page))) { 2833 BUG_ON(!PageCompound(page)); 2834 kmemleak_free(x); 2835 put_page(page); 2836 return; 2837 } 2838 slab_free(page->slab, page, object, _RET_IP_); 2839 } 2840 EXPORT_SYMBOL(kfree); 2841 2842 /* 2843 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2844 * the remaining slabs by the number of items in use. The slabs with the 2845 * most items in use come first. New allocations will then fill those up 2846 * and thus they can be removed from the partial lists. 2847 * 2848 * The slabs with the least items are placed last. This results in them 2849 * being allocated from last increasing the chance that the last objects 2850 * are freed in them. 2851 */ 2852 int kmem_cache_shrink(struct kmem_cache *s) 2853 { 2854 int node; 2855 int i; 2856 struct kmem_cache_node *n; 2857 struct page *page; 2858 struct page *t; 2859 int objects = oo_objects(s->max); 2860 struct list_head *slabs_by_inuse = 2861 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2862 unsigned long flags; 2863 2864 if (!slabs_by_inuse) 2865 return -ENOMEM; 2866 2867 flush_all(s); 2868 for_each_node_state(node, N_NORMAL_MEMORY) { 2869 n = get_node(s, node); 2870 2871 if (!n->nr_partial) 2872 continue; 2873 2874 for (i = 0; i < objects; i++) 2875 INIT_LIST_HEAD(slabs_by_inuse + i); 2876 2877 spin_lock_irqsave(&n->list_lock, flags); 2878 2879 /* 2880 * Build lists indexed by the items in use in each slab. 2881 * 2882 * Note that concurrent frees may occur while we hold the 2883 * list_lock. page->inuse here is the upper limit. 2884 */ 2885 list_for_each_entry_safe(page, t, &n->partial, lru) { 2886 if (!page->inuse && slab_trylock(page)) { 2887 /* 2888 * Must hold slab lock here because slab_free 2889 * may have freed the last object and be 2890 * waiting to release the slab. 2891 */ 2892 list_del(&page->lru); 2893 n->nr_partial--; 2894 slab_unlock(page); 2895 discard_slab(s, page); 2896 } else { 2897 list_move(&page->lru, 2898 slabs_by_inuse + page->inuse); 2899 } 2900 } 2901 2902 /* 2903 * Rebuild the partial list with the slabs filled up most 2904 * first and the least used slabs at the end. 2905 */ 2906 for (i = objects - 1; i >= 0; i--) 2907 list_splice(slabs_by_inuse + i, n->partial.prev); 2908 2909 spin_unlock_irqrestore(&n->list_lock, flags); 2910 } 2911 2912 kfree(slabs_by_inuse); 2913 return 0; 2914 } 2915 EXPORT_SYMBOL(kmem_cache_shrink); 2916 2917 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2918 static int slab_mem_going_offline_callback(void *arg) 2919 { 2920 struct kmem_cache *s; 2921 2922 down_read(&slub_lock); 2923 list_for_each_entry(s, &slab_caches, list) 2924 kmem_cache_shrink(s); 2925 up_read(&slub_lock); 2926 2927 return 0; 2928 } 2929 2930 static void slab_mem_offline_callback(void *arg) 2931 { 2932 struct kmem_cache_node *n; 2933 struct kmem_cache *s; 2934 struct memory_notify *marg = arg; 2935 int offline_node; 2936 2937 offline_node = marg->status_change_nid; 2938 2939 /* 2940 * If the node still has available memory. we need kmem_cache_node 2941 * for it yet. 2942 */ 2943 if (offline_node < 0) 2944 return; 2945 2946 down_read(&slub_lock); 2947 list_for_each_entry(s, &slab_caches, list) { 2948 n = get_node(s, offline_node); 2949 if (n) { 2950 /* 2951 * if n->nr_slabs > 0, slabs still exist on the node 2952 * that is going down. We were unable to free them, 2953 * and offline_pages() function shouldn't call this 2954 * callback. So, we must fail. 2955 */ 2956 BUG_ON(slabs_node(s, offline_node)); 2957 2958 s->node[offline_node] = NULL; 2959 kmem_cache_free(kmalloc_caches, n); 2960 } 2961 } 2962 up_read(&slub_lock); 2963 } 2964 2965 static int slab_mem_going_online_callback(void *arg) 2966 { 2967 struct kmem_cache_node *n; 2968 struct kmem_cache *s; 2969 struct memory_notify *marg = arg; 2970 int nid = marg->status_change_nid; 2971 int ret = 0; 2972 2973 /* 2974 * If the node's memory is already available, then kmem_cache_node is 2975 * already created. Nothing to do. 2976 */ 2977 if (nid < 0) 2978 return 0; 2979 2980 /* 2981 * We are bringing a node online. No memory is available yet. We must 2982 * allocate a kmem_cache_node structure in order to bring the node 2983 * online. 2984 */ 2985 down_read(&slub_lock); 2986 list_for_each_entry(s, &slab_caches, list) { 2987 /* 2988 * XXX: kmem_cache_alloc_node will fallback to other nodes 2989 * since memory is not yet available from the node that 2990 * is brought up. 2991 */ 2992 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 2993 if (!n) { 2994 ret = -ENOMEM; 2995 goto out; 2996 } 2997 init_kmem_cache_node(n, s); 2998 s->node[nid] = n; 2999 } 3000 out: 3001 up_read(&slub_lock); 3002 return ret; 3003 } 3004 3005 static int slab_memory_callback(struct notifier_block *self, 3006 unsigned long action, void *arg) 3007 { 3008 int ret = 0; 3009 3010 switch (action) { 3011 case MEM_GOING_ONLINE: 3012 ret = slab_mem_going_online_callback(arg); 3013 break; 3014 case MEM_GOING_OFFLINE: 3015 ret = slab_mem_going_offline_callback(arg); 3016 break; 3017 case MEM_OFFLINE: 3018 case MEM_CANCEL_ONLINE: 3019 slab_mem_offline_callback(arg); 3020 break; 3021 case MEM_ONLINE: 3022 case MEM_CANCEL_OFFLINE: 3023 break; 3024 } 3025 if (ret) 3026 ret = notifier_from_errno(ret); 3027 else 3028 ret = NOTIFY_OK; 3029 return ret; 3030 } 3031 3032 #endif /* CONFIG_MEMORY_HOTPLUG */ 3033 3034 /******************************************************************** 3035 * Basic setup of slabs 3036 *******************************************************************/ 3037 3038 void __init kmem_cache_init(void) 3039 { 3040 int i; 3041 int caches = 0; 3042 3043 #ifdef CONFIG_NUMA 3044 /* 3045 * Must first have the slab cache available for the allocations of the 3046 * struct kmem_cache_node's. There is special bootstrap code in 3047 * kmem_cache_open for slab_state == DOWN. 3048 */ 3049 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 3050 sizeof(struct kmem_cache_node), GFP_NOWAIT); 3051 kmalloc_caches[0].refcount = -1; 3052 caches++; 3053 3054 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3055 #endif 3056 3057 /* Able to allocate the per node structures */ 3058 slab_state = PARTIAL; 3059 3060 /* Caches that are not of the two-to-the-power-of size */ 3061 if (KMALLOC_MIN_SIZE <= 32) { 3062 create_kmalloc_cache(&kmalloc_caches[1], 3063 "kmalloc-96", 96, GFP_NOWAIT); 3064 caches++; 3065 } 3066 if (KMALLOC_MIN_SIZE <= 64) { 3067 create_kmalloc_cache(&kmalloc_caches[2], 3068 "kmalloc-192", 192, GFP_NOWAIT); 3069 caches++; 3070 } 3071 3072 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3073 create_kmalloc_cache(&kmalloc_caches[i], 3074 "kmalloc", 1 << i, GFP_NOWAIT); 3075 caches++; 3076 } 3077 3078 3079 /* 3080 * Patch up the size_index table if we have strange large alignment 3081 * requirements for the kmalloc array. This is only the case for 3082 * MIPS it seems. The standard arches will not generate any code here. 3083 * 3084 * Largest permitted alignment is 256 bytes due to the way we 3085 * handle the index determination for the smaller caches. 3086 * 3087 * Make sure that nothing crazy happens if someone starts tinkering 3088 * around with ARCH_KMALLOC_MINALIGN 3089 */ 3090 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3091 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3092 3093 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3094 int elem = size_index_elem(i); 3095 if (elem >= ARRAY_SIZE(size_index)) 3096 break; 3097 size_index[elem] = KMALLOC_SHIFT_LOW; 3098 } 3099 3100 if (KMALLOC_MIN_SIZE == 64) { 3101 /* 3102 * The 96 byte size cache is not used if the alignment 3103 * is 64 byte. 3104 */ 3105 for (i = 64 + 8; i <= 96; i += 8) 3106 size_index[size_index_elem(i)] = 7; 3107 } else if (KMALLOC_MIN_SIZE == 128) { 3108 /* 3109 * The 192 byte sized cache is not used if the alignment 3110 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3111 * instead. 3112 */ 3113 for (i = 128 + 8; i <= 192; i += 8) 3114 size_index[size_index_elem(i)] = 8; 3115 } 3116 3117 slab_state = UP; 3118 3119 /* Provide the correct kmalloc names now that the caches are up */ 3120 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3121 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3122 3123 BUG_ON(!s); 3124 kmalloc_caches[i].name = s; 3125 } 3126 3127 #ifdef CONFIG_SMP 3128 register_cpu_notifier(&slab_notifier); 3129 #endif 3130 #ifdef CONFIG_NUMA 3131 kmem_size = offsetof(struct kmem_cache, node) + 3132 nr_node_ids * sizeof(struct kmem_cache_node *); 3133 #else 3134 kmem_size = sizeof(struct kmem_cache); 3135 #endif 3136 3137 printk(KERN_INFO 3138 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3139 " CPUs=%d, Nodes=%d\n", 3140 caches, cache_line_size(), 3141 slub_min_order, slub_max_order, slub_min_objects, 3142 nr_cpu_ids, nr_node_ids); 3143 } 3144 3145 void __init kmem_cache_init_late(void) 3146 { 3147 } 3148 3149 /* 3150 * Find a mergeable slab cache 3151 */ 3152 static int slab_unmergeable(struct kmem_cache *s) 3153 { 3154 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3155 return 1; 3156 3157 if (s->ctor) 3158 return 1; 3159 3160 /* 3161 * We may have set a slab to be unmergeable during bootstrap. 3162 */ 3163 if (s->refcount < 0) 3164 return 1; 3165 3166 return 0; 3167 } 3168 3169 static struct kmem_cache *find_mergeable(size_t size, 3170 size_t align, unsigned long flags, const char *name, 3171 void (*ctor)(void *)) 3172 { 3173 struct kmem_cache *s; 3174 3175 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3176 return NULL; 3177 3178 if (ctor) 3179 return NULL; 3180 3181 size = ALIGN(size, sizeof(void *)); 3182 align = calculate_alignment(flags, align, size); 3183 size = ALIGN(size, align); 3184 flags = kmem_cache_flags(size, flags, name, NULL); 3185 3186 list_for_each_entry(s, &slab_caches, list) { 3187 if (slab_unmergeable(s)) 3188 continue; 3189 3190 if (size > s->size) 3191 continue; 3192 3193 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3194 continue; 3195 /* 3196 * Check if alignment is compatible. 3197 * Courtesy of Adrian Drzewiecki 3198 */ 3199 if ((s->size & ~(align - 1)) != s->size) 3200 continue; 3201 3202 if (s->size - size >= sizeof(void *)) 3203 continue; 3204 3205 return s; 3206 } 3207 return NULL; 3208 } 3209 3210 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3211 size_t align, unsigned long flags, void (*ctor)(void *)) 3212 { 3213 struct kmem_cache *s; 3214 3215 if (WARN_ON(!name)) 3216 return NULL; 3217 3218 down_write(&slub_lock); 3219 s = find_mergeable(size, align, flags, name, ctor); 3220 if (s) { 3221 s->refcount++; 3222 /* 3223 * Adjust the object sizes so that we clear 3224 * the complete object on kzalloc. 3225 */ 3226 s->objsize = max(s->objsize, (int)size); 3227 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3228 3229 if (sysfs_slab_alias(s, name)) { 3230 s->refcount--; 3231 goto err; 3232 } 3233 up_write(&slub_lock); 3234 return s; 3235 } 3236 3237 s = kmalloc(kmem_size, GFP_KERNEL); 3238 if (s) { 3239 if (kmem_cache_open(s, GFP_KERNEL, name, 3240 size, align, flags, ctor)) { 3241 list_add(&s->list, &slab_caches); 3242 if (sysfs_slab_add(s)) { 3243 list_del(&s->list); 3244 kfree(s); 3245 goto err; 3246 } 3247 up_write(&slub_lock); 3248 return s; 3249 } 3250 kfree(s); 3251 } 3252 up_write(&slub_lock); 3253 3254 err: 3255 if (flags & SLAB_PANIC) 3256 panic("Cannot create slabcache %s\n", name); 3257 else 3258 s = NULL; 3259 return s; 3260 } 3261 EXPORT_SYMBOL(kmem_cache_create); 3262 3263 #ifdef CONFIG_SMP 3264 /* 3265 * Use the cpu notifier to insure that the cpu slabs are flushed when 3266 * necessary. 3267 */ 3268 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3269 unsigned long action, void *hcpu) 3270 { 3271 long cpu = (long)hcpu; 3272 struct kmem_cache *s; 3273 unsigned long flags; 3274 3275 switch (action) { 3276 case CPU_UP_CANCELED: 3277 case CPU_UP_CANCELED_FROZEN: 3278 case CPU_DEAD: 3279 case CPU_DEAD_FROZEN: 3280 down_read(&slub_lock); 3281 list_for_each_entry(s, &slab_caches, list) { 3282 local_irq_save(flags); 3283 __flush_cpu_slab(s, cpu); 3284 local_irq_restore(flags); 3285 } 3286 up_read(&slub_lock); 3287 break; 3288 default: 3289 break; 3290 } 3291 return NOTIFY_OK; 3292 } 3293 3294 static struct notifier_block __cpuinitdata slab_notifier = { 3295 .notifier_call = slab_cpuup_callback 3296 }; 3297 3298 #endif 3299 3300 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3301 { 3302 struct kmem_cache *s; 3303 void *ret; 3304 3305 if (unlikely(size > SLUB_MAX_SIZE)) 3306 return kmalloc_large(size, gfpflags); 3307 3308 s = get_slab(size, gfpflags); 3309 3310 if (unlikely(ZERO_OR_NULL_PTR(s))) 3311 return s; 3312 3313 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); 3314 3315 /* Honor the call site pointer we recieved. */ 3316 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3317 3318 return ret; 3319 } 3320 3321 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3322 int node, unsigned long caller) 3323 { 3324 struct kmem_cache *s; 3325 void *ret; 3326 3327 if (unlikely(size > SLUB_MAX_SIZE)) { 3328 ret = kmalloc_large_node(size, gfpflags, node); 3329 3330 trace_kmalloc_node(caller, ret, 3331 size, PAGE_SIZE << get_order(size), 3332 gfpflags, node); 3333 3334 return ret; 3335 } 3336 3337 s = get_slab(size, gfpflags); 3338 3339 if (unlikely(ZERO_OR_NULL_PTR(s))) 3340 return s; 3341 3342 ret = slab_alloc(s, gfpflags, node, caller); 3343 3344 /* Honor the call site pointer we recieved. */ 3345 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3346 3347 return ret; 3348 } 3349 3350 #ifdef CONFIG_SLUB_DEBUG 3351 static int count_inuse(struct page *page) 3352 { 3353 return page->inuse; 3354 } 3355 3356 static int count_total(struct page *page) 3357 { 3358 return page->objects; 3359 } 3360 3361 static int validate_slab(struct kmem_cache *s, struct page *page, 3362 unsigned long *map) 3363 { 3364 void *p; 3365 void *addr = page_address(page); 3366 3367 if (!check_slab(s, page) || 3368 !on_freelist(s, page, NULL)) 3369 return 0; 3370 3371 /* Now we know that a valid freelist exists */ 3372 bitmap_zero(map, page->objects); 3373 3374 for_each_free_object(p, s, page->freelist) { 3375 set_bit(slab_index(p, s, addr), map); 3376 if (!check_object(s, page, p, 0)) 3377 return 0; 3378 } 3379 3380 for_each_object(p, s, addr, page->objects) 3381 if (!test_bit(slab_index(p, s, addr), map)) 3382 if (!check_object(s, page, p, 1)) 3383 return 0; 3384 return 1; 3385 } 3386 3387 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3388 unsigned long *map) 3389 { 3390 if (slab_trylock(page)) { 3391 validate_slab(s, page, map); 3392 slab_unlock(page); 3393 } else 3394 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3395 s->name, page); 3396 } 3397 3398 static int validate_slab_node(struct kmem_cache *s, 3399 struct kmem_cache_node *n, unsigned long *map) 3400 { 3401 unsigned long count = 0; 3402 struct page *page; 3403 unsigned long flags; 3404 3405 spin_lock_irqsave(&n->list_lock, flags); 3406 3407 list_for_each_entry(page, &n->partial, lru) { 3408 validate_slab_slab(s, page, map); 3409 count++; 3410 } 3411 if (count != n->nr_partial) 3412 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3413 "counter=%ld\n", s->name, count, n->nr_partial); 3414 3415 if (!(s->flags & SLAB_STORE_USER)) 3416 goto out; 3417 3418 list_for_each_entry(page, &n->full, lru) { 3419 validate_slab_slab(s, page, map); 3420 count++; 3421 } 3422 if (count != atomic_long_read(&n->nr_slabs)) 3423 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3424 "counter=%ld\n", s->name, count, 3425 atomic_long_read(&n->nr_slabs)); 3426 3427 out: 3428 spin_unlock_irqrestore(&n->list_lock, flags); 3429 return count; 3430 } 3431 3432 static long validate_slab_cache(struct kmem_cache *s) 3433 { 3434 int node; 3435 unsigned long count = 0; 3436 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3437 sizeof(unsigned long), GFP_KERNEL); 3438 3439 if (!map) 3440 return -ENOMEM; 3441 3442 flush_all(s); 3443 for_each_node_state(node, N_NORMAL_MEMORY) { 3444 struct kmem_cache_node *n = get_node(s, node); 3445 3446 count += validate_slab_node(s, n, map); 3447 } 3448 kfree(map); 3449 return count; 3450 } 3451 3452 #ifdef SLUB_RESILIENCY_TEST 3453 static void resiliency_test(void) 3454 { 3455 u8 *p; 3456 3457 printk(KERN_ERR "SLUB resiliency testing\n"); 3458 printk(KERN_ERR "-----------------------\n"); 3459 printk(KERN_ERR "A. Corruption after allocation\n"); 3460 3461 p = kzalloc(16, GFP_KERNEL); 3462 p[16] = 0x12; 3463 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3464 " 0x12->0x%p\n\n", p + 16); 3465 3466 validate_slab_cache(kmalloc_caches + 4); 3467 3468 /* Hmmm... The next two are dangerous */ 3469 p = kzalloc(32, GFP_KERNEL); 3470 p[32 + sizeof(void *)] = 0x34; 3471 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3472 " 0x34 -> -0x%p\n", p); 3473 printk(KERN_ERR 3474 "If allocated object is overwritten then not detectable\n\n"); 3475 3476 validate_slab_cache(kmalloc_caches + 5); 3477 p = kzalloc(64, GFP_KERNEL); 3478 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3479 *p = 0x56; 3480 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3481 p); 3482 printk(KERN_ERR 3483 "If allocated object is overwritten then not detectable\n\n"); 3484 validate_slab_cache(kmalloc_caches + 6); 3485 3486 printk(KERN_ERR "\nB. Corruption after free\n"); 3487 p = kzalloc(128, GFP_KERNEL); 3488 kfree(p); 3489 *p = 0x78; 3490 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3491 validate_slab_cache(kmalloc_caches + 7); 3492 3493 p = kzalloc(256, GFP_KERNEL); 3494 kfree(p); 3495 p[50] = 0x9a; 3496 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3497 p); 3498 validate_slab_cache(kmalloc_caches + 8); 3499 3500 p = kzalloc(512, GFP_KERNEL); 3501 kfree(p); 3502 p[512] = 0xab; 3503 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3504 validate_slab_cache(kmalloc_caches + 9); 3505 } 3506 #else 3507 static void resiliency_test(void) {}; 3508 #endif 3509 3510 /* 3511 * Generate lists of code addresses where slabcache objects are allocated 3512 * and freed. 3513 */ 3514 3515 struct location { 3516 unsigned long count; 3517 unsigned long addr; 3518 long long sum_time; 3519 long min_time; 3520 long max_time; 3521 long min_pid; 3522 long max_pid; 3523 DECLARE_BITMAP(cpus, NR_CPUS); 3524 nodemask_t nodes; 3525 }; 3526 3527 struct loc_track { 3528 unsigned long max; 3529 unsigned long count; 3530 struct location *loc; 3531 }; 3532 3533 static void free_loc_track(struct loc_track *t) 3534 { 3535 if (t->max) 3536 free_pages((unsigned long)t->loc, 3537 get_order(sizeof(struct location) * t->max)); 3538 } 3539 3540 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3541 { 3542 struct location *l; 3543 int order; 3544 3545 order = get_order(sizeof(struct location) * max); 3546 3547 l = (void *)__get_free_pages(flags, order); 3548 if (!l) 3549 return 0; 3550 3551 if (t->count) { 3552 memcpy(l, t->loc, sizeof(struct location) * t->count); 3553 free_loc_track(t); 3554 } 3555 t->max = max; 3556 t->loc = l; 3557 return 1; 3558 } 3559 3560 static int add_location(struct loc_track *t, struct kmem_cache *s, 3561 const struct track *track) 3562 { 3563 long start, end, pos; 3564 struct location *l; 3565 unsigned long caddr; 3566 unsigned long age = jiffies - track->when; 3567 3568 start = -1; 3569 end = t->count; 3570 3571 for ( ; ; ) { 3572 pos = start + (end - start + 1) / 2; 3573 3574 /* 3575 * There is nothing at "end". If we end up there 3576 * we need to add something to before end. 3577 */ 3578 if (pos == end) 3579 break; 3580 3581 caddr = t->loc[pos].addr; 3582 if (track->addr == caddr) { 3583 3584 l = &t->loc[pos]; 3585 l->count++; 3586 if (track->when) { 3587 l->sum_time += age; 3588 if (age < l->min_time) 3589 l->min_time = age; 3590 if (age > l->max_time) 3591 l->max_time = age; 3592 3593 if (track->pid < l->min_pid) 3594 l->min_pid = track->pid; 3595 if (track->pid > l->max_pid) 3596 l->max_pid = track->pid; 3597 3598 cpumask_set_cpu(track->cpu, 3599 to_cpumask(l->cpus)); 3600 } 3601 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3602 return 1; 3603 } 3604 3605 if (track->addr < caddr) 3606 end = pos; 3607 else 3608 start = pos; 3609 } 3610 3611 /* 3612 * Not found. Insert new tracking element. 3613 */ 3614 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3615 return 0; 3616 3617 l = t->loc + pos; 3618 if (pos < t->count) 3619 memmove(l + 1, l, 3620 (t->count - pos) * sizeof(struct location)); 3621 t->count++; 3622 l->count = 1; 3623 l->addr = track->addr; 3624 l->sum_time = age; 3625 l->min_time = age; 3626 l->max_time = age; 3627 l->min_pid = track->pid; 3628 l->max_pid = track->pid; 3629 cpumask_clear(to_cpumask(l->cpus)); 3630 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3631 nodes_clear(l->nodes); 3632 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3633 return 1; 3634 } 3635 3636 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3637 struct page *page, enum track_item alloc, 3638 long *map) 3639 { 3640 void *addr = page_address(page); 3641 void *p; 3642 3643 bitmap_zero(map, page->objects); 3644 for_each_free_object(p, s, page->freelist) 3645 set_bit(slab_index(p, s, addr), map); 3646 3647 for_each_object(p, s, addr, page->objects) 3648 if (!test_bit(slab_index(p, s, addr), map)) 3649 add_location(t, s, get_track(s, p, alloc)); 3650 } 3651 3652 static int list_locations(struct kmem_cache *s, char *buf, 3653 enum track_item alloc) 3654 { 3655 int len = 0; 3656 unsigned long i; 3657 struct loc_track t = { 0, 0, NULL }; 3658 int node; 3659 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3660 sizeof(unsigned long), GFP_KERNEL); 3661 3662 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3663 GFP_TEMPORARY)) { 3664 kfree(map); 3665 return sprintf(buf, "Out of memory\n"); 3666 } 3667 /* Push back cpu slabs */ 3668 flush_all(s); 3669 3670 for_each_node_state(node, N_NORMAL_MEMORY) { 3671 struct kmem_cache_node *n = get_node(s, node); 3672 unsigned long flags; 3673 struct page *page; 3674 3675 if (!atomic_long_read(&n->nr_slabs)) 3676 continue; 3677 3678 spin_lock_irqsave(&n->list_lock, flags); 3679 list_for_each_entry(page, &n->partial, lru) 3680 process_slab(&t, s, page, alloc, map); 3681 list_for_each_entry(page, &n->full, lru) 3682 process_slab(&t, s, page, alloc, map); 3683 spin_unlock_irqrestore(&n->list_lock, flags); 3684 } 3685 3686 for (i = 0; i < t.count; i++) { 3687 struct location *l = &t.loc[i]; 3688 3689 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3690 break; 3691 len += sprintf(buf + len, "%7ld ", l->count); 3692 3693 if (l->addr) 3694 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3695 else 3696 len += sprintf(buf + len, "<not-available>"); 3697 3698 if (l->sum_time != l->min_time) { 3699 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3700 l->min_time, 3701 (long)div_u64(l->sum_time, l->count), 3702 l->max_time); 3703 } else 3704 len += sprintf(buf + len, " age=%ld", 3705 l->min_time); 3706 3707 if (l->min_pid != l->max_pid) 3708 len += sprintf(buf + len, " pid=%ld-%ld", 3709 l->min_pid, l->max_pid); 3710 else 3711 len += sprintf(buf + len, " pid=%ld", 3712 l->min_pid); 3713 3714 if (num_online_cpus() > 1 && 3715 !cpumask_empty(to_cpumask(l->cpus)) && 3716 len < PAGE_SIZE - 60) { 3717 len += sprintf(buf + len, " cpus="); 3718 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3719 to_cpumask(l->cpus)); 3720 } 3721 3722 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 3723 len < PAGE_SIZE - 60) { 3724 len += sprintf(buf + len, " nodes="); 3725 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3726 l->nodes); 3727 } 3728 3729 len += sprintf(buf + len, "\n"); 3730 } 3731 3732 free_loc_track(&t); 3733 kfree(map); 3734 if (!t.count) 3735 len += sprintf(buf, "No data\n"); 3736 return len; 3737 } 3738 3739 enum slab_stat_type { 3740 SL_ALL, /* All slabs */ 3741 SL_PARTIAL, /* Only partially allocated slabs */ 3742 SL_CPU, /* Only slabs used for cpu caches */ 3743 SL_OBJECTS, /* Determine allocated objects not slabs */ 3744 SL_TOTAL /* Determine object capacity not slabs */ 3745 }; 3746 3747 #define SO_ALL (1 << SL_ALL) 3748 #define SO_PARTIAL (1 << SL_PARTIAL) 3749 #define SO_CPU (1 << SL_CPU) 3750 #define SO_OBJECTS (1 << SL_OBJECTS) 3751 #define SO_TOTAL (1 << SL_TOTAL) 3752 3753 static ssize_t show_slab_objects(struct kmem_cache *s, 3754 char *buf, unsigned long flags) 3755 { 3756 unsigned long total = 0; 3757 int node; 3758 int x; 3759 unsigned long *nodes; 3760 unsigned long *per_cpu; 3761 3762 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3763 if (!nodes) 3764 return -ENOMEM; 3765 per_cpu = nodes + nr_node_ids; 3766 3767 if (flags & SO_CPU) { 3768 int cpu; 3769 3770 for_each_possible_cpu(cpu) { 3771 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3772 3773 if (!c || c->node < 0) 3774 continue; 3775 3776 if (c->page) { 3777 if (flags & SO_TOTAL) 3778 x = c->page->objects; 3779 else if (flags & SO_OBJECTS) 3780 x = c->page->inuse; 3781 else 3782 x = 1; 3783 3784 total += x; 3785 nodes[c->node] += x; 3786 } 3787 per_cpu[c->node]++; 3788 } 3789 } 3790 3791 if (flags & SO_ALL) { 3792 for_each_node_state(node, N_NORMAL_MEMORY) { 3793 struct kmem_cache_node *n = get_node(s, node); 3794 3795 if (flags & SO_TOTAL) 3796 x = atomic_long_read(&n->total_objects); 3797 else if (flags & SO_OBJECTS) 3798 x = atomic_long_read(&n->total_objects) - 3799 count_partial(n, count_free); 3800 3801 else 3802 x = atomic_long_read(&n->nr_slabs); 3803 total += x; 3804 nodes[node] += x; 3805 } 3806 3807 } else if (flags & SO_PARTIAL) { 3808 for_each_node_state(node, N_NORMAL_MEMORY) { 3809 struct kmem_cache_node *n = get_node(s, node); 3810 3811 if (flags & SO_TOTAL) 3812 x = count_partial(n, count_total); 3813 else if (flags & SO_OBJECTS) 3814 x = count_partial(n, count_inuse); 3815 else 3816 x = n->nr_partial; 3817 total += x; 3818 nodes[node] += x; 3819 } 3820 } 3821 x = sprintf(buf, "%lu", total); 3822 #ifdef CONFIG_NUMA 3823 for_each_node_state(node, N_NORMAL_MEMORY) 3824 if (nodes[node]) 3825 x += sprintf(buf + x, " N%d=%lu", 3826 node, nodes[node]); 3827 #endif 3828 kfree(nodes); 3829 return x + sprintf(buf + x, "\n"); 3830 } 3831 3832 static int any_slab_objects(struct kmem_cache *s) 3833 { 3834 int node; 3835 3836 for_each_online_node(node) { 3837 struct kmem_cache_node *n = get_node(s, node); 3838 3839 if (!n) 3840 continue; 3841 3842 if (atomic_long_read(&n->total_objects)) 3843 return 1; 3844 } 3845 return 0; 3846 } 3847 3848 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3849 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3850 3851 struct slab_attribute { 3852 struct attribute attr; 3853 ssize_t (*show)(struct kmem_cache *s, char *buf); 3854 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3855 }; 3856 3857 #define SLAB_ATTR_RO(_name) \ 3858 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3859 3860 #define SLAB_ATTR(_name) \ 3861 static struct slab_attribute _name##_attr = \ 3862 __ATTR(_name, 0644, _name##_show, _name##_store) 3863 3864 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3865 { 3866 return sprintf(buf, "%d\n", s->size); 3867 } 3868 SLAB_ATTR_RO(slab_size); 3869 3870 static ssize_t align_show(struct kmem_cache *s, char *buf) 3871 { 3872 return sprintf(buf, "%d\n", s->align); 3873 } 3874 SLAB_ATTR_RO(align); 3875 3876 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3877 { 3878 return sprintf(buf, "%d\n", s->objsize); 3879 } 3880 SLAB_ATTR_RO(object_size); 3881 3882 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3883 { 3884 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3885 } 3886 SLAB_ATTR_RO(objs_per_slab); 3887 3888 static ssize_t order_store(struct kmem_cache *s, 3889 const char *buf, size_t length) 3890 { 3891 unsigned long order; 3892 int err; 3893 3894 err = strict_strtoul(buf, 10, &order); 3895 if (err) 3896 return err; 3897 3898 if (order > slub_max_order || order < slub_min_order) 3899 return -EINVAL; 3900 3901 calculate_sizes(s, order); 3902 return length; 3903 } 3904 3905 static ssize_t order_show(struct kmem_cache *s, char *buf) 3906 { 3907 return sprintf(buf, "%d\n", oo_order(s->oo)); 3908 } 3909 SLAB_ATTR(order); 3910 3911 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 3912 { 3913 return sprintf(buf, "%lu\n", s->min_partial); 3914 } 3915 3916 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 3917 size_t length) 3918 { 3919 unsigned long min; 3920 int err; 3921 3922 err = strict_strtoul(buf, 10, &min); 3923 if (err) 3924 return err; 3925 3926 set_min_partial(s, min); 3927 return length; 3928 } 3929 SLAB_ATTR(min_partial); 3930 3931 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3932 { 3933 if (s->ctor) { 3934 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3935 3936 return n + sprintf(buf + n, "\n"); 3937 } 3938 return 0; 3939 } 3940 SLAB_ATTR_RO(ctor); 3941 3942 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3943 { 3944 return sprintf(buf, "%d\n", s->refcount - 1); 3945 } 3946 SLAB_ATTR_RO(aliases); 3947 3948 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3949 { 3950 return show_slab_objects(s, buf, SO_ALL); 3951 } 3952 SLAB_ATTR_RO(slabs); 3953 3954 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3955 { 3956 return show_slab_objects(s, buf, SO_PARTIAL); 3957 } 3958 SLAB_ATTR_RO(partial); 3959 3960 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3961 { 3962 return show_slab_objects(s, buf, SO_CPU); 3963 } 3964 SLAB_ATTR_RO(cpu_slabs); 3965 3966 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3967 { 3968 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 3969 } 3970 SLAB_ATTR_RO(objects); 3971 3972 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 3973 { 3974 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 3975 } 3976 SLAB_ATTR_RO(objects_partial); 3977 3978 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 3979 { 3980 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 3981 } 3982 SLAB_ATTR_RO(total_objects); 3983 3984 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3985 { 3986 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3987 } 3988 3989 static ssize_t sanity_checks_store(struct kmem_cache *s, 3990 const char *buf, size_t length) 3991 { 3992 s->flags &= ~SLAB_DEBUG_FREE; 3993 if (buf[0] == '1') 3994 s->flags |= SLAB_DEBUG_FREE; 3995 return length; 3996 } 3997 SLAB_ATTR(sanity_checks); 3998 3999 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4000 { 4001 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4002 } 4003 4004 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4005 size_t length) 4006 { 4007 s->flags &= ~SLAB_TRACE; 4008 if (buf[0] == '1') 4009 s->flags |= SLAB_TRACE; 4010 return length; 4011 } 4012 SLAB_ATTR(trace); 4013 4014 #ifdef CONFIG_FAILSLAB 4015 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4016 { 4017 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4018 } 4019 4020 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4021 size_t length) 4022 { 4023 s->flags &= ~SLAB_FAILSLAB; 4024 if (buf[0] == '1') 4025 s->flags |= SLAB_FAILSLAB; 4026 return length; 4027 } 4028 SLAB_ATTR(failslab); 4029 #endif 4030 4031 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4032 { 4033 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4034 } 4035 4036 static ssize_t reclaim_account_store(struct kmem_cache *s, 4037 const char *buf, size_t length) 4038 { 4039 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4040 if (buf[0] == '1') 4041 s->flags |= SLAB_RECLAIM_ACCOUNT; 4042 return length; 4043 } 4044 SLAB_ATTR(reclaim_account); 4045 4046 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4047 { 4048 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4049 } 4050 SLAB_ATTR_RO(hwcache_align); 4051 4052 #ifdef CONFIG_ZONE_DMA 4053 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4054 { 4055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4056 } 4057 SLAB_ATTR_RO(cache_dma); 4058 #endif 4059 4060 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4061 { 4062 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4063 } 4064 SLAB_ATTR_RO(destroy_by_rcu); 4065 4066 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4067 { 4068 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4069 } 4070 4071 static ssize_t red_zone_store(struct kmem_cache *s, 4072 const char *buf, size_t length) 4073 { 4074 if (any_slab_objects(s)) 4075 return -EBUSY; 4076 4077 s->flags &= ~SLAB_RED_ZONE; 4078 if (buf[0] == '1') 4079 s->flags |= SLAB_RED_ZONE; 4080 calculate_sizes(s, -1); 4081 return length; 4082 } 4083 SLAB_ATTR(red_zone); 4084 4085 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4086 { 4087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4088 } 4089 4090 static ssize_t poison_store(struct kmem_cache *s, 4091 const char *buf, size_t length) 4092 { 4093 if (any_slab_objects(s)) 4094 return -EBUSY; 4095 4096 s->flags &= ~SLAB_POISON; 4097 if (buf[0] == '1') 4098 s->flags |= SLAB_POISON; 4099 calculate_sizes(s, -1); 4100 return length; 4101 } 4102 SLAB_ATTR(poison); 4103 4104 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4105 { 4106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4107 } 4108 4109 static ssize_t store_user_store(struct kmem_cache *s, 4110 const char *buf, size_t length) 4111 { 4112 if (any_slab_objects(s)) 4113 return -EBUSY; 4114 4115 s->flags &= ~SLAB_STORE_USER; 4116 if (buf[0] == '1') 4117 s->flags |= SLAB_STORE_USER; 4118 calculate_sizes(s, -1); 4119 return length; 4120 } 4121 SLAB_ATTR(store_user); 4122 4123 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4124 { 4125 return 0; 4126 } 4127 4128 static ssize_t validate_store(struct kmem_cache *s, 4129 const char *buf, size_t length) 4130 { 4131 int ret = -EINVAL; 4132 4133 if (buf[0] == '1') { 4134 ret = validate_slab_cache(s); 4135 if (ret >= 0) 4136 ret = length; 4137 } 4138 return ret; 4139 } 4140 SLAB_ATTR(validate); 4141 4142 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4143 { 4144 return 0; 4145 } 4146 4147 static ssize_t shrink_store(struct kmem_cache *s, 4148 const char *buf, size_t length) 4149 { 4150 if (buf[0] == '1') { 4151 int rc = kmem_cache_shrink(s); 4152 4153 if (rc) 4154 return rc; 4155 } else 4156 return -EINVAL; 4157 return length; 4158 } 4159 SLAB_ATTR(shrink); 4160 4161 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4162 { 4163 if (!(s->flags & SLAB_STORE_USER)) 4164 return -ENOSYS; 4165 return list_locations(s, buf, TRACK_ALLOC); 4166 } 4167 SLAB_ATTR_RO(alloc_calls); 4168 4169 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4170 { 4171 if (!(s->flags & SLAB_STORE_USER)) 4172 return -ENOSYS; 4173 return list_locations(s, buf, TRACK_FREE); 4174 } 4175 SLAB_ATTR_RO(free_calls); 4176 4177 #ifdef CONFIG_NUMA 4178 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4179 { 4180 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4181 } 4182 4183 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4184 const char *buf, size_t length) 4185 { 4186 unsigned long ratio; 4187 int err; 4188 4189 err = strict_strtoul(buf, 10, &ratio); 4190 if (err) 4191 return err; 4192 4193 if (ratio <= 100) 4194 s->remote_node_defrag_ratio = ratio * 10; 4195 4196 return length; 4197 } 4198 SLAB_ATTR(remote_node_defrag_ratio); 4199 #endif 4200 4201 #ifdef CONFIG_SLUB_STATS 4202 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4203 { 4204 unsigned long sum = 0; 4205 int cpu; 4206 int len; 4207 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4208 4209 if (!data) 4210 return -ENOMEM; 4211 4212 for_each_online_cpu(cpu) { 4213 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4214 4215 data[cpu] = x; 4216 sum += x; 4217 } 4218 4219 len = sprintf(buf, "%lu", sum); 4220 4221 #ifdef CONFIG_SMP 4222 for_each_online_cpu(cpu) { 4223 if (data[cpu] && len < PAGE_SIZE - 20) 4224 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4225 } 4226 #endif 4227 kfree(data); 4228 return len + sprintf(buf + len, "\n"); 4229 } 4230 4231 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4232 { 4233 int cpu; 4234 4235 for_each_online_cpu(cpu) 4236 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4237 } 4238 4239 #define STAT_ATTR(si, text) \ 4240 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4241 { \ 4242 return show_stat(s, buf, si); \ 4243 } \ 4244 static ssize_t text##_store(struct kmem_cache *s, \ 4245 const char *buf, size_t length) \ 4246 { \ 4247 if (buf[0] != '0') \ 4248 return -EINVAL; \ 4249 clear_stat(s, si); \ 4250 return length; \ 4251 } \ 4252 SLAB_ATTR(text); \ 4253 4254 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4255 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4256 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4257 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4258 STAT_ATTR(FREE_FROZEN, free_frozen); 4259 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4260 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4261 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4262 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4263 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4264 STAT_ATTR(FREE_SLAB, free_slab); 4265 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4266 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4267 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4268 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4269 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4270 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4271 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4272 #endif 4273 4274 static struct attribute *slab_attrs[] = { 4275 &slab_size_attr.attr, 4276 &object_size_attr.attr, 4277 &objs_per_slab_attr.attr, 4278 &order_attr.attr, 4279 &min_partial_attr.attr, 4280 &objects_attr.attr, 4281 &objects_partial_attr.attr, 4282 &total_objects_attr.attr, 4283 &slabs_attr.attr, 4284 &partial_attr.attr, 4285 &cpu_slabs_attr.attr, 4286 &ctor_attr.attr, 4287 &aliases_attr.attr, 4288 &align_attr.attr, 4289 &sanity_checks_attr.attr, 4290 &trace_attr.attr, 4291 &hwcache_align_attr.attr, 4292 &reclaim_account_attr.attr, 4293 &destroy_by_rcu_attr.attr, 4294 &red_zone_attr.attr, 4295 &poison_attr.attr, 4296 &store_user_attr.attr, 4297 &validate_attr.attr, 4298 &shrink_attr.attr, 4299 &alloc_calls_attr.attr, 4300 &free_calls_attr.attr, 4301 #ifdef CONFIG_ZONE_DMA 4302 &cache_dma_attr.attr, 4303 #endif 4304 #ifdef CONFIG_NUMA 4305 &remote_node_defrag_ratio_attr.attr, 4306 #endif 4307 #ifdef CONFIG_SLUB_STATS 4308 &alloc_fastpath_attr.attr, 4309 &alloc_slowpath_attr.attr, 4310 &free_fastpath_attr.attr, 4311 &free_slowpath_attr.attr, 4312 &free_frozen_attr.attr, 4313 &free_add_partial_attr.attr, 4314 &free_remove_partial_attr.attr, 4315 &alloc_from_partial_attr.attr, 4316 &alloc_slab_attr.attr, 4317 &alloc_refill_attr.attr, 4318 &free_slab_attr.attr, 4319 &cpuslab_flush_attr.attr, 4320 &deactivate_full_attr.attr, 4321 &deactivate_empty_attr.attr, 4322 &deactivate_to_head_attr.attr, 4323 &deactivate_to_tail_attr.attr, 4324 &deactivate_remote_frees_attr.attr, 4325 &order_fallback_attr.attr, 4326 #endif 4327 #ifdef CONFIG_FAILSLAB 4328 &failslab_attr.attr, 4329 #endif 4330 4331 NULL 4332 }; 4333 4334 static struct attribute_group slab_attr_group = { 4335 .attrs = slab_attrs, 4336 }; 4337 4338 static ssize_t slab_attr_show(struct kobject *kobj, 4339 struct attribute *attr, 4340 char *buf) 4341 { 4342 struct slab_attribute *attribute; 4343 struct kmem_cache *s; 4344 int err; 4345 4346 attribute = to_slab_attr(attr); 4347 s = to_slab(kobj); 4348 4349 if (!attribute->show) 4350 return -EIO; 4351 4352 err = attribute->show(s, buf); 4353 4354 return err; 4355 } 4356 4357 static ssize_t slab_attr_store(struct kobject *kobj, 4358 struct attribute *attr, 4359 const char *buf, size_t len) 4360 { 4361 struct slab_attribute *attribute; 4362 struct kmem_cache *s; 4363 int err; 4364 4365 attribute = to_slab_attr(attr); 4366 s = to_slab(kobj); 4367 4368 if (!attribute->store) 4369 return -EIO; 4370 4371 err = attribute->store(s, buf, len); 4372 4373 return err; 4374 } 4375 4376 static void kmem_cache_release(struct kobject *kobj) 4377 { 4378 struct kmem_cache *s = to_slab(kobj); 4379 4380 kfree(s); 4381 } 4382 4383 static const struct sysfs_ops slab_sysfs_ops = { 4384 .show = slab_attr_show, 4385 .store = slab_attr_store, 4386 }; 4387 4388 static struct kobj_type slab_ktype = { 4389 .sysfs_ops = &slab_sysfs_ops, 4390 .release = kmem_cache_release 4391 }; 4392 4393 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4394 { 4395 struct kobj_type *ktype = get_ktype(kobj); 4396 4397 if (ktype == &slab_ktype) 4398 return 1; 4399 return 0; 4400 } 4401 4402 static const struct kset_uevent_ops slab_uevent_ops = { 4403 .filter = uevent_filter, 4404 }; 4405 4406 static struct kset *slab_kset; 4407 4408 #define ID_STR_LENGTH 64 4409 4410 /* Create a unique string id for a slab cache: 4411 * 4412 * Format :[flags-]size 4413 */ 4414 static char *create_unique_id(struct kmem_cache *s) 4415 { 4416 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4417 char *p = name; 4418 4419 BUG_ON(!name); 4420 4421 *p++ = ':'; 4422 /* 4423 * First flags affecting slabcache operations. We will only 4424 * get here for aliasable slabs so we do not need to support 4425 * too many flags. The flags here must cover all flags that 4426 * are matched during merging to guarantee that the id is 4427 * unique. 4428 */ 4429 if (s->flags & SLAB_CACHE_DMA) 4430 *p++ = 'd'; 4431 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4432 *p++ = 'a'; 4433 if (s->flags & SLAB_DEBUG_FREE) 4434 *p++ = 'F'; 4435 if (!(s->flags & SLAB_NOTRACK)) 4436 *p++ = 't'; 4437 if (p != name + 1) 4438 *p++ = '-'; 4439 p += sprintf(p, "%07d", s->size); 4440 BUG_ON(p > name + ID_STR_LENGTH - 1); 4441 return name; 4442 } 4443 4444 static int sysfs_slab_add(struct kmem_cache *s) 4445 { 4446 int err; 4447 const char *name; 4448 int unmergeable; 4449 4450 if (slab_state < SYSFS) 4451 /* Defer until later */ 4452 return 0; 4453 4454 unmergeable = slab_unmergeable(s); 4455 if (unmergeable) { 4456 /* 4457 * Slabcache can never be merged so we can use the name proper. 4458 * This is typically the case for debug situations. In that 4459 * case we can catch duplicate names easily. 4460 */ 4461 sysfs_remove_link(&slab_kset->kobj, s->name); 4462 name = s->name; 4463 } else { 4464 /* 4465 * Create a unique name for the slab as a target 4466 * for the symlinks. 4467 */ 4468 name = create_unique_id(s); 4469 } 4470 4471 s->kobj.kset = slab_kset; 4472 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4473 if (err) { 4474 kobject_put(&s->kobj); 4475 return err; 4476 } 4477 4478 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4479 if (err) { 4480 kobject_del(&s->kobj); 4481 kobject_put(&s->kobj); 4482 return err; 4483 } 4484 kobject_uevent(&s->kobj, KOBJ_ADD); 4485 if (!unmergeable) { 4486 /* Setup first alias */ 4487 sysfs_slab_alias(s, s->name); 4488 kfree(name); 4489 } 4490 return 0; 4491 } 4492 4493 static void sysfs_slab_remove(struct kmem_cache *s) 4494 { 4495 if (slab_state < SYSFS) 4496 /* 4497 * Sysfs has not been setup yet so no need to remove the 4498 * cache from sysfs. 4499 */ 4500 return; 4501 4502 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4503 kobject_del(&s->kobj); 4504 kobject_put(&s->kobj); 4505 } 4506 4507 /* 4508 * Need to buffer aliases during bootup until sysfs becomes 4509 * available lest we lose that information. 4510 */ 4511 struct saved_alias { 4512 struct kmem_cache *s; 4513 const char *name; 4514 struct saved_alias *next; 4515 }; 4516 4517 static struct saved_alias *alias_list; 4518 4519 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4520 { 4521 struct saved_alias *al; 4522 4523 if (slab_state == SYSFS) { 4524 /* 4525 * If we have a leftover link then remove it. 4526 */ 4527 sysfs_remove_link(&slab_kset->kobj, name); 4528 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4529 } 4530 4531 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4532 if (!al) 4533 return -ENOMEM; 4534 4535 al->s = s; 4536 al->name = name; 4537 al->next = alias_list; 4538 alias_list = al; 4539 return 0; 4540 } 4541 4542 static int __init slab_sysfs_init(void) 4543 { 4544 struct kmem_cache *s; 4545 int err; 4546 4547 down_write(&slub_lock); 4548 4549 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4550 if (!slab_kset) { 4551 up_write(&slub_lock); 4552 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4553 return -ENOSYS; 4554 } 4555 4556 slab_state = SYSFS; 4557 4558 list_for_each_entry(s, &slab_caches, list) { 4559 err = sysfs_slab_add(s); 4560 if (err) 4561 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4562 " to sysfs\n", s->name); 4563 } 4564 4565 while (alias_list) { 4566 struct saved_alias *al = alias_list; 4567 4568 alias_list = alias_list->next; 4569 err = sysfs_slab_alias(al->s, al->name); 4570 if (err) 4571 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4572 " %s to sysfs\n", s->name); 4573 kfree(al); 4574 } 4575 4576 up_write(&slub_lock); 4577 resiliency_test(); 4578 return 0; 4579 } 4580 4581 __initcall(slab_sysfs_init); 4582 #endif 4583 4584 /* 4585 * The /proc/slabinfo ABI 4586 */ 4587 #ifdef CONFIG_SLABINFO 4588 static void print_slabinfo_header(struct seq_file *m) 4589 { 4590 seq_puts(m, "slabinfo - version: 2.1\n"); 4591 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4592 "<objperslab> <pagesperslab>"); 4593 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4594 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4595 seq_putc(m, '\n'); 4596 } 4597 4598 static void *s_start(struct seq_file *m, loff_t *pos) 4599 { 4600 loff_t n = *pos; 4601 4602 down_read(&slub_lock); 4603 if (!n) 4604 print_slabinfo_header(m); 4605 4606 return seq_list_start(&slab_caches, *pos); 4607 } 4608 4609 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4610 { 4611 return seq_list_next(p, &slab_caches, pos); 4612 } 4613 4614 static void s_stop(struct seq_file *m, void *p) 4615 { 4616 up_read(&slub_lock); 4617 } 4618 4619 static int s_show(struct seq_file *m, void *p) 4620 { 4621 unsigned long nr_partials = 0; 4622 unsigned long nr_slabs = 0; 4623 unsigned long nr_inuse = 0; 4624 unsigned long nr_objs = 0; 4625 unsigned long nr_free = 0; 4626 struct kmem_cache *s; 4627 int node; 4628 4629 s = list_entry(p, struct kmem_cache, list); 4630 4631 for_each_online_node(node) { 4632 struct kmem_cache_node *n = get_node(s, node); 4633 4634 if (!n) 4635 continue; 4636 4637 nr_partials += n->nr_partial; 4638 nr_slabs += atomic_long_read(&n->nr_slabs); 4639 nr_objs += atomic_long_read(&n->total_objects); 4640 nr_free += count_partial(n, count_free); 4641 } 4642 4643 nr_inuse = nr_objs - nr_free; 4644 4645 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4646 nr_objs, s->size, oo_objects(s->oo), 4647 (1 << oo_order(s->oo))); 4648 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4649 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4650 0UL); 4651 seq_putc(m, '\n'); 4652 return 0; 4653 } 4654 4655 static const struct seq_operations slabinfo_op = { 4656 .start = s_start, 4657 .next = s_next, 4658 .stop = s_stop, 4659 .show = s_show, 4660 }; 4661 4662 static int slabinfo_open(struct inode *inode, struct file *file) 4663 { 4664 return seq_open(file, &slabinfo_op); 4665 } 4666 4667 static const struct file_operations proc_slabinfo_operations = { 4668 .open = slabinfo_open, 4669 .read = seq_read, 4670 .llseek = seq_lseek, 4671 .release = seq_release, 4672 }; 4673 4674 static int __init slab_proc_init(void) 4675 { 4676 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations); 4677 return 0; 4678 } 4679 module_init(slab_proc_init); 4680 #endif /* CONFIG_SLABINFO */ 4681