1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * page->frozen The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 #ifdef CONFIG_SLUB_DEBUG 118 #ifdef CONFIG_SLUB_DEBUG_ON 119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 120 #else 121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 122 #endif 123 #endif 124 125 static inline bool kmem_cache_debug(struct kmem_cache *s) 126 { 127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 128 } 129 130 void *fixup_red_left(struct kmem_cache *s, void *p) 131 { 132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 133 p += s->red_left_pad; 134 135 return p; 136 } 137 138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 139 { 140 #ifdef CONFIG_SLUB_CPU_PARTIAL 141 return !kmem_cache_debug(s); 142 #else 143 return false; 144 #endif 145 } 146 147 /* 148 * Issues still to be resolved: 149 * 150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 151 * 152 * - Variable sizing of the per node arrays 153 */ 154 155 /* Enable to test recovery from slab corruption on boot */ 156 #undef SLUB_RESILIENCY_TEST 157 158 /* Enable to log cmpxchg failures */ 159 #undef SLUB_DEBUG_CMPXCHG 160 161 /* 162 * Mininum number of partial slabs. These will be left on the partial 163 * lists even if they are empty. kmem_cache_shrink may reclaim them. 164 */ 165 #define MIN_PARTIAL 5 166 167 /* 168 * Maximum number of desirable partial slabs. 169 * The existence of more partial slabs makes kmem_cache_shrink 170 * sort the partial list by the number of objects in use. 171 */ 172 #define MAX_PARTIAL 10 173 174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 175 SLAB_POISON | SLAB_STORE_USER) 176 177 /* 178 * These debug flags cannot use CMPXCHG because there might be consistency 179 * issues when checking or reading debug information 180 */ 181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 182 SLAB_TRACE) 183 184 185 /* 186 * Debugging flags that require metadata to be stored in the slab. These get 187 * disabled when slub_debug=O is used and a cache's min order increases with 188 * metadata. 189 */ 190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 191 192 #define OO_SHIFT 16 193 #define OO_MASK ((1 << OO_SHIFT) - 1) 194 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 195 196 /* Internal SLUB flags */ 197 /* Poison object */ 198 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 199 /* Use cmpxchg_double */ 200 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 201 202 /* 203 * Tracking user of a slab. 204 */ 205 #define TRACK_ADDRS_COUNT 16 206 struct track { 207 unsigned long addr; /* Called from address */ 208 #ifdef CONFIG_STACKTRACE 209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 210 #endif 211 int cpu; /* Was running on cpu */ 212 int pid; /* Pid context */ 213 unsigned long when; /* When did the operation occur */ 214 }; 215 216 enum track_item { TRACK_ALLOC, TRACK_FREE }; 217 218 #ifdef CONFIG_SYSFS 219 static int sysfs_slab_add(struct kmem_cache *); 220 static int sysfs_slab_alias(struct kmem_cache *, const char *); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 #endif 226 227 static inline void stat(const struct kmem_cache *s, enum stat_item si) 228 { 229 #ifdef CONFIG_SLUB_STATS 230 /* 231 * The rmw is racy on a preemptible kernel but this is acceptable, so 232 * avoid this_cpu_add()'s irq-disable overhead. 233 */ 234 raw_cpu_inc(s->cpu_slab->stat[si]); 235 #endif 236 } 237 238 /******************************************************************** 239 * Core slab cache functions 240 *******************************************************************/ 241 242 /* 243 * Returns freelist pointer (ptr). With hardening, this is obfuscated 244 * with an XOR of the address where the pointer is held and a per-cache 245 * random number. 246 */ 247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 248 unsigned long ptr_addr) 249 { 250 #ifdef CONFIG_SLAB_FREELIST_HARDENED 251 /* 252 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 253 * Normally, this doesn't cause any issues, as both set_freepointer() 254 * and get_freepointer() are called with a pointer with the same tag. 255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 256 * example, when __free_slub() iterates over objects in a cache, it 257 * passes untagged pointers to check_object(). check_object() in turns 258 * calls get_freepointer() with an untagged pointer, which causes the 259 * freepointer to be restored incorrectly. 260 */ 261 return (void *)((unsigned long)ptr ^ s->random ^ 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 263 #else 264 return ptr; 265 #endif 266 } 267 268 /* Returns the freelist pointer recorded at location ptr_addr. */ 269 static inline void *freelist_dereference(const struct kmem_cache *s, 270 void *ptr_addr) 271 { 272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 273 (unsigned long)ptr_addr); 274 } 275 276 static inline void *get_freepointer(struct kmem_cache *s, void *object) 277 { 278 object = kasan_reset_tag(object); 279 return freelist_dereference(s, object + s->offset); 280 } 281 282 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 283 { 284 prefetch(object + s->offset); 285 } 286 287 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 288 { 289 unsigned long freepointer_addr; 290 void *p; 291 292 if (!debug_pagealloc_enabled_static()) 293 return get_freepointer(s, object); 294 295 freepointer_addr = (unsigned long)object + s->offset; 296 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 297 return freelist_ptr(s, p, freepointer_addr); 298 } 299 300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 301 { 302 unsigned long freeptr_addr = (unsigned long)object + s->offset; 303 304 #ifdef CONFIG_SLAB_FREELIST_HARDENED 305 BUG_ON(object == fp); /* naive detection of double free or corruption */ 306 #endif 307 308 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 310 } 311 312 /* Loop over all objects in a slab */ 313 #define for_each_object(__p, __s, __addr, __objects) \ 314 for (__p = fixup_red_left(__s, __addr); \ 315 __p < (__addr) + (__objects) * (__s)->size; \ 316 __p += (__s)->size) 317 318 static inline unsigned int order_objects(unsigned int order, unsigned int size) 319 { 320 return ((unsigned int)PAGE_SIZE << order) / size; 321 } 322 323 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 324 unsigned int size) 325 { 326 struct kmem_cache_order_objects x = { 327 (order << OO_SHIFT) + order_objects(order, size) 328 }; 329 330 return x; 331 } 332 333 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 334 { 335 return x.x >> OO_SHIFT; 336 } 337 338 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 339 { 340 return x.x & OO_MASK; 341 } 342 343 /* 344 * Per slab locking using the pagelock 345 */ 346 static __always_inline void slab_lock(struct page *page) 347 { 348 VM_BUG_ON_PAGE(PageTail(page), page); 349 bit_spin_lock(PG_locked, &page->flags); 350 } 351 352 static __always_inline void slab_unlock(struct page *page) 353 { 354 VM_BUG_ON_PAGE(PageTail(page), page); 355 __bit_spin_unlock(PG_locked, &page->flags); 356 } 357 358 /* Interrupts must be disabled (for the fallback code to work right) */ 359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 360 void *freelist_old, unsigned long counters_old, 361 void *freelist_new, unsigned long counters_new, 362 const char *n) 363 { 364 VM_BUG_ON(!irqs_disabled()); 365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 367 if (s->flags & __CMPXCHG_DOUBLE) { 368 if (cmpxchg_double(&page->freelist, &page->counters, 369 freelist_old, counters_old, 370 freelist_new, counters_new)) 371 return true; 372 } else 373 #endif 374 { 375 slab_lock(page); 376 if (page->freelist == freelist_old && 377 page->counters == counters_old) { 378 page->freelist = freelist_new; 379 page->counters = counters_new; 380 slab_unlock(page); 381 return true; 382 } 383 slab_unlock(page); 384 } 385 386 cpu_relax(); 387 stat(s, CMPXCHG_DOUBLE_FAIL); 388 389 #ifdef SLUB_DEBUG_CMPXCHG 390 pr_info("%s %s: cmpxchg double redo ", n, s->name); 391 #endif 392 393 return false; 394 } 395 396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 397 void *freelist_old, unsigned long counters_old, 398 void *freelist_new, unsigned long counters_new, 399 const char *n) 400 { 401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 402 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 403 if (s->flags & __CMPXCHG_DOUBLE) { 404 if (cmpxchg_double(&page->freelist, &page->counters, 405 freelist_old, counters_old, 406 freelist_new, counters_new)) 407 return true; 408 } else 409 #endif 410 { 411 unsigned long flags; 412 413 local_irq_save(flags); 414 slab_lock(page); 415 if (page->freelist == freelist_old && 416 page->counters == counters_old) { 417 page->freelist = freelist_new; 418 page->counters = counters_new; 419 slab_unlock(page); 420 local_irq_restore(flags); 421 return true; 422 } 423 slab_unlock(page); 424 local_irq_restore(flags); 425 } 426 427 cpu_relax(); 428 stat(s, CMPXCHG_DOUBLE_FAIL); 429 430 #ifdef SLUB_DEBUG_CMPXCHG 431 pr_info("%s %s: cmpxchg double redo ", n, s->name); 432 #endif 433 434 return false; 435 } 436 437 #ifdef CONFIG_SLUB_DEBUG 438 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 439 static DEFINE_SPINLOCK(object_map_lock); 440 441 /* 442 * Determine a map of object in use on a page. 443 * 444 * Node listlock must be held to guarantee that the page does 445 * not vanish from under us. 446 */ 447 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 448 __acquires(&object_map_lock) 449 { 450 void *p; 451 void *addr = page_address(page); 452 453 VM_BUG_ON(!irqs_disabled()); 454 455 spin_lock(&object_map_lock); 456 457 bitmap_zero(object_map, page->objects); 458 459 for (p = page->freelist; p; p = get_freepointer(s, p)) 460 set_bit(__obj_to_index(s, addr, p), object_map); 461 462 return object_map; 463 } 464 465 static void put_map(unsigned long *map) __releases(&object_map_lock) 466 { 467 VM_BUG_ON(map != object_map); 468 spin_unlock(&object_map_lock); 469 } 470 471 static inline unsigned int size_from_object(struct kmem_cache *s) 472 { 473 if (s->flags & SLAB_RED_ZONE) 474 return s->size - s->red_left_pad; 475 476 return s->size; 477 } 478 479 static inline void *restore_red_left(struct kmem_cache *s, void *p) 480 { 481 if (s->flags & SLAB_RED_ZONE) 482 p -= s->red_left_pad; 483 484 return p; 485 } 486 487 /* 488 * Debug settings: 489 */ 490 #if defined(CONFIG_SLUB_DEBUG_ON) 491 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 492 #else 493 static slab_flags_t slub_debug; 494 #endif 495 496 static char *slub_debug_string; 497 static int disable_higher_order_debug; 498 499 /* 500 * slub is about to manipulate internal object metadata. This memory lies 501 * outside the range of the allocated object, so accessing it would normally 502 * be reported by kasan as a bounds error. metadata_access_enable() is used 503 * to tell kasan that these accesses are OK. 504 */ 505 static inline void metadata_access_enable(void) 506 { 507 kasan_disable_current(); 508 } 509 510 static inline void metadata_access_disable(void) 511 { 512 kasan_enable_current(); 513 } 514 515 /* 516 * Object debugging 517 */ 518 519 /* Verify that a pointer has an address that is valid within a slab page */ 520 static inline int check_valid_pointer(struct kmem_cache *s, 521 struct page *page, void *object) 522 { 523 void *base; 524 525 if (!object) 526 return 1; 527 528 base = page_address(page); 529 object = kasan_reset_tag(object); 530 object = restore_red_left(s, object); 531 if (object < base || object >= base + page->objects * s->size || 532 (object - base) % s->size) { 533 return 0; 534 } 535 536 return 1; 537 } 538 539 static void print_section(char *level, char *text, u8 *addr, 540 unsigned int length) 541 { 542 metadata_access_enable(); 543 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS, 544 16, 1, addr, length, 1); 545 metadata_access_disable(); 546 } 547 548 /* 549 * See comment in calculate_sizes(). 550 */ 551 static inline bool freeptr_outside_object(struct kmem_cache *s) 552 { 553 return s->offset >= s->inuse; 554 } 555 556 /* 557 * Return offset of the end of info block which is inuse + free pointer if 558 * not overlapping with object. 559 */ 560 static inline unsigned int get_info_end(struct kmem_cache *s) 561 { 562 if (freeptr_outside_object(s)) 563 return s->inuse + sizeof(void *); 564 else 565 return s->inuse; 566 } 567 568 static struct track *get_track(struct kmem_cache *s, void *object, 569 enum track_item alloc) 570 { 571 struct track *p; 572 573 p = object + get_info_end(s); 574 575 return kasan_reset_tag(p + alloc); 576 } 577 578 static void set_track(struct kmem_cache *s, void *object, 579 enum track_item alloc, unsigned long addr) 580 { 581 struct track *p = get_track(s, object, alloc); 582 583 if (addr) { 584 #ifdef CONFIG_STACKTRACE 585 unsigned int nr_entries; 586 587 metadata_access_enable(); 588 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), 589 TRACK_ADDRS_COUNT, 3); 590 metadata_access_disable(); 591 592 if (nr_entries < TRACK_ADDRS_COUNT) 593 p->addrs[nr_entries] = 0; 594 #endif 595 p->addr = addr; 596 p->cpu = smp_processor_id(); 597 p->pid = current->pid; 598 p->when = jiffies; 599 } else { 600 memset(p, 0, sizeof(struct track)); 601 } 602 } 603 604 static void init_tracking(struct kmem_cache *s, void *object) 605 { 606 if (!(s->flags & SLAB_STORE_USER)) 607 return; 608 609 set_track(s, object, TRACK_FREE, 0UL); 610 set_track(s, object, TRACK_ALLOC, 0UL); 611 } 612 613 static void print_track(const char *s, struct track *t, unsigned long pr_time) 614 { 615 if (!t->addr) 616 return; 617 618 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 619 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 620 #ifdef CONFIG_STACKTRACE 621 { 622 int i; 623 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 624 if (t->addrs[i]) 625 pr_err("\t%pS\n", (void *)t->addrs[i]); 626 else 627 break; 628 } 629 #endif 630 } 631 632 void print_tracking(struct kmem_cache *s, void *object) 633 { 634 unsigned long pr_time = jiffies; 635 if (!(s->flags & SLAB_STORE_USER)) 636 return; 637 638 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 639 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 640 } 641 642 static void print_page_info(struct page *page) 643 { 644 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 645 page, page->objects, page->inuse, page->freelist, page->flags); 646 647 } 648 649 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 650 { 651 struct va_format vaf; 652 va_list args; 653 654 va_start(args, fmt); 655 vaf.fmt = fmt; 656 vaf.va = &args; 657 pr_err("=============================================================================\n"); 658 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 659 pr_err("-----------------------------------------------------------------------------\n\n"); 660 661 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 662 va_end(args); 663 } 664 665 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 666 { 667 struct va_format vaf; 668 va_list args; 669 670 va_start(args, fmt); 671 vaf.fmt = fmt; 672 vaf.va = &args; 673 pr_err("FIX %s: %pV\n", s->name, &vaf); 674 va_end(args); 675 } 676 677 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 678 void **freelist, void *nextfree) 679 { 680 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 681 !check_valid_pointer(s, page, nextfree) && freelist) { 682 object_err(s, page, *freelist, "Freechain corrupt"); 683 *freelist = NULL; 684 slab_fix(s, "Isolate corrupted freechain"); 685 return true; 686 } 687 688 return false; 689 } 690 691 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 692 { 693 unsigned int off; /* Offset of last byte */ 694 u8 *addr = page_address(page); 695 696 print_tracking(s, p); 697 698 print_page_info(page); 699 700 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 701 p, p - addr, get_freepointer(s, p)); 702 703 if (s->flags & SLAB_RED_ZONE) 704 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 705 s->red_left_pad); 706 else if (p > addr + 16) 707 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 708 709 print_section(KERN_ERR, "Object ", p, 710 min_t(unsigned int, s->object_size, PAGE_SIZE)); 711 if (s->flags & SLAB_RED_ZONE) 712 print_section(KERN_ERR, "Redzone ", p + s->object_size, 713 s->inuse - s->object_size); 714 715 off = get_info_end(s); 716 717 if (s->flags & SLAB_STORE_USER) 718 off += 2 * sizeof(struct track); 719 720 off += kasan_metadata_size(s); 721 722 if (off != size_from_object(s)) 723 /* Beginning of the filler is the free pointer */ 724 print_section(KERN_ERR, "Padding ", p + off, 725 size_from_object(s) - off); 726 727 dump_stack(); 728 } 729 730 void object_err(struct kmem_cache *s, struct page *page, 731 u8 *object, char *reason) 732 { 733 slab_bug(s, "%s", reason); 734 print_trailer(s, page, object); 735 } 736 737 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 738 const char *fmt, ...) 739 { 740 va_list args; 741 char buf[100]; 742 743 va_start(args, fmt); 744 vsnprintf(buf, sizeof(buf), fmt, args); 745 va_end(args); 746 slab_bug(s, "%s", buf); 747 print_page_info(page); 748 dump_stack(); 749 } 750 751 static void init_object(struct kmem_cache *s, void *object, u8 val) 752 { 753 u8 *p = kasan_reset_tag(object); 754 755 if (s->flags & SLAB_RED_ZONE) 756 memset(p - s->red_left_pad, val, s->red_left_pad); 757 758 if (s->flags & __OBJECT_POISON) { 759 memset(p, POISON_FREE, s->object_size - 1); 760 p[s->object_size - 1] = POISON_END; 761 } 762 763 if (s->flags & SLAB_RED_ZONE) 764 memset(p + s->object_size, val, s->inuse - s->object_size); 765 } 766 767 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 768 void *from, void *to) 769 { 770 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 771 memset(from, data, to - from); 772 } 773 774 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 775 u8 *object, char *what, 776 u8 *start, unsigned int value, unsigned int bytes) 777 { 778 u8 *fault; 779 u8 *end; 780 u8 *addr = page_address(page); 781 782 metadata_access_enable(); 783 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 784 metadata_access_disable(); 785 if (!fault) 786 return 1; 787 788 end = start + bytes; 789 while (end > fault && end[-1] == value) 790 end--; 791 792 slab_bug(s, "%s overwritten", what); 793 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 794 fault, end - 1, fault - addr, 795 fault[0], value); 796 print_trailer(s, page, object); 797 798 restore_bytes(s, what, value, fault, end); 799 return 0; 800 } 801 802 /* 803 * Object layout: 804 * 805 * object address 806 * Bytes of the object to be managed. 807 * If the freepointer may overlay the object then the free 808 * pointer is at the middle of the object. 809 * 810 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 811 * 0xa5 (POISON_END) 812 * 813 * object + s->object_size 814 * Padding to reach word boundary. This is also used for Redzoning. 815 * Padding is extended by another word if Redzoning is enabled and 816 * object_size == inuse. 817 * 818 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 819 * 0xcc (RED_ACTIVE) for objects in use. 820 * 821 * object + s->inuse 822 * Meta data starts here. 823 * 824 * A. Free pointer (if we cannot overwrite object on free) 825 * B. Tracking data for SLAB_STORE_USER 826 * C. Padding to reach required alignment boundary or at mininum 827 * one word if debugging is on to be able to detect writes 828 * before the word boundary. 829 * 830 * Padding is done using 0x5a (POISON_INUSE) 831 * 832 * object + s->size 833 * Nothing is used beyond s->size. 834 * 835 * If slabcaches are merged then the object_size and inuse boundaries are mostly 836 * ignored. And therefore no slab options that rely on these boundaries 837 * may be used with merged slabcaches. 838 */ 839 840 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 841 { 842 unsigned long off = get_info_end(s); /* The end of info */ 843 844 if (s->flags & SLAB_STORE_USER) 845 /* We also have user information there */ 846 off += 2 * sizeof(struct track); 847 848 off += kasan_metadata_size(s); 849 850 if (size_from_object(s) == off) 851 return 1; 852 853 return check_bytes_and_report(s, page, p, "Object padding", 854 p + off, POISON_INUSE, size_from_object(s) - off); 855 } 856 857 /* Check the pad bytes at the end of a slab page */ 858 static int slab_pad_check(struct kmem_cache *s, struct page *page) 859 { 860 u8 *start; 861 u8 *fault; 862 u8 *end; 863 u8 *pad; 864 int length; 865 int remainder; 866 867 if (!(s->flags & SLAB_POISON)) 868 return 1; 869 870 start = page_address(page); 871 length = page_size(page); 872 end = start + length; 873 remainder = length % s->size; 874 if (!remainder) 875 return 1; 876 877 pad = end - remainder; 878 metadata_access_enable(); 879 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 880 metadata_access_disable(); 881 if (!fault) 882 return 1; 883 while (end > fault && end[-1] == POISON_INUSE) 884 end--; 885 886 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 887 fault, end - 1, fault - start); 888 print_section(KERN_ERR, "Padding ", pad, remainder); 889 890 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 891 return 0; 892 } 893 894 static int check_object(struct kmem_cache *s, struct page *page, 895 void *object, u8 val) 896 { 897 u8 *p = object; 898 u8 *endobject = object + s->object_size; 899 900 if (s->flags & SLAB_RED_ZONE) { 901 if (!check_bytes_and_report(s, page, object, "Redzone", 902 object - s->red_left_pad, val, s->red_left_pad)) 903 return 0; 904 905 if (!check_bytes_and_report(s, page, object, "Redzone", 906 endobject, val, s->inuse - s->object_size)) 907 return 0; 908 } else { 909 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 910 check_bytes_and_report(s, page, p, "Alignment padding", 911 endobject, POISON_INUSE, 912 s->inuse - s->object_size); 913 } 914 } 915 916 if (s->flags & SLAB_POISON) { 917 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 918 (!check_bytes_and_report(s, page, p, "Poison", p, 919 POISON_FREE, s->object_size - 1) || 920 !check_bytes_and_report(s, page, p, "Poison", 921 p + s->object_size - 1, POISON_END, 1))) 922 return 0; 923 /* 924 * check_pad_bytes cleans up on its own. 925 */ 926 check_pad_bytes(s, page, p); 927 } 928 929 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 930 /* 931 * Object and freepointer overlap. Cannot check 932 * freepointer while object is allocated. 933 */ 934 return 1; 935 936 /* Check free pointer validity */ 937 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 938 object_err(s, page, p, "Freepointer corrupt"); 939 /* 940 * No choice but to zap it and thus lose the remainder 941 * of the free objects in this slab. May cause 942 * another error because the object count is now wrong. 943 */ 944 set_freepointer(s, p, NULL); 945 return 0; 946 } 947 return 1; 948 } 949 950 static int check_slab(struct kmem_cache *s, struct page *page) 951 { 952 int maxobj; 953 954 VM_BUG_ON(!irqs_disabled()); 955 956 if (!PageSlab(page)) { 957 slab_err(s, page, "Not a valid slab page"); 958 return 0; 959 } 960 961 maxobj = order_objects(compound_order(page), s->size); 962 if (page->objects > maxobj) { 963 slab_err(s, page, "objects %u > max %u", 964 page->objects, maxobj); 965 return 0; 966 } 967 if (page->inuse > page->objects) { 968 slab_err(s, page, "inuse %u > max %u", 969 page->inuse, page->objects); 970 return 0; 971 } 972 /* Slab_pad_check fixes things up after itself */ 973 slab_pad_check(s, page); 974 return 1; 975 } 976 977 /* 978 * Determine if a certain object on a page is on the freelist. Must hold the 979 * slab lock to guarantee that the chains are in a consistent state. 980 */ 981 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 982 { 983 int nr = 0; 984 void *fp; 985 void *object = NULL; 986 int max_objects; 987 988 fp = page->freelist; 989 while (fp && nr <= page->objects) { 990 if (fp == search) 991 return 1; 992 if (!check_valid_pointer(s, page, fp)) { 993 if (object) { 994 object_err(s, page, object, 995 "Freechain corrupt"); 996 set_freepointer(s, object, NULL); 997 } else { 998 slab_err(s, page, "Freepointer corrupt"); 999 page->freelist = NULL; 1000 page->inuse = page->objects; 1001 slab_fix(s, "Freelist cleared"); 1002 return 0; 1003 } 1004 break; 1005 } 1006 object = fp; 1007 fp = get_freepointer(s, object); 1008 nr++; 1009 } 1010 1011 max_objects = order_objects(compound_order(page), s->size); 1012 if (max_objects > MAX_OBJS_PER_PAGE) 1013 max_objects = MAX_OBJS_PER_PAGE; 1014 1015 if (page->objects != max_objects) { 1016 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 1017 page->objects, max_objects); 1018 page->objects = max_objects; 1019 slab_fix(s, "Number of objects adjusted."); 1020 } 1021 if (page->inuse != page->objects - nr) { 1022 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1023 page->inuse, page->objects - nr); 1024 page->inuse = page->objects - nr; 1025 slab_fix(s, "Object count adjusted."); 1026 } 1027 return search == NULL; 1028 } 1029 1030 static void trace(struct kmem_cache *s, struct page *page, void *object, 1031 int alloc) 1032 { 1033 if (s->flags & SLAB_TRACE) { 1034 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1035 s->name, 1036 alloc ? "alloc" : "free", 1037 object, page->inuse, 1038 page->freelist); 1039 1040 if (!alloc) 1041 print_section(KERN_INFO, "Object ", (void *)object, 1042 s->object_size); 1043 1044 dump_stack(); 1045 } 1046 } 1047 1048 /* 1049 * Tracking of fully allocated slabs for debugging purposes. 1050 */ 1051 static void add_full(struct kmem_cache *s, 1052 struct kmem_cache_node *n, struct page *page) 1053 { 1054 if (!(s->flags & SLAB_STORE_USER)) 1055 return; 1056 1057 lockdep_assert_held(&n->list_lock); 1058 list_add(&page->slab_list, &n->full); 1059 } 1060 1061 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1062 { 1063 if (!(s->flags & SLAB_STORE_USER)) 1064 return; 1065 1066 lockdep_assert_held(&n->list_lock); 1067 list_del(&page->slab_list); 1068 } 1069 1070 /* Tracking of the number of slabs for debugging purposes */ 1071 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1072 { 1073 struct kmem_cache_node *n = get_node(s, node); 1074 1075 return atomic_long_read(&n->nr_slabs); 1076 } 1077 1078 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1079 { 1080 return atomic_long_read(&n->nr_slabs); 1081 } 1082 1083 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1084 { 1085 struct kmem_cache_node *n = get_node(s, node); 1086 1087 /* 1088 * May be called early in order to allocate a slab for the 1089 * kmem_cache_node structure. Solve the chicken-egg 1090 * dilemma by deferring the increment of the count during 1091 * bootstrap (see early_kmem_cache_node_alloc). 1092 */ 1093 if (likely(n)) { 1094 atomic_long_inc(&n->nr_slabs); 1095 atomic_long_add(objects, &n->total_objects); 1096 } 1097 } 1098 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1099 { 1100 struct kmem_cache_node *n = get_node(s, node); 1101 1102 atomic_long_dec(&n->nr_slabs); 1103 atomic_long_sub(objects, &n->total_objects); 1104 } 1105 1106 /* Object debug checks for alloc/free paths */ 1107 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1108 void *object) 1109 { 1110 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1111 return; 1112 1113 init_object(s, object, SLUB_RED_INACTIVE); 1114 init_tracking(s, object); 1115 } 1116 1117 static 1118 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1119 { 1120 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1121 return; 1122 1123 metadata_access_enable(); 1124 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page)); 1125 metadata_access_disable(); 1126 } 1127 1128 static inline int alloc_consistency_checks(struct kmem_cache *s, 1129 struct page *page, void *object) 1130 { 1131 if (!check_slab(s, page)) 1132 return 0; 1133 1134 if (!check_valid_pointer(s, page, object)) { 1135 object_err(s, page, object, "Freelist Pointer check fails"); 1136 return 0; 1137 } 1138 1139 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1140 return 0; 1141 1142 return 1; 1143 } 1144 1145 static noinline int alloc_debug_processing(struct kmem_cache *s, 1146 struct page *page, 1147 void *object, unsigned long addr) 1148 { 1149 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1150 if (!alloc_consistency_checks(s, page, object)) 1151 goto bad; 1152 } 1153 1154 /* Success perform special debug activities for allocs */ 1155 if (s->flags & SLAB_STORE_USER) 1156 set_track(s, object, TRACK_ALLOC, addr); 1157 trace(s, page, object, 1); 1158 init_object(s, object, SLUB_RED_ACTIVE); 1159 return 1; 1160 1161 bad: 1162 if (PageSlab(page)) { 1163 /* 1164 * If this is a slab page then lets do the best we can 1165 * to avoid issues in the future. Marking all objects 1166 * as used avoids touching the remaining objects. 1167 */ 1168 slab_fix(s, "Marking all objects used"); 1169 page->inuse = page->objects; 1170 page->freelist = NULL; 1171 } 1172 return 0; 1173 } 1174 1175 static inline int free_consistency_checks(struct kmem_cache *s, 1176 struct page *page, void *object, unsigned long addr) 1177 { 1178 if (!check_valid_pointer(s, page, object)) { 1179 slab_err(s, page, "Invalid object pointer 0x%p", object); 1180 return 0; 1181 } 1182 1183 if (on_freelist(s, page, object)) { 1184 object_err(s, page, object, "Object already free"); 1185 return 0; 1186 } 1187 1188 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1189 return 0; 1190 1191 if (unlikely(s != page->slab_cache)) { 1192 if (!PageSlab(page)) { 1193 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1194 object); 1195 } else if (!page->slab_cache) { 1196 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1197 object); 1198 dump_stack(); 1199 } else 1200 object_err(s, page, object, 1201 "page slab pointer corrupt."); 1202 return 0; 1203 } 1204 return 1; 1205 } 1206 1207 /* Supports checking bulk free of a constructed freelist */ 1208 static noinline int free_debug_processing( 1209 struct kmem_cache *s, struct page *page, 1210 void *head, void *tail, int bulk_cnt, 1211 unsigned long addr) 1212 { 1213 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1214 void *object = head; 1215 int cnt = 0; 1216 unsigned long flags; 1217 int ret = 0; 1218 1219 spin_lock_irqsave(&n->list_lock, flags); 1220 slab_lock(page); 1221 1222 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1223 if (!check_slab(s, page)) 1224 goto out; 1225 } 1226 1227 next_object: 1228 cnt++; 1229 1230 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1231 if (!free_consistency_checks(s, page, object, addr)) 1232 goto out; 1233 } 1234 1235 if (s->flags & SLAB_STORE_USER) 1236 set_track(s, object, TRACK_FREE, addr); 1237 trace(s, page, object, 0); 1238 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1239 init_object(s, object, SLUB_RED_INACTIVE); 1240 1241 /* Reached end of constructed freelist yet? */ 1242 if (object != tail) { 1243 object = get_freepointer(s, object); 1244 goto next_object; 1245 } 1246 ret = 1; 1247 1248 out: 1249 if (cnt != bulk_cnt) 1250 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1251 bulk_cnt, cnt); 1252 1253 slab_unlock(page); 1254 spin_unlock_irqrestore(&n->list_lock, flags); 1255 if (!ret) 1256 slab_fix(s, "Object at 0x%p not freed", object); 1257 return ret; 1258 } 1259 1260 /* 1261 * Parse a block of slub_debug options. Blocks are delimited by ';' 1262 * 1263 * @str: start of block 1264 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1265 * @slabs: return start of list of slabs, or NULL when there's no list 1266 * @init: assume this is initial parsing and not per-kmem-create parsing 1267 * 1268 * returns the start of next block if there's any, or NULL 1269 */ 1270 static char * 1271 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1272 { 1273 bool higher_order_disable = false; 1274 1275 /* Skip any completely empty blocks */ 1276 while (*str && *str == ';') 1277 str++; 1278 1279 if (*str == ',') { 1280 /* 1281 * No options but restriction on slabs. This means full 1282 * debugging for slabs matching a pattern. 1283 */ 1284 *flags = DEBUG_DEFAULT_FLAGS; 1285 goto check_slabs; 1286 } 1287 *flags = 0; 1288 1289 /* Determine which debug features should be switched on */ 1290 for (; *str && *str != ',' && *str != ';'; str++) { 1291 switch (tolower(*str)) { 1292 case '-': 1293 *flags = 0; 1294 break; 1295 case 'f': 1296 *flags |= SLAB_CONSISTENCY_CHECKS; 1297 break; 1298 case 'z': 1299 *flags |= SLAB_RED_ZONE; 1300 break; 1301 case 'p': 1302 *flags |= SLAB_POISON; 1303 break; 1304 case 'u': 1305 *flags |= SLAB_STORE_USER; 1306 break; 1307 case 't': 1308 *flags |= SLAB_TRACE; 1309 break; 1310 case 'a': 1311 *flags |= SLAB_FAILSLAB; 1312 break; 1313 case 'o': 1314 /* 1315 * Avoid enabling debugging on caches if its minimum 1316 * order would increase as a result. 1317 */ 1318 higher_order_disable = true; 1319 break; 1320 default: 1321 if (init) 1322 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1323 } 1324 } 1325 check_slabs: 1326 if (*str == ',') 1327 *slabs = ++str; 1328 else 1329 *slabs = NULL; 1330 1331 /* Skip over the slab list */ 1332 while (*str && *str != ';') 1333 str++; 1334 1335 /* Skip any completely empty blocks */ 1336 while (*str && *str == ';') 1337 str++; 1338 1339 if (init && higher_order_disable) 1340 disable_higher_order_debug = 1; 1341 1342 if (*str) 1343 return str; 1344 else 1345 return NULL; 1346 } 1347 1348 static int __init setup_slub_debug(char *str) 1349 { 1350 slab_flags_t flags; 1351 char *saved_str; 1352 char *slab_list; 1353 bool global_slub_debug_changed = false; 1354 bool slab_list_specified = false; 1355 1356 slub_debug = DEBUG_DEFAULT_FLAGS; 1357 if (*str++ != '=' || !*str) 1358 /* 1359 * No options specified. Switch on full debugging. 1360 */ 1361 goto out; 1362 1363 saved_str = str; 1364 while (str) { 1365 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1366 1367 if (!slab_list) { 1368 slub_debug = flags; 1369 global_slub_debug_changed = true; 1370 } else { 1371 slab_list_specified = true; 1372 } 1373 } 1374 1375 /* 1376 * For backwards compatibility, a single list of flags with list of 1377 * slabs means debugging is only enabled for those slabs, so the global 1378 * slub_debug should be 0. We can extended that to multiple lists as 1379 * long as there is no option specifying flags without a slab list. 1380 */ 1381 if (slab_list_specified) { 1382 if (!global_slub_debug_changed) 1383 slub_debug = 0; 1384 slub_debug_string = saved_str; 1385 } 1386 out: 1387 if (slub_debug != 0 || slub_debug_string) 1388 static_branch_enable(&slub_debug_enabled); 1389 if ((static_branch_unlikely(&init_on_alloc) || 1390 static_branch_unlikely(&init_on_free)) && 1391 (slub_debug & SLAB_POISON)) 1392 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1393 return 1; 1394 } 1395 1396 __setup("slub_debug", setup_slub_debug); 1397 1398 /* 1399 * kmem_cache_flags - apply debugging options to the cache 1400 * @object_size: the size of an object without meta data 1401 * @flags: flags to set 1402 * @name: name of the cache 1403 * @ctor: constructor function 1404 * 1405 * Debug option(s) are applied to @flags. In addition to the debug 1406 * option(s), if a slab name (or multiple) is specified i.e. 1407 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1408 * then only the select slabs will receive the debug option(s). 1409 */ 1410 slab_flags_t kmem_cache_flags(unsigned int object_size, 1411 slab_flags_t flags, const char *name, 1412 void (*ctor)(void *)) 1413 { 1414 char *iter; 1415 size_t len; 1416 char *next_block; 1417 slab_flags_t block_flags; 1418 1419 len = strlen(name); 1420 next_block = slub_debug_string; 1421 /* Go through all blocks of debug options, see if any matches our slab's name */ 1422 while (next_block) { 1423 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1424 if (!iter) 1425 continue; 1426 /* Found a block that has a slab list, search it */ 1427 while (*iter) { 1428 char *end, *glob; 1429 size_t cmplen; 1430 1431 end = strchrnul(iter, ','); 1432 if (next_block && next_block < end) 1433 end = next_block - 1; 1434 1435 glob = strnchr(iter, end - iter, '*'); 1436 if (glob) 1437 cmplen = glob - iter; 1438 else 1439 cmplen = max_t(size_t, len, (end - iter)); 1440 1441 if (!strncmp(name, iter, cmplen)) { 1442 flags |= block_flags; 1443 return flags; 1444 } 1445 1446 if (!*end || *end == ';') 1447 break; 1448 iter = end + 1; 1449 } 1450 } 1451 1452 return flags | slub_debug; 1453 } 1454 #else /* !CONFIG_SLUB_DEBUG */ 1455 static inline void setup_object_debug(struct kmem_cache *s, 1456 struct page *page, void *object) {} 1457 static inline 1458 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1459 1460 static inline int alloc_debug_processing(struct kmem_cache *s, 1461 struct page *page, void *object, unsigned long addr) { return 0; } 1462 1463 static inline int free_debug_processing( 1464 struct kmem_cache *s, struct page *page, 1465 void *head, void *tail, int bulk_cnt, 1466 unsigned long addr) { return 0; } 1467 1468 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1469 { return 1; } 1470 static inline int check_object(struct kmem_cache *s, struct page *page, 1471 void *object, u8 val) { return 1; } 1472 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1473 struct page *page) {} 1474 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1475 struct page *page) {} 1476 slab_flags_t kmem_cache_flags(unsigned int object_size, 1477 slab_flags_t flags, const char *name, 1478 void (*ctor)(void *)) 1479 { 1480 return flags; 1481 } 1482 #define slub_debug 0 1483 1484 #define disable_higher_order_debug 0 1485 1486 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1487 { return 0; } 1488 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1489 { return 0; } 1490 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1491 int objects) {} 1492 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1493 int objects) {} 1494 1495 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 1496 void **freelist, void *nextfree) 1497 { 1498 return false; 1499 } 1500 #endif /* CONFIG_SLUB_DEBUG */ 1501 1502 /* 1503 * Hooks for other subsystems that check memory allocations. In a typical 1504 * production configuration these hooks all should produce no code at all. 1505 */ 1506 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1507 { 1508 ptr = kasan_kmalloc_large(ptr, size, flags); 1509 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1510 kmemleak_alloc(ptr, size, 1, flags); 1511 return ptr; 1512 } 1513 1514 static __always_inline void kfree_hook(void *x) 1515 { 1516 kmemleak_free(x); 1517 kasan_kfree_large(x, _RET_IP_); 1518 } 1519 1520 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1521 { 1522 kmemleak_free_recursive(x, s->flags); 1523 1524 /* 1525 * Trouble is that we may no longer disable interrupts in the fast path 1526 * So in order to make the debug calls that expect irqs to be 1527 * disabled we need to disable interrupts temporarily. 1528 */ 1529 #ifdef CONFIG_LOCKDEP 1530 { 1531 unsigned long flags; 1532 1533 local_irq_save(flags); 1534 debug_check_no_locks_freed(x, s->object_size); 1535 local_irq_restore(flags); 1536 } 1537 #endif 1538 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1539 debug_check_no_obj_freed(x, s->object_size); 1540 1541 /* Use KCSAN to help debug racy use-after-free. */ 1542 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1543 __kcsan_check_access(x, s->object_size, 1544 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1545 1546 /* KASAN might put x into memory quarantine, delaying its reuse */ 1547 return kasan_slab_free(s, x, _RET_IP_); 1548 } 1549 1550 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1551 void **head, void **tail) 1552 { 1553 1554 void *object; 1555 void *next = *head; 1556 void *old_tail = *tail ? *tail : *head; 1557 int rsize; 1558 1559 /* Head and tail of the reconstructed freelist */ 1560 *head = NULL; 1561 *tail = NULL; 1562 1563 do { 1564 object = next; 1565 next = get_freepointer(s, object); 1566 1567 if (slab_want_init_on_free(s)) { 1568 /* 1569 * Clear the object and the metadata, but don't touch 1570 * the redzone. 1571 */ 1572 memset(kasan_reset_tag(object), 0, s->object_size); 1573 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1574 : 0; 1575 memset((char *)kasan_reset_tag(object) + s->inuse, 0, 1576 s->size - s->inuse - rsize); 1577 1578 } 1579 /* If object's reuse doesn't have to be delayed */ 1580 if (!slab_free_hook(s, object)) { 1581 /* Move object to the new freelist */ 1582 set_freepointer(s, object, *head); 1583 *head = object; 1584 if (!*tail) 1585 *tail = object; 1586 } 1587 } while (object != old_tail); 1588 1589 if (*head == *tail) 1590 *tail = NULL; 1591 1592 return *head != NULL; 1593 } 1594 1595 static void *setup_object(struct kmem_cache *s, struct page *page, 1596 void *object) 1597 { 1598 setup_object_debug(s, page, object); 1599 object = kasan_init_slab_obj(s, object); 1600 if (unlikely(s->ctor)) { 1601 kasan_unpoison_object_data(s, object); 1602 s->ctor(object); 1603 kasan_poison_object_data(s, object); 1604 } 1605 return object; 1606 } 1607 1608 /* 1609 * Slab allocation and freeing 1610 */ 1611 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1612 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1613 { 1614 struct page *page; 1615 unsigned int order = oo_order(oo); 1616 1617 if (node == NUMA_NO_NODE) 1618 page = alloc_pages(flags, order); 1619 else 1620 page = __alloc_pages_node(node, flags, order); 1621 1622 return page; 1623 } 1624 1625 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1626 /* Pre-initialize the random sequence cache */ 1627 static int init_cache_random_seq(struct kmem_cache *s) 1628 { 1629 unsigned int count = oo_objects(s->oo); 1630 int err; 1631 1632 /* Bailout if already initialised */ 1633 if (s->random_seq) 1634 return 0; 1635 1636 err = cache_random_seq_create(s, count, GFP_KERNEL); 1637 if (err) { 1638 pr_err("SLUB: Unable to initialize free list for %s\n", 1639 s->name); 1640 return err; 1641 } 1642 1643 /* Transform to an offset on the set of pages */ 1644 if (s->random_seq) { 1645 unsigned int i; 1646 1647 for (i = 0; i < count; i++) 1648 s->random_seq[i] *= s->size; 1649 } 1650 return 0; 1651 } 1652 1653 /* Initialize each random sequence freelist per cache */ 1654 static void __init init_freelist_randomization(void) 1655 { 1656 struct kmem_cache *s; 1657 1658 mutex_lock(&slab_mutex); 1659 1660 list_for_each_entry(s, &slab_caches, list) 1661 init_cache_random_seq(s); 1662 1663 mutex_unlock(&slab_mutex); 1664 } 1665 1666 /* Get the next entry on the pre-computed freelist randomized */ 1667 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1668 unsigned long *pos, void *start, 1669 unsigned long page_limit, 1670 unsigned long freelist_count) 1671 { 1672 unsigned int idx; 1673 1674 /* 1675 * If the target page allocation failed, the number of objects on the 1676 * page might be smaller than the usual size defined by the cache. 1677 */ 1678 do { 1679 idx = s->random_seq[*pos]; 1680 *pos += 1; 1681 if (*pos >= freelist_count) 1682 *pos = 0; 1683 } while (unlikely(idx >= page_limit)); 1684 1685 return (char *)start + idx; 1686 } 1687 1688 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1689 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1690 { 1691 void *start; 1692 void *cur; 1693 void *next; 1694 unsigned long idx, pos, page_limit, freelist_count; 1695 1696 if (page->objects < 2 || !s->random_seq) 1697 return false; 1698 1699 freelist_count = oo_objects(s->oo); 1700 pos = get_random_int() % freelist_count; 1701 1702 page_limit = page->objects * s->size; 1703 start = fixup_red_left(s, page_address(page)); 1704 1705 /* First entry is used as the base of the freelist */ 1706 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1707 freelist_count); 1708 cur = setup_object(s, page, cur); 1709 page->freelist = cur; 1710 1711 for (idx = 1; idx < page->objects; idx++) { 1712 next = next_freelist_entry(s, page, &pos, start, page_limit, 1713 freelist_count); 1714 next = setup_object(s, page, next); 1715 set_freepointer(s, cur, next); 1716 cur = next; 1717 } 1718 set_freepointer(s, cur, NULL); 1719 1720 return true; 1721 } 1722 #else 1723 static inline int init_cache_random_seq(struct kmem_cache *s) 1724 { 1725 return 0; 1726 } 1727 static inline void init_freelist_randomization(void) { } 1728 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1729 { 1730 return false; 1731 } 1732 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1733 1734 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1735 { 1736 struct page *page; 1737 struct kmem_cache_order_objects oo = s->oo; 1738 gfp_t alloc_gfp; 1739 void *start, *p, *next; 1740 int idx; 1741 bool shuffle; 1742 1743 flags &= gfp_allowed_mask; 1744 1745 if (gfpflags_allow_blocking(flags)) 1746 local_irq_enable(); 1747 1748 flags |= s->allocflags; 1749 1750 /* 1751 * Let the initial higher-order allocation fail under memory pressure 1752 * so we fall-back to the minimum order allocation. 1753 */ 1754 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1755 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1756 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1757 1758 page = alloc_slab_page(s, alloc_gfp, node, oo); 1759 if (unlikely(!page)) { 1760 oo = s->min; 1761 alloc_gfp = flags; 1762 /* 1763 * Allocation may have failed due to fragmentation. 1764 * Try a lower order alloc if possible 1765 */ 1766 page = alloc_slab_page(s, alloc_gfp, node, oo); 1767 if (unlikely(!page)) 1768 goto out; 1769 stat(s, ORDER_FALLBACK); 1770 } 1771 1772 page->objects = oo_objects(oo); 1773 1774 account_slab_page(page, oo_order(oo), s); 1775 1776 page->slab_cache = s; 1777 __SetPageSlab(page); 1778 if (page_is_pfmemalloc(page)) 1779 SetPageSlabPfmemalloc(page); 1780 1781 kasan_poison_slab(page); 1782 1783 start = page_address(page); 1784 1785 setup_page_debug(s, page, start); 1786 1787 shuffle = shuffle_freelist(s, page); 1788 1789 if (!shuffle) { 1790 start = fixup_red_left(s, start); 1791 start = setup_object(s, page, start); 1792 page->freelist = start; 1793 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1794 next = p + s->size; 1795 next = setup_object(s, page, next); 1796 set_freepointer(s, p, next); 1797 p = next; 1798 } 1799 set_freepointer(s, p, NULL); 1800 } 1801 1802 page->inuse = page->objects; 1803 page->frozen = 1; 1804 1805 out: 1806 if (gfpflags_allow_blocking(flags)) 1807 local_irq_disable(); 1808 if (!page) 1809 return NULL; 1810 1811 inc_slabs_node(s, page_to_nid(page), page->objects); 1812 1813 return page; 1814 } 1815 1816 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1817 { 1818 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 1819 flags = kmalloc_fix_flags(flags); 1820 1821 return allocate_slab(s, 1822 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1823 } 1824 1825 static void __free_slab(struct kmem_cache *s, struct page *page) 1826 { 1827 int order = compound_order(page); 1828 int pages = 1 << order; 1829 1830 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 1831 void *p; 1832 1833 slab_pad_check(s, page); 1834 for_each_object(p, s, page_address(page), 1835 page->objects) 1836 check_object(s, page, p, SLUB_RED_INACTIVE); 1837 } 1838 1839 __ClearPageSlabPfmemalloc(page); 1840 __ClearPageSlab(page); 1841 /* In union with page->mapping where page allocator expects NULL */ 1842 page->slab_cache = NULL; 1843 if (current->reclaim_state) 1844 current->reclaim_state->reclaimed_slab += pages; 1845 unaccount_slab_page(page, order, s); 1846 __free_pages(page, order); 1847 } 1848 1849 static void rcu_free_slab(struct rcu_head *h) 1850 { 1851 struct page *page = container_of(h, struct page, rcu_head); 1852 1853 __free_slab(page->slab_cache, page); 1854 } 1855 1856 static void free_slab(struct kmem_cache *s, struct page *page) 1857 { 1858 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1859 call_rcu(&page->rcu_head, rcu_free_slab); 1860 } else 1861 __free_slab(s, page); 1862 } 1863 1864 static void discard_slab(struct kmem_cache *s, struct page *page) 1865 { 1866 dec_slabs_node(s, page_to_nid(page), page->objects); 1867 free_slab(s, page); 1868 } 1869 1870 /* 1871 * Management of partially allocated slabs. 1872 */ 1873 static inline void 1874 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1875 { 1876 n->nr_partial++; 1877 if (tail == DEACTIVATE_TO_TAIL) 1878 list_add_tail(&page->slab_list, &n->partial); 1879 else 1880 list_add(&page->slab_list, &n->partial); 1881 } 1882 1883 static inline void add_partial(struct kmem_cache_node *n, 1884 struct page *page, int tail) 1885 { 1886 lockdep_assert_held(&n->list_lock); 1887 __add_partial(n, page, tail); 1888 } 1889 1890 static inline void remove_partial(struct kmem_cache_node *n, 1891 struct page *page) 1892 { 1893 lockdep_assert_held(&n->list_lock); 1894 list_del(&page->slab_list); 1895 n->nr_partial--; 1896 } 1897 1898 /* 1899 * Remove slab from the partial list, freeze it and 1900 * return the pointer to the freelist. 1901 * 1902 * Returns a list of objects or NULL if it fails. 1903 */ 1904 static inline void *acquire_slab(struct kmem_cache *s, 1905 struct kmem_cache_node *n, struct page *page, 1906 int mode, int *objects) 1907 { 1908 void *freelist; 1909 unsigned long counters; 1910 struct page new; 1911 1912 lockdep_assert_held(&n->list_lock); 1913 1914 /* 1915 * Zap the freelist and set the frozen bit. 1916 * The old freelist is the list of objects for the 1917 * per cpu allocation list. 1918 */ 1919 freelist = page->freelist; 1920 counters = page->counters; 1921 new.counters = counters; 1922 *objects = new.objects - new.inuse; 1923 if (mode) { 1924 new.inuse = page->objects; 1925 new.freelist = NULL; 1926 } else { 1927 new.freelist = freelist; 1928 } 1929 1930 VM_BUG_ON(new.frozen); 1931 new.frozen = 1; 1932 1933 if (!__cmpxchg_double_slab(s, page, 1934 freelist, counters, 1935 new.freelist, new.counters, 1936 "acquire_slab")) 1937 return NULL; 1938 1939 remove_partial(n, page); 1940 WARN_ON(!freelist); 1941 return freelist; 1942 } 1943 1944 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1945 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1946 1947 /* 1948 * Try to allocate a partial slab from a specific node. 1949 */ 1950 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1951 struct kmem_cache_cpu *c, gfp_t flags) 1952 { 1953 struct page *page, *page2; 1954 void *object = NULL; 1955 unsigned int available = 0; 1956 int objects; 1957 1958 /* 1959 * Racy check. If we mistakenly see no partial slabs then we 1960 * just allocate an empty slab. If we mistakenly try to get a 1961 * partial slab and there is none available then get_partial() 1962 * will return NULL. 1963 */ 1964 if (!n || !n->nr_partial) 1965 return NULL; 1966 1967 spin_lock(&n->list_lock); 1968 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1969 void *t; 1970 1971 if (!pfmemalloc_match(page, flags)) 1972 continue; 1973 1974 t = acquire_slab(s, n, page, object == NULL, &objects); 1975 if (!t) 1976 continue; /* cmpxchg raced */ 1977 1978 available += objects; 1979 if (!object) { 1980 c->page = page; 1981 stat(s, ALLOC_FROM_PARTIAL); 1982 object = t; 1983 } else { 1984 put_cpu_partial(s, page, 0); 1985 stat(s, CPU_PARTIAL_NODE); 1986 } 1987 if (!kmem_cache_has_cpu_partial(s) 1988 || available > slub_cpu_partial(s) / 2) 1989 break; 1990 1991 } 1992 spin_unlock(&n->list_lock); 1993 return object; 1994 } 1995 1996 /* 1997 * Get a page from somewhere. Search in increasing NUMA distances. 1998 */ 1999 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2000 struct kmem_cache_cpu *c) 2001 { 2002 #ifdef CONFIG_NUMA 2003 struct zonelist *zonelist; 2004 struct zoneref *z; 2005 struct zone *zone; 2006 enum zone_type highest_zoneidx = gfp_zone(flags); 2007 void *object; 2008 unsigned int cpuset_mems_cookie; 2009 2010 /* 2011 * The defrag ratio allows a configuration of the tradeoffs between 2012 * inter node defragmentation and node local allocations. A lower 2013 * defrag_ratio increases the tendency to do local allocations 2014 * instead of attempting to obtain partial slabs from other nodes. 2015 * 2016 * If the defrag_ratio is set to 0 then kmalloc() always 2017 * returns node local objects. If the ratio is higher then kmalloc() 2018 * may return off node objects because partial slabs are obtained 2019 * from other nodes and filled up. 2020 * 2021 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2022 * (which makes defrag_ratio = 1000) then every (well almost) 2023 * allocation will first attempt to defrag slab caches on other nodes. 2024 * This means scanning over all nodes to look for partial slabs which 2025 * may be expensive if we do it every time we are trying to find a slab 2026 * with available objects. 2027 */ 2028 if (!s->remote_node_defrag_ratio || 2029 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2030 return NULL; 2031 2032 do { 2033 cpuset_mems_cookie = read_mems_allowed_begin(); 2034 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2035 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2036 struct kmem_cache_node *n; 2037 2038 n = get_node(s, zone_to_nid(zone)); 2039 2040 if (n && cpuset_zone_allowed(zone, flags) && 2041 n->nr_partial > s->min_partial) { 2042 object = get_partial_node(s, n, c, flags); 2043 if (object) { 2044 /* 2045 * Don't check read_mems_allowed_retry() 2046 * here - if mems_allowed was updated in 2047 * parallel, that was a harmless race 2048 * between allocation and the cpuset 2049 * update 2050 */ 2051 return object; 2052 } 2053 } 2054 } 2055 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2056 #endif /* CONFIG_NUMA */ 2057 return NULL; 2058 } 2059 2060 /* 2061 * Get a partial page, lock it and return it. 2062 */ 2063 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2064 struct kmem_cache_cpu *c) 2065 { 2066 void *object; 2067 int searchnode = node; 2068 2069 if (node == NUMA_NO_NODE) 2070 searchnode = numa_mem_id(); 2071 2072 object = get_partial_node(s, get_node(s, searchnode), c, flags); 2073 if (object || node != NUMA_NO_NODE) 2074 return object; 2075 2076 return get_any_partial(s, flags, c); 2077 } 2078 2079 #ifdef CONFIG_PREEMPTION 2080 /* 2081 * Calculate the next globally unique transaction for disambiguation 2082 * during cmpxchg. The transactions start with the cpu number and are then 2083 * incremented by CONFIG_NR_CPUS. 2084 */ 2085 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2086 #else 2087 /* 2088 * No preemption supported therefore also no need to check for 2089 * different cpus. 2090 */ 2091 #define TID_STEP 1 2092 #endif 2093 2094 static inline unsigned long next_tid(unsigned long tid) 2095 { 2096 return tid + TID_STEP; 2097 } 2098 2099 #ifdef SLUB_DEBUG_CMPXCHG 2100 static inline unsigned int tid_to_cpu(unsigned long tid) 2101 { 2102 return tid % TID_STEP; 2103 } 2104 2105 static inline unsigned long tid_to_event(unsigned long tid) 2106 { 2107 return tid / TID_STEP; 2108 } 2109 #endif 2110 2111 static inline unsigned int init_tid(int cpu) 2112 { 2113 return cpu; 2114 } 2115 2116 static inline void note_cmpxchg_failure(const char *n, 2117 const struct kmem_cache *s, unsigned long tid) 2118 { 2119 #ifdef SLUB_DEBUG_CMPXCHG 2120 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2121 2122 pr_info("%s %s: cmpxchg redo ", n, s->name); 2123 2124 #ifdef CONFIG_PREEMPTION 2125 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2126 pr_warn("due to cpu change %d -> %d\n", 2127 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2128 else 2129 #endif 2130 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2131 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2132 tid_to_event(tid), tid_to_event(actual_tid)); 2133 else 2134 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2135 actual_tid, tid, next_tid(tid)); 2136 #endif 2137 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2138 } 2139 2140 static void init_kmem_cache_cpus(struct kmem_cache *s) 2141 { 2142 int cpu; 2143 2144 for_each_possible_cpu(cpu) 2145 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2146 } 2147 2148 /* 2149 * Remove the cpu slab 2150 */ 2151 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2152 void *freelist, struct kmem_cache_cpu *c) 2153 { 2154 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2155 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2156 int lock = 0; 2157 enum slab_modes l = M_NONE, m = M_NONE; 2158 void *nextfree; 2159 int tail = DEACTIVATE_TO_HEAD; 2160 struct page new; 2161 struct page old; 2162 2163 if (page->freelist) { 2164 stat(s, DEACTIVATE_REMOTE_FREES); 2165 tail = DEACTIVATE_TO_TAIL; 2166 } 2167 2168 /* 2169 * Stage one: Free all available per cpu objects back 2170 * to the page freelist while it is still frozen. Leave the 2171 * last one. 2172 * 2173 * There is no need to take the list->lock because the page 2174 * is still frozen. 2175 */ 2176 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2177 void *prior; 2178 unsigned long counters; 2179 2180 /* 2181 * If 'nextfree' is invalid, it is possible that the object at 2182 * 'freelist' is already corrupted. So isolate all objects 2183 * starting at 'freelist'. 2184 */ 2185 if (freelist_corrupted(s, page, &freelist, nextfree)) 2186 break; 2187 2188 do { 2189 prior = page->freelist; 2190 counters = page->counters; 2191 set_freepointer(s, freelist, prior); 2192 new.counters = counters; 2193 new.inuse--; 2194 VM_BUG_ON(!new.frozen); 2195 2196 } while (!__cmpxchg_double_slab(s, page, 2197 prior, counters, 2198 freelist, new.counters, 2199 "drain percpu freelist")); 2200 2201 freelist = nextfree; 2202 } 2203 2204 /* 2205 * Stage two: Ensure that the page is unfrozen while the 2206 * list presence reflects the actual number of objects 2207 * during unfreeze. 2208 * 2209 * We setup the list membership and then perform a cmpxchg 2210 * with the count. If there is a mismatch then the page 2211 * is not unfrozen but the page is on the wrong list. 2212 * 2213 * Then we restart the process which may have to remove 2214 * the page from the list that we just put it on again 2215 * because the number of objects in the slab may have 2216 * changed. 2217 */ 2218 redo: 2219 2220 old.freelist = page->freelist; 2221 old.counters = page->counters; 2222 VM_BUG_ON(!old.frozen); 2223 2224 /* Determine target state of the slab */ 2225 new.counters = old.counters; 2226 if (freelist) { 2227 new.inuse--; 2228 set_freepointer(s, freelist, old.freelist); 2229 new.freelist = freelist; 2230 } else 2231 new.freelist = old.freelist; 2232 2233 new.frozen = 0; 2234 2235 if (!new.inuse && n->nr_partial >= s->min_partial) 2236 m = M_FREE; 2237 else if (new.freelist) { 2238 m = M_PARTIAL; 2239 if (!lock) { 2240 lock = 1; 2241 /* 2242 * Taking the spinlock removes the possibility 2243 * that acquire_slab() will see a slab page that 2244 * is frozen 2245 */ 2246 spin_lock(&n->list_lock); 2247 } 2248 } else { 2249 m = M_FULL; 2250 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { 2251 lock = 1; 2252 /* 2253 * This also ensures that the scanning of full 2254 * slabs from diagnostic functions will not see 2255 * any frozen slabs. 2256 */ 2257 spin_lock(&n->list_lock); 2258 } 2259 } 2260 2261 if (l != m) { 2262 if (l == M_PARTIAL) 2263 remove_partial(n, page); 2264 else if (l == M_FULL) 2265 remove_full(s, n, page); 2266 2267 if (m == M_PARTIAL) 2268 add_partial(n, page, tail); 2269 else if (m == M_FULL) 2270 add_full(s, n, page); 2271 } 2272 2273 l = m; 2274 if (!__cmpxchg_double_slab(s, page, 2275 old.freelist, old.counters, 2276 new.freelist, new.counters, 2277 "unfreezing slab")) 2278 goto redo; 2279 2280 if (lock) 2281 spin_unlock(&n->list_lock); 2282 2283 if (m == M_PARTIAL) 2284 stat(s, tail); 2285 else if (m == M_FULL) 2286 stat(s, DEACTIVATE_FULL); 2287 else if (m == M_FREE) { 2288 stat(s, DEACTIVATE_EMPTY); 2289 discard_slab(s, page); 2290 stat(s, FREE_SLAB); 2291 } 2292 2293 c->page = NULL; 2294 c->freelist = NULL; 2295 } 2296 2297 /* 2298 * Unfreeze all the cpu partial slabs. 2299 * 2300 * This function must be called with interrupts disabled 2301 * for the cpu using c (or some other guarantee must be there 2302 * to guarantee no concurrent accesses). 2303 */ 2304 static void unfreeze_partials(struct kmem_cache *s, 2305 struct kmem_cache_cpu *c) 2306 { 2307 #ifdef CONFIG_SLUB_CPU_PARTIAL 2308 struct kmem_cache_node *n = NULL, *n2 = NULL; 2309 struct page *page, *discard_page = NULL; 2310 2311 while ((page = slub_percpu_partial(c))) { 2312 struct page new; 2313 struct page old; 2314 2315 slub_set_percpu_partial(c, page); 2316 2317 n2 = get_node(s, page_to_nid(page)); 2318 if (n != n2) { 2319 if (n) 2320 spin_unlock(&n->list_lock); 2321 2322 n = n2; 2323 spin_lock(&n->list_lock); 2324 } 2325 2326 do { 2327 2328 old.freelist = page->freelist; 2329 old.counters = page->counters; 2330 VM_BUG_ON(!old.frozen); 2331 2332 new.counters = old.counters; 2333 new.freelist = old.freelist; 2334 2335 new.frozen = 0; 2336 2337 } while (!__cmpxchg_double_slab(s, page, 2338 old.freelist, old.counters, 2339 new.freelist, new.counters, 2340 "unfreezing slab")); 2341 2342 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2343 page->next = discard_page; 2344 discard_page = page; 2345 } else { 2346 add_partial(n, page, DEACTIVATE_TO_TAIL); 2347 stat(s, FREE_ADD_PARTIAL); 2348 } 2349 } 2350 2351 if (n) 2352 spin_unlock(&n->list_lock); 2353 2354 while (discard_page) { 2355 page = discard_page; 2356 discard_page = discard_page->next; 2357 2358 stat(s, DEACTIVATE_EMPTY); 2359 discard_slab(s, page); 2360 stat(s, FREE_SLAB); 2361 } 2362 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2363 } 2364 2365 /* 2366 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2367 * partial page slot if available. 2368 * 2369 * If we did not find a slot then simply move all the partials to the 2370 * per node partial list. 2371 */ 2372 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2373 { 2374 #ifdef CONFIG_SLUB_CPU_PARTIAL 2375 struct page *oldpage; 2376 int pages; 2377 int pobjects; 2378 2379 preempt_disable(); 2380 do { 2381 pages = 0; 2382 pobjects = 0; 2383 oldpage = this_cpu_read(s->cpu_slab->partial); 2384 2385 if (oldpage) { 2386 pobjects = oldpage->pobjects; 2387 pages = oldpage->pages; 2388 if (drain && pobjects > slub_cpu_partial(s)) { 2389 unsigned long flags; 2390 /* 2391 * partial array is full. Move the existing 2392 * set to the per node partial list. 2393 */ 2394 local_irq_save(flags); 2395 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2396 local_irq_restore(flags); 2397 oldpage = NULL; 2398 pobjects = 0; 2399 pages = 0; 2400 stat(s, CPU_PARTIAL_DRAIN); 2401 } 2402 } 2403 2404 pages++; 2405 pobjects += page->objects - page->inuse; 2406 2407 page->pages = pages; 2408 page->pobjects = pobjects; 2409 page->next = oldpage; 2410 2411 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2412 != oldpage); 2413 if (unlikely(!slub_cpu_partial(s))) { 2414 unsigned long flags; 2415 2416 local_irq_save(flags); 2417 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2418 local_irq_restore(flags); 2419 } 2420 preempt_enable(); 2421 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2422 } 2423 2424 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2425 { 2426 stat(s, CPUSLAB_FLUSH); 2427 deactivate_slab(s, c->page, c->freelist, c); 2428 2429 c->tid = next_tid(c->tid); 2430 } 2431 2432 /* 2433 * Flush cpu slab. 2434 * 2435 * Called from IPI handler with interrupts disabled. 2436 */ 2437 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2438 { 2439 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2440 2441 if (c->page) 2442 flush_slab(s, c); 2443 2444 unfreeze_partials(s, c); 2445 } 2446 2447 static void flush_cpu_slab(void *d) 2448 { 2449 struct kmem_cache *s = d; 2450 2451 __flush_cpu_slab(s, smp_processor_id()); 2452 } 2453 2454 static bool has_cpu_slab(int cpu, void *info) 2455 { 2456 struct kmem_cache *s = info; 2457 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2458 2459 return c->page || slub_percpu_partial(c); 2460 } 2461 2462 static void flush_all(struct kmem_cache *s) 2463 { 2464 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); 2465 } 2466 2467 /* 2468 * Use the cpu notifier to insure that the cpu slabs are flushed when 2469 * necessary. 2470 */ 2471 static int slub_cpu_dead(unsigned int cpu) 2472 { 2473 struct kmem_cache *s; 2474 unsigned long flags; 2475 2476 mutex_lock(&slab_mutex); 2477 list_for_each_entry(s, &slab_caches, list) { 2478 local_irq_save(flags); 2479 __flush_cpu_slab(s, cpu); 2480 local_irq_restore(flags); 2481 } 2482 mutex_unlock(&slab_mutex); 2483 return 0; 2484 } 2485 2486 /* 2487 * Check if the objects in a per cpu structure fit numa 2488 * locality expectations. 2489 */ 2490 static inline int node_match(struct page *page, int node) 2491 { 2492 #ifdef CONFIG_NUMA 2493 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2494 return 0; 2495 #endif 2496 return 1; 2497 } 2498 2499 #ifdef CONFIG_SLUB_DEBUG 2500 static int count_free(struct page *page) 2501 { 2502 return page->objects - page->inuse; 2503 } 2504 2505 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2506 { 2507 return atomic_long_read(&n->total_objects); 2508 } 2509 #endif /* CONFIG_SLUB_DEBUG */ 2510 2511 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2512 static unsigned long count_partial(struct kmem_cache_node *n, 2513 int (*get_count)(struct page *)) 2514 { 2515 unsigned long flags; 2516 unsigned long x = 0; 2517 struct page *page; 2518 2519 spin_lock_irqsave(&n->list_lock, flags); 2520 list_for_each_entry(page, &n->partial, slab_list) 2521 x += get_count(page); 2522 spin_unlock_irqrestore(&n->list_lock, flags); 2523 return x; 2524 } 2525 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2526 2527 static noinline void 2528 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2529 { 2530 #ifdef CONFIG_SLUB_DEBUG 2531 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2532 DEFAULT_RATELIMIT_BURST); 2533 int node; 2534 struct kmem_cache_node *n; 2535 2536 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2537 return; 2538 2539 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2540 nid, gfpflags, &gfpflags); 2541 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2542 s->name, s->object_size, s->size, oo_order(s->oo), 2543 oo_order(s->min)); 2544 2545 if (oo_order(s->min) > get_order(s->object_size)) 2546 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2547 s->name); 2548 2549 for_each_kmem_cache_node(s, node, n) { 2550 unsigned long nr_slabs; 2551 unsigned long nr_objs; 2552 unsigned long nr_free; 2553 2554 nr_free = count_partial(n, count_free); 2555 nr_slabs = node_nr_slabs(n); 2556 nr_objs = node_nr_objs(n); 2557 2558 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2559 node, nr_slabs, nr_objs, nr_free); 2560 } 2561 #endif 2562 } 2563 2564 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2565 int node, struct kmem_cache_cpu **pc) 2566 { 2567 void *freelist; 2568 struct kmem_cache_cpu *c = *pc; 2569 struct page *page; 2570 2571 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2572 2573 freelist = get_partial(s, flags, node, c); 2574 2575 if (freelist) 2576 return freelist; 2577 2578 page = new_slab(s, flags, node); 2579 if (page) { 2580 c = raw_cpu_ptr(s->cpu_slab); 2581 if (c->page) 2582 flush_slab(s, c); 2583 2584 /* 2585 * No other reference to the page yet so we can 2586 * muck around with it freely without cmpxchg 2587 */ 2588 freelist = page->freelist; 2589 page->freelist = NULL; 2590 2591 stat(s, ALLOC_SLAB); 2592 c->page = page; 2593 *pc = c; 2594 } 2595 2596 return freelist; 2597 } 2598 2599 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2600 { 2601 if (unlikely(PageSlabPfmemalloc(page))) 2602 return gfp_pfmemalloc_allowed(gfpflags); 2603 2604 return true; 2605 } 2606 2607 /* 2608 * Check the page->freelist of a page and either transfer the freelist to the 2609 * per cpu freelist or deactivate the page. 2610 * 2611 * The page is still frozen if the return value is not NULL. 2612 * 2613 * If this function returns NULL then the page has been unfrozen. 2614 * 2615 * This function must be called with interrupt disabled. 2616 */ 2617 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2618 { 2619 struct page new; 2620 unsigned long counters; 2621 void *freelist; 2622 2623 do { 2624 freelist = page->freelist; 2625 counters = page->counters; 2626 2627 new.counters = counters; 2628 VM_BUG_ON(!new.frozen); 2629 2630 new.inuse = page->objects; 2631 new.frozen = freelist != NULL; 2632 2633 } while (!__cmpxchg_double_slab(s, page, 2634 freelist, counters, 2635 NULL, new.counters, 2636 "get_freelist")); 2637 2638 return freelist; 2639 } 2640 2641 /* 2642 * Slow path. The lockless freelist is empty or we need to perform 2643 * debugging duties. 2644 * 2645 * Processing is still very fast if new objects have been freed to the 2646 * regular freelist. In that case we simply take over the regular freelist 2647 * as the lockless freelist and zap the regular freelist. 2648 * 2649 * If that is not working then we fall back to the partial lists. We take the 2650 * first element of the freelist as the object to allocate now and move the 2651 * rest of the freelist to the lockless freelist. 2652 * 2653 * And if we were unable to get a new slab from the partial slab lists then 2654 * we need to allocate a new slab. This is the slowest path since it involves 2655 * a call to the page allocator and the setup of a new slab. 2656 * 2657 * Version of __slab_alloc to use when we know that interrupts are 2658 * already disabled (which is the case for bulk allocation). 2659 */ 2660 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2661 unsigned long addr, struct kmem_cache_cpu *c) 2662 { 2663 void *freelist; 2664 struct page *page; 2665 2666 stat(s, ALLOC_SLOWPATH); 2667 2668 page = c->page; 2669 if (!page) { 2670 /* 2671 * if the node is not online or has no normal memory, just 2672 * ignore the node constraint 2673 */ 2674 if (unlikely(node != NUMA_NO_NODE && 2675 !node_state(node, N_NORMAL_MEMORY))) 2676 node = NUMA_NO_NODE; 2677 goto new_slab; 2678 } 2679 redo: 2680 2681 if (unlikely(!node_match(page, node))) { 2682 /* 2683 * same as above but node_match() being false already 2684 * implies node != NUMA_NO_NODE 2685 */ 2686 if (!node_state(node, N_NORMAL_MEMORY)) { 2687 node = NUMA_NO_NODE; 2688 goto redo; 2689 } else { 2690 stat(s, ALLOC_NODE_MISMATCH); 2691 deactivate_slab(s, page, c->freelist, c); 2692 goto new_slab; 2693 } 2694 } 2695 2696 /* 2697 * By rights, we should be searching for a slab page that was 2698 * PFMEMALLOC but right now, we are losing the pfmemalloc 2699 * information when the page leaves the per-cpu allocator 2700 */ 2701 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2702 deactivate_slab(s, page, c->freelist, c); 2703 goto new_slab; 2704 } 2705 2706 /* must check again c->freelist in case of cpu migration or IRQ */ 2707 freelist = c->freelist; 2708 if (freelist) 2709 goto load_freelist; 2710 2711 freelist = get_freelist(s, page); 2712 2713 if (!freelist) { 2714 c->page = NULL; 2715 stat(s, DEACTIVATE_BYPASS); 2716 goto new_slab; 2717 } 2718 2719 stat(s, ALLOC_REFILL); 2720 2721 load_freelist: 2722 /* 2723 * freelist is pointing to the list of objects to be used. 2724 * page is pointing to the page from which the objects are obtained. 2725 * That page must be frozen for per cpu allocations to work. 2726 */ 2727 VM_BUG_ON(!c->page->frozen); 2728 c->freelist = get_freepointer(s, freelist); 2729 c->tid = next_tid(c->tid); 2730 return freelist; 2731 2732 new_slab: 2733 2734 if (slub_percpu_partial(c)) { 2735 page = c->page = slub_percpu_partial(c); 2736 slub_set_percpu_partial(c, page); 2737 stat(s, CPU_PARTIAL_ALLOC); 2738 goto redo; 2739 } 2740 2741 freelist = new_slab_objects(s, gfpflags, node, &c); 2742 2743 if (unlikely(!freelist)) { 2744 slab_out_of_memory(s, gfpflags, node); 2745 return NULL; 2746 } 2747 2748 page = c->page; 2749 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2750 goto load_freelist; 2751 2752 /* Only entered in the debug case */ 2753 if (kmem_cache_debug(s) && 2754 !alloc_debug_processing(s, page, freelist, addr)) 2755 goto new_slab; /* Slab failed checks. Next slab needed */ 2756 2757 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2758 return freelist; 2759 } 2760 2761 /* 2762 * Another one that disabled interrupt and compensates for possible 2763 * cpu changes by refetching the per cpu area pointer. 2764 */ 2765 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2766 unsigned long addr, struct kmem_cache_cpu *c) 2767 { 2768 void *p; 2769 unsigned long flags; 2770 2771 local_irq_save(flags); 2772 #ifdef CONFIG_PREEMPTION 2773 /* 2774 * We may have been preempted and rescheduled on a different 2775 * cpu before disabling interrupts. Need to reload cpu area 2776 * pointer. 2777 */ 2778 c = this_cpu_ptr(s->cpu_slab); 2779 #endif 2780 2781 p = ___slab_alloc(s, gfpflags, node, addr, c); 2782 local_irq_restore(flags); 2783 return p; 2784 } 2785 2786 /* 2787 * If the object has been wiped upon free, make sure it's fully initialized by 2788 * zeroing out freelist pointer. 2789 */ 2790 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2791 void *obj) 2792 { 2793 if (unlikely(slab_want_init_on_free(s)) && obj) 2794 memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); 2795 } 2796 2797 /* 2798 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2799 * have the fastpath folded into their functions. So no function call 2800 * overhead for requests that can be satisfied on the fastpath. 2801 * 2802 * The fastpath works by first checking if the lockless freelist can be used. 2803 * If not then __slab_alloc is called for slow processing. 2804 * 2805 * Otherwise we can simply pick the next object from the lockless free list. 2806 */ 2807 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2808 gfp_t gfpflags, int node, unsigned long addr) 2809 { 2810 void *object; 2811 struct kmem_cache_cpu *c; 2812 struct page *page; 2813 unsigned long tid; 2814 struct obj_cgroup *objcg = NULL; 2815 2816 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); 2817 if (!s) 2818 return NULL; 2819 redo: 2820 /* 2821 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2822 * enabled. We may switch back and forth between cpus while 2823 * reading from one cpu area. That does not matter as long 2824 * as we end up on the original cpu again when doing the cmpxchg. 2825 * 2826 * We should guarantee that tid and kmem_cache are retrieved on 2827 * the same cpu. It could be different if CONFIG_PREEMPTION so we need 2828 * to check if it is matched or not. 2829 */ 2830 do { 2831 tid = this_cpu_read(s->cpu_slab->tid); 2832 c = raw_cpu_ptr(s->cpu_slab); 2833 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2834 unlikely(tid != READ_ONCE(c->tid))); 2835 2836 /* 2837 * Irqless object alloc/free algorithm used here depends on sequence 2838 * of fetching cpu_slab's data. tid should be fetched before anything 2839 * on c to guarantee that object and page associated with previous tid 2840 * won't be used with current tid. If we fetch tid first, object and 2841 * page could be one associated with next tid and our alloc/free 2842 * request will be failed. In this case, we will retry. So, no problem. 2843 */ 2844 barrier(); 2845 2846 /* 2847 * The transaction ids are globally unique per cpu and per operation on 2848 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2849 * occurs on the right processor and that there was no operation on the 2850 * linked list in between. 2851 */ 2852 2853 object = c->freelist; 2854 page = c->page; 2855 if (unlikely(!object || !page || !node_match(page, node))) { 2856 object = __slab_alloc(s, gfpflags, node, addr, c); 2857 } else { 2858 void *next_object = get_freepointer_safe(s, object); 2859 2860 /* 2861 * The cmpxchg will only match if there was no additional 2862 * operation and if we are on the right processor. 2863 * 2864 * The cmpxchg does the following atomically (without lock 2865 * semantics!) 2866 * 1. Relocate first pointer to the current per cpu area. 2867 * 2. Verify that tid and freelist have not been changed 2868 * 3. If they were not changed replace tid and freelist 2869 * 2870 * Since this is without lock semantics the protection is only 2871 * against code executing on this cpu *not* from access by 2872 * other cpus. 2873 */ 2874 if (unlikely(!this_cpu_cmpxchg_double( 2875 s->cpu_slab->freelist, s->cpu_slab->tid, 2876 object, tid, 2877 next_object, next_tid(tid)))) { 2878 2879 note_cmpxchg_failure("slab_alloc", s, tid); 2880 goto redo; 2881 } 2882 prefetch_freepointer(s, next_object); 2883 stat(s, ALLOC_FASTPATH); 2884 } 2885 2886 maybe_wipe_obj_freeptr(s, kasan_reset_tag(object)); 2887 2888 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2889 memset(kasan_reset_tag(object), 0, s->object_size); 2890 2891 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object); 2892 2893 return object; 2894 } 2895 2896 static __always_inline void *slab_alloc(struct kmem_cache *s, 2897 gfp_t gfpflags, unsigned long addr) 2898 { 2899 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2900 } 2901 2902 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2903 { 2904 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2905 2906 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2907 s->size, gfpflags); 2908 2909 return ret; 2910 } 2911 EXPORT_SYMBOL(kmem_cache_alloc); 2912 2913 #ifdef CONFIG_TRACING 2914 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2915 { 2916 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2917 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2918 ret = kasan_kmalloc(s, ret, size, gfpflags); 2919 return ret; 2920 } 2921 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2922 #endif 2923 2924 #ifdef CONFIG_NUMA 2925 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2926 { 2927 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2928 2929 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2930 s->object_size, s->size, gfpflags, node); 2931 2932 return ret; 2933 } 2934 EXPORT_SYMBOL(kmem_cache_alloc_node); 2935 2936 #ifdef CONFIG_TRACING 2937 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2938 gfp_t gfpflags, 2939 int node, size_t size) 2940 { 2941 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2942 2943 trace_kmalloc_node(_RET_IP_, ret, 2944 size, s->size, gfpflags, node); 2945 2946 ret = kasan_kmalloc(s, ret, size, gfpflags); 2947 return ret; 2948 } 2949 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2950 #endif 2951 #endif /* CONFIG_NUMA */ 2952 2953 /* 2954 * Slow path handling. This may still be called frequently since objects 2955 * have a longer lifetime than the cpu slabs in most processing loads. 2956 * 2957 * So we still attempt to reduce cache line usage. Just take the slab 2958 * lock and free the item. If there is no additional partial page 2959 * handling required then we can return immediately. 2960 */ 2961 static void __slab_free(struct kmem_cache *s, struct page *page, 2962 void *head, void *tail, int cnt, 2963 unsigned long addr) 2964 2965 { 2966 void *prior; 2967 int was_frozen; 2968 struct page new; 2969 unsigned long counters; 2970 struct kmem_cache_node *n = NULL; 2971 unsigned long flags; 2972 2973 stat(s, FREE_SLOWPATH); 2974 2975 if (kmem_cache_debug(s) && 2976 !free_debug_processing(s, page, head, tail, cnt, addr)) 2977 return; 2978 2979 do { 2980 if (unlikely(n)) { 2981 spin_unlock_irqrestore(&n->list_lock, flags); 2982 n = NULL; 2983 } 2984 prior = page->freelist; 2985 counters = page->counters; 2986 set_freepointer(s, tail, prior); 2987 new.counters = counters; 2988 was_frozen = new.frozen; 2989 new.inuse -= cnt; 2990 if ((!new.inuse || !prior) && !was_frozen) { 2991 2992 if (kmem_cache_has_cpu_partial(s) && !prior) { 2993 2994 /* 2995 * Slab was on no list before and will be 2996 * partially empty 2997 * We can defer the list move and instead 2998 * freeze it. 2999 */ 3000 new.frozen = 1; 3001 3002 } else { /* Needs to be taken off a list */ 3003 3004 n = get_node(s, page_to_nid(page)); 3005 /* 3006 * Speculatively acquire the list_lock. 3007 * If the cmpxchg does not succeed then we may 3008 * drop the list_lock without any processing. 3009 * 3010 * Otherwise the list_lock will synchronize with 3011 * other processors updating the list of slabs. 3012 */ 3013 spin_lock_irqsave(&n->list_lock, flags); 3014 3015 } 3016 } 3017 3018 } while (!cmpxchg_double_slab(s, page, 3019 prior, counters, 3020 head, new.counters, 3021 "__slab_free")); 3022 3023 if (likely(!n)) { 3024 3025 if (likely(was_frozen)) { 3026 /* 3027 * The list lock was not taken therefore no list 3028 * activity can be necessary. 3029 */ 3030 stat(s, FREE_FROZEN); 3031 } else if (new.frozen) { 3032 /* 3033 * If we just froze the page then put it onto the 3034 * per cpu partial list. 3035 */ 3036 put_cpu_partial(s, page, 1); 3037 stat(s, CPU_PARTIAL_FREE); 3038 } 3039 3040 return; 3041 } 3042 3043 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3044 goto slab_empty; 3045 3046 /* 3047 * Objects left in the slab. If it was not on the partial list before 3048 * then add it. 3049 */ 3050 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3051 remove_full(s, n, page); 3052 add_partial(n, page, DEACTIVATE_TO_TAIL); 3053 stat(s, FREE_ADD_PARTIAL); 3054 } 3055 spin_unlock_irqrestore(&n->list_lock, flags); 3056 return; 3057 3058 slab_empty: 3059 if (prior) { 3060 /* 3061 * Slab on the partial list. 3062 */ 3063 remove_partial(n, page); 3064 stat(s, FREE_REMOVE_PARTIAL); 3065 } else { 3066 /* Slab must be on the full list */ 3067 remove_full(s, n, page); 3068 } 3069 3070 spin_unlock_irqrestore(&n->list_lock, flags); 3071 stat(s, FREE_SLAB); 3072 discard_slab(s, page); 3073 } 3074 3075 /* 3076 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3077 * can perform fastpath freeing without additional function calls. 3078 * 3079 * The fastpath is only possible if we are freeing to the current cpu slab 3080 * of this processor. This typically the case if we have just allocated 3081 * the item before. 3082 * 3083 * If fastpath is not possible then fall back to __slab_free where we deal 3084 * with all sorts of special processing. 3085 * 3086 * Bulk free of a freelist with several objects (all pointing to the 3087 * same page) possible by specifying head and tail ptr, plus objects 3088 * count (cnt). Bulk free indicated by tail pointer being set. 3089 */ 3090 static __always_inline void do_slab_free(struct kmem_cache *s, 3091 struct page *page, void *head, void *tail, 3092 int cnt, unsigned long addr) 3093 { 3094 void *tail_obj = tail ? : head; 3095 struct kmem_cache_cpu *c; 3096 unsigned long tid; 3097 3098 memcg_slab_free_hook(s, &head, 1); 3099 redo: 3100 /* 3101 * Determine the currently cpus per cpu slab. 3102 * The cpu may change afterward. However that does not matter since 3103 * data is retrieved via this pointer. If we are on the same cpu 3104 * during the cmpxchg then the free will succeed. 3105 */ 3106 do { 3107 tid = this_cpu_read(s->cpu_slab->tid); 3108 c = raw_cpu_ptr(s->cpu_slab); 3109 } while (IS_ENABLED(CONFIG_PREEMPTION) && 3110 unlikely(tid != READ_ONCE(c->tid))); 3111 3112 /* Same with comment on barrier() in slab_alloc_node() */ 3113 barrier(); 3114 3115 if (likely(page == c->page)) { 3116 void **freelist = READ_ONCE(c->freelist); 3117 3118 set_freepointer(s, tail_obj, freelist); 3119 3120 if (unlikely(!this_cpu_cmpxchg_double( 3121 s->cpu_slab->freelist, s->cpu_slab->tid, 3122 freelist, tid, 3123 head, next_tid(tid)))) { 3124 3125 note_cmpxchg_failure("slab_free", s, tid); 3126 goto redo; 3127 } 3128 stat(s, FREE_FASTPATH); 3129 } else 3130 __slab_free(s, page, head, tail_obj, cnt, addr); 3131 3132 } 3133 3134 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3135 void *head, void *tail, int cnt, 3136 unsigned long addr) 3137 { 3138 /* 3139 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3140 * to remove objects, whose reuse must be delayed. 3141 */ 3142 if (slab_free_freelist_hook(s, &head, &tail)) 3143 do_slab_free(s, page, head, tail, cnt, addr); 3144 } 3145 3146 #ifdef CONFIG_KASAN_GENERIC 3147 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3148 { 3149 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3150 } 3151 #endif 3152 3153 void kmem_cache_free(struct kmem_cache *s, void *x) 3154 { 3155 s = cache_from_obj(s, x); 3156 if (!s) 3157 return; 3158 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3159 trace_kmem_cache_free(_RET_IP_, x); 3160 } 3161 EXPORT_SYMBOL(kmem_cache_free); 3162 3163 struct detached_freelist { 3164 struct page *page; 3165 void *tail; 3166 void *freelist; 3167 int cnt; 3168 struct kmem_cache *s; 3169 }; 3170 3171 /* 3172 * This function progressively scans the array with free objects (with 3173 * a limited look ahead) and extract objects belonging to the same 3174 * page. It builds a detached freelist directly within the given 3175 * page/objects. This can happen without any need for 3176 * synchronization, because the objects are owned by running process. 3177 * The freelist is build up as a single linked list in the objects. 3178 * The idea is, that this detached freelist can then be bulk 3179 * transferred to the real freelist(s), but only requiring a single 3180 * synchronization primitive. Look ahead in the array is limited due 3181 * to performance reasons. 3182 */ 3183 static inline 3184 int build_detached_freelist(struct kmem_cache *s, size_t size, 3185 void **p, struct detached_freelist *df) 3186 { 3187 size_t first_skipped_index = 0; 3188 int lookahead = 3; 3189 void *object; 3190 struct page *page; 3191 3192 /* Always re-init detached_freelist */ 3193 df->page = NULL; 3194 3195 do { 3196 object = p[--size]; 3197 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3198 } while (!object && size); 3199 3200 if (!object) 3201 return 0; 3202 3203 page = virt_to_head_page(object); 3204 if (!s) { 3205 /* Handle kalloc'ed objects */ 3206 if (unlikely(!PageSlab(page))) { 3207 BUG_ON(!PageCompound(page)); 3208 kfree_hook(object); 3209 __free_pages(page, compound_order(page)); 3210 p[size] = NULL; /* mark object processed */ 3211 return size; 3212 } 3213 /* Derive kmem_cache from object */ 3214 df->s = page->slab_cache; 3215 } else { 3216 df->s = cache_from_obj(s, object); /* Support for memcg */ 3217 } 3218 3219 /* Start new detached freelist */ 3220 df->page = page; 3221 set_freepointer(df->s, object, NULL); 3222 df->tail = object; 3223 df->freelist = object; 3224 p[size] = NULL; /* mark object processed */ 3225 df->cnt = 1; 3226 3227 while (size) { 3228 object = p[--size]; 3229 if (!object) 3230 continue; /* Skip processed objects */ 3231 3232 /* df->page is always set at this point */ 3233 if (df->page == virt_to_head_page(object)) { 3234 /* Opportunity build freelist */ 3235 set_freepointer(df->s, object, df->freelist); 3236 df->freelist = object; 3237 df->cnt++; 3238 p[size] = NULL; /* mark object processed */ 3239 3240 continue; 3241 } 3242 3243 /* Limit look ahead search */ 3244 if (!--lookahead) 3245 break; 3246 3247 if (!first_skipped_index) 3248 first_skipped_index = size + 1; 3249 } 3250 3251 return first_skipped_index; 3252 } 3253 3254 /* Note that interrupts must be enabled when calling this function. */ 3255 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3256 { 3257 if (WARN_ON(!size)) 3258 return; 3259 3260 memcg_slab_free_hook(s, p, size); 3261 do { 3262 struct detached_freelist df; 3263 3264 size = build_detached_freelist(s, size, p, &df); 3265 if (!df.page) 3266 continue; 3267 3268 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3269 } while (likely(size)); 3270 } 3271 EXPORT_SYMBOL(kmem_cache_free_bulk); 3272 3273 /* Note that interrupts must be enabled when calling this function. */ 3274 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3275 void **p) 3276 { 3277 struct kmem_cache_cpu *c; 3278 int i; 3279 struct obj_cgroup *objcg = NULL; 3280 3281 /* memcg and kmem_cache debug support */ 3282 s = slab_pre_alloc_hook(s, &objcg, size, flags); 3283 if (unlikely(!s)) 3284 return false; 3285 /* 3286 * Drain objects in the per cpu slab, while disabling local 3287 * IRQs, which protects against PREEMPT and interrupts 3288 * handlers invoking normal fastpath. 3289 */ 3290 local_irq_disable(); 3291 c = this_cpu_ptr(s->cpu_slab); 3292 3293 for (i = 0; i < size; i++) { 3294 void *object = c->freelist; 3295 3296 if (unlikely(!object)) { 3297 /* 3298 * We may have removed an object from c->freelist using 3299 * the fastpath in the previous iteration; in that case, 3300 * c->tid has not been bumped yet. 3301 * Since ___slab_alloc() may reenable interrupts while 3302 * allocating memory, we should bump c->tid now. 3303 */ 3304 c->tid = next_tid(c->tid); 3305 3306 /* 3307 * Invoking slow path likely have side-effect 3308 * of re-populating per CPU c->freelist 3309 */ 3310 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3311 _RET_IP_, c); 3312 if (unlikely(!p[i])) 3313 goto error; 3314 3315 c = this_cpu_ptr(s->cpu_slab); 3316 maybe_wipe_obj_freeptr(s, p[i]); 3317 3318 continue; /* goto for-loop */ 3319 } 3320 c->freelist = get_freepointer(s, object); 3321 p[i] = object; 3322 maybe_wipe_obj_freeptr(s, p[i]); 3323 } 3324 c->tid = next_tid(c->tid); 3325 local_irq_enable(); 3326 3327 /* Clear memory outside IRQ disabled fastpath loop */ 3328 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3329 int j; 3330 3331 for (j = 0; j < i; j++) 3332 memset(p[j], 0, s->object_size); 3333 } 3334 3335 /* memcg and kmem_cache debug support */ 3336 slab_post_alloc_hook(s, objcg, flags, size, p); 3337 return i; 3338 error: 3339 local_irq_enable(); 3340 slab_post_alloc_hook(s, objcg, flags, i, p); 3341 __kmem_cache_free_bulk(s, i, p); 3342 return 0; 3343 } 3344 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3345 3346 3347 /* 3348 * Object placement in a slab is made very easy because we always start at 3349 * offset 0. If we tune the size of the object to the alignment then we can 3350 * get the required alignment by putting one properly sized object after 3351 * another. 3352 * 3353 * Notice that the allocation order determines the sizes of the per cpu 3354 * caches. Each processor has always one slab available for allocations. 3355 * Increasing the allocation order reduces the number of times that slabs 3356 * must be moved on and off the partial lists and is therefore a factor in 3357 * locking overhead. 3358 */ 3359 3360 /* 3361 * Mininum / Maximum order of slab pages. This influences locking overhead 3362 * and slab fragmentation. A higher order reduces the number of partial slabs 3363 * and increases the number of allocations possible without having to 3364 * take the list_lock. 3365 */ 3366 static unsigned int slub_min_order; 3367 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3368 static unsigned int slub_min_objects; 3369 3370 /* 3371 * Calculate the order of allocation given an slab object size. 3372 * 3373 * The order of allocation has significant impact on performance and other 3374 * system components. Generally order 0 allocations should be preferred since 3375 * order 0 does not cause fragmentation in the page allocator. Larger objects 3376 * be problematic to put into order 0 slabs because there may be too much 3377 * unused space left. We go to a higher order if more than 1/16th of the slab 3378 * would be wasted. 3379 * 3380 * In order to reach satisfactory performance we must ensure that a minimum 3381 * number of objects is in one slab. Otherwise we may generate too much 3382 * activity on the partial lists which requires taking the list_lock. This is 3383 * less a concern for large slabs though which are rarely used. 3384 * 3385 * slub_max_order specifies the order where we begin to stop considering the 3386 * number of objects in a slab as critical. If we reach slub_max_order then 3387 * we try to keep the page order as low as possible. So we accept more waste 3388 * of space in favor of a small page order. 3389 * 3390 * Higher order allocations also allow the placement of more objects in a 3391 * slab and thereby reduce object handling overhead. If the user has 3392 * requested a higher mininum order then we start with that one instead of 3393 * the smallest order which will fit the object. 3394 */ 3395 static inline unsigned int slab_order(unsigned int size, 3396 unsigned int min_objects, unsigned int max_order, 3397 unsigned int fract_leftover) 3398 { 3399 unsigned int min_order = slub_min_order; 3400 unsigned int order; 3401 3402 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3403 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3404 3405 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3406 order <= max_order; order++) { 3407 3408 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3409 unsigned int rem; 3410 3411 rem = slab_size % size; 3412 3413 if (rem <= slab_size / fract_leftover) 3414 break; 3415 } 3416 3417 return order; 3418 } 3419 3420 static inline int calculate_order(unsigned int size) 3421 { 3422 unsigned int order; 3423 unsigned int min_objects; 3424 unsigned int max_objects; 3425 3426 /* 3427 * Attempt to find best configuration for a slab. This 3428 * works by first attempting to generate a layout with 3429 * the best configuration and backing off gradually. 3430 * 3431 * First we increase the acceptable waste in a slab. Then 3432 * we reduce the minimum objects required in a slab. 3433 */ 3434 min_objects = slub_min_objects; 3435 if (!min_objects) 3436 min_objects = 4 * (fls(num_online_cpus()) + 1); 3437 max_objects = order_objects(slub_max_order, size); 3438 min_objects = min(min_objects, max_objects); 3439 3440 while (min_objects > 1) { 3441 unsigned int fraction; 3442 3443 fraction = 16; 3444 while (fraction >= 4) { 3445 order = slab_order(size, min_objects, 3446 slub_max_order, fraction); 3447 if (order <= slub_max_order) 3448 return order; 3449 fraction /= 2; 3450 } 3451 min_objects--; 3452 } 3453 3454 /* 3455 * We were unable to place multiple objects in a slab. Now 3456 * lets see if we can place a single object there. 3457 */ 3458 order = slab_order(size, 1, slub_max_order, 1); 3459 if (order <= slub_max_order) 3460 return order; 3461 3462 /* 3463 * Doh this slab cannot be placed using slub_max_order. 3464 */ 3465 order = slab_order(size, 1, MAX_ORDER, 1); 3466 if (order < MAX_ORDER) 3467 return order; 3468 return -ENOSYS; 3469 } 3470 3471 static void 3472 init_kmem_cache_node(struct kmem_cache_node *n) 3473 { 3474 n->nr_partial = 0; 3475 spin_lock_init(&n->list_lock); 3476 INIT_LIST_HEAD(&n->partial); 3477 #ifdef CONFIG_SLUB_DEBUG 3478 atomic_long_set(&n->nr_slabs, 0); 3479 atomic_long_set(&n->total_objects, 0); 3480 INIT_LIST_HEAD(&n->full); 3481 #endif 3482 } 3483 3484 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3485 { 3486 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3487 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3488 3489 /* 3490 * Must align to double word boundary for the double cmpxchg 3491 * instructions to work; see __pcpu_double_call_return_bool(). 3492 */ 3493 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3494 2 * sizeof(void *)); 3495 3496 if (!s->cpu_slab) 3497 return 0; 3498 3499 init_kmem_cache_cpus(s); 3500 3501 return 1; 3502 } 3503 3504 static struct kmem_cache *kmem_cache_node; 3505 3506 /* 3507 * No kmalloc_node yet so do it by hand. We know that this is the first 3508 * slab on the node for this slabcache. There are no concurrent accesses 3509 * possible. 3510 * 3511 * Note that this function only works on the kmem_cache_node 3512 * when allocating for the kmem_cache_node. This is used for bootstrapping 3513 * memory on a fresh node that has no slab structures yet. 3514 */ 3515 static void early_kmem_cache_node_alloc(int node) 3516 { 3517 struct page *page; 3518 struct kmem_cache_node *n; 3519 3520 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3521 3522 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3523 3524 BUG_ON(!page); 3525 if (page_to_nid(page) != node) { 3526 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3527 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3528 } 3529 3530 n = page->freelist; 3531 BUG_ON(!n); 3532 #ifdef CONFIG_SLUB_DEBUG 3533 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3534 init_tracking(kmem_cache_node, n); 3535 #endif 3536 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3537 GFP_KERNEL); 3538 page->freelist = get_freepointer(kmem_cache_node, n); 3539 page->inuse = 1; 3540 page->frozen = 0; 3541 kmem_cache_node->node[node] = n; 3542 init_kmem_cache_node(n); 3543 inc_slabs_node(kmem_cache_node, node, page->objects); 3544 3545 /* 3546 * No locks need to be taken here as it has just been 3547 * initialized and there is no concurrent access. 3548 */ 3549 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3550 } 3551 3552 static void free_kmem_cache_nodes(struct kmem_cache *s) 3553 { 3554 int node; 3555 struct kmem_cache_node *n; 3556 3557 for_each_kmem_cache_node(s, node, n) { 3558 s->node[node] = NULL; 3559 kmem_cache_free(kmem_cache_node, n); 3560 } 3561 } 3562 3563 void __kmem_cache_release(struct kmem_cache *s) 3564 { 3565 cache_random_seq_destroy(s); 3566 free_percpu(s->cpu_slab); 3567 free_kmem_cache_nodes(s); 3568 } 3569 3570 static int init_kmem_cache_nodes(struct kmem_cache *s) 3571 { 3572 int node; 3573 3574 for_each_node_state(node, N_NORMAL_MEMORY) { 3575 struct kmem_cache_node *n; 3576 3577 if (slab_state == DOWN) { 3578 early_kmem_cache_node_alloc(node); 3579 continue; 3580 } 3581 n = kmem_cache_alloc_node(kmem_cache_node, 3582 GFP_KERNEL, node); 3583 3584 if (!n) { 3585 free_kmem_cache_nodes(s); 3586 return 0; 3587 } 3588 3589 init_kmem_cache_node(n); 3590 s->node[node] = n; 3591 } 3592 return 1; 3593 } 3594 3595 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3596 { 3597 if (min < MIN_PARTIAL) 3598 min = MIN_PARTIAL; 3599 else if (min > MAX_PARTIAL) 3600 min = MAX_PARTIAL; 3601 s->min_partial = min; 3602 } 3603 3604 static void set_cpu_partial(struct kmem_cache *s) 3605 { 3606 #ifdef CONFIG_SLUB_CPU_PARTIAL 3607 /* 3608 * cpu_partial determined the maximum number of objects kept in the 3609 * per cpu partial lists of a processor. 3610 * 3611 * Per cpu partial lists mainly contain slabs that just have one 3612 * object freed. If they are used for allocation then they can be 3613 * filled up again with minimal effort. The slab will never hit the 3614 * per node partial lists and therefore no locking will be required. 3615 * 3616 * This setting also determines 3617 * 3618 * A) The number of objects from per cpu partial slabs dumped to the 3619 * per node list when we reach the limit. 3620 * B) The number of objects in cpu partial slabs to extract from the 3621 * per node list when we run out of per cpu objects. We only fetch 3622 * 50% to keep some capacity around for frees. 3623 */ 3624 if (!kmem_cache_has_cpu_partial(s)) 3625 slub_set_cpu_partial(s, 0); 3626 else if (s->size >= PAGE_SIZE) 3627 slub_set_cpu_partial(s, 2); 3628 else if (s->size >= 1024) 3629 slub_set_cpu_partial(s, 6); 3630 else if (s->size >= 256) 3631 slub_set_cpu_partial(s, 13); 3632 else 3633 slub_set_cpu_partial(s, 30); 3634 #endif 3635 } 3636 3637 /* 3638 * calculate_sizes() determines the order and the distribution of data within 3639 * a slab object. 3640 */ 3641 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3642 { 3643 slab_flags_t flags = s->flags; 3644 unsigned int size = s->object_size; 3645 unsigned int freepointer_area; 3646 unsigned int order; 3647 3648 /* 3649 * Round up object size to the next word boundary. We can only 3650 * place the free pointer at word boundaries and this determines 3651 * the possible location of the free pointer. 3652 */ 3653 size = ALIGN(size, sizeof(void *)); 3654 /* 3655 * This is the area of the object where a freepointer can be 3656 * safely written. If redzoning adds more to the inuse size, we 3657 * can't use that portion for writing the freepointer, so 3658 * s->offset must be limited within this for the general case. 3659 */ 3660 freepointer_area = size; 3661 3662 #ifdef CONFIG_SLUB_DEBUG 3663 /* 3664 * Determine if we can poison the object itself. If the user of 3665 * the slab may touch the object after free or before allocation 3666 * then we should never poison the object itself. 3667 */ 3668 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3669 !s->ctor) 3670 s->flags |= __OBJECT_POISON; 3671 else 3672 s->flags &= ~__OBJECT_POISON; 3673 3674 3675 /* 3676 * If we are Redzoning then check if there is some space between the 3677 * end of the object and the free pointer. If not then add an 3678 * additional word to have some bytes to store Redzone information. 3679 */ 3680 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3681 size += sizeof(void *); 3682 #endif 3683 3684 /* 3685 * With that we have determined the number of bytes in actual use 3686 * by the object. This is the potential offset to the free pointer. 3687 */ 3688 s->inuse = size; 3689 3690 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3691 s->ctor)) { 3692 /* 3693 * Relocate free pointer after the object if it is not 3694 * permitted to overwrite the first word of the object on 3695 * kmem_cache_free. 3696 * 3697 * This is the case if we do RCU, have a constructor or 3698 * destructor or are poisoning the objects. 3699 * 3700 * The assumption that s->offset >= s->inuse means free 3701 * pointer is outside of the object is used in the 3702 * freeptr_outside_object() function. If that is no 3703 * longer true, the function needs to be modified. 3704 */ 3705 s->offset = size; 3706 size += sizeof(void *); 3707 } else if (freepointer_area > sizeof(void *)) { 3708 /* 3709 * Store freelist pointer near middle of object to keep 3710 * it away from the edges of the object to avoid small 3711 * sized over/underflows from neighboring allocations. 3712 */ 3713 s->offset = ALIGN(freepointer_area / 2, sizeof(void *)); 3714 } 3715 3716 #ifdef CONFIG_SLUB_DEBUG 3717 if (flags & SLAB_STORE_USER) 3718 /* 3719 * Need to store information about allocs and frees after 3720 * the object. 3721 */ 3722 size += 2 * sizeof(struct track); 3723 #endif 3724 3725 kasan_cache_create(s, &size, &s->flags); 3726 #ifdef CONFIG_SLUB_DEBUG 3727 if (flags & SLAB_RED_ZONE) { 3728 /* 3729 * Add some empty padding so that we can catch 3730 * overwrites from earlier objects rather than let 3731 * tracking information or the free pointer be 3732 * corrupted if a user writes before the start 3733 * of the object. 3734 */ 3735 size += sizeof(void *); 3736 3737 s->red_left_pad = sizeof(void *); 3738 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3739 size += s->red_left_pad; 3740 } 3741 #endif 3742 3743 /* 3744 * SLUB stores one object immediately after another beginning from 3745 * offset 0. In order to align the objects we have to simply size 3746 * each object to conform to the alignment. 3747 */ 3748 size = ALIGN(size, s->align); 3749 s->size = size; 3750 s->reciprocal_size = reciprocal_value(size); 3751 if (forced_order >= 0) 3752 order = forced_order; 3753 else 3754 order = calculate_order(size); 3755 3756 if ((int)order < 0) 3757 return 0; 3758 3759 s->allocflags = 0; 3760 if (order) 3761 s->allocflags |= __GFP_COMP; 3762 3763 if (s->flags & SLAB_CACHE_DMA) 3764 s->allocflags |= GFP_DMA; 3765 3766 if (s->flags & SLAB_CACHE_DMA32) 3767 s->allocflags |= GFP_DMA32; 3768 3769 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3770 s->allocflags |= __GFP_RECLAIMABLE; 3771 3772 /* 3773 * Determine the number of objects per slab 3774 */ 3775 s->oo = oo_make(order, size); 3776 s->min = oo_make(get_order(size), size); 3777 if (oo_objects(s->oo) > oo_objects(s->max)) 3778 s->max = s->oo; 3779 3780 return !!oo_objects(s->oo); 3781 } 3782 3783 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3784 { 3785 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3786 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3787 s->random = get_random_long(); 3788 #endif 3789 3790 if (!calculate_sizes(s, -1)) 3791 goto error; 3792 if (disable_higher_order_debug) { 3793 /* 3794 * Disable debugging flags that store metadata if the min slab 3795 * order increased. 3796 */ 3797 if (get_order(s->size) > get_order(s->object_size)) { 3798 s->flags &= ~DEBUG_METADATA_FLAGS; 3799 s->offset = 0; 3800 if (!calculate_sizes(s, -1)) 3801 goto error; 3802 } 3803 } 3804 3805 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3806 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3807 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3808 /* Enable fast mode */ 3809 s->flags |= __CMPXCHG_DOUBLE; 3810 #endif 3811 3812 /* 3813 * The larger the object size is, the more pages we want on the partial 3814 * list to avoid pounding the page allocator excessively. 3815 */ 3816 set_min_partial(s, ilog2(s->size) / 2); 3817 3818 set_cpu_partial(s); 3819 3820 #ifdef CONFIG_NUMA 3821 s->remote_node_defrag_ratio = 1000; 3822 #endif 3823 3824 /* Initialize the pre-computed randomized freelist if slab is up */ 3825 if (slab_state >= UP) { 3826 if (init_cache_random_seq(s)) 3827 goto error; 3828 } 3829 3830 if (!init_kmem_cache_nodes(s)) 3831 goto error; 3832 3833 if (alloc_kmem_cache_cpus(s)) 3834 return 0; 3835 3836 free_kmem_cache_nodes(s); 3837 error: 3838 return -EINVAL; 3839 } 3840 3841 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3842 const char *text) 3843 { 3844 #ifdef CONFIG_SLUB_DEBUG 3845 void *addr = page_address(page); 3846 unsigned long *map; 3847 void *p; 3848 3849 slab_err(s, page, text, s->name); 3850 slab_lock(page); 3851 3852 map = get_map(s, page); 3853 for_each_object(p, s, addr, page->objects) { 3854 3855 if (!test_bit(__obj_to_index(s, addr, p), map)) { 3856 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3857 print_tracking(s, p); 3858 } 3859 } 3860 put_map(map); 3861 slab_unlock(page); 3862 #endif 3863 } 3864 3865 /* 3866 * Attempt to free all partial slabs on a node. 3867 * This is called from __kmem_cache_shutdown(). We must take list_lock 3868 * because sysfs file might still access partial list after the shutdowning. 3869 */ 3870 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3871 { 3872 LIST_HEAD(discard); 3873 struct page *page, *h; 3874 3875 BUG_ON(irqs_disabled()); 3876 spin_lock_irq(&n->list_lock); 3877 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3878 if (!page->inuse) { 3879 remove_partial(n, page); 3880 list_add(&page->slab_list, &discard); 3881 } else { 3882 list_slab_objects(s, page, 3883 "Objects remaining in %s on __kmem_cache_shutdown()"); 3884 } 3885 } 3886 spin_unlock_irq(&n->list_lock); 3887 3888 list_for_each_entry_safe(page, h, &discard, slab_list) 3889 discard_slab(s, page); 3890 } 3891 3892 bool __kmem_cache_empty(struct kmem_cache *s) 3893 { 3894 int node; 3895 struct kmem_cache_node *n; 3896 3897 for_each_kmem_cache_node(s, node, n) 3898 if (n->nr_partial || slabs_node(s, node)) 3899 return false; 3900 return true; 3901 } 3902 3903 /* 3904 * Release all resources used by a slab cache. 3905 */ 3906 int __kmem_cache_shutdown(struct kmem_cache *s) 3907 { 3908 int node; 3909 struct kmem_cache_node *n; 3910 3911 flush_all(s); 3912 /* Attempt to free all objects */ 3913 for_each_kmem_cache_node(s, node, n) { 3914 free_partial(s, n); 3915 if (n->nr_partial || slabs_node(s, node)) 3916 return 1; 3917 } 3918 return 0; 3919 } 3920 3921 /******************************************************************** 3922 * Kmalloc subsystem 3923 *******************************************************************/ 3924 3925 static int __init setup_slub_min_order(char *str) 3926 { 3927 get_option(&str, (int *)&slub_min_order); 3928 3929 return 1; 3930 } 3931 3932 __setup("slub_min_order=", setup_slub_min_order); 3933 3934 static int __init setup_slub_max_order(char *str) 3935 { 3936 get_option(&str, (int *)&slub_max_order); 3937 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3938 3939 return 1; 3940 } 3941 3942 __setup("slub_max_order=", setup_slub_max_order); 3943 3944 static int __init setup_slub_min_objects(char *str) 3945 { 3946 get_option(&str, (int *)&slub_min_objects); 3947 3948 return 1; 3949 } 3950 3951 __setup("slub_min_objects=", setup_slub_min_objects); 3952 3953 void *__kmalloc(size_t size, gfp_t flags) 3954 { 3955 struct kmem_cache *s; 3956 void *ret; 3957 3958 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3959 return kmalloc_large(size, flags); 3960 3961 s = kmalloc_slab(size, flags); 3962 3963 if (unlikely(ZERO_OR_NULL_PTR(s))) 3964 return s; 3965 3966 ret = slab_alloc(s, flags, _RET_IP_); 3967 3968 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3969 3970 ret = kasan_kmalloc(s, ret, size, flags); 3971 3972 return ret; 3973 } 3974 EXPORT_SYMBOL(__kmalloc); 3975 3976 #ifdef CONFIG_NUMA 3977 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3978 { 3979 struct page *page; 3980 void *ptr = NULL; 3981 unsigned int order = get_order(size); 3982 3983 flags |= __GFP_COMP; 3984 page = alloc_pages_node(node, flags, order); 3985 if (page) { 3986 ptr = page_address(page); 3987 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, 3988 PAGE_SIZE << order); 3989 } 3990 3991 return kmalloc_large_node_hook(ptr, size, flags); 3992 } 3993 3994 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3995 { 3996 struct kmem_cache *s; 3997 void *ret; 3998 3999 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4000 ret = kmalloc_large_node(size, flags, node); 4001 4002 trace_kmalloc_node(_RET_IP_, ret, 4003 size, PAGE_SIZE << get_order(size), 4004 flags, node); 4005 4006 return ret; 4007 } 4008 4009 s = kmalloc_slab(size, flags); 4010 4011 if (unlikely(ZERO_OR_NULL_PTR(s))) 4012 return s; 4013 4014 ret = slab_alloc_node(s, flags, node, _RET_IP_); 4015 4016 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 4017 4018 ret = kasan_kmalloc(s, ret, size, flags); 4019 4020 return ret; 4021 } 4022 EXPORT_SYMBOL(__kmalloc_node); 4023 #endif /* CONFIG_NUMA */ 4024 4025 #ifdef CONFIG_HARDENED_USERCOPY 4026 /* 4027 * Rejects incorrectly sized objects and objects that are to be copied 4028 * to/from userspace but do not fall entirely within the containing slab 4029 * cache's usercopy region. 4030 * 4031 * Returns NULL if check passes, otherwise const char * to name of cache 4032 * to indicate an error. 4033 */ 4034 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4035 bool to_user) 4036 { 4037 struct kmem_cache *s; 4038 unsigned int offset; 4039 size_t object_size; 4040 4041 ptr = kasan_reset_tag(ptr); 4042 4043 /* Find object and usable object size. */ 4044 s = page->slab_cache; 4045 4046 /* Reject impossible pointers. */ 4047 if (ptr < page_address(page)) 4048 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4049 to_user, 0, n); 4050 4051 /* Find offset within object. */ 4052 offset = (ptr - page_address(page)) % s->size; 4053 4054 /* Adjust for redzone and reject if within the redzone. */ 4055 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4056 if (offset < s->red_left_pad) 4057 usercopy_abort("SLUB object in left red zone", 4058 s->name, to_user, offset, n); 4059 offset -= s->red_left_pad; 4060 } 4061 4062 /* Allow address range falling entirely within usercopy region. */ 4063 if (offset >= s->useroffset && 4064 offset - s->useroffset <= s->usersize && 4065 n <= s->useroffset - offset + s->usersize) 4066 return; 4067 4068 /* 4069 * If the copy is still within the allocated object, produce 4070 * a warning instead of rejecting the copy. This is intended 4071 * to be a temporary method to find any missing usercopy 4072 * whitelists. 4073 */ 4074 object_size = slab_ksize(s); 4075 if (usercopy_fallback && 4076 offset <= object_size && n <= object_size - offset) { 4077 usercopy_warn("SLUB object", s->name, to_user, offset, n); 4078 return; 4079 } 4080 4081 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4082 } 4083 #endif /* CONFIG_HARDENED_USERCOPY */ 4084 4085 size_t __ksize(const void *object) 4086 { 4087 struct page *page; 4088 4089 if (unlikely(object == ZERO_SIZE_PTR)) 4090 return 0; 4091 4092 page = virt_to_head_page(object); 4093 4094 if (unlikely(!PageSlab(page))) { 4095 WARN_ON(!PageCompound(page)); 4096 return page_size(page); 4097 } 4098 4099 return slab_ksize(page->slab_cache); 4100 } 4101 EXPORT_SYMBOL(__ksize); 4102 4103 void kfree(const void *x) 4104 { 4105 struct page *page; 4106 void *object = (void *)x; 4107 4108 trace_kfree(_RET_IP_, x); 4109 4110 if (unlikely(ZERO_OR_NULL_PTR(x))) 4111 return; 4112 4113 page = virt_to_head_page(x); 4114 if (unlikely(!PageSlab(page))) { 4115 unsigned int order = compound_order(page); 4116 4117 BUG_ON(!PageCompound(page)); 4118 kfree_hook(object); 4119 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, 4120 -(PAGE_SIZE << order)); 4121 __free_pages(page, order); 4122 return; 4123 } 4124 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 4125 } 4126 EXPORT_SYMBOL(kfree); 4127 4128 #define SHRINK_PROMOTE_MAX 32 4129 4130 /* 4131 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4132 * up most to the head of the partial lists. New allocations will then 4133 * fill those up and thus they can be removed from the partial lists. 4134 * 4135 * The slabs with the least items are placed last. This results in them 4136 * being allocated from last increasing the chance that the last objects 4137 * are freed in them. 4138 */ 4139 int __kmem_cache_shrink(struct kmem_cache *s) 4140 { 4141 int node; 4142 int i; 4143 struct kmem_cache_node *n; 4144 struct page *page; 4145 struct page *t; 4146 struct list_head discard; 4147 struct list_head promote[SHRINK_PROMOTE_MAX]; 4148 unsigned long flags; 4149 int ret = 0; 4150 4151 flush_all(s); 4152 for_each_kmem_cache_node(s, node, n) { 4153 INIT_LIST_HEAD(&discard); 4154 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4155 INIT_LIST_HEAD(promote + i); 4156 4157 spin_lock_irqsave(&n->list_lock, flags); 4158 4159 /* 4160 * Build lists of slabs to discard or promote. 4161 * 4162 * Note that concurrent frees may occur while we hold the 4163 * list_lock. page->inuse here is the upper limit. 4164 */ 4165 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4166 int free = page->objects - page->inuse; 4167 4168 /* Do not reread page->inuse */ 4169 barrier(); 4170 4171 /* We do not keep full slabs on the list */ 4172 BUG_ON(free <= 0); 4173 4174 if (free == page->objects) { 4175 list_move(&page->slab_list, &discard); 4176 n->nr_partial--; 4177 } else if (free <= SHRINK_PROMOTE_MAX) 4178 list_move(&page->slab_list, promote + free - 1); 4179 } 4180 4181 /* 4182 * Promote the slabs filled up most to the head of the 4183 * partial list. 4184 */ 4185 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4186 list_splice(promote + i, &n->partial); 4187 4188 spin_unlock_irqrestore(&n->list_lock, flags); 4189 4190 /* Release empty slabs */ 4191 list_for_each_entry_safe(page, t, &discard, slab_list) 4192 discard_slab(s, page); 4193 4194 if (slabs_node(s, node)) 4195 ret = 1; 4196 } 4197 4198 return ret; 4199 } 4200 4201 static int slab_mem_going_offline_callback(void *arg) 4202 { 4203 struct kmem_cache *s; 4204 4205 mutex_lock(&slab_mutex); 4206 list_for_each_entry(s, &slab_caches, list) 4207 __kmem_cache_shrink(s); 4208 mutex_unlock(&slab_mutex); 4209 4210 return 0; 4211 } 4212 4213 static void slab_mem_offline_callback(void *arg) 4214 { 4215 struct kmem_cache_node *n; 4216 struct kmem_cache *s; 4217 struct memory_notify *marg = arg; 4218 int offline_node; 4219 4220 offline_node = marg->status_change_nid_normal; 4221 4222 /* 4223 * If the node still has available memory. we need kmem_cache_node 4224 * for it yet. 4225 */ 4226 if (offline_node < 0) 4227 return; 4228 4229 mutex_lock(&slab_mutex); 4230 list_for_each_entry(s, &slab_caches, list) { 4231 n = get_node(s, offline_node); 4232 if (n) { 4233 /* 4234 * if n->nr_slabs > 0, slabs still exist on the node 4235 * that is going down. We were unable to free them, 4236 * and offline_pages() function shouldn't call this 4237 * callback. So, we must fail. 4238 */ 4239 BUG_ON(slabs_node(s, offline_node)); 4240 4241 s->node[offline_node] = NULL; 4242 kmem_cache_free(kmem_cache_node, n); 4243 } 4244 } 4245 mutex_unlock(&slab_mutex); 4246 } 4247 4248 static int slab_mem_going_online_callback(void *arg) 4249 { 4250 struct kmem_cache_node *n; 4251 struct kmem_cache *s; 4252 struct memory_notify *marg = arg; 4253 int nid = marg->status_change_nid_normal; 4254 int ret = 0; 4255 4256 /* 4257 * If the node's memory is already available, then kmem_cache_node is 4258 * already created. Nothing to do. 4259 */ 4260 if (nid < 0) 4261 return 0; 4262 4263 /* 4264 * We are bringing a node online. No memory is available yet. We must 4265 * allocate a kmem_cache_node structure in order to bring the node 4266 * online. 4267 */ 4268 mutex_lock(&slab_mutex); 4269 list_for_each_entry(s, &slab_caches, list) { 4270 /* 4271 * XXX: kmem_cache_alloc_node will fallback to other nodes 4272 * since memory is not yet available from the node that 4273 * is brought up. 4274 */ 4275 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4276 if (!n) { 4277 ret = -ENOMEM; 4278 goto out; 4279 } 4280 init_kmem_cache_node(n); 4281 s->node[nid] = n; 4282 } 4283 out: 4284 mutex_unlock(&slab_mutex); 4285 return ret; 4286 } 4287 4288 static int slab_memory_callback(struct notifier_block *self, 4289 unsigned long action, void *arg) 4290 { 4291 int ret = 0; 4292 4293 switch (action) { 4294 case MEM_GOING_ONLINE: 4295 ret = slab_mem_going_online_callback(arg); 4296 break; 4297 case MEM_GOING_OFFLINE: 4298 ret = slab_mem_going_offline_callback(arg); 4299 break; 4300 case MEM_OFFLINE: 4301 case MEM_CANCEL_ONLINE: 4302 slab_mem_offline_callback(arg); 4303 break; 4304 case MEM_ONLINE: 4305 case MEM_CANCEL_OFFLINE: 4306 break; 4307 } 4308 if (ret) 4309 ret = notifier_from_errno(ret); 4310 else 4311 ret = NOTIFY_OK; 4312 return ret; 4313 } 4314 4315 static struct notifier_block slab_memory_callback_nb = { 4316 .notifier_call = slab_memory_callback, 4317 .priority = SLAB_CALLBACK_PRI, 4318 }; 4319 4320 /******************************************************************** 4321 * Basic setup of slabs 4322 *******************************************************************/ 4323 4324 /* 4325 * Used for early kmem_cache structures that were allocated using 4326 * the page allocator. Allocate them properly then fix up the pointers 4327 * that may be pointing to the wrong kmem_cache structure. 4328 */ 4329 4330 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4331 { 4332 int node; 4333 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4334 struct kmem_cache_node *n; 4335 4336 memcpy(s, static_cache, kmem_cache->object_size); 4337 4338 /* 4339 * This runs very early, and only the boot processor is supposed to be 4340 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4341 * IPIs around. 4342 */ 4343 __flush_cpu_slab(s, smp_processor_id()); 4344 for_each_kmem_cache_node(s, node, n) { 4345 struct page *p; 4346 4347 list_for_each_entry(p, &n->partial, slab_list) 4348 p->slab_cache = s; 4349 4350 #ifdef CONFIG_SLUB_DEBUG 4351 list_for_each_entry(p, &n->full, slab_list) 4352 p->slab_cache = s; 4353 #endif 4354 } 4355 list_add(&s->list, &slab_caches); 4356 return s; 4357 } 4358 4359 void __init kmem_cache_init(void) 4360 { 4361 static __initdata struct kmem_cache boot_kmem_cache, 4362 boot_kmem_cache_node; 4363 4364 if (debug_guardpage_minorder()) 4365 slub_max_order = 0; 4366 4367 kmem_cache_node = &boot_kmem_cache_node; 4368 kmem_cache = &boot_kmem_cache; 4369 4370 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4371 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4372 4373 register_hotmemory_notifier(&slab_memory_callback_nb); 4374 4375 /* Able to allocate the per node structures */ 4376 slab_state = PARTIAL; 4377 4378 create_boot_cache(kmem_cache, "kmem_cache", 4379 offsetof(struct kmem_cache, node) + 4380 nr_node_ids * sizeof(struct kmem_cache_node *), 4381 SLAB_HWCACHE_ALIGN, 0, 0); 4382 4383 kmem_cache = bootstrap(&boot_kmem_cache); 4384 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4385 4386 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4387 setup_kmalloc_cache_index_table(); 4388 create_kmalloc_caches(0); 4389 4390 /* Setup random freelists for each cache */ 4391 init_freelist_randomization(); 4392 4393 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4394 slub_cpu_dead); 4395 4396 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4397 cache_line_size(), 4398 slub_min_order, slub_max_order, slub_min_objects, 4399 nr_cpu_ids, nr_node_ids); 4400 } 4401 4402 void __init kmem_cache_init_late(void) 4403 { 4404 } 4405 4406 struct kmem_cache * 4407 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4408 slab_flags_t flags, void (*ctor)(void *)) 4409 { 4410 struct kmem_cache *s; 4411 4412 s = find_mergeable(size, align, flags, name, ctor); 4413 if (s) { 4414 s->refcount++; 4415 4416 /* 4417 * Adjust the object sizes so that we clear 4418 * the complete object on kzalloc. 4419 */ 4420 s->object_size = max(s->object_size, size); 4421 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4422 4423 if (sysfs_slab_alias(s, name)) { 4424 s->refcount--; 4425 s = NULL; 4426 } 4427 } 4428 4429 return s; 4430 } 4431 4432 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4433 { 4434 int err; 4435 4436 err = kmem_cache_open(s, flags); 4437 if (err) 4438 return err; 4439 4440 /* Mutex is not taken during early boot */ 4441 if (slab_state <= UP) 4442 return 0; 4443 4444 err = sysfs_slab_add(s); 4445 if (err) 4446 __kmem_cache_release(s); 4447 4448 return err; 4449 } 4450 4451 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4452 { 4453 struct kmem_cache *s; 4454 void *ret; 4455 4456 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4457 return kmalloc_large(size, gfpflags); 4458 4459 s = kmalloc_slab(size, gfpflags); 4460 4461 if (unlikely(ZERO_OR_NULL_PTR(s))) 4462 return s; 4463 4464 ret = slab_alloc(s, gfpflags, caller); 4465 4466 /* Honor the call site pointer we received. */ 4467 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4468 4469 return ret; 4470 } 4471 EXPORT_SYMBOL(__kmalloc_track_caller); 4472 4473 #ifdef CONFIG_NUMA 4474 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4475 int node, unsigned long caller) 4476 { 4477 struct kmem_cache *s; 4478 void *ret; 4479 4480 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4481 ret = kmalloc_large_node(size, gfpflags, node); 4482 4483 trace_kmalloc_node(caller, ret, 4484 size, PAGE_SIZE << get_order(size), 4485 gfpflags, node); 4486 4487 return ret; 4488 } 4489 4490 s = kmalloc_slab(size, gfpflags); 4491 4492 if (unlikely(ZERO_OR_NULL_PTR(s))) 4493 return s; 4494 4495 ret = slab_alloc_node(s, gfpflags, node, caller); 4496 4497 /* Honor the call site pointer we received. */ 4498 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4499 4500 return ret; 4501 } 4502 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4503 #endif 4504 4505 #ifdef CONFIG_SYSFS 4506 static int count_inuse(struct page *page) 4507 { 4508 return page->inuse; 4509 } 4510 4511 static int count_total(struct page *page) 4512 { 4513 return page->objects; 4514 } 4515 #endif 4516 4517 #ifdef CONFIG_SLUB_DEBUG 4518 static void validate_slab(struct kmem_cache *s, struct page *page) 4519 { 4520 void *p; 4521 void *addr = page_address(page); 4522 unsigned long *map; 4523 4524 slab_lock(page); 4525 4526 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4527 goto unlock; 4528 4529 /* Now we know that a valid freelist exists */ 4530 map = get_map(s, page); 4531 for_each_object(p, s, addr, page->objects) { 4532 u8 val = test_bit(__obj_to_index(s, addr, p), map) ? 4533 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4534 4535 if (!check_object(s, page, p, val)) 4536 break; 4537 } 4538 put_map(map); 4539 unlock: 4540 slab_unlock(page); 4541 } 4542 4543 static int validate_slab_node(struct kmem_cache *s, 4544 struct kmem_cache_node *n) 4545 { 4546 unsigned long count = 0; 4547 struct page *page; 4548 unsigned long flags; 4549 4550 spin_lock_irqsave(&n->list_lock, flags); 4551 4552 list_for_each_entry(page, &n->partial, slab_list) { 4553 validate_slab(s, page); 4554 count++; 4555 } 4556 if (count != n->nr_partial) 4557 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4558 s->name, count, n->nr_partial); 4559 4560 if (!(s->flags & SLAB_STORE_USER)) 4561 goto out; 4562 4563 list_for_each_entry(page, &n->full, slab_list) { 4564 validate_slab(s, page); 4565 count++; 4566 } 4567 if (count != atomic_long_read(&n->nr_slabs)) 4568 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4569 s->name, count, atomic_long_read(&n->nr_slabs)); 4570 4571 out: 4572 spin_unlock_irqrestore(&n->list_lock, flags); 4573 return count; 4574 } 4575 4576 static long validate_slab_cache(struct kmem_cache *s) 4577 { 4578 int node; 4579 unsigned long count = 0; 4580 struct kmem_cache_node *n; 4581 4582 flush_all(s); 4583 for_each_kmem_cache_node(s, node, n) 4584 count += validate_slab_node(s, n); 4585 4586 return count; 4587 } 4588 /* 4589 * Generate lists of code addresses where slabcache objects are allocated 4590 * and freed. 4591 */ 4592 4593 struct location { 4594 unsigned long count; 4595 unsigned long addr; 4596 long long sum_time; 4597 long min_time; 4598 long max_time; 4599 long min_pid; 4600 long max_pid; 4601 DECLARE_BITMAP(cpus, NR_CPUS); 4602 nodemask_t nodes; 4603 }; 4604 4605 struct loc_track { 4606 unsigned long max; 4607 unsigned long count; 4608 struct location *loc; 4609 }; 4610 4611 static void free_loc_track(struct loc_track *t) 4612 { 4613 if (t->max) 4614 free_pages((unsigned long)t->loc, 4615 get_order(sizeof(struct location) * t->max)); 4616 } 4617 4618 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4619 { 4620 struct location *l; 4621 int order; 4622 4623 order = get_order(sizeof(struct location) * max); 4624 4625 l = (void *)__get_free_pages(flags, order); 4626 if (!l) 4627 return 0; 4628 4629 if (t->count) { 4630 memcpy(l, t->loc, sizeof(struct location) * t->count); 4631 free_loc_track(t); 4632 } 4633 t->max = max; 4634 t->loc = l; 4635 return 1; 4636 } 4637 4638 static int add_location(struct loc_track *t, struct kmem_cache *s, 4639 const struct track *track) 4640 { 4641 long start, end, pos; 4642 struct location *l; 4643 unsigned long caddr; 4644 unsigned long age = jiffies - track->when; 4645 4646 start = -1; 4647 end = t->count; 4648 4649 for ( ; ; ) { 4650 pos = start + (end - start + 1) / 2; 4651 4652 /* 4653 * There is nothing at "end". If we end up there 4654 * we need to add something to before end. 4655 */ 4656 if (pos == end) 4657 break; 4658 4659 caddr = t->loc[pos].addr; 4660 if (track->addr == caddr) { 4661 4662 l = &t->loc[pos]; 4663 l->count++; 4664 if (track->when) { 4665 l->sum_time += age; 4666 if (age < l->min_time) 4667 l->min_time = age; 4668 if (age > l->max_time) 4669 l->max_time = age; 4670 4671 if (track->pid < l->min_pid) 4672 l->min_pid = track->pid; 4673 if (track->pid > l->max_pid) 4674 l->max_pid = track->pid; 4675 4676 cpumask_set_cpu(track->cpu, 4677 to_cpumask(l->cpus)); 4678 } 4679 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4680 return 1; 4681 } 4682 4683 if (track->addr < caddr) 4684 end = pos; 4685 else 4686 start = pos; 4687 } 4688 4689 /* 4690 * Not found. Insert new tracking element. 4691 */ 4692 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4693 return 0; 4694 4695 l = t->loc + pos; 4696 if (pos < t->count) 4697 memmove(l + 1, l, 4698 (t->count - pos) * sizeof(struct location)); 4699 t->count++; 4700 l->count = 1; 4701 l->addr = track->addr; 4702 l->sum_time = age; 4703 l->min_time = age; 4704 l->max_time = age; 4705 l->min_pid = track->pid; 4706 l->max_pid = track->pid; 4707 cpumask_clear(to_cpumask(l->cpus)); 4708 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4709 nodes_clear(l->nodes); 4710 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4711 return 1; 4712 } 4713 4714 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4715 struct page *page, enum track_item alloc) 4716 { 4717 void *addr = page_address(page); 4718 void *p; 4719 unsigned long *map; 4720 4721 map = get_map(s, page); 4722 for_each_object(p, s, addr, page->objects) 4723 if (!test_bit(__obj_to_index(s, addr, p), map)) 4724 add_location(t, s, get_track(s, p, alloc)); 4725 put_map(map); 4726 } 4727 4728 static int list_locations(struct kmem_cache *s, char *buf, 4729 enum track_item alloc) 4730 { 4731 int len = 0; 4732 unsigned long i; 4733 struct loc_track t = { 0, 0, NULL }; 4734 int node; 4735 struct kmem_cache_node *n; 4736 4737 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4738 GFP_KERNEL)) { 4739 return sysfs_emit(buf, "Out of memory\n"); 4740 } 4741 /* Push back cpu slabs */ 4742 flush_all(s); 4743 4744 for_each_kmem_cache_node(s, node, n) { 4745 unsigned long flags; 4746 struct page *page; 4747 4748 if (!atomic_long_read(&n->nr_slabs)) 4749 continue; 4750 4751 spin_lock_irqsave(&n->list_lock, flags); 4752 list_for_each_entry(page, &n->partial, slab_list) 4753 process_slab(&t, s, page, alloc); 4754 list_for_each_entry(page, &n->full, slab_list) 4755 process_slab(&t, s, page, alloc); 4756 spin_unlock_irqrestore(&n->list_lock, flags); 4757 } 4758 4759 for (i = 0; i < t.count; i++) { 4760 struct location *l = &t.loc[i]; 4761 4762 len += sysfs_emit_at(buf, len, "%7ld ", l->count); 4763 4764 if (l->addr) 4765 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr); 4766 else 4767 len += sysfs_emit_at(buf, len, "<not-available>"); 4768 4769 if (l->sum_time != l->min_time) 4770 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld", 4771 l->min_time, 4772 (long)div_u64(l->sum_time, 4773 l->count), 4774 l->max_time); 4775 else 4776 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time); 4777 4778 if (l->min_pid != l->max_pid) 4779 len += sysfs_emit_at(buf, len, " pid=%ld-%ld", 4780 l->min_pid, l->max_pid); 4781 else 4782 len += sysfs_emit_at(buf, len, " pid=%ld", 4783 l->min_pid); 4784 4785 if (num_online_cpus() > 1 && 4786 !cpumask_empty(to_cpumask(l->cpus))) 4787 len += sysfs_emit_at(buf, len, " cpus=%*pbl", 4788 cpumask_pr_args(to_cpumask(l->cpus))); 4789 4790 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 4791 len += sysfs_emit_at(buf, len, " nodes=%*pbl", 4792 nodemask_pr_args(&l->nodes)); 4793 4794 len += sysfs_emit_at(buf, len, "\n"); 4795 } 4796 4797 free_loc_track(&t); 4798 if (!t.count) 4799 len += sysfs_emit_at(buf, len, "No data\n"); 4800 4801 return len; 4802 } 4803 #endif /* CONFIG_SLUB_DEBUG */ 4804 4805 #ifdef SLUB_RESILIENCY_TEST 4806 static void __init resiliency_test(void) 4807 { 4808 u8 *p; 4809 int type = KMALLOC_NORMAL; 4810 4811 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4812 4813 pr_err("SLUB resiliency testing\n"); 4814 pr_err("-----------------------\n"); 4815 pr_err("A. Corruption after allocation\n"); 4816 4817 p = kzalloc(16, GFP_KERNEL); 4818 p[16] = 0x12; 4819 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4820 p + 16); 4821 4822 validate_slab_cache(kmalloc_caches[type][4]); 4823 4824 /* Hmmm... The next two are dangerous */ 4825 p = kzalloc(32, GFP_KERNEL); 4826 p[32 + sizeof(void *)] = 0x34; 4827 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4828 p); 4829 pr_err("If allocated object is overwritten then not detectable\n\n"); 4830 4831 validate_slab_cache(kmalloc_caches[type][5]); 4832 p = kzalloc(64, GFP_KERNEL); 4833 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4834 *p = 0x56; 4835 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4836 p); 4837 pr_err("If allocated object is overwritten then not detectable\n\n"); 4838 validate_slab_cache(kmalloc_caches[type][6]); 4839 4840 pr_err("\nB. Corruption after free\n"); 4841 p = kzalloc(128, GFP_KERNEL); 4842 kfree(p); 4843 *p = 0x78; 4844 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4845 validate_slab_cache(kmalloc_caches[type][7]); 4846 4847 p = kzalloc(256, GFP_KERNEL); 4848 kfree(p); 4849 p[50] = 0x9a; 4850 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4851 validate_slab_cache(kmalloc_caches[type][8]); 4852 4853 p = kzalloc(512, GFP_KERNEL); 4854 kfree(p); 4855 p[512] = 0xab; 4856 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4857 validate_slab_cache(kmalloc_caches[type][9]); 4858 } 4859 #else 4860 #ifdef CONFIG_SYSFS 4861 static void resiliency_test(void) {}; 4862 #endif 4863 #endif /* SLUB_RESILIENCY_TEST */ 4864 4865 #ifdef CONFIG_SYSFS 4866 enum slab_stat_type { 4867 SL_ALL, /* All slabs */ 4868 SL_PARTIAL, /* Only partially allocated slabs */ 4869 SL_CPU, /* Only slabs used for cpu caches */ 4870 SL_OBJECTS, /* Determine allocated objects not slabs */ 4871 SL_TOTAL /* Determine object capacity not slabs */ 4872 }; 4873 4874 #define SO_ALL (1 << SL_ALL) 4875 #define SO_PARTIAL (1 << SL_PARTIAL) 4876 #define SO_CPU (1 << SL_CPU) 4877 #define SO_OBJECTS (1 << SL_OBJECTS) 4878 #define SO_TOTAL (1 << SL_TOTAL) 4879 4880 #ifdef CONFIG_MEMCG 4881 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4882 4883 static int __init setup_slub_memcg_sysfs(char *str) 4884 { 4885 int v; 4886 4887 if (get_option(&str, &v) > 0) 4888 memcg_sysfs_enabled = v; 4889 4890 return 1; 4891 } 4892 4893 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4894 #endif 4895 4896 static ssize_t show_slab_objects(struct kmem_cache *s, 4897 char *buf, unsigned long flags) 4898 { 4899 unsigned long total = 0; 4900 int node; 4901 int x; 4902 unsigned long *nodes; 4903 int len = 0; 4904 4905 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4906 if (!nodes) 4907 return -ENOMEM; 4908 4909 if (flags & SO_CPU) { 4910 int cpu; 4911 4912 for_each_possible_cpu(cpu) { 4913 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4914 cpu); 4915 int node; 4916 struct page *page; 4917 4918 page = READ_ONCE(c->page); 4919 if (!page) 4920 continue; 4921 4922 node = page_to_nid(page); 4923 if (flags & SO_TOTAL) 4924 x = page->objects; 4925 else if (flags & SO_OBJECTS) 4926 x = page->inuse; 4927 else 4928 x = 1; 4929 4930 total += x; 4931 nodes[node] += x; 4932 4933 page = slub_percpu_partial_read_once(c); 4934 if (page) { 4935 node = page_to_nid(page); 4936 if (flags & SO_TOTAL) 4937 WARN_ON_ONCE(1); 4938 else if (flags & SO_OBJECTS) 4939 WARN_ON_ONCE(1); 4940 else 4941 x = page->pages; 4942 total += x; 4943 nodes[node] += x; 4944 } 4945 } 4946 } 4947 4948 /* 4949 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 4950 * already held which will conflict with an existing lock order: 4951 * 4952 * mem_hotplug_lock->slab_mutex->kernfs_mutex 4953 * 4954 * We don't really need mem_hotplug_lock (to hold off 4955 * slab_mem_going_offline_callback) here because slab's memory hot 4956 * unplug code doesn't destroy the kmem_cache->node[] data. 4957 */ 4958 4959 #ifdef CONFIG_SLUB_DEBUG 4960 if (flags & SO_ALL) { 4961 struct kmem_cache_node *n; 4962 4963 for_each_kmem_cache_node(s, node, n) { 4964 4965 if (flags & SO_TOTAL) 4966 x = atomic_long_read(&n->total_objects); 4967 else if (flags & SO_OBJECTS) 4968 x = atomic_long_read(&n->total_objects) - 4969 count_partial(n, count_free); 4970 else 4971 x = atomic_long_read(&n->nr_slabs); 4972 total += x; 4973 nodes[node] += x; 4974 } 4975 4976 } else 4977 #endif 4978 if (flags & SO_PARTIAL) { 4979 struct kmem_cache_node *n; 4980 4981 for_each_kmem_cache_node(s, node, n) { 4982 if (flags & SO_TOTAL) 4983 x = count_partial(n, count_total); 4984 else if (flags & SO_OBJECTS) 4985 x = count_partial(n, count_inuse); 4986 else 4987 x = n->nr_partial; 4988 total += x; 4989 nodes[node] += x; 4990 } 4991 } 4992 4993 len += sysfs_emit_at(buf, len, "%lu", total); 4994 #ifdef CONFIG_NUMA 4995 for (node = 0; node < nr_node_ids; node++) { 4996 if (nodes[node]) 4997 len += sysfs_emit_at(buf, len, " N%d=%lu", 4998 node, nodes[node]); 4999 } 5000 #endif 5001 len += sysfs_emit_at(buf, len, "\n"); 5002 kfree(nodes); 5003 5004 return len; 5005 } 5006 5007 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5008 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5009 5010 struct slab_attribute { 5011 struct attribute attr; 5012 ssize_t (*show)(struct kmem_cache *s, char *buf); 5013 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5014 }; 5015 5016 #define SLAB_ATTR_RO(_name) \ 5017 static struct slab_attribute _name##_attr = \ 5018 __ATTR(_name, 0400, _name##_show, NULL) 5019 5020 #define SLAB_ATTR(_name) \ 5021 static struct slab_attribute _name##_attr = \ 5022 __ATTR(_name, 0600, _name##_show, _name##_store) 5023 5024 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5025 { 5026 return sysfs_emit(buf, "%u\n", s->size); 5027 } 5028 SLAB_ATTR_RO(slab_size); 5029 5030 static ssize_t align_show(struct kmem_cache *s, char *buf) 5031 { 5032 return sysfs_emit(buf, "%u\n", s->align); 5033 } 5034 SLAB_ATTR_RO(align); 5035 5036 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5037 { 5038 return sysfs_emit(buf, "%u\n", s->object_size); 5039 } 5040 SLAB_ATTR_RO(object_size); 5041 5042 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5043 { 5044 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5045 } 5046 SLAB_ATTR_RO(objs_per_slab); 5047 5048 static ssize_t order_show(struct kmem_cache *s, char *buf) 5049 { 5050 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5051 } 5052 SLAB_ATTR_RO(order); 5053 5054 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5055 { 5056 return sysfs_emit(buf, "%lu\n", s->min_partial); 5057 } 5058 5059 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5060 size_t length) 5061 { 5062 unsigned long min; 5063 int err; 5064 5065 err = kstrtoul(buf, 10, &min); 5066 if (err) 5067 return err; 5068 5069 set_min_partial(s, min); 5070 return length; 5071 } 5072 SLAB_ATTR(min_partial); 5073 5074 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5075 { 5076 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s)); 5077 } 5078 5079 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5080 size_t length) 5081 { 5082 unsigned int objects; 5083 int err; 5084 5085 err = kstrtouint(buf, 10, &objects); 5086 if (err) 5087 return err; 5088 if (objects && !kmem_cache_has_cpu_partial(s)) 5089 return -EINVAL; 5090 5091 slub_set_cpu_partial(s, objects); 5092 flush_all(s); 5093 return length; 5094 } 5095 SLAB_ATTR(cpu_partial); 5096 5097 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5098 { 5099 if (!s->ctor) 5100 return 0; 5101 return sysfs_emit(buf, "%pS\n", s->ctor); 5102 } 5103 SLAB_ATTR_RO(ctor); 5104 5105 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5106 { 5107 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5108 } 5109 SLAB_ATTR_RO(aliases); 5110 5111 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5112 { 5113 return show_slab_objects(s, buf, SO_PARTIAL); 5114 } 5115 SLAB_ATTR_RO(partial); 5116 5117 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5118 { 5119 return show_slab_objects(s, buf, SO_CPU); 5120 } 5121 SLAB_ATTR_RO(cpu_slabs); 5122 5123 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5124 { 5125 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5126 } 5127 SLAB_ATTR_RO(objects); 5128 5129 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5130 { 5131 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5132 } 5133 SLAB_ATTR_RO(objects_partial); 5134 5135 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5136 { 5137 int objects = 0; 5138 int pages = 0; 5139 int cpu; 5140 int len = 0; 5141 5142 for_each_online_cpu(cpu) { 5143 struct page *page; 5144 5145 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5146 5147 if (page) { 5148 pages += page->pages; 5149 objects += page->pobjects; 5150 } 5151 } 5152 5153 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages); 5154 5155 #ifdef CONFIG_SMP 5156 for_each_online_cpu(cpu) { 5157 struct page *page; 5158 5159 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5160 if (page) 5161 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5162 cpu, page->pobjects, page->pages); 5163 } 5164 #endif 5165 len += sysfs_emit_at(buf, len, "\n"); 5166 5167 return len; 5168 } 5169 SLAB_ATTR_RO(slabs_cpu_partial); 5170 5171 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5172 { 5173 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5174 } 5175 SLAB_ATTR_RO(reclaim_account); 5176 5177 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5178 { 5179 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5180 } 5181 SLAB_ATTR_RO(hwcache_align); 5182 5183 #ifdef CONFIG_ZONE_DMA 5184 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5185 { 5186 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5187 } 5188 SLAB_ATTR_RO(cache_dma); 5189 #endif 5190 5191 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5192 { 5193 return sysfs_emit(buf, "%u\n", s->usersize); 5194 } 5195 SLAB_ATTR_RO(usersize); 5196 5197 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5198 { 5199 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5200 } 5201 SLAB_ATTR_RO(destroy_by_rcu); 5202 5203 #ifdef CONFIG_SLUB_DEBUG 5204 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5205 { 5206 return show_slab_objects(s, buf, SO_ALL); 5207 } 5208 SLAB_ATTR_RO(slabs); 5209 5210 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5211 { 5212 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5213 } 5214 SLAB_ATTR_RO(total_objects); 5215 5216 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5217 { 5218 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5219 } 5220 SLAB_ATTR_RO(sanity_checks); 5221 5222 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5223 { 5224 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5225 } 5226 SLAB_ATTR_RO(trace); 5227 5228 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5229 { 5230 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5231 } 5232 5233 SLAB_ATTR_RO(red_zone); 5234 5235 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5236 { 5237 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5238 } 5239 5240 SLAB_ATTR_RO(poison); 5241 5242 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5243 { 5244 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5245 } 5246 5247 SLAB_ATTR_RO(store_user); 5248 5249 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5250 { 5251 return 0; 5252 } 5253 5254 static ssize_t validate_store(struct kmem_cache *s, 5255 const char *buf, size_t length) 5256 { 5257 int ret = -EINVAL; 5258 5259 if (buf[0] == '1') { 5260 ret = validate_slab_cache(s); 5261 if (ret >= 0) 5262 ret = length; 5263 } 5264 return ret; 5265 } 5266 SLAB_ATTR(validate); 5267 5268 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5269 { 5270 if (!(s->flags & SLAB_STORE_USER)) 5271 return -ENOSYS; 5272 return list_locations(s, buf, TRACK_ALLOC); 5273 } 5274 SLAB_ATTR_RO(alloc_calls); 5275 5276 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5277 { 5278 if (!(s->flags & SLAB_STORE_USER)) 5279 return -ENOSYS; 5280 return list_locations(s, buf, TRACK_FREE); 5281 } 5282 SLAB_ATTR_RO(free_calls); 5283 #endif /* CONFIG_SLUB_DEBUG */ 5284 5285 #ifdef CONFIG_FAILSLAB 5286 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5287 { 5288 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5289 } 5290 SLAB_ATTR_RO(failslab); 5291 #endif 5292 5293 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5294 { 5295 return 0; 5296 } 5297 5298 static ssize_t shrink_store(struct kmem_cache *s, 5299 const char *buf, size_t length) 5300 { 5301 if (buf[0] == '1') 5302 kmem_cache_shrink(s); 5303 else 5304 return -EINVAL; 5305 return length; 5306 } 5307 SLAB_ATTR(shrink); 5308 5309 #ifdef CONFIG_NUMA 5310 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5311 { 5312 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5313 } 5314 5315 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5316 const char *buf, size_t length) 5317 { 5318 unsigned int ratio; 5319 int err; 5320 5321 err = kstrtouint(buf, 10, &ratio); 5322 if (err) 5323 return err; 5324 if (ratio > 100) 5325 return -ERANGE; 5326 5327 s->remote_node_defrag_ratio = ratio * 10; 5328 5329 return length; 5330 } 5331 SLAB_ATTR(remote_node_defrag_ratio); 5332 #endif 5333 5334 #ifdef CONFIG_SLUB_STATS 5335 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5336 { 5337 unsigned long sum = 0; 5338 int cpu; 5339 int len = 0; 5340 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5341 5342 if (!data) 5343 return -ENOMEM; 5344 5345 for_each_online_cpu(cpu) { 5346 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5347 5348 data[cpu] = x; 5349 sum += x; 5350 } 5351 5352 len += sysfs_emit_at(buf, len, "%lu", sum); 5353 5354 #ifdef CONFIG_SMP 5355 for_each_online_cpu(cpu) { 5356 if (data[cpu]) 5357 len += sysfs_emit_at(buf, len, " C%d=%u", 5358 cpu, data[cpu]); 5359 } 5360 #endif 5361 kfree(data); 5362 len += sysfs_emit_at(buf, len, "\n"); 5363 5364 return len; 5365 } 5366 5367 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5368 { 5369 int cpu; 5370 5371 for_each_online_cpu(cpu) 5372 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5373 } 5374 5375 #define STAT_ATTR(si, text) \ 5376 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5377 { \ 5378 return show_stat(s, buf, si); \ 5379 } \ 5380 static ssize_t text##_store(struct kmem_cache *s, \ 5381 const char *buf, size_t length) \ 5382 { \ 5383 if (buf[0] != '0') \ 5384 return -EINVAL; \ 5385 clear_stat(s, si); \ 5386 return length; \ 5387 } \ 5388 SLAB_ATTR(text); \ 5389 5390 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5391 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5392 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5393 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5394 STAT_ATTR(FREE_FROZEN, free_frozen); 5395 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5396 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5397 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5398 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5399 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5400 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5401 STAT_ATTR(FREE_SLAB, free_slab); 5402 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5403 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5404 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5405 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5406 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5407 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5408 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5409 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5410 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5411 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5412 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5413 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5414 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5415 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5416 #endif /* CONFIG_SLUB_STATS */ 5417 5418 static struct attribute *slab_attrs[] = { 5419 &slab_size_attr.attr, 5420 &object_size_attr.attr, 5421 &objs_per_slab_attr.attr, 5422 &order_attr.attr, 5423 &min_partial_attr.attr, 5424 &cpu_partial_attr.attr, 5425 &objects_attr.attr, 5426 &objects_partial_attr.attr, 5427 &partial_attr.attr, 5428 &cpu_slabs_attr.attr, 5429 &ctor_attr.attr, 5430 &aliases_attr.attr, 5431 &align_attr.attr, 5432 &hwcache_align_attr.attr, 5433 &reclaim_account_attr.attr, 5434 &destroy_by_rcu_attr.attr, 5435 &shrink_attr.attr, 5436 &slabs_cpu_partial_attr.attr, 5437 #ifdef CONFIG_SLUB_DEBUG 5438 &total_objects_attr.attr, 5439 &slabs_attr.attr, 5440 &sanity_checks_attr.attr, 5441 &trace_attr.attr, 5442 &red_zone_attr.attr, 5443 &poison_attr.attr, 5444 &store_user_attr.attr, 5445 &validate_attr.attr, 5446 &alloc_calls_attr.attr, 5447 &free_calls_attr.attr, 5448 #endif 5449 #ifdef CONFIG_ZONE_DMA 5450 &cache_dma_attr.attr, 5451 #endif 5452 #ifdef CONFIG_NUMA 5453 &remote_node_defrag_ratio_attr.attr, 5454 #endif 5455 #ifdef CONFIG_SLUB_STATS 5456 &alloc_fastpath_attr.attr, 5457 &alloc_slowpath_attr.attr, 5458 &free_fastpath_attr.attr, 5459 &free_slowpath_attr.attr, 5460 &free_frozen_attr.attr, 5461 &free_add_partial_attr.attr, 5462 &free_remove_partial_attr.attr, 5463 &alloc_from_partial_attr.attr, 5464 &alloc_slab_attr.attr, 5465 &alloc_refill_attr.attr, 5466 &alloc_node_mismatch_attr.attr, 5467 &free_slab_attr.attr, 5468 &cpuslab_flush_attr.attr, 5469 &deactivate_full_attr.attr, 5470 &deactivate_empty_attr.attr, 5471 &deactivate_to_head_attr.attr, 5472 &deactivate_to_tail_attr.attr, 5473 &deactivate_remote_frees_attr.attr, 5474 &deactivate_bypass_attr.attr, 5475 &order_fallback_attr.attr, 5476 &cmpxchg_double_fail_attr.attr, 5477 &cmpxchg_double_cpu_fail_attr.attr, 5478 &cpu_partial_alloc_attr.attr, 5479 &cpu_partial_free_attr.attr, 5480 &cpu_partial_node_attr.attr, 5481 &cpu_partial_drain_attr.attr, 5482 #endif 5483 #ifdef CONFIG_FAILSLAB 5484 &failslab_attr.attr, 5485 #endif 5486 &usersize_attr.attr, 5487 5488 NULL 5489 }; 5490 5491 static const struct attribute_group slab_attr_group = { 5492 .attrs = slab_attrs, 5493 }; 5494 5495 static ssize_t slab_attr_show(struct kobject *kobj, 5496 struct attribute *attr, 5497 char *buf) 5498 { 5499 struct slab_attribute *attribute; 5500 struct kmem_cache *s; 5501 int err; 5502 5503 attribute = to_slab_attr(attr); 5504 s = to_slab(kobj); 5505 5506 if (!attribute->show) 5507 return -EIO; 5508 5509 err = attribute->show(s, buf); 5510 5511 return err; 5512 } 5513 5514 static ssize_t slab_attr_store(struct kobject *kobj, 5515 struct attribute *attr, 5516 const char *buf, size_t len) 5517 { 5518 struct slab_attribute *attribute; 5519 struct kmem_cache *s; 5520 int err; 5521 5522 attribute = to_slab_attr(attr); 5523 s = to_slab(kobj); 5524 5525 if (!attribute->store) 5526 return -EIO; 5527 5528 err = attribute->store(s, buf, len); 5529 return err; 5530 } 5531 5532 static void kmem_cache_release(struct kobject *k) 5533 { 5534 slab_kmem_cache_release(to_slab(k)); 5535 } 5536 5537 static const struct sysfs_ops slab_sysfs_ops = { 5538 .show = slab_attr_show, 5539 .store = slab_attr_store, 5540 }; 5541 5542 static struct kobj_type slab_ktype = { 5543 .sysfs_ops = &slab_sysfs_ops, 5544 .release = kmem_cache_release, 5545 }; 5546 5547 static struct kset *slab_kset; 5548 5549 static inline struct kset *cache_kset(struct kmem_cache *s) 5550 { 5551 return slab_kset; 5552 } 5553 5554 #define ID_STR_LENGTH 64 5555 5556 /* Create a unique string id for a slab cache: 5557 * 5558 * Format :[flags-]size 5559 */ 5560 static char *create_unique_id(struct kmem_cache *s) 5561 { 5562 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5563 char *p = name; 5564 5565 BUG_ON(!name); 5566 5567 *p++ = ':'; 5568 /* 5569 * First flags affecting slabcache operations. We will only 5570 * get here for aliasable slabs so we do not need to support 5571 * too many flags. The flags here must cover all flags that 5572 * are matched during merging to guarantee that the id is 5573 * unique. 5574 */ 5575 if (s->flags & SLAB_CACHE_DMA) 5576 *p++ = 'd'; 5577 if (s->flags & SLAB_CACHE_DMA32) 5578 *p++ = 'D'; 5579 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5580 *p++ = 'a'; 5581 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5582 *p++ = 'F'; 5583 if (s->flags & SLAB_ACCOUNT) 5584 *p++ = 'A'; 5585 if (p != name + 1) 5586 *p++ = '-'; 5587 p += sprintf(p, "%07u", s->size); 5588 5589 BUG_ON(p > name + ID_STR_LENGTH - 1); 5590 return name; 5591 } 5592 5593 static int sysfs_slab_add(struct kmem_cache *s) 5594 { 5595 int err; 5596 const char *name; 5597 struct kset *kset = cache_kset(s); 5598 int unmergeable = slab_unmergeable(s); 5599 5600 if (!kset) { 5601 kobject_init(&s->kobj, &slab_ktype); 5602 return 0; 5603 } 5604 5605 if (!unmergeable && disable_higher_order_debug && 5606 (slub_debug & DEBUG_METADATA_FLAGS)) 5607 unmergeable = 1; 5608 5609 if (unmergeable) { 5610 /* 5611 * Slabcache can never be merged so we can use the name proper. 5612 * This is typically the case for debug situations. In that 5613 * case we can catch duplicate names easily. 5614 */ 5615 sysfs_remove_link(&slab_kset->kobj, s->name); 5616 name = s->name; 5617 } else { 5618 /* 5619 * Create a unique name for the slab as a target 5620 * for the symlinks. 5621 */ 5622 name = create_unique_id(s); 5623 } 5624 5625 s->kobj.kset = kset; 5626 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5627 if (err) { 5628 kobject_put(&s->kobj); 5629 goto out; 5630 } 5631 5632 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5633 if (err) 5634 goto out_del_kobj; 5635 5636 if (!unmergeable) { 5637 /* Setup first alias */ 5638 sysfs_slab_alias(s, s->name); 5639 } 5640 out: 5641 if (!unmergeable) 5642 kfree(name); 5643 return err; 5644 out_del_kobj: 5645 kobject_del(&s->kobj); 5646 goto out; 5647 } 5648 5649 void sysfs_slab_unlink(struct kmem_cache *s) 5650 { 5651 if (slab_state >= FULL) 5652 kobject_del(&s->kobj); 5653 } 5654 5655 void sysfs_slab_release(struct kmem_cache *s) 5656 { 5657 if (slab_state >= FULL) 5658 kobject_put(&s->kobj); 5659 } 5660 5661 /* 5662 * Need to buffer aliases during bootup until sysfs becomes 5663 * available lest we lose that information. 5664 */ 5665 struct saved_alias { 5666 struct kmem_cache *s; 5667 const char *name; 5668 struct saved_alias *next; 5669 }; 5670 5671 static struct saved_alias *alias_list; 5672 5673 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5674 { 5675 struct saved_alias *al; 5676 5677 if (slab_state == FULL) { 5678 /* 5679 * If we have a leftover link then remove it. 5680 */ 5681 sysfs_remove_link(&slab_kset->kobj, name); 5682 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5683 } 5684 5685 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5686 if (!al) 5687 return -ENOMEM; 5688 5689 al->s = s; 5690 al->name = name; 5691 al->next = alias_list; 5692 alias_list = al; 5693 return 0; 5694 } 5695 5696 static int __init slab_sysfs_init(void) 5697 { 5698 struct kmem_cache *s; 5699 int err; 5700 5701 mutex_lock(&slab_mutex); 5702 5703 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 5704 if (!slab_kset) { 5705 mutex_unlock(&slab_mutex); 5706 pr_err("Cannot register slab subsystem.\n"); 5707 return -ENOSYS; 5708 } 5709 5710 slab_state = FULL; 5711 5712 list_for_each_entry(s, &slab_caches, list) { 5713 err = sysfs_slab_add(s); 5714 if (err) 5715 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5716 s->name); 5717 } 5718 5719 while (alias_list) { 5720 struct saved_alias *al = alias_list; 5721 5722 alias_list = alias_list->next; 5723 err = sysfs_slab_alias(al->s, al->name); 5724 if (err) 5725 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5726 al->name); 5727 kfree(al); 5728 } 5729 5730 mutex_unlock(&slab_mutex); 5731 resiliency_test(); 5732 return 0; 5733 } 5734 5735 __initcall(slab_sysfs_init); 5736 #endif /* CONFIG_SYSFS */ 5737 5738 /* 5739 * The /proc/slabinfo ABI 5740 */ 5741 #ifdef CONFIG_SLUB_DEBUG 5742 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5743 { 5744 unsigned long nr_slabs = 0; 5745 unsigned long nr_objs = 0; 5746 unsigned long nr_free = 0; 5747 int node; 5748 struct kmem_cache_node *n; 5749 5750 for_each_kmem_cache_node(s, node, n) { 5751 nr_slabs += node_nr_slabs(n); 5752 nr_objs += node_nr_objs(n); 5753 nr_free += count_partial(n, count_free); 5754 } 5755 5756 sinfo->active_objs = nr_objs - nr_free; 5757 sinfo->num_objs = nr_objs; 5758 sinfo->active_slabs = nr_slabs; 5759 sinfo->num_slabs = nr_slabs; 5760 sinfo->objects_per_slab = oo_objects(s->oo); 5761 sinfo->cache_order = oo_order(s->oo); 5762 } 5763 5764 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5765 { 5766 } 5767 5768 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5769 size_t count, loff_t *ppos) 5770 { 5771 return -EIO; 5772 } 5773 #endif /* CONFIG_SLUB_DEBUG */ 5774