1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 void *fixup_red_left(struct kmem_cache *s, void *p) 128 { 129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 130 p += s->red_left_pad; 131 132 return p; 133 } 134 135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 136 { 137 #ifdef CONFIG_SLUB_CPU_PARTIAL 138 return !kmem_cache_debug(s); 139 #else 140 return false; 141 #endif 142 } 143 144 /* 145 * Issues still to be resolved: 146 * 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 148 * 149 * - Variable sizing of the per node arrays 150 */ 151 152 /* Enable to test recovery from slab corruption on boot */ 153 #undef SLUB_RESILIENCY_TEST 154 155 /* Enable to log cmpxchg failures */ 156 #undef SLUB_DEBUG_CMPXCHG 157 158 /* 159 * Mininum number of partial slabs. These will be left on the partial 160 * lists even if they are empty. kmem_cache_shrink may reclaim them. 161 */ 162 #define MIN_PARTIAL 5 163 164 /* 165 * Maximum number of desirable partial slabs. 166 * The existence of more partial slabs makes kmem_cache_shrink 167 * sort the partial list by the number of objects in use. 168 */ 169 #define MAX_PARTIAL 10 170 171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 172 SLAB_POISON | SLAB_STORE_USER) 173 174 /* 175 * These debug flags cannot use CMPXCHG because there might be consistency 176 * issues when checking or reading debug information 177 */ 178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 179 SLAB_TRACE) 180 181 182 /* 183 * Debugging flags that require metadata to be stored in the slab. These get 184 * disabled when slub_debug=O is used and a cache's min order increases with 185 * metadata. 186 */ 187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 188 189 #define OO_SHIFT 16 190 #define OO_MASK ((1 << OO_SHIFT) - 1) 191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 192 193 /* Internal SLUB flags */ 194 /* Poison object */ 195 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 196 /* Use cmpxchg_double */ 197 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 198 199 /* 200 * Tracking user of a slab. 201 */ 202 #define TRACK_ADDRS_COUNT 16 203 struct track { 204 unsigned long addr; /* Called from address */ 205 #ifdef CONFIG_STACKTRACE 206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 207 #endif 208 int cpu; /* Was running on cpu */ 209 int pid; /* Pid context */ 210 unsigned long when; /* When did the operation occur */ 211 }; 212 213 enum track_item { TRACK_ALLOC, TRACK_FREE }; 214 215 #ifdef CONFIG_SYSFS 216 static int sysfs_slab_add(struct kmem_cache *); 217 static int sysfs_slab_alias(struct kmem_cache *, const char *); 218 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 219 static void sysfs_slab_remove(struct kmem_cache *s); 220 #else 221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 223 { return 0; } 224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 225 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 /* 232 * The rmw is racy on a preemptible kernel but this is acceptable, so 233 * avoid this_cpu_add()'s irq-disable overhead. 234 */ 235 raw_cpu_inc(s->cpu_slab->stat[si]); 236 #endif 237 } 238 239 /******************************************************************** 240 * Core slab cache functions 241 *******************************************************************/ 242 243 /* 244 * Returns freelist pointer (ptr). With hardening, this is obfuscated 245 * with an XOR of the address where the pointer is held and a per-cache 246 * random number. 247 */ 248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 249 unsigned long ptr_addr) 250 { 251 #ifdef CONFIG_SLAB_FREELIST_HARDENED 252 /* 253 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 254 * Normally, this doesn't cause any issues, as both set_freepointer() 255 * and get_freepointer() are called with a pointer with the same tag. 256 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 257 * example, when __free_slub() iterates over objects in a cache, it 258 * passes untagged pointers to check_object(). check_object() in turns 259 * calls get_freepointer() with an untagged pointer, which causes the 260 * freepointer to be restored incorrectly. 261 */ 262 return (void *)((unsigned long)ptr ^ s->random ^ 263 (unsigned long)kasan_reset_tag((void *)ptr_addr)); 264 #else 265 return ptr; 266 #endif 267 } 268 269 /* Returns the freelist pointer recorded at location ptr_addr. */ 270 static inline void *freelist_dereference(const struct kmem_cache *s, 271 void *ptr_addr) 272 { 273 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 274 (unsigned long)ptr_addr); 275 } 276 277 static inline void *get_freepointer(struct kmem_cache *s, void *object) 278 { 279 return freelist_dereference(s, object + s->offset); 280 } 281 282 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 283 { 284 prefetch(object + s->offset); 285 } 286 287 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 288 { 289 unsigned long freepointer_addr; 290 void *p; 291 292 if (!debug_pagealloc_enabled()) 293 return get_freepointer(s, object); 294 295 freepointer_addr = (unsigned long)object + s->offset; 296 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 297 return freelist_ptr(s, p, freepointer_addr); 298 } 299 300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 301 { 302 unsigned long freeptr_addr = (unsigned long)object + s->offset; 303 304 #ifdef CONFIG_SLAB_FREELIST_HARDENED 305 BUG_ON(object == fp); /* naive detection of double free or corruption */ 306 #endif 307 308 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 309 } 310 311 /* Loop over all objects in a slab */ 312 #define for_each_object(__p, __s, __addr, __objects) \ 313 for (__p = fixup_red_left(__s, __addr); \ 314 __p < (__addr) + (__objects) * (__s)->size; \ 315 __p += (__s)->size) 316 317 /* Determine object index from a given position */ 318 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 319 { 320 return (kasan_reset_tag(p) - addr) / s->size; 321 } 322 323 static inline unsigned int order_objects(unsigned int order, unsigned int size) 324 { 325 return ((unsigned int)PAGE_SIZE << order) / size; 326 } 327 328 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 329 unsigned int size) 330 { 331 struct kmem_cache_order_objects x = { 332 (order << OO_SHIFT) + order_objects(order, size) 333 }; 334 335 return x; 336 } 337 338 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 339 { 340 return x.x >> OO_SHIFT; 341 } 342 343 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 344 { 345 return x.x & OO_MASK; 346 } 347 348 /* 349 * Per slab locking using the pagelock 350 */ 351 static __always_inline void slab_lock(struct page *page) 352 { 353 VM_BUG_ON_PAGE(PageTail(page), page); 354 bit_spin_lock(PG_locked, &page->flags); 355 } 356 357 static __always_inline void slab_unlock(struct page *page) 358 { 359 VM_BUG_ON_PAGE(PageTail(page), page); 360 __bit_spin_unlock(PG_locked, &page->flags); 361 } 362 363 /* Interrupts must be disabled (for the fallback code to work right) */ 364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 365 void *freelist_old, unsigned long counters_old, 366 void *freelist_new, unsigned long counters_new, 367 const char *n) 368 { 369 VM_BUG_ON(!irqs_disabled()); 370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 372 if (s->flags & __CMPXCHG_DOUBLE) { 373 if (cmpxchg_double(&page->freelist, &page->counters, 374 freelist_old, counters_old, 375 freelist_new, counters_new)) 376 return true; 377 } else 378 #endif 379 { 380 slab_lock(page); 381 if (page->freelist == freelist_old && 382 page->counters == counters_old) { 383 page->freelist = freelist_new; 384 page->counters = counters_new; 385 slab_unlock(page); 386 return true; 387 } 388 slab_unlock(page); 389 } 390 391 cpu_relax(); 392 stat(s, CMPXCHG_DOUBLE_FAIL); 393 394 #ifdef SLUB_DEBUG_CMPXCHG 395 pr_info("%s %s: cmpxchg double redo ", n, s->name); 396 #endif 397 398 return false; 399 } 400 401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 402 void *freelist_old, unsigned long counters_old, 403 void *freelist_new, unsigned long counters_new, 404 const char *n) 405 { 406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 408 if (s->flags & __CMPXCHG_DOUBLE) { 409 if (cmpxchg_double(&page->freelist, &page->counters, 410 freelist_old, counters_old, 411 freelist_new, counters_new)) 412 return true; 413 } else 414 #endif 415 { 416 unsigned long flags; 417 418 local_irq_save(flags); 419 slab_lock(page); 420 if (page->freelist == freelist_old && 421 page->counters == counters_old) { 422 page->freelist = freelist_new; 423 page->counters = counters_new; 424 slab_unlock(page); 425 local_irq_restore(flags); 426 return true; 427 } 428 slab_unlock(page); 429 local_irq_restore(flags); 430 } 431 432 cpu_relax(); 433 stat(s, CMPXCHG_DOUBLE_FAIL); 434 435 #ifdef SLUB_DEBUG_CMPXCHG 436 pr_info("%s %s: cmpxchg double redo ", n, s->name); 437 #endif 438 439 return false; 440 } 441 442 #ifdef CONFIG_SLUB_DEBUG 443 /* 444 * Determine a map of object in use on a page. 445 * 446 * Node listlock must be held to guarantee that the page does 447 * not vanish from under us. 448 */ 449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 450 { 451 void *p; 452 void *addr = page_address(page); 453 454 for (p = page->freelist; p; p = get_freepointer(s, p)) 455 set_bit(slab_index(p, s, addr), map); 456 } 457 458 static inline unsigned int size_from_object(struct kmem_cache *s) 459 { 460 if (s->flags & SLAB_RED_ZONE) 461 return s->size - s->red_left_pad; 462 463 return s->size; 464 } 465 466 static inline void *restore_red_left(struct kmem_cache *s, void *p) 467 { 468 if (s->flags & SLAB_RED_ZONE) 469 p -= s->red_left_pad; 470 471 return p; 472 } 473 474 /* 475 * Debug settings: 476 */ 477 #if defined(CONFIG_SLUB_DEBUG_ON) 478 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 479 #else 480 static slab_flags_t slub_debug; 481 #endif 482 483 static char *slub_debug_slabs; 484 static int disable_higher_order_debug; 485 486 /* 487 * slub is about to manipulate internal object metadata. This memory lies 488 * outside the range of the allocated object, so accessing it would normally 489 * be reported by kasan as a bounds error. metadata_access_enable() is used 490 * to tell kasan that these accesses are OK. 491 */ 492 static inline void metadata_access_enable(void) 493 { 494 kasan_disable_current(); 495 } 496 497 static inline void metadata_access_disable(void) 498 { 499 kasan_enable_current(); 500 } 501 502 /* 503 * Object debugging 504 */ 505 506 /* Verify that a pointer has an address that is valid within a slab page */ 507 static inline int check_valid_pointer(struct kmem_cache *s, 508 struct page *page, void *object) 509 { 510 void *base; 511 512 if (!object) 513 return 1; 514 515 base = page_address(page); 516 object = kasan_reset_tag(object); 517 object = restore_red_left(s, object); 518 if (object < base || object >= base + page->objects * s->size || 519 (object - base) % s->size) { 520 return 0; 521 } 522 523 return 1; 524 } 525 526 static void print_section(char *level, char *text, u8 *addr, 527 unsigned int length) 528 { 529 metadata_access_enable(); 530 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 531 length, 1); 532 metadata_access_disable(); 533 } 534 535 static struct track *get_track(struct kmem_cache *s, void *object, 536 enum track_item alloc) 537 { 538 struct track *p; 539 540 if (s->offset) 541 p = object + s->offset + sizeof(void *); 542 else 543 p = object + s->inuse; 544 545 return p + alloc; 546 } 547 548 static void set_track(struct kmem_cache *s, void *object, 549 enum track_item alloc, unsigned long addr) 550 { 551 struct track *p = get_track(s, object, alloc); 552 553 if (addr) { 554 #ifdef CONFIG_STACKTRACE 555 struct stack_trace trace; 556 int i; 557 558 trace.nr_entries = 0; 559 trace.max_entries = TRACK_ADDRS_COUNT; 560 trace.entries = p->addrs; 561 trace.skip = 3; 562 metadata_access_enable(); 563 save_stack_trace(&trace); 564 metadata_access_disable(); 565 566 /* See rant in lockdep.c */ 567 if (trace.nr_entries != 0 && 568 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 569 trace.nr_entries--; 570 571 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 572 p->addrs[i] = 0; 573 #endif 574 p->addr = addr; 575 p->cpu = smp_processor_id(); 576 p->pid = current->pid; 577 p->when = jiffies; 578 } else 579 memset(p, 0, sizeof(struct track)); 580 } 581 582 static void init_tracking(struct kmem_cache *s, void *object) 583 { 584 if (!(s->flags & SLAB_STORE_USER)) 585 return; 586 587 set_track(s, object, TRACK_FREE, 0UL); 588 set_track(s, object, TRACK_ALLOC, 0UL); 589 } 590 591 static void print_track(const char *s, struct track *t, unsigned long pr_time) 592 { 593 if (!t->addr) 594 return; 595 596 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 597 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 598 #ifdef CONFIG_STACKTRACE 599 { 600 int i; 601 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 602 if (t->addrs[i]) 603 pr_err("\t%pS\n", (void *)t->addrs[i]); 604 else 605 break; 606 } 607 #endif 608 } 609 610 static void print_tracking(struct kmem_cache *s, void *object) 611 { 612 unsigned long pr_time = jiffies; 613 if (!(s->flags & SLAB_STORE_USER)) 614 return; 615 616 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 617 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 618 } 619 620 static void print_page_info(struct page *page) 621 { 622 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 623 page, page->objects, page->inuse, page->freelist, page->flags); 624 625 } 626 627 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 628 { 629 struct va_format vaf; 630 va_list args; 631 632 va_start(args, fmt); 633 vaf.fmt = fmt; 634 vaf.va = &args; 635 pr_err("=============================================================================\n"); 636 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 637 pr_err("-----------------------------------------------------------------------------\n\n"); 638 639 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 640 va_end(args); 641 } 642 643 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 644 { 645 struct va_format vaf; 646 va_list args; 647 648 va_start(args, fmt); 649 vaf.fmt = fmt; 650 vaf.va = &args; 651 pr_err("FIX %s: %pV\n", s->name, &vaf); 652 va_end(args); 653 } 654 655 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 656 { 657 unsigned int off; /* Offset of last byte */ 658 u8 *addr = page_address(page); 659 660 print_tracking(s, p); 661 662 print_page_info(page); 663 664 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 665 p, p - addr, get_freepointer(s, p)); 666 667 if (s->flags & SLAB_RED_ZONE) 668 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 669 s->red_left_pad); 670 else if (p > addr + 16) 671 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 672 673 print_section(KERN_ERR, "Object ", p, 674 min_t(unsigned int, s->object_size, PAGE_SIZE)); 675 if (s->flags & SLAB_RED_ZONE) 676 print_section(KERN_ERR, "Redzone ", p + s->object_size, 677 s->inuse - s->object_size); 678 679 if (s->offset) 680 off = s->offset + sizeof(void *); 681 else 682 off = s->inuse; 683 684 if (s->flags & SLAB_STORE_USER) 685 off += 2 * sizeof(struct track); 686 687 off += kasan_metadata_size(s); 688 689 if (off != size_from_object(s)) 690 /* Beginning of the filler is the free pointer */ 691 print_section(KERN_ERR, "Padding ", p + off, 692 size_from_object(s) - off); 693 694 dump_stack(); 695 } 696 697 void object_err(struct kmem_cache *s, struct page *page, 698 u8 *object, char *reason) 699 { 700 slab_bug(s, "%s", reason); 701 print_trailer(s, page, object); 702 } 703 704 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 705 const char *fmt, ...) 706 { 707 va_list args; 708 char buf[100]; 709 710 va_start(args, fmt); 711 vsnprintf(buf, sizeof(buf), fmt, args); 712 va_end(args); 713 slab_bug(s, "%s", buf); 714 print_page_info(page); 715 dump_stack(); 716 } 717 718 static void init_object(struct kmem_cache *s, void *object, u8 val) 719 { 720 u8 *p = object; 721 722 if (s->flags & SLAB_RED_ZONE) 723 memset(p - s->red_left_pad, val, s->red_left_pad); 724 725 if (s->flags & __OBJECT_POISON) { 726 memset(p, POISON_FREE, s->object_size - 1); 727 p[s->object_size - 1] = POISON_END; 728 } 729 730 if (s->flags & SLAB_RED_ZONE) 731 memset(p + s->object_size, val, s->inuse - s->object_size); 732 } 733 734 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 735 void *from, void *to) 736 { 737 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 738 memset(from, data, to - from); 739 } 740 741 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 742 u8 *object, char *what, 743 u8 *start, unsigned int value, unsigned int bytes) 744 { 745 u8 *fault; 746 u8 *end; 747 748 metadata_access_enable(); 749 fault = memchr_inv(start, value, bytes); 750 metadata_access_disable(); 751 if (!fault) 752 return 1; 753 754 end = start + bytes; 755 while (end > fault && end[-1] == value) 756 end--; 757 758 slab_bug(s, "%s overwritten", what); 759 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 760 fault, end - 1, fault[0], value); 761 print_trailer(s, page, object); 762 763 restore_bytes(s, what, value, fault, end); 764 return 0; 765 } 766 767 /* 768 * Object layout: 769 * 770 * object address 771 * Bytes of the object to be managed. 772 * If the freepointer may overlay the object then the free 773 * pointer is the first word of the object. 774 * 775 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 776 * 0xa5 (POISON_END) 777 * 778 * object + s->object_size 779 * Padding to reach word boundary. This is also used for Redzoning. 780 * Padding is extended by another word if Redzoning is enabled and 781 * object_size == inuse. 782 * 783 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 784 * 0xcc (RED_ACTIVE) for objects in use. 785 * 786 * object + s->inuse 787 * Meta data starts here. 788 * 789 * A. Free pointer (if we cannot overwrite object on free) 790 * B. Tracking data for SLAB_STORE_USER 791 * C. Padding to reach required alignment boundary or at mininum 792 * one word if debugging is on to be able to detect writes 793 * before the word boundary. 794 * 795 * Padding is done using 0x5a (POISON_INUSE) 796 * 797 * object + s->size 798 * Nothing is used beyond s->size. 799 * 800 * If slabcaches are merged then the object_size and inuse boundaries are mostly 801 * ignored. And therefore no slab options that rely on these boundaries 802 * may be used with merged slabcaches. 803 */ 804 805 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 806 { 807 unsigned long off = s->inuse; /* The end of info */ 808 809 if (s->offset) 810 /* Freepointer is placed after the object. */ 811 off += sizeof(void *); 812 813 if (s->flags & SLAB_STORE_USER) 814 /* We also have user information there */ 815 off += 2 * sizeof(struct track); 816 817 off += kasan_metadata_size(s); 818 819 if (size_from_object(s) == off) 820 return 1; 821 822 return check_bytes_and_report(s, page, p, "Object padding", 823 p + off, POISON_INUSE, size_from_object(s) - off); 824 } 825 826 /* Check the pad bytes at the end of a slab page */ 827 static int slab_pad_check(struct kmem_cache *s, struct page *page) 828 { 829 u8 *start; 830 u8 *fault; 831 u8 *end; 832 u8 *pad; 833 int length; 834 int remainder; 835 836 if (!(s->flags & SLAB_POISON)) 837 return 1; 838 839 start = page_address(page); 840 length = PAGE_SIZE << compound_order(page); 841 end = start + length; 842 remainder = length % s->size; 843 if (!remainder) 844 return 1; 845 846 pad = end - remainder; 847 metadata_access_enable(); 848 fault = memchr_inv(pad, POISON_INUSE, remainder); 849 metadata_access_disable(); 850 if (!fault) 851 return 1; 852 while (end > fault && end[-1] == POISON_INUSE) 853 end--; 854 855 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 856 print_section(KERN_ERR, "Padding ", pad, remainder); 857 858 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 859 return 0; 860 } 861 862 static int check_object(struct kmem_cache *s, struct page *page, 863 void *object, u8 val) 864 { 865 u8 *p = object; 866 u8 *endobject = object + s->object_size; 867 868 if (s->flags & SLAB_RED_ZONE) { 869 if (!check_bytes_and_report(s, page, object, "Redzone", 870 object - s->red_left_pad, val, s->red_left_pad)) 871 return 0; 872 873 if (!check_bytes_and_report(s, page, object, "Redzone", 874 endobject, val, s->inuse - s->object_size)) 875 return 0; 876 } else { 877 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 878 check_bytes_and_report(s, page, p, "Alignment padding", 879 endobject, POISON_INUSE, 880 s->inuse - s->object_size); 881 } 882 } 883 884 if (s->flags & SLAB_POISON) { 885 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 886 (!check_bytes_and_report(s, page, p, "Poison", p, 887 POISON_FREE, s->object_size - 1) || 888 !check_bytes_and_report(s, page, p, "Poison", 889 p + s->object_size - 1, POISON_END, 1))) 890 return 0; 891 /* 892 * check_pad_bytes cleans up on its own. 893 */ 894 check_pad_bytes(s, page, p); 895 } 896 897 if (!s->offset && val == SLUB_RED_ACTIVE) 898 /* 899 * Object and freepointer overlap. Cannot check 900 * freepointer while object is allocated. 901 */ 902 return 1; 903 904 /* Check free pointer validity */ 905 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 906 object_err(s, page, p, "Freepointer corrupt"); 907 /* 908 * No choice but to zap it and thus lose the remainder 909 * of the free objects in this slab. May cause 910 * another error because the object count is now wrong. 911 */ 912 set_freepointer(s, p, NULL); 913 return 0; 914 } 915 return 1; 916 } 917 918 static int check_slab(struct kmem_cache *s, struct page *page) 919 { 920 int maxobj; 921 922 VM_BUG_ON(!irqs_disabled()); 923 924 if (!PageSlab(page)) { 925 slab_err(s, page, "Not a valid slab page"); 926 return 0; 927 } 928 929 maxobj = order_objects(compound_order(page), s->size); 930 if (page->objects > maxobj) { 931 slab_err(s, page, "objects %u > max %u", 932 page->objects, maxobj); 933 return 0; 934 } 935 if (page->inuse > page->objects) { 936 slab_err(s, page, "inuse %u > max %u", 937 page->inuse, page->objects); 938 return 0; 939 } 940 /* Slab_pad_check fixes things up after itself */ 941 slab_pad_check(s, page); 942 return 1; 943 } 944 945 /* 946 * Determine if a certain object on a page is on the freelist. Must hold the 947 * slab lock to guarantee that the chains are in a consistent state. 948 */ 949 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 950 { 951 int nr = 0; 952 void *fp; 953 void *object = NULL; 954 int max_objects; 955 956 fp = page->freelist; 957 while (fp && nr <= page->objects) { 958 if (fp == search) 959 return 1; 960 if (!check_valid_pointer(s, page, fp)) { 961 if (object) { 962 object_err(s, page, object, 963 "Freechain corrupt"); 964 set_freepointer(s, object, NULL); 965 } else { 966 slab_err(s, page, "Freepointer corrupt"); 967 page->freelist = NULL; 968 page->inuse = page->objects; 969 slab_fix(s, "Freelist cleared"); 970 return 0; 971 } 972 break; 973 } 974 object = fp; 975 fp = get_freepointer(s, object); 976 nr++; 977 } 978 979 max_objects = order_objects(compound_order(page), s->size); 980 if (max_objects > MAX_OBJS_PER_PAGE) 981 max_objects = MAX_OBJS_PER_PAGE; 982 983 if (page->objects != max_objects) { 984 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 985 page->objects, max_objects); 986 page->objects = max_objects; 987 slab_fix(s, "Number of objects adjusted."); 988 } 989 if (page->inuse != page->objects - nr) { 990 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 991 page->inuse, page->objects - nr); 992 page->inuse = page->objects - nr; 993 slab_fix(s, "Object count adjusted."); 994 } 995 return search == NULL; 996 } 997 998 static void trace(struct kmem_cache *s, struct page *page, void *object, 999 int alloc) 1000 { 1001 if (s->flags & SLAB_TRACE) { 1002 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1003 s->name, 1004 alloc ? "alloc" : "free", 1005 object, page->inuse, 1006 page->freelist); 1007 1008 if (!alloc) 1009 print_section(KERN_INFO, "Object ", (void *)object, 1010 s->object_size); 1011 1012 dump_stack(); 1013 } 1014 } 1015 1016 /* 1017 * Tracking of fully allocated slabs for debugging purposes. 1018 */ 1019 static void add_full(struct kmem_cache *s, 1020 struct kmem_cache_node *n, struct page *page) 1021 { 1022 if (!(s->flags & SLAB_STORE_USER)) 1023 return; 1024 1025 lockdep_assert_held(&n->list_lock); 1026 list_add(&page->lru, &n->full); 1027 } 1028 1029 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1030 { 1031 if (!(s->flags & SLAB_STORE_USER)) 1032 return; 1033 1034 lockdep_assert_held(&n->list_lock); 1035 list_del(&page->lru); 1036 } 1037 1038 /* Tracking of the number of slabs for debugging purposes */ 1039 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1040 { 1041 struct kmem_cache_node *n = get_node(s, node); 1042 1043 return atomic_long_read(&n->nr_slabs); 1044 } 1045 1046 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1047 { 1048 return atomic_long_read(&n->nr_slabs); 1049 } 1050 1051 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1052 { 1053 struct kmem_cache_node *n = get_node(s, node); 1054 1055 /* 1056 * May be called early in order to allocate a slab for the 1057 * kmem_cache_node structure. Solve the chicken-egg 1058 * dilemma by deferring the increment of the count during 1059 * bootstrap (see early_kmem_cache_node_alloc). 1060 */ 1061 if (likely(n)) { 1062 atomic_long_inc(&n->nr_slabs); 1063 atomic_long_add(objects, &n->total_objects); 1064 } 1065 } 1066 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1067 { 1068 struct kmem_cache_node *n = get_node(s, node); 1069 1070 atomic_long_dec(&n->nr_slabs); 1071 atomic_long_sub(objects, &n->total_objects); 1072 } 1073 1074 /* Object debug checks for alloc/free paths */ 1075 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1076 void *object) 1077 { 1078 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1079 return; 1080 1081 init_object(s, object, SLUB_RED_INACTIVE); 1082 init_tracking(s, object); 1083 } 1084 1085 static void setup_page_debug(struct kmem_cache *s, void *addr, int order) 1086 { 1087 if (!(s->flags & SLAB_POISON)) 1088 return; 1089 1090 metadata_access_enable(); 1091 memset(addr, POISON_INUSE, PAGE_SIZE << order); 1092 metadata_access_disable(); 1093 } 1094 1095 static inline int alloc_consistency_checks(struct kmem_cache *s, 1096 struct page *page, void *object) 1097 { 1098 if (!check_slab(s, page)) 1099 return 0; 1100 1101 if (!check_valid_pointer(s, page, object)) { 1102 object_err(s, page, object, "Freelist Pointer check fails"); 1103 return 0; 1104 } 1105 1106 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1107 return 0; 1108 1109 return 1; 1110 } 1111 1112 static noinline int alloc_debug_processing(struct kmem_cache *s, 1113 struct page *page, 1114 void *object, unsigned long addr) 1115 { 1116 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1117 if (!alloc_consistency_checks(s, page, object)) 1118 goto bad; 1119 } 1120 1121 /* Success perform special debug activities for allocs */ 1122 if (s->flags & SLAB_STORE_USER) 1123 set_track(s, object, TRACK_ALLOC, addr); 1124 trace(s, page, object, 1); 1125 init_object(s, object, SLUB_RED_ACTIVE); 1126 return 1; 1127 1128 bad: 1129 if (PageSlab(page)) { 1130 /* 1131 * If this is a slab page then lets do the best we can 1132 * to avoid issues in the future. Marking all objects 1133 * as used avoids touching the remaining objects. 1134 */ 1135 slab_fix(s, "Marking all objects used"); 1136 page->inuse = page->objects; 1137 page->freelist = NULL; 1138 } 1139 return 0; 1140 } 1141 1142 static inline int free_consistency_checks(struct kmem_cache *s, 1143 struct page *page, void *object, unsigned long addr) 1144 { 1145 if (!check_valid_pointer(s, page, object)) { 1146 slab_err(s, page, "Invalid object pointer 0x%p", object); 1147 return 0; 1148 } 1149 1150 if (on_freelist(s, page, object)) { 1151 object_err(s, page, object, "Object already free"); 1152 return 0; 1153 } 1154 1155 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1156 return 0; 1157 1158 if (unlikely(s != page->slab_cache)) { 1159 if (!PageSlab(page)) { 1160 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1161 object); 1162 } else if (!page->slab_cache) { 1163 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1164 object); 1165 dump_stack(); 1166 } else 1167 object_err(s, page, object, 1168 "page slab pointer corrupt."); 1169 return 0; 1170 } 1171 return 1; 1172 } 1173 1174 /* Supports checking bulk free of a constructed freelist */ 1175 static noinline int free_debug_processing( 1176 struct kmem_cache *s, struct page *page, 1177 void *head, void *tail, int bulk_cnt, 1178 unsigned long addr) 1179 { 1180 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1181 void *object = head; 1182 int cnt = 0; 1183 unsigned long uninitialized_var(flags); 1184 int ret = 0; 1185 1186 spin_lock_irqsave(&n->list_lock, flags); 1187 slab_lock(page); 1188 1189 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1190 if (!check_slab(s, page)) 1191 goto out; 1192 } 1193 1194 next_object: 1195 cnt++; 1196 1197 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1198 if (!free_consistency_checks(s, page, object, addr)) 1199 goto out; 1200 } 1201 1202 if (s->flags & SLAB_STORE_USER) 1203 set_track(s, object, TRACK_FREE, addr); 1204 trace(s, page, object, 0); 1205 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1206 init_object(s, object, SLUB_RED_INACTIVE); 1207 1208 /* Reached end of constructed freelist yet? */ 1209 if (object != tail) { 1210 object = get_freepointer(s, object); 1211 goto next_object; 1212 } 1213 ret = 1; 1214 1215 out: 1216 if (cnt != bulk_cnt) 1217 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1218 bulk_cnt, cnt); 1219 1220 slab_unlock(page); 1221 spin_unlock_irqrestore(&n->list_lock, flags); 1222 if (!ret) 1223 slab_fix(s, "Object at 0x%p not freed", object); 1224 return ret; 1225 } 1226 1227 static int __init setup_slub_debug(char *str) 1228 { 1229 slub_debug = DEBUG_DEFAULT_FLAGS; 1230 if (*str++ != '=' || !*str) 1231 /* 1232 * No options specified. Switch on full debugging. 1233 */ 1234 goto out; 1235 1236 if (*str == ',') 1237 /* 1238 * No options but restriction on slabs. This means full 1239 * debugging for slabs matching a pattern. 1240 */ 1241 goto check_slabs; 1242 1243 slub_debug = 0; 1244 if (*str == '-') 1245 /* 1246 * Switch off all debugging measures. 1247 */ 1248 goto out; 1249 1250 /* 1251 * Determine which debug features should be switched on 1252 */ 1253 for (; *str && *str != ','; str++) { 1254 switch (tolower(*str)) { 1255 case 'f': 1256 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1257 break; 1258 case 'z': 1259 slub_debug |= SLAB_RED_ZONE; 1260 break; 1261 case 'p': 1262 slub_debug |= SLAB_POISON; 1263 break; 1264 case 'u': 1265 slub_debug |= SLAB_STORE_USER; 1266 break; 1267 case 't': 1268 slub_debug |= SLAB_TRACE; 1269 break; 1270 case 'a': 1271 slub_debug |= SLAB_FAILSLAB; 1272 break; 1273 case 'o': 1274 /* 1275 * Avoid enabling debugging on caches if its minimum 1276 * order would increase as a result. 1277 */ 1278 disable_higher_order_debug = 1; 1279 break; 1280 default: 1281 pr_err("slub_debug option '%c' unknown. skipped\n", 1282 *str); 1283 } 1284 } 1285 1286 check_slabs: 1287 if (*str == ',') 1288 slub_debug_slabs = str + 1; 1289 out: 1290 return 1; 1291 } 1292 1293 __setup("slub_debug", setup_slub_debug); 1294 1295 /* 1296 * kmem_cache_flags - apply debugging options to the cache 1297 * @object_size: the size of an object without meta data 1298 * @flags: flags to set 1299 * @name: name of the cache 1300 * @ctor: constructor function 1301 * 1302 * Debug option(s) are applied to @flags. In addition to the debug 1303 * option(s), if a slab name (or multiple) is specified i.e. 1304 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1305 * then only the select slabs will receive the debug option(s). 1306 */ 1307 slab_flags_t kmem_cache_flags(unsigned int object_size, 1308 slab_flags_t flags, const char *name, 1309 void (*ctor)(void *)) 1310 { 1311 char *iter; 1312 size_t len; 1313 1314 /* If slub_debug = 0, it folds into the if conditional. */ 1315 if (!slub_debug_slabs) 1316 return flags | slub_debug; 1317 1318 len = strlen(name); 1319 iter = slub_debug_slabs; 1320 while (*iter) { 1321 char *end, *glob; 1322 size_t cmplen; 1323 1324 end = strchr(iter, ','); 1325 if (!end) 1326 end = iter + strlen(iter); 1327 1328 glob = strnchr(iter, end - iter, '*'); 1329 if (glob) 1330 cmplen = glob - iter; 1331 else 1332 cmplen = max_t(size_t, len, (end - iter)); 1333 1334 if (!strncmp(name, iter, cmplen)) { 1335 flags |= slub_debug; 1336 break; 1337 } 1338 1339 if (!*end) 1340 break; 1341 iter = end + 1; 1342 } 1343 1344 return flags; 1345 } 1346 #else /* !CONFIG_SLUB_DEBUG */ 1347 static inline void setup_object_debug(struct kmem_cache *s, 1348 struct page *page, void *object) {} 1349 static inline void setup_page_debug(struct kmem_cache *s, 1350 void *addr, int order) {} 1351 1352 static inline int alloc_debug_processing(struct kmem_cache *s, 1353 struct page *page, void *object, unsigned long addr) { return 0; } 1354 1355 static inline int free_debug_processing( 1356 struct kmem_cache *s, struct page *page, 1357 void *head, void *tail, int bulk_cnt, 1358 unsigned long addr) { return 0; } 1359 1360 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1361 { return 1; } 1362 static inline int check_object(struct kmem_cache *s, struct page *page, 1363 void *object, u8 val) { return 1; } 1364 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1365 struct page *page) {} 1366 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1367 struct page *page) {} 1368 slab_flags_t kmem_cache_flags(unsigned int object_size, 1369 slab_flags_t flags, const char *name, 1370 void (*ctor)(void *)) 1371 { 1372 return flags; 1373 } 1374 #define slub_debug 0 1375 1376 #define disable_higher_order_debug 0 1377 1378 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1379 { return 0; } 1380 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1381 { return 0; } 1382 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1383 int objects) {} 1384 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1385 int objects) {} 1386 1387 #endif /* CONFIG_SLUB_DEBUG */ 1388 1389 /* 1390 * Hooks for other subsystems that check memory allocations. In a typical 1391 * production configuration these hooks all should produce no code at all. 1392 */ 1393 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1394 { 1395 ptr = kasan_kmalloc_large(ptr, size, flags); 1396 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1397 kmemleak_alloc(ptr, size, 1, flags); 1398 return ptr; 1399 } 1400 1401 static __always_inline void kfree_hook(void *x) 1402 { 1403 kmemleak_free(x); 1404 kasan_kfree_large(x, _RET_IP_); 1405 } 1406 1407 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1408 { 1409 kmemleak_free_recursive(x, s->flags); 1410 1411 /* 1412 * Trouble is that we may no longer disable interrupts in the fast path 1413 * So in order to make the debug calls that expect irqs to be 1414 * disabled we need to disable interrupts temporarily. 1415 */ 1416 #ifdef CONFIG_LOCKDEP 1417 { 1418 unsigned long flags; 1419 1420 local_irq_save(flags); 1421 debug_check_no_locks_freed(x, s->object_size); 1422 local_irq_restore(flags); 1423 } 1424 #endif 1425 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1426 debug_check_no_obj_freed(x, s->object_size); 1427 1428 /* KASAN might put x into memory quarantine, delaying its reuse */ 1429 return kasan_slab_free(s, x, _RET_IP_); 1430 } 1431 1432 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1433 void **head, void **tail) 1434 { 1435 /* 1436 * Compiler cannot detect this function can be removed if slab_free_hook() 1437 * evaluates to nothing. Thus, catch all relevant config debug options here. 1438 */ 1439 #if defined(CONFIG_LOCKDEP) || \ 1440 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1441 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1442 defined(CONFIG_KASAN) 1443 1444 void *object; 1445 void *next = *head; 1446 void *old_tail = *tail ? *tail : *head; 1447 1448 /* Head and tail of the reconstructed freelist */ 1449 *head = NULL; 1450 *tail = NULL; 1451 1452 do { 1453 object = next; 1454 next = get_freepointer(s, object); 1455 /* If object's reuse doesn't have to be delayed */ 1456 if (!slab_free_hook(s, object)) { 1457 /* Move object to the new freelist */ 1458 set_freepointer(s, object, *head); 1459 *head = object; 1460 if (!*tail) 1461 *tail = object; 1462 } 1463 } while (object != old_tail); 1464 1465 if (*head == *tail) 1466 *tail = NULL; 1467 1468 return *head != NULL; 1469 #else 1470 return true; 1471 #endif 1472 } 1473 1474 static void *setup_object(struct kmem_cache *s, struct page *page, 1475 void *object) 1476 { 1477 setup_object_debug(s, page, object); 1478 object = kasan_init_slab_obj(s, object); 1479 if (unlikely(s->ctor)) { 1480 kasan_unpoison_object_data(s, object); 1481 s->ctor(object); 1482 kasan_poison_object_data(s, object); 1483 } 1484 return object; 1485 } 1486 1487 /* 1488 * Slab allocation and freeing 1489 */ 1490 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1491 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1492 { 1493 struct page *page; 1494 unsigned int order = oo_order(oo); 1495 1496 if (node == NUMA_NO_NODE) 1497 page = alloc_pages(flags, order); 1498 else 1499 page = __alloc_pages_node(node, flags, order); 1500 1501 if (page && memcg_charge_slab(page, flags, order, s)) { 1502 __free_pages(page, order); 1503 page = NULL; 1504 } 1505 1506 return page; 1507 } 1508 1509 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1510 /* Pre-initialize the random sequence cache */ 1511 static int init_cache_random_seq(struct kmem_cache *s) 1512 { 1513 unsigned int count = oo_objects(s->oo); 1514 int err; 1515 1516 /* Bailout if already initialised */ 1517 if (s->random_seq) 1518 return 0; 1519 1520 err = cache_random_seq_create(s, count, GFP_KERNEL); 1521 if (err) { 1522 pr_err("SLUB: Unable to initialize free list for %s\n", 1523 s->name); 1524 return err; 1525 } 1526 1527 /* Transform to an offset on the set of pages */ 1528 if (s->random_seq) { 1529 unsigned int i; 1530 1531 for (i = 0; i < count; i++) 1532 s->random_seq[i] *= s->size; 1533 } 1534 return 0; 1535 } 1536 1537 /* Initialize each random sequence freelist per cache */ 1538 static void __init init_freelist_randomization(void) 1539 { 1540 struct kmem_cache *s; 1541 1542 mutex_lock(&slab_mutex); 1543 1544 list_for_each_entry(s, &slab_caches, list) 1545 init_cache_random_seq(s); 1546 1547 mutex_unlock(&slab_mutex); 1548 } 1549 1550 /* Get the next entry on the pre-computed freelist randomized */ 1551 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1552 unsigned long *pos, void *start, 1553 unsigned long page_limit, 1554 unsigned long freelist_count) 1555 { 1556 unsigned int idx; 1557 1558 /* 1559 * If the target page allocation failed, the number of objects on the 1560 * page might be smaller than the usual size defined by the cache. 1561 */ 1562 do { 1563 idx = s->random_seq[*pos]; 1564 *pos += 1; 1565 if (*pos >= freelist_count) 1566 *pos = 0; 1567 } while (unlikely(idx >= page_limit)); 1568 1569 return (char *)start + idx; 1570 } 1571 1572 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1573 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1574 { 1575 void *start; 1576 void *cur; 1577 void *next; 1578 unsigned long idx, pos, page_limit, freelist_count; 1579 1580 if (page->objects < 2 || !s->random_seq) 1581 return false; 1582 1583 freelist_count = oo_objects(s->oo); 1584 pos = get_random_int() % freelist_count; 1585 1586 page_limit = page->objects * s->size; 1587 start = fixup_red_left(s, page_address(page)); 1588 1589 /* First entry is used as the base of the freelist */ 1590 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1591 freelist_count); 1592 cur = setup_object(s, page, cur); 1593 page->freelist = cur; 1594 1595 for (idx = 1; idx < page->objects; idx++) { 1596 next = next_freelist_entry(s, page, &pos, start, page_limit, 1597 freelist_count); 1598 next = setup_object(s, page, next); 1599 set_freepointer(s, cur, next); 1600 cur = next; 1601 } 1602 set_freepointer(s, cur, NULL); 1603 1604 return true; 1605 } 1606 #else 1607 static inline int init_cache_random_seq(struct kmem_cache *s) 1608 { 1609 return 0; 1610 } 1611 static inline void init_freelist_randomization(void) { } 1612 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1613 { 1614 return false; 1615 } 1616 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1617 1618 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1619 { 1620 struct page *page; 1621 struct kmem_cache_order_objects oo = s->oo; 1622 gfp_t alloc_gfp; 1623 void *start, *p, *next; 1624 int idx, order; 1625 bool shuffle; 1626 1627 flags &= gfp_allowed_mask; 1628 1629 if (gfpflags_allow_blocking(flags)) 1630 local_irq_enable(); 1631 1632 flags |= s->allocflags; 1633 1634 /* 1635 * Let the initial higher-order allocation fail under memory pressure 1636 * so we fall-back to the minimum order allocation. 1637 */ 1638 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1639 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1640 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1641 1642 page = alloc_slab_page(s, alloc_gfp, node, oo); 1643 if (unlikely(!page)) { 1644 oo = s->min; 1645 alloc_gfp = flags; 1646 /* 1647 * Allocation may have failed due to fragmentation. 1648 * Try a lower order alloc if possible 1649 */ 1650 page = alloc_slab_page(s, alloc_gfp, node, oo); 1651 if (unlikely(!page)) 1652 goto out; 1653 stat(s, ORDER_FALLBACK); 1654 } 1655 1656 page->objects = oo_objects(oo); 1657 1658 order = compound_order(page); 1659 page->slab_cache = s; 1660 __SetPageSlab(page); 1661 if (page_is_pfmemalloc(page)) 1662 SetPageSlabPfmemalloc(page); 1663 1664 kasan_poison_slab(page); 1665 1666 start = page_address(page); 1667 1668 setup_page_debug(s, start, order); 1669 1670 shuffle = shuffle_freelist(s, page); 1671 1672 if (!shuffle) { 1673 start = fixup_red_left(s, start); 1674 start = setup_object(s, page, start); 1675 page->freelist = start; 1676 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1677 next = p + s->size; 1678 next = setup_object(s, page, next); 1679 set_freepointer(s, p, next); 1680 p = next; 1681 } 1682 set_freepointer(s, p, NULL); 1683 } 1684 1685 page->inuse = page->objects; 1686 page->frozen = 1; 1687 1688 out: 1689 if (gfpflags_allow_blocking(flags)) 1690 local_irq_disable(); 1691 if (!page) 1692 return NULL; 1693 1694 mod_lruvec_page_state(page, 1695 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1696 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1697 1 << oo_order(oo)); 1698 1699 inc_slabs_node(s, page_to_nid(page), page->objects); 1700 1701 return page; 1702 } 1703 1704 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1705 { 1706 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1707 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1708 flags &= ~GFP_SLAB_BUG_MASK; 1709 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1710 invalid_mask, &invalid_mask, flags, &flags); 1711 dump_stack(); 1712 } 1713 1714 return allocate_slab(s, 1715 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1716 } 1717 1718 static void __free_slab(struct kmem_cache *s, struct page *page) 1719 { 1720 int order = compound_order(page); 1721 int pages = 1 << order; 1722 1723 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1724 void *p; 1725 1726 slab_pad_check(s, page); 1727 for_each_object(p, s, page_address(page), 1728 page->objects) 1729 check_object(s, page, p, SLUB_RED_INACTIVE); 1730 } 1731 1732 mod_lruvec_page_state(page, 1733 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1734 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1735 -pages); 1736 1737 __ClearPageSlabPfmemalloc(page); 1738 __ClearPageSlab(page); 1739 1740 page->mapping = NULL; 1741 if (current->reclaim_state) 1742 current->reclaim_state->reclaimed_slab += pages; 1743 memcg_uncharge_slab(page, order, s); 1744 __free_pages(page, order); 1745 } 1746 1747 static void rcu_free_slab(struct rcu_head *h) 1748 { 1749 struct page *page = container_of(h, struct page, rcu_head); 1750 1751 __free_slab(page->slab_cache, page); 1752 } 1753 1754 static void free_slab(struct kmem_cache *s, struct page *page) 1755 { 1756 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1757 call_rcu(&page->rcu_head, rcu_free_slab); 1758 } else 1759 __free_slab(s, page); 1760 } 1761 1762 static void discard_slab(struct kmem_cache *s, struct page *page) 1763 { 1764 dec_slabs_node(s, page_to_nid(page), page->objects); 1765 free_slab(s, page); 1766 } 1767 1768 /* 1769 * Management of partially allocated slabs. 1770 */ 1771 static inline void 1772 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1773 { 1774 n->nr_partial++; 1775 if (tail == DEACTIVATE_TO_TAIL) 1776 list_add_tail(&page->lru, &n->partial); 1777 else 1778 list_add(&page->lru, &n->partial); 1779 } 1780 1781 static inline void add_partial(struct kmem_cache_node *n, 1782 struct page *page, int tail) 1783 { 1784 lockdep_assert_held(&n->list_lock); 1785 __add_partial(n, page, tail); 1786 } 1787 1788 static inline void remove_partial(struct kmem_cache_node *n, 1789 struct page *page) 1790 { 1791 lockdep_assert_held(&n->list_lock); 1792 list_del(&page->lru); 1793 n->nr_partial--; 1794 } 1795 1796 /* 1797 * Remove slab from the partial list, freeze it and 1798 * return the pointer to the freelist. 1799 * 1800 * Returns a list of objects or NULL if it fails. 1801 */ 1802 static inline void *acquire_slab(struct kmem_cache *s, 1803 struct kmem_cache_node *n, struct page *page, 1804 int mode, int *objects) 1805 { 1806 void *freelist; 1807 unsigned long counters; 1808 struct page new; 1809 1810 lockdep_assert_held(&n->list_lock); 1811 1812 /* 1813 * Zap the freelist and set the frozen bit. 1814 * The old freelist is the list of objects for the 1815 * per cpu allocation list. 1816 */ 1817 freelist = page->freelist; 1818 counters = page->counters; 1819 new.counters = counters; 1820 *objects = new.objects - new.inuse; 1821 if (mode) { 1822 new.inuse = page->objects; 1823 new.freelist = NULL; 1824 } else { 1825 new.freelist = freelist; 1826 } 1827 1828 VM_BUG_ON(new.frozen); 1829 new.frozen = 1; 1830 1831 if (!__cmpxchg_double_slab(s, page, 1832 freelist, counters, 1833 new.freelist, new.counters, 1834 "acquire_slab")) 1835 return NULL; 1836 1837 remove_partial(n, page); 1838 WARN_ON(!freelist); 1839 return freelist; 1840 } 1841 1842 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1843 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1844 1845 /* 1846 * Try to allocate a partial slab from a specific node. 1847 */ 1848 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1849 struct kmem_cache_cpu *c, gfp_t flags) 1850 { 1851 struct page *page, *page2; 1852 void *object = NULL; 1853 unsigned int available = 0; 1854 int objects; 1855 1856 /* 1857 * Racy check. If we mistakenly see no partial slabs then we 1858 * just allocate an empty slab. If we mistakenly try to get a 1859 * partial slab and there is none available then get_partials() 1860 * will return NULL. 1861 */ 1862 if (!n || !n->nr_partial) 1863 return NULL; 1864 1865 spin_lock(&n->list_lock); 1866 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1867 void *t; 1868 1869 if (!pfmemalloc_match(page, flags)) 1870 continue; 1871 1872 t = acquire_slab(s, n, page, object == NULL, &objects); 1873 if (!t) 1874 break; 1875 1876 available += objects; 1877 if (!object) { 1878 c->page = page; 1879 stat(s, ALLOC_FROM_PARTIAL); 1880 object = t; 1881 } else { 1882 put_cpu_partial(s, page, 0); 1883 stat(s, CPU_PARTIAL_NODE); 1884 } 1885 if (!kmem_cache_has_cpu_partial(s) 1886 || available > slub_cpu_partial(s) / 2) 1887 break; 1888 1889 } 1890 spin_unlock(&n->list_lock); 1891 return object; 1892 } 1893 1894 /* 1895 * Get a page from somewhere. Search in increasing NUMA distances. 1896 */ 1897 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1898 struct kmem_cache_cpu *c) 1899 { 1900 #ifdef CONFIG_NUMA 1901 struct zonelist *zonelist; 1902 struct zoneref *z; 1903 struct zone *zone; 1904 enum zone_type high_zoneidx = gfp_zone(flags); 1905 void *object; 1906 unsigned int cpuset_mems_cookie; 1907 1908 /* 1909 * The defrag ratio allows a configuration of the tradeoffs between 1910 * inter node defragmentation and node local allocations. A lower 1911 * defrag_ratio increases the tendency to do local allocations 1912 * instead of attempting to obtain partial slabs from other nodes. 1913 * 1914 * If the defrag_ratio is set to 0 then kmalloc() always 1915 * returns node local objects. If the ratio is higher then kmalloc() 1916 * may return off node objects because partial slabs are obtained 1917 * from other nodes and filled up. 1918 * 1919 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1920 * (which makes defrag_ratio = 1000) then every (well almost) 1921 * allocation will first attempt to defrag slab caches on other nodes. 1922 * This means scanning over all nodes to look for partial slabs which 1923 * may be expensive if we do it every time we are trying to find a slab 1924 * with available objects. 1925 */ 1926 if (!s->remote_node_defrag_ratio || 1927 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1928 return NULL; 1929 1930 do { 1931 cpuset_mems_cookie = read_mems_allowed_begin(); 1932 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1933 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1934 struct kmem_cache_node *n; 1935 1936 n = get_node(s, zone_to_nid(zone)); 1937 1938 if (n && cpuset_zone_allowed(zone, flags) && 1939 n->nr_partial > s->min_partial) { 1940 object = get_partial_node(s, n, c, flags); 1941 if (object) { 1942 /* 1943 * Don't check read_mems_allowed_retry() 1944 * here - if mems_allowed was updated in 1945 * parallel, that was a harmless race 1946 * between allocation and the cpuset 1947 * update 1948 */ 1949 return object; 1950 } 1951 } 1952 } 1953 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1954 #endif 1955 return NULL; 1956 } 1957 1958 /* 1959 * Get a partial page, lock it and return it. 1960 */ 1961 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1962 struct kmem_cache_cpu *c) 1963 { 1964 void *object; 1965 int searchnode = node; 1966 1967 if (node == NUMA_NO_NODE) 1968 searchnode = numa_mem_id(); 1969 else if (!node_present_pages(node)) 1970 searchnode = node_to_mem_node(node); 1971 1972 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1973 if (object || node != NUMA_NO_NODE) 1974 return object; 1975 1976 return get_any_partial(s, flags, c); 1977 } 1978 1979 #ifdef CONFIG_PREEMPT 1980 /* 1981 * Calculate the next globally unique transaction for disambiguiation 1982 * during cmpxchg. The transactions start with the cpu number and are then 1983 * incremented by CONFIG_NR_CPUS. 1984 */ 1985 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1986 #else 1987 /* 1988 * No preemption supported therefore also no need to check for 1989 * different cpus. 1990 */ 1991 #define TID_STEP 1 1992 #endif 1993 1994 static inline unsigned long next_tid(unsigned long tid) 1995 { 1996 return tid + TID_STEP; 1997 } 1998 1999 static inline unsigned int tid_to_cpu(unsigned long tid) 2000 { 2001 return tid % TID_STEP; 2002 } 2003 2004 static inline unsigned long tid_to_event(unsigned long tid) 2005 { 2006 return tid / TID_STEP; 2007 } 2008 2009 static inline unsigned int init_tid(int cpu) 2010 { 2011 return cpu; 2012 } 2013 2014 static inline void note_cmpxchg_failure(const char *n, 2015 const struct kmem_cache *s, unsigned long tid) 2016 { 2017 #ifdef SLUB_DEBUG_CMPXCHG 2018 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2019 2020 pr_info("%s %s: cmpxchg redo ", n, s->name); 2021 2022 #ifdef CONFIG_PREEMPT 2023 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2024 pr_warn("due to cpu change %d -> %d\n", 2025 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2026 else 2027 #endif 2028 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2029 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2030 tid_to_event(tid), tid_to_event(actual_tid)); 2031 else 2032 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2033 actual_tid, tid, next_tid(tid)); 2034 #endif 2035 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2036 } 2037 2038 static void init_kmem_cache_cpus(struct kmem_cache *s) 2039 { 2040 int cpu; 2041 2042 for_each_possible_cpu(cpu) 2043 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2044 } 2045 2046 /* 2047 * Remove the cpu slab 2048 */ 2049 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2050 void *freelist, struct kmem_cache_cpu *c) 2051 { 2052 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2053 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2054 int lock = 0; 2055 enum slab_modes l = M_NONE, m = M_NONE; 2056 void *nextfree; 2057 int tail = DEACTIVATE_TO_HEAD; 2058 struct page new; 2059 struct page old; 2060 2061 if (page->freelist) { 2062 stat(s, DEACTIVATE_REMOTE_FREES); 2063 tail = DEACTIVATE_TO_TAIL; 2064 } 2065 2066 /* 2067 * Stage one: Free all available per cpu objects back 2068 * to the page freelist while it is still frozen. Leave the 2069 * last one. 2070 * 2071 * There is no need to take the list->lock because the page 2072 * is still frozen. 2073 */ 2074 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2075 void *prior; 2076 unsigned long counters; 2077 2078 do { 2079 prior = page->freelist; 2080 counters = page->counters; 2081 set_freepointer(s, freelist, prior); 2082 new.counters = counters; 2083 new.inuse--; 2084 VM_BUG_ON(!new.frozen); 2085 2086 } while (!__cmpxchg_double_slab(s, page, 2087 prior, counters, 2088 freelist, new.counters, 2089 "drain percpu freelist")); 2090 2091 freelist = nextfree; 2092 } 2093 2094 /* 2095 * Stage two: Ensure that the page is unfrozen while the 2096 * list presence reflects the actual number of objects 2097 * during unfreeze. 2098 * 2099 * We setup the list membership and then perform a cmpxchg 2100 * with the count. If there is a mismatch then the page 2101 * is not unfrozen but the page is on the wrong list. 2102 * 2103 * Then we restart the process which may have to remove 2104 * the page from the list that we just put it on again 2105 * because the number of objects in the slab may have 2106 * changed. 2107 */ 2108 redo: 2109 2110 old.freelist = page->freelist; 2111 old.counters = page->counters; 2112 VM_BUG_ON(!old.frozen); 2113 2114 /* Determine target state of the slab */ 2115 new.counters = old.counters; 2116 if (freelist) { 2117 new.inuse--; 2118 set_freepointer(s, freelist, old.freelist); 2119 new.freelist = freelist; 2120 } else 2121 new.freelist = old.freelist; 2122 2123 new.frozen = 0; 2124 2125 if (!new.inuse && n->nr_partial >= s->min_partial) 2126 m = M_FREE; 2127 else if (new.freelist) { 2128 m = M_PARTIAL; 2129 if (!lock) { 2130 lock = 1; 2131 /* 2132 * Taking the spinlock removes the possibility 2133 * that acquire_slab() will see a slab page that 2134 * is frozen 2135 */ 2136 spin_lock(&n->list_lock); 2137 } 2138 } else { 2139 m = M_FULL; 2140 if (kmem_cache_debug(s) && !lock) { 2141 lock = 1; 2142 /* 2143 * This also ensures that the scanning of full 2144 * slabs from diagnostic functions will not see 2145 * any frozen slabs. 2146 */ 2147 spin_lock(&n->list_lock); 2148 } 2149 } 2150 2151 if (l != m) { 2152 if (l == M_PARTIAL) 2153 remove_partial(n, page); 2154 else if (l == M_FULL) 2155 remove_full(s, n, page); 2156 2157 if (m == M_PARTIAL) 2158 add_partial(n, page, tail); 2159 else if (m == M_FULL) 2160 add_full(s, n, page); 2161 } 2162 2163 l = m; 2164 if (!__cmpxchg_double_slab(s, page, 2165 old.freelist, old.counters, 2166 new.freelist, new.counters, 2167 "unfreezing slab")) 2168 goto redo; 2169 2170 if (lock) 2171 spin_unlock(&n->list_lock); 2172 2173 if (m == M_PARTIAL) 2174 stat(s, tail); 2175 else if (m == M_FULL) 2176 stat(s, DEACTIVATE_FULL); 2177 else if (m == M_FREE) { 2178 stat(s, DEACTIVATE_EMPTY); 2179 discard_slab(s, page); 2180 stat(s, FREE_SLAB); 2181 } 2182 2183 c->page = NULL; 2184 c->freelist = NULL; 2185 } 2186 2187 /* 2188 * Unfreeze all the cpu partial slabs. 2189 * 2190 * This function must be called with interrupts disabled 2191 * for the cpu using c (or some other guarantee must be there 2192 * to guarantee no concurrent accesses). 2193 */ 2194 static void unfreeze_partials(struct kmem_cache *s, 2195 struct kmem_cache_cpu *c) 2196 { 2197 #ifdef CONFIG_SLUB_CPU_PARTIAL 2198 struct kmem_cache_node *n = NULL, *n2 = NULL; 2199 struct page *page, *discard_page = NULL; 2200 2201 while ((page = c->partial)) { 2202 struct page new; 2203 struct page old; 2204 2205 c->partial = page->next; 2206 2207 n2 = get_node(s, page_to_nid(page)); 2208 if (n != n2) { 2209 if (n) 2210 spin_unlock(&n->list_lock); 2211 2212 n = n2; 2213 spin_lock(&n->list_lock); 2214 } 2215 2216 do { 2217 2218 old.freelist = page->freelist; 2219 old.counters = page->counters; 2220 VM_BUG_ON(!old.frozen); 2221 2222 new.counters = old.counters; 2223 new.freelist = old.freelist; 2224 2225 new.frozen = 0; 2226 2227 } while (!__cmpxchg_double_slab(s, page, 2228 old.freelist, old.counters, 2229 new.freelist, new.counters, 2230 "unfreezing slab")); 2231 2232 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2233 page->next = discard_page; 2234 discard_page = page; 2235 } else { 2236 add_partial(n, page, DEACTIVATE_TO_TAIL); 2237 stat(s, FREE_ADD_PARTIAL); 2238 } 2239 } 2240 2241 if (n) 2242 spin_unlock(&n->list_lock); 2243 2244 while (discard_page) { 2245 page = discard_page; 2246 discard_page = discard_page->next; 2247 2248 stat(s, DEACTIVATE_EMPTY); 2249 discard_slab(s, page); 2250 stat(s, FREE_SLAB); 2251 } 2252 #endif 2253 } 2254 2255 /* 2256 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2257 * partial page slot if available. 2258 * 2259 * If we did not find a slot then simply move all the partials to the 2260 * per node partial list. 2261 */ 2262 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2263 { 2264 #ifdef CONFIG_SLUB_CPU_PARTIAL 2265 struct page *oldpage; 2266 int pages; 2267 int pobjects; 2268 2269 preempt_disable(); 2270 do { 2271 pages = 0; 2272 pobjects = 0; 2273 oldpage = this_cpu_read(s->cpu_slab->partial); 2274 2275 if (oldpage) { 2276 pobjects = oldpage->pobjects; 2277 pages = oldpage->pages; 2278 if (drain && pobjects > s->cpu_partial) { 2279 unsigned long flags; 2280 /* 2281 * partial array is full. Move the existing 2282 * set to the per node partial list. 2283 */ 2284 local_irq_save(flags); 2285 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2286 local_irq_restore(flags); 2287 oldpage = NULL; 2288 pobjects = 0; 2289 pages = 0; 2290 stat(s, CPU_PARTIAL_DRAIN); 2291 } 2292 } 2293 2294 pages++; 2295 pobjects += page->objects - page->inuse; 2296 2297 page->pages = pages; 2298 page->pobjects = pobjects; 2299 page->next = oldpage; 2300 2301 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2302 != oldpage); 2303 if (unlikely(!s->cpu_partial)) { 2304 unsigned long flags; 2305 2306 local_irq_save(flags); 2307 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2308 local_irq_restore(flags); 2309 } 2310 preempt_enable(); 2311 #endif 2312 } 2313 2314 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2315 { 2316 stat(s, CPUSLAB_FLUSH); 2317 deactivate_slab(s, c->page, c->freelist, c); 2318 2319 c->tid = next_tid(c->tid); 2320 } 2321 2322 /* 2323 * Flush cpu slab. 2324 * 2325 * Called from IPI handler with interrupts disabled. 2326 */ 2327 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2328 { 2329 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2330 2331 if (c->page) 2332 flush_slab(s, c); 2333 2334 unfreeze_partials(s, c); 2335 } 2336 2337 static void flush_cpu_slab(void *d) 2338 { 2339 struct kmem_cache *s = d; 2340 2341 __flush_cpu_slab(s, smp_processor_id()); 2342 } 2343 2344 static bool has_cpu_slab(int cpu, void *info) 2345 { 2346 struct kmem_cache *s = info; 2347 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2348 2349 return c->page || slub_percpu_partial(c); 2350 } 2351 2352 static void flush_all(struct kmem_cache *s) 2353 { 2354 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2355 } 2356 2357 /* 2358 * Use the cpu notifier to insure that the cpu slabs are flushed when 2359 * necessary. 2360 */ 2361 static int slub_cpu_dead(unsigned int cpu) 2362 { 2363 struct kmem_cache *s; 2364 unsigned long flags; 2365 2366 mutex_lock(&slab_mutex); 2367 list_for_each_entry(s, &slab_caches, list) { 2368 local_irq_save(flags); 2369 __flush_cpu_slab(s, cpu); 2370 local_irq_restore(flags); 2371 } 2372 mutex_unlock(&slab_mutex); 2373 return 0; 2374 } 2375 2376 /* 2377 * Check if the objects in a per cpu structure fit numa 2378 * locality expectations. 2379 */ 2380 static inline int node_match(struct page *page, int node) 2381 { 2382 #ifdef CONFIG_NUMA 2383 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2384 return 0; 2385 #endif 2386 return 1; 2387 } 2388 2389 #ifdef CONFIG_SLUB_DEBUG 2390 static int count_free(struct page *page) 2391 { 2392 return page->objects - page->inuse; 2393 } 2394 2395 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2396 { 2397 return atomic_long_read(&n->total_objects); 2398 } 2399 #endif /* CONFIG_SLUB_DEBUG */ 2400 2401 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2402 static unsigned long count_partial(struct kmem_cache_node *n, 2403 int (*get_count)(struct page *)) 2404 { 2405 unsigned long flags; 2406 unsigned long x = 0; 2407 struct page *page; 2408 2409 spin_lock_irqsave(&n->list_lock, flags); 2410 list_for_each_entry(page, &n->partial, lru) 2411 x += get_count(page); 2412 spin_unlock_irqrestore(&n->list_lock, flags); 2413 return x; 2414 } 2415 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2416 2417 static noinline void 2418 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2419 { 2420 #ifdef CONFIG_SLUB_DEBUG 2421 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2422 DEFAULT_RATELIMIT_BURST); 2423 int node; 2424 struct kmem_cache_node *n; 2425 2426 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2427 return; 2428 2429 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2430 nid, gfpflags, &gfpflags); 2431 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2432 s->name, s->object_size, s->size, oo_order(s->oo), 2433 oo_order(s->min)); 2434 2435 if (oo_order(s->min) > get_order(s->object_size)) 2436 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2437 s->name); 2438 2439 for_each_kmem_cache_node(s, node, n) { 2440 unsigned long nr_slabs; 2441 unsigned long nr_objs; 2442 unsigned long nr_free; 2443 2444 nr_free = count_partial(n, count_free); 2445 nr_slabs = node_nr_slabs(n); 2446 nr_objs = node_nr_objs(n); 2447 2448 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2449 node, nr_slabs, nr_objs, nr_free); 2450 } 2451 #endif 2452 } 2453 2454 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2455 int node, struct kmem_cache_cpu **pc) 2456 { 2457 void *freelist; 2458 struct kmem_cache_cpu *c = *pc; 2459 struct page *page; 2460 2461 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2462 2463 freelist = get_partial(s, flags, node, c); 2464 2465 if (freelist) 2466 return freelist; 2467 2468 page = new_slab(s, flags, node); 2469 if (page) { 2470 c = raw_cpu_ptr(s->cpu_slab); 2471 if (c->page) 2472 flush_slab(s, c); 2473 2474 /* 2475 * No other reference to the page yet so we can 2476 * muck around with it freely without cmpxchg 2477 */ 2478 freelist = page->freelist; 2479 page->freelist = NULL; 2480 2481 stat(s, ALLOC_SLAB); 2482 c->page = page; 2483 *pc = c; 2484 } 2485 2486 return freelist; 2487 } 2488 2489 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2490 { 2491 if (unlikely(PageSlabPfmemalloc(page))) 2492 return gfp_pfmemalloc_allowed(gfpflags); 2493 2494 return true; 2495 } 2496 2497 /* 2498 * Check the page->freelist of a page and either transfer the freelist to the 2499 * per cpu freelist or deactivate the page. 2500 * 2501 * The page is still frozen if the return value is not NULL. 2502 * 2503 * If this function returns NULL then the page has been unfrozen. 2504 * 2505 * This function must be called with interrupt disabled. 2506 */ 2507 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2508 { 2509 struct page new; 2510 unsigned long counters; 2511 void *freelist; 2512 2513 do { 2514 freelist = page->freelist; 2515 counters = page->counters; 2516 2517 new.counters = counters; 2518 VM_BUG_ON(!new.frozen); 2519 2520 new.inuse = page->objects; 2521 new.frozen = freelist != NULL; 2522 2523 } while (!__cmpxchg_double_slab(s, page, 2524 freelist, counters, 2525 NULL, new.counters, 2526 "get_freelist")); 2527 2528 return freelist; 2529 } 2530 2531 /* 2532 * Slow path. The lockless freelist is empty or we need to perform 2533 * debugging duties. 2534 * 2535 * Processing is still very fast if new objects have been freed to the 2536 * regular freelist. In that case we simply take over the regular freelist 2537 * as the lockless freelist and zap the regular freelist. 2538 * 2539 * If that is not working then we fall back to the partial lists. We take the 2540 * first element of the freelist as the object to allocate now and move the 2541 * rest of the freelist to the lockless freelist. 2542 * 2543 * And if we were unable to get a new slab from the partial slab lists then 2544 * we need to allocate a new slab. This is the slowest path since it involves 2545 * a call to the page allocator and the setup of a new slab. 2546 * 2547 * Version of __slab_alloc to use when we know that interrupts are 2548 * already disabled (which is the case for bulk allocation). 2549 */ 2550 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2551 unsigned long addr, struct kmem_cache_cpu *c) 2552 { 2553 void *freelist; 2554 struct page *page; 2555 2556 page = c->page; 2557 if (!page) 2558 goto new_slab; 2559 redo: 2560 2561 if (unlikely(!node_match(page, node))) { 2562 int searchnode = node; 2563 2564 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2565 searchnode = node_to_mem_node(node); 2566 2567 if (unlikely(!node_match(page, searchnode))) { 2568 stat(s, ALLOC_NODE_MISMATCH); 2569 deactivate_slab(s, page, c->freelist, c); 2570 goto new_slab; 2571 } 2572 } 2573 2574 /* 2575 * By rights, we should be searching for a slab page that was 2576 * PFMEMALLOC but right now, we are losing the pfmemalloc 2577 * information when the page leaves the per-cpu allocator 2578 */ 2579 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2580 deactivate_slab(s, page, c->freelist, c); 2581 goto new_slab; 2582 } 2583 2584 /* must check again c->freelist in case of cpu migration or IRQ */ 2585 freelist = c->freelist; 2586 if (freelist) 2587 goto load_freelist; 2588 2589 freelist = get_freelist(s, page); 2590 2591 if (!freelist) { 2592 c->page = NULL; 2593 stat(s, DEACTIVATE_BYPASS); 2594 goto new_slab; 2595 } 2596 2597 stat(s, ALLOC_REFILL); 2598 2599 load_freelist: 2600 /* 2601 * freelist is pointing to the list of objects to be used. 2602 * page is pointing to the page from which the objects are obtained. 2603 * That page must be frozen for per cpu allocations to work. 2604 */ 2605 VM_BUG_ON(!c->page->frozen); 2606 c->freelist = get_freepointer(s, freelist); 2607 c->tid = next_tid(c->tid); 2608 return freelist; 2609 2610 new_slab: 2611 2612 if (slub_percpu_partial(c)) { 2613 page = c->page = slub_percpu_partial(c); 2614 slub_set_percpu_partial(c, page); 2615 stat(s, CPU_PARTIAL_ALLOC); 2616 goto redo; 2617 } 2618 2619 freelist = new_slab_objects(s, gfpflags, node, &c); 2620 2621 if (unlikely(!freelist)) { 2622 slab_out_of_memory(s, gfpflags, node); 2623 return NULL; 2624 } 2625 2626 page = c->page; 2627 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2628 goto load_freelist; 2629 2630 /* Only entered in the debug case */ 2631 if (kmem_cache_debug(s) && 2632 !alloc_debug_processing(s, page, freelist, addr)) 2633 goto new_slab; /* Slab failed checks. Next slab needed */ 2634 2635 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2636 return freelist; 2637 } 2638 2639 /* 2640 * Another one that disabled interrupt and compensates for possible 2641 * cpu changes by refetching the per cpu area pointer. 2642 */ 2643 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2644 unsigned long addr, struct kmem_cache_cpu *c) 2645 { 2646 void *p; 2647 unsigned long flags; 2648 2649 local_irq_save(flags); 2650 #ifdef CONFIG_PREEMPT 2651 /* 2652 * We may have been preempted and rescheduled on a different 2653 * cpu before disabling interrupts. Need to reload cpu area 2654 * pointer. 2655 */ 2656 c = this_cpu_ptr(s->cpu_slab); 2657 #endif 2658 2659 p = ___slab_alloc(s, gfpflags, node, addr, c); 2660 local_irq_restore(flags); 2661 return p; 2662 } 2663 2664 /* 2665 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2666 * have the fastpath folded into their functions. So no function call 2667 * overhead for requests that can be satisfied on the fastpath. 2668 * 2669 * The fastpath works by first checking if the lockless freelist can be used. 2670 * If not then __slab_alloc is called for slow processing. 2671 * 2672 * Otherwise we can simply pick the next object from the lockless free list. 2673 */ 2674 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2675 gfp_t gfpflags, int node, unsigned long addr) 2676 { 2677 void *object; 2678 struct kmem_cache_cpu *c; 2679 struct page *page; 2680 unsigned long tid; 2681 2682 s = slab_pre_alloc_hook(s, gfpflags); 2683 if (!s) 2684 return NULL; 2685 redo: 2686 /* 2687 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2688 * enabled. We may switch back and forth between cpus while 2689 * reading from one cpu area. That does not matter as long 2690 * as we end up on the original cpu again when doing the cmpxchg. 2691 * 2692 * We should guarantee that tid and kmem_cache are retrieved on 2693 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2694 * to check if it is matched or not. 2695 */ 2696 do { 2697 tid = this_cpu_read(s->cpu_slab->tid); 2698 c = raw_cpu_ptr(s->cpu_slab); 2699 } while (IS_ENABLED(CONFIG_PREEMPT) && 2700 unlikely(tid != READ_ONCE(c->tid))); 2701 2702 /* 2703 * Irqless object alloc/free algorithm used here depends on sequence 2704 * of fetching cpu_slab's data. tid should be fetched before anything 2705 * on c to guarantee that object and page associated with previous tid 2706 * won't be used with current tid. If we fetch tid first, object and 2707 * page could be one associated with next tid and our alloc/free 2708 * request will be failed. In this case, we will retry. So, no problem. 2709 */ 2710 barrier(); 2711 2712 /* 2713 * The transaction ids are globally unique per cpu and per operation on 2714 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2715 * occurs on the right processor and that there was no operation on the 2716 * linked list in between. 2717 */ 2718 2719 object = c->freelist; 2720 page = c->page; 2721 if (unlikely(!object || !node_match(page, node))) { 2722 object = __slab_alloc(s, gfpflags, node, addr, c); 2723 stat(s, ALLOC_SLOWPATH); 2724 } else { 2725 void *next_object = get_freepointer_safe(s, object); 2726 2727 /* 2728 * The cmpxchg will only match if there was no additional 2729 * operation and if we are on the right processor. 2730 * 2731 * The cmpxchg does the following atomically (without lock 2732 * semantics!) 2733 * 1. Relocate first pointer to the current per cpu area. 2734 * 2. Verify that tid and freelist have not been changed 2735 * 3. If they were not changed replace tid and freelist 2736 * 2737 * Since this is without lock semantics the protection is only 2738 * against code executing on this cpu *not* from access by 2739 * other cpus. 2740 */ 2741 if (unlikely(!this_cpu_cmpxchg_double( 2742 s->cpu_slab->freelist, s->cpu_slab->tid, 2743 object, tid, 2744 next_object, next_tid(tid)))) { 2745 2746 note_cmpxchg_failure("slab_alloc", s, tid); 2747 goto redo; 2748 } 2749 prefetch_freepointer(s, next_object); 2750 stat(s, ALLOC_FASTPATH); 2751 } 2752 2753 if (unlikely(gfpflags & __GFP_ZERO) && object) 2754 memset(object, 0, s->object_size); 2755 2756 slab_post_alloc_hook(s, gfpflags, 1, &object); 2757 2758 return object; 2759 } 2760 2761 static __always_inline void *slab_alloc(struct kmem_cache *s, 2762 gfp_t gfpflags, unsigned long addr) 2763 { 2764 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2765 } 2766 2767 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2768 { 2769 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2770 2771 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2772 s->size, gfpflags); 2773 2774 return ret; 2775 } 2776 EXPORT_SYMBOL(kmem_cache_alloc); 2777 2778 #ifdef CONFIG_TRACING 2779 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2780 { 2781 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2782 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2783 ret = kasan_kmalloc(s, ret, size, gfpflags); 2784 return ret; 2785 } 2786 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2787 #endif 2788 2789 #ifdef CONFIG_NUMA 2790 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2791 { 2792 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2793 2794 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2795 s->object_size, s->size, gfpflags, node); 2796 2797 return ret; 2798 } 2799 EXPORT_SYMBOL(kmem_cache_alloc_node); 2800 2801 #ifdef CONFIG_TRACING 2802 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2803 gfp_t gfpflags, 2804 int node, size_t size) 2805 { 2806 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2807 2808 trace_kmalloc_node(_RET_IP_, ret, 2809 size, s->size, gfpflags, node); 2810 2811 ret = kasan_kmalloc(s, ret, size, gfpflags); 2812 return ret; 2813 } 2814 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2815 #endif 2816 #endif 2817 2818 /* 2819 * Slow path handling. This may still be called frequently since objects 2820 * have a longer lifetime than the cpu slabs in most processing loads. 2821 * 2822 * So we still attempt to reduce cache line usage. Just take the slab 2823 * lock and free the item. If there is no additional partial page 2824 * handling required then we can return immediately. 2825 */ 2826 static void __slab_free(struct kmem_cache *s, struct page *page, 2827 void *head, void *tail, int cnt, 2828 unsigned long addr) 2829 2830 { 2831 void *prior; 2832 int was_frozen; 2833 struct page new; 2834 unsigned long counters; 2835 struct kmem_cache_node *n = NULL; 2836 unsigned long uninitialized_var(flags); 2837 2838 stat(s, FREE_SLOWPATH); 2839 2840 if (kmem_cache_debug(s) && 2841 !free_debug_processing(s, page, head, tail, cnt, addr)) 2842 return; 2843 2844 do { 2845 if (unlikely(n)) { 2846 spin_unlock_irqrestore(&n->list_lock, flags); 2847 n = NULL; 2848 } 2849 prior = page->freelist; 2850 counters = page->counters; 2851 set_freepointer(s, tail, prior); 2852 new.counters = counters; 2853 was_frozen = new.frozen; 2854 new.inuse -= cnt; 2855 if ((!new.inuse || !prior) && !was_frozen) { 2856 2857 if (kmem_cache_has_cpu_partial(s) && !prior) { 2858 2859 /* 2860 * Slab was on no list before and will be 2861 * partially empty 2862 * We can defer the list move and instead 2863 * freeze it. 2864 */ 2865 new.frozen = 1; 2866 2867 } else { /* Needs to be taken off a list */ 2868 2869 n = get_node(s, page_to_nid(page)); 2870 /* 2871 * Speculatively acquire the list_lock. 2872 * If the cmpxchg does not succeed then we may 2873 * drop the list_lock without any processing. 2874 * 2875 * Otherwise the list_lock will synchronize with 2876 * other processors updating the list of slabs. 2877 */ 2878 spin_lock_irqsave(&n->list_lock, flags); 2879 2880 } 2881 } 2882 2883 } while (!cmpxchg_double_slab(s, page, 2884 prior, counters, 2885 head, new.counters, 2886 "__slab_free")); 2887 2888 if (likely(!n)) { 2889 2890 /* 2891 * If we just froze the page then put it onto the 2892 * per cpu partial list. 2893 */ 2894 if (new.frozen && !was_frozen) { 2895 put_cpu_partial(s, page, 1); 2896 stat(s, CPU_PARTIAL_FREE); 2897 } 2898 /* 2899 * The list lock was not taken therefore no list 2900 * activity can be necessary. 2901 */ 2902 if (was_frozen) 2903 stat(s, FREE_FROZEN); 2904 return; 2905 } 2906 2907 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2908 goto slab_empty; 2909 2910 /* 2911 * Objects left in the slab. If it was not on the partial list before 2912 * then add it. 2913 */ 2914 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2915 if (kmem_cache_debug(s)) 2916 remove_full(s, n, page); 2917 add_partial(n, page, DEACTIVATE_TO_TAIL); 2918 stat(s, FREE_ADD_PARTIAL); 2919 } 2920 spin_unlock_irqrestore(&n->list_lock, flags); 2921 return; 2922 2923 slab_empty: 2924 if (prior) { 2925 /* 2926 * Slab on the partial list. 2927 */ 2928 remove_partial(n, page); 2929 stat(s, FREE_REMOVE_PARTIAL); 2930 } else { 2931 /* Slab must be on the full list */ 2932 remove_full(s, n, page); 2933 } 2934 2935 spin_unlock_irqrestore(&n->list_lock, flags); 2936 stat(s, FREE_SLAB); 2937 discard_slab(s, page); 2938 } 2939 2940 /* 2941 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2942 * can perform fastpath freeing without additional function calls. 2943 * 2944 * The fastpath is only possible if we are freeing to the current cpu slab 2945 * of this processor. This typically the case if we have just allocated 2946 * the item before. 2947 * 2948 * If fastpath is not possible then fall back to __slab_free where we deal 2949 * with all sorts of special processing. 2950 * 2951 * Bulk free of a freelist with several objects (all pointing to the 2952 * same page) possible by specifying head and tail ptr, plus objects 2953 * count (cnt). Bulk free indicated by tail pointer being set. 2954 */ 2955 static __always_inline void do_slab_free(struct kmem_cache *s, 2956 struct page *page, void *head, void *tail, 2957 int cnt, unsigned long addr) 2958 { 2959 void *tail_obj = tail ? : head; 2960 struct kmem_cache_cpu *c; 2961 unsigned long tid; 2962 redo: 2963 /* 2964 * Determine the currently cpus per cpu slab. 2965 * The cpu may change afterward. However that does not matter since 2966 * data is retrieved via this pointer. If we are on the same cpu 2967 * during the cmpxchg then the free will succeed. 2968 */ 2969 do { 2970 tid = this_cpu_read(s->cpu_slab->tid); 2971 c = raw_cpu_ptr(s->cpu_slab); 2972 } while (IS_ENABLED(CONFIG_PREEMPT) && 2973 unlikely(tid != READ_ONCE(c->tid))); 2974 2975 /* Same with comment on barrier() in slab_alloc_node() */ 2976 barrier(); 2977 2978 if (likely(page == c->page)) { 2979 set_freepointer(s, tail_obj, c->freelist); 2980 2981 if (unlikely(!this_cpu_cmpxchg_double( 2982 s->cpu_slab->freelist, s->cpu_slab->tid, 2983 c->freelist, tid, 2984 head, next_tid(tid)))) { 2985 2986 note_cmpxchg_failure("slab_free", s, tid); 2987 goto redo; 2988 } 2989 stat(s, FREE_FASTPATH); 2990 } else 2991 __slab_free(s, page, head, tail_obj, cnt, addr); 2992 2993 } 2994 2995 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2996 void *head, void *tail, int cnt, 2997 unsigned long addr) 2998 { 2999 /* 3000 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3001 * to remove objects, whose reuse must be delayed. 3002 */ 3003 if (slab_free_freelist_hook(s, &head, &tail)) 3004 do_slab_free(s, page, head, tail, cnt, addr); 3005 } 3006 3007 #ifdef CONFIG_KASAN_GENERIC 3008 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3009 { 3010 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3011 } 3012 #endif 3013 3014 void kmem_cache_free(struct kmem_cache *s, void *x) 3015 { 3016 s = cache_from_obj(s, x); 3017 if (!s) 3018 return; 3019 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3020 trace_kmem_cache_free(_RET_IP_, x); 3021 } 3022 EXPORT_SYMBOL(kmem_cache_free); 3023 3024 struct detached_freelist { 3025 struct page *page; 3026 void *tail; 3027 void *freelist; 3028 int cnt; 3029 struct kmem_cache *s; 3030 }; 3031 3032 /* 3033 * This function progressively scans the array with free objects (with 3034 * a limited look ahead) and extract objects belonging to the same 3035 * page. It builds a detached freelist directly within the given 3036 * page/objects. This can happen without any need for 3037 * synchronization, because the objects are owned by running process. 3038 * The freelist is build up as a single linked list in the objects. 3039 * The idea is, that this detached freelist can then be bulk 3040 * transferred to the real freelist(s), but only requiring a single 3041 * synchronization primitive. Look ahead in the array is limited due 3042 * to performance reasons. 3043 */ 3044 static inline 3045 int build_detached_freelist(struct kmem_cache *s, size_t size, 3046 void **p, struct detached_freelist *df) 3047 { 3048 size_t first_skipped_index = 0; 3049 int lookahead = 3; 3050 void *object; 3051 struct page *page; 3052 3053 /* Always re-init detached_freelist */ 3054 df->page = NULL; 3055 3056 do { 3057 object = p[--size]; 3058 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3059 } while (!object && size); 3060 3061 if (!object) 3062 return 0; 3063 3064 page = virt_to_head_page(object); 3065 if (!s) { 3066 /* Handle kalloc'ed objects */ 3067 if (unlikely(!PageSlab(page))) { 3068 BUG_ON(!PageCompound(page)); 3069 kfree_hook(object); 3070 __free_pages(page, compound_order(page)); 3071 p[size] = NULL; /* mark object processed */ 3072 return size; 3073 } 3074 /* Derive kmem_cache from object */ 3075 df->s = page->slab_cache; 3076 } else { 3077 df->s = cache_from_obj(s, object); /* Support for memcg */ 3078 } 3079 3080 /* Start new detached freelist */ 3081 df->page = page; 3082 set_freepointer(df->s, object, NULL); 3083 df->tail = object; 3084 df->freelist = object; 3085 p[size] = NULL; /* mark object processed */ 3086 df->cnt = 1; 3087 3088 while (size) { 3089 object = p[--size]; 3090 if (!object) 3091 continue; /* Skip processed objects */ 3092 3093 /* df->page is always set at this point */ 3094 if (df->page == virt_to_head_page(object)) { 3095 /* Opportunity build freelist */ 3096 set_freepointer(df->s, object, df->freelist); 3097 df->freelist = object; 3098 df->cnt++; 3099 p[size] = NULL; /* mark object processed */ 3100 3101 continue; 3102 } 3103 3104 /* Limit look ahead search */ 3105 if (!--lookahead) 3106 break; 3107 3108 if (!first_skipped_index) 3109 first_skipped_index = size + 1; 3110 } 3111 3112 return first_skipped_index; 3113 } 3114 3115 /* Note that interrupts must be enabled when calling this function. */ 3116 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3117 { 3118 if (WARN_ON(!size)) 3119 return; 3120 3121 do { 3122 struct detached_freelist df; 3123 3124 size = build_detached_freelist(s, size, p, &df); 3125 if (!df.page) 3126 continue; 3127 3128 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3129 } while (likely(size)); 3130 } 3131 EXPORT_SYMBOL(kmem_cache_free_bulk); 3132 3133 /* Note that interrupts must be enabled when calling this function. */ 3134 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3135 void **p) 3136 { 3137 struct kmem_cache_cpu *c; 3138 int i; 3139 3140 /* memcg and kmem_cache debug support */ 3141 s = slab_pre_alloc_hook(s, flags); 3142 if (unlikely(!s)) 3143 return false; 3144 /* 3145 * Drain objects in the per cpu slab, while disabling local 3146 * IRQs, which protects against PREEMPT and interrupts 3147 * handlers invoking normal fastpath. 3148 */ 3149 local_irq_disable(); 3150 c = this_cpu_ptr(s->cpu_slab); 3151 3152 for (i = 0; i < size; i++) { 3153 void *object = c->freelist; 3154 3155 if (unlikely(!object)) { 3156 /* 3157 * Invoking slow path likely have side-effect 3158 * of re-populating per CPU c->freelist 3159 */ 3160 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3161 _RET_IP_, c); 3162 if (unlikely(!p[i])) 3163 goto error; 3164 3165 c = this_cpu_ptr(s->cpu_slab); 3166 continue; /* goto for-loop */ 3167 } 3168 c->freelist = get_freepointer(s, object); 3169 p[i] = object; 3170 } 3171 c->tid = next_tid(c->tid); 3172 local_irq_enable(); 3173 3174 /* Clear memory outside IRQ disabled fastpath loop */ 3175 if (unlikely(flags & __GFP_ZERO)) { 3176 int j; 3177 3178 for (j = 0; j < i; j++) 3179 memset(p[j], 0, s->object_size); 3180 } 3181 3182 /* memcg and kmem_cache debug support */ 3183 slab_post_alloc_hook(s, flags, size, p); 3184 return i; 3185 error: 3186 local_irq_enable(); 3187 slab_post_alloc_hook(s, flags, i, p); 3188 __kmem_cache_free_bulk(s, i, p); 3189 return 0; 3190 } 3191 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3192 3193 3194 /* 3195 * Object placement in a slab is made very easy because we always start at 3196 * offset 0. If we tune the size of the object to the alignment then we can 3197 * get the required alignment by putting one properly sized object after 3198 * another. 3199 * 3200 * Notice that the allocation order determines the sizes of the per cpu 3201 * caches. Each processor has always one slab available for allocations. 3202 * Increasing the allocation order reduces the number of times that slabs 3203 * must be moved on and off the partial lists and is therefore a factor in 3204 * locking overhead. 3205 */ 3206 3207 /* 3208 * Mininum / Maximum order of slab pages. This influences locking overhead 3209 * and slab fragmentation. A higher order reduces the number of partial slabs 3210 * and increases the number of allocations possible without having to 3211 * take the list_lock. 3212 */ 3213 static unsigned int slub_min_order; 3214 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3215 static unsigned int slub_min_objects; 3216 3217 /* 3218 * Calculate the order of allocation given an slab object size. 3219 * 3220 * The order of allocation has significant impact on performance and other 3221 * system components. Generally order 0 allocations should be preferred since 3222 * order 0 does not cause fragmentation in the page allocator. Larger objects 3223 * be problematic to put into order 0 slabs because there may be too much 3224 * unused space left. We go to a higher order if more than 1/16th of the slab 3225 * would be wasted. 3226 * 3227 * In order to reach satisfactory performance we must ensure that a minimum 3228 * number of objects is in one slab. Otherwise we may generate too much 3229 * activity on the partial lists which requires taking the list_lock. This is 3230 * less a concern for large slabs though which are rarely used. 3231 * 3232 * slub_max_order specifies the order where we begin to stop considering the 3233 * number of objects in a slab as critical. If we reach slub_max_order then 3234 * we try to keep the page order as low as possible. So we accept more waste 3235 * of space in favor of a small page order. 3236 * 3237 * Higher order allocations also allow the placement of more objects in a 3238 * slab and thereby reduce object handling overhead. If the user has 3239 * requested a higher mininum order then we start with that one instead of 3240 * the smallest order which will fit the object. 3241 */ 3242 static inline unsigned int slab_order(unsigned int size, 3243 unsigned int min_objects, unsigned int max_order, 3244 unsigned int fract_leftover) 3245 { 3246 unsigned int min_order = slub_min_order; 3247 unsigned int order; 3248 3249 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3250 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3251 3252 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3253 order <= max_order; order++) { 3254 3255 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3256 unsigned int rem; 3257 3258 rem = slab_size % size; 3259 3260 if (rem <= slab_size / fract_leftover) 3261 break; 3262 } 3263 3264 return order; 3265 } 3266 3267 static inline int calculate_order(unsigned int size) 3268 { 3269 unsigned int order; 3270 unsigned int min_objects; 3271 unsigned int max_objects; 3272 3273 /* 3274 * Attempt to find best configuration for a slab. This 3275 * works by first attempting to generate a layout with 3276 * the best configuration and backing off gradually. 3277 * 3278 * First we increase the acceptable waste in a slab. Then 3279 * we reduce the minimum objects required in a slab. 3280 */ 3281 min_objects = slub_min_objects; 3282 if (!min_objects) 3283 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3284 max_objects = order_objects(slub_max_order, size); 3285 min_objects = min(min_objects, max_objects); 3286 3287 while (min_objects > 1) { 3288 unsigned int fraction; 3289 3290 fraction = 16; 3291 while (fraction >= 4) { 3292 order = slab_order(size, min_objects, 3293 slub_max_order, fraction); 3294 if (order <= slub_max_order) 3295 return order; 3296 fraction /= 2; 3297 } 3298 min_objects--; 3299 } 3300 3301 /* 3302 * We were unable to place multiple objects in a slab. Now 3303 * lets see if we can place a single object there. 3304 */ 3305 order = slab_order(size, 1, slub_max_order, 1); 3306 if (order <= slub_max_order) 3307 return order; 3308 3309 /* 3310 * Doh this slab cannot be placed using slub_max_order. 3311 */ 3312 order = slab_order(size, 1, MAX_ORDER, 1); 3313 if (order < MAX_ORDER) 3314 return order; 3315 return -ENOSYS; 3316 } 3317 3318 static void 3319 init_kmem_cache_node(struct kmem_cache_node *n) 3320 { 3321 n->nr_partial = 0; 3322 spin_lock_init(&n->list_lock); 3323 INIT_LIST_HEAD(&n->partial); 3324 #ifdef CONFIG_SLUB_DEBUG 3325 atomic_long_set(&n->nr_slabs, 0); 3326 atomic_long_set(&n->total_objects, 0); 3327 INIT_LIST_HEAD(&n->full); 3328 #endif 3329 } 3330 3331 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3332 { 3333 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3334 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3335 3336 /* 3337 * Must align to double word boundary for the double cmpxchg 3338 * instructions to work; see __pcpu_double_call_return_bool(). 3339 */ 3340 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3341 2 * sizeof(void *)); 3342 3343 if (!s->cpu_slab) 3344 return 0; 3345 3346 init_kmem_cache_cpus(s); 3347 3348 return 1; 3349 } 3350 3351 static struct kmem_cache *kmem_cache_node; 3352 3353 /* 3354 * No kmalloc_node yet so do it by hand. We know that this is the first 3355 * slab on the node for this slabcache. There are no concurrent accesses 3356 * possible. 3357 * 3358 * Note that this function only works on the kmem_cache_node 3359 * when allocating for the kmem_cache_node. This is used for bootstrapping 3360 * memory on a fresh node that has no slab structures yet. 3361 */ 3362 static void early_kmem_cache_node_alloc(int node) 3363 { 3364 struct page *page; 3365 struct kmem_cache_node *n; 3366 3367 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3368 3369 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3370 3371 BUG_ON(!page); 3372 if (page_to_nid(page) != node) { 3373 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3374 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3375 } 3376 3377 n = page->freelist; 3378 BUG_ON(!n); 3379 #ifdef CONFIG_SLUB_DEBUG 3380 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3381 init_tracking(kmem_cache_node, n); 3382 #endif 3383 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3384 GFP_KERNEL); 3385 page->freelist = get_freepointer(kmem_cache_node, n); 3386 page->inuse = 1; 3387 page->frozen = 0; 3388 kmem_cache_node->node[node] = n; 3389 init_kmem_cache_node(n); 3390 inc_slabs_node(kmem_cache_node, node, page->objects); 3391 3392 /* 3393 * No locks need to be taken here as it has just been 3394 * initialized and there is no concurrent access. 3395 */ 3396 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3397 } 3398 3399 static void free_kmem_cache_nodes(struct kmem_cache *s) 3400 { 3401 int node; 3402 struct kmem_cache_node *n; 3403 3404 for_each_kmem_cache_node(s, node, n) { 3405 s->node[node] = NULL; 3406 kmem_cache_free(kmem_cache_node, n); 3407 } 3408 } 3409 3410 void __kmem_cache_release(struct kmem_cache *s) 3411 { 3412 cache_random_seq_destroy(s); 3413 free_percpu(s->cpu_slab); 3414 free_kmem_cache_nodes(s); 3415 } 3416 3417 static int init_kmem_cache_nodes(struct kmem_cache *s) 3418 { 3419 int node; 3420 3421 for_each_node_state(node, N_NORMAL_MEMORY) { 3422 struct kmem_cache_node *n; 3423 3424 if (slab_state == DOWN) { 3425 early_kmem_cache_node_alloc(node); 3426 continue; 3427 } 3428 n = kmem_cache_alloc_node(kmem_cache_node, 3429 GFP_KERNEL, node); 3430 3431 if (!n) { 3432 free_kmem_cache_nodes(s); 3433 return 0; 3434 } 3435 3436 init_kmem_cache_node(n); 3437 s->node[node] = n; 3438 } 3439 return 1; 3440 } 3441 3442 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3443 { 3444 if (min < MIN_PARTIAL) 3445 min = MIN_PARTIAL; 3446 else if (min > MAX_PARTIAL) 3447 min = MAX_PARTIAL; 3448 s->min_partial = min; 3449 } 3450 3451 static void set_cpu_partial(struct kmem_cache *s) 3452 { 3453 #ifdef CONFIG_SLUB_CPU_PARTIAL 3454 /* 3455 * cpu_partial determined the maximum number of objects kept in the 3456 * per cpu partial lists of a processor. 3457 * 3458 * Per cpu partial lists mainly contain slabs that just have one 3459 * object freed. If they are used for allocation then they can be 3460 * filled up again with minimal effort. The slab will never hit the 3461 * per node partial lists and therefore no locking will be required. 3462 * 3463 * This setting also determines 3464 * 3465 * A) The number of objects from per cpu partial slabs dumped to the 3466 * per node list when we reach the limit. 3467 * B) The number of objects in cpu partial slabs to extract from the 3468 * per node list when we run out of per cpu objects. We only fetch 3469 * 50% to keep some capacity around for frees. 3470 */ 3471 if (!kmem_cache_has_cpu_partial(s)) 3472 s->cpu_partial = 0; 3473 else if (s->size >= PAGE_SIZE) 3474 s->cpu_partial = 2; 3475 else if (s->size >= 1024) 3476 s->cpu_partial = 6; 3477 else if (s->size >= 256) 3478 s->cpu_partial = 13; 3479 else 3480 s->cpu_partial = 30; 3481 #endif 3482 } 3483 3484 /* 3485 * calculate_sizes() determines the order and the distribution of data within 3486 * a slab object. 3487 */ 3488 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3489 { 3490 slab_flags_t flags = s->flags; 3491 unsigned int size = s->object_size; 3492 unsigned int order; 3493 3494 /* 3495 * Round up object size to the next word boundary. We can only 3496 * place the free pointer at word boundaries and this determines 3497 * the possible location of the free pointer. 3498 */ 3499 size = ALIGN(size, sizeof(void *)); 3500 3501 #ifdef CONFIG_SLUB_DEBUG 3502 /* 3503 * Determine if we can poison the object itself. If the user of 3504 * the slab may touch the object after free or before allocation 3505 * then we should never poison the object itself. 3506 */ 3507 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3508 !s->ctor) 3509 s->flags |= __OBJECT_POISON; 3510 else 3511 s->flags &= ~__OBJECT_POISON; 3512 3513 3514 /* 3515 * If we are Redzoning then check if there is some space between the 3516 * end of the object and the free pointer. If not then add an 3517 * additional word to have some bytes to store Redzone information. 3518 */ 3519 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3520 size += sizeof(void *); 3521 #endif 3522 3523 /* 3524 * With that we have determined the number of bytes in actual use 3525 * by the object. This is the potential offset to the free pointer. 3526 */ 3527 s->inuse = size; 3528 3529 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3530 s->ctor)) { 3531 /* 3532 * Relocate free pointer after the object if it is not 3533 * permitted to overwrite the first word of the object on 3534 * kmem_cache_free. 3535 * 3536 * This is the case if we do RCU, have a constructor or 3537 * destructor or are poisoning the objects. 3538 */ 3539 s->offset = size; 3540 size += sizeof(void *); 3541 } 3542 3543 #ifdef CONFIG_SLUB_DEBUG 3544 if (flags & SLAB_STORE_USER) 3545 /* 3546 * Need to store information about allocs and frees after 3547 * the object. 3548 */ 3549 size += 2 * sizeof(struct track); 3550 #endif 3551 3552 kasan_cache_create(s, &size, &s->flags); 3553 #ifdef CONFIG_SLUB_DEBUG 3554 if (flags & SLAB_RED_ZONE) { 3555 /* 3556 * Add some empty padding so that we can catch 3557 * overwrites from earlier objects rather than let 3558 * tracking information or the free pointer be 3559 * corrupted if a user writes before the start 3560 * of the object. 3561 */ 3562 size += sizeof(void *); 3563 3564 s->red_left_pad = sizeof(void *); 3565 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3566 size += s->red_left_pad; 3567 } 3568 #endif 3569 3570 /* 3571 * SLUB stores one object immediately after another beginning from 3572 * offset 0. In order to align the objects we have to simply size 3573 * each object to conform to the alignment. 3574 */ 3575 size = ALIGN(size, s->align); 3576 s->size = size; 3577 if (forced_order >= 0) 3578 order = forced_order; 3579 else 3580 order = calculate_order(size); 3581 3582 if ((int)order < 0) 3583 return 0; 3584 3585 s->allocflags = 0; 3586 if (order) 3587 s->allocflags |= __GFP_COMP; 3588 3589 if (s->flags & SLAB_CACHE_DMA) 3590 s->allocflags |= GFP_DMA; 3591 3592 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3593 s->allocflags |= __GFP_RECLAIMABLE; 3594 3595 /* 3596 * Determine the number of objects per slab 3597 */ 3598 s->oo = oo_make(order, size); 3599 s->min = oo_make(get_order(size), size); 3600 if (oo_objects(s->oo) > oo_objects(s->max)) 3601 s->max = s->oo; 3602 3603 return !!oo_objects(s->oo); 3604 } 3605 3606 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3607 { 3608 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3609 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3610 s->random = get_random_long(); 3611 #endif 3612 3613 if (!calculate_sizes(s, -1)) 3614 goto error; 3615 if (disable_higher_order_debug) { 3616 /* 3617 * Disable debugging flags that store metadata if the min slab 3618 * order increased. 3619 */ 3620 if (get_order(s->size) > get_order(s->object_size)) { 3621 s->flags &= ~DEBUG_METADATA_FLAGS; 3622 s->offset = 0; 3623 if (!calculate_sizes(s, -1)) 3624 goto error; 3625 } 3626 } 3627 3628 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3629 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3630 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3631 /* Enable fast mode */ 3632 s->flags |= __CMPXCHG_DOUBLE; 3633 #endif 3634 3635 /* 3636 * The larger the object size is, the more pages we want on the partial 3637 * list to avoid pounding the page allocator excessively. 3638 */ 3639 set_min_partial(s, ilog2(s->size) / 2); 3640 3641 set_cpu_partial(s); 3642 3643 #ifdef CONFIG_NUMA 3644 s->remote_node_defrag_ratio = 1000; 3645 #endif 3646 3647 /* Initialize the pre-computed randomized freelist if slab is up */ 3648 if (slab_state >= UP) { 3649 if (init_cache_random_seq(s)) 3650 goto error; 3651 } 3652 3653 if (!init_kmem_cache_nodes(s)) 3654 goto error; 3655 3656 if (alloc_kmem_cache_cpus(s)) 3657 return 0; 3658 3659 free_kmem_cache_nodes(s); 3660 error: 3661 if (flags & SLAB_PANIC) 3662 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", 3663 s->name, s->size, s->size, 3664 oo_order(s->oo), s->offset, (unsigned long)flags); 3665 return -EINVAL; 3666 } 3667 3668 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3669 const char *text) 3670 { 3671 #ifdef CONFIG_SLUB_DEBUG 3672 void *addr = page_address(page); 3673 void *p; 3674 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); 3675 if (!map) 3676 return; 3677 slab_err(s, page, text, s->name); 3678 slab_lock(page); 3679 3680 get_map(s, page, map); 3681 for_each_object(p, s, addr, page->objects) { 3682 3683 if (!test_bit(slab_index(p, s, addr), map)) { 3684 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3685 print_tracking(s, p); 3686 } 3687 } 3688 slab_unlock(page); 3689 bitmap_free(map); 3690 #endif 3691 } 3692 3693 /* 3694 * Attempt to free all partial slabs on a node. 3695 * This is called from __kmem_cache_shutdown(). We must take list_lock 3696 * because sysfs file might still access partial list after the shutdowning. 3697 */ 3698 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3699 { 3700 LIST_HEAD(discard); 3701 struct page *page, *h; 3702 3703 BUG_ON(irqs_disabled()); 3704 spin_lock_irq(&n->list_lock); 3705 list_for_each_entry_safe(page, h, &n->partial, lru) { 3706 if (!page->inuse) { 3707 remove_partial(n, page); 3708 list_add(&page->lru, &discard); 3709 } else { 3710 list_slab_objects(s, page, 3711 "Objects remaining in %s on __kmem_cache_shutdown()"); 3712 } 3713 } 3714 spin_unlock_irq(&n->list_lock); 3715 3716 list_for_each_entry_safe(page, h, &discard, lru) 3717 discard_slab(s, page); 3718 } 3719 3720 bool __kmem_cache_empty(struct kmem_cache *s) 3721 { 3722 int node; 3723 struct kmem_cache_node *n; 3724 3725 for_each_kmem_cache_node(s, node, n) 3726 if (n->nr_partial || slabs_node(s, node)) 3727 return false; 3728 return true; 3729 } 3730 3731 /* 3732 * Release all resources used by a slab cache. 3733 */ 3734 int __kmem_cache_shutdown(struct kmem_cache *s) 3735 { 3736 int node; 3737 struct kmem_cache_node *n; 3738 3739 flush_all(s); 3740 /* Attempt to free all objects */ 3741 for_each_kmem_cache_node(s, node, n) { 3742 free_partial(s, n); 3743 if (n->nr_partial || slabs_node(s, node)) 3744 return 1; 3745 } 3746 sysfs_slab_remove(s); 3747 return 0; 3748 } 3749 3750 /******************************************************************** 3751 * Kmalloc subsystem 3752 *******************************************************************/ 3753 3754 static int __init setup_slub_min_order(char *str) 3755 { 3756 get_option(&str, (int *)&slub_min_order); 3757 3758 return 1; 3759 } 3760 3761 __setup("slub_min_order=", setup_slub_min_order); 3762 3763 static int __init setup_slub_max_order(char *str) 3764 { 3765 get_option(&str, (int *)&slub_max_order); 3766 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3767 3768 return 1; 3769 } 3770 3771 __setup("slub_max_order=", setup_slub_max_order); 3772 3773 static int __init setup_slub_min_objects(char *str) 3774 { 3775 get_option(&str, (int *)&slub_min_objects); 3776 3777 return 1; 3778 } 3779 3780 __setup("slub_min_objects=", setup_slub_min_objects); 3781 3782 void *__kmalloc(size_t size, gfp_t flags) 3783 { 3784 struct kmem_cache *s; 3785 void *ret; 3786 3787 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3788 return kmalloc_large(size, flags); 3789 3790 s = kmalloc_slab(size, flags); 3791 3792 if (unlikely(ZERO_OR_NULL_PTR(s))) 3793 return s; 3794 3795 ret = slab_alloc(s, flags, _RET_IP_); 3796 3797 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3798 3799 ret = kasan_kmalloc(s, ret, size, flags); 3800 3801 return ret; 3802 } 3803 EXPORT_SYMBOL(__kmalloc); 3804 3805 #ifdef CONFIG_NUMA 3806 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3807 { 3808 struct page *page; 3809 void *ptr = NULL; 3810 3811 flags |= __GFP_COMP; 3812 page = alloc_pages_node(node, flags, get_order(size)); 3813 if (page) 3814 ptr = page_address(page); 3815 3816 return kmalloc_large_node_hook(ptr, size, flags); 3817 } 3818 3819 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3820 { 3821 struct kmem_cache *s; 3822 void *ret; 3823 3824 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3825 ret = kmalloc_large_node(size, flags, node); 3826 3827 trace_kmalloc_node(_RET_IP_, ret, 3828 size, PAGE_SIZE << get_order(size), 3829 flags, node); 3830 3831 return ret; 3832 } 3833 3834 s = kmalloc_slab(size, flags); 3835 3836 if (unlikely(ZERO_OR_NULL_PTR(s))) 3837 return s; 3838 3839 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3840 3841 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3842 3843 ret = kasan_kmalloc(s, ret, size, flags); 3844 3845 return ret; 3846 } 3847 EXPORT_SYMBOL(__kmalloc_node); 3848 #endif 3849 3850 #ifdef CONFIG_HARDENED_USERCOPY 3851 /* 3852 * Rejects incorrectly sized objects and objects that are to be copied 3853 * to/from userspace but do not fall entirely within the containing slab 3854 * cache's usercopy region. 3855 * 3856 * Returns NULL if check passes, otherwise const char * to name of cache 3857 * to indicate an error. 3858 */ 3859 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3860 bool to_user) 3861 { 3862 struct kmem_cache *s; 3863 unsigned int offset; 3864 size_t object_size; 3865 3866 ptr = kasan_reset_tag(ptr); 3867 3868 /* Find object and usable object size. */ 3869 s = page->slab_cache; 3870 3871 /* Reject impossible pointers. */ 3872 if (ptr < page_address(page)) 3873 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3874 to_user, 0, n); 3875 3876 /* Find offset within object. */ 3877 offset = (ptr - page_address(page)) % s->size; 3878 3879 /* Adjust for redzone and reject if within the redzone. */ 3880 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3881 if (offset < s->red_left_pad) 3882 usercopy_abort("SLUB object in left red zone", 3883 s->name, to_user, offset, n); 3884 offset -= s->red_left_pad; 3885 } 3886 3887 /* Allow address range falling entirely within usercopy region. */ 3888 if (offset >= s->useroffset && 3889 offset - s->useroffset <= s->usersize && 3890 n <= s->useroffset - offset + s->usersize) 3891 return; 3892 3893 /* 3894 * If the copy is still within the allocated object, produce 3895 * a warning instead of rejecting the copy. This is intended 3896 * to be a temporary method to find any missing usercopy 3897 * whitelists. 3898 */ 3899 object_size = slab_ksize(s); 3900 if (usercopy_fallback && 3901 offset <= object_size && n <= object_size - offset) { 3902 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3903 return; 3904 } 3905 3906 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3907 } 3908 #endif /* CONFIG_HARDENED_USERCOPY */ 3909 3910 static size_t __ksize(const void *object) 3911 { 3912 struct page *page; 3913 3914 if (unlikely(object == ZERO_SIZE_PTR)) 3915 return 0; 3916 3917 page = virt_to_head_page(object); 3918 3919 if (unlikely(!PageSlab(page))) { 3920 WARN_ON(!PageCompound(page)); 3921 return PAGE_SIZE << compound_order(page); 3922 } 3923 3924 return slab_ksize(page->slab_cache); 3925 } 3926 3927 size_t ksize(const void *object) 3928 { 3929 size_t size = __ksize(object); 3930 /* We assume that ksize callers could use whole allocated area, 3931 * so we need to unpoison this area. 3932 */ 3933 kasan_unpoison_shadow(object, size); 3934 return size; 3935 } 3936 EXPORT_SYMBOL(ksize); 3937 3938 void kfree(const void *x) 3939 { 3940 struct page *page; 3941 void *object = (void *)x; 3942 3943 trace_kfree(_RET_IP_, x); 3944 3945 if (unlikely(ZERO_OR_NULL_PTR(x))) 3946 return; 3947 3948 page = virt_to_head_page(x); 3949 if (unlikely(!PageSlab(page))) { 3950 BUG_ON(!PageCompound(page)); 3951 kfree_hook(object); 3952 __free_pages(page, compound_order(page)); 3953 return; 3954 } 3955 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3956 } 3957 EXPORT_SYMBOL(kfree); 3958 3959 #define SHRINK_PROMOTE_MAX 32 3960 3961 /* 3962 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3963 * up most to the head of the partial lists. New allocations will then 3964 * fill those up and thus they can be removed from the partial lists. 3965 * 3966 * The slabs with the least items are placed last. This results in them 3967 * being allocated from last increasing the chance that the last objects 3968 * are freed in them. 3969 */ 3970 int __kmem_cache_shrink(struct kmem_cache *s) 3971 { 3972 int node; 3973 int i; 3974 struct kmem_cache_node *n; 3975 struct page *page; 3976 struct page *t; 3977 struct list_head discard; 3978 struct list_head promote[SHRINK_PROMOTE_MAX]; 3979 unsigned long flags; 3980 int ret = 0; 3981 3982 flush_all(s); 3983 for_each_kmem_cache_node(s, node, n) { 3984 INIT_LIST_HEAD(&discard); 3985 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3986 INIT_LIST_HEAD(promote + i); 3987 3988 spin_lock_irqsave(&n->list_lock, flags); 3989 3990 /* 3991 * Build lists of slabs to discard or promote. 3992 * 3993 * Note that concurrent frees may occur while we hold the 3994 * list_lock. page->inuse here is the upper limit. 3995 */ 3996 list_for_each_entry_safe(page, t, &n->partial, lru) { 3997 int free = page->objects - page->inuse; 3998 3999 /* Do not reread page->inuse */ 4000 barrier(); 4001 4002 /* We do not keep full slabs on the list */ 4003 BUG_ON(free <= 0); 4004 4005 if (free == page->objects) { 4006 list_move(&page->lru, &discard); 4007 n->nr_partial--; 4008 } else if (free <= SHRINK_PROMOTE_MAX) 4009 list_move(&page->lru, promote + free - 1); 4010 } 4011 4012 /* 4013 * Promote the slabs filled up most to the head of the 4014 * partial list. 4015 */ 4016 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4017 list_splice(promote + i, &n->partial); 4018 4019 spin_unlock_irqrestore(&n->list_lock, flags); 4020 4021 /* Release empty slabs */ 4022 list_for_each_entry_safe(page, t, &discard, lru) 4023 discard_slab(s, page); 4024 4025 if (slabs_node(s, node)) 4026 ret = 1; 4027 } 4028 4029 return ret; 4030 } 4031 4032 #ifdef CONFIG_MEMCG 4033 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 4034 { 4035 /* 4036 * Called with all the locks held after a sched RCU grace period. 4037 * Even if @s becomes empty after shrinking, we can't know that @s 4038 * doesn't have allocations already in-flight and thus can't 4039 * destroy @s until the associated memcg is released. 4040 * 4041 * However, let's remove the sysfs files for empty caches here. 4042 * Each cache has a lot of interface files which aren't 4043 * particularly useful for empty draining caches; otherwise, we can 4044 * easily end up with millions of unnecessary sysfs files on 4045 * systems which have a lot of memory and transient cgroups. 4046 */ 4047 if (!__kmem_cache_shrink(s)) 4048 sysfs_slab_remove(s); 4049 } 4050 4051 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4052 { 4053 /* 4054 * Disable empty slabs caching. Used to avoid pinning offline 4055 * memory cgroups by kmem pages that can be freed. 4056 */ 4057 slub_set_cpu_partial(s, 0); 4058 s->min_partial = 0; 4059 4060 /* 4061 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 4062 * we have to make sure the change is visible before shrinking. 4063 */ 4064 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 4065 } 4066 #endif 4067 4068 static int slab_mem_going_offline_callback(void *arg) 4069 { 4070 struct kmem_cache *s; 4071 4072 mutex_lock(&slab_mutex); 4073 list_for_each_entry(s, &slab_caches, list) 4074 __kmem_cache_shrink(s); 4075 mutex_unlock(&slab_mutex); 4076 4077 return 0; 4078 } 4079 4080 static void slab_mem_offline_callback(void *arg) 4081 { 4082 struct kmem_cache_node *n; 4083 struct kmem_cache *s; 4084 struct memory_notify *marg = arg; 4085 int offline_node; 4086 4087 offline_node = marg->status_change_nid_normal; 4088 4089 /* 4090 * If the node still has available memory. we need kmem_cache_node 4091 * for it yet. 4092 */ 4093 if (offline_node < 0) 4094 return; 4095 4096 mutex_lock(&slab_mutex); 4097 list_for_each_entry(s, &slab_caches, list) { 4098 n = get_node(s, offline_node); 4099 if (n) { 4100 /* 4101 * if n->nr_slabs > 0, slabs still exist on the node 4102 * that is going down. We were unable to free them, 4103 * and offline_pages() function shouldn't call this 4104 * callback. So, we must fail. 4105 */ 4106 BUG_ON(slabs_node(s, offline_node)); 4107 4108 s->node[offline_node] = NULL; 4109 kmem_cache_free(kmem_cache_node, n); 4110 } 4111 } 4112 mutex_unlock(&slab_mutex); 4113 } 4114 4115 static int slab_mem_going_online_callback(void *arg) 4116 { 4117 struct kmem_cache_node *n; 4118 struct kmem_cache *s; 4119 struct memory_notify *marg = arg; 4120 int nid = marg->status_change_nid_normal; 4121 int ret = 0; 4122 4123 /* 4124 * If the node's memory is already available, then kmem_cache_node is 4125 * already created. Nothing to do. 4126 */ 4127 if (nid < 0) 4128 return 0; 4129 4130 /* 4131 * We are bringing a node online. No memory is available yet. We must 4132 * allocate a kmem_cache_node structure in order to bring the node 4133 * online. 4134 */ 4135 mutex_lock(&slab_mutex); 4136 list_for_each_entry(s, &slab_caches, list) { 4137 /* 4138 * XXX: kmem_cache_alloc_node will fallback to other nodes 4139 * since memory is not yet available from the node that 4140 * is brought up. 4141 */ 4142 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4143 if (!n) { 4144 ret = -ENOMEM; 4145 goto out; 4146 } 4147 init_kmem_cache_node(n); 4148 s->node[nid] = n; 4149 } 4150 out: 4151 mutex_unlock(&slab_mutex); 4152 return ret; 4153 } 4154 4155 static int slab_memory_callback(struct notifier_block *self, 4156 unsigned long action, void *arg) 4157 { 4158 int ret = 0; 4159 4160 switch (action) { 4161 case MEM_GOING_ONLINE: 4162 ret = slab_mem_going_online_callback(arg); 4163 break; 4164 case MEM_GOING_OFFLINE: 4165 ret = slab_mem_going_offline_callback(arg); 4166 break; 4167 case MEM_OFFLINE: 4168 case MEM_CANCEL_ONLINE: 4169 slab_mem_offline_callback(arg); 4170 break; 4171 case MEM_ONLINE: 4172 case MEM_CANCEL_OFFLINE: 4173 break; 4174 } 4175 if (ret) 4176 ret = notifier_from_errno(ret); 4177 else 4178 ret = NOTIFY_OK; 4179 return ret; 4180 } 4181 4182 static struct notifier_block slab_memory_callback_nb = { 4183 .notifier_call = slab_memory_callback, 4184 .priority = SLAB_CALLBACK_PRI, 4185 }; 4186 4187 /******************************************************************** 4188 * Basic setup of slabs 4189 *******************************************************************/ 4190 4191 /* 4192 * Used for early kmem_cache structures that were allocated using 4193 * the page allocator. Allocate them properly then fix up the pointers 4194 * that may be pointing to the wrong kmem_cache structure. 4195 */ 4196 4197 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4198 { 4199 int node; 4200 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4201 struct kmem_cache_node *n; 4202 4203 memcpy(s, static_cache, kmem_cache->object_size); 4204 4205 /* 4206 * This runs very early, and only the boot processor is supposed to be 4207 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4208 * IPIs around. 4209 */ 4210 __flush_cpu_slab(s, smp_processor_id()); 4211 for_each_kmem_cache_node(s, node, n) { 4212 struct page *p; 4213 4214 list_for_each_entry(p, &n->partial, lru) 4215 p->slab_cache = s; 4216 4217 #ifdef CONFIG_SLUB_DEBUG 4218 list_for_each_entry(p, &n->full, lru) 4219 p->slab_cache = s; 4220 #endif 4221 } 4222 slab_init_memcg_params(s); 4223 list_add(&s->list, &slab_caches); 4224 memcg_link_cache(s); 4225 return s; 4226 } 4227 4228 void __init kmem_cache_init(void) 4229 { 4230 static __initdata struct kmem_cache boot_kmem_cache, 4231 boot_kmem_cache_node; 4232 4233 if (debug_guardpage_minorder()) 4234 slub_max_order = 0; 4235 4236 kmem_cache_node = &boot_kmem_cache_node; 4237 kmem_cache = &boot_kmem_cache; 4238 4239 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4240 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4241 4242 register_hotmemory_notifier(&slab_memory_callback_nb); 4243 4244 /* Able to allocate the per node structures */ 4245 slab_state = PARTIAL; 4246 4247 create_boot_cache(kmem_cache, "kmem_cache", 4248 offsetof(struct kmem_cache, node) + 4249 nr_node_ids * sizeof(struct kmem_cache_node *), 4250 SLAB_HWCACHE_ALIGN, 0, 0); 4251 4252 kmem_cache = bootstrap(&boot_kmem_cache); 4253 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4254 4255 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4256 setup_kmalloc_cache_index_table(); 4257 create_kmalloc_caches(0); 4258 4259 /* Setup random freelists for each cache */ 4260 init_freelist_randomization(); 4261 4262 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4263 slub_cpu_dead); 4264 4265 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4266 cache_line_size(), 4267 slub_min_order, slub_max_order, slub_min_objects, 4268 nr_cpu_ids, nr_node_ids); 4269 } 4270 4271 void __init kmem_cache_init_late(void) 4272 { 4273 } 4274 4275 struct kmem_cache * 4276 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4277 slab_flags_t flags, void (*ctor)(void *)) 4278 { 4279 struct kmem_cache *s, *c; 4280 4281 s = find_mergeable(size, align, flags, name, ctor); 4282 if (s) { 4283 s->refcount++; 4284 4285 /* 4286 * Adjust the object sizes so that we clear 4287 * the complete object on kzalloc. 4288 */ 4289 s->object_size = max(s->object_size, size); 4290 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4291 4292 for_each_memcg_cache(c, s) { 4293 c->object_size = s->object_size; 4294 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4295 } 4296 4297 if (sysfs_slab_alias(s, name)) { 4298 s->refcount--; 4299 s = NULL; 4300 } 4301 } 4302 4303 return s; 4304 } 4305 4306 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4307 { 4308 int err; 4309 4310 err = kmem_cache_open(s, flags); 4311 if (err) 4312 return err; 4313 4314 /* Mutex is not taken during early boot */ 4315 if (slab_state <= UP) 4316 return 0; 4317 4318 memcg_propagate_slab_attrs(s); 4319 err = sysfs_slab_add(s); 4320 if (err) 4321 __kmem_cache_release(s); 4322 4323 return err; 4324 } 4325 4326 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4327 { 4328 struct kmem_cache *s; 4329 void *ret; 4330 4331 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4332 return kmalloc_large(size, gfpflags); 4333 4334 s = kmalloc_slab(size, gfpflags); 4335 4336 if (unlikely(ZERO_OR_NULL_PTR(s))) 4337 return s; 4338 4339 ret = slab_alloc(s, gfpflags, caller); 4340 4341 /* Honor the call site pointer we received. */ 4342 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4343 4344 return ret; 4345 } 4346 4347 #ifdef CONFIG_NUMA 4348 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4349 int node, unsigned long caller) 4350 { 4351 struct kmem_cache *s; 4352 void *ret; 4353 4354 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4355 ret = kmalloc_large_node(size, gfpflags, node); 4356 4357 trace_kmalloc_node(caller, ret, 4358 size, PAGE_SIZE << get_order(size), 4359 gfpflags, node); 4360 4361 return ret; 4362 } 4363 4364 s = kmalloc_slab(size, gfpflags); 4365 4366 if (unlikely(ZERO_OR_NULL_PTR(s))) 4367 return s; 4368 4369 ret = slab_alloc_node(s, gfpflags, node, caller); 4370 4371 /* Honor the call site pointer we received. */ 4372 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4373 4374 return ret; 4375 } 4376 #endif 4377 4378 #ifdef CONFIG_SYSFS 4379 static int count_inuse(struct page *page) 4380 { 4381 return page->inuse; 4382 } 4383 4384 static int count_total(struct page *page) 4385 { 4386 return page->objects; 4387 } 4388 #endif 4389 4390 #ifdef CONFIG_SLUB_DEBUG 4391 static int validate_slab(struct kmem_cache *s, struct page *page, 4392 unsigned long *map) 4393 { 4394 void *p; 4395 void *addr = page_address(page); 4396 4397 if (!check_slab(s, page) || 4398 !on_freelist(s, page, NULL)) 4399 return 0; 4400 4401 /* Now we know that a valid freelist exists */ 4402 bitmap_zero(map, page->objects); 4403 4404 get_map(s, page, map); 4405 for_each_object(p, s, addr, page->objects) { 4406 if (test_bit(slab_index(p, s, addr), map)) 4407 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4408 return 0; 4409 } 4410 4411 for_each_object(p, s, addr, page->objects) 4412 if (!test_bit(slab_index(p, s, addr), map)) 4413 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4414 return 0; 4415 return 1; 4416 } 4417 4418 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4419 unsigned long *map) 4420 { 4421 slab_lock(page); 4422 validate_slab(s, page, map); 4423 slab_unlock(page); 4424 } 4425 4426 static int validate_slab_node(struct kmem_cache *s, 4427 struct kmem_cache_node *n, unsigned long *map) 4428 { 4429 unsigned long count = 0; 4430 struct page *page; 4431 unsigned long flags; 4432 4433 spin_lock_irqsave(&n->list_lock, flags); 4434 4435 list_for_each_entry(page, &n->partial, lru) { 4436 validate_slab_slab(s, page, map); 4437 count++; 4438 } 4439 if (count != n->nr_partial) 4440 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4441 s->name, count, n->nr_partial); 4442 4443 if (!(s->flags & SLAB_STORE_USER)) 4444 goto out; 4445 4446 list_for_each_entry(page, &n->full, lru) { 4447 validate_slab_slab(s, page, map); 4448 count++; 4449 } 4450 if (count != atomic_long_read(&n->nr_slabs)) 4451 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4452 s->name, count, atomic_long_read(&n->nr_slabs)); 4453 4454 out: 4455 spin_unlock_irqrestore(&n->list_lock, flags); 4456 return count; 4457 } 4458 4459 static long validate_slab_cache(struct kmem_cache *s) 4460 { 4461 int node; 4462 unsigned long count = 0; 4463 struct kmem_cache_node *n; 4464 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4465 4466 if (!map) 4467 return -ENOMEM; 4468 4469 flush_all(s); 4470 for_each_kmem_cache_node(s, node, n) 4471 count += validate_slab_node(s, n, map); 4472 bitmap_free(map); 4473 return count; 4474 } 4475 /* 4476 * Generate lists of code addresses where slabcache objects are allocated 4477 * and freed. 4478 */ 4479 4480 struct location { 4481 unsigned long count; 4482 unsigned long addr; 4483 long long sum_time; 4484 long min_time; 4485 long max_time; 4486 long min_pid; 4487 long max_pid; 4488 DECLARE_BITMAP(cpus, NR_CPUS); 4489 nodemask_t nodes; 4490 }; 4491 4492 struct loc_track { 4493 unsigned long max; 4494 unsigned long count; 4495 struct location *loc; 4496 }; 4497 4498 static void free_loc_track(struct loc_track *t) 4499 { 4500 if (t->max) 4501 free_pages((unsigned long)t->loc, 4502 get_order(sizeof(struct location) * t->max)); 4503 } 4504 4505 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4506 { 4507 struct location *l; 4508 int order; 4509 4510 order = get_order(sizeof(struct location) * max); 4511 4512 l = (void *)__get_free_pages(flags, order); 4513 if (!l) 4514 return 0; 4515 4516 if (t->count) { 4517 memcpy(l, t->loc, sizeof(struct location) * t->count); 4518 free_loc_track(t); 4519 } 4520 t->max = max; 4521 t->loc = l; 4522 return 1; 4523 } 4524 4525 static int add_location(struct loc_track *t, struct kmem_cache *s, 4526 const struct track *track) 4527 { 4528 long start, end, pos; 4529 struct location *l; 4530 unsigned long caddr; 4531 unsigned long age = jiffies - track->when; 4532 4533 start = -1; 4534 end = t->count; 4535 4536 for ( ; ; ) { 4537 pos = start + (end - start + 1) / 2; 4538 4539 /* 4540 * There is nothing at "end". If we end up there 4541 * we need to add something to before end. 4542 */ 4543 if (pos == end) 4544 break; 4545 4546 caddr = t->loc[pos].addr; 4547 if (track->addr == caddr) { 4548 4549 l = &t->loc[pos]; 4550 l->count++; 4551 if (track->when) { 4552 l->sum_time += age; 4553 if (age < l->min_time) 4554 l->min_time = age; 4555 if (age > l->max_time) 4556 l->max_time = age; 4557 4558 if (track->pid < l->min_pid) 4559 l->min_pid = track->pid; 4560 if (track->pid > l->max_pid) 4561 l->max_pid = track->pid; 4562 4563 cpumask_set_cpu(track->cpu, 4564 to_cpumask(l->cpus)); 4565 } 4566 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4567 return 1; 4568 } 4569 4570 if (track->addr < caddr) 4571 end = pos; 4572 else 4573 start = pos; 4574 } 4575 4576 /* 4577 * Not found. Insert new tracking element. 4578 */ 4579 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4580 return 0; 4581 4582 l = t->loc + pos; 4583 if (pos < t->count) 4584 memmove(l + 1, l, 4585 (t->count - pos) * sizeof(struct location)); 4586 t->count++; 4587 l->count = 1; 4588 l->addr = track->addr; 4589 l->sum_time = age; 4590 l->min_time = age; 4591 l->max_time = age; 4592 l->min_pid = track->pid; 4593 l->max_pid = track->pid; 4594 cpumask_clear(to_cpumask(l->cpus)); 4595 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4596 nodes_clear(l->nodes); 4597 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4598 return 1; 4599 } 4600 4601 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4602 struct page *page, enum track_item alloc, 4603 unsigned long *map) 4604 { 4605 void *addr = page_address(page); 4606 void *p; 4607 4608 bitmap_zero(map, page->objects); 4609 get_map(s, page, map); 4610 4611 for_each_object(p, s, addr, page->objects) 4612 if (!test_bit(slab_index(p, s, addr), map)) 4613 add_location(t, s, get_track(s, p, alloc)); 4614 } 4615 4616 static int list_locations(struct kmem_cache *s, char *buf, 4617 enum track_item alloc) 4618 { 4619 int len = 0; 4620 unsigned long i; 4621 struct loc_track t = { 0, 0, NULL }; 4622 int node; 4623 struct kmem_cache_node *n; 4624 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4625 4626 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4627 GFP_KERNEL)) { 4628 bitmap_free(map); 4629 return sprintf(buf, "Out of memory\n"); 4630 } 4631 /* Push back cpu slabs */ 4632 flush_all(s); 4633 4634 for_each_kmem_cache_node(s, node, n) { 4635 unsigned long flags; 4636 struct page *page; 4637 4638 if (!atomic_long_read(&n->nr_slabs)) 4639 continue; 4640 4641 spin_lock_irqsave(&n->list_lock, flags); 4642 list_for_each_entry(page, &n->partial, lru) 4643 process_slab(&t, s, page, alloc, map); 4644 list_for_each_entry(page, &n->full, lru) 4645 process_slab(&t, s, page, alloc, map); 4646 spin_unlock_irqrestore(&n->list_lock, flags); 4647 } 4648 4649 for (i = 0; i < t.count; i++) { 4650 struct location *l = &t.loc[i]; 4651 4652 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4653 break; 4654 len += sprintf(buf + len, "%7ld ", l->count); 4655 4656 if (l->addr) 4657 len += sprintf(buf + len, "%pS", (void *)l->addr); 4658 else 4659 len += sprintf(buf + len, "<not-available>"); 4660 4661 if (l->sum_time != l->min_time) { 4662 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4663 l->min_time, 4664 (long)div_u64(l->sum_time, l->count), 4665 l->max_time); 4666 } else 4667 len += sprintf(buf + len, " age=%ld", 4668 l->min_time); 4669 4670 if (l->min_pid != l->max_pid) 4671 len += sprintf(buf + len, " pid=%ld-%ld", 4672 l->min_pid, l->max_pid); 4673 else 4674 len += sprintf(buf + len, " pid=%ld", 4675 l->min_pid); 4676 4677 if (num_online_cpus() > 1 && 4678 !cpumask_empty(to_cpumask(l->cpus)) && 4679 len < PAGE_SIZE - 60) 4680 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4681 " cpus=%*pbl", 4682 cpumask_pr_args(to_cpumask(l->cpus))); 4683 4684 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4685 len < PAGE_SIZE - 60) 4686 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4687 " nodes=%*pbl", 4688 nodemask_pr_args(&l->nodes)); 4689 4690 len += sprintf(buf + len, "\n"); 4691 } 4692 4693 free_loc_track(&t); 4694 bitmap_free(map); 4695 if (!t.count) 4696 len += sprintf(buf, "No data\n"); 4697 return len; 4698 } 4699 #endif 4700 4701 #ifdef SLUB_RESILIENCY_TEST 4702 static void __init resiliency_test(void) 4703 { 4704 u8 *p; 4705 int type = KMALLOC_NORMAL; 4706 4707 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4708 4709 pr_err("SLUB resiliency testing\n"); 4710 pr_err("-----------------------\n"); 4711 pr_err("A. Corruption after allocation\n"); 4712 4713 p = kzalloc(16, GFP_KERNEL); 4714 p[16] = 0x12; 4715 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4716 p + 16); 4717 4718 validate_slab_cache(kmalloc_caches[type][4]); 4719 4720 /* Hmmm... The next two are dangerous */ 4721 p = kzalloc(32, GFP_KERNEL); 4722 p[32 + sizeof(void *)] = 0x34; 4723 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4724 p); 4725 pr_err("If allocated object is overwritten then not detectable\n\n"); 4726 4727 validate_slab_cache(kmalloc_caches[type][5]); 4728 p = kzalloc(64, GFP_KERNEL); 4729 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4730 *p = 0x56; 4731 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4732 p); 4733 pr_err("If allocated object is overwritten then not detectable\n\n"); 4734 validate_slab_cache(kmalloc_caches[type][6]); 4735 4736 pr_err("\nB. Corruption after free\n"); 4737 p = kzalloc(128, GFP_KERNEL); 4738 kfree(p); 4739 *p = 0x78; 4740 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4741 validate_slab_cache(kmalloc_caches[type][7]); 4742 4743 p = kzalloc(256, GFP_KERNEL); 4744 kfree(p); 4745 p[50] = 0x9a; 4746 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4747 validate_slab_cache(kmalloc_caches[type][8]); 4748 4749 p = kzalloc(512, GFP_KERNEL); 4750 kfree(p); 4751 p[512] = 0xab; 4752 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4753 validate_slab_cache(kmalloc_caches[type][9]); 4754 } 4755 #else 4756 #ifdef CONFIG_SYSFS 4757 static void resiliency_test(void) {}; 4758 #endif 4759 #endif 4760 4761 #ifdef CONFIG_SYSFS 4762 enum slab_stat_type { 4763 SL_ALL, /* All slabs */ 4764 SL_PARTIAL, /* Only partially allocated slabs */ 4765 SL_CPU, /* Only slabs used for cpu caches */ 4766 SL_OBJECTS, /* Determine allocated objects not slabs */ 4767 SL_TOTAL /* Determine object capacity not slabs */ 4768 }; 4769 4770 #define SO_ALL (1 << SL_ALL) 4771 #define SO_PARTIAL (1 << SL_PARTIAL) 4772 #define SO_CPU (1 << SL_CPU) 4773 #define SO_OBJECTS (1 << SL_OBJECTS) 4774 #define SO_TOTAL (1 << SL_TOTAL) 4775 4776 #ifdef CONFIG_MEMCG 4777 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4778 4779 static int __init setup_slub_memcg_sysfs(char *str) 4780 { 4781 int v; 4782 4783 if (get_option(&str, &v) > 0) 4784 memcg_sysfs_enabled = v; 4785 4786 return 1; 4787 } 4788 4789 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4790 #endif 4791 4792 static ssize_t show_slab_objects(struct kmem_cache *s, 4793 char *buf, unsigned long flags) 4794 { 4795 unsigned long total = 0; 4796 int node; 4797 int x; 4798 unsigned long *nodes; 4799 4800 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4801 if (!nodes) 4802 return -ENOMEM; 4803 4804 if (flags & SO_CPU) { 4805 int cpu; 4806 4807 for_each_possible_cpu(cpu) { 4808 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4809 cpu); 4810 int node; 4811 struct page *page; 4812 4813 page = READ_ONCE(c->page); 4814 if (!page) 4815 continue; 4816 4817 node = page_to_nid(page); 4818 if (flags & SO_TOTAL) 4819 x = page->objects; 4820 else if (flags & SO_OBJECTS) 4821 x = page->inuse; 4822 else 4823 x = 1; 4824 4825 total += x; 4826 nodes[node] += x; 4827 4828 page = slub_percpu_partial_read_once(c); 4829 if (page) { 4830 node = page_to_nid(page); 4831 if (flags & SO_TOTAL) 4832 WARN_ON_ONCE(1); 4833 else if (flags & SO_OBJECTS) 4834 WARN_ON_ONCE(1); 4835 else 4836 x = page->pages; 4837 total += x; 4838 nodes[node] += x; 4839 } 4840 } 4841 } 4842 4843 get_online_mems(); 4844 #ifdef CONFIG_SLUB_DEBUG 4845 if (flags & SO_ALL) { 4846 struct kmem_cache_node *n; 4847 4848 for_each_kmem_cache_node(s, node, n) { 4849 4850 if (flags & SO_TOTAL) 4851 x = atomic_long_read(&n->total_objects); 4852 else if (flags & SO_OBJECTS) 4853 x = atomic_long_read(&n->total_objects) - 4854 count_partial(n, count_free); 4855 else 4856 x = atomic_long_read(&n->nr_slabs); 4857 total += x; 4858 nodes[node] += x; 4859 } 4860 4861 } else 4862 #endif 4863 if (flags & SO_PARTIAL) { 4864 struct kmem_cache_node *n; 4865 4866 for_each_kmem_cache_node(s, node, n) { 4867 if (flags & SO_TOTAL) 4868 x = count_partial(n, count_total); 4869 else if (flags & SO_OBJECTS) 4870 x = count_partial(n, count_inuse); 4871 else 4872 x = n->nr_partial; 4873 total += x; 4874 nodes[node] += x; 4875 } 4876 } 4877 x = sprintf(buf, "%lu", total); 4878 #ifdef CONFIG_NUMA 4879 for (node = 0; node < nr_node_ids; node++) 4880 if (nodes[node]) 4881 x += sprintf(buf + x, " N%d=%lu", 4882 node, nodes[node]); 4883 #endif 4884 put_online_mems(); 4885 kfree(nodes); 4886 return x + sprintf(buf + x, "\n"); 4887 } 4888 4889 #ifdef CONFIG_SLUB_DEBUG 4890 static int any_slab_objects(struct kmem_cache *s) 4891 { 4892 int node; 4893 struct kmem_cache_node *n; 4894 4895 for_each_kmem_cache_node(s, node, n) 4896 if (atomic_long_read(&n->total_objects)) 4897 return 1; 4898 4899 return 0; 4900 } 4901 #endif 4902 4903 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4904 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4905 4906 struct slab_attribute { 4907 struct attribute attr; 4908 ssize_t (*show)(struct kmem_cache *s, char *buf); 4909 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4910 }; 4911 4912 #define SLAB_ATTR_RO(_name) \ 4913 static struct slab_attribute _name##_attr = \ 4914 __ATTR(_name, 0400, _name##_show, NULL) 4915 4916 #define SLAB_ATTR(_name) \ 4917 static struct slab_attribute _name##_attr = \ 4918 __ATTR(_name, 0600, _name##_show, _name##_store) 4919 4920 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4921 { 4922 return sprintf(buf, "%u\n", s->size); 4923 } 4924 SLAB_ATTR_RO(slab_size); 4925 4926 static ssize_t align_show(struct kmem_cache *s, char *buf) 4927 { 4928 return sprintf(buf, "%u\n", s->align); 4929 } 4930 SLAB_ATTR_RO(align); 4931 4932 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4933 { 4934 return sprintf(buf, "%u\n", s->object_size); 4935 } 4936 SLAB_ATTR_RO(object_size); 4937 4938 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4939 { 4940 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4941 } 4942 SLAB_ATTR_RO(objs_per_slab); 4943 4944 static ssize_t order_store(struct kmem_cache *s, 4945 const char *buf, size_t length) 4946 { 4947 unsigned int order; 4948 int err; 4949 4950 err = kstrtouint(buf, 10, &order); 4951 if (err) 4952 return err; 4953 4954 if (order > slub_max_order || order < slub_min_order) 4955 return -EINVAL; 4956 4957 calculate_sizes(s, order); 4958 return length; 4959 } 4960 4961 static ssize_t order_show(struct kmem_cache *s, char *buf) 4962 { 4963 return sprintf(buf, "%u\n", oo_order(s->oo)); 4964 } 4965 SLAB_ATTR(order); 4966 4967 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4968 { 4969 return sprintf(buf, "%lu\n", s->min_partial); 4970 } 4971 4972 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4973 size_t length) 4974 { 4975 unsigned long min; 4976 int err; 4977 4978 err = kstrtoul(buf, 10, &min); 4979 if (err) 4980 return err; 4981 4982 set_min_partial(s, min); 4983 return length; 4984 } 4985 SLAB_ATTR(min_partial); 4986 4987 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4988 { 4989 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4990 } 4991 4992 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4993 size_t length) 4994 { 4995 unsigned int objects; 4996 int err; 4997 4998 err = kstrtouint(buf, 10, &objects); 4999 if (err) 5000 return err; 5001 if (objects && !kmem_cache_has_cpu_partial(s)) 5002 return -EINVAL; 5003 5004 slub_set_cpu_partial(s, objects); 5005 flush_all(s); 5006 return length; 5007 } 5008 SLAB_ATTR(cpu_partial); 5009 5010 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5011 { 5012 if (!s->ctor) 5013 return 0; 5014 return sprintf(buf, "%pS\n", s->ctor); 5015 } 5016 SLAB_ATTR_RO(ctor); 5017 5018 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5019 { 5020 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5021 } 5022 SLAB_ATTR_RO(aliases); 5023 5024 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5025 { 5026 return show_slab_objects(s, buf, SO_PARTIAL); 5027 } 5028 SLAB_ATTR_RO(partial); 5029 5030 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5031 { 5032 return show_slab_objects(s, buf, SO_CPU); 5033 } 5034 SLAB_ATTR_RO(cpu_slabs); 5035 5036 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5037 { 5038 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5039 } 5040 SLAB_ATTR_RO(objects); 5041 5042 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5043 { 5044 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5045 } 5046 SLAB_ATTR_RO(objects_partial); 5047 5048 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5049 { 5050 int objects = 0; 5051 int pages = 0; 5052 int cpu; 5053 int len; 5054 5055 for_each_online_cpu(cpu) { 5056 struct page *page; 5057 5058 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5059 5060 if (page) { 5061 pages += page->pages; 5062 objects += page->pobjects; 5063 } 5064 } 5065 5066 len = sprintf(buf, "%d(%d)", objects, pages); 5067 5068 #ifdef CONFIG_SMP 5069 for_each_online_cpu(cpu) { 5070 struct page *page; 5071 5072 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5073 5074 if (page && len < PAGE_SIZE - 20) 5075 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5076 page->pobjects, page->pages); 5077 } 5078 #endif 5079 return len + sprintf(buf + len, "\n"); 5080 } 5081 SLAB_ATTR_RO(slabs_cpu_partial); 5082 5083 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5084 { 5085 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5086 } 5087 5088 static ssize_t reclaim_account_store(struct kmem_cache *s, 5089 const char *buf, size_t length) 5090 { 5091 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5092 if (buf[0] == '1') 5093 s->flags |= SLAB_RECLAIM_ACCOUNT; 5094 return length; 5095 } 5096 SLAB_ATTR(reclaim_account); 5097 5098 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5099 { 5100 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5101 } 5102 SLAB_ATTR_RO(hwcache_align); 5103 5104 #ifdef CONFIG_ZONE_DMA 5105 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5106 { 5107 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5108 } 5109 SLAB_ATTR_RO(cache_dma); 5110 #endif 5111 5112 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5113 { 5114 return sprintf(buf, "%u\n", s->usersize); 5115 } 5116 SLAB_ATTR_RO(usersize); 5117 5118 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5119 { 5120 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5121 } 5122 SLAB_ATTR_RO(destroy_by_rcu); 5123 5124 #ifdef CONFIG_SLUB_DEBUG 5125 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5126 { 5127 return show_slab_objects(s, buf, SO_ALL); 5128 } 5129 SLAB_ATTR_RO(slabs); 5130 5131 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5132 { 5133 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5134 } 5135 SLAB_ATTR_RO(total_objects); 5136 5137 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5138 { 5139 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5140 } 5141 5142 static ssize_t sanity_checks_store(struct kmem_cache *s, 5143 const char *buf, size_t length) 5144 { 5145 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5146 if (buf[0] == '1') { 5147 s->flags &= ~__CMPXCHG_DOUBLE; 5148 s->flags |= SLAB_CONSISTENCY_CHECKS; 5149 } 5150 return length; 5151 } 5152 SLAB_ATTR(sanity_checks); 5153 5154 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5155 { 5156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5157 } 5158 5159 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5160 size_t length) 5161 { 5162 /* 5163 * Tracing a merged cache is going to give confusing results 5164 * as well as cause other issues like converting a mergeable 5165 * cache into an umergeable one. 5166 */ 5167 if (s->refcount > 1) 5168 return -EINVAL; 5169 5170 s->flags &= ~SLAB_TRACE; 5171 if (buf[0] == '1') { 5172 s->flags &= ~__CMPXCHG_DOUBLE; 5173 s->flags |= SLAB_TRACE; 5174 } 5175 return length; 5176 } 5177 SLAB_ATTR(trace); 5178 5179 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5180 { 5181 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5182 } 5183 5184 static ssize_t red_zone_store(struct kmem_cache *s, 5185 const char *buf, size_t length) 5186 { 5187 if (any_slab_objects(s)) 5188 return -EBUSY; 5189 5190 s->flags &= ~SLAB_RED_ZONE; 5191 if (buf[0] == '1') { 5192 s->flags |= SLAB_RED_ZONE; 5193 } 5194 calculate_sizes(s, -1); 5195 return length; 5196 } 5197 SLAB_ATTR(red_zone); 5198 5199 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5200 { 5201 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5202 } 5203 5204 static ssize_t poison_store(struct kmem_cache *s, 5205 const char *buf, size_t length) 5206 { 5207 if (any_slab_objects(s)) 5208 return -EBUSY; 5209 5210 s->flags &= ~SLAB_POISON; 5211 if (buf[0] == '1') { 5212 s->flags |= SLAB_POISON; 5213 } 5214 calculate_sizes(s, -1); 5215 return length; 5216 } 5217 SLAB_ATTR(poison); 5218 5219 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5220 { 5221 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5222 } 5223 5224 static ssize_t store_user_store(struct kmem_cache *s, 5225 const char *buf, size_t length) 5226 { 5227 if (any_slab_objects(s)) 5228 return -EBUSY; 5229 5230 s->flags &= ~SLAB_STORE_USER; 5231 if (buf[0] == '1') { 5232 s->flags &= ~__CMPXCHG_DOUBLE; 5233 s->flags |= SLAB_STORE_USER; 5234 } 5235 calculate_sizes(s, -1); 5236 return length; 5237 } 5238 SLAB_ATTR(store_user); 5239 5240 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5241 { 5242 return 0; 5243 } 5244 5245 static ssize_t validate_store(struct kmem_cache *s, 5246 const char *buf, size_t length) 5247 { 5248 int ret = -EINVAL; 5249 5250 if (buf[0] == '1') { 5251 ret = validate_slab_cache(s); 5252 if (ret >= 0) 5253 ret = length; 5254 } 5255 return ret; 5256 } 5257 SLAB_ATTR(validate); 5258 5259 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5260 { 5261 if (!(s->flags & SLAB_STORE_USER)) 5262 return -ENOSYS; 5263 return list_locations(s, buf, TRACK_ALLOC); 5264 } 5265 SLAB_ATTR_RO(alloc_calls); 5266 5267 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5268 { 5269 if (!(s->flags & SLAB_STORE_USER)) 5270 return -ENOSYS; 5271 return list_locations(s, buf, TRACK_FREE); 5272 } 5273 SLAB_ATTR_RO(free_calls); 5274 #endif /* CONFIG_SLUB_DEBUG */ 5275 5276 #ifdef CONFIG_FAILSLAB 5277 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5278 { 5279 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5280 } 5281 5282 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5283 size_t length) 5284 { 5285 if (s->refcount > 1) 5286 return -EINVAL; 5287 5288 s->flags &= ~SLAB_FAILSLAB; 5289 if (buf[0] == '1') 5290 s->flags |= SLAB_FAILSLAB; 5291 return length; 5292 } 5293 SLAB_ATTR(failslab); 5294 #endif 5295 5296 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5297 { 5298 return 0; 5299 } 5300 5301 static ssize_t shrink_store(struct kmem_cache *s, 5302 const char *buf, size_t length) 5303 { 5304 if (buf[0] == '1') 5305 kmem_cache_shrink(s); 5306 else 5307 return -EINVAL; 5308 return length; 5309 } 5310 SLAB_ATTR(shrink); 5311 5312 #ifdef CONFIG_NUMA 5313 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5314 { 5315 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5316 } 5317 5318 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5319 const char *buf, size_t length) 5320 { 5321 unsigned int ratio; 5322 int err; 5323 5324 err = kstrtouint(buf, 10, &ratio); 5325 if (err) 5326 return err; 5327 if (ratio > 100) 5328 return -ERANGE; 5329 5330 s->remote_node_defrag_ratio = ratio * 10; 5331 5332 return length; 5333 } 5334 SLAB_ATTR(remote_node_defrag_ratio); 5335 #endif 5336 5337 #ifdef CONFIG_SLUB_STATS 5338 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5339 { 5340 unsigned long sum = 0; 5341 int cpu; 5342 int len; 5343 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5344 5345 if (!data) 5346 return -ENOMEM; 5347 5348 for_each_online_cpu(cpu) { 5349 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5350 5351 data[cpu] = x; 5352 sum += x; 5353 } 5354 5355 len = sprintf(buf, "%lu", sum); 5356 5357 #ifdef CONFIG_SMP 5358 for_each_online_cpu(cpu) { 5359 if (data[cpu] && len < PAGE_SIZE - 20) 5360 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5361 } 5362 #endif 5363 kfree(data); 5364 return len + sprintf(buf + len, "\n"); 5365 } 5366 5367 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5368 { 5369 int cpu; 5370 5371 for_each_online_cpu(cpu) 5372 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5373 } 5374 5375 #define STAT_ATTR(si, text) \ 5376 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5377 { \ 5378 return show_stat(s, buf, si); \ 5379 } \ 5380 static ssize_t text##_store(struct kmem_cache *s, \ 5381 const char *buf, size_t length) \ 5382 { \ 5383 if (buf[0] != '0') \ 5384 return -EINVAL; \ 5385 clear_stat(s, si); \ 5386 return length; \ 5387 } \ 5388 SLAB_ATTR(text); \ 5389 5390 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5391 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5392 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5393 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5394 STAT_ATTR(FREE_FROZEN, free_frozen); 5395 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5396 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5397 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5398 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5399 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5400 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5401 STAT_ATTR(FREE_SLAB, free_slab); 5402 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5403 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5404 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5405 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5406 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5407 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5408 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5409 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5410 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5411 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5412 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5413 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5414 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5415 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5416 #endif 5417 5418 static struct attribute *slab_attrs[] = { 5419 &slab_size_attr.attr, 5420 &object_size_attr.attr, 5421 &objs_per_slab_attr.attr, 5422 &order_attr.attr, 5423 &min_partial_attr.attr, 5424 &cpu_partial_attr.attr, 5425 &objects_attr.attr, 5426 &objects_partial_attr.attr, 5427 &partial_attr.attr, 5428 &cpu_slabs_attr.attr, 5429 &ctor_attr.attr, 5430 &aliases_attr.attr, 5431 &align_attr.attr, 5432 &hwcache_align_attr.attr, 5433 &reclaim_account_attr.attr, 5434 &destroy_by_rcu_attr.attr, 5435 &shrink_attr.attr, 5436 &slabs_cpu_partial_attr.attr, 5437 #ifdef CONFIG_SLUB_DEBUG 5438 &total_objects_attr.attr, 5439 &slabs_attr.attr, 5440 &sanity_checks_attr.attr, 5441 &trace_attr.attr, 5442 &red_zone_attr.attr, 5443 &poison_attr.attr, 5444 &store_user_attr.attr, 5445 &validate_attr.attr, 5446 &alloc_calls_attr.attr, 5447 &free_calls_attr.attr, 5448 #endif 5449 #ifdef CONFIG_ZONE_DMA 5450 &cache_dma_attr.attr, 5451 #endif 5452 #ifdef CONFIG_NUMA 5453 &remote_node_defrag_ratio_attr.attr, 5454 #endif 5455 #ifdef CONFIG_SLUB_STATS 5456 &alloc_fastpath_attr.attr, 5457 &alloc_slowpath_attr.attr, 5458 &free_fastpath_attr.attr, 5459 &free_slowpath_attr.attr, 5460 &free_frozen_attr.attr, 5461 &free_add_partial_attr.attr, 5462 &free_remove_partial_attr.attr, 5463 &alloc_from_partial_attr.attr, 5464 &alloc_slab_attr.attr, 5465 &alloc_refill_attr.attr, 5466 &alloc_node_mismatch_attr.attr, 5467 &free_slab_attr.attr, 5468 &cpuslab_flush_attr.attr, 5469 &deactivate_full_attr.attr, 5470 &deactivate_empty_attr.attr, 5471 &deactivate_to_head_attr.attr, 5472 &deactivate_to_tail_attr.attr, 5473 &deactivate_remote_frees_attr.attr, 5474 &deactivate_bypass_attr.attr, 5475 &order_fallback_attr.attr, 5476 &cmpxchg_double_fail_attr.attr, 5477 &cmpxchg_double_cpu_fail_attr.attr, 5478 &cpu_partial_alloc_attr.attr, 5479 &cpu_partial_free_attr.attr, 5480 &cpu_partial_node_attr.attr, 5481 &cpu_partial_drain_attr.attr, 5482 #endif 5483 #ifdef CONFIG_FAILSLAB 5484 &failslab_attr.attr, 5485 #endif 5486 &usersize_attr.attr, 5487 5488 NULL 5489 }; 5490 5491 static const struct attribute_group slab_attr_group = { 5492 .attrs = slab_attrs, 5493 }; 5494 5495 static ssize_t slab_attr_show(struct kobject *kobj, 5496 struct attribute *attr, 5497 char *buf) 5498 { 5499 struct slab_attribute *attribute; 5500 struct kmem_cache *s; 5501 int err; 5502 5503 attribute = to_slab_attr(attr); 5504 s = to_slab(kobj); 5505 5506 if (!attribute->show) 5507 return -EIO; 5508 5509 err = attribute->show(s, buf); 5510 5511 return err; 5512 } 5513 5514 static ssize_t slab_attr_store(struct kobject *kobj, 5515 struct attribute *attr, 5516 const char *buf, size_t len) 5517 { 5518 struct slab_attribute *attribute; 5519 struct kmem_cache *s; 5520 int err; 5521 5522 attribute = to_slab_attr(attr); 5523 s = to_slab(kobj); 5524 5525 if (!attribute->store) 5526 return -EIO; 5527 5528 err = attribute->store(s, buf, len); 5529 #ifdef CONFIG_MEMCG 5530 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5531 struct kmem_cache *c; 5532 5533 mutex_lock(&slab_mutex); 5534 if (s->max_attr_size < len) 5535 s->max_attr_size = len; 5536 5537 /* 5538 * This is a best effort propagation, so this function's return 5539 * value will be determined by the parent cache only. This is 5540 * basically because not all attributes will have a well 5541 * defined semantics for rollbacks - most of the actions will 5542 * have permanent effects. 5543 * 5544 * Returning the error value of any of the children that fail 5545 * is not 100 % defined, in the sense that users seeing the 5546 * error code won't be able to know anything about the state of 5547 * the cache. 5548 * 5549 * Only returning the error code for the parent cache at least 5550 * has well defined semantics. The cache being written to 5551 * directly either failed or succeeded, in which case we loop 5552 * through the descendants with best-effort propagation. 5553 */ 5554 for_each_memcg_cache(c, s) 5555 attribute->store(c, buf, len); 5556 mutex_unlock(&slab_mutex); 5557 } 5558 #endif 5559 return err; 5560 } 5561 5562 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5563 { 5564 #ifdef CONFIG_MEMCG 5565 int i; 5566 char *buffer = NULL; 5567 struct kmem_cache *root_cache; 5568 5569 if (is_root_cache(s)) 5570 return; 5571 5572 root_cache = s->memcg_params.root_cache; 5573 5574 /* 5575 * This mean this cache had no attribute written. Therefore, no point 5576 * in copying default values around 5577 */ 5578 if (!root_cache->max_attr_size) 5579 return; 5580 5581 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5582 char mbuf[64]; 5583 char *buf; 5584 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5585 ssize_t len; 5586 5587 if (!attr || !attr->store || !attr->show) 5588 continue; 5589 5590 /* 5591 * It is really bad that we have to allocate here, so we will 5592 * do it only as a fallback. If we actually allocate, though, 5593 * we can just use the allocated buffer until the end. 5594 * 5595 * Most of the slub attributes will tend to be very small in 5596 * size, but sysfs allows buffers up to a page, so they can 5597 * theoretically happen. 5598 */ 5599 if (buffer) 5600 buf = buffer; 5601 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5602 buf = mbuf; 5603 else { 5604 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5605 if (WARN_ON(!buffer)) 5606 continue; 5607 buf = buffer; 5608 } 5609 5610 len = attr->show(root_cache, buf); 5611 if (len > 0) 5612 attr->store(s, buf, len); 5613 } 5614 5615 if (buffer) 5616 free_page((unsigned long)buffer); 5617 #endif 5618 } 5619 5620 static void kmem_cache_release(struct kobject *k) 5621 { 5622 slab_kmem_cache_release(to_slab(k)); 5623 } 5624 5625 static const struct sysfs_ops slab_sysfs_ops = { 5626 .show = slab_attr_show, 5627 .store = slab_attr_store, 5628 }; 5629 5630 static struct kobj_type slab_ktype = { 5631 .sysfs_ops = &slab_sysfs_ops, 5632 .release = kmem_cache_release, 5633 }; 5634 5635 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5636 { 5637 struct kobj_type *ktype = get_ktype(kobj); 5638 5639 if (ktype == &slab_ktype) 5640 return 1; 5641 return 0; 5642 } 5643 5644 static const struct kset_uevent_ops slab_uevent_ops = { 5645 .filter = uevent_filter, 5646 }; 5647 5648 static struct kset *slab_kset; 5649 5650 static inline struct kset *cache_kset(struct kmem_cache *s) 5651 { 5652 #ifdef CONFIG_MEMCG 5653 if (!is_root_cache(s)) 5654 return s->memcg_params.root_cache->memcg_kset; 5655 #endif 5656 return slab_kset; 5657 } 5658 5659 #define ID_STR_LENGTH 64 5660 5661 /* Create a unique string id for a slab cache: 5662 * 5663 * Format :[flags-]size 5664 */ 5665 static char *create_unique_id(struct kmem_cache *s) 5666 { 5667 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5668 char *p = name; 5669 5670 BUG_ON(!name); 5671 5672 *p++ = ':'; 5673 /* 5674 * First flags affecting slabcache operations. We will only 5675 * get here for aliasable slabs so we do not need to support 5676 * too many flags. The flags here must cover all flags that 5677 * are matched during merging to guarantee that the id is 5678 * unique. 5679 */ 5680 if (s->flags & SLAB_CACHE_DMA) 5681 *p++ = 'd'; 5682 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5683 *p++ = 'a'; 5684 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5685 *p++ = 'F'; 5686 if (s->flags & SLAB_ACCOUNT) 5687 *p++ = 'A'; 5688 if (p != name + 1) 5689 *p++ = '-'; 5690 p += sprintf(p, "%07u", s->size); 5691 5692 BUG_ON(p > name + ID_STR_LENGTH - 1); 5693 return name; 5694 } 5695 5696 static void sysfs_slab_remove_workfn(struct work_struct *work) 5697 { 5698 struct kmem_cache *s = 5699 container_of(work, struct kmem_cache, kobj_remove_work); 5700 5701 if (!s->kobj.state_in_sysfs) 5702 /* 5703 * For a memcg cache, this may be called during 5704 * deactivation and again on shutdown. Remove only once. 5705 * A cache is never shut down before deactivation is 5706 * complete, so no need to worry about synchronization. 5707 */ 5708 goto out; 5709 5710 #ifdef CONFIG_MEMCG 5711 kset_unregister(s->memcg_kset); 5712 #endif 5713 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5714 out: 5715 kobject_put(&s->kobj); 5716 } 5717 5718 static int sysfs_slab_add(struct kmem_cache *s) 5719 { 5720 int err; 5721 const char *name; 5722 struct kset *kset = cache_kset(s); 5723 int unmergeable = slab_unmergeable(s); 5724 5725 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5726 5727 if (!kset) { 5728 kobject_init(&s->kobj, &slab_ktype); 5729 return 0; 5730 } 5731 5732 if (!unmergeable && disable_higher_order_debug && 5733 (slub_debug & DEBUG_METADATA_FLAGS)) 5734 unmergeable = 1; 5735 5736 if (unmergeable) { 5737 /* 5738 * Slabcache can never be merged so we can use the name proper. 5739 * This is typically the case for debug situations. In that 5740 * case we can catch duplicate names easily. 5741 */ 5742 sysfs_remove_link(&slab_kset->kobj, s->name); 5743 name = s->name; 5744 } else { 5745 /* 5746 * Create a unique name for the slab as a target 5747 * for the symlinks. 5748 */ 5749 name = create_unique_id(s); 5750 } 5751 5752 s->kobj.kset = kset; 5753 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5754 if (err) 5755 goto out; 5756 5757 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5758 if (err) 5759 goto out_del_kobj; 5760 5761 #ifdef CONFIG_MEMCG 5762 if (is_root_cache(s) && memcg_sysfs_enabled) { 5763 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5764 if (!s->memcg_kset) { 5765 err = -ENOMEM; 5766 goto out_del_kobj; 5767 } 5768 } 5769 #endif 5770 5771 kobject_uevent(&s->kobj, KOBJ_ADD); 5772 if (!unmergeable) { 5773 /* Setup first alias */ 5774 sysfs_slab_alias(s, s->name); 5775 } 5776 out: 5777 if (!unmergeable) 5778 kfree(name); 5779 return err; 5780 out_del_kobj: 5781 kobject_del(&s->kobj); 5782 goto out; 5783 } 5784 5785 static void sysfs_slab_remove(struct kmem_cache *s) 5786 { 5787 if (slab_state < FULL) 5788 /* 5789 * Sysfs has not been setup yet so no need to remove the 5790 * cache from sysfs. 5791 */ 5792 return; 5793 5794 kobject_get(&s->kobj); 5795 schedule_work(&s->kobj_remove_work); 5796 } 5797 5798 void sysfs_slab_unlink(struct kmem_cache *s) 5799 { 5800 if (slab_state >= FULL) 5801 kobject_del(&s->kobj); 5802 } 5803 5804 void sysfs_slab_release(struct kmem_cache *s) 5805 { 5806 if (slab_state >= FULL) 5807 kobject_put(&s->kobj); 5808 } 5809 5810 /* 5811 * Need to buffer aliases during bootup until sysfs becomes 5812 * available lest we lose that information. 5813 */ 5814 struct saved_alias { 5815 struct kmem_cache *s; 5816 const char *name; 5817 struct saved_alias *next; 5818 }; 5819 5820 static struct saved_alias *alias_list; 5821 5822 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5823 { 5824 struct saved_alias *al; 5825 5826 if (slab_state == FULL) { 5827 /* 5828 * If we have a leftover link then remove it. 5829 */ 5830 sysfs_remove_link(&slab_kset->kobj, name); 5831 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5832 } 5833 5834 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5835 if (!al) 5836 return -ENOMEM; 5837 5838 al->s = s; 5839 al->name = name; 5840 al->next = alias_list; 5841 alias_list = al; 5842 return 0; 5843 } 5844 5845 static int __init slab_sysfs_init(void) 5846 { 5847 struct kmem_cache *s; 5848 int err; 5849 5850 mutex_lock(&slab_mutex); 5851 5852 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5853 if (!slab_kset) { 5854 mutex_unlock(&slab_mutex); 5855 pr_err("Cannot register slab subsystem.\n"); 5856 return -ENOSYS; 5857 } 5858 5859 slab_state = FULL; 5860 5861 list_for_each_entry(s, &slab_caches, list) { 5862 err = sysfs_slab_add(s); 5863 if (err) 5864 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5865 s->name); 5866 } 5867 5868 while (alias_list) { 5869 struct saved_alias *al = alias_list; 5870 5871 alias_list = alias_list->next; 5872 err = sysfs_slab_alias(al->s, al->name); 5873 if (err) 5874 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5875 al->name); 5876 kfree(al); 5877 } 5878 5879 mutex_unlock(&slab_mutex); 5880 resiliency_test(); 5881 return 0; 5882 } 5883 5884 __initcall(slab_sysfs_init); 5885 #endif /* CONFIG_SYSFS */ 5886 5887 /* 5888 * The /proc/slabinfo ABI 5889 */ 5890 #ifdef CONFIG_SLUB_DEBUG 5891 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5892 { 5893 unsigned long nr_slabs = 0; 5894 unsigned long nr_objs = 0; 5895 unsigned long nr_free = 0; 5896 int node; 5897 struct kmem_cache_node *n; 5898 5899 for_each_kmem_cache_node(s, node, n) { 5900 nr_slabs += node_nr_slabs(n); 5901 nr_objs += node_nr_objs(n); 5902 nr_free += count_partial(n, count_free); 5903 } 5904 5905 sinfo->active_objs = nr_objs - nr_free; 5906 sinfo->num_objs = nr_objs; 5907 sinfo->active_slabs = nr_slabs; 5908 sinfo->num_slabs = nr_slabs; 5909 sinfo->objects_per_slab = oo_objects(s->oo); 5910 sinfo->cache_order = oo_order(s->oo); 5911 } 5912 5913 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5914 { 5915 } 5916 5917 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5918 size_t count, loff_t *ppos) 5919 { 5920 return -EIO; 5921 } 5922 #endif /* CONFIG_SLUB_DEBUG */ 5923