xref: /openbmc/linux/mm/slub.c (revision cd4d09ec)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects the second
55  *   double word in the page struct. Meaning
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->counters	-> Counters of objects
58  *	C. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 	return !kmem_cache_debug(s);
131 #else
132 	return false;
133 #endif
134 }
135 
136 /*
137  * Issues still to be resolved:
138  *
139  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140  *
141  * - Variable sizing of the per node arrays
142  */
143 
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146 
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149 
150 /*
151  * Mininum number of partial slabs. These will be left on the partial
152  * lists even if they are empty. kmem_cache_shrink may reclaim them.
153  */
154 #define MIN_PARTIAL 5
155 
156 /*
157  * Maximum number of desirable partial slabs.
158  * The existence of more partial slabs makes kmem_cache_shrink
159  * sort the partial list by the number of objects in use.
160  */
161 #define MAX_PARTIAL 10
162 
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 				SLAB_POISON | SLAB_STORE_USER)
165 
166 /*
167  * Debugging flags that require metadata to be stored in the slab.  These get
168  * disabled when slub_debug=O is used and a cache's min order increases with
169  * metadata.
170  */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172 
173 #define OO_SHIFT	16
174 #define OO_MASK		((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176 
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON		0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
180 
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184 
185 /*
186  * Tracking user of a slab.
187  */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 	unsigned long addr;	/* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
193 #endif
194 	int cpu;		/* Was running on cpu */
195 	int pid;		/* Pid context */
196 	unsigned long when;	/* When did the operation occur */
197 };
198 
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200 
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 							{ return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211 
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 	/*
216 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 	 * avoid this_cpu_add()'s irq-disable overhead.
218 	 */
219 	raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222 
223 /********************************************************************
224  * 			Core slab cache functions
225  *******************************************************************/
226 
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 				struct page *page, const void *object)
230 {
231 	void *base;
232 
233 	if (!object)
234 		return 1;
235 
236 	base = page_address(page);
237 	if (object < base || object >= base + page->objects * s->size ||
238 		(object - base) % s->size) {
239 		return 0;
240 	}
241 
242 	return 1;
243 }
244 
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 	return *(void **)(object + s->offset);
248 }
249 
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 	prefetch(object + s->offset);
253 }
254 
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 	void *p;
258 
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 	p = get_freepointer(s, object);
263 #endif
264 	return p;
265 }
266 
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 	*(void **)(object + s->offset) = fp;
270 }
271 
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 			__p += (__s)->size)
276 
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 	for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 			__p += (__s)->size, __idx++)
280 
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 	return (p - addr) / s->size;
285 }
286 
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 	/*
291 	 * Debugging requires use of the padding between object
292 	 * and whatever may come after it.
293 	 */
294 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 		return s->object_size;
296 
297 #endif
298 	/*
299 	 * If we have the need to store the freelist pointer
300 	 * back there or track user information then we can
301 	 * only use the space before that information.
302 	 */
303 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 		return s->inuse;
305 	/*
306 	 * Else we can use all the padding etc for the allocation
307 	 */
308 	return s->size;
309 }
310 
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 	return ((PAGE_SIZE << order) - reserved) / size;
314 }
315 
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 		unsigned long size, int reserved)
318 {
319 	struct kmem_cache_order_objects x = {
320 		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 	};
322 
323 	return x;
324 }
325 
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 	return x.x >> OO_SHIFT;
329 }
330 
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 	return x.x & OO_MASK;
334 }
335 
336 /*
337  * Per slab locking using the pagelock
338  */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 	VM_BUG_ON_PAGE(PageTail(page), page);
342 	bit_spin_lock(PG_locked, &page->flags);
343 }
344 
345 static __always_inline void slab_unlock(struct page *page)
346 {
347 	VM_BUG_ON_PAGE(PageTail(page), page);
348 	__bit_spin_unlock(PG_locked, &page->flags);
349 }
350 
351 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
352 {
353 	struct page tmp;
354 	tmp.counters = counters_new;
355 	/*
356 	 * page->counters can cover frozen/inuse/objects as well
357 	 * as page->_count.  If we assign to ->counters directly
358 	 * we run the risk of losing updates to page->_count, so
359 	 * be careful and only assign to the fields we need.
360 	 */
361 	page->frozen  = tmp.frozen;
362 	page->inuse   = tmp.inuse;
363 	page->objects = tmp.objects;
364 }
365 
366 /* Interrupts must be disabled (for the fallback code to work right) */
367 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
368 		void *freelist_old, unsigned long counters_old,
369 		void *freelist_new, unsigned long counters_new,
370 		const char *n)
371 {
372 	VM_BUG_ON(!irqs_disabled());
373 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
374     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
375 	if (s->flags & __CMPXCHG_DOUBLE) {
376 		if (cmpxchg_double(&page->freelist, &page->counters,
377 				   freelist_old, counters_old,
378 				   freelist_new, counters_new))
379 			return true;
380 	} else
381 #endif
382 	{
383 		slab_lock(page);
384 		if (page->freelist == freelist_old &&
385 					page->counters == counters_old) {
386 			page->freelist = freelist_new;
387 			set_page_slub_counters(page, counters_new);
388 			slab_unlock(page);
389 			return true;
390 		}
391 		slab_unlock(page);
392 	}
393 
394 	cpu_relax();
395 	stat(s, CMPXCHG_DOUBLE_FAIL);
396 
397 #ifdef SLUB_DEBUG_CMPXCHG
398 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
399 #endif
400 
401 	return false;
402 }
403 
404 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
405 		void *freelist_old, unsigned long counters_old,
406 		void *freelist_new, unsigned long counters_new,
407 		const char *n)
408 {
409 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
410     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
411 	if (s->flags & __CMPXCHG_DOUBLE) {
412 		if (cmpxchg_double(&page->freelist, &page->counters,
413 				   freelist_old, counters_old,
414 				   freelist_new, counters_new))
415 			return true;
416 	} else
417 #endif
418 	{
419 		unsigned long flags;
420 
421 		local_irq_save(flags);
422 		slab_lock(page);
423 		if (page->freelist == freelist_old &&
424 					page->counters == counters_old) {
425 			page->freelist = freelist_new;
426 			set_page_slub_counters(page, counters_new);
427 			slab_unlock(page);
428 			local_irq_restore(flags);
429 			return true;
430 		}
431 		slab_unlock(page);
432 		local_irq_restore(flags);
433 	}
434 
435 	cpu_relax();
436 	stat(s, CMPXCHG_DOUBLE_FAIL);
437 
438 #ifdef SLUB_DEBUG_CMPXCHG
439 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
440 #endif
441 
442 	return false;
443 }
444 
445 #ifdef CONFIG_SLUB_DEBUG
446 /*
447  * Determine a map of object in use on a page.
448  *
449  * Node listlock must be held to guarantee that the page does
450  * not vanish from under us.
451  */
452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453 {
454 	void *p;
455 	void *addr = page_address(page);
456 
457 	for (p = page->freelist; p; p = get_freepointer(s, p))
458 		set_bit(slab_index(p, s, addr), map);
459 }
460 
461 /*
462  * Debug settings:
463  */
464 #if defined(CONFIG_SLUB_DEBUG_ON)
465 static int slub_debug = DEBUG_DEFAULT_FLAGS;
466 #elif defined(CONFIG_KASAN)
467 static int slub_debug = SLAB_STORE_USER;
468 #else
469 static int slub_debug;
470 #endif
471 
472 static char *slub_debug_slabs;
473 static int disable_higher_order_debug;
474 
475 /*
476  * slub is about to manipulate internal object metadata.  This memory lies
477  * outside the range of the allocated object, so accessing it would normally
478  * be reported by kasan as a bounds error.  metadata_access_enable() is used
479  * to tell kasan that these accesses are OK.
480  */
481 static inline void metadata_access_enable(void)
482 {
483 	kasan_disable_current();
484 }
485 
486 static inline void metadata_access_disable(void)
487 {
488 	kasan_enable_current();
489 }
490 
491 /*
492  * Object debugging
493  */
494 static void print_section(char *text, u8 *addr, unsigned int length)
495 {
496 	metadata_access_enable();
497 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
498 			length, 1);
499 	metadata_access_disable();
500 }
501 
502 static struct track *get_track(struct kmem_cache *s, void *object,
503 	enum track_item alloc)
504 {
505 	struct track *p;
506 
507 	if (s->offset)
508 		p = object + s->offset + sizeof(void *);
509 	else
510 		p = object + s->inuse;
511 
512 	return p + alloc;
513 }
514 
515 static void set_track(struct kmem_cache *s, void *object,
516 			enum track_item alloc, unsigned long addr)
517 {
518 	struct track *p = get_track(s, object, alloc);
519 
520 	if (addr) {
521 #ifdef CONFIG_STACKTRACE
522 		struct stack_trace trace;
523 		int i;
524 
525 		trace.nr_entries = 0;
526 		trace.max_entries = TRACK_ADDRS_COUNT;
527 		trace.entries = p->addrs;
528 		trace.skip = 3;
529 		metadata_access_enable();
530 		save_stack_trace(&trace);
531 		metadata_access_disable();
532 
533 		/* See rant in lockdep.c */
534 		if (trace.nr_entries != 0 &&
535 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
536 			trace.nr_entries--;
537 
538 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
539 			p->addrs[i] = 0;
540 #endif
541 		p->addr = addr;
542 		p->cpu = smp_processor_id();
543 		p->pid = current->pid;
544 		p->when = jiffies;
545 	} else
546 		memset(p, 0, sizeof(struct track));
547 }
548 
549 static void init_tracking(struct kmem_cache *s, void *object)
550 {
551 	if (!(s->flags & SLAB_STORE_USER))
552 		return;
553 
554 	set_track(s, object, TRACK_FREE, 0UL);
555 	set_track(s, object, TRACK_ALLOC, 0UL);
556 }
557 
558 static void print_track(const char *s, struct track *t)
559 {
560 	if (!t->addr)
561 		return;
562 
563 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
564 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
565 #ifdef CONFIG_STACKTRACE
566 	{
567 		int i;
568 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
569 			if (t->addrs[i])
570 				pr_err("\t%pS\n", (void *)t->addrs[i]);
571 			else
572 				break;
573 	}
574 #endif
575 }
576 
577 static void print_tracking(struct kmem_cache *s, void *object)
578 {
579 	if (!(s->flags & SLAB_STORE_USER))
580 		return;
581 
582 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
583 	print_track("Freed", get_track(s, object, TRACK_FREE));
584 }
585 
586 static void print_page_info(struct page *page)
587 {
588 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
589 	       page, page->objects, page->inuse, page->freelist, page->flags);
590 
591 }
592 
593 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 	pr_err("=============================================================================\n");
602 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
603 	pr_err("-----------------------------------------------------------------------------\n\n");
604 
605 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
606 	va_end(args);
607 }
608 
609 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
610 {
611 	struct va_format vaf;
612 	va_list args;
613 
614 	va_start(args, fmt);
615 	vaf.fmt = fmt;
616 	vaf.va = &args;
617 	pr_err("FIX %s: %pV\n", s->name, &vaf);
618 	va_end(args);
619 }
620 
621 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
622 {
623 	unsigned int off;	/* Offset of last byte */
624 	u8 *addr = page_address(page);
625 
626 	print_tracking(s, p);
627 
628 	print_page_info(page);
629 
630 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
631 	       p, p - addr, get_freepointer(s, p));
632 
633 	if (p > addr + 16)
634 		print_section("Bytes b4 ", p - 16, 16);
635 
636 	print_section("Object ", p, min_t(unsigned long, s->object_size,
637 				PAGE_SIZE));
638 	if (s->flags & SLAB_RED_ZONE)
639 		print_section("Redzone ", p + s->object_size,
640 			s->inuse - s->object_size);
641 
642 	if (s->offset)
643 		off = s->offset + sizeof(void *);
644 	else
645 		off = s->inuse;
646 
647 	if (s->flags & SLAB_STORE_USER)
648 		off += 2 * sizeof(struct track);
649 
650 	if (off != s->size)
651 		/* Beginning of the filler is the free pointer */
652 		print_section("Padding ", p + off, s->size - off);
653 
654 	dump_stack();
655 }
656 
657 void object_err(struct kmem_cache *s, struct page *page,
658 			u8 *object, char *reason)
659 {
660 	slab_bug(s, "%s", reason);
661 	print_trailer(s, page, object);
662 }
663 
664 static void slab_err(struct kmem_cache *s, struct page *page,
665 			const char *fmt, ...)
666 {
667 	va_list args;
668 	char buf[100];
669 
670 	va_start(args, fmt);
671 	vsnprintf(buf, sizeof(buf), fmt, args);
672 	va_end(args);
673 	slab_bug(s, "%s", buf);
674 	print_page_info(page);
675 	dump_stack();
676 }
677 
678 static void init_object(struct kmem_cache *s, void *object, u8 val)
679 {
680 	u8 *p = object;
681 
682 	if (s->flags & __OBJECT_POISON) {
683 		memset(p, POISON_FREE, s->object_size - 1);
684 		p[s->object_size - 1] = POISON_END;
685 	}
686 
687 	if (s->flags & SLAB_RED_ZONE)
688 		memset(p + s->object_size, val, s->inuse - s->object_size);
689 }
690 
691 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
692 						void *from, void *to)
693 {
694 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
695 	memset(from, data, to - from);
696 }
697 
698 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
699 			u8 *object, char *what,
700 			u8 *start, unsigned int value, unsigned int bytes)
701 {
702 	u8 *fault;
703 	u8 *end;
704 
705 	metadata_access_enable();
706 	fault = memchr_inv(start, value, bytes);
707 	metadata_access_disable();
708 	if (!fault)
709 		return 1;
710 
711 	end = start + bytes;
712 	while (end > fault && end[-1] == value)
713 		end--;
714 
715 	slab_bug(s, "%s overwritten", what);
716 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
717 					fault, end - 1, fault[0], value);
718 	print_trailer(s, page, object);
719 
720 	restore_bytes(s, what, value, fault, end);
721 	return 0;
722 }
723 
724 /*
725  * Object layout:
726  *
727  * object address
728  * 	Bytes of the object to be managed.
729  * 	If the freepointer may overlay the object then the free
730  * 	pointer is the first word of the object.
731  *
732  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
733  * 	0xa5 (POISON_END)
734  *
735  * object + s->object_size
736  * 	Padding to reach word boundary. This is also used for Redzoning.
737  * 	Padding is extended by another word if Redzoning is enabled and
738  * 	object_size == inuse.
739  *
740  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
741  * 	0xcc (RED_ACTIVE) for objects in use.
742  *
743  * object + s->inuse
744  * 	Meta data starts here.
745  *
746  * 	A. Free pointer (if we cannot overwrite object on free)
747  * 	B. Tracking data for SLAB_STORE_USER
748  * 	C. Padding to reach required alignment boundary or at mininum
749  * 		one word if debugging is on to be able to detect writes
750  * 		before the word boundary.
751  *
752  *	Padding is done using 0x5a (POISON_INUSE)
753  *
754  * object + s->size
755  * 	Nothing is used beyond s->size.
756  *
757  * If slabcaches are merged then the object_size and inuse boundaries are mostly
758  * ignored. And therefore no slab options that rely on these boundaries
759  * may be used with merged slabcaches.
760  */
761 
762 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
763 {
764 	unsigned long off = s->inuse;	/* The end of info */
765 
766 	if (s->offset)
767 		/* Freepointer is placed after the object. */
768 		off += sizeof(void *);
769 
770 	if (s->flags & SLAB_STORE_USER)
771 		/* We also have user information there */
772 		off += 2 * sizeof(struct track);
773 
774 	if (s->size == off)
775 		return 1;
776 
777 	return check_bytes_and_report(s, page, p, "Object padding",
778 				p + off, POISON_INUSE, s->size - off);
779 }
780 
781 /* Check the pad bytes at the end of a slab page */
782 static int slab_pad_check(struct kmem_cache *s, struct page *page)
783 {
784 	u8 *start;
785 	u8 *fault;
786 	u8 *end;
787 	int length;
788 	int remainder;
789 
790 	if (!(s->flags & SLAB_POISON))
791 		return 1;
792 
793 	start = page_address(page);
794 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
795 	end = start + length;
796 	remainder = length % s->size;
797 	if (!remainder)
798 		return 1;
799 
800 	metadata_access_enable();
801 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
802 	metadata_access_disable();
803 	if (!fault)
804 		return 1;
805 	while (end > fault && end[-1] == POISON_INUSE)
806 		end--;
807 
808 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
809 	print_section("Padding ", end - remainder, remainder);
810 
811 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
812 	return 0;
813 }
814 
815 static int check_object(struct kmem_cache *s, struct page *page,
816 					void *object, u8 val)
817 {
818 	u8 *p = object;
819 	u8 *endobject = object + s->object_size;
820 
821 	if (s->flags & SLAB_RED_ZONE) {
822 		if (!check_bytes_and_report(s, page, object, "Redzone",
823 			endobject, val, s->inuse - s->object_size))
824 			return 0;
825 	} else {
826 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
827 			check_bytes_and_report(s, page, p, "Alignment padding",
828 				endobject, POISON_INUSE,
829 				s->inuse - s->object_size);
830 		}
831 	}
832 
833 	if (s->flags & SLAB_POISON) {
834 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
835 			(!check_bytes_and_report(s, page, p, "Poison", p,
836 					POISON_FREE, s->object_size - 1) ||
837 			 !check_bytes_and_report(s, page, p, "Poison",
838 				p + s->object_size - 1, POISON_END, 1)))
839 			return 0;
840 		/*
841 		 * check_pad_bytes cleans up on its own.
842 		 */
843 		check_pad_bytes(s, page, p);
844 	}
845 
846 	if (!s->offset && val == SLUB_RED_ACTIVE)
847 		/*
848 		 * Object and freepointer overlap. Cannot check
849 		 * freepointer while object is allocated.
850 		 */
851 		return 1;
852 
853 	/* Check free pointer validity */
854 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
855 		object_err(s, page, p, "Freepointer corrupt");
856 		/*
857 		 * No choice but to zap it and thus lose the remainder
858 		 * of the free objects in this slab. May cause
859 		 * another error because the object count is now wrong.
860 		 */
861 		set_freepointer(s, p, NULL);
862 		return 0;
863 	}
864 	return 1;
865 }
866 
867 static int check_slab(struct kmem_cache *s, struct page *page)
868 {
869 	int maxobj;
870 
871 	VM_BUG_ON(!irqs_disabled());
872 
873 	if (!PageSlab(page)) {
874 		slab_err(s, page, "Not a valid slab page");
875 		return 0;
876 	}
877 
878 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
879 	if (page->objects > maxobj) {
880 		slab_err(s, page, "objects %u > max %u",
881 			page->objects, maxobj);
882 		return 0;
883 	}
884 	if (page->inuse > page->objects) {
885 		slab_err(s, page, "inuse %u > max %u",
886 			page->inuse, page->objects);
887 		return 0;
888 	}
889 	/* Slab_pad_check fixes things up after itself */
890 	slab_pad_check(s, page);
891 	return 1;
892 }
893 
894 /*
895  * Determine if a certain object on a page is on the freelist. Must hold the
896  * slab lock to guarantee that the chains are in a consistent state.
897  */
898 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
899 {
900 	int nr = 0;
901 	void *fp;
902 	void *object = NULL;
903 	int max_objects;
904 
905 	fp = page->freelist;
906 	while (fp && nr <= page->objects) {
907 		if (fp == search)
908 			return 1;
909 		if (!check_valid_pointer(s, page, fp)) {
910 			if (object) {
911 				object_err(s, page, object,
912 					"Freechain corrupt");
913 				set_freepointer(s, object, NULL);
914 			} else {
915 				slab_err(s, page, "Freepointer corrupt");
916 				page->freelist = NULL;
917 				page->inuse = page->objects;
918 				slab_fix(s, "Freelist cleared");
919 				return 0;
920 			}
921 			break;
922 		}
923 		object = fp;
924 		fp = get_freepointer(s, object);
925 		nr++;
926 	}
927 
928 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
929 	if (max_objects > MAX_OBJS_PER_PAGE)
930 		max_objects = MAX_OBJS_PER_PAGE;
931 
932 	if (page->objects != max_objects) {
933 		slab_err(s, page, "Wrong number of objects. Found %d but "
934 			"should be %d", page->objects, max_objects);
935 		page->objects = max_objects;
936 		slab_fix(s, "Number of objects adjusted.");
937 	}
938 	if (page->inuse != page->objects - nr) {
939 		slab_err(s, page, "Wrong object count. Counter is %d but "
940 			"counted were %d", page->inuse, page->objects - nr);
941 		page->inuse = page->objects - nr;
942 		slab_fix(s, "Object count adjusted.");
943 	}
944 	return search == NULL;
945 }
946 
947 static void trace(struct kmem_cache *s, struct page *page, void *object,
948 								int alloc)
949 {
950 	if (s->flags & SLAB_TRACE) {
951 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
952 			s->name,
953 			alloc ? "alloc" : "free",
954 			object, page->inuse,
955 			page->freelist);
956 
957 		if (!alloc)
958 			print_section("Object ", (void *)object,
959 					s->object_size);
960 
961 		dump_stack();
962 	}
963 }
964 
965 /*
966  * Tracking of fully allocated slabs for debugging purposes.
967  */
968 static void add_full(struct kmem_cache *s,
969 	struct kmem_cache_node *n, struct page *page)
970 {
971 	if (!(s->flags & SLAB_STORE_USER))
972 		return;
973 
974 	lockdep_assert_held(&n->list_lock);
975 	list_add(&page->lru, &n->full);
976 }
977 
978 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
979 {
980 	if (!(s->flags & SLAB_STORE_USER))
981 		return;
982 
983 	lockdep_assert_held(&n->list_lock);
984 	list_del(&page->lru);
985 }
986 
987 /* Tracking of the number of slabs for debugging purposes */
988 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
989 {
990 	struct kmem_cache_node *n = get_node(s, node);
991 
992 	return atomic_long_read(&n->nr_slabs);
993 }
994 
995 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
996 {
997 	return atomic_long_read(&n->nr_slabs);
998 }
999 
1000 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1001 {
1002 	struct kmem_cache_node *n = get_node(s, node);
1003 
1004 	/*
1005 	 * May be called early in order to allocate a slab for the
1006 	 * kmem_cache_node structure. Solve the chicken-egg
1007 	 * dilemma by deferring the increment of the count during
1008 	 * bootstrap (see early_kmem_cache_node_alloc).
1009 	 */
1010 	if (likely(n)) {
1011 		atomic_long_inc(&n->nr_slabs);
1012 		atomic_long_add(objects, &n->total_objects);
1013 	}
1014 }
1015 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1016 {
1017 	struct kmem_cache_node *n = get_node(s, node);
1018 
1019 	atomic_long_dec(&n->nr_slabs);
1020 	atomic_long_sub(objects, &n->total_objects);
1021 }
1022 
1023 /* Object debug checks for alloc/free paths */
1024 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1025 								void *object)
1026 {
1027 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1028 		return;
1029 
1030 	init_object(s, object, SLUB_RED_INACTIVE);
1031 	init_tracking(s, object);
1032 }
1033 
1034 static noinline int alloc_debug_processing(struct kmem_cache *s,
1035 					struct page *page,
1036 					void *object, unsigned long addr)
1037 {
1038 	if (!check_slab(s, page))
1039 		goto bad;
1040 
1041 	if (!check_valid_pointer(s, page, object)) {
1042 		object_err(s, page, object, "Freelist Pointer check fails");
1043 		goto bad;
1044 	}
1045 
1046 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1047 		goto bad;
1048 
1049 	/* Success perform special debug activities for allocs */
1050 	if (s->flags & SLAB_STORE_USER)
1051 		set_track(s, object, TRACK_ALLOC, addr);
1052 	trace(s, page, object, 1);
1053 	init_object(s, object, SLUB_RED_ACTIVE);
1054 	return 1;
1055 
1056 bad:
1057 	if (PageSlab(page)) {
1058 		/*
1059 		 * If this is a slab page then lets do the best we can
1060 		 * to avoid issues in the future. Marking all objects
1061 		 * as used avoids touching the remaining objects.
1062 		 */
1063 		slab_fix(s, "Marking all objects used");
1064 		page->inuse = page->objects;
1065 		page->freelist = NULL;
1066 	}
1067 	return 0;
1068 }
1069 
1070 /* Supports checking bulk free of a constructed freelist */
1071 static noinline struct kmem_cache_node *free_debug_processing(
1072 	struct kmem_cache *s, struct page *page,
1073 	void *head, void *tail, int bulk_cnt,
1074 	unsigned long addr, unsigned long *flags)
1075 {
1076 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1077 	void *object = head;
1078 	int cnt = 0;
1079 
1080 	spin_lock_irqsave(&n->list_lock, *flags);
1081 	slab_lock(page);
1082 
1083 	if (!check_slab(s, page))
1084 		goto fail;
1085 
1086 next_object:
1087 	cnt++;
1088 
1089 	if (!check_valid_pointer(s, page, object)) {
1090 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1091 		goto fail;
1092 	}
1093 
1094 	if (on_freelist(s, page, object)) {
1095 		object_err(s, page, object, "Object already free");
1096 		goto fail;
1097 	}
1098 
1099 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100 		goto out;
1101 
1102 	if (unlikely(s != page->slab_cache)) {
1103 		if (!PageSlab(page)) {
1104 			slab_err(s, page, "Attempt to free object(0x%p) "
1105 				"outside of slab", object);
1106 		} else if (!page->slab_cache) {
1107 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1108 			       object);
1109 			dump_stack();
1110 		} else
1111 			object_err(s, page, object,
1112 					"page slab pointer corrupt.");
1113 		goto fail;
1114 	}
1115 
1116 	if (s->flags & SLAB_STORE_USER)
1117 		set_track(s, object, TRACK_FREE, addr);
1118 	trace(s, page, object, 0);
1119 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1120 	init_object(s, object, SLUB_RED_INACTIVE);
1121 
1122 	/* Reached end of constructed freelist yet? */
1123 	if (object != tail) {
1124 		object = get_freepointer(s, object);
1125 		goto next_object;
1126 	}
1127 out:
1128 	if (cnt != bulk_cnt)
1129 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1130 			 bulk_cnt, cnt);
1131 
1132 	slab_unlock(page);
1133 	/*
1134 	 * Keep node_lock to preserve integrity
1135 	 * until the object is actually freed
1136 	 */
1137 	return n;
1138 
1139 fail:
1140 	slab_unlock(page);
1141 	spin_unlock_irqrestore(&n->list_lock, *flags);
1142 	slab_fix(s, "Object at 0x%p not freed", object);
1143 	return NULL;
1144 }
1145 
1146 static int __init setup_slub_debug(char *str)
1147 {
1148 	slub_debug = DEBUG_DEFAULT_FLAGS;
1149 	if (*str++ != '=' || !*str)
1150 		/*
1151 		 * No options specified. Switch on full debugging.
1152 		 */
1153 		goto out;
1154 
1155 	if (*str == ',')
1156 		/*
1157 		 * No options but restriction on slabs. This means full
1158 		 * debugging for slabs matching a pattern.
1159 		 */
1160 		goto check_slabs;
1161 
1162 	slub_debug = 0;
1163 	if (*str == '-')
1164 		/*
1165 		 * Switch off all debugging measures.
1166 		 */
1167 		goto out;
1168 
1169 	/*
1170 	 * Determine which debug features should be switched on
1171 	 */
1172 	for (; *str && *str != ','; str++) {
1173 		switch (tolower(*str)) {
1174 		case 'f':
1175 			slub_debug |= SLAB_DEBUG_FREE;
1176 			break;
1177 		case 'z':
1178 			slub_debug |= SLAB_RED_ZONE;
1179 			break;
1180 		case 'p':
1181 			slub_debug |= SLAB_POISON;
1182 			break;
1183 		case 'u':
1184 			slub_debug |= SLAB_STORE_USER;
1185 			break;
1186 		case 't':
1187 			slub_debug |= SLAB_TRACE;
1188 			break;
1189 		case 'a':
1190 			slub_debug |= SLAB_FAILSLAB;
1191 			break;
1192 		case 'o':
1193 			/*
1194 			 * Avoid enabling debugging on caches if its minimum
1195 			 * order would increase as a result.
1196 			 */
1197 			disable_higher_order_debug = 1;
1198 			break;
1199 		default:
1200 			pr_err("slub_debug option '%c' unknown. skipped\n",
1201 			       *str);
1202 		}
1203 	}
1204 
1205 check_slabs:
1206 	if (*str == ',')
1207 		slub_debug_slabs = str + 1;
1208 out:
1209 	return 1;
1210 }
1211 
1212 __setup("slub_debug", setup_slub_debug);
1213 
1214 unsigned long kmem_cache_flags(unsigned long object_size,
1215 	unsigned long flags, const char *name,
1216 	void (*ctor)(void *))
1217 {
1218 	/*
1219 	 * Enable debugging if selected on the kernel commandline.
1220 	 */
1221 	if (slub_debug && (!slub_debug_slabs || (name &&
1222 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1223 		flags |= slub_debug;
1224 
1225 	return flags;
1226 }
1227 #else /* !CONFIG_SLUB_DEBUG */
1228 static inline void setup_object_debug(struct kmem_cache *s,
1229 			struct page *page, void *object) {}
1230 
1231 static inline int alloc_debug_processing(struct kmem_cache *s,
1232 	struct page *page, void *object, unsigned long addr) { return 0; }
1233 
1234 static inline struct kmem_cache_node *free_debug_processing(
1235 	struct kmem_cache *s, struct page *page,
1236 	void *head, void *tail, int bulk_cnt,
1237 	unsigned long addr, unsigned long *flags) { return NULL; }
1238 
1239 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1240 			{ return 1; }
1241 static inline int check_object(struct kmem_cache *s, struct page *page,
1242 			void *object, u8 val) { return 1; }
1243 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1244 					struct page *page) {}
1245 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1246 					struct page *page) {}
1247 unsigned long kmem_cache_flags(unsigned long object_size,
1248 	unsigned long flags, const char *name,
1249 	void (*ctor)(void *))
1250 {
1251 	return flags;
1252 }
1253 #define slub_debug 0
1254 
1255 #define disable_higher_order_debug 0
1256 
1257 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1258 							{ return 0; }
1259 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1260 							{ return 0; }
1261 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1262 							int objects) {}
1263 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1264 							int objects) {}
1265 
1266 #endif /* CONFIG_SLUB_DEBUG */
1267 
1268 /*
1269  * Hooks for other subsystems that check memory allocations. In a typical
1270  * production configuration these hooks all should produce no code at all.
1271  */
1272 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1273 {
1274 	kmemleak_alloc(ptr, size, 1, flags);
1275 	kasan_kmalloc_large(ptr, size);
1276 }
1277 
1278 static inline void kfree_hook(const void *x)
1279 {
1280 	kmemleak_free(x);
1281 	kasan_kfree_large(x);
1282 }
1283 
1284 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1285 						     gfp_t flags)
1286 {
1287 	flags &= gfp_allowed_mask;
1288 	lockdep_trace_alloc(flags);
1289 	might_sleep_if(gfpflags_allow_blocking(flags));
1290 
1291 	if (should_failslab(s->object_size, flags, s->flags))
1292 		return NULL;
1293 
1294 	return memcg_kmem_get_cache(s, flags);
1295 }
1296 
1297 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1298 					size_t size, void **p)
1299 {
1300 	size_t i;
1301 
1302 	flags &= gfp_allowed_mask;
1303 	for (i = 0; i < size; i++) {
1304 		void *object = p[i];
1305 
1306 		kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1307 		kmemleak_alloc_recursive(object, s->object_size, 1,
1308 					 s->flags, flags);
1309 		kasan_slab_alloc(s, object);
1310 	}
1311 	memcg_kmem_put_cache(s);
1312 }
1313 
1314 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1315 {
1316 	kmemleak_free_recursive(x, s->flags);
1317 
1318 	/*
1319 	 * Trouble is that we may no longer disable interrupts in the fast path
1320 	 * So in order to make the debug calls that expect irqs to be
1321 	 * disabled we need to disable interrupts temporarily.
1322 	 */
1323 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1324 	{
1325 		unsigned long flags;
1326 
1327 		local_irq_save(flags);
1328 		kmemcheck_slab_free(s, x, s->object_size);
1329 		debug_check_no_locks_freed(x, s->object_size);
1330 		local_irq_restore(flags);
1331 	}
1332 #endif
1333 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1334 		debug_check_no_obj_freed(x, s->object_size);
1335 
1336 	kasan_slab_free(s, x);
1337 }
1338 
1339 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1340 					   void *head, void *tail)
1341 {
1342 /*
1343  * Compiler cannot detect this function can be removed if slab_free_hook()
1344  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1345  */
1346 #if defined(CONFIG_KMEMCHECK) ||		\
1347 	defined(CONFIG_LOCKDEP)	||		\
1348 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1349 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1350 	defined(CONFIG_KASAN)
1351 
1352 	void *object = head;
1353 	void *tail_obj = tail ? : head;
1354 
1355 	do {
1356 		slab_free_hook(s, object);
1357 	} while ((object != tail_obj) &&
1358 		 (object = get_freepointer(s, object)));
1359 #endif
1360 }
1361 
1362 static void setup_object(struct kmem_cache *s, struct page *page,
1363 				void *object)
1364 {
1365 	setup_object_debug(s, page, object);
1366 	if (unlikely(s->ctor)) {
1367 		kasan_unpoison_object_data(s, object);
1368 		s->ctor(object);
1369 		kasan_poison_object_data(s, object);
1370 	}
1371 }
1372 
1373 /*
1374  * Slab allocation and freeing
1375  */
1376 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1377 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1378 {
1379 	struct page *page;
1380 	int order = oo_order(oo);
1381 
1382 	flags |= __GFP_NOTRACK;
1383 
1384 	if (node == NUMA_NO_NODE)
1385 		page = alloc_pages(flags, order);
1386 	else
1387 		page = __alloc_pages_node(node, flags, order);
1388 
1389 	if (page && memcg_charge_slab(page, flags, order, s)) {
1390 		__free_pages(page, order);
1391 		page = NULL;
1392 	}
1393 
1394 	return page;
1395 }
1396 
1397 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1398 {
1399 	struct page *page;
1400 	struct kmem_cache_order_objects oo = s->oo;
1401 	gfp_t alloc_gfp;
1402 	void *start, *p;
1403 	int idx, order;
1404 
1405 	flags &= gfp_allowed_mask;
1406 
1407 	if (gfpflags_allow_blocking(flags))
1408 		local_irq_enable();
1409 
1410 	flags |= s->allocflags;
1411 
1412 	/*
1413 	 * Let the initial higher-order allocation fail under memory pressure
1414 	 * so we fall-back to the minimum order allocation.
1415 	 */
1416 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1417 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1418 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1419 
1420 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1421 	if (unlikely(!page)) {
1422 		oo = s->min;
1423 		alloc_gfp = flags;
1424 		/*
1425 		 * Allocation may have failed due to fragmentation.
1426 		 * Try a lower order alloc if possible
1427 		 */
1428 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1429 		if (unlikely(!page))
1430 			goto out;
1431 		stat(s, ORDER_FALLBACK);
1432 	}
1433 
1434 	if (kmemcheck_enabled &&
1435 	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1436 		int pages = 1 << oo_order(oo);
1437 
1438 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1439 
1440 		/*
1441 		 * Objects from caches that have a constructor don't get
1442 		 * cleared when they're allocated, so we need to do it here.
1443 		 */
1444 		if (s->ctor)
1445 			kmemcheck_mark_uninitialized_pages(page, pages);
1446 		else
1447 			kmemcheck_mark_unallocated_pages(page, pages);
1448 	}
1449 
1450 	page->objects = oo_objects(oo);
1451 
1452 	order = compound_order(page);
1453 	page->slab_cache = s;
1454 	__SetPageSlab(page);
1455 	if (page_is_pfmemalloc(page))
1456 		SetPageSlabPfmemalloc(page);
1457 
1458 	start = page_address(page);
1459 
1460 	if (unlikely(s->flags & SLAB_POISON))
1461 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1462 
1463 	kasan_poison_slab(page);
1464 
1465 	for_each_object_idx(p, idx, s, start, page->objects) {
1466 		setup_object(s, page, p);
1467 		if (likely(idx < page->objects))
1468 			set_freepointer(s, p, p + s->size);
1469 		else
1470 			set_freepointer(s, p, NULL);
1471 	}
1472 
1473 	page->freelist = start;
1474 	page->inuse = page->objects;
1475 	page->frozen = 1;
1476 
1477 out:
1478 	if (gfpflags_allow_blocking(flags))
1479 		local_irq_disable();
1480 	if (!page)
1481 		return NULL;
1482 
1483 	mod_zone_page_state(page_zone(page),
1484 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1485 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1486 		1 << oo_order(oo));
1487 
1488 	inc_slabs_node(s, page_to_nid(page), page->objects);
1489 
1490 	return page;
1491 }
1492 
1493 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1494 {
1495 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1496 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1497 		BUG();
1498 	}
1499 
1500 	return allocate_slab(s,
1501 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1502 }
1503 
1504 static void __free_slab(struct kmem_cache *s, struct page *page)
1505 {
1506 	int order = compound_order(page);
1507 	int pages = 1 << order;
1508 
1509 	if (kmem_cache_debug(s)) {
1510 		void *p;
1511 
1512 		slab_pad_check(s, page);
1513 		for_each_object(p, s, page_address(page),
1514 						page->objects)
1515 			check_object(s, page, p, SLUB_RED_INACTIVE);
1516 	}
1517 
1518 	kmemcheck_free_shadow(page, compound_order(page));
1519 
1520 	mod_zone_page_state(page_zone(page),
1521 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1522 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1523 		-pages);
1524 
1525 	__ClearPageSlabPfmemalloc(page);
1526 	__ClearPageSlab(page);
1527 
1528 	page_mapcount_reset(page);
1529 	if (current->reclaim_state)
1530 		current->reclaim_state->reclaimed_slab += pages;
1531 	__free_kmem_pages(page, order);
1532 }
1533 
1534 #define need_reserve_slab_rcu						\
1535 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1536 
1537 static void rcu_free_slab(struct rcu_head *h)
1538 {
1539 	struct page *page;
1540 
1541 	if (need_reserve_slab_rcu)
1542 		page = virt_to_head_page(h);
1543 	else
1544 		page = container_of((struct list_head *)h, struct page, lru);
1545 
1546 	__free_slab(page->slab_cache, page);
1547 }
1548 
1549 static void free_slab(struct kmem_cache *s, struct page *page)
1550 {
1551 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1552 		struct rcu_head *head;
1553 
1554 		if (need_reserve_slab_rcu) {
1555 			int order = compound_order(page);
1556 			int offset = (PAGE_SIZE << order) - s->reserved;
1557 
1558 			VM_BUG_ON(s->reserved != sizeof(*head));
1559 			head = page_address(page) + offset;
1560 		} else {
1561 			head = &page->rcu_head;
1562 		}
1563 
1564 		call_rcu(head, rcu_free_slab);
1565 	} else
1566 		__free_slab(s, page);
1567 }
1568 
1569 static void discard_slab(struct kmem_cache *s, struct page *page)
1570 {
1571 	dec_slabs_node(s, page_to_nid(page), page->objects);
1572 	free_slab(s, page);
1573 }
1574 
1575 /*
1576  * Management of partially allocated slabs.
1577  */
1578 static inline void
1579 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1580 {
1581 	n->nr_partial++;
1582 	if (tail == DEACTIVATE_TO_TAIL)
1583 		list_add_tail(&page->lru, &n->partial);
1584 	else
1585 		list_add(&page->lru, &n->partial);
1586 }
1587 
1588 static inline void add_partial(struct kmem_cache_node *n,
1589 				struct page *page, int tail)
1590 {
1591 	lockdep_assert_held(&n->list_lock);
1592 	__add_partial(n, page, tail);
1593 }
1594 
1595 static inline void
1596 __remove_partial(struct kmem_cache_node *n, struct page *page)
1597 {
1598 	list_del(&page->lru);
1599 	n->nr_partial--;
1600 }
1601 
1602 static inline void remove_partial(struct kmem_cache_node *n,
1603 					struct page *page)
1604 {
1605 	lockdep_assert_held(&n->list_lock);
1606 	__remove_partial(n, page);
1607 }
1608 
1609 /*
1610  * Remove slab from the partial list, freeze it and
1611  * return the pointer to the freelist.
1612  *
1613  * Returns a list of objects or NULL if it fails.
1614  */
1615 static inline void *acquire_slab(struct kmem_cache *s,
1616 		struct kmem_cache_node *n, struct page *page,
1617 		int mode, int *objects)
1618 {
1619 	void *freelist;
1620 	unsigned long counters;
1621 	struct page new;
1622 
1623 	lockdep_assert_held(&n->list_lock);
1624 
1625 	/*
1626 	 * Zap the freelist and set the frozen bit.
1627 	 * The old freelist is the list of objects for the
1628 	 * per cpu allocation list.
1629 	 */
1630 	freelist = page->freelist;
1631 	counters = page->counters;
1632 	new.counters = counters;
1633 	*objects = new.objects - new.inuse;
1634 	if (mode) {
1635 		new.inuse = page->objects;
1636 		new.freelist = NULL;
1637 	} else {
1638 		new.freelist = freelist;
1639 	}
1640 
1641 	VM_BUG_ON(new.frozen);
1642 	new.frozen = 1;
1643 
1644 	if (!__cmpxchg_double_slab(s, page,
1645 			freelist, counters,
1646 			new.freelist, new.counters,
1647 			"acquire_slab"))
1648 		return NULL;
1649 
1650 	remove_partial(n, page);
1651 	WARN_ON(!freelist);
1652 	return freelist;
1653 }
1654 
1655 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1656 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1657 
1658 /*
1659  * Try to allocate a partial slab from a specific node.
1660  */
1661 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1662 				struct kmem_cache_cpu *c, gfp_t flags)
1663 {
1664 	struct page *page, *page2;
1665 	void *object = NULL;
1666 	int available = 0;
1667 	int objects;
1668 
1669 	/*
1670 	 * Racy check. If we mistakenly see no partial slabs then we
1671 	 * just allocate an empty slab. If we mistakenly try to get a
1672 	 * partial slab and there is none available then get_partials()
1673 	 * will return NULL.
1674 	 */
1675 	if (!n || !n->nr_partial)
1676 		return NULL;
1677 
1678 	spin_lock(&n->list_lock);
1679 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1680 		void *t;
1681 
1682 		if (!pfmemalloc_match(page, flags))
1683 			continue;
1684 
1685 		t = acquire_slab(s, n, page, object == NULL, &objects);
1686 		if (!t)
1687 			break;
1688 
1689 		available += objects;
1690 		if (!object) {
1691 			c->page = page;
1692 			stat(s, ALLOC_FROM_PARTIAL);
1693 			object = t;
1694 		} else {
1695 			put_cpu_partial(s, page, 0);
1696 			stat(s, CPU_PARTIAL_NODE);
1697 		}
1698 		if (!kmem_cache_has_cpu_partial(s)
1699 			|| available > s->cpu_partial / 2)
1700 			break;
1701 
1702 	}
1703 	spin_unlock(&n->list_lock);
1704 	return object;
1705 }
1706 
1707 /*
1708  * Get a page from somewhere. Search in increasing NUMA distances.
1709  */
1710 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1711 		struct kmem_cache_cpu *c)
1712 {
1713 #ifdef CONFIG_NUMA
1714 	struct zonelist *zonelist;
1715 	struct zoneref *z;
1716 	struct zone *zone;
1717 	enum zone_type high_zoneidx = gfp_zone(flags);
1718 	void *object;
1719 	unsigned int cpuset_mems_cookie;
1720 
1721 	/*
1722 	 * The defrag ratio allows a configuration of the tradeoffs between
1723 	 * inter node defragmentation and node local allocations. A lower
1724 	 * defrag_ratio increases the tendency to do local allocations
1725 	 * instead of attempting to obtain partial slabs from other nodes.
1726 	 *
1727 	 * If the defrag_ratio is set to 0 then kmalloc() always
1728 	 * returns node local objects. If the ratio is higher then kmalloc()
1729 	 * may return off node objects because partial slabs are obtained
1730 	 * from other nodes and filled up.
1731 	 *
1732 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1733 	 * defrag_ratio = 1000) then every (well almost) allocation will
1734 	 * first attempt to defrag slab caches on other nodes. This means
1735 	 * scanning over all nodes to look for partial slabs which may be
1736 	 * expensive if we do it every time we are trying to find a slab
1737 	 * with available objects.
1738 	 */
1739 	if (!s->remote_node_defrag_ratio ||
1740 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1741 		return NULL;
1742 
1743 	do {
1744 		cpuset_mems_cookie = read_mems_allowed_begin();
1745 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1746 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1747 			struct kmem_cache_node *n;
1748 
1749 			n = get_node(s, zone_to_nid(zone));
1750 
1751 			if (n && cpuset_zone_allowed(zone, flags) &&
1752 					n->nr_partial > s->min_partial) {
1753 				object = get_partial_node(s, n, c, flags);
1754 				if (object) {
1755 					/*
1756 					 * Don't check read_mems_allowed_retry()
1757 					 * here - if mems_allowed was updated in
1758 					 * parallel, that was a harmless race
1759 					 * between allocation and the cpuset
1760 					 * update
1761 					 */
1762 					return object;
1763 				}
1764 			}
1765 		}
1766 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1767 #endif
1768 	return NULL;
1769 }
1770 
1771 /*
1772  * Get a partial page, lock it and return it.
1773  */
1774 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1775 		struct kmem_cache_cpu *c)
1776 {
1777 	void *object;
1778 	int searchnode = node;
1779 
1780 	if (node == NUMA_NO_NODE)
1781 		searchnode = numa_mem_id();
1782 	else if (!node_present_pages(node))
1783 		searchnode = node_to_mem_node(node);
1784 
1785 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1786 	if (object || node != NUMA_NO_NODE)
1787 		return object;
1788 
1789 	return get_any_partial(s, flags, c);
1790 }
1791 
1792 #ifdef CONFIG_PREEMPT
1793 /*
1794  * Calculate the next globally unique transaction for disambiguiation
1795  * during cmpxchg. The transactions start with the cpu number and are then
1796  * incremented by CONFIG_NR_CPUS.
1797  */
1798 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1799 #else
1800 /*
1801  * No preemption supported therefore also no need to check for
1802  * different cpus.
1803  */
1804 #define TID_STEP 1
1805 #endif
1806 
1807 static inline unsigned long next_tid(unsigned long tid)
1808 {
1809 	return tid + TID_STEP;
1810 }
1811 
1812 static inline unsigned int tid_to_cpu(unsigned long tid)
1813 {
1814 	return tid % TID_STEP;
1815 }
1816 
1817 static inline unsigned long tid_to_event(unsigned long tid)
1818 {
1819 	return tid / TID_STEP;
1820 }
1821 
1822 static inline unsigned int init_tid(int cpu)
1823 {
1824 	return cpu;
1825 }
1826 
1827 static inline void note_cmpxchg_failure(const char *n,
1828 		const struct kmem_cache *s, unsigned long tid)
1829 {
1830 #ifdef SLUB_DEBUG_CMPXCHG
1831 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1832 
1833 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1834 
1835 #ifdef CONFIG_PREEMPT
1836 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1837 		pr_warn("due to cpu change %d -> %d\n",
1838 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1839 	else
1840 #endif
1841 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1842 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1843 			tid_to_event(tid), tid_to_event(actual_tid));
1844 	else
1845 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1846 			actual_tid, tid, next_tid(tid));
1847 #endif
1848 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1849 }
1850 
1851 static void init_kmem_cache_cpus(struct kmem_cache *s)
1852 {
1853 	int cpu;
1854 
1855 	for_each_possible_cpu(cpu)
1856 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1857 }
1858 
1859 /*
1860  * Remove the cpu slab
1861  */
1862 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1863 				void *freelist)
1864 {
1865 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1866 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1867 	int lock = 0;
1868 	enum slab_modes l = M_NONE, m = M_NONE;
1869 	void *nextfree;
1870 	int tail = DEACTIVATE_TO_HEAD;
1871 	struct page new;
1872 	struct page old;
1873 
1874 	if (page->freelist) {
1875 		stat(s, DEACTIVATE_REMOTE_FREES);
1876 		tail = DEACTIVATE_TO_TAIL;
1877 	}
1878 
1879 	/*
1880 	 * Stage one: Free all available per cpu objects back
1881 	 * to the page freelist while it is still frozen. Leave the
1882 	 * last one.
1883 	 *
1884 	 * There is no need to take the list->lock because the page
1885 	 * is still frozen.
1886 	 */
1887 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1888 		void *prior;
1889 		unsigned long counters;
1890 
1891 		do {
1892 			prior = page->freelist;
1893 			counters = page->counters;
1894 			set_freepointer(s, freelist, prior);
1895 			new.counters = counters;
1896 			new.inuse--;
1897 			VM_BUG_ON(!new.frozen);
1898 
1899 		} while (!__cmpxchg_double_slab(s, page,
1900 			prior, counters,
1901 			freelist, new.counters,
1902 			"drain percpu freelist"));
1903 
1904 		freelist = nextfree;
1905 	}
1906 
1907 	/*
1908 	 * Stage two: Ensure that the page is unfrozen while the
1909 	 * list presence reflects the actual number of objects
1910 	 * during unfreeze.
1911 	 *
1912 	 * We setup the list membership and then perform a cmpxchg
1913 	 * with the count. If there is a mismatch then the page
1914 	 * is not unfrozen but the page is on the wrong list.
1915 	 *
1916 	 * Then we restart the process which may have to remove
1917 	 * the page from the list that we just put it on again
1918 	 * because the number of objects in the slab may have
1919 	 * changed.
1920 	 */
1921 redo:
1922 
1923 	old.freelist = page->freelist;
1924 	old.counters = page->counters;
1925 	VM_BUG_ON(!old.frozen);
1926 
1927 	/* Determine target state of the slab */
1928 	new.counters = old.counters;
1929 	if (freelist) {
1930 		new.inuse--;
1931 		set_freepointer(s, freelist, old.freelist);
1932 		new.freelist = freelist;
1933 	} else
1934 		new.freelist = old.freelist;
1935 
1936 	new.frozen = 0;
1937 
1938 	if (!new.inuse && n->nr_partial >= s->min_partial)
1939 		m = M_FREE;
1940 	else if (new.freelist) {
1941 		m = M_PARTIAL;
1942 		if (!lock) {
1943 			lock = 1;
1944 			/*
1945 			 * Taking the spinlock removes the possiblity
1946 			 * that acquire_slab() will see a slab page that
1947 			 * is frozen
1948 			 */
1949 			spin_lock(&n->list_lock);
1950 		}
1951 	} else {
1952 		m = M_FULL;
1953 		if (kmem_cache_debug(s) && !lock) {
1954 			lock = 1;
1955 			/*
1956 			 * This also ensures that the scanning of full
1957 			 * slabs from diagnostic functions will not see
1958 			 * any frozen slabs.
1959 			 */
1960 			spin_lock(&n->list_lock);
1961 		}
1962 	}
1963 
1964 	if (l != m) {
1965 
1966 		if (l == M_PARTIAL)
1967 
1968 			remove_partial(n, page);
1969 
1970 		else if (l == M_FULL)
1971 
1972 			remove_full(s, n, page);
1973 
1974 		if (m == M_PARTIAL) {
1975 
1976 			add_partial(n, page, tail);
1977 			stat(s, tail);
1978 
1979 		} else if (m == M_FULL) {
1980 
1981 			stat(s, DEACTIVATE_FULL);
1982 			add_full(s, n, page);
1983 
1984 		}
1985 	}
1986 
1987 	l = m;
1988 	if (!__cmpxchg_double_slab(s, page,
1989 				old.freelist, old.counters,
1990 				new.freelist, new.counters,
1991 				"unfreezing slab"))
1992 		goto redo;
1993 
1994 	if (lock)
1995 		spin_unlock(&n->list_lock);
1996 
1997 	if (m == M_FREE) {
1998 		stat(s, DEACTIVATE_EMPTY);
1999 		discard_slab(s, page);
2000 		stat(s, FREE_SLAB);
2001 	}
2002 }
2003 
2004 /*
2005  * Unfreeze all the cpu partial slabs.
2006  *
2007  * This function must be called with interrupts disabled
2008  * for the cpu using c (or some other guarantee must be there
2009  * to guarantee no concurrent accesses).
2010  */
2011 static void unfreeze_partials(struct kmem_cache *s,
2012 		struct kmem_cache_cpu *c)
2013 {
2014 #ifdef CONFIG_SLUB_CPU_PARTIAL
2015 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2016 	struct page *page, *discard_page = NULL;
2017 
2018 	while ((page = c->partial)) {
2019 		struct page new;
2020 		struct page old;
2021 
2022 		c->partial = page->next;
2023 
2024 		n2 = get_node(s, page_to_nid(page));
2025 		if (n != n2) {
2026 			if (n)
2027 				spin_unlock(&n->list_lock);
2028 
2029 			n = n2;
2030 			spin_lock(&n->list_lock);
2031 		}
2032 
2033 		do {
2034 
2035 			old.freelist = page->freelist;
2036 			old.counters = page->counters;
2037 			VM_BUG_ON(!old.frozen);
2038 
2039 			new.counters = old.counters;
2040 			new.freelist = old.freelist;
2041 
2042 			new.frozen = 0;
2043 
2044 		} while (!__cmpxchg_double_slab(s, page,
2045 				old.freelist, old.counters,
2046 				new.freelist, new.counters,
2047 				"unfreezing slab"));
2048 
2049 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2050 			page->next = discard_page;
2051 			discard_page = page;
2052 		} else {
2053 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2054 			stat(s, FREE_ADD_PARTIAL);
2055 		}
2056 	}
2057 
2058 	if (n)
2059 		spin_unlock(&n->list_lock);
2060 
2061 	while (discard_page) {
2062 		page = discard_page;
2063 		discard_page = discard_page->next;
2064 
2065 		stat(s, DEACTIVATE_EMPTY);
2066 		discard_slab(s, page);
2067 		stat(s, FREE_SLAB);
2068 	}
2069 #endif
2070 }
2071 
2072 /*
2073  * Put a page that was just frozen (in __slab_free) into a partial page
2074  * slot if available. This is done without interrupts disabled and without
2075  * preemption disabled. The cmpxchg is racy and may put the partial page
2076  * onto a random cpus partial slot.
2077  *
2078  * If we did not find a slot then simply move all the partials to the
2079  * per node partial list.
2080  */
2081 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2082 {
2083 #ifdef CONFIG_SLUB_CPU_PARTIAL
2084 	struct page *oldpage;
2085 	int pages;
2086 	int pobjects;
2087 
2088 	preempt_disable();
2089 	do {
2090 		pages = 0;
2091 		pobjects = 0;
2092 		oldpage = this_cpu_read(s->cpu_slab->partial);
2093 
2094 		if (oldpage) {
2095 			pobjects = oldpage->pobjects;
2096 			pages = oldpage->pages;
2097 			if (drain && pobjects > s->cpu_partial) {
2098 				unsigned long flags;
2099 				/*
2100 				 * partial array is full. Move the existing
2101 				 * set to the per node partial list.
2102 				 */
2103 				local_irq_save(flags);
2104 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2105 				local_irq_restore(flags);
2106 				oldpage = NULL;
2107 				pobjects = 0;
2108 				pages = 0;
2109 				stat(s, CPU_PARTIAL_DRAIN);
2110 			}
2111 		}
2112 
2113 		pages++;
2114 		pobjects += page->objects - page->inuse;
2115 
2116 		page->pages = pages;
2117 		page->pobjects = pobjects;
2118 		page->next = oldpage;
2119 
2120 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2121 								!= oldpage);
2122 	if (unlikely(!s->cpu_partial)) {
2123 		unsigned long flags;
2124 
2125 		local_irq_save(flags);
2126 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2127 		local_irq_restore(flags);
2128 	}
2129 	preempt_enable();
2130 #endif
2131 }
2132 
2133 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2134 {
2135 	stat(s, CPUSLAB_FLUSH);
2136 	deactivate_slab(s, c->page, c->freelist);
2137 
2138 	c->tid = next_tid(c->tid);
2139 	c->page = NULL;
2140 	c->freelist = NULL;
2141 }
2142 
2143 /*
2144  * Flush cpu slab.
2145  *
2146  * Called from IPI handler with interrupts disabled.
2147  */
2148 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2149 {
2150 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2151 
2152 	if (likely(c)) {
2153 		if (c->page)
2154 			flush_slab(s, c);
2155 
2156 		unfreeze_partials(s, c);
2157 	}
2158 }
2159 
2160 static void flush_cpu_slab(void *d)
2161 {
2162 	struct kmem_cache *s = d;
2163 
2164 	__flush_cpu_slab(s, smp_processor_id());
2165 }
2166 
2167 static bool has_cpu_slab(int cpu, void *info)
2168 {
2169 	struct kmem_cache *s = info;
2170 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2171 
2172 	return c->page || c->partial;
2173 }
2174 
2175 static void flush_all(struct kmem_cache *s)
2176 {
2177 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2178 }
2179 
2180 /*
2181  * Check if the objects in a per cpu structure fit numa
2182  * locality expectations.
2183  */
2184 static inline int node_match(struct page *page, int node)
2185 {
2186 #ifdef CONFIG_NUMA
2187 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2188 		return 0;
2189 #endif
2190 	return 1;
2191 }
2192 
2193 #ifdef CONFIG_SLUB_DEBUG
2194 static int count_free(struct page *page)
2195 {
2196 	return page->objects - page->inuse;
2197 }
2198 
2199 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2200 {
2201 	return atomic_long_read(&n->total_objects);
2202 }
2203 #endif /* CONFIG_SLUB_DEBUG */
2204 
2205 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2206 static unsigned long count_partial(struct kmem_cache_node *n,
2207 					int (*get_count)(struct page *))
2208 {
2209 	unsigned long flags;
2210 	unsigned long x = 0;
2211 	struct page *page;
2212 
2213 	spin_lock_irqsave(&n->list_lock, flags);
2214 	list_for_each_entry(page, &n->partial, lru)
2215 		x += get_count(page);
2216 	spin_unlock_irqrestore(&n->list_lock, flags);
2217 	return x;
2218 }
2219 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2220 
2221 static noinline void
2222 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2223 {
2224 #ifdef CONFIG_SLUB_DEBUG
2225 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2226 				      DEFAULT_RATELIMIT_BURST);
2227 	int node;
2228 	struct kmem_cache_node *n;
2229 
2230 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2231 		return;
2232 
2233 	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2234 		nid, gfpflags);
2235 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2236 		s->name, s->object_size, s->size, oo_order(s->oo),
2237 		oo_order(s->min));
2238 
2239 	if (oo_order(s->min) > get_order(s->object_size))
2240 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2241 			s->name);
2242 
2243 	for_each_kmem_cache_node(s, node, n) {
2244 		unsigned long nr_slabs;
2245 		unsigned long nr_objs;
2246 		unsigned long nr_free;
2247 
2248 		nr_free  = count_partial(n, count_free);
2249 		nr_slabs = node_nr_slabs(n);
2250 		nr_objs  = node_nr_objs(n);
2251 
2252 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2253 			node, nr_slabs, nr_objs, nr_free);
2254 	}
2255 #endif
2256 }
2257 
2258 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2259 			int node, struct kmem_cache_cpu **pc)
2260 {
2261 	void *freelist;
2262 	struct kmem_cache_cpu *c = *pc;
2263 	struct page *page;
2264 
2265 	freelist = get_partial(s, flags, node, c);
2266 
2267 	if (freelist)
2268 		return freelist;
2269 
2270 	page = new_slab(s, flags, node);
2271 	if (page) {
2272 		c = raw_cpu_ptr(s->cpu_slab);
2273 		if (c->page)
2274 			flush_slab(s, c);
2275 
2276 		/*
2277 		 * No other reference to the page yet so we can
2278 		 * muck around with it freely without cmpxchg
2279 		 */
2280 		freelist = page->freelist;
2281 		page->freelist = NULL;
2282 
2283 		stat(s, ALLOC_SLAB);
2284 		c->page = page;
2285 		*pc = c;
2286 	} else
2287 		freelist = NULL;
2288 
2289 	return freelist;
2290 }
2291 
2292 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2293 {
2294 	if (unlikely(PageSlabPfmemalloc(page)))
2295 		return gfp_pfmemalloc_allowed(gfpflags);
2296 
2297 	return true;
2298 }
2299 
2300 /*
2301  * Check the page->freelist of a page and either transfer the freelist to the
2302  * per cpu freelist or deactivate the page.
2303  *
2304  * The page is still frozen if the return value is not NULL.
2305  *
2306  * If this function returns NULL then the page has been unfrozen.
2307  *
2308  * This function must be called with interrupt disabled.
2309  */
2310 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2311 {
2312 	struct page new;
2313 	unsigned long counters;
2314 	void *freelist;
2315 
2316 	do {
2317 		freelist = page->freelist;
2318 		counters = page->counters;
2319 
2320 		new.counters = counters;
2321 		VM_BUG_ON(!new.frozen);
2322 
2323 		new.inuse = page->objects;
2324 		new.frozen = freelist != NULL;
2325 
2326 	} while (!__cmpxchg_double_slab(s, page,
2327 		freelist, counters,
2328 		NULL, new.counters,
2329 		"get_freelist"));
2330 
2331 	return freelist;
2332 }
2333 
2334 /*
2335  * Slow path. The lockless freelist is empty or we need to perform
2336  * debugging duties.
2337  *
2338  * Processing is still very fast if new objects have been freed to the
2339  * regular freelist. In that case we simply take over the regular freelist
2340  * as the lockless freelist and zap the regular freelist.
2341  *
2342  * If that is not working then we fall back to the partial lists. We take the
2343  * first element of the freelist as the object to allocate now and move the
2344  * rest of the freelist to the lockless freelist.
2345  *
2346  * And if we were unable to get a new slab from the partial slab lists then
2347  * we need to allocate a new slab. This is the slowest path since it involves
2348  * a call to the page allocator and the setup of a new slab.
2349  *
2350  * Version of __slab_alloc to use when we know that interrupts are
2351  * already disabled (which is the case for bulk allocation).
2352  */
2353 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2354 			  unsigned long addr, struct kmem_cache_cpu *c)
2355 {
2356 	void *freelist;
2357 	struct page *page;
2358 
2359 	page = c->page;
2360 	if (!page)
2361 		goto new_slab;
2362 redo:
2363 
2364 	if (unlikely(!node_match(page, node))) {
2365 		int searchnode = node;
2366 
2367 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2368 			searchnode = node_to_mem_node(node);
2369 
2370 		if (unlikely(!node_match(page, searchnode))) {
2371 			stat(s, ALLOC_NODE_MISMATCH);
2372 			deactivate_slab(s, page, c->freelist);
2373 			c->page = NULL;
2374 			c->freelist = NULL;
2375 			goto new_slab;
2376 		}
2377 	}
2378 
2379 	/*
2380 	 * By rights, we should be searching for a slab page that was
2381 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2382 	 * information when the page leaves the per-cpu allocator
2383 	 */
2384 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2385 		deactivate_slab(s, page, c->freelist);
2386 		c->page = NULL;
2387 		c->freelist = NULL;
2388 		goto new_slab;
2389 	}
2390 
2391 	/* must check again c->freelist in case of cpu migration or IRQ */
2392 	freelist = c->freelist;
2393 	if (freelist)
2394 		goto load_freelist;
2395 
2396 	freelist = get_freelist(s, page);
2397 
2398 	if (!freelist) {
2399 		c->page = NULL;
2400 		stat(s, DEACTIVATE_BYPASS);
2401 		goto new_slab;
2402 	}
2403 
2404 	stat(s, ALLOC_REFILL);
2405 
2406 load_freelist:
2407 	/*
2408 	 * freelist is pointing to the list of objects to be used.
2409 	 * page is pointing to the page from which the objects are obtained.
2410 	 * That page must be frozen for per cpu allocations to work.
2411 	 */
2412 	VM_BUG_ON(!c->page->frozen);
2413 	c->freelist = get_freepointer(s, freelist);
2414 	c->tid = next_tid(c->tid);
2415 	return freelist;
2416 
2417 new_slab:
2418 
2419 	if (c->partial) {
2420 		page = c->page = c->partial;
2421 		c->partial = page->next;
2422 		stat(s, CPU_PARTIAL_ALLOC);
2423 		c->freelist = NULL;
2424 		goto redo;
2425 	}
2426 
2427 	freelist = new_slab_objects(s, gfpflags, node, &c);
2428 
2429 	if (unlikely(!freelist)) {
2430 		slab_out_of_memory(s, gfpflags, node);
2431 		return NULL;
2432 	}
2433 
2434 	page = c->page;
2435 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2436 		goto load_freelist;
2437 
2438 	/* Only entered in the debug case */
2439 	if (kmem_cache_debug(s) &&
2440 			!alloc_debug_processing(s, page, freelist, addr))
2441 		goto new_slab;	/* Slab failed checks. Next slab needed */
2442 
2443 	deactivate_slab(s, page, get_freepointer(s, freelist));
2444 	c->page = NULL;
2445 	c->freelist = NULL;
2446 	return freelist;
2447 }
2448 
2449 /*
2450  * Another one that disabled interrupt and compensates for possible
2451  * cpu changes by refetching the per cpu area pointer.
2452  */
2453 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2454 			  unsigned long addr, struct kmem_cache_cpu *c)
2455 {
2456 	void *p;
2457 	unsigned long flags;
2458 
2459 	local_irq_save(flags);
2460 #ifdef CONFIG_PREEMPT
2461 	/*
2462 	 * We may have been preempted and rescheduled on a different
2463 	 * cpu before disabling interrupts. Need to reload cpu area
2464 	 * pointer.
2465 	 */
2466 	c = this_cpu_ptr(s->cpu_slab);
2467 #endif
2468 
2469 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2470 	local_irq_restore(flags);
2471 	return p;
2472 }
2473 
2474 /*
2475  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2476  * have the fastpath folded into their functions. So no function call
2477  * overhead for requests that can be satisfied on the fastpath.
2478  *
2479  * The fastpath works by first checking if the lockless freelist can be used.
2480  * If not then __slab_alloc is called for slow processing.
2481  *
2482  * Otherwise we can simply pick the next object from the lockless free list.
2483  */
2484 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2485 		gfp_t gfpflags, int node, unsigned long addr)
2486 {
2487 	void *object;
2488 	struct kmem_cache_cpu *c;
2489 	struct page *page;
2490 	unsigned long tid;
2491 
2492 	s = slab_pre_alloc_hook(s, gfpflags);
2493 	if (!s)
2494 		return NULL;
2495 redo:
2496 	/*
2497 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2498 	 * enabled. We may switch back and forth between cpus while
2499 	 * reading from one cpu area. That does not matter as long
2500 	 * as we end up on the original cpu again when doing the cmpxchg.
2501 	 *
2502 	 * We should guarantee that tid and kmem_cache are retrieved on
2503 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2504 	 * to check if it is matched or not.
2505 	 */
2506 	do {
2507 		tid = this_cpu_read(s->cpu_slab->tid);
2508 		c = raw_cpu_ptr(s->cpu_slab);
2509 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2510 		 unlikely(tid != READ_ONCE(c->tid)));
2511 
2512 	/*
2513 	 * Irqless object alloc/free algorithm used here depends on sequence
2514 	 * of fetching cpu_slab's data. tid should be fetched before anything
2515 	 * on c to guarantee that object and page associated with previous tid
2516 	 * won't be used with current tid. If we fetch tid first, object and
2517 	 * page could be one associated with next tid and our alloc/free
2518 	 * request will be failed. In this case, we will retry. So, no problem.
2519 	 */
2520 	barrier();
2521 
2522 	/*
2523 	 * The transaction ids are globally unique per cpu and per operation on
2524 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2525 	 * occurs on the right processor and that there was no operation on the
2526 	 * linked list in between.
2527 	 */
2528 
2529 	object = c->freelist;
2530 	page = c->page;
2531 	if (unlikely(!object || !node_match(page, node))) {
2532 		object = __slab_alloc(s, gfpflags, node, addr, c);
2533 		stat(s, ALLOC_SLOWPATH);
2534 	} else {
2535 		void *next_object = get_freepointer_safe(s, object);
2536 
2537 		/*
2538 		 * The cmpxchg will only match if there was no additional
2539 		 * operation and if we are on the right processor.
2540 		 *
2541 		 * The cmpxchg does the following atomically (without lock
2542 		 * semantics!)
2543 		 * 1. Relocate first pointer to the current per cpu area.
2544 		 * 2. Verify that tid and freelist have not been changed
2545 		 * 3. If they were not changed replace tid and freelist
2546 		 *
2547 		 * Since this is without lock semantics the protection is only
2548 		 * against code executing on this cpu *not* from access by
2549 		 * other cpus.
2550 		 */
2551 		if (unlikely(!this_cpu_cmpxchg_double(
2552 				s->cpu_slab->freelist, s->cpu_slab->tid,
2553 				object, tid,
2554 				next_object, next_tid(tid)))) {
2555 
2556 			note_cmpxchg_failure("slab_alloc", s, tid);
2557 			goto redo;
2558 		}
2559 		prefetch_freepointer(s, next_object);
2560 		stat(s, ALLOC_FASTPATH);
2561 	}
2562 
2563 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2564 		memset(object, 0, s->object_size);
2565 
2566 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2567 
2568 	return object;
2569 }
2570 
2571 static __always_inline void *slab_alloc(struct kmem_cache *s,
2572 		gfp_t gfpflags, unsigned long addr)
2573 {
2574 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2575 }
2576 
2577 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2578 {
2579 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2580 
2581 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2582 				s->size, gfpflags);
2583 
2584 	return ret;
2585 }
2586 EXPORT_SYMBOL(kmem_cache_alloc);
2587 
2588 #ifdef CONFIG_TRACING
2589 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2590 {
2591 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2592 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2593 	kasan_kmalloc(s, ret, size);
2594 	return ret;
2595 }
2596 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2597 #endif
2598 
2599 #ifdef CONFIG_NUMA
2600 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2601 {
2602 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2603 
2604 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2605 				    s->object_size, s->size, gfpflags, node);
2606 
2607 	return ret;
2608 }
2609 EXPORT_SYMBOL(kmem_cache_alloc_node);
2610 
2611 #ifdef CONFIG_TRACING
2612 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2613 				    gfp_t gfpflags,
2614 				    int node, size_t size)
2615 {
2616 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2617 
2618 	trace_kmalloc_node(_RET_IP_, ret,
2619 			   size, s->size, gfpflags, node);
2620 
2621 	kasan_kmalloc(s, ret, size);
2622 	return ret;
2623 }
2624 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2625 #endif
2626 #endif
2627 
2628 /*
2629  * Slow path handling. This may still be called frequently since objects
2630  * have a longer lifetime than the cpu slabs in most processing loads.
2631  *
2632  * So we still attempt to reduce cache line usage. Just take the slab
2633  * lock and free the item. If there is no additional partial page
2634  * handling required then we can return immediately.
2635  */
2636 static void __slab_free(struct kmem_cache *s, struct page *page,
2637 			void *head, void *tail, int cnt,
2638 			unsigned long addr)
2639 
2640 {
2641 	void *prior;
2642 	int was_frozen;
2643 	struct page new;
2644 	unsigned long counters;
2645 	struct kmem_cache_node *n = NULL;
2646 	unsigned long uninitialized_var(flags);
2647 
2648 	stat(s, FREE_SLOWPATH);
2649 
2650 	if (kmem_cache_debug(s) &&
2651 	    !(n = free_debug_processing(s, page, head, tail, cnt,
2652 					addr, &flags)))
2653 		return;
2654 
2655 	do {
2656 		if (unlikely(n)) {
2657 			spin_unlock_irqrestore(&n->list_lock, flags);
2658 			n = NULL;
2659 		}
2660 		prior = page->freelist;
2661 		counters = page->counters;
2662 		set_freepointer(s, tail, prior);
2663 		new.counters = counters;
2664 		was_frozen = new.frozen;
2665 		new.inuse -= cnt;
2666 		if ((!new.inuse || !prior) && !was_frozen) {
2667 
2668 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2669 
2670 				/*
2671 				 * Slab was on no list before and will be
2672 				 * partially empty
2673 				 * We can defer the list move and instead
2674 				 * freeze it.
2675 				 */
2676 				new.frozen = 1;
2677 
2678 			} else { /* Needs to be taken off a list */
2679 
2680 				n = get_node(s, page_to_nid(page));
2681 				/*
2682 				 * Speculatively acquire the list_lock.
2683 				 * If the cmpxchg does not succeed then we may
2684 				 * drop the list_lock without any processing.
2685 				 *
2686 				 * Otherwise the list_lock will synchronize with
2687 				 * other processors updating the list of slabs.
2688 				 */
2689 				spin_lock_irqsave(&n->list_lock, flags);
2690 
2691 			}
2692 		}
2693 
2694 	} while (!cmpxchg_double_slab(s, page,
2695 		prior, counters,
2696 		head, new.counters,
2697 		"__slab_free"));
2698 
2699 	if (likely(!n)) {
2700 
2701 		/*
2702 		 * If we just froze the page then put it onto the
2703 		 * per cpu partial list.
2704 		 */
2705 		if (new.frozen && !was_frozen) {
2706 			put_cpu_partial(s, page, 1);
2707 			stat(s, CPU_PARTIAL_FREE);
2708 		}
2709 		/*
2710 		 * The list lock was not taken therefore no list
2711 		 * activity can be necessary.
2712 		 */
2713 		if (was_frozen)
2714 			stat(s, FREE_FROZEN);
2715 		return;
2716 	}
2717 
2718 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2719 		goto slab_empty;
2720 
2721 	/*
2722 	 * Objects left in the slab. If it was not on the partial list before
2723 	 * then add it.
2724 	 */
2725 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2726 		if (kmem_cache_debug(s))
2727 			remove_full(s, n, page);
2728 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2729 		stat(s, FREE_ADD_PARTIAL);
2730 	}
2731 	spin_unlock_irqrestore(&n->list_lock, flags);
2732 	return;
2733 
2734 slab_empty:
2735 	if (prior) {
2736 		/*
2737 		 * Slab on the partial list.
2738 		 */
2739 		remove_partial(n, page);
2740 		stat(s, FREE_REMOVE_PARTIAL);
2741 	} else {
2742 		/* Slab must be on the full list */
2743 		remove_full(s, n, page);
2744 	}
2745 
2746 	spin_unlock_irqrestore(&n->list_lock, flags);
2747 	stat(s, FREE_SLAB);
2748 	discard_slab(s, page);
2749 }
2750 
2751 /*
2752  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2753  * can perform fastpath freeing without additional function calls.
2754  *
2755  * The fastpath is only possible if we are freeing to the current cpu slab
2756  * of this processor. This typically the case if we have just allocated
2757  * the item before.
2758  *
2759  * If fastpath is not possible then fall back to __slab_free where we deal
2760  * with all sorts of special processing.
2761  *
2762  * Bulk free of a freelist with several objects (all pointing to the
2763  * same page) possible by specifying head and tail ptr, plus objects
2764  * count (cnt). Bulk free indicated by tail pointer being set.
2765  */
2766 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2767 				      void *head, void *tail, int cnt,
2768 				      unsigned long addr)
2769 {
2770 	void *tail_obj = tail ? : head;
2771 	struct kmem_cache_cpu *c;
2772 	unsigned long tid;
2773 
2774 	slab_free_freelist_hook(s, head, tail);
2775 
2776 redo:
2777 	/*
2778 	 * Determine the currently cpus per cpu slab.
2779 	 * The cpu may change afterward. However that does not matter since
2780 	 * data is retrieved via this pointer. If we are on the same cpu
2781 	 * during the cmpxchg then the free will succeed.
2782 	 */
2783 	do {
2784 		tid = this_cpu_read(s->cpu_slab->tid);
2785 		c = raw_cpu_ptr(s->cpu_slab);
2786 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2787 		 unlikely(tid != READ_ONCE(c->tid)));
2788 
2789 	/* Same with comment on barrier() in slab_alloc_node() */
2790 	barrier();
2791 
2792 	if (likely(page == c->page)) {
2793 		set_freepointer(s, tail_obj, c->freelist);
2794 
2795 		if (unlikely(!this_cpu_cmpxchg_double(
2796 				s->cpu_slab->freelist, s->cpu_slab->tid,
2797 				c->freelist, tid,
2798 				head, next_tid(tid)))) {
2799 
2800 			note_cmpxchg_failure("slab_free", s, tid);
2801 			goto redo;
2802 		}
2803 		stat(s, FREE_FASTPATH);
2804 	} else
2805 		__slab_free(s, page, head, tail_obj, cnt, addr);
2806 
2807 }
2808 
2809 void kmem_cache_free(struct kmem_cache *s, void *x)
2810 {
2811 	s = cache_from_obj(s, x);
2812 	if (!s)
2813 		return;
2814 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2815 	trace_kmem_cache_free(_RET_IP_, x);
2816 }
2817 EXPORT_SYMBOL(kmem_cache_free);
2818 
2819 struct detached_freelist {
2820 	struct page *page;
2821 	void *tail;
2822 	void *freelist;
2823 	int cnt;
2824 };
2825 
2826 /*
2827  * This function progressively scans the array with free objects (with
2828  * a limited look ahead) and extract objects belonging to the same
2829  * page.  It builds a detached freelist directly within the given
2830  * page/objects.  This can happen without any need for
2831  * synchronization, because the objects are owned by running process.
2832  * The freelist is build up as a single linked list in the objects.
2833  * The idea is, that this detached freelist can then be bulk
2834  * transferred to the real freelist(s), but only requiring a single
2835  * synchronization primitive.  Look ahead in the array is limited due
2836  * to performance reasons.
2837  */
2838 static int build_detached_freelist(struct kmem_cache *s, size_t size,
2839 				   void **p, struct detached_freelist *df)
2840 {
2841 	size_t first_skipped_index = 0;
2842 	int lookahead = 3;
2843 	void *object;
2844 
2845 	/* Always re-init detached_freelist */
2846 	df->page = NULL;
2847 
2848 	do {
2849 		object = p[--size];
2850 	} while (!object && size);
2851 
2852 	if (!object)
2853 		return 0;
2854 
2855 	/* Start new detached freelist */
2856 	set_freepointer(s, object, NULL);
2857 	df->page = virt_to_head_page(object);
2858 	df->tail = object;
2859 	df->freelist = object;
2860 	p[size] = NULL; /* mark object processed */
2861 	df->cnt = 1;
2862 
2863 	while (size) {
2864 		object = p[--size];
2865 		if (!object)
2866 			continue; /* Skip processed objects */
2867 
2868 		/* df->page is always set at this point */
2869 		if (df->page == virt_to_head_page(object)) {
2870 			/* Opportunity build freelist */
2871 			set_freepointer(s, object, df->freelist);
2872 			df->freelist = object;
2873 			df->cnt++;
2874 			p[size] = NULL; /* mark object processed */
2875 
2876 			continue;
2877 		}
2878 
2879 		/* Limit look ahead search */
2880 		if (!--lookahead)
2881 			break;
2882 
2883 		if (!first_skipped_index)
2884 			first_skipped_index = size + 1;
2885 	}
2886 
2887 	return first_skipped_index;
2888 }
2889 
2890 
2891 /* Note that interrupts must be enabled when calling this function. */
2892 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
2893 {
2894 	if (WARN_ON(!size))
2895 		return;
2896 
2897 	do {
2898 		struct detached_freelist df;
2899 		struct kmem_cache *s;
2900 
2901 		/* Support for memcg */
2902 		s = cache_from_obj(orig_s, p[size - 1]);
2903 
2904 		size = build_detached_freelist(s, size, p, &df);
2905 		if (unlikely(!df.page))
2906 			continue;
2907 
2908 		slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
2909 	} while (likely(size));
2910 }
2911 EXPORT_SYMBOL(kmem_cache_free_bulk);
2912 
2913 /* Note that interrupts must be enabled when calling this function. */
2914 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2915 			  void **p)
2916 {
2917 	struct kmem_cache_cpu *c;
2918 	int i;
2919 
2920 	/* memcg and kmem_cache debug support */
2921 	s = slab_pre_alloc_hook(s, flags);
2922 	if (unlikely(!s))
2923 		return false;
2924 	/*
2925 	 * Drain objects in the per cpu slab, while disabling local
2926 	 * IRQs, which protects against PREEMPT and interrupts
2927 	 * handlers invoking normal fastpath.
2928 	 */
2929 	local_irq_disable();
2930 	c = this_cpu_ptr(s->cpu_slab);
2931 
2932 	for (i = 0; i < size; i++) {
2933 		void *object = c->freelist;
2934 
2935 		if (unlikely(!object)) {
2936 			/*
2937 			 * Invoking slow path likely have side-effect
2938 			 * of re-populating per CPU c->freelist
2939 			 */
2940 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2941 					    _RET_IP_, c);
2942 			if (unlikely(!p[i]))
2943 				goto error;
2944 
2945 			c = this_cpu_ptr(s->cpu_slab);
2946 			continue; /* goto for-loop */
2947 		}
2948 		c->freelist = get_freepointer(s, object);
2949 		p[i] = object;
2950 	}
2951 	c->tid = next_tid(c->tid);
2952 	local_irq_enable();
2953 
2954 	/* Clear memory outside IRQ disabled fastpath loop */
2955 	if (unlikely(flags & __GFP_ZERO)) {
2956 		int j;
2957 
2958 		for (j = 0; j < i; j++)
2959 			memset(p[j], 0, s->object_size);
2960 	}
2961 
2962 	/* memcg and kmem_cache debug support */
2963 	slab_post_alloc_hook(s, flags, size, p);
2964 	return i;
2965 error:
2966 	local_irq_enable();
2967 	slab_post_alloc_hook(s, flags, i, p);
2968 	__kmem_cache_free_bulk(s, i, p);
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2972 
2973 
2974 /*
2975  * Object placement in a slab is made very easy because we always start at
2976  * offset 0. If we tune the size of the object to the alignment then we can
2977  * get the required alignment by putting one properly sized object after
2978  * another.
2979  *
2980  * Notice that the allocation order determines the sizes of the per cpu
2981  * caches. Each processor has always one slab available for allocations.
2982  * Increasing the allocation order reduces the number of times that slabs
2983  * must be moved on and off the partial lists and is therefore a factor in
2984  * locking overhead.
2985  */
2986 
2987 /*
2988  * Mininum / Maximum order of slab pages. This influences locking overhead
2989  * and slab fragmentation. A higher order reduces the number of partial slabs
2990  * and increases the number of allocations possible without having to
2991  * take the list_lock.
2992  */
2993 static int slub_min_order;
2994 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2995 static int slub_min_objects;
2996 
2997 /*
2998  * Calculate the order of allocation given an slab object size.
2999  *
3000  * The order of allocation has significant impact on performance and other
3001  * system components. Generally order 0 allocations should be preferred since
3002  * order 0 does not cause fragmentation in the page allocator. Larger objects
3003  * be problematic to put into order 0 slabs because there may be too much
3004  * unused space left. We go to a higher order if more than 1/16th of the slab
3005  * would be wasted.
3006  *
3007  * In order to reach satisfactory performance we must ensure that a minimum
3008  * number of objects is in one slab. Otherwise we may generate too much
3009  * activity on the partial lists which requires taking the list_lock. This is
3010  * less a concern for large slabs though which are rarely used.
3011  *
3012  * slub_max_order specifies the order where we begin to stop considering the
3013  * number of objects in a slab as critical. If we reach slub_max_order then
3014  * we try to keep the page order as low as possible. So we accept more waste
3015  * of space in favor of a small page order.
3016  *
3017  * Higher order allocations also allow the placement of more objects in a
3018  * slab and thereby reduce object handling overhead. If the user has
3019  * requested a higher mininum order then we start with that one instead of
3020  * the smallest order which will fit the object.
3021  */
3022 static inline int slab_order(int size, int min_objects,
3023 				int max_order, int fract_leftover, int reserved)
3024 {
3025 	int order;
3026 	int rem;
3027 	int min_order = slub_min_order;
3028 
3029 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3030 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3031 
3032 	for (order = max(min_order, get_order(min_objects * size + reserved));
3033 			order <= max_order; order++) {
3034 
3035 		unsigned long slab_size = PAGE_SIZE << order;
3036 
3037 		rem = (slab_size - reserved) % size;
3038 
3039 		if (rem <= slab_size / fract_leftover)
3040 			break;
3041 	}
3042 
3043 	return order;
3044 }
3045 
3046 static inline int calculate_order(int size, int reserved)
3047 {
3048 	int order;
3049 	int min_objects;
3050 	int fraction;
3051 	int max_objects;
3052 
3053 	/*
3054 	 * Attempt to find best configuration for a slab. This
3055 	 * works by first attempting to generate a layout with
3056 	 * the best configuration and backing off gradually.
3057 	 *
3058 	 * First we increase the acceptable waste in a slab. Then
3059 	 * we reduce the minimum objects required in a slab.
3060 	 */
3061 	min_objects = slub_min_objects;
3062 	if (!min_objects)
3063 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3064 	max_objects = order_objects(slub_max_order, size, reserved);
3065 	min_objects = min(min_objects, max_objects);
3066 
3067 	while (min_objects > 1) {
3068 		fraction = 16;
3069 		while (fraction >= 4) {
3070 			order = slab_order(size, min_objects,
3071 					slub_max_order, fraction, reserved);
3072 			if (order <= slub_max_order)
3073 				return order;
3074 			fraction /= 2;
3075 		}
3076 		min_objects--;
3077 	}
3078 
3079 	/*
3080 	 * We were unable to place multiple objects in a slab. Now
3081 	 * lets see if we can place a single object there.
3082 	 */
3083 	order = slab_order(size, 1, slub_max_order, 1, reserved);
3084 	if (order <= slub_max_order)
3085 		return order;
3086 
3087 	/*
3088 	 * Doh this slab cannot be placed using slub_max_order.
3089 	 */
3090 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3091 	if (order < MAX_ORDER)
3092 		return order;
3093 	return -ENOSYS;
3094 }
3095 
3096 static void
3097 init_kmem_cache_node(struct kmem_cache_node *n)
3098 {
3099 	n->nr_partial = 0;
3100 	spin_lock_init(&n->list_lock);
3101 	INIT_LIST_HEAD(&n->partial);
3102 #ifdef CONFIG_SLUB_DEBUG
3103 	atomic_long_set(&n->nr_slabs, 0);
3104 	atomic_long_set(&n->total_objects, 0);
3105 	INIT_LIST_HEAD(&n->full);
3106 #endif
3107 }
3108 
3109 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3110 {
3111 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3112 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3113 
3114 	/*
3115 	 * Must align to double word boundary for the double cmpxchg
3116 	 * instructions to work; see __pcpu_double_call_return_bool().
3117 	 */
3118 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3119 				     2 * sizeof(void *));
3120 
3121 	if (!s->cpu_slab)
3122 		return 0;
3123 
3124 	init_kmem_cache_cpus(s);
3125 
3126 	return 1;
3127 }
3128 
3129 static struct kmem_cache *kmem_cache_node;
3130 
3131 /*
3132  * No kmalloc_node yet so do it by hand. We know that this is the first
3133  * slab on the node for this slabcache. There are no concurrent accesses
3134  * possible.
3135  *
3136  * Note that this function only works on the kmem_cache_node
3137  * when allocating for the kmem_cache_node. This is used for bootstrapping
3138  * memory on a fresh node that has no slab structures yet.
3139  */
3140 static void early_kmem_cache_node_alloc(int node)
3141 {
3142 	struct page *page;
3143 	struct kmem_cache_node *n;
3144 
3145 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3146 
3147 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3148 
3149 	BUG_ON(!page);
3150 	if (page_to_nid(page) != node) {
3151 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3152 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3153 	}
3154 
3155 	n = page->freelist;
3156 	BUG_ON(!n);
3157 	page->freelist = get_freepointer(kmem_cache_node, n);
3158 	page->inuse = 1;
3159 	page->frozen = 0;
3160 	kmem_cache_node->node[node] = n;
3161 #ifdef CONFIG_SLUB_DEBUG
3162 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3163 	init_tracking(kmem_cache_node, n);
3164 #endif
3165 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3166 	init_kmem_cache_node(n);
3167 	inc_slabs_node(kmem_cache_node, node, page->objects);
3168 
3169 	/*
3170 	 * No locks need to be taken here as it has just been
3171 	 * initialized and there is no concurrent access.
3172 	 */
3173 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3174 }
3175 
3176 static void free_kmem_cache_nodes(struct kmem_cache *s)
3177 {
3178 	int node;
3179 	struct kmem_cache_node *n;
3180 
3181 	for_each_kmem_cache_node(s, node, n) {
3182 		kmem_cache_free(kmem_cache_node, n);
3183 		s->node[node] = NULL;
3184 	}
3185 }
3186 
3187 static int init_kmem_cache_nodes(struct kmem_cache *s)
3188 {
3189 	int node;
3190 
3191 	for_each_node_state(node, N_NORMAL_MEMORY) {
3192 		struct kmem_cache_node *n;
3193 
3194 		if (slab_state == DOWN) {
3195 			early_kmem_cache_node_alloc(node);
3196 			continue;
3197 		}
3198 		n = kmem_cache_alloc_node(kmem_cache_node,
3199 						GFP_KERNEL, node);
3200 
3201 		if (!n) {
3202 			free_kmem_cache_nodes(s);
3203 			return 0;
3204 		}
3205 
3206 		s->node[node] = n;
3207 		init_kmem_cache_node(n);
3208 	}
3209 	return 1;
3210 }
3211 
3212 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3213 {
3214 	if (min < MIN_PARTIAL)
3215 		min = MIN_PARTIAL;
3216 	else if (min > MAX_PARTIAL)
3217 		min = MAX_PARTIAL;
3218 	s->min_partial = min;
3219 }
3220 
3221 /*
3222  * calculate_sizes() determines the order and the distribution of data within
3223  * a slab object.
3224  */
3225 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3226 {
3227 	unsigned long flags = s->flags;
3228 	unsigned long size = s->object_size;
3229 	int order;
3230 
3231 	/*
3232 	 * Round up object size to the next word boundary. We can only
3233 	 * place the free pointer at word boundaries and this determines
3234 	 * the possible location of the free pointer.
3235 	 */
3236 	size = ALIGN(size, sizeof(void *));
3237 
3238 #ifdef CONFIG_SLUB_DEBUG
3239 	/*
3240 	 * Determine if we can poison the object itself. If the user of
3241 	 * the slab may touch the object after free or before allocation
3242 	 * then we should never poison the object itself.
3243 	 */
3244 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3245 			!s->ctor)
3246 		s->flags |= __OBJECT_POISON;
3247 	else
3248 		s->flags &= ~__OBJECT_POISON;
3249 
3250 
3251 	/*
3252 	 * If we are Redzoning then check if there is some space between the
3253 	 * end of the object and the free pointer. If not then add an
3254 	 * additional word to have some bytes to store Redzone information.
3255 	 */
3256 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3257 		size += sizeof(void *);
3258 #endif
3259 
3260 	/*
3261 	 * With that we have determined the number of bytes in actual use
3262 	 * by the object. This is the potential offset to the free pointer.
3263 	 */
3264 	s->inuse = size;
3265 
3266 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3267 		s->ctor)) {
3268 		/*
3269 		 * Relocate free pointer after the object if it is not
3270 		 * permitted to overwrite the first word of the object on
3271 		 * kmem_cache_free.
3272 		 *
3273 		 * This is the case if we do RCU, have a constructor or
3274 		 * destructor or are poisoning the objects.
3275 		 */
3276 		s->offset = size;
3277 		size += sizeof(void *);
3278 	}
3279 
3280 #ifdef CONFIG_SLUB_DEBUG
3281 	if (flags & SLAB_STORE_USER)
3282 		/*
3283 		 * Need to store information about allocs and frees after
3284 		 * the object.
3285 		 */
3286 		size += 2 * sizeof(struct track);
3287 
3288 	if (flags & SLAB_RED_ZONE)
3289 		/*
3290 		 * Add some empty padding so that we can catch
3291 		 * overwrites from earlier objects rather than let
3292 		 * tracking information or the free pointer be
3293 		 * corrupted if a user writes before the start
3294 		 * of the object.
3295 		 */
3296 		size += sizeof(void *);
3297 #endif
3298 
3299 	/*
3300 	 * SLUB stores one object immediately after another beginning from
3301 	 * offset 0. In order to align the objects we have to simply size
3302 	 * each object to conform to the alignment.
3303 	 */
3304 	size = ALIGN(size, s->align);
3305 	s->size = size;
3306 	if (forced_order >= 0)
3307 		order = forced_order;
3308 	else
3309 		order = calculate_order(size, s->reserved);
3310 
3311 	if (order < 0)
3312 		return 0;
3313 
3314 	s->allocflags = 0;
3315 	if (order)
3316 		s->allocflags |= __GFP_COMP;
3317 
3318 	if (s->flags & SLAB_CACHE_DMA)
3319 		s->allocflags |= GFP_DMA;
3320 
3321 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3322 		s->allocflags |= __GFP_RECLAIMABLE;
3323 
3324 	/*
3325 	 * Determine the number of objects per slab
3326 	 */
3327 	s->oo = oo_make(order, size, s->reserved);
3328 	s->min = oo_make(get_order(size), size, s->reserved);
3329 	if (oo_objects(s->oo) > oo_objects(s->max))
3330 		s->max = s->oo;
3331 
3332 	return !!oo_objects(s->oo);
3333 }
3334 
3335 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3336 {
3337 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3338 	s->reserved = 0;
3339 
3340 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3341 		s->reserved = sizeof(struct rcu_head);
3342 
3343 	if (!calculate_sizes(s, -1))
3344 		goto error;
3345 	if (disable_higher_order_debug) {
3346 		/*
3347 		 * Disable debugging flags that store metadata if the min slab
3348 		 * order increased.
3349 		 */
3350 		if (get_order(s->size) > get_order(s->object_size)) {
3351 			s->flags &= ~DEBUG_METADATA_FLAGS;
3352 			s->offset = 0;
3353 			if (!calculate_sizes(s, -1))
3354 				goto error;
3355 		}
3356 	}
3357 
3358 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3359     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3360 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3361 		/* Enable fast mode */
3362 		s->flags |= __CMPXCHG_DOUBLE;
3363 #endif
3364 
3365 	/*
3366 	 * The larger the object size is, the more pages we want on the partial
3367 	 * list to avoid pounding the page allocator excessively.
3368 	 */
3369 	set_min_partial(s, ilog2(s->size) / 2);
3370 
3371 	/*
3372 	 * cpu_partial determined the maximum number of objects kept in the
3373 	 * per cpu partial lists of a processor.
3374 	 *
3375 	 * Per cpu partial lists mainly contain slabs that just have one
3376 	 * object freed. If they are used for allocation then they can be
3377 	 * filled up again with minimal effort. The slab will never hit the
3378 	 * per node partial lists and therefore no locking will be required.
3379 	 *
3380 	 * This setting also determines
3381 	 *
3382 	 * A) The number of objects from per cpu partial slabs dumped to the
3383 	 *    per node list when we reach the limit.
3384 	 * B) The number of objects in cpu partial slabs to extract from the
3385 	 *    per node list when we run out of per cpu objects. We only fetch
3386 	 *    50% to keep some capacity around for frees.
3387 	 */
3388 	if (!kmem_cache_has_cpu_partial(s))
3389 		s->cpu_partial = 0;
3390 	else if (s->size >= PAGE_SIZE)
3391 		s->cpu_partial = 2;
3392 	else if (s->size >= 1024)
3393 		s->cpu_partial = 6;
3394 	else if (s->size >= 256)
3395 		s->cpu_partial = 13;
3396 	else
3397 		s->cpu_partial = 30;
3398 
3399 #ifdef CONFIG_NUMA
3400 	s->remote_node_defrag_ratio = 1000;
3401 #endif
3402 	if (!init_kmem_cache_nodes(s))
3403 		goto error;
3404 
3405 	if (alloc_kmem_cache_cpus(s))
3406 		return 0;
3407 
3408 	free_kmem_cache_nodes(s);
3409 error:
3410 	if (flags & SLAB_PANIC)
3411 		panic("Cannot create slab %s size=%lu realsize=%u "
3412 			"order=%u offset=%u flags=%lx\n",
3413 			s->name, (unsigned long)s->size, s->size,
3414 			oo_order(s->oo), s->offset, flags);
3415 	return -EINVAL;
3416 }
3417 
3418 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3419 							const char *text)
3420 {
3421 #ifdef CONFIG_SLUB_DEBUG
3422 	void *addr = page_address(page);
3423 	void *p;
3424 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3425 				     sizeof(long), GFP_ATOMIC);
3426 	if (!map)
3427 		return;
3428 	slab_err(s, page, text, s->name);
3429 	slab_lock(page);
3430 
3431 	get_map(s, page, map);
3432 	for_each_object(p, s, addr, page->objects) {
3433 
3434 		if (!test_bit(slab_index(p, s, addr), map)) {
3435 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3436 			print_tracking(s, p);
3437 		}
3438 	}
3439 	slab_unlock(page);
3440 	kfree(map);
3441 #endif
3442 }
3443 
3444 /*
3445  * Attempt to free all partial slabs on a node.
3446  * This is called from kmem_cache_close(). We must be the last thread
3447  * using the cache and therefore we do not need to lock anymore.
3448  */
3449 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3450 {
3451 	struct page *page, *h;
3452 
3453 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3454 		if (!page->inuse) {
3455 			__remove_partial(n, page);
3456 			discard_slab(s, page);
3457 		} else {
3458 			list_slab_objects(s, page,
3459 			"Objects remaining in %s on kmem_cache_close()");
3460 		}
3461 	}
3462 }
3463 
3464 /*
3465  * Release all resources used by a slab cache.
3466  */
3467 static inline int kmem_cache_close(struct kmem_cache *s)
3468 {
3469 	int node;
3470 	struct kmem_cache_node *n;
3471 
3472 	flush_all(s);
3473 	/* Attempt to free all objects */
3474 	for_each_kmem_cache_node(s, node, n) {
3475 		free_partial(s, n);
3476 		if (n->nr_partial || slabs_node(s, node))
3477 			return 1;
3478 	}
3479 	free_percpu(s->cpu_slab);
3480 	free_kmem_cache_nodes(s);
3481 	return 0;
3482 }
3483 
3484 int __kmem_cache_shutdown(struct kmem_cache *s)
3485 {
3486 	return kmem_cache_close(s);
3487 }
3488 
3489 /********************************************************************
3490  *		Kmalloc subsystem
3491  *******************************************************************/
3492 
3493 static int __init setup_slub_min_order(char *str)
3494 {
3495 	get_option(&str, &slub_min_order);
3496 
3497 	return 1;
3498 }
3499 
3500 __setup("slub_min_order=", setup_slub_min_order);
3501 
3502 static int __init setup_slub_max_order(char *str)
3503 {
3504 	get_option(&str, &slub_max_order);
3505 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3506 
3507 	return 1;
3508 }
3509 
3510 __setup("slub_max_order=", setup_slub_max_order);
3511 
3512 static int __init setup_slub_min_objects(char *str)
3513 {
3514 	get_option(&str, &slub_min_objects);
3515 
3516 	return 1;
3517 }
3518 
3519 __setup("slub_min_objects=", setup_slub_min_objects);
3520 
3521 void *__kmalloc(size_t size, gfp_t flags)
3522 {
3523 	struct kmem_cache *s;
3524 	void *ret;
3525 
3526 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3527 		return kmalloc_large(size, flags);
3528 
3529 	s = kmalloc_slab(size, flags);
3530 
3531 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3532 		return s;
3533 
3534 	ret = slab_alloc(s, flags, _RET_IP_);
3535 
3536 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3537 
3538 	kasan_kmalloc(s, ret, size);
3539 
3540 	return ret;
3541 }
3542 EXPORT_SYMBOL(__kmalloc);
3543 
3544 #ifdef CONFIG_NUMA
3545 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3546 {
3547 	struct page *page;
3548 	void *ptr = NULL;
3549 
3550 	flags |= __GFP_COMP | __GFP_NOTRACK;
3551 	page = alloc_kmem_pages_node(node, flags, get_order(size));
3552 	if (page)
3553 		ptr = page_address(page);
3554 
3555 	kmalloc_large_node_hook(ptr, size, flags);
3556 	return ptr;
3557 }
3558 
3559 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3560 {
3561 	struct kmem_cache *s;
3562 	void *ret;
3563 
3564 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3565 		ret = kmalloc_large_node(size, flags, node);
3566 
3567 		trace_kmalloc_node(_RET_IP_, ret,
3568 				   size, PAGE_SIZE << get_order(size),
3569 				   flags, node);
3570 
3571 		return ret;
3572 	}
3573 
3574 	s = kmalloc_slab(size, flags);
3575 
3576 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3577 		return s;
3578 
3579 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3580 
3581 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3582 
3583 	kasan_kmalloc(s, ret, size);
3584 
3585 	return ret;
3586 }
3587 EXPORT_SYMBOL(__kmalloc_node);
3588 #endif
3589 
3590 static size_t __ksize(const void *object)
3591 {
3592 	struct page *page;
3593 
3594 	if (unlikely(object == ZERO_SIZE_PTR))
3595 		return 0;
3596 
3597 	page = virt_to_head_page(object);
3598 
3599 	if (unlikely(!PageSlab(page))) {
3600 		WARN_ON(!PageCompound(page));
3601 		return PAGE_SIZE << compound_order(page);
3602 	}
3603 
3604 	return slab_ksize(page->slab_cache);
3605 }
3606 
3607 size_t ksize(const void *object)
3608 {
3609 	size_t size = __ksize(object);
3610 	/* We assume that ksize callers could use whole allocated area,
3611 	   so we need unpoison this area. */
3612 	kasan_krealloc(object, size);
3613 	return size;
3614 }
3615 EXPORT_SYMBOL(ksize);
3616 
3617 void kfree(const void *x)
3618 {
3619 	struct page *page;
3620 	void *object = (void *)x;
3621 
3622 	trace_kfree(_RET_IP_, x);
3623 
3624 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3625 		return;
3626 
3627 	page = virt_to_head_page(x);
3628 	if (unlikely(!PageSlab(page))) {
3629 		BUG_ON(!PageCompound(page));
3630 		kfree_hook(x);
3631 		__free_kmem_pages(page, compound_order(page));
3632 		return;
3633 	}
3634 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3635 }
3636 EXPORT_SYMBOL(kfree);
3637 
3638 #define SHRINK_PROMOTE_MAX 32
3639 
3640 /*
3641  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3642  * up most to the head of the partial lists. New allocations will then
3643  * fill those up and thus they can be removed from the partial lists.
3644  *
3645  * The slabs with the least items are placed last. This results in them
3646  * being allocated from last increasing the chance that the last objects
3647  * are freed in them.
3648  */
3649 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3650 {
3651 	int node;
3652 	int i;
3653 	struct kmem_cache_node *n;
3654 	struct page *page;
3655 	struct page *t;
3656 	struct list_head discard;
3657 	struct list_head promote[SHRINK_PROMOTE_MAX];
3658 	unsigned long flags;
3659 	int ret = 0;
3660 
3661 	if (deactivate) {
3662 		/*
3663 		 * Disable empty slabs caching. Used to avoid pinning offline
3664 		 * memory cgroups by kmem pages that can be freed.
3665 		 */
3666 		s->cpu_partial = 0;
3667 		s->min_partial = 0;
3668 
3669 		/*
3670 		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3671 		 * so we have to make sure the change is visible.
3672 		 */
3673 		kick_all_cpus_sync();
3674 	}
3675 
3676 	flush_all(s);
3677 	for_each_kmem_cache_node(s, node, n) {
3678 		INIT_LIST_HEAD(&discard);
3679 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3680 			INIT_LIST_HEAD(promote + i);
3681 
3682 		spin_lock_irqsave(&n->list_lock, flags);
3683 
3684 		/*
3685 		 * Build lists of slabs to discard or promote.
3686 		 *
3687 		 * Note that concurrent frees may occur while we hold the
3688 		 * list_lock. page->inuse here is the upper limit.
3689 		 */
3690 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3691 			int free = page->objects - page->inuse;
3692 
3693 			/* Do not reread page->inuse */
3694 			barrier();
3695 
3696 			/* We do not keep full slabs on the list */
3697 			BUG_ON(free <= 0);
3698 
3699 			if (free == page->objects) {
3700 				list_move(&page->lru, &discard);
3701 				n->nr_partial--;
3702 			} else if (free <= SHRINK_PROMOTE_MAX)
3703 				list_move(&page->lru, promote + free - 1);
3704 		}
3705 
3706 		/*
3707 		 * Promote the slabs filled up most to the head of the
3708 		 * partial list.
3709 		 */
3710 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3711 			list_splice(promote + i, &n->partial);
3712 
3713 		spin_unlock_irqrestore(&n->list_lock, flags);
3714 
3715 		/* Release empty slabs */
3716 		list_for_each_entry_safe(page, t, &discard, lru)
3717 			discard_slab(s, page);
3718 
3719 		if (slabs_node(s, node))
3720 			ret = 1;
3721 	}
3722 
3723 	return ret;
3724 }
3725 
3726 static int slab_mem_going_offline_callback(void *arg)
3727 {
3728 	struct kmem_cache *s;
3729 
3730 	mutex_lock(&slab_mutex);
3731 	list_for_each_entry(s, &slab_caches, list)
3732 		__kmem_cache_shrink(s, false);
3733 	mutex_unlock(&slab_mutex);
3734 
3735 	return 0;
3736 }
3737 
3738 static void slab_mem_offline_callback(void *arg)
3739 {
3740 	struct kmem_cache_node *n;
3741 	struct kmem_cache *s;
3742 	struct memory_notify *marg = arg;
3743 	int offline_node;
3744 
3745 	offline_node = marg->status_change_nid_normal;
3746 
3747 	/*
3748 	 * If the node still has available memory. we need kmem_cache_node
3749 	 * for it yet.
3750 	 */
3751 	if (offline_node < 0)
3752 		return;
3753 
3754 	mutex_lock(&slab_mutex);
3755 	list_for_each_entry(s, &slab_caches, list) {
3756 		n = get_node(s, offline_node);
3757 		if (n) {
3758 			/*
3759 			 * if n->nr_slabs > 0, slabs still exist on the node
3760 			 * that is going down. We were unable to free them,
3761 			 * and offline_pages() function shouldn't call this
3762 			 * callback. So, we must fail.
3763 			 */
3764 			BUG_ON(slabs_node(s, offline_node));
3765 
3766 			s->node[offline_node] = NULL;
3767 			kmem_cache_free(kmem_cache_node, n);
3768 		}
3769 	}
3770 	mutex_unlock(&slab_mutex);
3771 }
3772 
3773 static int slab_mem_going_online_callback(void *arg)
3774 {
3775 	struct kmem_cache_node *n;
3776 	struct kmem_cache *s;
3777 	struct memory_notify *marg = arg;
3778 	int nid = marg->status_change_nid_normal;
3779 	int ret = 0;
3780 
3781 	/*
3782 	 * If the node's memory is already available, then kmem_cache_node is
3783 	 * already created. Nothing to do.
3784 	 */
3785 	if (nid < 0)
3786 		return 0;
3787 
3788 	/*
3789 	 * We are bringing a node online. No memory is available yet. We must
3790 	 * allocate a kmem_cache_node structure in order to bring the node
3791 	 * online.
3792 	 */
3793 	mutex_lock(&slab_mutex);
3794 	list_for_each_entry(s, &slab_caches, list) {
3795 		/*
3796 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3797 		 *      since memory is not yet available from the node that
3798 		 *      is brought up.
3799 		 */
3800 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3801 		if (!n) {
3802 			ret = -ENOMEM;
3803 			goto out;
3804 		}
3805 		init_kmem_cache_node(n);
3806 		s->node[nid] = n;
3807 	}
3808 out:
3809 	mutex_unlock(&slab_mutex);
3810 	return ret;
3811 }
3812 
3813 static int slab_memory_callback(struct notifier_block *self,
3814 				unsigned long action, void *arg)
3815 {
3816 	int ret = 0;
3817 
3818 	switch (action) {
3819 	case MEM_GOING_ONLINE:
3820 		ret = slab_mem_going_online_callback(arg);
3821 		break;
3822 	case MEM_GOING_OFFLINE:
3823 		ret = slab_mem_going_offline_callback(arg);
3824 		break;
3825 	case MEM_OFFLINE:
3826 	case MEM_CANCEL_ONLINE:
3827 		slab_mem_offline_callback(arg);
3828 		break;
3829 	case MEM_ONLINE:
3830 	case MEM_CANCEL_OFFLINE:
3831 		break;
3832 	}
3833 	if (ret)
3834 		ret = notifier_from_errno(ret);
3835 	else
3836 		ret = NOTIFY_OK;
3837 	return ret;
3838 }
3839 
3840 static struct notifier_block slab_memory_callback_nb = {
3841 	.notifier_call = slab_memory_callback,
3842 	.priority = SLAB_CALLBACK_PRI,
3843 };
3844 
3845 /********************************************************************
3846  *			Basic setup of slabs
3847  *******************************************************************/
3848 
3849 /*
3850  * Used for early kmem_cache structures that were allocated using
3851  * the page allocator. Allocate them properly then fix up the pointers
3852  * that may be pointing to the wrong kmem_cache structure.
3853  */
3854 
3855 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3856 {
3857 	int node;
3858 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3859 	struct kmem_cache_node *n;
3860 
3861 	memcpy(s, static_cache, kmem_cache->object_size);
3862 
3863 	/*
3864 	 * This runs very early, and only the boot processor is supposed to be
3865 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3866 	 * IPIs around.
3867 	 */
3868 	__flush_cpu_slab(s, smp_processor_id());
3869 	for_each_kmem_cache_node(s, node, n) {
3870 		struct page *p;
3871 
3872 		list_for_each_entry(p, &n->partial, lru)
3873 			p->slab_cache = s;
3874 
3875 #ifdef CONFIG_SLUB_DEBUG
3876 		list_for_each_entry(p, &n->full, lru)
3877 			p->slab_cache = s;
3878 #endif
3879 	}
3880 	slab_init_memcg_params(s);
3881 	list_add(&s->list, &slab_caches);
3882 	return s;
3883 }
3884 
3885 void __init kmem_cache_init(void)
3886 {
3887 	static __initdata struct kmem_cache boot_kmem_cache,
3888 		boot_kmem_cache_node;
3889 
3890 	if (debug_guardpage_minorder())
3891 		slub_max_order = 0;
3892 
3893 	kmem_cache_node = &boot_kmem_cache_node;
3894 	kmem_cache = &boot_kmem_cache;
3895 
3896 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3897 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3898 
3899 	register_hotmemory_notifier(&slab_memory_callback_nb);
3900 
3901 	/* Able to allocate the per node structures */
3902 	slab_state = PARTIAL;
3903 
3904 	create_boot_cache(kmem_cache, "kmem_cache",
3905 			offsetof(struct kmem_cache, node) +
3906 				nr_node_ids * sizeof(struct kmem_cache_node *),
3907 		       SLAB_HWCACHE_ALIGN);
3908 
3909 	kmem_cache = bootstrap(&boot_kmem_cache);
3910 
3911 	/*
3912 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3913 	 * kmem_cache_node is separately allocated so no need to
3914 	 * update any list pointers.
3915 	 */
3916 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3917 
3918 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3919 	setup_kmalloc_cache_index_table();
3920 	create_kmalloc_caches(0);
3921 
3922 #ifdef CONFIG_SMP
3923 	register_cpu_notifier(&slab_notifier);
3924 #endif
3925 
3926 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3927 		cache_line_size(),
3928 		slub_min_order, slub_max_order, slub_min_objects,
3929 		nr_cpu_ids, nr_node_ids);
3930 }
3931 
3932 void __init kmem_cache_init_late(void)
3933 {
3934 }
3935 
3936 struct kmem_cache *
3937 __kmem_cache_alias(const char *name, size_t size, size_t align,
3938 		   unsigned long flags, void (*ctor)(void *))
3939 {
3940 	struct kmem_cache *s, *c;
3941 
3942 	s = find_mergeable(size, align, flags, name, ctor);
3943 	if (s) {
3944 		s->refcount++;
3945 
3946 		/*
3947 		 * Adjust the object sizes so that we clear
3948 		 * the complete object on kzalloc.
3949 		 */
3950 		s->object_size = max(s->object_size, (int)size);
3951 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3952 
3953 		for_each_memcg_cache(c, s) {
3954 			c->object_size = s->object_size;
3955 			c->inuse = max_t(int, c->inuse,
3956 					 ALIGN(size, sizeof(void *)));
3957 		}
3958 
3959 		if (sysfs_slab_alias(s, name)) {
3960 			s->refcount--;
3961 			s = NULL;
3962 		}
3963 	}
3964 
3965 	return s;
3966 }
3967 
3968 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3969 {
3970 	int err;
3971 
3972 	err = kmem_cache_open(s, flags);
3973 	if (err)
3974 		return err;
3975 
3976 	/* Mutex is not taken during early boot */
3977 	if (slab_state <= UP)
3978 		return 0;
3979 
3980 	memcg_propagate_slab_attrs(s);
3981 	err = sysfs_slab_add(s);
3982 	if (err)
3983 		kmem_cache_close(s);
3984 
3985 	return err;
3986 }
3987 
3988 #ifdef CONFIG_SMP
3989 /*
3990  * Use the cpu notifier to insure that the cpu slabs are flushed when
3991  * necessary.
3992  */
3993 static int slab_cpuup_callback(struct notifier_block *nfb,
3994 		unsigned long action, void *hcpu)
3995 {
3996 	long cpu = (long)hcpu;
3997 	struct kmem_cache *s;
3998 	unsigned long flags;
3999 
4000 	switch (action) {
4001 	case CPU_UP_CANCELED:
4002 	case CPU_UP_CANCELED_FROZEN:
4003 	case CPU_DEAD:
4004 	case CPU_DEAD_FROZEN:
4005 		mutex_lock(&slab_mutex);
4006 		list_for_each_entry(s, &slab_caches, list) {
4007 			local_irq_save(flags);
4008 			__flush_cpu_slab(s, cpu);
4009 			local_irq_restore(flags);
4010 		}
4011 		mutex_unlock(&slab_mutex);
4012 		break;
4013 	default:
4014 		break;
4015 	}
4016 	return NOTIFY_OK;
4017 }
4018 
4019 static struct notifier_block slab_notifier = {
4020 	.notifier_call = slab_cpuup_callback
4021 };
4022 
4023 #endif
4024 
4025 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4026 {
4027 	struct kmem_cache *s;
4028 	void *ret;
4029 
4030 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4031 		return kmalloc_large(size, gfpflags);
4032 
4033 	s = kmalloc_slab(size, gfpflags);
4034 
4035 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4036 		return s;
4037 
4038 	ret = slab_alloc(s, gfpflags, caller);
4039 
4040 	/* Honor the call site pointer we received. */
4041 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4042 
4043 	return ret;
4044 }
4045 
4046 #ifdef CONFIG_NUMA
4047 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4048 					int node, unsigned long caller)
4049 {
4050 	struct kmem_cache *s;
4051 	void *ret;
4052 
4053 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4054 		ret = kmalloc_large_node(size, gfpflags, node);
4055 
4056 		trace_kmalloc_node(caller, ret,
4057 				   size, PAGE_SIZE << get_order(size),
4058 				   gfpflags, node);
4059 
4060 		return ret;
4061 	}
4062 
4063 	s = kmalloc_slab(size, gfpflags);
4064 
4065 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4066 		return s;
4067 
4068 	ret = slab_alloc_node(s, gfpflags, node, caller);
4069 
4070 	/* Honor the call site pointer we received. */
4071 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4072 
4073 	return ret;
4074 }
4075 #endif
4076 
4077 #ifdef CONFIG_SYSFS
4078 static int count_inuse(struct page *page)
4079 {
4080 	return page->inuse;
4081 }
4082 
4083 static int count_total(struct page *page)
4084 {
4085 	return page->objects;
4086 }
4087 #endif
4088 
4089 #ifdef CONFIG_SLUB_DEBUG
4090 static int validate_slab(struct kmem_cache *s, struct page *page,
4091 						unsigned long *map)
4092 {
4093 	void *p;
4094 	void *addr = page_address(page);
4095 
4096 	if (!check_slab(s, page) ||
4097 			!on_freelist(s, page, NULL))
4098 		return 0;
4099 
4100 	/* Now we know that a valid freelist exists */
4101 	bitmap_zero(map, page->objects);
4102 
4103 	get_map(s, page, map);
4104 	for_each_object(p, s, addr, page->objects) {
4105 		if (test_bit(slab_index(p, s, addr), map))
4106 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4107 				return 0;
4108 	}
4109 
4110 	for_each_object(p, s, addr, page->objects)
4111 		if (!test_bit(slab_index(p, s, addr), map))
4112 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4113 				return 0;
4114 	return 1;
4115 }
4116 
4117 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4118 						unsigned long *map)
4119 {
4120 	slab_lock(page);
4121 	validate_slab(s, page, map);
4122 	slab_unlock(page);
4123 }
4124 
4125 static int validate_slab_node(struct kmem_cache *s,
4126 		struct kmem_cache_node *n, unsigned long *map)
4127 {
4128 	unsigned long count = 0;
4129 	struct page *page;
4130 	unsigned long flags;
4131 
4132 	spin_lock_irqsave(&n->list_lock, flags);
4133 
4134 	list_for_each_entry(page, &n->partial, lru) {
4135 		validate_slab_slab(s, page, map);
4136 		count++;
4137 	}
4138 	if (count != n->nr_partial)
4139 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4140 		       s->name, count, n->nr_partial);
4141 
4142 	if (!(s->flags & SLAB_STORE_USER))
4143 		goto out;
4144 
4145 	list_for_each_entry(page, &n->full, lru) {
4146 		validate_slab_slab(s, page, map);
4147 		count++;
4148 	}
4149 	if (count != atomic_long_read(&n->nr_slabs))
4150 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4151 		       s->name, count, atomic_long_read(&n->nr_slabs));
4152 
4153 out:
4154 	spin_unlock_irqrestore(&n->list_lock, flags);
4155 	return count;
4156 }
4157 
4158 static long validate_slab_cache(struct kmem_cache *s)
4159 {
4160 	int node;
4161 	unsigned long count = 0;
4162 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4163 				sizeof(unsigned long), GFP_KERNEL);
4164 	struct kmem_cache_node *n;
4165 
4166 	if (!map)
4167 		return -ENOMEM;
4168 
4169 	flush_all(s);
4170 	for_each_kmem_cache_node(s, node, n)
4171 		count += validate_slab_node(s, n, map);
4172 	kfree(map);
4173 	return count;
4174 }
4175 /*
4176  * Generate lists of code addresses where slabcache objects are allocated
4177  * and freed.
4178  */
4179 
4180 struct location {
4181 	unsigned long count;
4182 	unsigned long addr;
4183 	long long sum_time;
4184 	long min_time;
4185 	long max_time;
4186 	long min_pid;
4187 	long max_pid;
4188 	DECLARE_BITMAP(cpus, NR_CPUS);
4189 	nodemask_t nodes;
4190 };
4191 
4192 struct loc_track {
4193 	unsigned long max;
4194 	unsigned long count;
4195 	struct location *loc;
4196 };
4197 
4198 static void free_loc_track(struct loc_track *t)
4199 {
4200 	if (t->max)
4201 		free_pages((unsigned long)t->loc,
4202 			get_order(sizeof(struct location) * t->max));
4203 }
4204 
4205 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4206 {
4207 	struct location *l;
4208 	int order;
4209 
4210 	order = get_order(sizeof(struct location) * max);
4211 
4212 	l = (void *)__get_free_pages(flags, order);
4213 	if (!l)
4214 		return 0;
4215 
4216 	if (t->count) {
4217 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4218 		free_loc_track(t);
4219 	}
4220 	t->max = max;
4221 	t->loc = l;
4222 	return 1;
4223 }
4224 
4225 static int add_location(struct loc_track *t, struct kmem_cache *s,
4226 				const struct track *track)
4227 {
4228 	long start, end, pos;
4229 	struct location *l;
4230 	unsigned long caddr;
4231 	unsigned long age = jiffies - track->when;
4232 
4233 	start = -1;
4234 	end = t->count;
4235 
4236 	for ( ; ; ) {
4237 		pos = start + (end - start + 1) / 2;
4238 
4239 		/*
4240 		 * There is nothing at "end". If we end up there
4241 		 * we need to add something to before end.
4242 		 */
4243 		if (pos == end)
4244 			break;
4245 
4246 		caddr = t->loc[pos].addr;
4247 		if (track->addr == caddr) {
4248 
4249 			l = &t->loc[pos];
4250 			l->count++;
4251 			if (track->when) {
4252 				l->sum_time += age;
4253 				if (age < l->min_time)
4254 					l->min_time = age;
4255 				if (age > l->max_time)
4256 					l->max_time = age;
4257 
4258 				if (track->pid < l->min_pid)
4259 					l->min_pid = track->pid;
4260 				if (track->pid > l->max_pid)
4261 					l->max_pid = track->pid;
4262 
4263 				cpumask_set_cpu(track->cpu,
4264 						to_cpumask(l->cpus));
4265 			}
4266 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4267 			return 1;
4268 		}
4269 
4270 		if (track->addr < caddr)
4271 			end = pos;
4272 		else
4273 			start = pos;
4274 	}
4275 
4276 	/*
4277 	 * Not found. Insert new tracking element.
4278 	 */
4279 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4280 		return 0;
4281 
4282 	l = t->loc + pos;
4283 	if (pos < t->count)
4284 		memmove(l + 1, l,
4285 			(t->count - pos) * sizeof(struct location));
4286 	t->count++;
4287 	l->count = 1;
4288 	l->addr = track->addr;
4289 	l->sum_time = age;
4290 	l->min_time = age;
4291 	l->max_time = age;
4292 	l->min_pid = track->pid;
4293 	l->max_pid = track->pid;
4294 	cpumask_clear(to_cpumask(l->cpus));
4295 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4296 	nodes_clear(l->nodes);
4297 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4298 	return 1;
4299 }
4300 
4301 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4302 		struct page *page, enum track_item alloc,
4303 		unsigned long *map)
4304 {
4305 	void *addr = page_address(page);
4306 	void *p;
4307 
4308 	bitmap_zero(map, page->objects);
4309 	get_map(s, page, map);
4310 
4311 	for_each_object(p, s, addr, page->objects)
4312 		if (!test_bit(slab_index(p, s, addr), map))
4313 			add_location(t, s, get_track(s, p, alloc));
4314 }
4315 
4316 static int list_locations(struct kmem_cache *s, char *buf,
4317 					enum track_item alloc)
4318 {
4319 	int len = 0;
4320 	unsigned long i;
4321 	struct loc_track t = { 0, 0, NULL };
4322 	int node;
4323 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4324 				     sizeof(unsigned long), GFP_KERNEL);
4325 	struct kmem_cache_node *n;
4326 
4327 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4328 				     GFP_TEMPORARY)) {
4329 		kfree(map);
4330 		return sprintf(buf, "Out of memory\n");
4331 	}
4332 	/* Push back cpu slabs */
4333 	flush_all(s);
4334 
4335 	for_each_kmem_cache_node(s, node, n) {
4336 		unsigned long flags;
4337 		struct page *page;
4338 
4339 		if (!atomic_long_read(&n->nr_slabs))
4340 			continue;
4341 
4342 		spin_lock_irqsave(&n->list_lock, flags);
4343 		list_for_each_entry(page, &n->partial, lru)
4344 			process_slab(&t, s, page, alloc, map);
4345 		list_for_each_entry(page, &n->full, lru)
4346 			process_slab(&t, s, page, alloc, map);
4347 		spin_unlock_irqrestore(&n->list_lock, flags);
4348 	}
4349 
4350 	for (i = 0; i < t.count; i++) {
4351 		struct location *l = &t.loc[i];
4352 
4353 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4354 			break;
4355 		len += sprintf(buf + len, "%7ld ", l->count);
4356 
4357 		if (l->addr)
4358 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4359 		else
4360 			len += sprintf(buf + len, "<not-available>");
4361 
4362 		if (l->sum_time != l->min_time) {
4363 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4364 				l->min_time,
4365 				(long)div_u64(l->sum_time, l->count),
4366 				l->max_time);
4367 		} else
4368 			len += sprintf(buf + len, " age=%ld",
4369 				l->min_time);
4370 
4371 		if (l->min_pid != l->max_pid)
4372 			len += sprintf(buf + len, " pid=%ld-%ld",
4373 				l->min_pid, l->max_pid);
4374 		else
4375 			len += sprintf(buf + len, " pid=%ld",
4376 				l->min_pid);
4377 
4378 		if (num_online_cpus() > 1 &&
4379 				!cpumask_empty(to_cpumask(l->cpus)) &&
4380 				len < PAGE_SIZE - 60)
4381 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4382 					 " cpus=%*pbl",
4383 					 cpumask_pr_args(to_cpumask(l->cpus)));
4384 
4385 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4386 				len < PAGE_SIZE - 60)
4387 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4388 					 " nodes=%*pbl",
4389 					 nodemask_pr_args(&l->nodes));
4390 
4391 		len += sprintf(buf + len, "\n");
4392 	}
4393 
4394 	free_loc_track(&t);
4395 	kfree(map);
4396 	if (!t.count)
4397 		len += sprintf(buf, "No data\n");
4398 	return len;
4399 }
4400 #endif
4401 
4402 #ifdef SLUB_RESILIENCY_TEST
4403 static void __init resiliency_test(void)
4404 {
4405 	u8 *p;
4406 
4407 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4408 
4409 	pr_err("SLUB resiliency testing\n");
4410 	pr_err("-----------------------\n");
4411 	pr_err("A. Corruption after allocation\n");
4412 
4413 	p = kzalloc(16, GFP_KERNEL);
4414 	p[16] = 0x12;
4415 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4416 	       p + 16);
4417 
4418 	validate_slab_cache(kmalloc_caches[4]);
4419 
4420 	/* Hmmm... The next two are dangerous */
4421 	p = kzalloc(32, GFP_KERNEL);
4422 	p[32 + sizeof(void *)] = 0x34;
4423 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4424 	       p);
4425 	pr_err("If allocated object is overwritten then not detectable\n\n");
4426 
4427 	validate_slab_cache(kmalloc_caches[5]);
4428 	p = kzalloc(64, GFP_KERNEL);
4429 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4430 	*p = 0x56;
4431 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4432 	       p);
4433 	pr_err("If allocated object is overwritten then not detectable\n\n");
4434 	validate_slab_cache(kmalloc_caches[6]);
4435 
4436 	pr_err("\nB. Corruption after free\n");
4437 	p = kzalloc(128, GFP_KERNEL);
4438 	kfree(p);
4439 	*p = 0x78;
4440 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4441 	validate_slab_cache(kmalloc_caches[7]);
4442 
4443 	p = kzalloc(256, GFP_KERNEL);
4444 	kfree(p);
4445 	p[50] = 0x9a;
4446 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4447 	validate_slab_cache(kmalloc_caches[8]);
4448 
4449 	p = kzalloc(512, GFP_KERNEL);
4450 	kfree(p);
4451 	p[512] = 0xab;
4452 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4453 	validate_slab_cache(kmalloc_caches[9]);
4454 }
4455 #else
4456 #ifdef CONFIG_SYSFS
4457 static void resiliency_test(void) {};
4458 #endif
4459 #endif
4460 
4461 #ifdef CONFIG_SYSFS
4462 enum slab_stat_type {
4463 	SL_ALL,			/* All slabs */
4464 	SL_PARTIAL,		/* Only partially allocated slabs */
4465 	SL_CPU,			/* Only slabs used for cpu caches */
4466 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4467 	SL_TOTAL		/* Determine object capacity not slabs */
4468 };
4469 
4470 #define SO_ALL		(1 << SL_ALL)
4471 #define SO_PARTIAL	(1 << SL_PARTIAL)
4472 #define SO_CPU		(1 << SL_CPU)
4473 #define SO_OBJECTS	(1 << SL_OBJECTS)
4474 #define SO_TOTAL	(1 << SL_TOTAL)
4475 
4476 static ssize_t show_slab_objects(struct kmem_cache *s,
4477 			    char *buf, unsigned long flags)
4478 {
4479 	unsigned long total = 0;
4480 	int node;
4481 	int x;
4482 	unsigned long *nodes;
4483 
4484 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4485 	if (!nodes)
4486 		return -ENOMEM;
4487 
4488 	if (flags & SO_CPU) {
4489 		int cpu;
4490 
4491 		for_each_possible_cpu(cpu) {
4492 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4493 							       cpu);
4494 			int node;
4495 			struct page *page;
4496 
4497 			page = READ_ONCE(c->page);
4498 			if (!page)
4499 				continue;
4500 
4501 			node = page_to_nid(page);
4502 			if (flags & SO_TOTAL)
4503 				x = page->objects;
4504 			else if (flags & SO_OBJECTS)
4505 				x = page->inuse;
4506 			else
4507 				x = 1;
4508 
4509 			total += x;
4510 			nodes[node] += x;
4511 
4512 			page = READ_ONCE(c->partial);
4513 			if (page) {
4514 				node = page_to_nid(page);
4515 				if (flags & SO_TOTAL)
4516 					WARN_ON_ONCE(1);
4517 				else if (flags & SO_OBJECTS)
4518 					WARN_ON_ONCE(1);
4519 				else
4520 					x = page->pages;
4521 				total += x;
4522 				nodes[node] += x;
4523 			}
4524 		}
4525 	}
4526 
4527 	get_online_mems();
4528 #ifdef CONFIG_SLUB_DEBUG
4529 	if (flags & SO_ALL) {
4530 		struct kmem_cache_node *n;
4531 
4532 		for_each_kmem_cache_node(s, node, n) {
4533 
4534 			if (flags & SO_TOTAL)
4535 				x = atomic_long_read(&n->total_objects);
4536 			else if (flags & SO_OBJECTS)
4537 				x = atomic_long_read(&n->total_objects) -
4538 					count_partial(n, count_free);
4539 			else
4540 				x = atomic_long_read(&n->nr_slabs);
4541 			total += x;
4542 			nodes[node] += x;
4543 		}
4544 
4545 	} else
4546 #endif
4547 	if (flags & SO_PARTIAL) {
4548 		struct kmem_cache_node *n;
4549 
4550 		for_each_kmem_cache_node(s, node, n) {
4551 			if (flags & SO_TOTAL)
4552 				x = count_partial(n, count_total);
4553 			else if (flags & SO_OBJECTS)
4554 				x = count_partial(n, count_inuse);
4555 			else
4556 				x = n->nr_partial;
4557 			total += x;
4558 			nodes[node] += x;
4559 		}
4560 	}
4561 	x = sprintf(buf, "%lu", total);
4562 #ifdef CONFIG_NUMA
4563 	for (node = 0; node < nr_node_ids; node++)
4564 		if (nodes[node])
4565 			x += sprintf(buf + x, " N%d=%lu",
4566 					node, nodes[node]);
4567 #endif
4568 	put_online_mems();
4569 	kfree(nodes);
4570 	return x + sprintf(buf + x, "\n");
4571 }
4572 
4573 #ifdef CONFIG_SLUB_DEBUG
4574 static int any_slab_objects(struct kmem_cache *s)
4575 {
4576 	int node;
4577 	struct kmem_cache_node *n;
4578 
4579 	for_each_kmem_cache_node(s, node, n)
4580 		if (atomic_long_read(&n->total_objects))
4581 			return 1;
4582 
4583 	return 0;
4584 }
4585 #endif
4586 
4587 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4588 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4589 
4590 struct slab_attribute {
4591 	struct attribute attr;
4592 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4593 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4594 };
4595 
4596 #define SLAB_ATTR_RO(_name) \
4597 	static struct slab_attribute _name##_attr = \
4598 	__ATTR(_name, 0400, _name##_show, NULL)
4599 
4600 #define SLAB_ATTR(_name) \
4601 	static struct slab_attribute _name##_attr =  \
4602 	__ATTR(_name, 0600, _name##_show, _name##_store)
4603 
4604 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4605 {
4606 	return sprintf(buf, "%d\n", s->size);
4607 }
4608 SLAB_ATTR_RO(slab_size);
4609 
4610 static ssize_t align_show(struct kmem_cache *s, char *buf)
4611 {
4612 	return sprintf(buf, "%d\n", s->align);
4613 }
4614 SLAB_ATTR_RO(align);
4615 
4616 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4617 {
4618 	return sprintf(buf, "%d\n", s->object_size);
4619 }
4620 SLAB_ATTR_RO(object_size);
4621 
4622 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4623 {
4624 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4625 }
4626 SLAB_ATTR_RO(objs_per_slab);
4627 
4628 static ssize_t order_store(struct kmem_cache *s,
4629 				const char *buf, size_t length)
4630 {
4631 	unsigned long order;
4632 	int err;
4633 
4634 	err = kstrtoul(buf, 10, &order);
4635 	if (err)
4636 		return err;
4637 
4638 	if (order > slub_max_order || order < slub_min_order)
4639 		return -EINVAL;
4640 
4641 	calculate_sizes(s, order);
4642 	return length;
4643 }
4644 
4645 static ssize_t order_show(struct kmem_cache *s, char *buf)
4646 {
4647 	return sprintf(buf, "%d\n", oo_order(s->oo));
4648 }
4649 SLAB_ATTR(order);
4650 
4651 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4652 {
4653 	return sprintf(buf, "%lu\n", s->min_partial);
4654 }
4655 
4656 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4657 				 size_t length)
4658 {
4659 	unsigned long min;
4660 	int err;
4661 
4662 	err = kstrtoul(buf, 10, &min);
4663 	if (err)
4664 		return err;
4665 
4666 	set_min_partial(s, min);
4667 	return length;
4668 }
4669 SLAB_ATTR(min_partial);
4670 
4671 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4672 {
4673 	return sprintf(buf, "%u\n", s->cpu_partial);
4674 }
4675 
4676 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4677 				 size_t length)
4678 {
4679 	unsigned long objects;
4680 	int err;
4681 
4682 	err = kstrtoul(buf, 10, &objects);
4683 	if (err)
4684 		return err;
4685 	if (objects && !kmem_cache_has_cpu_partial(s))
4686 		return -EINVAL;
4687 
4688 	s->cpu_partial = objects;
4689 	flush_all(s);
4690 	return length;
4691 }
4692 SLAB_ATTR(cpu_partial);
4693 
4694 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4695 {
4696 	if (!s->ctor)
4697 		return 0;
4698 	return sprintf(buf, "%pS\n", s->ctor);
4699 }
4700 SLAB_ATTR_RO(ctor);
4701 
4702 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4703 {
4704 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4705 }
4706 SLAB_ATTR_RO(aliases);
4707 
4708 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4709 {
4710 	return show_slab_objects(s, buf, SO_PARTIAL);
4711 }
4712 SLAB_ATTR_RO(partial);
4713 
4714 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4715 {
4716 	return show_slab_objects(s, buf, SO_CPU);
4717 }
4718 SLAB_ATTR_RO(cpu_slabs);
4719 
4720 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4721 {
4722 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4723 }
4724 SLAB_ATTR_RO(objects);
4725 
4726 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4727 {
4728 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4729 }
4730 SLAB_ATTR_RO(objects_partial);
4731 
4732 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4733 {
4734 	int objects = 0;
4735 	int pages = 0;
4736 	int cpu;
4737 	int len;
4738 
4739 	for_each_online_cpu(cpu) {
4740 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4741 
4742 		if (page) {
4743 			pages += page->pages;
4744 			objects += page->pobjects;
4745 		}
4746 	}
4747 
4748 	len = sprintf(buf, "%d(%d)", objects, pages);
4749 
4750 #ifdef CONFIG_SMP
4751 	for_each_online_cpu(cpu) {
4752 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4753 
4754 		if (page && len < PAGE_SIZE - 20)
4755 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4756 				page->pobjects, page->pages);
4757 	}
4758 #endif
4759 	return len + sprintf(buf + len, "\n");
4760 }
4761 SLAB_ATTR_RO(slabs_cpu_partial);
4762 
4763 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4764 {
4765 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4766 }
4767 
4768 static ssize_t reclaim_account_store(struct kmem_cache *s,
4769 				const char *buf, size_t length)
4770 {
4771 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4772 	if (buf[0] == '1')
4773 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4774 	return length;
4775 }
4776 SLAB_ATTR(reclaim_account);
4777 
4778 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4779 {
4780 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4781 }
4782 SLAB_ATTR_RO(hwcache_align);
4783 
4784 #ifdef CONFIG_ZONE_DMA
4785 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4786 {
4787 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4788 }
4789 SLAB_ATTR_RO(cache_dma);
4790 #endif
4791 
4792 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4793 {
4794 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4795 }
4796 SLAB_ATTR_RO(destroy_by_rcu);
4797 
4798 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4799 {
4800 	return sprintf(buf, "%d\n", s->reserved);
4801 }
4802 SLAB_ATTR_RO(reserved);
4803 
4804 #ifdef CONFIG_SLUB_DEBUG
4805 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4806 {
4807 	return show_slab_objects(s, buf, SO_ALL);
4808 }
4809 SLAB_ATTR_RO(slabs);
4810 
4811 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4812 {
4813 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4814 }
4815 SLAB_ATTR_RO(total_objects);
4816 
4817 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4818 {
4819 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4820 }
4821 
4822 static ssize_t sanity_checks_store(struct kmem_cache *s,
4823 				const char *buf, size_t length)
4824 {
4825 	s->flags &= ~SLAB_DEBUG_FREE;
4826 	if (buf[0] == '1') {
4827 		s->flags &= ~__CMPXCHG_DOUBLE;
4828 		s->flags |= SLAB_DEBUG_FREE;
4829 	}
4830 	return length;
4831 }
4832 SLAB_ATTR(sanity_checks);
4833 
4834 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4835 {
4836 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4837 }
4838 
4839 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4840 							size_t length)
4841 {
4842 	/*
4843 	 * Tracing a merged cache is going to give confusing results
4844 	 * as well as cause other issues like converting a mergeable
4845 	 * cache into an umergeable one.
4846 	 */
4847 	if (s->refcount > 1)
4848 		return -EINVAL;
4849 
4850 	s->flags &= ~SLAB_TRACE;
4851 	if (buf[0] == '1') {
4852 		s->flags &= ~__CMPXCHG_DOUBLE;
4853 		s->flags |= SLAB_TRACE;
4854 	}
4855 	return length;
4856 }
4857 SLAB_ATTR(trace);
4858 
4859 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4860 {
4861 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4862 }
4863 
4864 static ssize_t red_zone_store(struct kmem_cache *s,
4865 				const char *buf, size_t length)
4866 {
4867 	if (any_slab_objects(s))
4868 		return -EBUSY;
4869 
4870 	s->flags &= ~SLAB_RED_ZONE;
4871 	if (buf[0] == '1') {
4872 		s->flags &= ~__CMPXCHG_DOUBLE;
4873 		s->flags |= SLAB_RED_ZONE;
4874 	}
4875 	calculate_sizes(s, -1);
4876 	return length;
4877 }
4878 SLAB_ATTR(red_zone);
4879 
4880 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4881 {
4882 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4883 }
4884 
4885 static ssize_t poison_store(struct kmem_cache *s,
4886 				const char *buf, size_t length)
4887 {
4888 	if (any_slab_objects(s))
4889 		return -EBUSY;
4890 
4891 	s->flags &= ~SLAB_POISON;
4892 	if (buf[0] == '1') {
4893 		s->flags &= ~__CMPXCHG_DOUBLE;
4894 		s->flags |= SLAB_POISON;
4895 	}
4896 	calculate_sizes(s, -1);
4897 	return length;
4898 }
4899 SLAB_ATTR(poison);
4900 
4901 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4902 {
4903 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4904 }
4905 
4906 static ssize_t store_user_store(struct kmem_cache *s,
4907 				const char *buf, size_t length)
4908 {
4909 	if (any_slab_objects(s))
4910 		return -EBUSY;
4911 
4912 	s->flags &= ~SLAB_STORE_USER;
4913 	if (buf[0] == '1') {
4914 		s->flags &= ~__CMPXCHG_DOUBLE;
4915 		s->flags |= SLAB_STORE_USER;
4916 	}
4917 	calculate_sizes(s, -1);
4918 	return length;
4919 }
4920 SLAB_ATTR(store_user);
4921 
4922 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4923 {
4924 	return 0;
4925 }
4926 
4927 static ssize_t validate_store(struct kmem_cache *s,
4928 			const char *buf, size_t length)
4929 {
4930 	int ret = -EINVAL;
4931 
4932 	if (buf[0] == '1') {
4933 		ret = validate_slab_cache(s);
4934 		if (ret >= 0)
4935 			ret = length;
4936 	}
4937 	return ret;
4938 }
4939 SLAB_ATTR(validate);
4940 
4941 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4942 {
4943 	if (!(s->flags & SLAB_STORE_USER))
4944 		return -ENOSYS;
4945 	return list_locations(s, buf, TRACK_ALLOC);
4946 }
4947 SLAB_ATTR_RO(alloc_calls);
4948 
4949 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4950 {
4951 	if (!(s->flags & SLAB_STORE_USER))
4952 		return -ENOSYS;
4953 	return list_locations(s, buf, TRACK_FREE);
4954 }
4955 SLAB_ATTR_RO(free_calls);
4956 #endif /* CONFIG_SLUB_DEBUG */
4957 
4958 #ifdef CONFIG_FAILSLAB
4959 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4960 {
4961 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4962 }
4963 
4964 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4965 							size_t length)
4966 {
4967 	if (s->refcount > 1)
4968 		return -EINVAL;
4969 
4970 	s->flags &= ~SLAB_FAILSLAB;
4971 	if (buf[0] == '1')
4972 		s->flags |= SLAB_FAILSLAB;
4973 	return length;
4974 }
4975 SLAB_ATTR(failslab);
4976 #endif
4977 
4978 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4979 {
4980 	return 0;
4981 }
4982 
4983 static ssize_t shrink_store(struct kmem_cache *s,
4984 			const char *buf, size_t length)
4985 {
4986 	if (buf[0] == '1')
4987 		kmem_cache_shrink(s);
4988 	else
4989 		return -EINVAL;
4990 	return length;
4991 }
4992 SLAB_ATTR(shrink);
4993 
4994 #ifdef CONFIG_NUMA
4995 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4996 {
4997 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4998 }
4999 
5000 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5001 				const char *buf, size_t length)
5002 {
5003 	unsigned long ratio;
5004 	int err;
5005 
5006 	err = kstrtoul(buf, 10, &ratio);
5007 	if (err)
5008 		return err;
5009 
5010 	if (ratio <= 100)
5011 		s->remote_node_defrag_ratio = ratio * 10;
5012 
5013 	return length;
5014 }
5015 SLAB_ATTR(remote_node_defrag_ratio);
5016 #endif
5017 
5018 #ifdef CONFIG_SLUB_STATS
5019 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5020 {
5021 	unsigned long sum  = 0;
5022 	int cpu;
5023 	int len;
5024 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5025 
5026 	if (!data)
5027 		return -ENOMEM;
5028 
5029 	for_each_online_cpu(cpu) {
5030 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5031 
5032 		data[cpu] = x;
5033 		sum += x;
5034 	}
5035 
5036 	len = sprintf(buf, "%lu", sum);
5037 
5038 #ifdef CONFIG_SMP
5039 	for_each_online_cpu(cpu) {
5040 		if (data[cpu] && len < PAGE_SIZE - 20)
5041 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5042 	}
5043 #endif
5044 	kfree(data);
5045 	return len + sprintf(buf + len, "\n");
5046 }
5047 
5048 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5049 {
5050 	int cpu;
5051 
5052 	for_each_online_cpu(cpu)
5053 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5054 }
5055 
5056 #define STAT_ATTR(si, text) 					\
5057 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5058 {								\
5059 	return show_stat(s, buf, si);				\
5060 }								\
5061 static ssize_t text##_store(struct kmem_cache *s,		\
5062 				const char *buf, size_t length)	\
5063 {								\
5064 	if (buf[0] != '0')					\
5065 		return -EINVAL;					\
5066 	clear_stat(s, si);					\
5067 	return length;						\
5068 }								\
5069 SLAB_ATTR(text);						\
5070 
5071 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5072 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5073 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5074 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5075 STAT_ATTR(FREE_FROZEN, free_frozen);
5076 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5077 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5078 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5079 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5080 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5081 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5082 STAT_ATTR(FREE_SLAB, free_slab);
5083 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5084 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5085 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5086 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5087 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5088 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5089 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5090 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5091 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5092 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5093 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5094 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5095 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5096 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5097 #endif
5098 
5099 static struct attribute *slab_attrs[] = {
5100 	&slab_size_attr.attr,
5101 	&object_size_attr.attr,
5102 	&objs_per_slab_attr.attr,
5103 	&order_attr.attr,
5104 	&min_partial_attr.attr,
5105 	&cpu_partial_attr.attr,
5106 	&objects_attr.attr,
5107 	&objects_partial_attr.attr,
5108 	&partial_attr.attr,
5109 	&cpu_slabs_attr.attr,
5110 	&ctor_attr.attr,
5111 	&aliases_attr.attr,
5112 	&align_attr.attr,
5113 	&hwcache_align_attr.attr,
5114 	&reclaim_account_attr.attr,
5115 	&destroy_by_rcu_attr.attr,
5116 	&shrink_attr.attr,
5117 	&reserved_attr.attr,
5118 	&slabs_cpu_partial_attr.attr,
5119 #ifdef CONFIG_SLUB_DEBUG
5120 	&total_objects_attr.attr,
5121 	&slabs_attr.attr,
5122 	&sanity_checks_attr.attr,
5123 	&trace_attr.attr,
5124 	&red_zone_attr.attr,
5125 	&poison_attr.attr,
5126 	&store_user_attr.attr,
5127 	&validate_attr.attr,
5128 	&alloc_calls_attr.attr,
5129 	&free_calls_attr.attr,
5130 #endif
5131 #ifdef CONFIG_ZONE_DMA
5132 	&cache_dma_attr.attr,
5133 #endif
5134 #ifdef CONFIG_NUMA
5135 	&remote_node_defrag_ratio_attr.attr,
5136 #endif
5137 #ifdef CONFIG_SLUB_STATS
5138 	&alloc_fastpath_attr.attr,
5139 	&alloc_slowpath_attr.attr,
5140 	&free_fastpath_attr.attr,
5141 	&free_slowpath_attr.attr,
5142 	&free_frozen_attr.attr,
5143 	&free_add_partial_attr.attr,
5144 	&free_remove_partial_attr.attr,
5145 	&alloc_from_partial_attr.attr,
5146 	&alloc_slab_attr.attr,
5147 	&alloc_refill_attr.attr,
5148 	&alloc_node_mismatch_attr.attr,
5149 	&free_slab_attr.attr,
5150 	&cpuslab_flush_attr.attr,
5151 	&deactivate_full_attr.attr,
5152 	&deactivate_empty_attr.attr,
5153 	&deactivate_to_head_attr.attr,
5154 	&deactivate_to_tail_attr.attr,
5155 	&deactivate_remote_frees_attr.attr,
5156 	&deactivate_bypass_attr.attr,
5157 	&order_fallback_attr.attr,
5158 	&cmpxchg_double_fail_attr.attr,
5159 	&cmpxchg_double_cpu_fail_attr.attr,
5160 	&cpu_partial_alloc_attr.attr,
5161 	&cpu_partial_free_attr.attr,
5162 	&cpu_partial_node_attr.attr,
5163 	&cpu_partial_drain_attr.attr,
5164 #endif
5165 #ifdef CONFIG_FAILSLAB
5166 	&failslab_attr.attr,
5167 #endif
5168 
5169 	NULL
5170 };
5171 
5172 static struct attribute_group slab_attr_group = {
5173 	.attrs = slab_attrs,
5174 };
5175 
5176 static ssize_t slab_attr_show(struct kobject *kobj,
5177 				struct attribute *attr,
5178 				char *buf)
5179 {
5180 	struct slab_attribute *attribute;
5181 	struct kmem_cache *s;
5182 	int err;
5183 
5184 	attribute = to_slab_attr(attr);
5185 	s = to_slab(kobj);
5186 
5187 	if (!attribute->show)
5188 		return -EIO;
5189 
5190 	err = attribute->show(s, buf);
5191 
5192 	return err;
5193 }
5194 
5195 static ssize_t slab_attr_store(struct kobject *kobj,
5196 				struct attribute *attr,
5197 				const char *buf, size_t len)
5198 {
5199 	struct slab_attribute *attribute;
5200 	struct kmem_cache *s;
5201 	int err;
5202 
5203 	attribute = to_slab_attr(attr);
5204 	s = to_slab(kobj);
5205 
5206 	if (!attribute->store)
5207 		return -EIO;
5208 
5209 	err = attribute->store(s, buf, len);
5210 #ifdef CONFIG_MEMCG
5211 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5212 		struct kmem_cache *c;
5213 
5214 		mutex_lock(&slab_mutex);
5215 		if (s->max_attr_size < len)
5216 			s->max_attr_size = len;
5217 
5218 		/*
5219 		 * This is a best effort propagation, so this function's return
5220 		 * value will be determined by the parent cache only. This is
5221 		 * basically because not all attributes will have a well
5222 		 * defined semantics for rollbacks - most of the actions will
5223 		 * have permanent effects.
5224 		 *
5225 		 * Returning the error value of any of the children that fail
5226 		 * is not 100 % defined, in the sense that users seeing the
5227 		 * error code won't be able to know anything about the state of
5228 		 * the cache.
5229 		 *
5230 		 * Only returning the error code for the parent cache at least
5231 		 * has well defined semantics. The cache being written to
5232 		 * directly either failed or succeeded, in which case we loop
5233 		 * through the descendants with best-effort propagation.
5234 		 */
5235 		for_each_memcg_cache(c, s)
5236 			attribute->store(c, buf, len);
5237 		mutex_unlock(&slab_mutex);
5238 	}
5239 #endif
5240 	return err;
5241 }
5242 
5243 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5244 {
5245 #ifdef CONFIG_MEMCG
5246 	int i;
5247 	char *buffer = NULL;
5248 	struct kmem_cache *root_cache;
5249 
5250 	if (is_root_cache(s))
5251 		return;
5252 
5253 	root_cache = s->memcg_params.root_cache;
5254 
5255 	/*
5256 	 * This mean this cache had no attribute written. Therefore, no point
5257 	 * in copying default values around
5258 	 */
5259 	if (!root_cache->max_attr_size)
5260 		return;
5261 
5262 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5263 		char mbuf[64];
5264 		char *buf;
5265 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5266 
5267 		if (!attr || !attr->store || !attr->show)
5268 			continue;
5269 
5270 		/*
5271 		 * It is really bad that we have to allocate here, so we will
5272 		 * do it only as a fallback. If we actually allocate, though,
5273 		 * we can just use the allocated buffer until the end.
5274 		 *
5275 		 * Most of the slub attributes will tend to be very small in
5276 		 * size, but sysfs allows buffers up to a page, so they can
5277 		 * theoretically happen.
5278 		 */
5279 		if (buffer)
5280 			buf = buffer;
5281 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5282 			buf = mbuf;
5283 		else {
5284 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5285 			if (WARN_ON(!buffer))
5286 				continue;
5287 			buf = buffer;
5288 		}
5289 
5290 		attr->show(root_cache, buf);
5291 		attr->store(s, buf, strlen(buf));
5292 	}
5293 
5294 	if (buffer)
5295 		free_page((unsigned long)buffer);
5296 #endif
5297 }
5298 
5299 static void kmem_cache_release(struct kobject *k)
5300 {
5301 	slab_kmem_cache_release(to_slab(k));
5302 }
5303 
5304 static const struct sysfs_ops slab_sysfs_ops = {
5305 	.show = slab_attr_show,
5306 	.store = slab_attr_store,
5307 };
5308 
5309 static struct kobj_type slab_ktype = {
5310 	.sysfs_ops = &slab_sysfs_ops,
5311 	.release = kmem_cache_release,
5312 };
5313 
5314 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5315 {
5316 	struct kobj_type *ktype = get_ktype(kobj);
5317 
5318 	if (ktype == &slab_ktype)
5319 		return 1;
5320 	return 0;
5321 }
5322 
5323 static const struct kset_uevent_ops slab_uevent_ops = {
5324 	.filter = uevent_filter,
5325 };
5326 
5327 static struct kset *slab_kset;
5328 
5329 static inline struct kset *cache_kset(struct kmem_cache *s)
5330 {
5331 #ifdef CONFIG_MEMCG
5332 	if (!is_root_cache(s))
5333 		return s->memcg_params.root_cache->memcg_kset;
5334 #endif
5335 	return slab_kset;
5336 }
5337 
5338 #define ID_STR_LENGTH 64
5339 
5340 /* Create a unique string id for a slab cache:
5341  *
5342  * Format	:[flags-]size
5343  */
5344 static char *create_unique_id(struct kmem_cache *s)
5345 {
5346 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5347 	char *p = name;
5348 
5349 	BUG_ON(!name);
5350 
5351 	*p++ = ':';
5352 	/*
5353 	 * First flags affecting slabcache operations. We will only
5354 	 * get here for aliasable slabs so we do not need to support
5355 	 * too many flags. The flags here must cover all flags that
5356 	 * are matched during merging to guarantee that the id is
5357 	 * unique.
5358 	 */
5359 	if (s->flags & SLAB_CACHE_DMA)
5360 		*p++ = 'd';
5361 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5362 		*p++ = 'a';
5363 	if (s->flags & SLAB_DEBUG_FREE)
5364 		*p++ = 'F';
5365 	if (!(s->flags & SLAB_NOTRACK))
5366 		*p++ = 't';
5367 	if (s->flags & SLAB_ACCOUNT)
5368 		*p++ = 'A';
5369 	if (p != name + 1)
5370 		*p++ = '-';
5371 	p += sprintf(p, "%07d", s->size);
5372 
5373 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5374 	return name;
5375 }
5376 
5377 static int sysfs_slab_add(struct kmem_cache *s)
5378 {
5379 	int err;
5380 	const char *name;
5381 	int unmergeable = slab_unmergeable(s);
5382 
5383 	if (unmergeable) {
5384 		/*
5385 		 * Slabcache can never be merged so we can use the name proper.
5386 		 * This is typically the case for debug situations. In that
5387 		 * case we can catch duplicate names easily.
5388 		 */
5389 		sysfs_remove_link(&slab_kset->kobj, s->name);
5390 		name = s->name;
5391 	} else {
5392 		/*
5393 		 * Create a unique name for the slab as a target
5394 		 * for the symlinks.
5395 		 */
5396 		name = create_unique_id(s);
5397 	}
5398 
5399 	s->kobj.kset = cache_kset(s);
5400 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5401 	if (err)
5402 		goto out;
5403 
5404 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5405 	if (err)
5406 		goto out_del_kobj;
5407 
5408 #ifdef CONFIG_MEMCG
5409 	if (is_root_cache(s)) {
5410 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5411 		if (!s->memcg_kset) {
5412 			err = -ENOMEM;
5413 			goto out_del_kobj;
5414 		}
5415 	}
5416 #endif
5417 
5418 	kobject_uevent(&s->kobj, KOBJ_ADD);
5419 	if (!unmergeable) {
5420 		/* Setup first alias */
5421 		sysfs_slab_alias(s, s->name);
5422 	}
5423 out:
5424 	if (!unmergeable)
5425 		kfree(name);
5426 	return err;
5427 out_del_kobj:
5428 	kobject_del(&s->kobj);
5429 	goto out;
5430 }
5431 
5432 void sysfs_slab_remove(struct kmem_cache *s)
5433 {
5434 	if (slab_state < FULL)
5435 		/*
5436 		 * Sysfs has not been setup yet so no need to remove the
5437 		 * cache from sysfs.
5438 		 */
5439 		return;
5440 
5441 #ifdef CONFIG_MEMCG
5442 	kset_unregister(s->memcg_kset);
5443 #endif
5444 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5445 	kobject_del(&s->kobj);
5446 	kobject_put(&s->kobj);
5447 }
5448 
5449 /*
5450  * Need to buffer aliases during bootup until sysfs becomes
5451  * available lest we lose that information.
5452  */
5453 struct saved_alias {
5454 	struct kmem_cache *s;
5455 	const char *name;
5456 	struct saved_alias *next;
5457 };
5458 
5459 static struct saved_alias *alias_list;
5460 
5461 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5462 {
5463 	struct saved_alias *al;
5464 
5465 	if (slab_state == FULL) {
5466 		/*
5467 		 * If we have a leftover link then remove it.
5468 		 */
5469 		sysfs_remove_link(&slab_kset->kobj, name);
5470 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5471 	}
5472 
5473 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5474 	if (!al)
5475 		return -ENOMEM;
5476 
5477 	al->s = s;
5478 	al->name = name;
5479 	al->next = alias_list;
5480 	alias_list = al;
5481 	return 0;
5482 }
5483 
5484 static int __init slab_sysfs_init(void)
5485 {
5486 	struct kmem_cache *s;
5487 	int err;
5488 
5489 	mutex_lock(&slab_mutex);
5490 
5491 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5492 	if (!slab_kset) {
5493 		mutex_unlock(&slab_mutex);
5494 		pr_err("Cannot register slab subsystem.\n");
5495 		return -ENOSYS;
5496 	}
5497 
5498 	slab_state = FULL;
5499 
5500 	list_for_each_entry(s, &slab_caches, list) {
5501 		err = sysfs_slab_add(s);
5502 		if (err)
5503 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5504 			       s->name);
5505 	}
5506 
5507 	while (alias_list) {
5508 		struct saved_alias *al = alias_list;
5509 
5510 		alias_list = alias_list->next;
5511 		err = sysfs_slab_alias(al->s, al->name);
5512 		if (err)
5513 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5514 			       al->name);
5515 		kfree(al);
5516 	}
5517 
5518 	mutex_unlock(&slab_mutex);
5519 	resiliency_test();
5520 	return 0;
5521 }
5522 
5523 __initcall(slab_sysfs_init);
5524 #endif /* CONFIG_SYSFS */
5525 
5526 /*
5527  * The /proc/slabinfo ABI
5528  */
5529 #ifdef CONFIG_SLABINFO
5530 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5531 {
5532 	unsigned long nr_slabs = 0;
5533 	unsigned long nr_objs = 0;
5534 	unsigned long nr_free = 0;
5535 	int node;
5536 	struct kmem_cache_node *n;
5537 
5538 	for_each_kmem_cache_node(s, node, n) {
5539 		nr_slabs += node_nr_slabs(n);
5540 		nr_objs += node_nr_objs(n);
5541 		nr_free += count_partial(n, count_free);
5542 	}
5543 
5544 	sinfo->active_objs = nr_objs - nr_free;
5545 	sinfo->num_objs = nr_objs;
5546 	sinfo->active_slabs = nr_slabs;
5547 	sinfo->num_slabs = nr_slabs;
5548 	sinfo->objects_per_slab = oo_objects(s->oo);
5549 	sinfo->cache_order = oo_order(s->oo);
5550 }
5551 
5552 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5553 {
5554 }
5555 
5556 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5557 		       size_t count, loff_t *ppos)
5558 {
5559 	return -EIO;
5560 }
5561 #endif /* CONFIG_SLABINFO */
5562