1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * Overloading of page flags that are otherwise used for LRU management. 97 * 98 * PageActive The slab is frozen and exempt from list processing. 99 * This means that the slab is dedicated to a purpose 100 * such as satisfying allocations for a specific 101 * processor. Objects may be freed in the slab while 102 * it is frozen but slab_free will then skip the usual 103 * list operations. It is up to the processor holding 104 * the slab to integrate the slab into the slab lists 105 * when the slab is no longer needed. 106 * 107 * One use of this flag is to mark slabs that are 108 * used for allocations. Then such a slab becomes a cpu 109 * slab. The cpu slab may be equipped with an additional 110 * freelist that allows lockless access to 111 * free objects in addition to the regular freelist 112 * that requires the slab lock. 113 * 114 * PageError Slab requires special handling due to debug 115 * options set. This moves slab handling out of 116 * the fast path and disables lockless freelists. 117 */ 118 119 static inline int kmem_cache_debug(struct kmem_cache *s) 120 { 121 #ifdef CONFIG_SLUB_DEBUG 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 123 #else 124 return 0; 125 #endif 126 } 127 128 void *fixup_red_left(struct kmem_cache *s, void *p) 129 { 130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 131 p += s->red_left_pad; 132 133 return p; 134 } 135 136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 137 { 138 #ifdef CONFIG_SLUB_CPU_PARTIAL 139 return !kmem_cache_debug(s); 140 #else 141 return false; 142 #endif 143 } 144 145 /* 146 * Issues still to be resolved: 147 * 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 149 * 150 * - Variable sizing of the per node arrays 151 */ 152 153 /* Enable to test recovery from slab corruption on boot */ 154 #undef SLUB_RESILIENCY_TEST 155 156 /* Enable to log cmpxchg failures */ 157 #undef SLUB_DEBUG_CMPXCHG 158 159 /* 160 * Mininum number of partial slabs. These will be left on the partial 161 * lists even if they are empty. kmem_cache_shrink may reclaim them. 162 */ 163 #define MIN_PARTIAL 5 164 165 /* 166 * Maximum number of desirable partial slabs. 167 * The existence of more partial slabs makes kmem_cache_shrink 168 * sort the partial list by the number of objects in use. 169 */ 170 #define MAX_PARTIAL 10 171 172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 173 SLAB_POISON | SLAB_STORE_USER) 174 175 /* 176 * These debug flags cannot use CMPXCHG because there might be consistency 177 * issues when checking or reading debug information 178 */ 179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 180 SLAB_TRACE) 181 182 183 /* 184 * Debugging flags that require metadata to be stored in the slab. These get 185 * disabled when slub_debug=O is used and a cache's min order increases with 186 * metadata. 187 */ 188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 189 190 #define OO_SHIFT 16 191 #define OO_MASK ((1 << OO_SHIFT) - 1) 192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 193 194 /* Internal SLUB flags */ 195 /* Poison object */ 196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 197 /* Use cmpxchg_double */ 198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 199 200 /* 201 * Tracking user of a slab. 202 */ 203 #define TRACK_ADDRS_COUNT 16 204 struct track { 205 unsigned long addr; /* Called from address */ 206 #ifdef CONFIG_STACKTRACE 207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 208 #endif 209 int cpu; /* Was running on cpu */ 210 int pid; /* Pid context */ 211 unsigned long when; /* When did the operation occur */ 212 }; 213 214 enum track_item { TRACK_ALLOC, TRACK_FREE }; 215 216 #ifdef CONFIG_SYSFS 217 static int sysfs_slab_add(struct kmem_cache *); 218 static int sysfs_slab_alias(struct kmem_cache *, const char *); 219 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 220 static void sysfs_slab_remove(struct kmem_cache *s); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 226 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 227 #endif 228 229 static inline void stat(const struct kmem_cache *s, enum stat_item si) 230 { 231 #ifdef CONFIG_SLUB_STATS 232 /* 233 * The rmw is racy on a preemptible kernel but this is acceptable, so 234 * avoid this_cpu_add()'s irq-disable overhead. 235 */ 236 raw_cpu_inc(s->cpu_slab->stat[si]); 237 #endif 238 } 239 240 /******************************************************************** 241 * Core slab cache functions 242 *******************************************************************/ 243 244 /* 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated 246 * with an XOR of the address where the pointer is held and a per-cache 247 * random number. 248 */ 249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 250 unsigned long ptr_addr) 251 { 252 #ifdef CONFIG_SLAB_FREELIST_HARDENED 253 /* 254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 255 * Normally, this doesn't cause any issues, as both set_freepointer() 256 * and get_freepointer() are called with a pointer with the same tag. 257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 258 * example, when __free_slub() iterates over objects in a cache, it 259 * passes untagged pointers to check_object(). check_object() in turns 260 * calls get_freepointer() with an untagged pointer, which causes the 261 * freepointer to be restored incorrectly. 262 */ 263 return (void *)((unsigned long)ptr ^ s->random ^ 264 (unsigned long)kasan_reset_tag((void *)ptr_addr)); 265 #else 266 return ptr; 267 #endif 268 } 269 270 /* Returns the freelist pointer recorded at location ptr_addr. */ 271 static inline void *freelist_dereference(const struct kmem_cache *s, 272 void *ptr_addr) 273 { 274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 275 (unsigned long)ptr_addr); 276 } 277 278 static inline void *get_freepointer(struct kmem_cache *s, void *object) 279 { 280 return freelist_dereference(s, object + s->offset); 281 } 282 283 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 284 { 285 prefetch(object + s->offset); 286 } 287 288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 289 { 290 unsigned long freepointer_addr; 291 void *p; 292 293 if (!debug_pagealloc_enabled()) 294 return get_freepointer(s, object); 295 296 freepointer_addr = (unsigned long)object + s->offset; 297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 298 return freelist_ptr(s, p, freepointer_addr); 299 } 300 301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 302 { 303 unsigned long freeptr_addr = (unsigned long)object + s->offset; 304 305 #ifdef CONFIG_SLAB_FREELIST_HARDENED 306 BUG_ON(object == fp); /* naive detection of double free or corruption */ 307 #endif 308 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 310 } 311 312 /* Loop over all objects in a slab */ 313 #define for_each_object(__p, __s, __addr, __objects) \ 314 for (__p = fixup_red_left(__s, __addr); \ 315 __p < (__addr) + (__objects) * (__s)->size; \ 316 __p += (__s)->size) 317 318 /* Determine object index from a given position */ 319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 320 { 321 return (kasan_reset_tag(p) - addr) / s->size; 322 } 323 324 static inline unsigned int order_objects(unsigned int order, unsigned int size) 325 { 326 return ((unsigned int)PAGE_SIZE << order) / size; 327 } 328 329 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 330 unsigned int size) 331 { 332 struct kmem_cache_order_objects x = { 333 (order << OO_SHIFT) + order_objects(order, size) 334 }; 335 336 return x; 337 } 338 339 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 340 { 341 return x.x >> OO_SHIFT; 342 } 343 344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 345 { 346 return x.x & OO_MASK; 347 } 348 349 /* 350 * Per slab locking using the pagelock 351 */ 352 static __always_inline void slab_lock(struct page *page) 353 { 354 VM_BUG_ON_PAGE(PageTail(page), page); 355 bit_spin_lock(PG_locked, &page->flags); 356 } 357 358 static __always_inline void slab_unlock(struct page *page) 359 { 360 VM_BUG_ON_PAGE(PageTail(page), page); 361 __bit_spin_unlock(PG_locked, &page->flags); 362 } 363 364 /* Interrupts must be disabled (for the fallback code to work right) */ 365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 366 void *freelist_old, unsigned long counters_old, 367 void *freelist_new, unsigned long counters_new, 368 const char *n) 369 { 370 VM_BUG_ON(!irqs_disabled()); 371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 373 if (s->flags & __CMPXCHG_DOUBLE) { 374 if (cmpxchg_double(&page->freelist, &page->counters, 375 freelist_old, counters_old, 376 freelist_new, counters_new)) 377 return true; 378 } else 379 #endif 380 { 381 slab_lock(page); 382 if (page->freelist == freelist_old && 383 page->counters == counters_old) { 384 page->freelist = freelist_new; 385 page->counters = counters_new; 386 slab_unlock(page); 387 return true; 388 } 389 slab_unlock(page); 390 } 391 392 cpu_relax(); 393 stat(s, CMPXCHG_DOUBLE_FAIL); 394 395 #ifdef SLUB_DEBUG_CMPXCHG 396 pr_info("%s %s: cmpxchg double redo ", n, s->name); 397 #endif 398 399 return false; 400 } 401 402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 403 void *freelist_old, unsigned long counters_old, 404 void *freelist_new, unsigned long counters_new, 405 const char *n) 406 { 407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 409 if (s->flags & __CMPXCHG_DOUBLE) { 410 if (cmpxchg_double(&page->freelist, &page->counters, 411 freelist_old, counters_old, 412 freelist_new, counters_new)) 413 return true; 414 } else 415 #endif 416 { 417 unsigned long flags; 418 419 local_irq_save(flags); 420 slab_lock(page); 421 if (page->freelist == freelist_old && 422 page->counters == counters_old) { 423 page->freelist = freelist_new; 424 page->counters = counters_new; 425 slab_unlock(page); 426 local_irq_restore(flags); 427 return true; 428 } 429 slab_unlock(page); 430 local_irq_restore(flags); 431 } 432 433 cpu_relax(); 434 stat(s, CMPXCHG_DOUBLE_FAIL); 435 436 #ifdef SLUB_DEBUG_CMPXCHG 437 pr_info("%s %s: cmpxchg double redo ", n, s->name); 438 #endif 439 440 return false; 441 } 442 443 #ifdef CONFIG_SLUB_DEBUG 444 /* 445 * Determine a map of object in use on a page. 446 * 447 * Node listlock must be held to guarantee that the page does 448 * not vanish from under us. 449 */ 450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 451 { 452 void *p; 453 void *addr = page_address(page); 454 455 for (p = page->freelist; p; p = get_freepointer(s, p)) 456 set_bit(slab_index(p, s, addr), map); 457 } 458 459 static inline unsigned int size_from_object(struct kmem_cache *s) 460 { 461 if (s->flags & SLAB_RED_ZONE) 462 return s->size - s->red_left_pad; 463 464 return s->size; 465 } 466 467 static inline void *restore_red_left(struct kmem_cache *s, void *p) 468 { 469 if (s->flags & SLAB_RED_ZONE) 470 p -= s->red_left_pad; 471 472 return p; 473 } 474 475 /* 476 * Debug settings: 477 */ 478 #if defined(CONFIG_SLUB_DEBUG_ON) 479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 480 #else 481 static slab_flags_t slub_debug; 482 #endif 483 484 static char *slub_debug_slabs; 485 static int disable_higher_order_debug; 486 487 /* 488 * slub is about to manipulate internal object metadata. This memory lies 489 * outside the range of the allocated object, so accessing it would normally 490 * be reported by kasan as a bounds error. metadata_access_enable() is used 491 * to tell kasan that these accesses are OK. 492 */ 493 static inline void metadata_access_enable(void) 494 { 495 kasan_disable_current(); 496 } 497 498 static inline void metadata_access_disable(void) 499 { 500 kasan_enable_current(); 501 } 502 503 /* 504 * Object debugging 505 */ 506 507 /* Verify that a pointer has an address that is valid within a slab page */ 508 static inline int check_valid_pointer(struct kmem_cache *s, 509 struct page *page, void *object) 510 { 511 void *base; 512 513 if (!object) 514 return 1; 515 516 base = page_address(page); 517 object = kasan_reset_tag(object); 518 object = restore_red_left(s, object); 519 if (object < base || object >= base + page->objects * s->size || 520 (object - base) % s->size) { 521 return 0; 522 } 523 524 return 1; 525 } 526 527 static void print_section(char *level, char *text, u8 *addr, 528 unsigned int length) 529 { 530 metadata_access_enable(); 531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 532 length, 1); 533 metadata_access_disable(); 534 } 535 536 static struct track *get_track(struct kmem_cache *s, void *object, 537 enum track_item alloc) 538 { 539 struct track *p; 540 541 if (s->offset) 542 p = object + s->offset + sizeof(void *); 543 else 544 p = object + s->inuse; 545 546 return p + alloc; 547 } 548 549 static void set_track(struct kmem_cache *s, void *object, 550 enum track_item alloc, unsigned long addr) 551 { 552 struct track *p = get_track(s, object, alloc); 553 554 if (addr) { 555 #ifdef CONFIG_STACKTRACE 556 unsigned int nr_entries; 557 558 metadata_access_enable(); 559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 560 metadata_access_disable(); 561 562 if (nr_entries < TRACK_ADDRS_COUNT) 563 p->addrs[nr_entries] = 0; 564 #endif 565 p->addr = addr; 566 p->cpu = smp_processor_id(); 567 p->pid = current->pid; 568 p->when = jiffies; 569 } else { 570 memset(p, 0, sizeof(struct track)); 571 } 572 } 573 574 static void init_tracking(struct kmem_cache *s, void *object) 575 { 576 if (!(s->flags & SLAB_STORE_USER)) 577 return; 578 579 set_track(s, object, TRACK_FREE, 0UL); 580 set_track(s, object, TRACK_ALLOC, 0UL); 581 } 582 583 static void print_track(const char *s, struct track *t, unsigned long pr_time) 584 { 585 if (!t->addr) 586 return; 587 588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 590 #ifdef CONFIG_STACKTRACE 591 { 592 int i; 593 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 594 if (t->addrs[i]) 595 pr_err("\t%pS\n", (void *)t->addrs[i]); 596 else 597 break; 598 } 599 #endif 600 } 601 602 static void print_tracking(struct kmem_cache *s, void *object) 603 { 604 unsigned long pr_time = jiffies; 605 if (!(s->flags & SLAB_STORE_USER)) 606 return; 607 608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 610 } 611 612 static void print_page_info(struct page *page) 613 { 614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 615 page, page->objects, page->inuse, page->freelist, page->flags); 616 617 } 618 619 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 620 { 621 struct va_format vaf; 622 va_list args; 623 624 va_start(args, fmt); 625 vaf.fmt = fmt; 626 vaf.va = &args; 627 pr_err("=============================================================================\n"); 628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 629 pr_err("-----------------------------------------------------------------------------\n\n"); 630 631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 632 va_end(args); 633 } 634 635 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 636 { 637 struct va_format vaf; 638 va_list args; 639 640 va_start(args, fmt); 641 vaf.fmt = fmt; 642 vaf.va = &args; 643 pr_err("FIX %s: %pV\n", s->name, &vaf); 644 va_end(args); 645 } 646 647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 648 { 649 unsigned int off; /* Offset of last byte */ 650 u8 *addr = page_address(page); 651 652 print_tracking(s, p); 653 654 print_page_info(page); 655 656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 657 p, p - addr, get_freepointer(s, p)); 658 659 if (s->flags & SLAB_RED_ZONE) 660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 661 s->red_left_pad); 662 else if (p > addr + 16) 663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 664 665 print_section(KERN_ERR, "Object ", p, 666 min_t(unsigned int, s->object_size, PAGE_SIZE)); 667 if (s->flags & SLAB_RED_ZONE) 668 print_section(KERN_ERR, "Redzone ", p + s->object_size, 669 s->inuse - s->object_size); 670 671 if (s->offset) 672 off = s->offset + sizeof(void *); 673 else 674 off = s->inuse; 675 676 if (s->flags & SLAB_STORE_USER) 677 off += 2 * sizeof(struct track); 678 679 off += kasan_metadata_size(s); 680 681 if (off != size_from_object(s)) 682 /* Beginning of the filler is the free pointer */ 683 print_section(KERN_ERR, "Padding ", p + off, 684 size_from_object(s) - off); 685 686 dump_stack(); 687 } 688 689 void object_err(struct kmem_cache *s, struct page *page, 690 u8 *object, char *reason) 691 { 692 slab_bug(s, "%s", reason); 693 print_trailer(s, page, object); 694 } 695 696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 697 const char *fmt, ...) 698 { 699 va_list args; 700 char buf[100]; 701 702 va_start(args, fmt); 703 vsnprintf(buf, sizeof(buf), fmt, args); 704 va_end(args); 705 slab_bug(s, "%s", buf); 706 print_page_info(page); 707 dump_stack(); 708 } 709 710 static void init_object(struct kmem_cache *s, void *object, u8 val) 711 { 712 u8 *p = object; 713 714 if (s->flags & SLAB_RED_ZONE) 715 memset(p - s->red_left_pad, val, s->red_left_pad); 716 717 if (s->flags & __OBJECT_POISON) { 718 memset(p, POISON_FREE, s->object_size - 1); 719 p[s->object_size - 1] = POISON_END; 720 } 721 722 if (s->flags & SLAB_RED_ZONE) 723 memset(p + s->object_size, val, s->inuse - s->object_size); 724 } 725 726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 727 void *from, void *to) 728 { 729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 730 memset(from, data, to - from); 731 } 732 733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 734 u8 *object, char *what, 735 u8 *start, unsigned int value, unsigned int bytes) 736 { 737 u8 *fault; 738 u8 *end; 739 740 metadata_access_enable(); 741 fault = memchr_inv(start, value, bytes); 742 metadata_access_disable(); 743 if (!fault) 744 return 1; 745 746 end = start + bytes; 747 while (end > fault && end[-1] == value) 748 end--; 749 750 slab_bug(s, "%s overwritten", what); 751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 752 fault, end - 1, fault[0], value); 753 print_trailer(s, page, object); 754 755 restore_bytes(s, what, value, fault, end); 756 return 0; 757 } 758 759 /* 760 * Object layout: 761 * 762 * object address 763 * Bytes of the object to be managed. 764 * If the freepointer may overlay the object then the free 765 * pointer is the first word of the object. 766 * 767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 768 * 0xa5 (POISON_END) 769 * 770 * object + s->object_size 771 * Padding to reach word boundary. This is also used for Redzoning. 772 * Padding is extended by another word if Redzoning is enabled and 773 * object_size == inuse. 774 * 775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 776 * 0xcc (RED_ACTIVE) for objects in use. 777 * 778 * object + s->inuse 779 * Meta data starts here. 780 * 781 * A. Free pointer (if we cannot overwrite object on free) 782 * B. Tracking data for SLAB_STORE_USER 783 * C. Padding to reach required alignment boundary or at mininum 784 * one word if debugging is on to be able to detect writes 785 * before the word boundary. 786 * 787 * Padding is done using 0x5a (POISON_INUSE) 788 * 789 * object + s->size 790 * Nothing is used beyond s->size. 791 * 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly 793 * ignored. And therefore no slab options that rely on these boundaries 794 * may be used with merged slabcaches. 795 */ 796 797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 798 { 799 unsigned long off = s->inuse; /* The end of info */ 800 801 if (s->offset) 802 /* Freepointer is placed after the object. */ 803 off += sizeof(void *); 804 805 if (s->flags & SLAB_STORE_USER) 806 /* We also have user information there */ 807 off += 2 * sizeof(struct track); 808 809 off += kasan_metadata_size(s); 810 811 if (size_from_object(s) == off) 812 return 1; 813 814 return check_bytes_and_report(s, page, p, "Object padding", 815 p + off, POISON_INUSE, size_from_object(s) - off); 816 } 817 818 /* Check the pad bytes at the end of a slab page */ 819 static int slab_pad_check(struct kmem_cache *s, struct page *page) 820 { 821 u8 *start; 822 u8 *fault; 823 u8 *end; 824 u8 *pad; 825 int length; 826 int remainder; 827 828 if (!(s->flags & SLAB_POISON)) 829 return 1; 830 831 start = page_address(page); 832 length = PAGE_SIZE << compound_order(page); 833 end = start + length; 834 remainder = length % s->size; 835 if (!remainder) 836 return 1; 837 838 pad = end - remainder; 839 metadata_access_enable(); 840 fault = memchr_inv(pad, POISON_INUSE, remainder); 841 metadata_access_disable(); 842 if (!fault) 843 return 1; 844 while (end > fault && end[-1] == POISON_INUSE) 845 end--; 846 847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 848 print_section(KERN_ERR, "Padding ", pad, remainder); 849 850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 851 return 0; 852 } 853 854 static int check_object(struct kmem_cache *s, struct page *page, 855 void *object, u8 val) 856 { 857 u8 *p = object; 858 u8 *endobject = object + s->object_size; 859 860 if (s->flags & SLAB_RED_ZONE) { 861 if (!check_bytes_and_report(s, page, object, "Redzone", 862 object - s->red_left_pad, val, s->red_left_pad)) 863 return 0; 864 865 if (!check_bytes_and_report(s, page, object, "Redzone", 866 endobject, val, s->inuse - s->object_size)) 867 return 0; 868 } else { 869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 870 check_bytes_and_report(s, page, p, "Alignment padding", 871 endobject, POISON_INUSE, 872 s->inuse - s->object_size); 873 } 874 } 875 876 if (s->flags & SLAB_POISON) { 877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 878 (!check_bytes_and_report(s, page, p, "Poison", p, 879 POISON_FREE, s->object_size - 1) || 880 !check_bytes_and_report(s, page, p, "Poison", 881 p + s->object_size - 1, POISON_END, 1))) 882 return 0; 883 /* 884 * check_pad_bytes cleans up on its own. 885 */ 886 check_pad_bytes(s, page, p); 887 } 888 889 if (!s->offset && val == SLUB_RED_ACTIVE) 890 /* 891 * Object and freepointer overlap. Cannot check 892 * freepointer while object is allocated. 893 */ 894 return 1; 895 896 /* Check free pointer validity */ 897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 898 object_err(s, page, p, "Freepointer corrupt"); 899 /* 900 * No choice but to zap it and thus lose the remainder 901 * of the free objects in this slab. May cause 902 * another error because the object count is now wrong. 903 */ 904 set_freepointer(s, p, NULL); 905 return 0; 906 } 907 return 1; 908 } 909 910 static int check_slab(struct kmem_cache *s, struct page *page) 911 { 912 int maxobj; 913 914 VM_BUG_ON(!irqs_disabled()); 915 916 if (!PageSlab(page)) { 917 slab_err(s, page, "Not a valid slab page"); 918 return 0; 919 } 920 921 maxobj = order_objects(compound_order(page), s->size); 922 if (page->objects > maxobj) { 923 slab_err(s, page, "objects %u > max %u", 924 page->objects, maxobj); 925 return 0; 926 } 927 if (page->inuse > page->objects) { 928 slab_err(s, page, "inuse %u > max %u", 929 page->inuse, page->objects); 930 return 0; 931 } 932 /* Slab_pad_check fixes things up after itself */ 933 slab_pad_check(s, page); 934 return 1; 935 } 936 937 /* 938 * Determine if a certain object on a page is on the freelist. Must hold the 939 * slab lock to guarantee that the chains are in a consistent state. 940 */ 941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 942 { 943 int nr = 0; 944 void *fp; 945 void *object = NULL; 946 int max_objects; 947 948 fp = page->freelist; 949 while (fp && nr <= page->objects) { 950 if (fp == search) 951 return 1; 952 if (!check_valid_pointer(s, page, fp)) { 953 if (object) { 954 object_err(s, page, object, 955 "Freechain corrupt"); 956 set_freepointer(s, object, NULL); 957 } else { 958 slab_err(s, page, "Freepointer corrupt"); 959 page->freelist = NULL; 960 page->inuse = page->objects; 961 slab_fix(s, "Freelist cleared"); 962 return 0; 963 } 964 break; 965 } 966 object = fp; 967 fp = get_freepointer(s, object); 968 nr++; 969 } 970 971 max_objects = order_objects(compound_order(page), s->size); 972 if (max_objects > MAX_OBJS_PER_PAGE) 973 max_objects = MAX_OBJS_PER_PAGE; 974 975 if (page->objects != max_objects) { 976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 977 page->objects, max_objects); 978 page->objects = max_objects; 979 slab_fix(s, "Number of objects adjusted."); 980 } 981 if (page->inuse != page->objects - nr) { 982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 983 page->inuse, page->objects - nr); 984 page->inuse = page->objects - nr; 985 slab_fix(s, "Object count adjusted."); 986 } 987 return search == NULL; 988 } 989 990 static void trace(struct kmem_cache *s, struct page *page, void *object, 991 int alloc) 992 { 993 if (s->flags & SLAB_TRACE) { 994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 995 s->name, 996 alloc ? "alloc" : "free", 997 object, page->inuse, 998 page->freelist); 999 1000 if (!alloc) 1001 print_section(KERN_INFO, "Object ", (void *)object, 1002 s->object_size); 1003 1004 dump_stack(); 1005 } 1006 } 1007 1008 /* 1009 * Tracking of fully allocated slabs for debugging purposes. 1010 */ 1011 static void add_full(struct kmem_cache *s, 1012 struct kmem_cache_node *n, struct page *page) 1013 { 1014 if (!(s->flags & SLAB_STORE_USER)) 1015 return; 1016 1017 lockdep_assert_held(&n->list_lock); 1018 list_add(&page->slab_list, &n->full); 1019 } 1020 1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1022 { 1023 if (!(s->flags & SLAB_STORE_USER)) 1024 return; 1025 1026 lockdep_assert_held(&n->list_lock); 1027 list_del(&page->slab_list); 1028 } 1029 1030 /* Tracking of the number of slabs for debugging purposes */ 1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1032 { 1033 struct kmem_cache_node *n = get_node(s, node); 1034 1035 return atomic_long_read(&n->nr_slabs); 1036 } 1037 1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1039 { 1040 return atomic_long_read(&n->nr_slabs); 1041 } 1042 1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1044 { 1045 struct kmem_cache_node *n = get_node(s, node); 1046 1047 /* 1048 * May be called early in order to allocate a slab for the 1049 * kmem_cache_node structure. Solve the chicken-egg 1050 * dilemma by deferring the increment of the count during 1051 * bootstrap (see early_kmem_cache_node_alloc). 1052 */ 1053 if (likely(n)) { 1054 atomic_long_inc(&n->nr_slabs); 1055 atomic_long_add(objects, &n->total_objects); 1056 } 1057 } 1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1059 { 1060 struct kmem_cache_node *n = get_node(s, node); 1061 1062 atomic_long_dec(&n->nr_slabs); 1063 atomic_long_sub(objects, &n->total_objects); 1064 } 1065 1066 /* Object debug checks for alloc/free paths */ 1067 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1068 void *object) 1069 { 1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1071 return; 1072 1073 init_object(s, object, SLUB_RED_INACTIVE); 1074 init_tracking(s, object); 1075 } 1076 1077 static void setup_page_debug(struct kmem_cache *s, void *addr, int order) 1078 { 1079 if (!(s->flags & SLAB_POISON)) 1080 return; 1081 1082 metadata_access_enable(); 1083 memset(addr, POISON_INUSE, PAGE_SIZE << order); 1084 metadata_access_disable(); 1085 } 1086 1087 static inline int alloc_consistency_checks(struct kmem_cache *s, 1088 struct page *page, void *object) 1089 { 1090 if (!check_slab(s, page)) 1091 return 0; 1092 1093 if (!check_valid_pointer(s, page, object)) { 1094 object_err(s, page, object, "Freelist Pointer check fails"); 1095 return 0; 1096 } 1097 1098 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1099 return 0; 1100 1101 return 1; 1102 } 1103 1104 static noinline int alloc_debug_processing(struct kmem_cache *s, 1105 struct page *page, 1106 void *object, unsigned long addr) 1107 { 1108 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1109 if (!alloc_consistency_checks(s, page, object)) 1110 goto bad; 1111 } 1112 1113 /* Success perform special debug activities for allocs */ 1114 if (s->flags & SLAB_STORE_USER) 1115 set_track(s, object, TRACK_ALLOC, addr); 1116 trace(s, page, object, 1); 1117 init_object(s, object, SLUB_RED_ACTIVE); 1118 return 1; 1119 1120 bad: 1121 if (PageSlab(page)) { 1122 /* 1123 * If this is a slab page then lets do the best we can 1124 * to avoid issues in the future. Marking all objects 1125 * as used avoids touching the remaining objects. 1126 */ 1127 slab_fix(s, "Marking all objects used"); 1128 page->inuse = page->objects; 1129 page->freelist = NULL; 1130 } 1131 return 0; 1132 } 1133 1134 static inline int free_consistency_checks(struct kmem_cache *s, 1135 struct page *page, void *object, unsigned long addr) 1136 { 1137 if (!check_valid_pointer(s, page, object)) { 1138 slab_err(s, page, "Invalid object pointer 0x%p", object); 1139 return 0; 1140 } 1141 1142 if (on_freelist(s, page, object)) { 1143 object_err(s, page, object, "Object already free"); 1144 return 0; 1145 } 1146 1147 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1148 return 0; 1149 1150 if (unlikely(s != page->slab_cache)) { 1151 if (!PageSlab(page)) { 1152 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1153 object); 1154 } else if (!page->slab_cache) { 1155 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1156 object); 1157 dump_stack(); 1158 } else 1159 object_err(s, page, object, 1160 "page slab pointer corrupt."); 1161 return 0; 1162 } 1163 return 1; 1164 } 1165 1166 /* Supports checking bulk free of a constructed freelist */ 1167 static noinline int free_debug_processing( 1168 struct kmem_cache *s, struct page *page, 1169 void *head, void *tail, int bulk_cnt, 1170 unsigned long addr) 1171 { 1172 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1173 void *object = head; 1174 int cnt = 0; 1175 unsigned long uninitialized_var(flags); 1176 int ret = 0; 1177 1178 spin_lock_irqsave(&n->list_lock, flags); 1179 slab_lock(page); 1180 1181 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1182 if (!check_slab(s, page)) 1183 goto out; 1184 } 1185 1186 next_object: 1187 cnt++; 1188 1189 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1190 if (!free_consistency_checks(s, page, object, addr)) 1191 goto out; 1192 } 1193 1194 if (s->flags & SLAB_STORE_USER) 1195 set_track(s, object, TRACK_FREE, addr); 1196 trace(s, page, object, 0); 1197 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1198 init_object(s, object, SLUB_RED_INACTIVE); 1199 1200 /* Reached end of constructed freelist yet? */ 1201 if (object != tail) { 1202 object = get_freepointer(s, object); 1203 goto next_object; 1204 } 1205 ret = 1; 1206 1207 out: 1208 if (cnt != bulk_cnt) 1209 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1210 bulk_cnt, cnt); 1211 1212 slab_unlock(page); 1213 spin_unlock_irqrestore(&n->list_lock, flags); 1214 if (!ret) 1215 slab_fix(s, "Object at 0x%p not freed", object); 1216 return ret; 1217 } 1218 1219 static int __init setup_slub_debug(char *str) 1220 { 1221 slub_debug = DEBUG_DEFAULT_FLAGS; 1222 if (*str++ != '=' || !*str) 1223 /* 1224 * No options specified. Switch on full debugging. 1225 */ 1226 goto out; 1227 1228 if (*str == ',') 1229 /* 1230 * No options but restriction on slabs. This means full 1231 * debugging for slabs matching a pattern. 1232 */ 1233 goto check_slabs; 1234 1235 slub_debug = 0; 1236 if (*str == '-') 1237 /* 1238 * Switch off all debugging measures. 1239 */ 1240 goto out; 1241 1242 /* 1243 * Determine which debug features should be switched on 1244 */ 1245 for (; *str && *str != ','; str++) { 1246 switch (tolower(*str)) { 1247 case 'f': 1248 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1249 break; 1250 case 'z': 1251 slub_debug |= SLAB_RED_ZONE; 1252 break; 1253 case 'p': 1254 slub_debug |= SLAB_POISON; 1255 break; 1256 case 'u': 1257 slub_debug |= SLAB_STORE_USER; 1258 break; 1259 case 't': 1260 slub_debug |= SLAB_TRACE; 1261 break; 1262 case 'a': 1263 slub_debug |= SLAB_FAILSLAB; 1264 break; 1265 case 'o': 1266 /* 1267 * Avoid enabling debugging on caches if its minimum 1268 * order would increase as a result. 1269 */ 1270 disable_higher_order_debug = 1; 1271 break; 1272 default: 1273 pr_err("slub_debug option '%c' unknown. skipped\n", 1274 *str); 1275 } 1276 } 1277 1278 check_slabs: 1279 if (*str == ',') 1280 slub_debug_slabs = str + 1; 1281 out: 1282 if ((static_branch_unlikely(&init_on_alloc) || 1283 static_branch_unlikely(&init_on_free)) && 1284 (slub_debug & SLAB_POISON)) 1285 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1286 return 1; 1287 } 1288 1289 __setup("slub_debug", setup_slub_debug); 1290 1291 /* 1292 * kmem_cache_flags - apply debugging options to the cache 1293 * @object_size: the size of an object without meta data 1294 * @flags: flags to set 1295 * @name: name of the cache 1296 * @ctor: constructor function 1297 * 1298 * Debug option(s) are applied to @flags. In addition to the debug 1299 * option(s), if a slab name (or multiple) is specified i.e. 1300 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1301 * then only the select slabs will receive the debug option(s). 1302 */ 1303 slab_flags_t kmem_cache_flags(unsigned int object_size, 1304 slab_flags_t flags, const char *name, 1305 void (*ctor)(void *)) 1306 { 1307 char *iter; 1308 size_t len; 1309 1310 /* If slub_debug = 0, it folds into the if conditional. */ 1311 if (!slub_debug_slabs) 1312 return flags | slub_debug; 1313 1314 len = strlen(name); 1315 iter = slub_debug_slabs; 1316 while (*iter) { 1317 char *end, *glob; 1318 size_t cmplen; 1319 1320 end = strchrnul(iter, ','); 1321 1322 glob = strnchr(iter, end - iter, '*'); 1323 if (glob) 1324 cmplen = glob - iter; 1325 else 1326 cmplen = max_t(size_t, len, (end - iter)); 1327 1328 if (!strncmp(name, iter, cmplen)) { 1329 flags |= slub_debug; 1330 break; 1331 } 1332 1333 if (!*end) 1334 break; 1335 iter = end + 1; 1336 } 1337 1338 return flags; 1339 } 1340 #else /* !CONFIG_SLUB_DEBUG */ 1341 static inline void setup_object_debug(struct kmem_cache *s, 1342 struct page *page, void *object) {} 1343 static inline void setup_page_debug(struct kmem_cache *s, 1344 void *addr, int order) {} 1345 1346 static inline int alloc_debug_processing(struct kmem_cache *s, 1347 struct page *page, void *object, unsigned long addr) { return 0; } 1348 1349 static inline int free_debug_processing( 1350 struct kmem_cache *s, struct page *page, 1351 void *head, void *tail, int bulk_cnt, 1352 unsigned long addr) { return 0; } 1353 1354 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1355 { return 1; } 1356 static inline int check_object(struct kmem_cache *s, struct page *page, 1357 void *object, u8 val) { return 1; } 1358 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1359 struct page *page) {} 1360 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1361 struct page *page) {} 1362 slab_flags_t kmem_cache_flags(unsigned int object_size, 1363 slab_flags_t flags, const char *name, 1364 void (*ctor)(void *)) 1365 { 1366 return flags; 1367 } 1368 #define slub_debug 0 1369 1370 #define disable_higher_order_debug 0 1371 1372 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1373 { return 0; } 1374 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1375 { return 0; } 1376 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1377 int objects) {} 1378 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1379 int objects) {} 1380 1381 #endif /* CONFIG_SLUB_DEBUG */ 1382 1383 /* 1384 * Hooks for other subsystems that check memory allocations. In a typical 1385 * production configuration these hooks all should produce no code at all. 1386 */ 1387 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1388 { 1389 ptr = kasan_kmalloc_large(ptr, size, flags); 1390 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1391 kmemleak_alloc(ptr, size, 1, flags); 1392 return ptr; 1393 } 1394 1395 static __always_inline void kfree_hook(void *x) 1396 { 1397 kmemleak_free(x); 1398 kasan_kfree_large(x, _RET_IP_); 1399 } 1400 1401 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1402 { 1403 kmemleak_free_recursive(x, s->flags); 1404 1405 /* 1406 * Trouble is that we may no longer disable interrupts in the fast path 1407 * So in order to make the debug calls that expect irqs to be 1408 * disabled we need to disable interrupts temporarily. 1409 */ 1410 #ifdef CONFIG_LOCKDEP 1411 { 1412 unsigned long flags; 1413 1414 local_irq_save(flags); 1415 debug_check_no_locks_freed(x, s->object_size); 1416 local_irq_restore(flags); 1417 } 1418 #endif 1419 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1420 debug_check_no_obj_freed(x, s->object_size); 1421 1422 /* KASAN might put x into memory quarantine, delaying its reuse */ 1423 return kasan_slab_free(s, x, _RET_IP_); 1424 } 1425 1426 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1427 void **head, void **tail) 1428 { 1429 1430 void *object; 1431 void *next = *head; 1432 void *old_tail = *tail ? *tail : *head; 1433 int rsize; 1434 1435 if (slab_want_init_on_free(s)) { 1436 void *p = NULL; 1437 1438 do { 1439 object = next; 1440 next = get_freepointer(s, object); 1441 /* 1442 * Clear the object and the metadata, but don't touch 1443 * the redzone. 1444 */ 1445 memset(object, 0, s->object_size); 1446 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1447 : 0; 1448 memset((char *)object + s->inuse, 0, 1449 s->size - s->inuse - rsize); 1450 set_freepointer(s, object, p); 1451 p = object; 1452 } while (object != old_tail); 1453 } 1454 1455 /* 1456 * Compiler cannot detect this function can be removed if slab_free_hook() 1457 * evaluates to nothing. Thus, catch all relevant config debug options here. 1458 */ 1459 #if defined(CONFIG_LOCKDEP) || \ 1460 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1461 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1462 defined(CONFIG_KASAN) 1463 1464 next = *head; 1465 1466 /* Head and tail of the reconstructed freelist */ 1467 *head = NULL; 1468 *tail = NULL; 1469 1470 do { 1471 object = next; 1472 next = get_freepointer(s, object); 1473 /* If object's reuse doesn't have to be delayed */ 1474 if (!slab_free_hook(s, object)) { 1475 /* Move object to the new freelist */ 1476 set_freepointer(s, object, *head); 1477 *head = object; 1478 if (!*tail) 1479 *tail = object; 1480 } 1481 } while (object != old_tail); 1482 1483 if (*head == *tail) 1484 *tail = NULL; 1485 1486 return *head != NULL; 1487 #else 1488 return true; 1489 #endif 1490 } 1491 1492 static void *setup_object(struct kmem_cache *s, struct page *page, 1493 void *object) 1494 { 1495 setup_object_debug(s, page, object); 1496 object = kasan_init_slab_obj(s, object); 1497 if (unlikely(s->ctor)) { 1498 kasan_unpoison_object_data(s, object); 1499 s->ctor(object); 1500 kasan_poison_object_data(s, object); 1501 } 1502 return object; 1503 } 1504 1505 /* 1506 * Slab allocation and freeing 1507 */ 1508 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1509 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1510 { 1511 struct page *page; 1512 unsigned int order = oo_order(oo); 1513 1514 if (node == NUMA_NO_NODE) 1515 page = alloc_pages(flags, order); 1516 else 1517 page = __alloc_pages_node(node, flags, order); 1518 1519 if (page && charge_slab_page(page, flags, order, s)) { 1520 __free_pages(page, order); 1521 page = NULL; 1522 } 1523 1524 return page; 1525 } 1526 1527 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1528 /* Pre-initialize the random sequence cache */ 1529 static int init_cache_random_seq(struct kmem_cache *s) 1530 { 1531 unsigned int count = oo_objects(s->oo); 1532 int err; 1533 1534 /* Bailout if already initialised */ 1535 if (s->random_seq) 1536 return 0; 1537 1538 err = cache_random_seq_create(s, count, GFP_KERNEL); 1539 if (err) { 1540 pr_err("SLUB: Unable to initialize free list for %s\n", 1541 s->name); 1542 return err; 1543 } 1544 1545 /* Transform to an offset on the set of pages */ 1546 if (s->random_seq) { 1547 unsigned int i; 1548 1549 for (i = 0; i < count; i++) 1550 s->random_seq[i] *= s->size; 1551 } 1552 return 0; 1553 } 1554 1555 /* Initialize each random sequence freelist per cache */ 1556 static void __init init_freelist_randomization(void) 1557 { 1558 struct kmem_cache *s; 1559 1560 mutex_lock(&slab_mutex); 1561 1562 list_for_each_entry(s, &slab_caches, list) 1563 init_cache_random_seq(s); 1564 1565 mutex_unlock(&slab_mutex); 1566 } 1567 1568 /* Get the next entry on the pre-computed freelist randomized */ 1569 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1570 unsigned long *pos, void *start, 1571 unsigned long page_limit, 1572 unsigned long freelist_count) 1573 { 1574 unsigned int idx; 1575 1576 /* 1577 * If the target page allocation failed, the number of objects on the 1578 * page might be smaller than the usual size defined by the cache. 1579 */ 1580 do { 1581 idx = s->random_seq[*pos]; 1582 *pos += 1; 1583 if (*pos >= freelist_count) 1584 *pos = 0; 1585 } while (unlikely(idx >= page_limit)); 1586 1587 return (char *)start + idx; 1588 } 1589 1590 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1591 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1592 { 1593 void *start; 1594 void *cur; 1595 void *next; 1596 unsigned long idx, pos, page_limit, freelist_count; 1597 1598 if (page->objects < 2 || !s->random_seq) 1599 return false; 1600 1601 freelist_count = oo_objects(s->oo); 1602 pos = get_random_int() % freelist_count; 1603 1604 page_limit = page->objects * s->size; 1605 start = fixup_red_left(s, page_address(page)); 1606 1607 /* First entry is used as the base of the freelist */ 1608 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1609 freelist_count); 1610 cur = setup_object(s, page, cur); 1611 page->freelist = cur; 1612 1613 for (idx = 1; idx < page->objects; idx++) { 1614 next = next_freelist_entry(s, page, &pos, start, page_limit, 1615 freelist_count); 1616 next = setup_object(s, page, next); 1617 set_freepointer(s, cur, next); 1618 cur = next; 1619 } 1620 set_freepointer(s, cur, NULL); 1621 1622 return true; 1623 } 1624 #else 1625 static inline int init_cache_random_seq(struct kmem_cache *s) 1626 { 1627 return 0; 1628 } 1629 static inline void init_freelist_randomization(void) { } 1630 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1631 { 1632 return false; 1633 } 1634 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1635 1636 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1637 { 1638 struct page *page; 1639 struct kmem_cache_order_objects oo = s->oo; 1640 gfp_t alloc_gfp; 1641 void *start, *p, *next; 1642 int idx, order; 1643 bool shuffle; 1644 1645 flags &= gfp_allowed_mask; 1646 1647 if (gfpflags_allow_blocking(flags)) 1648 local_irq_enable(); 1649 1650 flags |= s->allocflags; 1651 1652 /* 1653 * Let the initial higher-order allocation fail under memory pressure 1654 * so we fall-back to the minimum order allocation. 1655 */ 1656 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1657 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1658 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1659 1660 page = alloc_slab_page(s, alloc_gfp, node, oo); 1661 if (unlikely(!page)) { 1662 oo = s->min; 1663 alloc_gfp = flags; 1664 /* 1665 * Allocation may have failed due to fragmentation. 1666 * Try a lower order alloc if possible 1667 */ 1668 page = alloc_slab_page(s, alloc_gfp, node, oo); 1669 if (unlikely(!page)) 1670 goto out; 1671 stat(s, ORDER_FALLBACK); 1672 } 1673 1674 page->objects = oo_objects(oo); 1675 1676 order = compound_order(page); 1677 page->slab_cache = s; 1678 __SetPageSlab(page); 1679 if (page_is_pfmemalloc(page)) 1680 SetPageSlabPfmemalloc(page); 1681 1682 kasan_poison_slab(page); 1683 1684 start = page_address(page); 1685 1686 setup_page_debug(s, start, order); 1687 1688 shuffle = shuffle_freelist(s, page); 1689 1690 if (!shuffle) { 1691 start = fixup_red_left(s, start); 1692 start = setup_object(s, page, start); 1693 page->freelist = start; 1694 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1695 next = p + s->size; 1696 next = setup_object(s, page, next); 1697 set_freepointer(s, p, next); 1698 p = next; 1699 } 1700 set_freepointer(s, p, NULL); 1701 } 1702 1703 page->inuse = page->objects; 1704 page->frozen = 1; 1705 1706 out: 1707 if (gfpflags_allow_blocking(flags)) 1708 local_irq_disable(); 1709 if (!page) 1710 return NULL; 1711 1712 inc_slabs_node(s, page_to_nid(page), page->objects); 1713 1714 return page; 1715 } 1716 1717 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1718 { 1719 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1720 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1721 flags &= ~GFP_SLAB_BUG_MASK; 1722 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1723 invalid_mask, &invalid_mask, flags, &flags); 1724 dump_stack(); 1725 } 1726 1727 return allocate_slab(s, 1728 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1729 } 1730 1731 static void __free_slab(struct kmem_cache *s, struct page *page) 1732 { 1733 int order = compound_order(page); 1734 int pages = 1 << order; 1735 1736 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1737 void *p; 1738 1739 slab_pad_check(s, page); 1740 for_each_object(p, s, page_address(page), 1741 page->objects) 1742 check_object(s, page, p, SLUB_RED_INACTIVE); 1743 } 1744 1745 __ClearPageSlabPfmemalloc(page); 1746 __ClearPageSlab(page); 1747 1748 page->mapping = NULL; 1749 if (current->reclaim_state) 1750 current->reclaim_state->reclaimed_slab += pages; 1751 uncharge_slab_page(page, order, s); 1752 __free_pages(page, order); 1753 } 1754 1755 static void rcu_free_slab(struct rcu_head *h) 1756 { 1757 struct page *page = container_of(h, struct page, rcu_head); 1758 1759 __free_slab(page->slab_cache, page); 1760 } 1761 1762 static void free_slab(struct kmem_cache *s, struct page *page) 1763 { 1764 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1765 call_rcu(&page->rcu_head, rcu_free_slab); 1766 } else 1767 __free_slab(s, page); 1768 } 1769 1770 static void discard_slab(struct kmem_cache *s, struct page *page) 1771 { 1772 dec_slabs_node(s, page_to_nid(page), page->objects); 1773 free_slab(s, page); 1774 } 1775 1776 /* 1777 * Management of partially allocated slabs. 1778 */ 1779 static inline void 1780 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1781 { 1782 n->nr_partial++; 1783 if (tail == DEACTIVATE_TO_TAIL) 1784 list_add_tail(&page->slab_list, &n->partial); 1785 else 1786 list_add(&page->slab_list, &n->partial); 1787 } 1788 1789 static inline void add_partial(struct kmem_cache_node *n, 1790 struct page *page, int tail) 1791 { 1792 lockdep_assert_held(&n->list_lock); 1793 __add_partial(n, page, tail); 1794 } 1795 1796 static inline void remove_partial(struct kmem_cache_node *n, 1797 struct page *page) 1798 { 1799 lockdep_assert_held(&n->list_lock); 1800 list_del(&page->slab_list); 1801 n->nr_partial--; 1802 } 1803 1804 /* 1805 * Remove slab from the partial list, freeze it and 1806 * return the pointer to the freelist. 1807 * 1808 * Returns a list of objects or NULL if it fails. 1809 */ 1810 static inline void *acquire_slab(struct kmem_cache *s, 1811 struct kmem_cache_node *n, struct page *page, 1812 int mode, int *objects) 1813 { 1814 void *freelist; 1815 unsigned long counters; 1816 struct page new; 1817 1818 lockdep_assert_held(&n->list_lock); 1819 1820 /* 1821 * Zap the freelist and set the frozen bit. 1822 * The old freelist is the list of objects for the 1823 * per cpu allocation list. 1824 */ 1825 freelist = page->freelist; 1826 counters = page->counters; 1827 new.counters = counters; 1828 *objects = new.objects - new.inuse; 1829 if (mode) { 1830 new.inuse = page->objects; 1831 new.freelist = NULL; 1832 } else { 1833 new.freelist = freelist; 1834 } 1835 1836 VM_BUG_ON(new.frozen); 1837 new.frozen = 1; 1838 1839 if (!__cmpxchg_double_slab(s, page, 1840 freelist, counters, 1841 new.freelist, new.counters, 1842 "acquire_slab")) 1843 return NULL; 1844 1845 remove_partial(n, page); 1846 WARN_ON(!freelist); 1847 return freelist; 1848 } 1849 1850 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1851 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1852 1853 /* 1854 * Try to allocate a partial slab from a specific node. 1855 */ 1856 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1857 struct kmem_cache_cpu *c, gfp_t flags) 1858 { 1859 struct page *page, *page2; 1860 void *object = NULL; 1861 unsigned int available = 0; 1862 int objects; 1863 1864 /* 1865 * Racy check. If we mistakenly see no partial slabs then we 1866 * just allocate an empty slab. If we mistakenly try to get a 1867 * partial slab and there is none available then get_partials() 1868 * will return NULL. 1869 */ 1870 if (!n || !n->nr_partial) 1871 return NULL; 1872 1873 spin_lock(&n->list_lock); 1874 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1875 void *t; 1876 1877 if (!pfmemalloc_match(page, flags)) 1878 continue; 1879 1880 t = acquire_slab(s, n, page, object == NULL, &objects); 1881 if (!t) 1882 break; 1883 1884 available += objects; 1885 if (!object) { 1886 c->page = page; 1887 stat(s, ALLOC_FROM_PARTIAL); 1888 object = t; 1889 } else { 1890 put_cpu_partial(s, page, 0); 1891 stat(s, CPU_PARTIAL_NODE); 1892 } 1893 if (!kmem_cache_has_cpu_partial(s) 1894 || available > slub_cpu_partial(s) / 2) 1895 break; 1896 1897 } 1898 spin_unlock(&n->list_lock); 1899 return object; 1900 } 1901 1902 /* 1903 * Get a page from somewhere. Search in increasing NUMA distances. 1904 */ 1905 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1906 struct kmem_cache_cpu *c) 1907 { 1908 #ifdef CONFIG_NUMA 1909 struct zonelist *zonelist; 1910 struct zoneref *z; 1911 struct zone *zone; 1912 enum zone_type high_zoneidx = gfp_zone(flags); 1913 void *object; 1914 unsigned int cpuset_mems_cookie; 1915 1916 /* 1917 * The defrag ratio allows a configuration of the tradeoffs between 1918 * inter node defragmentation and node local allocations. A lower 1919 * defrag_ratio increases the tendency to do local allocations 1920 * instead of attempting to obtain partial slabs from other nodes. 1921 * 1922 * If the defrag_ratio is set to 0 then kmalloc() always 1923 * returns node local objects. If the ratio is higher then kmalloc() 1924 * may return off node objects because partial slabs are obtained 1925 * from other nodes and filled up. 1926 * 1927 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1928 * (which makes defrag_ratio = 1000) then every (well almost) 1929 * allocation will first attempt to defrag slab caches on other nodes. 1930 * This means scanning over all nodes to look for partial slabs which 1931 * may be expensive if we do it every time we are trying to find a slab 1932 * with available objects. 1933 */ 1934 if (!s->remote_node_defrag_ratio || 1935 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1936 return NULL; 1937 1938 do { 1939 cpuset_mems_cookie = read_mems_allowed_begin(); 1940 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1941 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1942 struct kmem_cache_node *n; 1943 1944 n = get_node(s, zone_to_nid(zone)); 1945 1946 if (n && cpuset_zone_allowed(zone, flags) && 1947 n->nr_partial > s->min_partial) { 1948 object = get_partial_node(s, n, c, flags); 1949 if (object) { 1950 /* 1951 * Don't check read_mems_allowed_retry() 1952 * here - if mems_allowed was updated in 1953 * parallel, that was a harmless race 1954 * between allocation and the cpuset 1955 * update 1956 */ 1957 return object; 1958 } 1959 } 1960 } 1961 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1962 #endif /* CONFIG_NUMA */ 1963 return NULL; 1964 } 1965 1966 /* 1967 * Get a partial page, lock it and return it. 1968 */ 1969 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1970 struct kmem_cache_cpu *c) 1971 { 1972 void *object; 1973 int searchnode = node; 1974 1975 if (node == NUMA_NO_NODE) 1976 searchnode = numa_mem_id(); 1977 else if (!node_present_pages(node)) 1978 searchnode = node_to_mem_node(node); 1979 1980 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1981 if (object || node != NUMA_NO_NODE) 1982 return object; 1983 1984 return get_any_partial(s, flags, c); 1985 } 1986 1987 #ifdef CONFIG_PREEMPT 1988 /* 1989 * Calculate the next globally unique transaction for disambiguiation 1990 * during cmpxchg. The transactions start with the cpu number and are then 1991 * incremented by CONFIG_NR_CPUS. 1992 */ 1993 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1994 #else 1995 /* 1996 * No preemption supported therefore also no need to check for 1997 * different cpus. 1998 */ 1999 #define TID_STEP 1 2000 #endif 2001 2002 static inline unsigned long next_tid(unsigned long tid) 2003 { 2004 return tid + TID_STEP; 2005 } 2006 2007 static inline unsigned int tid_to_cpu(unsigned long tid) 2008 { 2009 return tid % TID_STEP; 2010 } 2011 2012 static inline unsigned long tid_to_event(unsigned long tid) 2013 { 2014 return tid / TID_STEP; 2015 } 2016 2017 static inline unsigned int init_tid(int cpu) 2018 { 2019 return cpu; 2020 } 2021 2022 static inline void note_cmpxchg_failure(const char *n, 2023 const struct kmem_cache *s, unsigned long tid) 2024 { 2025 #ifdef SLUB_DEBUG_CMPXCHG 2026 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2027 2028 pr_info("%s %s: cmpxchg redo ", n, s->name); 2029 2030 #ifdef CONFIG_PREEMPT 2031 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2032 pr_warn("due to cpu change %d -> %d\n", 2033 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2034 else 2035 #endif 2036 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2037 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2038 tid_to_event(tid), tid_to_event(actual_tid)); 2039 else 2040 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2041 actual_tid, tid, next_tid(tid)); 2042 #endif 2043 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2044 } 2045 2046 static void init_kmem_cache_cpus(struct kmem_cache *s) 2047 { 2048 int cpu; 2049 2050 for_each_possible_cpu(cpu) 2051 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2052 } 2053 2054 /* 2055 * Remove the cpu slab 2056 */ 2057 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2058 void *freelist, struct kmem_cache_cpu *c) 2059 { 2060 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2061 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2062 int lock = 0; 2063 enum slab_modes l = M_NONE, m = M_NONE; 2064 void *nextfree; 2065 int tail = DEACTIVATE_TO_HEAD; 2066 struct page new; 2067 struct page old; 2068 2069 if (page->freelist) { 2070 stat(s, DEACTIVATE_REMOTE_FREES); 2071 tail = DEACTIVATE_TO_TAIL; 2072 } 2073 2074 /* 2075 * Stage one: Free all available per cpu objects back 2076 * to the page freelist while it is still frozen. Leave the 2077 * last one. 2078 * 2079 * There is no need to take the list->lock because the page 2080 * is still frozen. 2081 */ 2082 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2083 void *prior; 2084 unsigned long counters; 2085 2086 do { 2087 prior = page->freelist; 2088 counters = page->counters; 2089 set_freepointer(s, freelist, prior); 2090 new.counters = counters; 2091 new.inuse--; 2092 VM_BUG_ON(!new.frozen); 2093 2094 } while (!__cmpxchg_double_slab(s, page, 2095 prior, counters, 2096 freelist, new.counters, 2097 "drain percpu freelist")); 2098 2099 freelist = nextfree; 2100 } 2101 2102 /* 2103 * Stage two: Ensure that the page is unfrozen while the 2104 * list presence reflects the actual number of objects 2105 * during unfreeze. 2106 * 2107 * We setup the list membership and then perform a cmpxchg 2108 * with the count. If there is a mismatch then the page 2109 * is not unfrozen but the page is on the wrong list. 2110 * 2111 * Then we restart the process which may have to remove 2112 * the page from the list that we just put it on again 2113 * because the number of objects in the slab may have 2114 * changed. 2115 */ 2116 redo: 2117 2118 old.freelist = page->freelist; 2119 old.counters = page->counters; 2120 VM_BUG_ON(!old.frozen); 2121 2122 /* Determine target state of the slab */ 2123 new.counters = old.counters; 2124 if (freelist) { 2125 new.inuse--; 2126 set_freepointer(s, freelist, old.freelist); 2127 new.freelist = freelist; 2128 } else 2129 new.freelist = old.freelist; 2130 2131 new.frozen = 0; 2132 2133 if (!new.inuse && n->nr_partial >= s->min_partial) 2134 m = M_FREE; 2135 else if (new.freelist) { 2136 m = M_PARTIAL; 2137 if (!lock) { 2138 lock = 1; 2139 /* 2140 * Taking the spinlock removes the possibility 2141 * that acquire_slab() will see a slab page that 2142 * is frozen 2143 */ 2144 spin_lock(&n->list_lock); 2145 } 2146 } else { 2147 m = M_FULL; 2148 if (kmem_cache_debug(s) && !lock) { 2149 lock = 1; 2150 /* 2151 * This also ensures that the scanning of full 2152 * slabs from diagnostic functions will not see 2153 * any frozen slabs. 2154 */ 2155 spin_lock(&n->list_lock); 2156 } 2157 } 2158 2159 if (l != m) { 2160 if (l == M_PARTIAL) 2161 remove_partial(n, page); 2162 else if (l == M_FULL) 2163 remove_full(s, n, page); 2164 2165 if (m == M_PARTIAL) 2166 add_partial(n, page, tail); 2167 else if (m == M_FULL) 2168 add_full(s, n, page); 2169 } 2170 2171 l = m; 2172 if (!__cmpxchg_double_slab(s, page, 2173 old.freelist, old.counters, 2174 new.freelist, new.counters, 2175 "unfreezing slab")) 2176 goto redo; 2177 2178 if (lock) 2179 spin_unlock(&n->list_lock); 2180 2181 if (m == M_PARTIAL) 2182 stat(s, tail); 2183 else if (m == M_FULL) 2184 stat(s, DEACTIVATE_FULL); 2185 else if (m == M_FREE) { 2186 stat(s, DEACTIVATE_EMPTY); 2187 discard_slab(s, page); 2188 stat(s, FREE_SLAB); 2189 } 2190 2191 c->page = NULL; 2192 c->freelist = NULL; 2193 } 2194 2195 /* 2196 * Unfreeze all the cpu partial slabs. 2197 * 2198 * This function must be called with interrupts disabled 2199 * for the cpu using c (or some other guarantee must be there 2200 * to guarantee no concurrent accesses). 2201 */ 2202 static void unfreeze_partials(struct kmem_cache *s, 2203 struct kmem_cache_cpu *c) 2204 { 2205 #ifdef CONFIG_SLUB_CPU_PARTIAL 2206 struct kmem_cache_node *n = NULL, *n2 = NULL; 2207 struct page *page, *discard_page = NULL; 2208 2209 while ((page = c->partial)) { 2210 struct page new; 2211 struct page old; 2212 2213 c->partial = page->next; 2214 2215 n2 = get_node(s, page_to_nid(page)); 2216 if (n != n2) { 2217 if (n) 2218 spin_unlock(&n->list_lock); 2219 2220 n = n2; 2221 spin_lock(&n->list_lock); 2222 } 2223 2224 do { 2225 2226 old.freelist = page->freelist; 2227 old.counters = page->counters; 2228 VM_BUG_ON(!old.frozen); 2229 2230 new.counters = old.counters; 2231 new.freelist = old.freelist; 2232 2233 new.frozen = 0; 2234 2235 } while (!__cmpxchg_double_slab(s, page, 2236 old.freelist, old.counters, 2237 new.freelist, new.counters, 2238 "unfreezing slab")); 2239 2240 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2241 page->next = discard_page; 2242 discard_page = page; 2243 } else { 2244 add_partial(n, page, DEACTIVATE_TO_TAIL); 2245 stat(s, FREE_ADD_PARTIAL); 2246 } 2247 } 2248 2249 if (n) 2250 spin_unlock(&n->list_lock); 2251 2252 while (discard_page) { 2253 page = discard_page; 2254 discard_page = discard_page->next; 2255 2256 stat(s, DEACTIVATE_EMPTY); 2257 discard_slab(s, page); 2258 stat(s, FREE_SLAB); 2259 } 2260 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2261 } 2262 2263 /* 2264 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2265 * partial page slot if available. 2266 * 2267 * If we did not find a slot then simply move all the partials to the 2268 * per node partial list. 2269 */ 2270 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2271 { 2272 #ifdef CONFIG_SLUB_CPU_PARTIAL 2273 struct page *oldpage; 2274 int pages; 2275 int pobjects; 2276 2277 preempt_disable(); 2278 do { 2279 pages = 0; 2280 pobjects = 0; 2281 oldpage = this_cpu_read(s->cpu_slab->partial); 2282 2283 if (oldpage) { 2284 pobjects = oldpage->pobjects; 2285 pages = oldpage->pages; 2286 if (drain && pobjects > s->cpu_partial) { 2287 unsigned long flags; 2288 /* 2289 * partial array is full. Move the existing 2290 * set to the per node partial list. 2291 */ 2292 local_irq_save(flags); 2293 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2294 local_irq_restore(flags); 2295 oldpage = NULL; 2296 pobjects = 0; 2297 pages = 0; 2298 stat(s, CPU_PARTIAL_DRAIN); 2299 } 2300 } 2301 2302 pages++; 2303 pobjects += page->objects - page->inuse; 2304 2305 page->pages = pages; 2306 page->pobjects = pobjects; 2307 page->next = oldpage; 2308 2309 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2310 != oldpage); 2311 if (unlikely(!s->cpu_partial)) { 2312 unsigned long flags; 2313 2314 local_irq_save(flags); 2315 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2316 local_irq_restore(flags); 2317 } 2318 preempt_enable(); 2319 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2320 } 2321 2322 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2323 { 2324 stat(s, CPUSLAB_FLUSH); 2325 deactivate_slab(s, c->page, c->freelist, c); 2326 2327 c->tid = next_tid(c->tid); 2328 } 2329 2330 /* 2331 * Flush cpu slab. 2332 * 2333 * Called from IPI handler with interrupts disabled. 2334 */ 2335 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2336 { 2337 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2338 2339 if (c->page) 2340 flush_slab(s, c); 2341 2342 unfreeze_partials(s, c); 2343 } 2344 2345 static void flush_cpu_slab(void *d) 2346 { 2347 struct kmem_cache *s = d; 2348 2349 __flush_cpu_slab(s, smp_processor_id()); 2350 } 2351 2352 static bool has_cpu_slab(int cpu, void *info) 2353 { 2354 struct kmem_cache *s = info; 2355 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2356 2357 return c->page || slub_percpu_partial(c); 2358 } 2359 2360 static void flush_all(struct kmem_cache *s) 2361 { 2362 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2363 } 2364 2365 /* 2366 * Use the cpu notifier to insure that the cpu slabs are flushed when 2367 * necessary. 2368 */ 2369 static int slub_cpu_dead(unsigned int cpu) 2370 { 2371 struct kmem_cache *s; 2372 unsigned long flags; 2373 2374 mutex_lock(&slab_mutex); 2375 list_for_each_entry(s, &slab_caches, list) { 2376 local_irq_save(flags); 2377 __flush_cpu_slab(s, cpu); 2378 local_irq_restore(flags); 2379 } 2380 mutex_unlock(&slab_mutex); 2381 return 0; 2382 } 2383 2384 /* 2385 * Check if the objects in a per cpu structure fit numa 2386 * locality expectations. 2387 */ 2388 static inline int node_match(struct page *page, int node) 2389 { 2390 #ifdef CONFIG_NUMA 2391 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2392 return 0; 2393 #endif 2394 return 1; 2395 } 2396 2397 #ifdef CONFIG_SLUB_DEBUG 2398 static int count_free(struct page *page) 2399 { 2400 return page->objects - page->inuse; 2401 } 2402 2403 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2404 { 2405 return atomic_long_read(&n->total_objects); 2406 } 2407 #endif /* CONFIG_SLUB_DEBUG */ 2408 2409 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2410 static unsigned long count_partial(struct kmem_cache_node *n, 2411 int (*get_count)(struct page *)) 2412 { 2413 unsigned long flags; 2414 unsigned long x = 0; 2415 struct page *page; 2416 2417 spin_lock_irqsave(&n->list_lock, flags); 2418 list_for_each_entry(page, &n->partial, slab_list) 2419 x += get_count(page); 2420 spin_unlock_irqrestore(&n->list_lock, flags); 2421 return x; 2422 } 2423 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2424 2425 static noinline void 2426 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2427 { 2428 #ifdef CONFIG_SLUB_DEBUG 2429 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2430 DEFAULT_RATELIMIT_BURST); 2431 int node; 2432 struct kmem_cache_node *n; 2433 2434 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2435 return; 2436 2437 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2438 nid, gfpflags, &gfpflags); 2439 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2440 s->name, s->object_size, s->size, oo_order(s->oo), 2441 oo_order(s->min)); 2442 2443 if (oo_order(s->min) > get_order(s->object_size)) 2444 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2445 s->name); 2446 2447 for_each_kmem_cache_node(s, node, n) { 2448 unsigned long nr_slabs; 2449 unsigned long nr_objs; 2450 unsigned long nr_free; 2451 2452 nr_free = count_partial(n, count_free); 2453 nr_slabs = node_nr_slabs(n); 2454 nr_objs = node_nr_objs(n); 2455 2456 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2457 node, nr_slabs, nr_objs, nr_free); 2458 } 2459 #endif 2460 } 2461 2462 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2463 int node, struct kmem_cache_cpu **pc) 2464 { 2465 void *freelist; 2466 struct kmem_cache_cpu *c = *pc; 2467 struct page *page; 2468 2469 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2470 2471 freelist = get_partial(s, flags, node, c); 2472 2473 if (freelist) 2474 return freelist; 2475 2476 page = new_slab(s, flags, node); 2477 if (page) { 2478 c = raw_cpu_ptr(s->cpu_slab); 2479 if (c->page) 2480 flush_slab(s, c); 2481 2482 /* 2483 * No other reference to the page yet so we can 2484 * muck around with it freely without cmpxchg 2485 */ 2486 freelist = page->freelist; 2487 page->freelist = NULL; 2488 2489 stat(s, ALLOC_SLAB); 2490 c->page = page; 2491 *pc = c; 2492 } 2493 2494 return freelist; 2495 } 2496 2497 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2498 { 2499 if (unlikely(PageSlabPfmemalloc(page))) 2500 return gfp_pfmemalloc_allowed(gfpflags); 2501 2502 return true; 2503 } 2504 2505 /* 2506 * Check the page->freelist of a page and either transfer the freelist to the 2507 * per cpu freelist or deactivate the page. 2508 * 2509 * The page is still frozen if the return value is not NULL. 2510 * 2511 * If this function returns NULL then the page has been unfrozen. 2512 * 2513 * This function must be called with interrupt disabled. 2514 */ 2515 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2516 { 2517 struct page new; 2518 unsigned long counters; 2519 void *freelist; 2520 2521 do { 2522 freelist = page->freelist; 2523 counters = page->counters; 2524 2525 new.counters = counters; 2526 VM_BUG_ON(!new.frozen); 2527 2528 new.inuse = page->objects; 2529 new.frozen = freelist != NULL; 2530 2531 } while (!__cmpxchg_double_slab(s, page, 2532 freelist, counters, 2533 NULL, new.counters, 2534 "get_freelist")); 2535 2536 return freelist; 2537 } 2538 2539 /* 2540 * Slow path. The lockless freelist is empty or we need to perform 2541 * debugging duties. 2542 * 2543 * Processing is still very fast if new objects have been freed to the 2544 * regular freelist. In that case we simply take over the regular freelist 2545 * as the lockless freelist and zap the regular freelist. 2546 * 2547 * If that is not working then we fall back to the partial lists. We take the 2548 * first element of the freelist as the object to allocate now and move the 2549 * rest of the freelist to the lockless freelist. 2550 * 2551 * And if we were unable to get a new slab from the partial slab lists then 2552 * we need to allocate a new slab. This is the slowest path since it involves 2553 * a call to the page allocator and the setup of a new slab. 2554 * 2555 * Version of __slab_alloc to use when we know that interrupts are 2556 * already disabled (which is the case for bulk allocation). 2557 */ 2558 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2559 unsigned long addr, struct kmem_cache_cpu *c) 2560 { 2561 void *freelist; 2562 struct page *page; 2563 2564 page = c->page; 2565 if (!page) 2566 goto new_slab; 2567 redo: 2568 2569 if (unlikely(!node_match(page, node))) { 2570 int searchnode = node; 2571 2572 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2573 searchnode = node_to_mem_node(node); 2574 2575 if (unlikely(!node_match(page, searchnode))) { 2576 stat(s, ALLOC_NODE_MISMATCH); 2577 deactivate_slab(s, page, c->freelist, c); 2578 goto new_slab; 2579 } 2580 } 2581 2582 /* 2583 * By rights, we should be searching for a slab page that was 2584 * PFMEMALLOC but right now, we are losing the pfmemalloc 2585 * information when the page leaves the per-cpu allocator 2586 */ 2587 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2588 deactivate_slab(s, page, c->freelist, c); 2589 goto new_slab; 2590 } 2591 2592 /* must check again c->freelist in case of cpu migration or IRQ */ 2593 freelist = c->freelist; 2594 if (freelist) 2595 goto load_freelist; 2596 2597 freelist = get_freelist(s, page); 2598 2599 if (!freelist) { 2600 c->page = NULL; 2601 stat(s, DEACTIVATE_BYPASS); 2602 goto new_slab; 2603 } 2604 2605 stat(s, ALLOC_REFILL); 2606 2607 load_freelist: 2608 /* 2609 * freelist is pointing to the list of objects to be used. 2610 * page is pointing to the page from which the objects are obtained. 2611 * That page must be frozen for per cpu allocations to work. 2612 */ 2613 VM_BUG_ON(!c->page->frozen); 2614 c->freelist = get_freepointer(s, freelist); 2615 c->tid = next_tid(c->tid); 2616 return freelist; 2617 2618 new_slab: 2619 2620 if (slub_percpu_partial(c)) { 2621 page = c->page = slub_percpu_partial(c); 2622 slub_set_percpu_partial(c, page); 2623 stat(s, CPU_PARTIAL_ALLOC); 2624 goto redo; 2625 } 2626 2627 freelist = new_slab_objects(s, gfpflags, node, &c); 2628 2629 if (unlikely(!freelist)) { 2630 slab_out_of_memory(s, gfpflags, node); 2631 return NULL; 2632 } 2633 2634 page = c->page; 2635 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2636 goto load_freelist; 2637 2638 /* Only entered in the debug case */ 2639 if (kmem_cache_debug(s) && 2640 !alloc_debug_processing(s, page, freelist, addr)) 2641 goto new_slab; /* Slab failed checks. Next slab needed */ 2642 2643 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2644 return freelist; 2645 } 2646 2647 /* 2648 * Another one that disabled interrupt and compensates for possible 2649 * cpu changes by refetching the per cpu area pointer. 2650 */ 2651 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2652 unsigned long addr, struct kmem_cache_cpu *c) 2653 { 2654 void *p; 2655 unsigned long flags; 2656 2657 local_irq_save(flags); 2658 #ifdef CONFIG_PREEMPT 2659 /* 2660 * We may have been preempted and rescheduled on a different 2661 * cpu before disabling interrupts. Need to reload cpu area 2662 * pointer. 2663 */ 2664 c = this_cpu_ptr(s->cpu_slab); 2665 #endif 2666 2667 p = ___slab_alloc(s, gfpflags, node, addr, c); 2668 local_irq_restore(flags); 2669 return p; 2670 } 2671 2672 /* 2673 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2674 * have the fastpath folded into their functions. So no function call 2675 * overhead for requests that can be satisfied on the fastpath. 2676 * 2677 * The fastpath works by first checking if the lockless freelist can be used. 2678 * If not then __slab_alloc is called for slow processing. 2679 * 2680 * Otherwise we can simply pick the next object from the lockless free list. 2681 */ 2682 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2683 gfp_t gfpflags, int node, unsigned long addr) 2684 { 2685 void *object; 2686 struct kmem_cache_cpu *c; 2687 struct page *page; 2688 unsigned long tid; 2689 2690 s = slab_pre_alloc_hook(s, gfpflags); 2691 if (!s) 2692 return NULL; 2693 redo: 2694 /* 2695 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2696 * enabled. We may switch back and forth between cpus while 2697 * reading from one cpu area. That does not matter as long 2698 * as we end up on the original cpu again when doing the cmpxchg. 2699 * 2700 * We should guarantee that tid and kmem_cache are retrieved on 2701 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2702 * to check if it is matched or not. 2703 */ 2704 do { 2705 tid = this_cpu_read(s->cpu_slab->tid); 2706 c = raw_cpu_ptr(s->cpu_slab); 2707 } while (IS_ENABLED(CONFIG_PREEMPT) && 2708 unlikely(tid != READ_ONCE(c->tid))); 2709 2710 /* 2711 * Irqless object alloc/free algorithm used here depends on sequence 2712 * of fetching cpu_slab's data. tid should be fetched before anything 2713 * on c to guarantee that object and page associated with previous tid 2714 * won't be used with current tid. If we fetch tid first, object and 2715 * page could be one associated with next tid and our alloc/free 2716 * request will be failed. In this case, we will retry. So, no problem. 2717 */ 2718 barrier(); 2719 2720 /* 2721 * The transaction ids are globally unique per cpu and per operation on 2722 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2723 * occurs on the right processor and that there was no operation on the 2724 * linked list in between. 2725 */ 2726 2727 object = c->freelist; 2728 page = c->page; 2729 if (unlikely(!object || !node_match(page, node))) { 2730 object = __slab_alloc(s, gfpflags, node, addr, c); 2731 stat(s, ALLOC_SLOWPATH); 2732 } else { 2733 void *next_object = get_freepointer_safe(s, object); 2734 2735 /* 2736 * The cmpxchg will only match if there was no additional 2737 * operation and if we are on the right processor. 2738 * 2739 * The cmpxchg does the following atomically (without lock 2740 * semantics!) 2741 * 1. Relocate first pointer to the current per cpu area. 2742 * 2. Verify that tid and freelist have not been changed 2743 * 3. If they were not changed replace tid and freelist 2744 * 2745 * Since this is without lock semantics the protection is only 2746 * against code executing on this cpu *not* from access by 2747 * other cpus. 2748 */ 2749 if (unlikely(!this_cpu_cmpxchg_double( 2750 s->cpu_slab->freelist, s->cpu_slab->tid, 2751 object, tid, 2752 next_object, next_tid(tid)))) { 2753 2754 note_cmpxchg_failure("slab_alloc", s, tid); 2755 goto redo; 2756 } 2757 prefetch_freepointer(s, next_object); 2758 stat(s, ALLOC_FASTPATH); 2759 } 2760 /* 2761 * If the object has been wiped upon free, make sure it's fully 2762 * initialized by zeroing out freelist pointer. 2763 */ 2764 if (unlikely(slab_want_init_on_free(s)) && object) 2765 memset(object + s->offset, 0, sizeof(void *)); 2766 2767 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2768 memset(object, 0, s->object_size); 2769 2770 slab_post_alloc_hook(s, gfpflags, 1, &object); 2771 2772 return object; 2773 } 2774 2775 static __always_inline void *slab_alloc(struct kmem_cache *s, 2776 gfp_t gfpflags, unsigned long addr) 2777 { 2778 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2779 } 2780 2781 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2782 { 2783 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2784 2785 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2786 s->size, gfpflags); 2787 2788 return ret; 2789 } 2790 EXPORT_SYMBOL(kmem_cache_alloc); 2791 2792 #ifdef CONFIG_TRACING 2793 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2794 { 2795 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2796 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2797 ret = kasan_kmalloc(s, ret, size, gfpflags); 2798 return ret; 2799 } 2800 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2801 #endif 2802 2803 #ifdef CONFIG_NUMA 2804 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2805 { 2806 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2807 2808 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2809 s->object_size, s->size, gfpflags, node); 2810 2811 return ret; 2812 } 2813 EXPORT_SYMBOL(kmem_cache_alloc_node); 2814 2815 #ifdef CONFIG_TRACING 2816 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2817 gfp_t gfpflags, 2818 int node, size_t size) 2819 { 2820 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2821 2822 trace_kmalloc_node(_RET_IP_, ret, 2823 size, s->size, gfpflags, node); 2824 2825 ret = kasan_kmalloc(s, ret, size, gfpflags); 2826 return ret; 2827 } 2828 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2829 #endif 2830 #endif /* CONFIG_NUMA */ 2831 2832 /* 2833 * Slow path handling. This may still be called frequently since objects 2834 * have a longer lifetime than the cpu slabs in most processing loads. 2835 * 2836 * So we still attempt to reduce cache line usage. Just take the slab 2837 * lock and free the item. If there is no additional partial page 2838 * handling required then we can return immediately. 2839 */ 2840 static void __slab_free(struct kmem_cache *s, struct page *page, 2841 void *head, void *tail, int cnt, 2842 unsigned long addr) 2843 2844 { 2845 void *prior; 2846 int was_frozen; 2847 struct page new; 2848 unsigned long counters; 2849 struct kmem_cache_node *n = NULL; 2850 unsigned long uninitialized_var(flags); 2851 2852 stat(s, FREE_SLOWPATH); 2853 2854 if (kmem_cache_debug(s) && 2855 !free_debug_processing(s, page, head, tail, cnt, addr)) 2856 return; 2857 2858 do { 2859 if (unlikely(n)) { 2860 spin_unlock_irqrestore(&n->list_lock, flags); 2861 n = NULL; 2862 } 2863 prior = page->freelist; 2864 counters = page->counters; 2865 set_freepointer(s, tail, prior); 2866 new.counters = counters; 2867 was_frozen = new.frozen; 2868 new.inuse -= cnt; 2869 if ((!new.inuse || !prior) && !was_frozen) { 2870 2871 if (kmem_cache_has_cpu_partial(s) && !prior) { 2872 2873 /* 2874 * Slab was on no list before and will be 2875 * partially empty 2876 * We can defer the list move and instead 2877 * freeze it. 2878 */ 2879 new.frozen = 1; 2880 2881 } else { /* Needs to be taken off a list */ 2882 2883 n = get_node(s, page_to_nid(page)); 2884 /* 2885 * Speculatively acquire the list_lock. 2886 * If the cmpxchg does not succeed then we may 2887 * drop the list_lock without any processing. 2888 * 2889 * Otherwise the list_lock will synchronize with 2890 * other processors updating the list of slabs. 2891 */ 2892 spin_lock_irqsave(&n->list_lock, flags); 2893 2894 } 2895 } 2896 2897 } while (!cmpxchg_double_slab(s, page, 2898 prior, counters, 2899 head, new.counters, 2900 "__slab_free")); 2901 2902 if (likely(!n)) { 2903 2904 /* 2905 * If we just froze the page then put it onto the 2906 * per cpu partial list. 2907 */ 2908 if (new.frozen && !was_frozen) { 2909 put_cpu_partial(s, page, 1); 2910 stat(s, CPU_PARTIAL_FREE); 2911 } 2912 /* 2913 * The list lock was not taken therefore no list 2914 * activity can be necessary. 2915 */ 2916 if (was_frozen) 2917 stat(s, FREE_FROZEN); 2918 return; 2919 } 2920 2921 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2922 goto slab_empty; 2923 2924 /* 2925 * Objects left in the slab. If it was not on the partial list before 2926 * then add it. 2927 */ 2928 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2929 remove_full(s, n, page); 2930 add_partial(n, page, DEACTIVATE_TO_TAIL); 2931 stat(s, FREE_ADD_PARTIAL); 2932 } 2933 spin_unlock_irqrestore(&n->list_lock, flags); 2934 return; 2935 2936 slab_empty: 2937 if (prior) { 2938 /* 2939 * Slab on the partial list. 2940 */ 2941 remove_partial(n, page); 2942 stat(s, FREE_REMOVE_PARTIAL); 2943 } else { 2944 /* Slab must be on the full list */ 2945 remove_full(s, n, page); 2946 } 2947 2948 spin_unlock_irqrestore(&n->list_lock, flags); 2949 stat(s, FREE_SLAB); 2950 discard_slab(s, page); 2951 } 2952 2953 /* 2954 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2955 * can perform fastpath freeing without additional function calls. 2956 * 2957 * The fastpath is only possible if we are freeing to the current cpu slab 2958 * of this processor. This typically the case if we have just allocated 2959 * the item before. 2960 * 2961 * If fastpath is not possible then fall back to __slab_free where we deal 2962 * with all sorts of special processing. 2963 * 2964 * Bulk free of a freelist with several objects (all pointing to the 2965 * same page) possible by specifying head and tail ptr, plus objects 2966 * count (cnt). Bulk free indicated by tail pointer being set. 2967 */ 2968 static __always_inline void do_slab_free(struct kmem_cache *s, 2969 struct page *page, void *head, void *tail, 2970 int cnt, unsigned long addr) 2971 { 2972 void *tail_obj = tail ? : head; 2973 struct kmem_cache_cpu *c; 2974 unsigned long tid; 2975 redo: 2976 /* 2977 * Determine the currently cpus per cpu slab. 2978 * The cpu may change afterward. However that does not matter since 2979 * data is retrieved via this pointer. If we are on the same cpu 2980 * during the cmpxchg then the free will succeed. 2981 */ 2982 do { 2983 tid = this_cpu_read(s->cpu_slab->tid); 2984 c = raw_cpu_ptr(s->cpu_slab); 2985 } while (IS_ENABLED(CONFIG_PREEMPT) && 2986 unlikely(tid != READ_ONCE(c->tid))); 2987 2988 /* Same with comment on barrier() in slab_alloc_node() */ 2989 barrier(); 2990 2991 if (likely(page == c->page)) { 2992 set_freepointer(s, tail_obj, c->freelist); 2993 2994 if (unlikely(!this_cpu_cmpxchg_double( 2995 s->cpu_slab->freelist, s->cpu_slab->tid, 2996 c->freelist, tid, 2997 head, next_tid(tid)))) { 2998 2999 note_cmpxchg_failure("slab_free", s, tid); 3000 goto redo; 3001 } 3002 stat(s, FREE_FASTPATH); 3003 } else 3004 __slab_free(s, page, head, tail_obj, cnt, addr); 3005 3006 } 3007 3008 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3009 void *head, void *tail, int cnt, 3010 unsigned long addr) 3011 { 3012 /* 3013 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3014 * to remove objects, whose reuse must be delayed. 3015 */ 3016 if (slab_free_freelist_hook(s, &head, &tail)) 3017 do_slab_free(s, page, head, tail, cnt, addr); 3018 } 3019 3020 #ifdef CONFIG_KASAN_GENERIC 3021 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3022 { 3023 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3024 } 3025 #endif 3026 3027 void kmem_cache_free(struct kmem_cache *s, void *x) 3028 { 3029 s = cache_from_obj(s, x); 3030 if (!s) 3031 return; 3032 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3033 trace_kmem_cache_free(_RET_IP_, x); 3034 } 3035 EXPORT_SYMBOL(kmem_cache_free); 3036 3037 struct detached_freelist { 3038 struct page *page; 3039 void *tail; 3040 void *freelist; 3041 int cnt; 3042 struct kmem_cache *s; 3043 }; 3044 3045 /* 3046 * This function progressively scans the array with free objects (with 3047 * a limited look ahead) and extract objects belonging to the same 3048 * page. It builds a detached freelist directly within the given 3049 * page/objects. This can happen without any need for 3050 * synchronization, because the objects are owned by running process. 3051 * The freelist is build up as a single linked list in the objects. 3052 * The idea is, that this detached freelist can then be bulk 3053 * transferred to the real freelist(s), but only requiring a single 3054 * synchronization primitive. Look ahead in the array is limited due 3055 * to performance reasons. 3056 */ 3057 static inline 3058 int build_detached_freelist(struct kmem_cache *s, size_t size, 3059 void **p, struct detached_freelist *df) 3060 { 3061 size_t first_skipped_index = 0; 3062 int lookahead = 3; 3063 void *object; 3064 struct page *page; 3065 3066 /* Always re-init detached_freelist */ 3067 df->page = NULL; 3068 3069 do { 3070 object = p[--size]; 3071 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3072 } while (!object && size); 3073 3074 if (!object) 3075 return 0; 3076 3077 page = virt_to_head_page(object); 3078 if (!s) { 3079 /* Handle kalloc'ed objects */ 3080 if (unlikely(!PageSlab(page))) { 3081 BUG_ON(!PageCompound(page)); 3082 kfree_hook(object); 3083 __free_pages(page, compound_order(page)); 3084 p[size] = NULL; /* mark object processed */ 3085 return size; 3086 } 3087 /* Derive kmem_cache from object */ 3088 df->s = page->slab_cache; 3089 } else { 3090 df->s = cache_from_obj(s, object); /* Support for memcg */ 3091 } 3092 3093 /* Start new detached freelist */ 3094 df->page = page; 3095 set_freepointer(df->s, object, NULL); 3096 df->tail = object; 3097 df->freelist = object; 3098 p[size] = NULL; /* mark object processed */ 3099 df->cnt = 1; 3100 3101 while (size) { 3102 object = p[--size]; 3103 if (!object) 3104 continue; /* Skip processed objects */ 3105 3106 /* df->page is always set at this point */ 3107 if (df->page == virt_to_head_page(object)) { 3108 /* Opportunity build freelist */ 3109 set_freepointer(df->s, object, df->freelist); 3110 df->freelist = object; 3111 df->cnt++; 3112 p[size] = NULL; /* mark object processed */ 3113 3114 continue; 3115 } 3116 3117 /* Limit look ahead search */ 3118 if (!--lookahead) 3119 break; 3120 3121 if (!first_skipped_index) 3122 first_skipped_index = size + 1; 3123 } 3124 3125 return first_skipped_index; 3126 } 3127 3128 /* Note that interrupts must be enabled when calling this function. */ 3129 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3130 { 3131 if (WARN_ON(!size)) 3132 return; 3133 3134 do { 3135 struct detached_freelist df; 3136 3137 size = build_detached_freelist(s, size, p, &df); 3138 if (!df.page) 3139 continue; 3140 3141 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3142 } while (likely(size)); 3143 } 3144 EXPORT_SYMBOL(kmem_cache_free_bulk); 3145 3146 /* Note that interrupts must be enabled when calling this function. */ 3147 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3148 void **p) 3149 { 3150 struct kmem_cache_cpu *c; 3151 int i; 3152 3153 /* memcg and kmem_cache debug support */ 3154 s = slab_pre_alloc_hook(s, flags); 3155 if (unlikely(!s)) 3156 return false; 3157 /* 3158 * Drain objects in the per cpu slab, while disabling local 3159 * IRQs, which protects against PREEMPT and interrupts 3160 * handlers invoking normal fastpath. 3161 */ 3162 local_irq_disable(); 3163 c = this_cpu_ptr(s->cpu_slab); 3164 3165 for (i = 0; i < size; i++) { 3166 void *object = c->freelist; 3167 3168 if (unlikely(!object)) { 3169 /* 3170 * Invoking slow path likely have side-effect 3171 * of re-populating per CPU c->freelist 3172 */ 3173 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3174 _RET_IP_, c); 3175 if (unlikely(!p[i])) 3176 goto error; 3177 3178 c = this_cpu_ptr(s->cpu_slab); 3179 continue; /* goto for-loop */ 3180 } 3181 c->freelist = get_freepointer(s, object); 3182 p[i] = object; 3183 } 3184 c->tid = next_tid(c->tid); 3185 local_irq_enable(); 3186 3187 /* Clear memory outside IRQ disabled fastpath loop */ 3188 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3189 int j; 3190 3191 for (j = 0; j < i; j++) 3192 memset(p[j], 0, s->object_size); 3193 } 3194 3195 /* memcg and kmem_cache debug support */ 3196 slab_post_alloc_hook(s, flags, size, p); 3197 return i; 3198 error: 3199 local_irq_enable(); 3200 slab_post_alloc_hook(s, flags, i, p); 3201 __kmem_cache_free_bulk(s, i, p); 3202 return 0; 3203 } 3204 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3205 3206 3207 /* 3208 * Object placement in a slab is made very easy because we always start at 3209 * offset 0. If we tune the size of the object to the alignment then we can 3210 * get the required alignment by putting one properly sized object after 3211 * another. 3212 * 3213 * Notice that the allocation order determines the sizes of the per cpu 3214 * caches. Each processor has always one slab available for allocations. 3215 * Increasing the allocation order reduces the number of times that slabs 3216 * must be moved on and off the partial lists and is therefore a factor in 3217 * locking overhead. 3218 */ 3219 3220 /* 3221 * Mininum / Maximum order of slab pages. This influences locking overhead 3222 * and slab fragmentation. A higher order reduces the number of partial slabs 3223 * and increases the number of allocations possible without having to 3224 * take the list_lock. 3225 */ 3226 static unsigned int slub_min_order; 3227 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3228 static unsigned int slub_min_objects; 3229 3230 /* 3231 * Calculate the order of allocation given an slab object size. 3232 * 3233 * The order of allocation has significant impact on performance and other 3234 * system components. Generally order 0 allocations should be preferred since 3235 * order 0 does not cause fragmentation in the page allocator. Larger objects 3236 * be problematic to put into order 0 slabs because there may be too much 3237 * unused space left. We go to a higher order if more than 1/16th of the slab 3238 * would be wasted. 3239 * 3240 * In order to reach satisfactory performance we must ensure that a minimum 3241 * number of objects is in one slab. Otherwise we may generate too much 3242 * activity on the partial lists which requires taking the list_lock. This is 3243 * less a concern for large slabs though which are rarely used. 3244 * 3245 * slub_max_order specifies the order where we begin to stop considering the 3246 * number of objects in a slab as critical. If we reach slub_max_order then 3247 * we try to keep the page order as low as possible. So we accept more waste 3248 * of space in favor of a small page order. 3249 * 3250 * Higher order allocations also allow the placement of more objects in a 3251 * slab and thereby reduce object handling overhead. If the user has 3252 * requested a higher mininum order then we start with that one instead of 3253 * the smallest order which will fit the object. 3254 */ 3255 static inline unsigned int slab_order(unsigned int size, 3256 unsigned int min_objects, unsigned int max_order, 3257 unsigned int fract_leftover) 3258 { 3259 unsigned int min_order = slub_min_order; 3260 unsigned int order; 3261 3262 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3263 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3264 3265 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3266 order <= max_order; order++) { 3267 3268 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3269 unsigned int rem; 3270 3271 rem = slab_size % size; 3272 3273 if (rem <= slab_size / fract_leftover) 3274 break; 3275 } 3276 3277 return order; 3278 } 3279 3280 static inline int calculate_order(unsigned int size) 3281 { 3282 unsigned int order; 3283 unsigned int min_objects; 3284 unsigned int max_objects; 3285 3286 /* 3287 * Attempt to find best configuration for a slab. This 3288 * works by first attempting to generate a layout with 3289 * the best configuration and backing off gradually. 3290 * 3291 * First we increase the acceptable waste in a slab. Then 3292 * we reduce the minimum objects required in a slab. 3293 */ 3294 min_objects = slub_min_objects; 3295 if (!min_objects) 3296 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3297 max_objects = order_objects(slub_max_order, size); 3298 min_objects = min(min_objects, max_objects); 3299 3300 while (min_objects > 1) { 3301 unsigned int fraction; 3302 3303 fraction = 16; 3304 while (fraction >= 4) { 3305 order = slab_order(size, min_objects, 3306 slub_max_order, fraction); 3307 if (order <= slub_max_order) 3308 return order; 3309 fraction /= 2; 3310 } 3311 min_objects--; 3312 } 3313 3314 /* 3315 * We were unable to place multiple objects in a slab. Now 3316 * lets see if we can place a single object there. 3317 */ 3318 order = slab_order(size, 1, slub_max_order, 1); 3319 if (order <= slub_max_order) 3320 return order; 3321 3322 /* 3323 * Doh this slab cannot be placed using slub_max_order. 3324 */ 3325 order = slab_order(size, 1, MAX_ORDER, 1); 3326 if (order < MAX_ORDER) 3327 return order; 3328 return -ENOSYS; 3329 } 3330 3331 static void 3332 init_kmem_cache_node(struct kmem_cache_node *n) 3333 { 3334 n->nr_partial = 0; 3335 spin_lock_init(&n->list_lock); 3336 INIT_LIST_HEAD(&n->partial); 3337 #ifdef CONFIG_SLUB_DEBUG 3338 atomic_long_set(&n->nr_slabs, 0); 3339 atomic_long_set(&n->total_objects, 0); 3340 INIT_LIST_HEAD(&n->full); 3341 #endif 3342 } 3343 3344 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3345 { 3346 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3347 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3348 3349 /* 3350 * Must align to double word boundary for the double cmpxchg 3351 * instructions to work; see __pcpu_double_call_return_bool(). 3352 */ 3353 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3354 2 * sizeof(void *)); 3355 3356 if (!s->cpu_slab) 3357 return 0; 3358 3359 init_kmem_cache_cpus(s); 3360 3361 return 1; 3362 } 3363 3364 static struct kmem_cache *kmem_cache_node; 3365 3366 /* 3367 * No kmalloc_node yet so do it by hand. We know that this is the first 3368 * slab on the node for this slabcache. There are no concurrent accesses 3369 * possible. 3370 * 3371 * Note that this function only works on the kmem_cache_node 3372 * when allocating for the kmem_cache_node. This is used for bootstrapping 3373 * memory on a fresh node that has no slab structures yet. 3374 */ 3375 static void early_kmem_cache_node_alloc(int node) 3376 { 3377 struct page *page; 3378 struct kmem_cache_node *n; 3379 3380 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3381 3382 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3383 3384 BUG_ON(!page); 3385 if (page_to_nid(page) != node) { 3386 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3387 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3388 } 3389 3390 n = page->freelist; 3391 BUG_ON(!n); 3392 #ifdef CONFIG_SLUB_DEBUG 3393 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3394 init_tracking(kmem_cache_node, n); 3395 #endif 3396 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3397 GFP_KERNEL); 3398 page->freelist = get_freepointer(kmem_cache_node, n); 3399 page->inuse = 1; 3400 page->frozen = 0; 3401 kmem_cache_node->node[node] = n; 3402 init_kmem_cache_node(n); 3403 inc_slabs_node(kmem_cache_node, node, page->objects); 3404 3405 /* 3406 * No locks need to be taken here as it has just been 3407 * initialized and there is no concurrent access. 3408 */ 3409 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3410 } 3411 3412 static void free_kmem_cache_nodes(struct kmem_cache *s) 3413 { 3414 int node; 3415 struct kmem_cache_node *n; 3416 3417 for_each_kmem_cache_node(s, node, n) { 3418 s->node[node] = NULL; 3419 kmem_cache_free(kmem_cache_node, n); 3420 } 3421 } 3422 3423 void __kmem_cache_release(struct kmem_cache *s) 3424 { 3425 cache_random_seq_destroy(s); 3426 free_percpu(s->cpu_slab); 3427 free_kmem_cache_nodes(s); 3428 } 3429 3430 static int init_kmem_cache_nodes(struct kmem_cache *s) 3431 { 3432 int node; 3433 3434 for_each_node_state(node, N_NORMAL_MEMORY) { 3435 struct kmem_cache_node *n; 3436 3437 if (slab_state == DOWN) { 3438 early_kmem_cache_node_alloc(node); 3439 continue; 3440 } 3441 n = kmem_cache_alloc_node(kmem_cache_node, 3442 GFP_KERNEL, node); 3443 3444 if (!n) { 3445 free_kmem_cache_nodes(s); 3446 return 0; 3447 } 3448 3449 init_kmem_cache_node(n); 3450 s->node[node] = n; 3451 } 3452 return 1; 3453 } 3454 3455 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3456 { 3457 if (min < MIN_PARTIAL) 3458 min = MIN_PARTIAL; 3459 else if (min > MAX_PARTIAL) 3460 min = MAX_PARTIAL; 3461 s->min_partial = min; 3462 } 3463 3464 static void set_cpu_partial(struct kmem_cache *s) 3465 { 3466 #ifdef CONFIG_SLUB_CPU_PARTIAL 3467 /* 3468 * cpu_partial determined the maximum number of objects kept in the 3469 * per cpu partial lists of a processor. 3470 * 3471 * Per cpu partial lists mainly contain slabs that just have one 3472 * object freed. If they are used for allocation then they can be 3473 * filled up again with minimal effort. The slab will never hit the 3474 * per node partial lists and therefore no locking will be required. 3475 * 3476 * This setting also determines 3477 * 3478 * A) The number of objects from per cpu partial slabs dumped to the 3479 * per node list when we reach the limit. 3480 * B) The number of objects in cpu partial slabs to extract from the 3481 * per node list when we run out of per cpu objects. We only fetch 3482 * 50% to keep some capacity around for frees. 3483 */ 3484 if (!kmem_cache_has_cpu_partial(s)) 3485 s->cpu_partial = 0; 3486 else if (s->size >= PAGE_SIZE) 3487 s->cpu_partial = 2; 3488 else if (s->size >= 1024) 3489 s->cpu_partial = 6; 3490 else if (s->size >= 256) 3491 s->cpu_partial = 13; 3492 else 3493 s->cpu_partial = 30; 3494 #endif 3495 } 3496 3497 /* 3498 * calculate_sizes() determines the order and the distribution of data within 3499 * a slab object. 3500 */ 3501 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3502 { 3503 slab_flags_t flags = s->flags; 3504 unsigned int size = s->object_size; 3505 unsigned int order; 3506 3507 /* 3508 * Round up object size to the next word boundary. We can only 3509 * place the free pointer at word boundaries and this determines 3510 * the possible location of the free pointer. 3511 */ 3512 size = ALIGN(size, sizeof(void *)); 3513 3514 #ifdef CONFIG_SLUB_DEBUG 3515 /* 3516 * Determine if we can poison the object itself. If the user of 3517 * the slab may touch the object after free or before allocation 3518 * then we should never poison the object itself. 3519 */ 3520 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3521 !s->ctor) 3522 s->flags |= __OBJECT_POISON; 3523 else 3524 s->flags &= ~__OBJECT_POISON; 3525 3526 3527 /* 3528 * If we are Redzoning then check if there is some space between the 3529 * end of the object and the free pointer. If not then add an 3530 * additional word to have some bytes to store Redzone information. 3531 */ 3532 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3533 size += sizeof(void *); 3534 #endif 3535 3536 /* 3537 * With that we have determined the number of bytes in actual use 3538 * by the object. This is the potential offset to the free pointer. 3539 */ 3540 s->inuse = size; 3541 3542 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3543 s->ctor)) { 3544 /* 3545 * Relocate free pointer after the object if it is not 3546 * permitted to overwrite the first word of the object on 3547 * kmem_cache_free. 3548 * 3549 * This is the case if we do RCU, have a constructor or 3550 * destructor or are poisoning the objects. 3551 */ 3552 s->offset = size; 3553 size += sizeof(void *); 3554 } 3555 3556 #ifdef CONFIG_SLUB_DEBUG 3557 if (flags & SLAB_STORE_USER) 3558 /* 3559 * Need to store information about allocs and frees after 3560 * the object. 3561 */ 3562 size += 2 * sizeof(struct track); 3563 #endif 3564 3565 kasan_cache_create(s, &size, &s->flags); 3566 #ifdef CONFIG_SLUB_DEBUG 3567 if (flags & SLAB_RED_ZONE) { 3568 /* 3569 * Add some empty padding so that we can catch 3570 * overwrites from earlier objects rather than let 3571 * tracking information or the free pointer be 3572 * corrupted if a user writes before the start 3573 * of the object. 3574 */ 3575 size += sizeof(void *); 3576 3577 s->red_left_pad = sizeof(void *); 3578 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3579 size += s->red_left_pad; 3580 } 3581 #endif 3582 3583 /* 3584 * SLUB stores one object immediately after another beginning from 3585 * offset 0. In order to align the objects we have to simply size 3586 * each object to conform to the alignment. 3587 */ 3588 size = ALIGN(size, s->align); 3589 s->size = size; 3590 if (forced_order >= 0) 3591 order = forced_order; 3592 else 3593 order = calculate_order(size); 3594 3595 if ((int)order < 0) 3596 return 0; 3597 3598 s->allocflags = 0; 3599 if (order) 3600 s->allocflags |= __GFP_COMP; 3601 3602 if (s->flags & SLAB_CACHE_DMA) 3603 s->allocflags |= GFP_DMA; 3604 3605 if (s->flags & SLAB_CACHE_DMA32) 3606 s->allocflags |= GFP_DMA32; 3607 3608 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3609 s->allocflags |= __GFP_RECLAIMABLE; 3610 3611 /* 3612 * Determine the number of objects per slab 3613 */ 3614 s->oo = oo_make(order, size); 3615 s->min = oo_make(get_order(size), size); 3616 if (oo_objects(s->oo) > oo_objects(s->max)) 3617 s->max = s->oo; 3618 3619 return !!oo_objects(s->oo); 3620 } 3621 3622 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3623 { 3624 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3625 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3626 s->random = get_random_long(); 3627 #endif 3628 3629 if (!calculate_sizes(s, -1)) 3630 goto error; 3631 if (disable_higher_order_debug) { 3632 /* 3633 * Disable debugging flags that store metadata if the min slab 3634 * order increased. 3635 */ 3636 if (get_order(s->size) > get_order(s->object_size)) { 3637 s->flags &= ~DEBUG_METADATA_FLAGS; 3638 s->offset = 0; 3639 if (!calculate_sizes(s, -1)) 3640 goto error; 3641 } 3642 } 3643 3644 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3645 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3646 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3647 /* Enable fast mode */ 3648 s->flags |= __CMPXCHG_DOUBLE; 3649 #endif 3650 3651 /* 3652 * The larger the object size is, the more pages we want on the partial 3653 * list to avoid pounding the page allocator excessively. 3654 */ 3655 set_min_partial(s, ilog2(s->size) / 2); 3656 3657 set_cpu_partial(s); 3658 3659 #ifdef CONFIG_NUMA 3660 s->remote_node_defrag_ratio = 1000; 3661 #endif 3662 3663 /* Initialize the pre-computed randomized freelist if slab is up */ 3664 if (slab_state >= UP) { 3665 if (init_cache_random_seq(s)) 3666 goto error; 3667 } 3668 3669 if (!init_kmem_cache_nodes(s)) 3670 goto error; 3671 3672 if (alloc_kmem_cache_cpus(s)) 3673 return 0; 3674 3675 free_kmem_cache_nodes(s); 3676 error: 3677 return -EINVAL; 3678 } 3679 3680 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3681 const char *text) 3682 { 3683 #ifdef CONFIG_SLUB_DEBUG 3684 void *addr = page_address(page); 3685 void *p; 3686 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); 3687 if (!map) 3688 return; 3689 slab_err(s, page, text, s->name); 3690 slab_lock(page); 3691 3692 get_map(s, page, map); 3693 for_each_object(p, s, addr, page->objects) { 3694 3695 if (!test_bit(slab_index(p, s, addr), map)) { 3696 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3697 print_tracking(s, p); 3698 } 3699 } 3700 slab_unlock(page); 3701 bitmap_free(map); 3702 #endif 3703 } 3704 3705 /* 3706 * Attempt to free all partial slabs on a node. 3707 * This is called from __kmem_cache_shutdown(). We must take list_lock 3708 * because sysfs file might still access partial list after the shutdowning. 3709 */ 3710 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3711 { 3712 LIST_HEAD(discard); 3713 struct page *page, *h; 3714 3715 BUG_ON(irqs_disabled()); 3716 spin_lock_irq(&n->list_lock); 3717 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3718 if (!page->inuse) { 3719 remove_partial(n, page); 3720 list_add(&page->slab_list, &discard); 3721 } else { 3722 list_slab_objects(s, page, 3723 "Objects remaining in %s on __kmem_cache_shutdown()"); 3724 } 3725 } 3726 spin_unlock_irq(&n->list_lock); 3727 3728 list_for_each_entry_safe(page, h, &discard, slab_list) 3729 discard_slab(s, page); 3730 } 3731 3732 bool __kmem_cache_empty(struct kmem_cache *s) 3733 { 3734 int node; 3735 struct kmem_cache_node *n; 3736 3737 for_each_kmem_cache_node(s, node, n) 3738 if (n->nr_partial || slabs_node(s, node)) 3739 return false; 3740 return true; 3741 } 3742 3743 /* 3744 * Release all resources used by a slab cache. 3745 */ 3746 int __kmem_cache_shutdown(struct kmem_cache *s) 3747 { 3748 int node; 3749 struct kmem_cache_node *n; 3750 3751 flush_all(s); 3752 /* Attempt to free all objects */ 3753 for_each_kmem_cache_node(s, node, n) { 3754 free_partial(s, n); 3755 if (n->nr_partial || slabs_node(s, node)) 3756 return 1; 3757 } 3758 sysfs_slab_remove(s); 3759 return 0; 3760 } 3761 3762 /******************************************************************** 3763 * Kmalloc subsystem 3764 *******************************************************************/ 3765 3766 static int __init setup_slub_min_order(char *str) 3767 { 3768 get_option(&str, (int *)&slub_min_order); 3769 3770 return 1; 3771 } 3772 3773 __setup("slub_min_order=", setup_slub_min_order); 3774 3775 static int __init setup_slub_max_order(char *str) 3776 { 3777 get_option(&str, (int *)&slub_max_order); 3778 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3779 3780 return 1; 3781 } 3782 3783 __setup("slub_max_order=", setup_slub_max_order); 3784 3785 static int __init setup_slub_min_objects(char *str) 3786 { 3787 get_option(&str, (int *)&slub_min_objects); 3788 3789 return 1; 3790 } 3791 3792 __setup("slub_min_objects=", setup_slub_min_objects); 3793 3794 void *__kmalloc(size_t size, gfp_t flags) 3795 { 3796 struct kmem_cache *s; 3797 void *ret; 3798 3799 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3800 return kmalloc_large(size, flags); 3801 3802 s = kmalloc_slab(size, flags); 3803 3804 if (unlikely(ZERO_OR_NULL_PTR(s))) 3805 return s; 3806 3807 ret = slab_alloc(s, flags, _RET_IP_); 3808 3809 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3810 3811 ret = kasan_kmalloc(s, ret, size, flags); 3812 3813 return ret; 3814 } 3815 EXPORT_SYMBOL(__kmalloc); 3816 3817 #ifdef CONFIG_NUMA 3818 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3819 { 3820 struct page *page; 3821 void *ptr = NULL; 3822 3823 flags |= __GFP_COMP; 3824 page = alloc_pages_node(node, flags, get_order(size)); 3825 if (page) 3826 ptr = page_address(page); 3827 3828 return kmalloc_large_node_hook(ptr, size, flags); 3829 } 3830 3831 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3832 { 3833 struct kmem_cache *s; 3834 void *ret; 3835 3836 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3837 ret = kmalloc_large_node(size, flags, node); 3838 3839 trace_kmalloc_node(_RET_IP_, ret, 3840 size, PAGE_SIZE << get_order(size), 3841 flags, node); 3842 3843 return ret; 3844 } 3845 3846 s = kmalloc_slab(size, flags); 3847 3848 if (unlikely(ZERO_OR_NULL_PTR(s))) 3849 return s; 3850 3851 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3852 3853 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3854 3855 ret = kasan_kmalloc(s, ret, size, flags); 3856 3857 return ret; 3858 } 3859 EXPORT_SYMBOL(__kmalloc_node); 3860 #endif /* CONFIG_NUMA */ 3861 3862 #ifdef CONFIG_HARDENED_USERCOPY 3863 /* 3864 * Rejects incorrectly sized objects and objects that are to be copied 3865 * to/from userspace but do not fall entirely within the containing slab 3866 * cache's usercopy region. 3867 * 3868 * Returns NULL if check passes, otherwise const char * to name of cache 3869 * to indicate an error. 3870 */ 3871 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3872 bool to_user) 3873 { 3874 struct kmem_cache *s; 3875 unsigned int offset; 3876 size_t object_size; 3877 3878 ptr = kasan_reset_tag(ptr); 3879 3880 /* Find object and usable object size. */ 3881 s = page->slab_cache; 3882 3883 /* Reject impossible pointers. */ 3884 if (ptr < page_address(page)) 3885 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3886 to_user, 0, n); 3887 3888 /* Find offset within object. */ 3889 offset = (ptr - page_address(page)) % s->size; 3890 3891 /* Adjust for redzone and reject if within the redzone. */ 3892 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3893 if (offset < s->red_left_pad) 3894 usercopy_abort("SLUB object in left red zone", 3895 s->name, to_user, offset, n); 3896 offset -= s->red_left_pad; 3897 } 3898 3899 /* Allow address range falling entirely within usercopy region. */ 3900 if (offset >= s->useroffset && 3901 offset - s->useroffset <= s->usersize && 3902 n <= s->useroffset - offset + s->usersize) 3903 return; 3904 3905 /* 3906 * If the copy is still within the allocated object, produce 3907 * a warning instead of rejecting the copy. This is intended 3908 * to be a temporary method to find any missing usercopy 3909 * whitelists. 3910 */ 3911 object_size = slab_ksize(s); 3912 if (usercopy_fallback && 3913 offset <= object_size && n <= object_size - offset) { 3914 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3915 return; 3916 } 3917 3918 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3919 } 3920 #endif /* CONFIG_HARDENED_USERCOPY */ 3921 3922 size_t __ksize(const void *object) 3923 { 3924 struct page *page; 3925 3926 if (unlikely(object == ZERO_SIZE_PTR)) 3927 return 0; 3928 3929 page = virt_to_head_page(object); 3930 3931 if (unlikely(!PageSlab(page))) { 3932 WARN_ON(!PageCompound(page)); 3933 return PAGE_SIZE << compound_order(page); 3934 } 3935 3936 return slab_ksize(page->slab_cache); 3937 } 3938 EXPORT_SYMBOL(__ksize); 3939 3940 void kfree(const void *x) 3941 { 3942 struct page *page; 3943 void *object = (void *)x; 3944 3945 trace_kfree(_RET_IP_, x); 3946 3947 if (unlikely(ZERO_OR_NULL_PTR(x))) 3948 return; 3949 3950 page = virt_to_head_page(x); 3951 if (unlikely(!PageSlab(page))) { 3952 BUG_ON(!PageCompound(page)); 3953 kfree_hook(object); 3954 __free_pages(page, compound_order(page)); 3955 return; 3956 } 3957 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3958 } 3959 EXPORT_SYMBOL(kfree); 3960 3961 #define SHRINK_PROMOTE_MAX 32 3962 3963 /* 3964 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3965 * up most to the head of the partial lists. New allocations will then 3966 * fill those up and thus they can be removed from the partial lists. 3967 * 3968 * The slabs with the least items are placed last. This results in them 3969 * being allocated from last increasing the chance that the last objects 3970 * are freed in them. 3971 */ 3972 int __kmem_cache_shrink(struct kmem_cache *s) 3973 { 3974 int node; 3975 int i; 3976 struct kmem_cache_node *n; 3977 struct page *page; 3978 struct page *t; 3979 struct list_head discard; 3980 struct list_head promote[SHRINK_PROMOTE_MAX]; 3981 unsigned long flags; 3982 int ret = 0; 3983 3984 flush_all(s); 3985 for_each_kmem_cache_node(s, node, n) { 3986 INIT_LIST_HEAD(&discard); 3987 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3988 INIT_LIST_HEAD(promote + i); 3989 3990 spin_lock_irqsave(&n->list_lock, flags); 3991 3992 /* 3993 * Build lists of slabs to discard or promote. 3994 * 3995 * Note that concurrent frees may occur while we hold the 3996 * list_lock. page->inuse here is the upper limit. 3997 */ 3998 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 3999 int free = page->objects - page->inuse; 4000 4001 /* Do not reread page->inuse */ 4002 barrier(); 4003 4004 /* We do not keep full slabs on the list */ 4005 BUG_ON(free <= 0); 4006 4007 if (free == page->objects) { 4008 list_move(&page->slab_list, &discard); 4009 n->nr_partial--; 4010 } else if (free <= SHRINK_PROMOTE_MAX) 4011 list_move(&page->slab_list, promote + free - 1); 4012 } 4013 4014 /* 4015 * Promote the slabs filled up most to the head of the 4016 * partial list. 4017 */ 4018 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4019 list_splice(promote + i, &n->partial); 4020 4021 spin_unlock_irqrestore(&n->list_lock, flags); 4022 4023 /* Release empty slabs */ 4024 list_for_each_entry_safe(page, t, &discard, slab_list) 4025 discard_slab(s, page); 4026 4027 if (slabs_node(s, node)) 4028 ret = 1; 4029 } 4030 4031 return ret; 4032 } 4033 4034 #ifdef CONFIG_MEMCG 4035 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 4036 { 4037 /* 4038 * Called with all the locks held after a sched RCU grace period. 4039 * Even if @s becomes empty after shrinking, we can't know that @s 4040 * doesn't have allocations already in-flight and thus can't 4041 * destroy @s until the associated memcg is released. 4042 * 4043 * However, let's remove the sysfs files for empty caches here. 4044 * Each cache has a lot of interface files which aren't 4045 * particularly useful for empty draining caches; otherwise, we can 4046 * easily end up with millions of unnecessary sysfs files on 4047 * systems which have a lot of memory and transient cgroups. 4048 */ 4049 if (!__kmem_cache_shrink(s)) 4050 sysfs_slab_remove(s); 4051 } 4052 4053 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4054 { 4055 /* 4056 * Disable empty slabs caching. Used to avoid pinning offline 4057 * memory cgroups by kmem pages that can be freed. 4058 */ 4059 slub_set_cpu_partial(s, 0); 4060 s->min_partial = 0; 4061 } 4062 #endif /* CONFIG_MEMCG */ 4063 4064 static int slab_mem_going_offline_callback(void *arg) 4065 { 4066 struct kmem_cache *s; 4067 4068 mutex_lock(&slab_mutex); 4069 list_for_each_entry(s, &slab_caches, list) 4070 __kmem_cache_shrink(s); 4071 mutex_unlock(&slab_mutex); 4072 4073 return 0; 4074 } 4075 4076 static void slab_mem_offline_callback(void *arg) 4077 { 4078 struct kmem_cache_node *n; 4079 struct kmem_cache *s; 4080 struct memory_notify *marg = arg; 4081 int offline_node; 4082 4083 offline_node = marg->status_change_nid_normal; 4084 4085 /* 4086 * If the node still has available memory. we need kmem_cache_node 4087 * for it yet. 4088 */ 4089 if (offline_node < 0) 4090 return; 4091 4092 mutex_lock(&slab_mutex); 4093 list_for_each_entry(s, &slab_caches, list) { 4094 n = get_node(s, offline_node); 4095 if (n) { 4096 /* 4097 * if n->nr_slabs > 0, slabs still exist on the node 4098 * that is going down. We were unable to free them, 4099 * and offline_pages() function shouldn't call this 4100 * callback. So, we must fail. 4101 */ 4102 BUG_ON(slabs_node(s, offline_node)); 4103 4104 s->node[offline_node] = NULL; 4105 kmem_cache_free(kmem_cache_node, n); 4106 } 4107 } 4108 mutex_unlock(&slab_mutex); 4109 } 4110 4111 static int slab_mem_going_online_callback(void *arg) 4112 { 4113 struct kmem_cache_node *n; 4114 struct kmem_cache *s; 4115 struct memory_notify *marg = arg; 4116 int nid = marg->status_change_nid_normal; 4117 int ret = 0; 4118 4119 /* 4120 * If the node's memory is already available, then kmem_cache_node is 4121 * already created. Nothing to do. 4122 */ 4123 if (nid < 0) 4124 return 0; 4125 4126 /* 4127 * We are bringing a node online. No memory is available yet. We must 4128 * allocate a kmem_cache_node structure in order to bring the node 4129 * online. 4130 */ 4131 mutex_lock(&slab_mutex); 4132 list_for_each_entry(s, &slab_caches, list) { 4133 /* 4134 * XXX: kmem_cache_alloc_node will fallback to other nodes 4135 * since memory is not yet available from the node that 4136 * is brought up. 4137 */ 4138 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4139 if (!n) { 4140 ret = -ENOMEM; 4141 goto out; 4142 } 4143 init_kmem_cache_node(n); 4144 s->node[nid] = n; 4145 } 4146 out: 4147 mutex_unlock(&slab_mutex); 4148 return ret; 4149 } 4150 4151 static int slab_memory_callback(struct notifier_block *self, 4152 unsigned long action, void *arg) 4153 { 4154 int ret = 0; 4155 4156 switch (action) { 4157 case MEM_GOING_ONLINE: 4158 ret = slab_mem_going_online_callback(arg); 4159 break; 4160 case MEM_GOING_OFFLINE: 4161 ret = slab_mem_going_offline_callback(arg); 4162 break; 4163 case MEM_OFFLINE: 4164 case MEM_CANCEL_ONLINE: 4165 slab_mem_offline_callback(arg); 4166 break; 4167 case MEM_ONLINE: 4168 case MEM_CANCEL_OFFLINE: 4169 break; 4170 } 4171 if (ret) 4172 ret = notifier_from_errno(ret); 4173 else 4174 ret = NOTIFY_OK; 4175 return ret; 4176 } 4177 4178 static struct notifier_block slab_memory_callback_nb = { 4179 .notifier_call = slab_memory_callback, 4180 .priority = SLAB_CALLBACK_PRI, 4181 }; 4182 4183 /******************************************************************** 4184 * Basic setup of slabs 4185 *******************************************************************/ 4186 4187 /* 4188 * Used for early kmem_cache structures that were allocated using 4189 * the page allocator. Allocate them properly then fix up the pointers 4190 * that may be pointing to the wrong kmem_cache structure. 4191 */ 4192 4193 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4194 { 4195 int node; 4196 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4197 struct kmem_cache_node *n; 4198 4199 memcpy(s, static_cache, kmem_cache->object_size); 4200 4201 /* 4202 * This runs very early, and only the boot processor is supposed to be 4203 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4204 * IPIs around. 4205 */ 4206 __flush_cpu_slab(s, smp_processor_id()); 4207 for_each_kmem_cache_node(s, node, n) { 4208 struct page *p; 4209 4210 list_for_each_entry(p, &n->partial, slab_list) 4211 p->slab_cache = s; 4212 4213 #ifdef CONFIG_SLUB_DEBUG 4214 list_for_each_entry(p, &n->full, slab_list) 4215 p->slab_cache = s; 4216 #endif 4217 } 4218 slab_init_memcg_params(s); 4219 list_add(&s->list, &slab_caches); 4220 memcg_link_cache(s, NULL); 4221 return s; 4222 } 4223 4224 void __init kmem_cache_init(void) 4225 { 4226 static __initdata struct kmem_cache boot_kmem_cache, 4227 boot_kmem_cache_node; 4228 4229 if (debug_guardpage_minorder()) 4230 slub_max_order = 0; 4231 4232 kmem_cache_node = &boot_kmem_cache_node; 4233 kmem_cache = &boot_kmem_cache; 4234 4235 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4236 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4237 4238 register_hotmemory_notifier(&slab_memory_callback_nb); 4239 4240 /* Able to allocate the per node structures */ 4241 slab_state = PARTIAL; 4242 4243 create_boot_cache(kmem_cache, "kmem_cache", 4244 offsetof(struct kmem_cache, node) + 4245 nr_node_ids * sizeof(struct kmem_cache_node *), 4246 SLAB_HWCACHE_ALIGN, 0, 0); 4247 4248 kmem_cache = bootstrap(&boot_kmem_cache); 4249 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4250 4251 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4252 setup_kmalloc_cache_index_table(); 4253 create_kmalloc_caches(0); 4254 4255 /* Setup random freelists for each cache */ 4256 init_freelist_randomization(); 4257 4258 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4259 slub_cpu_dead); 4260 4261 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4262 cache_line_size(), 4263 slub_min_order, slub_max_order, slub_min_objects, 4264 nr_cpu_ids, nr_node_ids); 4265 } 4266 4267 void __init kmem_cache_init_late(void) 4268 { 4269 } 4270 4271 struct kmem_cache * 4272 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4273 slab_flags_t flags, void (*ctor)(void *)) 4274 { 4275 struct kmem_cache *s, *c; 4276 4277 s = find_mergeable(size, align, flags, name, ctor); 4278 if (s) { 4279 s->refcount++; 4280 4281 /* 4282 * Adjust the object sizes so that we clear 4283 * the complete object on kzalloc. 4284 */ 4285 s->object_size = max(s->object_size, size); 4286 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4287 4288 for_each_memcg_cache(c, s) { 4289 c->object_size = s->object_size; 4290 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4291 } 4292 4293 if (sysfs_slab_alias(s, name)) { 4294 s->refcount--; 4295 s = NULL; 4296 } 4297 } 4298 4299 return s; 4300 } 4301 4302 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4303 { 4304 int err; 4305 4306 err = kmem_cache_open(s, flags); 4307 if (err) 4308 return err; 4309 4310 /* Mutex is not taken during early boot */ 4311 if (slab_state <= UP) 4312 return 0; 4313 4314 memcg_propagate_slab_attrs(s); 4315 err = sysfs_slab_add(s); 4316 if (err) 4317 __kmem_cache_release(s); 4318 4319 return err; 4320 } 4321 4322 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4323 { 4324 struct kmem_cache *s; 4325 void *ret; 4326 4327 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4328 return kmalloc_large(size, gfpflags); 4329 4330 s = kmalloc_slab(size, gfpflags); 4331 4332 if (unlikely(ZERO_OR_NULL_PTR(s))) 4333 return s; 4334 4335 ret = slab_alloc(s, gfpflags, caller); 4336 4337 /* Honor the call site pointer we received. */ 4338 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4339 4340 return ret; 4341 } 4342 4343 #ifdef CONFIG_NUMA 4344 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4345 int node, unsigned long caller) 4346 { 4347 struct kmem_cache *s; 4348 void *ret; 4349 4350 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4351 ret = kmalloc_large_node(size, gfpflags, node); 4352 4353 trace_kmalloc_node(caller, ret, 4354 size, PAGE_SIZE << get_order(size), 4355 gfpflags, node); 4356 4357 return ret; 4358 } 4359 4360 s = kmalloc_slab(size, gfpflags); 4361 4362 if (unlikely(ZERO_OR_NULL_PTR(s))) 4363 return s; 4364 4365 ret = slab_alloc_node(s, gfpflags, node, caller); 4366 4367 /* Honor the call site pointer we received. */ 4368 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4369 4370 return ret; 4371 } 4372 #endif 4373 4374 #ifdef CONFIG_SYSFS 4375 static int count_inuse(struct page *page) 4376 { 4377 return page->inuse; 4378 } 4379 4380 static int count_total(struct page *page) 4381 { 4382 return page->objects; 4383 } 4384 #endif 4385 4386 #ifdef CONFIG_SLUB_DEBUG 4387 static int validate_slab(struct kmem_cache *s, struct page *page, 4388 unsigned long *map) 4389 { 4390 void *p; 4391 void *addr = page_address(page); 4392 4393 if (!check_slab(s, page) || 4394 !on_freelist(s, page, NULL)) 4395 return 0; 4396 4397 /* Now we know that a valid freelist exists */ 4398 bitmap_zero(map, page->objects); 4399 4400 get_map(s, page, map); 4401 for_each_object(p, s, addr, page->objects) { 4402 if (test_bit(slab_index(p, s, addr), map)) 4403 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4404 return 0; 4405 } 4406 4407 for_each_object(p, s, addr, page->objects) 4408 if (!test_bit(slab_index(p, s, addr), map)) 4409 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4410 return 0; 4411 return 1; 4412 } 4413 4414 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4415 unsigned long *map) 4416 { 4417 slab_lock(page); 4418 validate_slab(s, page, map); 4419 slab_unlock(page); 4420 } 4421 4422 static int validate_slab_node(struct kmem_cache *s, 4423 struct kmem_cache_node *n, unsigned long *map) 4424 { 4425 unsigned long count = 0; 4426 struct page *page; 4427 unsigned long flags; 4428 4429 spin_lock_irqsave(&n->list_lock, flags); 4430 4431 list_for_each_entry(page, &n->partial, slab_list) { 4432 validate_slab_slab(s, page, map); 4433 count++; 4434 } 4435 if (count != n->nr_partial) 4436 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4437 s->name, count, n->nr_partial); 4438 4439 if (!(s->flags & SLAB_STORE_USER)) 4440 goto out; 4441 4442 list_for_each_entry(page, &n->full, slab_list) { 4443 validate_slab_slab(s, page, map); 4444 count++; 4445 } 4446 if (count != atomic_long_read(&n->nr_slabs)) 4447 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4448 s->name, count, atomic_long_read(&n->nr_slabs)); 4449 4450 out: 4451 spin_unlock_irqrestore(&n->list_lock, flags); 4452 return count; 4453 } 4454 4455 static long validate_slab_cache(struct kmem_cache *s) 4456 { 4457 int node; 4458 unsigned long count = 0; 4459 struct kmem_cache_node *n; 4460 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4461 4462 if (!map) 4463 return -ENOMEM; 4464 4465 flush_all(s); 4466 for_each_kmem_cache_node(s, node, n) 4467 count += validate_slab_node(s, n, map); 4468 bitmap_free(map); 4469 return count; 4470 } 4471 /* 4472 * Generate lists of code addresses where slabcache objects are allocated 4473 * and freed. 4474 */ 4475 4476 struct location { 4477 unsigned long count; 4478 unsigned long addr; 4479 long long sum_time; 4480 long min_time; 4481 long max_time; 4482 long min_pid; 4483 long max_pid; 4484 DECLARE_BITMAP(cpus, NR_CPUS); 4485 nodemask_t nodes; 4486 }; 4487 4488 struct loc_track { 4489 unsigned long max; 4490 unsigned long count; 4491 struct location *loc; 4492 }; 4493 4494 static void free_loc_track(struct loc_track *t) 4495 { 4496 if (t->max) 4497 free_pages((unsigned long)t->loc, 4498 get_order(sizeof(struct location) * t->max)); 4499 } 4500 4501 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4502 { 4503 struct location *l; 4504 int order; 4505 4506 order = get_order(sizeof(struct location) * max); 4507 4508 l = (void *)__get_free_pages(flags, order); 4509 if (!l) 4510 return 0; 4511 4512 if (t->count) { 4513 memcpy(l, t->loc, sizeof(struct location) * t->count); 4514 free_loc_track(t); 4515 } 4516 t->max = max; 4517 t->loc = l; 4518 return 1; 4519 } 4520 4521 static int add_location(struct loc_track *t, struct kmem_cache *s, 4522 const struct track *track) 4523 { 4524 long start, end, pos; 4525 struct location *l; 4526 unsigned long caddr; 4527 unsigned long age = jiffies - track->when; 4528 4529 start = -1; 4530 end = t->count; 4531 4532 for ( ; ; ) { 4533 pos = start + (end - start + 1) / 2; 4534 4535 /* 4536 * There is nothing at "end". If we end up there 4537 * we need to add something to before end. 4538 */ 4539 if (pos == end) 4540 break; 4541 4542 caddr = t->loc[pos].addr; 4543 if (track->addr == caddr) { 4544 4545 l = &t->loc[pos]; 4546 l->count++; 4547 if (track->when) { 4548 l->sum_time += age; 4549 if (age < l->min_time) 4550 l->min_time = age; 4551 if (age > l->max_time) 4552 l->max_time = age; 4553 4554 if (track->pid < l->min_pid) 4555 l->min_pid = track->pid; 4556 if (track->pid > l->max_pid) 4557 l->max_pid = track->pid; 4558 4559 cpumask_set_cpu(track->cpu, 4560 to_cpumask(l->cpus)); 4561 } 4562 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4563 return 1; 4564 } 4565 4566 if (track->addr < caddr) 4567 end = pos; 4568 else 4569 start = pos; 4570 } 4571 4572 /* 4573 * Not found. Insert new tracking element. 4574 */ 4575 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4576 return 0; 4577 4578 l = t->loc + pos; 4579 if (pos < t->count) 4580 memmove(l + 1, l, 4581 (t->count - pos) * sizeof(struct location)); 4582 t->count++; 4583 l->count = 1; 4584 l->addr = track->addr; 4585 l->sum_time = age; 4586 l->min_time = age; 4587 l->max_time = age; 4588 l->min_pid = track->pid; 4589 l->max_pid = track->pid; 4590 cpumask_clear(to_cpumask(l->cpus)); 4591 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4592 nodes_clear(l->nodes); 4593 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4594 return 1; 4595 } 4596 4597 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4598 struct page *page, enum track_item alloc, 4599 unsigned long *map) 4600 { 4601 void *addr = page_address(page); 4602 void *p; 4603 4604 bitmap_zero(map, page->objects); 4605 get_map(s, page, map); 4606 4607 for_each_object(p, s, addr, page->objects) 4608 if (!test_bit(slab_index(p, s, addr), map)) 4609 add_location(t, s, get_track(s, p, alloc)); 4610 } 4611 4612 static int list_locations(struct kmem_cache *s, char *buf, 4613 enum track_item alloc) 4614 { 4615 int len = 0; 4616 unsigned long i; 4617 struct loc_track t = { 0, 0, NULL }; 4618 int node; 4619 struct kmem_cache_node *n; 4620 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4621 4622 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4623 GFP_KERNEL)) { 4624 bitmap_free(map); 4625 return sprintf(buf, "Out of memory\n"); 4626 } 4627 /* Push back cpu slabs */ 4628 flush_all(s); 4629 4630 for_each_kmem_cache_node(s, node, n) { 4631 unsigned long flags; 4632 struct page *page; 4633 4634 if (!atomic_long_read(&n->nr_slabs)) 4635 continue; 4636 4637 spin_lock_irqsave(&n->list_lock, flags); 4638 list_for_each_entry(page, &n->partial, slab_list) 4639 process_slab(&t, s, page, alloc, map); 4640 list_for_each_entry(page, &n->full, slab_list) 4641 process_slab(&t, s, page, alloc, map); 4642 spin_unlock_irqrestore(&n->list_lock, flags); 4643 } 4644 4645 for (i = 0; i < t.count; i++) { 4646 struct location *l = &t.loc[i]; 4647 4648 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4649 break; 4650 len += sprintf(buf + len, "%7ld ", l->count); 4651 4652 if (l->addr) 4653 len += sprintf(buf + len, "%pS", (void *)l->addr); 4654 else 4655 len += sprintf(buf + len, "<not-available>"); 4656 4657 if (l->sum_time != l->min_time) { 4658 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4659 l->min_time, 4660 (long)div_u64(l->sum_time, l->count), 4661 l->max_time); 4662 } else 4663 len += sprintf(buf + len, " age=%ld", 4664 l->min_time); 4665 4666 if (l->min_pid != l->max_pid) 4667 len += sprintf(buf + len, " pid=%ld-%ld", 4668 l->min_pid, l->max_pid); 4669 else 4670 len += sprintf(buf + len, " pid=%ld", 4671 l->min_pid); 4672 4673 if (num_online_cpus() > 1 && 4674 !cpumask_empty(to_cpumask(l->cpus)) && 4675 len < PAGE_SIZE - 60) 4676 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4677 " cpus=%*pbl", 4678 cpumask_pr_args(to_cpumask(l->cpus))); 4679 4680 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4681 len < PAGE_SIZE - 60) 4682 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4683 " nodes=%*pbl", 4684 nodemask_pr_args(&l->nodes)); 4685 4686 len += sprintf(buf + len, "\n"); 4687 } 4688 4689 free_loc_track(&t); 4690 bitmap_free(map); 4691 if (!t.count) 4692 len += sprintf(buf, "No data\n"); 4693 return len; 4694 } 4695 #endif /* CONFIG_SLUB_DEBUG */ 4696 4697 #ifdef SLUB_RESILIENCY_TEST 4698 static void __init resiliency_test(void) 4699 { 4700 u8 *p; 4701 int type = KMALLOC_NORMAL; 4702 4703 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4704 4705 pr_err("SLUB resiliency testing\n"); 4706 pr_err("-----------------------\n"); 4707 pr_err("A. Corruption after allocation\n"); 4708 4709 p = kzalloc(16, GFP_KERNEL); 4710 p[16] = 0x12; 4711 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4712 p + 16); 4713 4714 validate_slab_cache(kmalloc_caches[type][4]); 4715 4716 /* Hmmm... The next two are dangerous */ 4717 p = kzalloc(32, GFP_KERNEL); 4718 p[32 + sizeof(void *)] = 0x34; 4719 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4720 p); 4721 pr_err("If allocated object is overwritten then not detectable\n\n"); 4722 4723 validate_slab_cache(kmalloc_caches[type][5]); 4724 p = kzalloc(64, GFP_KERNEL); 4725 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4726 *p = 0x56; 4727 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4728 p); 4729 pr_err("If allocated object is overwritten then not detectable\n\n"); 4730 validate_slab_cache(kmalloc_caches[type][6]); 4731 4732 pr_err("\nB. Corruption after free\n"); 4733 p = kzalloc(128, GFP_KERNEL); 4734 kfree(p); 4735 *p = 0x78; 4736 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4737 validate_slab_cache(kmalloc_caches[type][7]); 4738 4739 p = kzalloc(256, GFP_KERNEL); 4740 kfree(p); 4741 p[50] = 0x9a; 4742 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4743 validate_slab_cache(kmalloc_caches[type][8]); 4744 4745 p = kzalloc(512, GFP_KERNEL); 4746 kfree(p); 4747 p[512] = 0xab; 4748 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4749 validate_slab_cache(kmalloc_caches[type][9]); 4750 } 4751 #else 4752 #ifdef CONFIG_SYSFS 4753 static void resiliency_test(void) {}; 4754 #endif 4755 #endif /* SLUB_RESILIENCY_TEST */ 4756 4757 #ifdef CONFIG_SYSFS 4758 enum slab_stat_type { 4759 SL_ALL, /* All slabs */ 4760 SL_PARTIAL, /* Only partially allocated slabs */ 4761 SL_CPU, /* Only slabs used for cpu caches */ 4762 SL_OBJECTS, /* Determine allocated objects not slabs */ 4763 SL_TOTAL /* Determine object capacity not slabs */ 4764 }; 4765 4766 #define SO_ALL (1 << SL_ALL) 4767 #define SO_PARTIAL (1 << SL_PARTIAL) 4768 #define SO_CPU (1 << SL_CPU) 4769 #define SO_OBJECTS (1 << SL_OBJECTS) 4770 #define SO_TOTAL (1 << SL_TOTAL) 4771 4772 #ifdef CONFIG_MEMCG 4773 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4774 4775 static int __init setup_slub_memcg_sysfs(char *str) 4776 { 4777 int v; 4778 4779 if (get_option(&str, &v) > 0) 4780 memcg_sysfs_enabled = v; 4781 4782 return 1; 4783 } 4784 4785 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4786 #endif 4787 4788 static ssize_t show_slab_objects(struct kmem_cache *s, 4789 char *buf, unsigned long flags) 4790 { 4791 unsigned long total = 0; 4792 int node; 4793 int x; 4794 unsigned long *nodes; 4795 4796 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4797 if (!nodes) 4798 return -ENOMEM; 4799 4800 if (flags & SO_CPU) { 4801 int cpu; 4802 4803 for_each_possible_cpu(cpu) { 4804 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4805 cpu); 4806 int node; 4807 struct page *page; 4808 4809 page = READ_ONCE(c->page); 4810 if (!page) 4811 continue; 4812 4813 node = page_to_nid(page); 4814 if (flags & SO_TOTAL) 4815 x = page->objects; 4816 else if (flags & SO_OBJECTS) 4817 x = page->inuse; 4818 else 4819 x = 1; 4820 4821 total += x; 4822 nodes[node] += x; 4823 4824 page = slub_percpu_partial_read_once(c); 4825 if (page) { 4826 node = page_to_nid(page); 4827 if (flags & SO_TOTAL) 4828 WARN_ON_ONCE(1); 4829 else if (flags & SO_OBJECTS) 4830 WARN_ON_ONCE(1); 4831 else 4832 x = page->pages; 4833 total += x; 4834 nodes[node] += x; 4835 } 4836 } 4837 } 4838 4839 get_online_mems(); 4840 #ifdef CONFIG_SLUB_DEBUG 4841 if (flags & SO_ALL) { 4842 struct kmem_cache_node *n; 4843 4844 for_each_kmem_cache_node(s, node, n) { 4845 4846 if (flags & SO_TOTAL) 4847 x = atomic_long_read(&n->total_objects); 4848 else if (flags & SO_OBJECTS) 4849 x = atomic_long_read(&n->total_objects) - 4850 count_partial(n, count_free); 4851 else 4852 x = atomic_long_read(&n->nr_slabs); 4853 total += x; 4854 nodes[node] += x; 4855 } 4856 4857 } else 4858 #endif 4859 if (flags & SO_PARTIAL) { 4860 struct kmem_cache_node *n; 4861 4862 for_each_kmem_cache_node(s, node, n) { 4863 if (flags & SO_TOTAL) 4864 x = count_partial(n, count_total); 4865 else if (flags & SO_OBJECTS) 4866 x = count_partial(n, count_inuse); 4867 else 4868 x = n->nr_partial; 4869 total += x; 4870 nodes[node] += x; 4871 } 4872 } 4873 x = sprintf(buf, "%lu", total); 4874 #ifdef CONFIG_NUMA 4875 for (node = 0; node < nr_node_ids; node++) 4876 if (nodes[node]) 4877 x += sprintf(buf + x, " N%d=%lu", 4878 node, nodes[node]); 4879 #endif 4880 put_online_mems(); 4881 kfree(nodes); 4882 return x + sprintf(buf + x, "\n"); 4883 } 4884 4885 #ifdef CONFIG_SLUB_DEBUG 4886 static int any_slab_objects(struct kmem_cache *s) 4887 { 4888 int node; 4889 struct kmem_cache_node *n; 4890 4891 for_each_kmem_cache_node(s, node, n) 4892 if (atomic_long_read(&n->total_objects)) 4893 return 1; 4894 4895 return 0; 4896 } 4897 #endif 4898 4899 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4900 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4901 4902 struct slab_attribute { 4903 struct attribute attr; 4904 ssize_t (*show)(struct kmem_cache *s, char *buf); 4905 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4906 }; 4907 4908 #define SLAB_ATTR_RO(_name) \ 4909 static struct slab_attribute _name##_attr = \ 4910 __ATTR(_name, 0400, _name##_show, NULL) 4911 4912 #define SLAB_ATTR(_name) \ 4913 static struct slab_attribute _name##_attr = \ 4914 __ATTR(_name, 0600, _name##_show, _name##_store) 4915 4916 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4917 { 4918 return sprintf(buf, "%u\n", s->size); 4919 } 4920 SLAB_ATTR_RO(slab_size); 4921 4922 static ssize_t align_show(struct kmem_cache *s, char *buf) 4923 { 4924 return sprintf(buf, "%u\n", s->align); 4925 } 4926 SLAB_ATTR_RO(align); 4927 4928 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4929 { 4930 return sprintf(buf, "%u\n", s->object_size); 4931 } 4932 SLAB_ATTR_RO(object_size); 4933 4934 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4935 { 4936 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4937 } 4938 SLAB_ATTR_RO(objs_per_slab); 4939 4940 static ssize_t order_store(struct kmem_cache *s, 4941 const char *buf, size_t length) 4942 { 4943 unsigned int order; 4944 int err; 4945 4946 err = kstrtouint(buf, 10, &order); 4947 if (err) 4948 return err; 4949 4950 if (order > slub_max_order || order < slub_min_order) 4951 return -EINVAL; 4952 4953 calculate_sizes(s, order); 4954 return length; 4955 } 4956 4957 static ssize_t order_show(struct kmem_cache *s, char *buf) 4958 { 4959 return sprintf(buf, "%u\n", oo_order(s->oo)); 4960 } 4961 SLAB_ATTR(order); 4962 4963 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4964 { 4965 return sprintf(buf, "%lu\n", s->min_partial); 4966 } 4967 4968 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4969 size_t length) 4970 { 4971 unsigned long min; 4972 int err; 4973 4974 err = kstrtoul(buf, 10, &min); 4975 if (err) 4976 return err; 4977 4978 set_min_partial(s, min); 4979 return length; 4980 } 4981 SLAB_ATTR(min_partial); 4982 4983 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4984 { 4985 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4986 } 4987 4988 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4989 size_t length) 4990 { 4991 unsigned int objects; 4992 int err; 4993 4994 err = kstrtouint(buf, 10, &objects); 4995 if (err) 4996 return err; 4997 if (objects && !kmem_cache_has_cpu_partial(s)) 4998 return -EINVAL; 4999 5000 slub_set_cpu_partial(s, objects); 5001 flush_all(s); 5002 return length; 5003 } 5004 SLAB_ATTR(cpu_partial); 5005 5006 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5007 { 5008 if (!s->ctor) 5009 return 0; 5010 return sprintf(buf, "%pS\n", s->ctor); 5011 } 5012 SLAB_ATTR_RO(ctor); 5013 5014 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5015 { 5016 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5017 } 5018 SLAB_ATTR_RO(aliases); 5019 5020 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5021 { 5022 return show_slab_objects(s, buf, SO_PARTIAL); 5023 } 5024 SLAB_ATTR_RO(partial); 5025 5026 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5027 { 5028 return show_slab_objects(s, buf, SO_CPU); 5029 } 5030 SLAB_ATTR_RO(cpu_slabs); 5031 5032 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5033 { 5034 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5035 } 5036 SLAB_ATTR_RO(objects); 5037 5038 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5039 { 5040 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5041 } 5042 SLAB_ATTR_RO(objects_partial); 5043 5044 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5045 { 5046 int objects = 0; 5047 int pages = 0; 5048 int cpu; 5049 int len; 5050 5051 for_each_online_cpu(cpu) { 5052 struct page *page; 5053 5054 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5055 5056 if (page) { 5057 pages += page->pages; 5058 objects += page->pobjects; 5059 } 5060 } 5061 5062 len = sprintf(buf, "%d(%d)", objects, pages); 5063 5064 #ifdef CONFIG_SMP 5065 for_each_online_cpu(cpu) { 5066 struct page *page; 5067 5068 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5069 5070 if (page && len < PAGE_SIZE - 20) 5071 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5072 page->pobjects, page->pages); 5073 } 5074 #endif 5075 return len + sprintf(buf + len, "\n"); 5076 } 5077 SLAB_ATTR_RO(slabs_cpu_partial); 5078 5079 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5080 { 5081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5082 } 5083 5084 static ssize_t reclaim_account_store(struct kmem_cache *s, 5085 const char *buf, size_t length) 5086 { 5087 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5088 if (buf[0] == '1') 5089 s->flags |= SLAB_RECLAIM_ACCOUNT; 5090 return length; 5091 } 5092 SLAB_ATTR(reclaim_account); 5093 5094 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5095 { 5096 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5097 } 5098 SLAB_ATTR_RO(hwcache_align); 5099 5100 #ifdef CONFIG_ZONE_DMA 5101 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5102 { 5103 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5104 } 5105 SLAB_ATTR_RO(cache_dma); 5106 #endif 5107 5108 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5109 { 5110 return sprintf(buf, "%u\n", s->usersize); 5111 } 5112 SLAB_ATTR_RO(usersize); 5113 5114 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5115 { 5116 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5117 } 5118 SLAB_ATTR_RO(destroy_by_rcu); 5119 5120 #ifdef CONFIG_SLUB_DEBUG 5121 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5122 { 5123 return show_slab_objects(s, buf, SO_ALL); 5124 } 5125 SLAB_ATTR_RO(slabs); 5126 5127 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5128 { 5129 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5130 } 5131 SLAB_ATTR_RO(total_objects); 5132 5133 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5134 { 5135 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5136 } 5137 5138 static ssize_t sanity_checks_store(struct kmem_cache *s, 5139 const char *buf, size_t length) 5140 { 5141 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5142 if (buf[0] == '1') { 5143 s->flags &= ~__CMPXCHG_DOUBLE; 5144 s->flags |= SLAB_CONSISTENCY_CHECKS; 5145 } 5146 return length; 5147 } 5148 SLAB_ATTR(sanity_checks); 5149 5150 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5151 { 5152 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5153 } 5154 5155 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5156 size_t length) 5157 { 5158 /* 5159 * Tracing a merged cache is going to give confusing results 5160 * as well as cause other issues like converting a mergeable 5161 * cache into an umergeable one. 5162 */ 5163 if (s->refcount > 1) 5164 return -EINVAL; 5165 5166 s->flags &= ~SLAB_TRACE; 5167 if (buf[0] == '1') { 5168 s->flags &= ~__CMPXCHG_DOUBLE; 5169 s->flags |= SLAB_TRACE; 5170 } 5171 return length; 5172 } 5173 SLAB_ATTR(trace); 5174 5175 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5176 { 5177 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5178 } 5179 5180 static ssize_t red_zone_store(struct kmem_cache *s, 5181 const char *buf, size_t length) 5182 { 5183 if (any_slab_objects(s)) 5184 return -EBUSY; 5185 5186 s->flags &= ~SLAB_RED_ZONE; 5187 if (buf[0] == '1') { 5188 s->flags |= SLAB_RED_ZONE; 5189 } 5190 calculate_sizes(s, -1); 5191 return length; 5192 } 5193 SLAB_ATTR(red_zone); 5194 5195 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5196 { 5197 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5198 } 5199 5200 static ssize_t poison_store(struct kmem_cache *s, 5201 const char *buf, size_t length) 5202 { 5203 if (any_slab_objects(s)) 5204 return -EBUSY; 5205 5206 s->flags &= ~SLAB_POISON; 5207 if (buf[0] == '1') { 5208 s->flags |= SLAB_POISON; 5209 } 5210 calculate_sizes(s, -1); 5211 return length; 5212 } 5213 SLAB_ATTR(poison); 5214 5215 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5216 { 5217 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5218 } 5219 5220 static ssize_t store_user_store(struct kmem_cache *s, 5221 const char *buf, size_t length) 5222 { 5223 if (any_slab_objects(s)) 5224 return -EBUSY; 5225 5226 s->flags &= ~SLAB_STORE_USER; 5227 if (buf[0] == '1') { 5228 s->flags &= ~__CMPXCHG_DOUBLE; 5229 s->flags |= SLAB_STORE_USER; 5230 } 5231 calculate_sizes(s, -1); 5232 return length; 5233 } 5234 SLAB_ATTR(store_user); 5235 5236 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5237 { 5238 return 0; 5239 } 5240 5241 static ssize_t validate_store(struct kmem_cache *s, 5242 const char *buf, size_t length) 5243 { 5244 int ret = -EINVAL; 5245 5246 if (buf[0] == '1') { 5247 ret = validate_slab_cache(s); 5248 if (ret >= 0) 5249 ret = length; 5250 } 5251 return ret; 5252 } 5253 SLAB_ATTR(validate); 5254 5255 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5256 { 5257 if (!(s->flags & SLAB_STORE_USER)) 5258 return -ENOSYS; 5259 return list_locations(s, buf, TRACK_ALLOC); 5260 } 5261 SLAB_ATTR_RO(alloc_calls); 5262 5263 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5264 { 5265 if (!(s->flags & SLAB_STORE_USER)) 5266 return -ENOSYS; 5267 return list_locations(s, buf, TRACK_FREE); 5268 } 5269 SLAB_ATTR_RO(free_calls); 5270 #endif /* CONFIG_SLUB_DEBUG */ 5271 5272 #ifdef CONFIG_FAILSLAB 5273 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5274 { 5275 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5276 } 5277 5278 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5279 size_t length) 5280 { 5281 if (s->refcount > 1) 5282 return -EINVAL; 5283 5284 s->flags &= ~SLAB_FAILSLAB; 5285 if (buf[0] == '1') 5286 s->flags |= SLAB_FAILSLAB; 5287 return length; 5288 } 5289 SLAB_ATTR(failslab); 5290 #endif 5291 5292 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5293 { 5294 return 0; 5295 } 5296 5297 static ssize_t shrink_store(struct kmem_cache *s, 5298 const char *buf, size_t length) 5299 { 5300 if (buf[0] == '1') 5301 kmem_cache_shrink(s); 5302 else 5303 return -EINVAL; 5304 return length; 5305 } 5306 SLAB_ATTR(shrink); 5307 5308 #ifdef CONFIG_NUMA 5309 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5310 { 5311 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5312 } 5313 5314 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5315 const char *buf, size_t length) 5316 { 5317 unsigned int ratio; 5318 int err; 5319 5320 err = kstrtouint(buf, 10, &ratio); 5321 if (err) 5322 return err; 5323 if (ratio > 100) 5324 return -ERANGE; 5325 5326 s->remote_node_defrag_ratio = ratio * 10; 5327 5328 return length; 5329 } 5330 SLAB_ATTR(remote_node_defrag_ratio); 5331 #endif 5332 5333 #ifdef CONFIG_SLUB_STATS 5334 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5335 { 5336 unsigned long sum = 0; 5337 int cpu; 5338 int len; 5339 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5340 5341 if (!data) 5342 return -ENOMEM; 5343 5344 for_each_online_cpu(cpu) { 5345 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5346 5347 data[cpu] = x; 5348 sum += x; 5349 } 5350 5351 len = sprintf(buf, "%lu", sum); 5352 5353 #ifdef CONFIG_SMP 5354 for_each_online_cpu(cpu) { 5355 if (data[cpu] && len < PAGE_SIZE - 20) 5356 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5357 } 5358 #endif 5359 kfree(data); 5360 return len + sprintf(buf + len, "\n"); 5361 } 5362 5363 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5364 { 5365 int cpu; 5366 5367 for_each_online_cpu(cpu) 5368 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5369 } 5370 5371 #define STAT_ATTR(si, text) \ 5372 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5373 { \ 5374 return show_stat(s, buf, si); \ 5375 } \ 5376 static ssize_t text##_store(struct kmem_cache *s, \ 5377 const char *buf, size_t length) \ 5378 { \ 5379 if (buf[0] != '0') \ 5380 return -EINVAL; \ 5381 clear_stat(s, si); \ 5382 return length; \ 5383 } \ 5384 SLAB_ATTR(text); \ 5385 5386 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5387 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5388 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5389 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5390 STAT_ATTR(FREE_FROZEN, free_frozen); 5391 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5392 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5393 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5394 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5395 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5396 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5397 STAT_ATTR(FREE_SLAB, free_slab); 5398 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5399 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5400 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5401 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5402 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5403 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5404 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5405 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5406 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5407 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5408 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5409 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5410 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5411 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5412 #endif /* CONFIG_SLUB_STATS */ 5413 5414 static struct attribute *slab_attrs[] = { 5415 &slab_size_attr.attr, 5416 &object_size_attr.attr, 5417 &objs_per_slab_attr.attr, 5418 &order_attr.attr, 5419 &min_partial_attr.attr, 5420 &cpu_partial_attr.attr, 5421 &objects_attr.attr, 5422 &objects_partial_attr.attr, 5423 &partial_attr.attr, 5424 &cpu_slabs_attr.attr, 5425 &ctor_attr.attr, 5426 &aliases_attr.attr, 5427 &align_attr.attr, 5428 &hwcache_align_attr.attr, 5429 &reclaim_account_attr.attr, 5430 &destroy_by_rcu_attr.attr, 5431 &shrink_attr.attr, 5432 &slabs_cpu_partial_attr.attr, 5433 #ifdef CONFIG_SLUB_DEBUG 5434 &total_objects_attr.attr, 5435 &slabs_attr.attr, 5436 &sanity_checks_attr.attr, 5437 &trace_attr.attr, 5438 &red_zone_attr.attr, 5439 &poison_attr.attr, 5440 &store_user_attr.attr, 5441 &validate_attr.attr, 5442 &alloc_calls_attr.attr, 5443 &free_calls_attr.attr, 5444 #endif 5445 #ifdef CONFIG_ZONE_DMA 5446 &cache_dma_attr.attr, 5447 #endif 5448 #ifdef CONFIG_NUMA 5449 &remote_node_defrag_ratio_attr.attr, 5450 #endif 5451 #ifdef CONFIG_SLUB_STATS 5452 &alloc_fastpath_attr.attr, 5453 &alloc_slowpath_attr.attr, 5454 &free_fastpath_attr.attr, 5455 &free_slowpath_attr.attr, 5456 &free_frozen_attr.attr, 5457 &free_add_partial_attr.attr, 5458 &free_remove_partial_attr.attr, 5459 &alloc_from_partial_attr.attr, 5460 &alloc_slab_attr.attr, 5461 &alloc_refill_attr.attr, 5462 &alloc_node_mismatch_attr.attr, 5463 &free_slab_attr.attr, 5464 &cpuslab_flush_attr.attr, 5465 &deactivate_full_attr.attr, 5466 &deactivate_empty_attr.attr, 5467 &deactivate_to_head_attr.attr, 5468 &deactivate_to_tail_attr.attr, 5469 &deactivate_remote_frees_attr.attr, 5470 &deactivate_bypass_attr.attr, 5471 &order_fallback_attr.attr, 5472 &cmpxchg_double_fail_attr.attr, 5473 &cmpxchg_double_cpu_fail_attr.attr, 5474 &cpu_partial_alloc_attr.attr, 5475 &cpu_partial_free_attr.attr, 5476 &cpu_partial_node_attr.attr, 5477 &cpu_partial_drain_attr.attr, 5478 #endif 5479 #ifdef CONFIG_FAILSLAB 5480 &failslab_attr.attr, 5481 #endif 5482 &usersize_attr.attr, 5483 5484 NULL 5485 }; 5486 5487 static const struct attribute_group slab_attr_group = { 5488 .attrs = slab_attrs, 5489 }; 5490 5491 static ssize_t slab_attr_show(struct kobject *kobj, 5492 struct attribute *attr, 5493 char *buf) 5494 { 5495 struct slab_attribute *attribute; 5496 struct kmem_cache *s; 5497 int err; 5498 5499 attribute = to_slab_attr(attr); 5500 s = to_slab(kobj); 5501 5502 if (!attribute->show) 5503 return -EIO; 5504 5505 err = attribute->show(s, buf); 5506 5507 return err; 5508 } 5509 5510 static ssize_t slab_attr_store(struct kobject *kobj, 5511 struct attribute *attr, 5512 const char *buf, size_t len) 5513 { 5514 struct slab_attribute *attribute; 5515 struct kmem_cache *s; 5516 int err; 5517 5518 attribute = to_slab_attr(attr); 5519 s = to_slab(kobj); 5520 5521 if (!attribute->store) 5522 return -EIO; 5523 5524 err = attribute->store(s, buf, len); 5525 #ifdef CONFIG_MEMCG 5526 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5527 struct kmem_cache *c; 5528 5529 mutex_lock(&slab_mutex); 5530 if (s->max_attr_size < len) 5531 s->max_attr_size = len; 5532 5533 /* 5534 * This is a best effort propagation, so this function's return 5535 * value will be determined by the parent cache only. This is 5536 * basically because not all attributes will have a well 5537 * defined semantics for rollbacks - most of the actions will 5538 * have permanent effects. 5539 * 5540 * Returning the error value of any of the children that fail 5541 * is not 100 % defined, in the sense that users seeing the 5542 * error code won't be able to know anything about the state of 5543 * the cache. 5544 * 5545 * Only returning the error code for the parent cache at least 5546 * has well defined semantics. The cache being written to 5547 * directly either failed or succeeded, in which case we loop 5548 * through the descendants with best-effort propagation. 5549 */ 5550 for_each_memcg_cache(c, s) 5551 attribute->store(c, buf, len); 5552 mutex_unlock(&slab_mutex); 5553 } 5554 #endif 5555 return err; 5556 } 5557 5558 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5559 { 5560 #ifdef CONFIG_MEMCG 5561 int i; 5562 char *buffer = NULL; 5563 struct kmem_cache *root_cache; 5564 5565 if (is_root_cache(s)) 5566 return; 5567 5568 root_cache = s->memcg_params.root_cache; 5569 5570 /* 5571 * This mean this cache had no attribute written. Therefore, no point 5572 * in copying default values around 5573 */ 5574 if (!root_cache->max_attr_size) 5575 return; 5576 5577 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5578 char mbuf[64]; 5579 char *buf; 5580 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5581 ssize_t len; 5582 5583 if (!attr || !attr->store || !attr->show) 5584 continue; 5585 5586 /* 5587 * It is really bad that we have to allocate here, so we will 5588 * do it only as a fallback. If we actually allocate, though, 5589 * we can just use the allocated buffer until the end. 5590 * 5591 * Most of the slub attributes will tend to be very small in 5592 * size, but sysfs allows buffers up to a page, so they can 5593 * theoretically happen. 5594 */ 5595 if (buffer) 5596 buf = buffer; 5597 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5598 buf = mbuf; 5599 else { 5600 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5601 if (WARN_ON(!buffer)) 5602 continue; 5603 buf = buffer; 5604 } 5605 5606 len = attr->show(root_cache, buf); 5607 if (len > 0) 5608 attr->store(s, buf, len); 5609 } 5610 5611 if (buffer) 5612 free_page((unsigned long)buffer); 5613 #endif /* CONFIG_MEMCG */ 5614 } 5615 5616 static void kmem_cache_release(struct kobject *k) 5617 { 5618 slab_kmem_cache_release(to_slab(k)); 5619 } 5620 5621 static const struct sysfs_ops slab_sysfs_ops = { 5622 .show = slab_attr_show, 5623 .store = slab_attr_store, 5624 }; 5625 5626 static struct kobj_type slab_ktype = { 5627 .sysfs_ops = &slab_sysfs_ops, 5628 .release = kmem_cache_release, 5629 }; 5630 5631 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5632 { 5633 struct kobj_type *ktype = get_ktype(kobj); 5634 5635 if (ktype == &slab_ktype) 5636 return 1; 5637 return 0; 5638 } 5639 5640 static const struct kset_uevent_ops slab_uevent_ops = { 5641 .filter = uevent_filter, 5642 }; 5643 5644 static struct kset *slab_kset; 5645 5646 static inline struct kset *cache_kset(struct kmem_cache *s) 5647 { 5648 #ifdef CONFIG_MEMCG 5649 if (!is_root_cache(s)) 5650 return s->memcg_params.root_cache->memcg_kset; 5651 #endif 5652 return slab_kset; 5653 } 5654 5655 #define ID_STR_LENGTH 64 5656 5657 /* Create a unique string id for a slab cache: 5658 * 5659 * Format :[flags-]size 5660 */ 5661 static char *create_unique_id(struct kmem_cache *s) 5662 { 5663 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5664 char *p = name; 5665 5666 BUG_ON(!name); 5667 5668 *p++ = ':'; 5669 /* 5670 * First flags affecting slabcache operations. We will only 5671 * get here for aliasable slabs so we do not need to support 5672 * too many flags. The flags here must cover all flags that 5673 * are matched during merging to guarantee that the id is 5674 * unique. 5675 */ 5676 if (s->flags & SLAB_CACHE_DMA) 5677 *p++ = 'd'; 5678 if (s->flags & SLAB_CACHE_DMA32) 5679 *p++ = 'D'; 5680 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5681 *p++ = 'a'; 5682 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5683 *p++ = 'F'; 5684 if (s->flags & SLAB_ACCOUNT) 5685 *p++ = 'A'; 5686 if (p != name + 1) 5687 *p++ = '-'; 5688 p += sprintf(p, "%07u", s->size); 5689 5690 BUG_ON(p > name + ID_STR_LENGTH - 1); 5691 return name; 5692 } 5693 5694 static void sysfs_slab_remove_workfn(struct work_struct *work) 5695 { 5696 struct kmem_cache *s = 5697 container_of(work, struct kmem_cache, kobj_remove_work); 5698 5699 if (!s->kobj.state_in_sysfs) 5700 /* 5701 * For a memcg cache, this may be called during 5702 * deactivation and again on shutdown. Remove only once. 5703 * A cache is never shut down before deactivation is 5704 * complete, so no need to worry about synchronization. 5705 */ 5706 goto out; 5707 5708 #ifdef CONFIG_MEMCG 5709 kset_unregister(s->memcg_kset); 5710 #endif 5711 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5712 out: 5713 kobject_put(&s->kobj); 5714 } 5715 5716 static int sysfs_slab_add(struct kmem_cache *s) 5717 { 5718 int err; 5719 const char *name; 5720 struct kset *kset = cache_kset(s); 5721 int unmergeable = slab_unmergeable(s); 5722 5723 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5724 5725 if (!kset) { 5726 kobject_init(&s->kobj, &slab_ktype); 5727 return 0; 5728 } 5729 5730 if (!unmergeable && disable_higher_order_debug && 5731 (slub_debug & DEBUG_METADATA_FLAGS)) 5732 unmergeable = 1; 5733 5734 if (unmergeable) { 5735 /* 5736 * Slabcache can never be merged so we can use the name proper. 5737 * This is typically the case for debug situations. In that 5738 * case we can catch duplicate names easily. 5739 */ 5740 sysfs_remove_link(&slab_kset->kobj, s->name); 5741 name = s->name; 5742 } else { 5743 /* 5744 * Create a unique name for the slab as a target 5745 * for the symlinks. 5746 */ 5747 name = create_unique_id(s); 5748 } 5749 5750 s->kobj.kset = kset; 5751 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5752 if (err) 5753 goto out; 5754 5755 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5756 if (err) 5757 goto out_del_kobj; 5758 5759 #ifdef CONFIG_MEMCG 5760 if (is_root_cache(s) && memcg_sysfs_enabled) { 5761 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5762 if (!s->memcg_kset) { 5763 err = -ENOMEM; 5764 goto out_del_kobj; 5765 } 5766 } 5767 #endif 5768 5769 kobject_uevent(&s->kobj, KOBJ_ADD); 5770 if (!unmergeable) { 5771 /* Setup first alias */ 5772 sysfs_slab_alias(s, s->name); 5773 } 5774 out: 5775 if (!unmergeable) 5776 kfree(name); 5777 return err; 5778 out_del_kobj: 5779 kobject_del(&s->kobj); 5780 goto out; 5781 } 5782 5783 static void sysfs_slab_remove(struct kmem_cache *s) 5784 { 5785 if (slab_state < FULL) 5786 /* 5787 * Sysfs has not been setup yet so no need to remove the 5788 * cache from sysfs. 5789 */ 5790 return; 5791 5792 kobject_get(&s->kobj); 5793 schedule_work(&s->kobj_remove_work); 5794 } 5795 5796 void sysfs_slab_unlink(struct kmem_cache *s) 5797 { 5798 if (slab_state >= FULL) 5799 kobject_del(&s->kobj); 5800 } 5801 5802 void sysfs_slab_release(struct kmem_cache *s) 5803 { 5804 if (slab_state >= FULL) 5805 kobject_put(&s->kobj); 5806 } 5807 5808 /* 5809 * Need to buffer aliases during bootup until sysfs becomes 5810 * available lest we lose that information. 5811 */ 5812 struct saved_alias { 5813 struct kmem_cache *s; 5814 const char *name; 5815 struct saved_alias *next; 5816 }; 5817 5818 static struct saved_alias *alias_list; 5819 5820 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5821 { 5822 struct saved_alias *al; 5823 5824 if (slab_state == FULL) { 5825 /* 5826 * If we have a leftover link then remove it. 5827 */ 5828 sysfs_remove_link(&slab_kset->kobj, name); 5829 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5830 } 5831 5832 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5833 if (!al) 5834 return -ENOMEM; 5835 5836 al->s = s; 5837 al->name = name; 5838 al->next = alias_list; 5839 alias_list = al; 5840 return 0; 5841 } 5842 5843 static int __init slab_sysfs_init(void) 5844 { 5845 struct kmem_cache *s; 5846 int err; 5847 5848 mutex_lock(&slab_mutex); 5849 5850 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5851 if (!slab_kset) { 5852 mutex_unlock(&slab_mutex); 5853 pr_err("Cannot register slab subsystem.\n"); 5854 return -ENOSYS; 5855 } 5856 5857 slab_state = FULL; 5858 5859 list_for_each_entry(s, &slab_caches, list) { 5860 err = sysfs_slab_add(s); 5861 if (err) 5862 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5863 s->name); 5864 } 5865 5866 while (alias_list) { 5867 struct saved_alias *al = alias_list; 5868 5869 alias_list = alias_list->next; 5870 err = sysfs_slab_alias(al->s, al->name); 5871 if (err) 5872 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5873 al->name); 5874 kfree(al); 5875 } 5876 5877 mutex_unlock(&slab_mutex); 5878 resiliency_test(); 5879 return 0; 5880 } 5881 5882 __initcall(slab_sysfs_init); 5883 #endif /* CONFIG_SYSFS */ 5884 5885 /* 5886 * The /proc/slabinfo ABI 5887 */ 5888 #ifdef CONFIG_SLUB_DEBUG 5889 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5890 { 5891 unsigned long nr_slabs = 0; 5892 unsigned long nr_objs = 0; 5893 unsigned long nr_free = 0; 5894 int node; 5895 struct kmem_cache_node *n; 5896 5897 for_each_kmem_cache_node(s, node, n) { 5898 nr_slabs += node_nr_slabs(n); 5899 nr_objs += node_nr_objs(n); 5900 nr_free += count_partial(n, count_free); 5901 } 5902 5903 sinfo->active_objs = nr_objs - nr_free; 5904 sinfo->num_objs = nr_objs; 5905 sinfo->active_slabs = nr_slabs; 5906 sinfo->num_slabs = nr_slabs; 5907 sinfo->objects_per_slab = oo_objects(s->oo); 5908 sinfo->cache_order = oo_order(s->oo); 5909 } 5910 5911 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5912 { 5913 } 5914 5915 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5916 size_t count, loff_t *ppos) 5917 { 5918 return -EIO; 5919 } 5920 #endif /* CONFIG_SLUB_DEBUG */ 5921