xref: /openbmc/linux/mm/slub.c (revision cc8bbe1a)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects the second
55  *   double word in the page struct. Meaning
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->counters	-> Counters of objects
58  *	C. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 	return !kmem_cache_debug(s);
131 #else
132 	return false;
133 #endif
134 }
135 
136 /*
137  * Issues still to be resolved:
138  *
139  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140  *
141  * - Variable sizing of the per node arrays
142  */
143 
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146 
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149 
150 /*
151  * Mininum number of partial slabs. These will be left on the partial
152  * lists even if they are empty. kmem_cache_shrink may reclaim them.
153  */
154 #define MIN_PARTIAL 5
155 
156 /*
157  * Maximum number of desirable partial slabs.
158  * The existence of more partial slabs makes kmem_cache_shrink
159  * sort the partial list by the number of objects in use.
160  */
161 #define MAX_PARTIAL 10
162 
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 				SLAB_POISON | SLAB_STORE_USER)
165 
166 /*
167  * Debugging flags that require metadata to be stored in the slab.  These get
168  * disabled when slub_debug=O is used and a cache's min order increases with
169  * metadata.
170  */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172 
173 #define OO_SHIFT	16
174 #define OO_MASK		((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176 
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON		0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
180 
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184 
185 /*
186  * Tracking user of a slab.
187  */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 	unsigned long addr;	/* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
193 #endif
194 	int cpu;		/* Was running on cpu */
195 	int pid;		/* Pid context */
196 	unsigned long when;	/* When did the operation occur */
197 };
198 
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200 
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 							{ return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211 
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 	/*
216 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 	 * avoid this_cpu_add()'s irq-disable overhead.
218 	 */
219 	raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222 
223 /********************************************************************
224  * 			Core slab cache functions
225  *******************************************************************/
226 
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 				struct page *page, const void *object)
230 {
231 	void *base;
232 
233 	if (!object)
234 		return 1;
235 
236 	base = page_address(page);
237 	if (object < base || object >= base + page->objects * s->size ||
238 		(object - base) % s->size) {
239 		return 0;
240 	}
241 
242 	return 1;
243 }
244 
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 	return *(void **)(object + s->offset);
248 }
249 
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 	prefetch(object + s->offset);
253 }
254 
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 	void *p;
258 
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 	p = get_freepointer(s, object);
263 #endif
264 	return p;
265 }
266 
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 	*(void **)(object + s->offset) = fp;
270 }
271 
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 			__p += (__s)->size)
276 
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 	for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 			__p += (__s)->size, __idx++)
280 
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 	return (p - addr) / s->size;
285 }
286 
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 	/*
291 	 * Debugging requires use of the padding between object
292 	 * and whatever may come after it.
293 	 */
294 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 		return s->object_size;
296 
297 #endif
298 	/*
299 	 * If we have the need to store the freelist pointer
300 	 * back there or track user information then we can
301 	 * only use the space before that information.
302 	 */
303 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 		return s->inuse;
305 	/*
306 	 * Else we can use all the padding etc for the allocation
307 	 */
308 	return s->size;
309 }
310 
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 	return ((PAGE_SIZE << order) - reserved) / size;
314 }
315 
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 		unsigned long size, int reserved)
318 {
319 	struct kmem_cache_order_objects x = {
320 		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 	};
322 
323 	return x;
324 }
325 
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 	return x.x >> OO_SHIFT;
329 }
330 
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 	return x.x & OO_MASK;
334 }
335 
336 /*
337  * Per slab locking using the pagelock
338  */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 	VM_BUG_ON_PAGE(PageTail(page), page);
342 	bit_spin_lock(PG_locked, &page->flags);
343 }
344 
345 static __always_inline void slab_unlock(struct page *page)
346 {
347 	VM_BUG_ON_PAGE(PageTail(page), page);
348 	__bit_spin_unlock(PG_locked, &page->flags);
349 }
350 
351 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
352 {
353 	struct page tmp;
354 	tmp.counters = counters_new;
355 	/*
356 	 * page->counters can cover frozen/inuse/objects as well
357 	 * as page->_count.  If we assign to ->counters directly
358 	 * we run the risk of losing updates to page->_count, so
359 	 * be careful and only assign to the fields we need.
360 	 */
361 	page->frozen  = tmp.frozen;
362 	page->inuse   = tmp.inuse;
363 	page->objects = tmp.objects;
364 }
365 
366 /* Interrupts must be disabled (for the fallback code to work right) */
367 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
368 		void *freelist_old, unsigned long counters_old,
369 		void *freelist_new, unsigned long counters_new,
370 		const char *n)
371 {
372 	VM_BUG_ON(!irqs_disabled());
373 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
374     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
375 	if (s->flags & __CMPXCHG_DOUBLE) {
376 		if (cmpxchg_double(&page->freelist, &page->counters,
377 				   freelist_old, counters_old,
378 				   freelist_new, counters_new))
379 			return true;
380 	} else
381 #endif
382 	{
383 		slab_lock(page);
384 		if (page->freelist == freelist_old &&
385 					page->counters == counters_old) {
386 			page->freelist = freelist_new;
387 			set_page_slub_counters(page, counters_new);
388 			slab_unlock(page);
389 			return true;
390 		}
391 		slab_unlock(page);
392 	}
393 
394 	cpu_relax();
395 	stat(s, CMPXCHG_DOUBLE_FAIL);
396 
397 #ifdef SLUB_DEBUG_CMPXCHG
398 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
399 #endif
400 
401 	return false;
402 }
403 
404 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
405 		void *freelist_old, unsigned long counters_old,
406 		void *freelist_new, unsigned long counters_new,
407 		const char *n)
408 {
409 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
410     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
411 	if (s->flags & __CMPXCHG_DOUBLE) {
412 		if (cmpxchg_double(&page->freelist, &page->counters,
413 				   freelist_old, counters_old,
414 				   freelist_new, counters_new))
415 			return true;
416 	} else
417 #endif
418 	{
419 		unsigned long flags;
420 
421 		local_irq_save(flags);
422 		slab_lock(page);
423 		if (page->freelist == freelist_old &&
424 					page->counters == counters_old) {
425 			page->freelist = freelist_new;
426 			set_page_slub_counters(page, counters_new);
427 			slab_unlock(page);
428 			local_irq_restore(flags);
429 			return true;
430 		}
431 		slab_unlock(page);
432 		local_irq_restore(flags);
433 	}
434 
435 	cpu_relax();
436 	stat(s, CMPXCHG_DOUBLE_FAIL);
437 
438 #ifdef SLUB_DEBUG_CMPXCHG
439 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
440 #endif
441 
442 	return false;
443 }
444 
445 #ifdef CONFIG_SLUB_DEBUG
446 /*
447  * Determine a map of object in use on a page.
448  *
449  * Node listlock must be held to guarantee that the page does
450  * not vanish from under us.
451  */
452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453 {
454 	void *p;
455 	void *addr = page_address(page);
456 
457 	for (p = page->freelist; p; p = get_freepointer(s, p))
458 		set_bit(slab_index(p, s, addr), map);
459 }
460 
461 /*
462  * Debug settings:
463  */
464 #if defined(CONFIG_SLUB_DEBUG_ON)
465 static int slub_debug = DEBUG_DEFAULT_FLAGS;
466 #elif defined(CONFIG_KASAN)
467 static int slub_debug = SLAB_STORE_USER;
468 #else
469 static int slub_debug;
470 #endif
471 
472 static char *slub_debug_slabs;
473 static int disable_higher_order_debug;
474 
475 /*
476  * slub is about to manipulate internal object metadata.  This memory lies
477  * outside the range of the allocated object, so accessing it would normally
478  * be reported by kasan as a bounds error.  metadata_access_enable() is used
479  * to tell kasan that these accesses are OK.
480  */
481 static inline void metadata_access_enable(void)
482 {
483 	kasan_disable_current();
484 }
485 
486 static inline void metadata_access_disable(void)
487 {
488 	kasan_enable_current();
489 }
490 
491 /*
492  * Object debugging
493  */
494 static void print_section(char *text, u8 *addr, unsigned int length)
495 {
496 	metadata_access_enable();
497 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
498 			length, 1);
499 	metadata_access_disable();
500 }
501 
502 static struct track *get_track(struct kmem_cache *s, void *object,
503 	enum track_item alloc)
504 {
505 	struct track *p;
506 
507 	if (s->offset)
508 		p = object + s->offset + sizeof(void *);
509 	else
510 		p = object + s->inuse;
511 
512 	return p + alloc;
513 }
514 
515 static void set_track(struct kmem_cache *s, void *object,
516 			enum track_item alloc, unsigned long addr)
517 {
518 	struct track *p = get_track(s, object, alloc);
519 
520 	if (addr) {
521 #ifdef CONFIG_STACKTRACE
522 		struct stack_trace trace;
523 		int i;
524 
525 		trace.nr_entries = 0;
526 		trace.max_entries = TRACK_ADDRS_COUNT;
527 		trace.entries = p->addrs;
528 		trace.skip = 3;
529 		metadata_access_enable();
530 		save_stack_trace(&trace);
531 		metadata_access_disable();
532 
533 		/* See rant in lockdep.c */
534 		if (trace.nr_entries != 0 &&
535 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
536 			trace.nr_entries--;
537 
538 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
539 			p->addrs[i] = 0;
540 #endif
541 		p->addr = addr;
542 		p->cpu = smp_processor_id();
543 		p->pid = current->pid;
544 		p->when = jiffies;
545 	} else
546 		memset(p, 0, sizeof(struct track));
547 }
548 
549 static void init_tracking(struct kmem_cache *s, void *object)
550 {
551 	if (!(s->flags & SLAB_STORE_USER))
552 		return;
553 
554 	set_track(s, object, TRACK_FREE, 0UL);
555 	set_track(s, object, TRACK_ALLOC, 0UL);
556 }
557 
558 static void print_track(const char *s, struct track *t)
559 {
560 	if (!t->addr)
561 		return;
562 
563 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
564 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
565 #ifdef CONFIG_STACKTRACE
566 	{
567 		int i;
568 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
569 			if (t->addrs[i])
570 				pr_err("\t%pS\n", (void *)t->addrs[i]);
571 			else
572 				break;
573 	}
574 #endif
575 }
576 
577 static void print_tracking(struct kmem_cache *s, void *object)
578 {
579 	if (!(s->flags & SLAB_STORE_USER))
580 		return;
581 
582 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
583 	print_track("Freed", get_track(s, object, TRACK_FREE));
584 }
585 
586 static void print_page_info(struct page *page)
587 {
588 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
589 	       page, page->objects, page->inuse, page->freelist, page->flags);
590 
591 }
592 
593 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 	pr_err("=============================================================================\n");
602 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
603 	pr_err("-----------------------------------------------------------------------------\n\n");
604 
605 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
606 	va_end(args);
607 }
608 
609 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
610 {
611 	struct va_format vaf;
612 	va_list args;
613 
614 	va_start(args, fmt);
615 	vaf.fmt = fmt;
616 	vaf.va = &args;
617 	pr_err("FIX %s: %pV\n", s->name, &vaf);
618 	va_end(args);
619 }
620 
621 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
622 {
623 	unsigned int off;	/* Offset of last byte */
624 	u8 *addr = page_address(page);
625 
626 	print_tracking(s, p);
627 
628 	print_page_info(page);
629 
630 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
631 	       p, p - addr, get_freepointer(s, p));
632 
633 	if (p > addr + 16)
634 		print_section("Bytes b4 ", p - 16, 16);
635 
636 	print_section("Object ", p, min_t(unsigned long, s->object_size,
637 				PAGE_SIZE));
638 	if (s->flags & SLAB_RED_ZONE)
639 		print_section("Redzone ", p + s->object_size,
640 			s->inuse - s->object_size);
641 
642 	if (s->offset)
643 		off = s->offset + sizeof(void *);
644 	else
645 		off = s->inuse;
646 
647 	if (s->flags & SLAB_STORE_USER)
648 		off += 2 * sizeof(struct track);
649 
650 	if (off != s->size)
651 		/* Beginning of the filler is the free pointer */
652 		print_section("Padding ", p + off, s->size - off);
653 
654 	dump_stack();
655 }
656 
657 void object_err(struct kmem_cache *s, struct page *page,
658 			u8 *object, char *reason)
659 {
660 	slab_bug(s, "%s", reason);
661 	print_trailer(s, page, object);
662 }
663 
664 static void slab_err(struct kmem_cache *s, struct page *page,
665 			const char *fmt, ...)
666 {
667 	va_list args;
668 	char buf[100];
669 
670 	va_start(args, fmt);
671 	vsnprintf(buf, sizeof(buf), fmt, args);
672 	va_end(args);
673 	slab_bug(s, "%s", buf);
674 	print_page_info(page);
675 	dump_stack();
676 }
677 
678 static void init_object(struct kmem_cache *s, void *object, u8 val)
679 {
680 	u8 *p = object;
681 
682 	if (s->flags & __OBJECT_POISON) {
683 		memset(p, POISON_FREE, s->object_size - 1);
684 		p[s->object_size - 1] = POISON_END;
685 	}
686 
687 	if (s->flags & SLAB_RED_ZONE)
688 		memset(p + s->object_size, val, s->inuse - s->object_size);
689 }
690 
691 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
692 						void *from, void *to)
693 {
694 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
695 	memset(from, data, to - from);
696 }
697 
698 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
699 			u8 *object, char *what,
700 			u8 *start, unsigned int value, unsigned int bytes)
701 {
702 	u8 *fault;
703 	u8 *end;
704 
705 	metadata_access_enable();
706 	fault = memchr_inv(start, value, bytes);
707 	metadata_access_disable();
708 	if (!fault)
709 		return 1;
710 
711 	end = start + bytes;
712 	while (end > fault && end[-1] == value)
713 		end--;
714 
715 	slab_bug(s, "%s overwritten", what);
716 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
717 					fault, end - 1, fault[0], value);
718 	print_trailer(s, page, object);
719 
720 	restore_bytes(s, what, value, fault, end);
721 	return 0;
722 }
723 
724 /*
725  * Object layout:
726  *
727  * object address
728  * 	Bytes of the object to be managed.
729  * 	If the freepointer may overlay the object then the free
730  * 	pointer is the first word of the object.
731  *
732  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
733  * 	0xa5 (POISON_END)
734  *
735  * object + s->object_size
736  * 	Padding to reach word boundary. This is also used for Redzoning.
737  * 	Padding is extended by another word if Redzoning is enabled and
738  * 	object_size == inuse.
739  *
740  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
741  * 	0xcc (RED_ACTIVE) for objects in use.
742  *
743  * object + s->inuse
744  * 	Meta data starts here.
745  *
746  * 	A. Free pointer (if we cannot overwrite object on free)
747  * 	B. Tracking data for SLAB_STORE_USER
748  * 	C. Padding to reach required alignment boundary or at mininum
749  * 		one word if debugging is on to be able to detect writes
750  * 		before the word boundary.
751  *
752  *	Padding is done using 0x5a (POISON_INUSE)
753  *
754  * object + s->size
755  * 	Nothing is used beyond s->size.
756  *
757  * If slabcaches are merged then the object_size and inuse boundaries are mostly
758  * ignored. And therefore no slab options that rely on these boundaries
759  * may be used with merged slabcaches.
760  */
761 
762 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
763 {
764 	unsigned long off = s->inuse;	/* The end of info */
765 
766 	if (s->offset)
767 		/* Freepointer is placed after the object. */
768 		off += sizeof(void *);
769 
770 	if (s->flags & SLAB_STORE_USER)
771 		/* We also have user information there */
772 		off += 2 * sizeof(struct track);
773 
774 	if (s->size == off)
775 		return 1;
776 
777 	return check_bytes_and_report(s, page, p, "Object padding",
778 				p + off, POISON_INUSE, s->size - off);
779 }
780 
781 /* Check the pad bytes at the end of a slab page */
782 static int slab_pad_check(struct kmem_cache *s, struct page *page)
783 {
784 	u8 *start;
785 	u8 *fault;
786 	u8 *end;
787 	int length;
788 	int remainder;
789 
790 	if (!(s->flags & SLAB_POISON))
791 		return 1;
792 
793 	start = page_address(page);
794 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
795 	end = start + length;
796 	remainder = length % s->size;
797 	if (!remainder)
798 		return 1;
799 
800 	metadata_access_enable();
801 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
802 	metadata_access_disable();
803 	if (!fault)
804 		return 1;
805 	while (end > fault && end[-1] == POISON_INUSE)
806 		end--;
807 
808 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
809 	print_section("Padding ", end - remainder, remainder);
810 
811 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
812 	return 0;
813 }
814 
815 static int check_object(struct kmem_cache *s, struct page *page,
816 					void *object, u8 val)
817 {
818 	u8 *p = object;
819 	u8 *endobject = object + s->object_size;
820 
821 	if (s->flags & SLAB_RED_ZONE) {
822 		if (!check_bytes_and_report(s, page, object, "Redzone",
823 			endobject, val, s->inuse - s->object_size))
824 			return 0;
825 	} else {
826 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
827 			check_bytes_and_report(s, page, p, "Alignment padding",
828 				endobject, POISON_INUSE,
829 				s->inuse - s->object_size);
830 		}
831 	}
832 
833 	if (s->flags & SLAB_POISON) {
834 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
835 			(!check_bytes_and_report(s, page, p, "Poison", p,
836 					POISON_FREE, s->object_size - 1) ||
837 			 !check_bytes_and_report(s, page, p, "Poison",
838 				p + s->object_size - 1, POISON_END, 1)))
839 			return 0;
840 		/*
841 		 * check_pad_bytes cleans up on its own.
842 		 */
843 		check_pad_bytes(s, page, p);
844 	}
845 
846 	if (!s->offset && val == SLUB_RED_ACTIVE)
847 		/*
848 		 * Object and freepointer overlap. Cannot check
849 		 * freepointer while object is allocated.
850 		 */
851 		return 1;
852 
853 	/* Check free pointer validity */
854 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
855 		object_err(s, page, p, "Freepointer corrupt");
856 		/*
857 		 * No choice but to zap it and thus lose the remainder
858 		 * of the free objects in this slab. May cause
859 		 * another error because the object count is now wrong.
860 		 */
861 		set_freepointer(s, p, NULL);
862 		return 0;
863 	}
864 	return 1;
865 }
866 
867 static int check_slab(struct kmem_cache *s, struct page *page)
868 {
869 	int maxobj;
870 
871 	VM_BUG_ON(!irqs_disabled());
872 
873 	if (!PageSlab(page)) {
874 		slab_err(s, page, "Not a valid slab page");
875 		return 0;
876 	}
877 
878 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
879 	if (page->objects > maxobj) {
880 		slab_err(s, page, "objects %u > max %u",
881 			page->objects, maxobj);
882 		return 0;
883 	}
884 	if (page->inuse > page->objects) {
885 		slab_err(s, page, "inuse %u > max %u",
886 			page->inuse, page->objects);
887 		return 0;
888 	}
889 	/* Slab_pad_check fixes things up after itself */
890 	slab_pad_check(s, page);
891 	return 1;
892 }
893 
894 /*
895  * Determine if a certain object on a page is on the freelist. Must hold the
896  * slab lock to guarantee that the chains are in a consistent state.
897  */
898 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
899 {
900 	int nr = 0;
901 	void *fp;
902 	void *object = NULL;
903 	int max_objects;
904 
905 	fp = page->freelist;
906 	while (fp && nr <= page->objects) {
907 		if (fp == search)
908 			return 1;
909 		if (!check_valid_pointer(s, page, fp)) {
910 			if (object) {
911 				object_err(s, page, object,
912 					"Freechain corrupt");
913 				set_freepointer(s, object, NULL);
914 			} else {
915 				slab_err(s, page, "Freepointer corrupt");
916 				page->freelist = NULL;
917 				page->inuse = page->objects;
918 				slab_fix(s, "Freelist cleared");
919 				return 0;
920 			}
921 			break;
922 		}
923 		object = fp;
924 		fp = get_freepointer(s, object);
925 		nr++;
926 	}
927 
928 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
929 	if (max_objects > MAX_OBJS_PER_PAGE)
930 		max_objects = MAX_OBJS_PER_PAGE;
931 
932 	if (page->objects != max_objects) {
933 		slab_err(s, page, "Wrong number of objects. Found %d but "
934 			"should be %d", page->objects, max_objects);
935 		page->objects = max_objects;
936 		slab_fix(s, "Number of objects adjusted.");
937 	}
938 	if (page->inuse != page->objects - nr) {
939 		slab_err(s, page, "Wrong object count. Counter is %d but "
940 			"counted were %d", page->inuse, page->objects - nr);
941 		page->inuse = page->objects - nr;
942 		slab_fix(s, "Object count adjusted.");
943 	}
944 	return search == NULL;
945 }
946 
947 static void trace(struct kmem_cache *s, struct page *page, void *object,
948 								int alloc)
949 {
950 	if (s->flags & SLAB_TRACE) {
951 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
952 			s->name,
953 			alloc ? "alloc" : "free",
954 			object, page->inuse,
955 			page->freelist);
956 
957 		if (!alloc)
958 			print_section("Object ", (void *)object,
959 					s->object_size);
960 
961 		dump_stack();
962 	}
963 }
964 
965 /*
966  * Tracking of fully allocated slabs for debugging purposes.
967  */
968 static void add_full(struct kmem_cache *s,
969 	struct kmem_cache_node *n, struct page *page)
970 {
971 	if (!(s->flags & SLAB_STORE_USER))
972 		return;
973 
974 	lockdep_assert_held(&n->list_lock);
975 	list_add(&page->lru, &n->full);
976 }
977 
978 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
979 {
980 	if (!(s->flags & SLAB_STORE_USER))
981 		return;
982 
983 	lockdep_assert_held(&n->list_lock);
984 	list_del(&page->lru);
985 }
986 
987 /* Tracking of the number of slabs for debugging purposes */
988 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
989 {
990 	struct kmem_cache_node *n = get_node(s, node);
991 
992 	return atomic_long_read(&n->nr_slabs);
993 }
994 
995 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
996 {
997 	return atomic_long_read(&n->nr_slabs);
998 }
999 
1000 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1001 {
1002 	struct kmem_cache_node *n = get_node(s, node);
1003 
1004 	/*
1005 	 * May be called early in order to allocate a slab for the
1006 	 * kmem_cache_node structure. Solve the chicken-egg
1007 	 * dilemma by deferring the increment of the count during
1008 	 * bootstrap (see early_kmem_cache_node_alloc).
1009 	 */
1010 	if (likely(n)) {
1011 		atomic_long_inc(&n->nr_slabs);
1012 		atomic_long_add(objects, &n->total_objects);
1013 	}
1014 }
1015 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1016 {
1017 	struct kmem_cache_node *n = get_node(s, node);
1018 
1019 	atomic_long_dec(&n->nr_slabs);
1020 	atomic_long_sub(objects, &n->total_objects);
1021 }
1022 
1023 /* Object debug checks for alloc/free paths */
1024 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1025 								void *object)
1026 {
1027 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1028 		return;
1029 
1030 	init_object(s, object, SLUB_RED_INACTIVE);
1031 	init_tracking(s, object);
1032 }
1033 
1034 static noinline int alloc_debug_processing(struct kmem_cache *s,
1035 					struct page *page,
1036 					void *object, unsigned long addr)
1037 {
1038 	if (!check_slab(s, page))
1039 		goto bad;
1040 
1041 	if (!check_valid_pointer(s, page, object)) {
1042 		object_err(s, page, object, "Freelist Pointer check fails");
1043 		goto bad;
1044 	}
1045 
1046 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1047 		goto bad;
1048 
1049 	/* Success perform special debug activities for allocs */
1050 	if (s->flags & SLAB_STORE_USER)
1051 		set_track(s, object, TRACK_ALLOC, addr);
1052 	trace(s, page, object, 1);
1053 	init_object(s, object, SLUB_RED_ACTIVE);
1054 	return 1;
1055 
1056 bad:
1057 	if (PageSlab(page)) {
1058 		/*
1059 		 * If this is a slab page then lets do the best we can
1060 		 * to avoid issues in the future. Marking all objects
1061 		 * as used avoids touching the remaining objects.
1062 		 */
1063 		slab_fix(s, "Marking all objects used");
1064 		page->inuse = page->objects;
1065 		page->freelist = NULL;
1066 	}
1067 	return 0;
1068 }
1069 
1070 /* Supports checking bulk free of a constructed freelist */
1071 static noinline struct kmem_cache_node *free_debug_processing(
1072 	struct kmem_cache *s, struct page *page,
1073 	void *head, void *tail, int bulk_cnt,
1074 	unsigned long addr, unsigned long *flags)
1075 {
1076 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1077 	void *object = head;
1078 	int cnt = 0;
1079 
1080 	spin_lock_irqsave(&n->list_lock, *flags);
1081 	slab_lock(page);
1082 
1083 	if (!check_slab(s, page))
1084 		goto fail;
1085 
1086 next_object:
1087 	cnt++;
1088 
1089 	if (!check_valid_pointer(s, page, object)) {
1090 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1091 		goto fail;
1092 	}
1093 
1094 	if (on_freelist(s, page, object)) {
1095 		object_err(s, page, object, "Object already free");
1096 		goto fail;
1097 	}
1098 
1099 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100 		goto out;
1101 
1102 	if (unlikely(s != page->slab_cache)) {
1103 		if (!PageSlab(page)) {
1104 			slab_err(s, page, "Attempt to free object(0x%p) "
1105 				"outside of slab", object);
1106 		} else if (!page->slab_cache) {
1107 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1108 			       object);
1109 			dump_stack();
1110 		} else
1111 			object_err(s, page, object,
1112 					"page slab pointer corrupt.");
1113 		goto fail;
1114 	}
1115 
1116 	if (s->flags & SLAB_STORE_USER)
1117 		set_track(s, object, TRACK_FREE, addr);
1118 	trace(s, page, object, 0);
1119 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1120 	init_object(s, object, SLUB_RED_INACTIVE);
1121 
1122 	/* Reached end of constructed freelist yet? */
1123 	if (object != tail) {
1124 		object = get_freepointer(s, object);
1125 		goto next_object;
1126 	}
1127 out:
1128 	if (cnt != bulk_cnt)
1129 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1130 			 bulk_cnt, cnt);
1131 
1132 	slab_unlock(page);
1133 	/*
1134 	 * Keep node_lock to preserve integrity
1135 	 * until the object is actually freed
1136 	 */
1137 	return n;
1138 
1139 fail:
1140 	slab_unlock(page);
1141 	spin_unlock_irqrestore(&n->list_lock, *flags);
1142 	slab_fix(s, "Object at 0x%p not freed", object);
1143 	return NULL;
1144 }
1145 
1146 static int __init setup_slub_debug(char *str)
1147 {
1148 	slub_debug = DEBUG_DEFAULT_FLAGS;
1149 	if (*str++ != '=' || !*str)
1150 		/*
1151 		 * No options specified. Switch on full debugging.
1152 		 */
1153 		goto out;
1154 
1155 	if (*str == ',')
1156 		/*
1157 		 * No options but restriction on slabs. This means full
1158 		 * debugging for slabs matching a pattern.
1159 		 */
1160 		goto check_slabs;
1161 
1162 	slub_debug = 0;
1163 	if (*str == '-')
1164 		/*
1165 		 * Switch off all debugging measures.
1166 		 */
1167 		goto out;
1168 
1169 	/*
1170 	 * Determine which debug features should be switched on
1171 	 */
1172 	for (; *str && *str != ','; str++) {
1173 		switch (tolower(*str)) {
1174 		case 'f':
1175 			slub_debug |= SLAB_DEBUG_FREE;
1176 			break;
1177 		case 'z':
1178 			slub_debug |= SLAB_RED_ZONE;
1179 			break;
1180 		case 'p':
1181 			slub_debug |= SLAB_POISON;
1182 			break;
1183 		case 'u':
1184 			slub_debug |= SLAB_STORE_USER;
1185 			break;
1186 		case 't':
1187 			slub_debug |= SLAB_TRACE;
1188 			break;
1189 		case 'a':
1190 			slub_debug |= SLAB_FAILSLAB;
1191 			break;
1192 		case 'o':
1193 			/*
1194 			 * Avoid enabling debugging on caches if its minimum
1195 			 * order would increase as a result.
1196 			 */
1197 			disable_higher_order_debug = 1;
1198 			break;
1199 		default:
1200 			pr_err("slub_debug option '%c' unknown. skipped\n",
1201 			       *str);
1202 		}
1203 	}
1204 
1205 check_slabs:
1206 	if (*str == ',')
1207 		slub_debug_slabs = str + 1;
1208 out:
1209 	return 1;
1210 }
1211 
1212 __setup("slub_debug", setup_slub_debug);
1213 
1214 unsigned long kmem_cache_flags(unsigned long object_size,
1215 	unsigned long flags, const char *name,
1216 	void (*ctor)(void *))
1217 {
1218 	/*
1219 	 * Enable debugging if selected on the kernel commandline.
1220 	 */
1221 	if (slub_debug && (!slub_debug_slabs || (name &&
1222 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1223 		flags |= slub_debug;
1224 
1225 	return flags;
1226 }
1227 #else /* !CONFIG_SLUB_DEBUG */
1228 static inline void setup_object_debug(struct kmem_cache *s,
1229 			struct page *page, void *object) {}
1230 
1231 static inline int alloc_debug_processing(struct kmem_cache *s,
1232 	struct page *page, void *object, unsigned long addr) { return 0; }
1233 
1234 static inline struct kmem_cache_node *free_debug_processing(
1235 	struct kmem_cache *s, struct page *page,
1236 	void *head, void *tail, int bulk_cnt,
1237 	unsigned long addr, unsigned long *flags) { return NULL; }
1238 
1239 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1240 			{ return 1; }
1241 static inline int check_object(struct kmem_cache *s, struct page *page,
1242 			void *object, u8 val) { return 1; }
1243 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1244 					struct page *page) {}
1245 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1246 					struct page *page) {}
1247 unsigned long kmem_cache_flags(unsigned long object_size,
1248 	unsigned long flags, const char *name,
1249 	void (*ctor)(void *))
1250 {
1251 	return flags;
1252 }
1253 #define slub_debug 0
1254 
1255 #define disable_higher_order_debug 0
1256 
1257 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1258 							{ return 0; }
1259 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1260 							{ return 0; }
1261 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1262 							int objects) {}
1263 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1264 							int objects) {}
1265 
1266 #endif /* CONFIG_SLUB_DEBUG */
1267 
1268 /*
1269  * Hooks for other subsystems that check memory allocations. In a typical
1270  * production configuration these hooks all should produce no code at all.
1271  */
1272 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1273 {
1274 	kmemleak_alloc(ptr, size, 1, flags);
1275 	kasan_kmalloc_large(ptr, size);
1276 }
1277 
1278 static inline void kfree_hook(const void *x)
1279 {
1280 	kmemleak_free(x);
1281 	kasan_kfree_large(x);
1282 }
1283 
1284 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1285 						     gfp_t flags)
1286 {
1287 	flags &= gfp_allowed_mask;
1288 	lockdep_trace_alloc(flags);
1289 	might_sleep_if(gfpflags_allow_blocking(flags));
1290 
1291 	if (should_failslab(s->object_size, flags, s->flags))
1292 		return NULL;
1293 
1294 	return memcg_kmem_get_cache(s, flags);
1295 }
1296 
1297 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1298 					size_t size, void **p)
1299 {
1300 	size_t i;
1301 
1302 	flags &= gfp_allowed_mask;
1303 	for (i = 0; i < size; i++) {
1304 		void *object = p[i];
1305 
1306 		kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1307 		kmemleak_alloc_recursive(object, s->object_size, 1,
1308 					 s->flags, flags);
1309 		kasan_slab_alloc(s, object);
1310 	}
1311 	memcg_kmem_put_cache(s);
1312 }
1313 
1314 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1315 {
1316 	kmemleak_free_recursive(x, s->flags);
1317 
1318 	/*
1319 	 * Trouble is that we may no longer disable interrupts in the fast path
1320 	 * So in order to make the debug calls that expect irqs to be
1321 	 * disabled we need to disable interrupts temporarily.
1322 	 */
1323 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1324 	{
1325 		unsigned long flags;
1326 
1327 		local_irq_save(flags);
1328 		kmemcheck_slab_free(s, x, s->object_size);
1329 		debug_check_no_locks_freed(x, s->object_size);
1330 		local_irq_restore(flags);
1331 	}
1332 #endif
1333 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1334 		debug_check_no_obj_freed(x, s->object_size);
1335 
1336 	kasan_slab_free(s, x);
1337 }
1338 
1339 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1340 					   void *head, void *tail)
1341 {
1342 /*
1343  * Compiler cannot detect this function can be removed if slab_free_hook()
1344  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1345  */
1346 #if defined(CONFIG_KMEMCHECK) ||		\
1347 	defined(CONFIG_LOCKDEP)	||		\
1348 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1349 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1350 	defined(CONFIG_KASAN)
1351 
1352 	void *object = head;
1353 	void *tail_obj = tail ? : head;
1354 
1355 	do {
1356 		slab_free_hook(s, object);
1357 	} while ((object != tail_obj) &&
1358 		 (object = get_freepointer(s, object)));
1359 #endif
1360 }
1361 
1362 static void setup_object(struct kmem_cache *s, struct page *page,
1363 				void *object)
1364 {
1365 	setup_object_debug(s, page, object);
1366 	if (unlikely(s->ctor)) {
1367 		kasan_unpoison_object_data(s, object);
1368 		s->ctor(object);
1369 		kasan_poison_object_data(s, object);
1370 	}
1371 }
1372 
1373 /*
1374  * Slab allocation and freeing
1375  */
1376 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1377 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1378 {
1379 	struct page *page;
1380 	int order = oo_order(oo);
1381 
1382 	flags |= __GFP_NOTRACK;
1383 
1384 	if (node == NUMA_NO_NODE)
1385 		page = alloc_pages(flags, order);
1386 	else
1387 		page = __alloc_pages_node(node, flags, order);
1388 
1389 	if (page && memcg_charge_slab(page, flags, order, s)) {
1390 		__free_pages(page, order);
1391 		page = NULL;
1392 	}
1393 
1394 	return page;
1395 }
1396 
1397 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1398 {
1399 	struct page *page;
1400 	struct kmem_cache_order_objects oo = s->oo;
1401 	gfp_t alloc_gfp;
1402 	void *start, *p;
1403 	int idx, order;
1404 
1405 	flags &= gfp_allowed_mask;
1406 
1407 	if (gfpflags_allow_blocking(flags))
1408 		local_irq_enable();
1409 
1410 	flags |= s->allocflags;
1411 
1412 	/*
1413 	 * Let the initial higher-order allocation fail under memory pressure
1414 	 * so we fall-back to the minimum order allocation.
1415 	 */
1416 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1417 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1418 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1419 
1420 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1421 	if (unlikely(!page)) {
1422 		oo = s->min;
1423 		alloc_gfp = flags;
1424 		/*
1425 		 * Allocation may have failed due to fragmentation.
1426 		 * Try a lower order alloc if possible
1427 		 */
1428 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1429 		if (unlikely(!page))
1430 			goto out;
1431 		stat(s, ORDER_FALLBACK);
1432 	}
1433 
1434 	if (kmemcheck_enabled &&
1435 	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1436 		int pages = 1 << oo_order(oo);
1437 
1438 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1439 
1440 		/*
1441 		 * Objects from caches that have a constructor don't get
1442 		 * cleared when they're allocated, so we need to do it here.
1443 		 */
1444 		if (s->ctor)
1445 			kmemcheck_mark_uninitialized_pages(page, pages);
1446 		else
1447 			kmemcheck_mark_unallocated_pages(page, pages);
1448 	}
1449 
1450 	page->objects = oo_objects(oo);
1451 
1452 	order = compound_order(page);
1453 	page->slab_cache = s;
1454 	__SetPageSlab(page);
1455 	if (page_is_pfmemalloc(page))
1456 		SetPageSlabPfmemalloc(page);
1457 
1458 	start = page_address(page);
1459 
1460 	if (unlikely(s->flags & SLAB_POISON))
1461 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1462 
1463 	kasan_poison_slab(page);
1464 
1465 	for_each_object_idx(p, idx, s, start, page->objects) {
1466 		setup_object(s, page, p);
1467 		if (likely(idx < page->objects))
1468 			set_freepointer(s, p, p + s->size);
1469 		else
1470 			set_freepointer(s, p, NULL);
1471 	}
1472 
1473 	page->freelist = start;
1474 	page->inuse = page->objects;
1475 	page->frozen = 1;
1476 
1477 out:
1478 	if (gfpflags_allow_blocking(flags))
1479 		local_irq_disable();
1480 	if (!page)
1481 		return NULL;
1482 
1483 	mod_zone_page_state(page_zone(page),
1484 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1485 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1486 		1 << oo_order(oo));
1487 
1488 	inc_slabs_node(s, page_to_nid(page), page->objects);
1489 
1490 	return page;
1491 }
1492 
1493 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1494 {
1495 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1496 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1497 		BUG();
1498 	}
1499 
1500 	return allocate_slab(s,
1501 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1502 }
1503 
1504 static void __free_slab(struct kmem_cache *s, struct page *page)
1505 {
1506 	int order = compound_order(page);
1507 	int pages = 1 << order;
1508 
1509 	if (kmem_cache_debug(s)) {
1510 		void *p;
1511 
1512 		slab_pad_check(s, page);
1513 		for_each_object(p, s, page_address(page),
1514 						page->objects)
1515 			check_object(s, page, p, SLUB_RED_INACTIVE);
1516 	}
1517 
1518 	kmemcheck_free_shadow(page, compound_order(page));
1519 
1520 	mod_zone_page_state(page_zone(page),
1521 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1522 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1523 		-pages);
1524 
1525 	__ClearPageSlabPfmemalloc(page);
1526 	__ClearPageSlab(page);
1527 
1528 	page_mapcount_reset(page);
1529 	if (current->reclaim_state)
1530 		current->reclaim_state->reclaimed_slab += pages;
1531 	__free_kmem_pages(page, order);
1532 }
1533 
1534 #define need_reserve_slab_rcu						\
1535 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1536 
1537 static void rcu_free_slab(struct rcu_head *h)
1538 {
1539 	struct page *page;
1540 
1541 	if (need_reserve_slab_rcu)
1542 		page = virt_to_head_page(h);
1543 	else
1544 		page = container_of((struct list_head *)h, struct page, lru);
1545 
1546 	__free_slab(page->slab_cache, page);
1547 }
1548 
1549 static void free_slab(struct kmem_cache *s, struct page *page)
1550 {
1551 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1552 		struct rcu_head *head;
1553 
1554 		if (need_reserve_slab_rcu) {
1555 			int order = compound_order(page);
1556 			int offset = (PAGE_SIZE << order) - s->reserved;
1557 
1558 			VM_BUG_ON(s->reserved != sizeof(*head));
1559 			head = page_address(page) + offset;
1560 		} else {
1561 			head = &page->rcu_head;
1562 		}
1563 
1564 		call_rcu(head, rcu_free_slab);
1565 	} else
1566 		__free_slab(s, page);
1567 }
1568 
1569 static void discard_slab(struct kmem_cache *s, struct page *page)
1570 {
1571 	dec_slabs_node(s, page_to_nid(page), page->objects);
1572 	free_slab(s, page);
1573 }
1574 
1575 /*
1576  * Management of partially allocated slabs.
1577  */
1578 static inline void
1579 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1580 {
1581 	n->nr_partial++;
1582 	if (tail == DEACTIVATE_TO_TAIL)
1583 		list_add_tail(&page->lru, &n->partial);
1584 	else
1585 		list_add(&page->lru, &n->partial);
1586 }
1587 
1588 static inline void add_partial(struct kmem_cache_node *n,
1589 				struct page *page, int tail)
1590 {
1591 	lockdep_assert_held(&n->list_lock);
1592 	__add_partial(n, page, tail);
1593 }
1594 
1595 static inline void remove_partial(struct kmem_cache_node *n,
1596 					struct page *page)
1597 {
1598 	lockdep_assert_held(&n->list_lock);
1599 	list_del(&page->lru);
1600 	n->nr_partial--;
1601 }
1602 
1603 /*
1604  * Remove slab from the partial list, freeze it and
1605  * return the pointer to the freelist.
1606  *
1607  * Returns a list of objects or NULL if it fails.
1608  */
1609 static inline void *acquire_slab(struct kmem_cache *s,
1610 		struct kmem_cache_node *n, struct page *page,
1611 		int mode, int *objects)
1612 {
1613 	void *freelist;
1614 	unsigned long counters;
1615 	struct page new;
1616 
1617 	lockdep_assert_held(&n->list_lock);
1618 
1619 	/*
1620 	 * Zap the freelist and set the frozen bit.
1621 	 * The old freelist is the list of objects for the
1622 	 * per cpu allocation list.
1623 	 */
1624 	freelist = page->freelist;
1625 	counters = page->counters;
1626 	new.counters = counters;
1627 	*objects = new.objects - new.inuse;
1628 	if (mode) {
1629 		new.inuse = page->objects;
1630 		new.freelist = NULL;
1631 	} else {
1632 		new.freelist = freelist;
1633 	}
1634 
1635 	VM_BUG_ON(new.frozen);
1636 	new.frozen = 1;
1637 
1638 	if (!__cmpxchg_double_slab(s, page,
1639 			freelist, counters,
1640 			new.freelist, new.counters,
1641 			"acquire_slab"))
1642 		return NULL;
1643 
1644 	remove_partial(n, page);
1645 	WARN_ON(!freelist);
1646 	return freelist;
1647 }
1648 
1649 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1650 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1651 
1652 /*
1653  * Try to allocate a partial slab from a specific node.
1654  */
1655 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1656 				struct kmem_cache_cpu *c, gfp_t flags)
1657 {
1658 	struct page *page, *page2;
1659 	void *object = NULL;
1660 	int available = 0;
1661 	int objects;
1662 
1663 	/*
1664 	 * Racy check. If we mistakenly see no partial slabs then we
1665 	 * just allocate an empty slab. If we mistakenly try to get a
1666 	 * partial slab and there is none available then get_partials()
1667 	 * will return NULL.
1668 	 */
1669 	if (!n || !n->nr_partial)
1670 		return NULL;
1671 
1672 	spin_lock(&n->list_lock);
1673 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1674 		void *t;
1675 
1676 		if (!pfmemalloc_match(page, flags))
1677 			continue;
1678 
1679 		t = acquire_slab(s, n, page, object == NULL, &objects);
1680 		if (!t)
1681 			break;
1682 
1683 		available += objects;
1684 		if (!object) {
1685 			c->page = page;
1686 			stat(s, ALLOC_FROM_PARTIAL);
1687 			object = t;
1688 		} else {
1689 			put_cpu_partial(s, page, 0);
1690 			stat(s, CPU_PARTIAL_NODE);
1691 		}
1692 		if (!kmem_cache_has_cpu_partial(s)
1693 			|| available > s->cpu_partial / 2)
1694 			break;
1695 
1696 	}
1697 	spin_unlock(&n->list_lock);
1698 	return object;
1699 }
1700 
1701 /*
1702  * Get a page from somewhere. Search in increasing NUMA distances.
1703  */
1704 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1705 		struct kmem_cache_cpu *c)
1706 {
1707 #ifdef CONFIG_NUMA
1708 	struct zonelist *zonelist;
1709 	struct zoneref *z;
1710 	struct zone *zone;
1711 	enum zone_type high_zoneidx = gfp_zone(flags);
1712 	void *object;
1713 	unsigned int cpuset_mems_cookie;
1714 
1715 	/*
1716 	 * The defrag ratio allows a configuration of the tradeoffs between
1717 	 * inter node defragmentation and node local allocations. A lower
1718 	 * defrag_ratio increases the tendency to do local allocations
1719 	 * instead of attempting to obtain partial slabs from other nodes.
1720 	 *
1721 	 * If the defrag_ratio is set to 0 then kmalloc() always
1722 	 * returns node local objects. If the ratio is higher then kmalloc()
1723 	 * may return off node objects because partial slabs are obtained
1724 	 * from other nodes and filled up.
1725 	 *
1726 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1727 	 * defrag_ratio = 1000) then every (well almost) allocation will
1728 	 * first attempt to defrag slab caches on other nodes. This means
1729 	 * scanning over all nodes to look for partial slabs which may be
1730 	 * expensive if we do it every time we are trying to find a slab
1731 	 * with available objects.
1732 	 */
1733 	if (!s->remote_node_defrag_ratio ||
1734 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1735 		return NULL;
1736 
1737 	do {
1738 		cpuset_mems_cookie = read_mems_allowed_begin();
1739 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1740 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1741 			struct kmem_cache_node *n;
1742 
1743 			n = get_node(s, zone_to_nid(zone));
1744 
1745 			if (n && cpuset_zone_allowed(zone, flags) &&
1746 					n->nr_partial > s->min_partial) {
1747 				object = get_partial_node(s, n, c, flags);
1748 				if (object) {
1749 					/*
1750 					 * Don't check read_mems_allowed_retry()
1751 					 * here - if mems_allowed was updated in
1752 					 * parallel, that was a harmless race
1753 					 * between allocation and the cpuset
1754 					 * update
1755 					 */
1756 					return object;
1757 				}
1758 			}
1759 		}
1760 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1761 #endif
1762 	return NULL;
1763 }
1764 
1765 /*
1766  * Get a partial page, lock it and return it.
1767  */
1768 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1769 		struct kmem_cache_cpu *c)
1770 {
1771 	void *object;
1772 	int searchnode = node;
1773 
1774 	if (node == NUMA_NO_NODE)
1775 		searchnode = numa_mem_id();
1776 	else if (!node_present_pages(node))
1777 		searchnode = node_to_mem_node(node);
1778 
1779 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1780 	if (object || node != NUMA_NO_NODE)
1781 		return object;
1782 
1783 	return get_any_partial(s, flags, c);
1784 }
1785 
1786 #ifdef CONFIG_PREEMPT
1787 /*
1788  * Calculate the next globally unique transaction for disambiguiation
1789  * during cmpxchg. The transactions start with the cpu number and are then
1790  * incremented by CONFIG_NR_CPUS.
1791  */
1792 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1793 #else
1794 /*
1795  * No preemption supported therefore also no need to check for
1796  * different cpus.
1797  */
1798 #define TID_STEP 1
1799 #endif
1800 
1801 static inline unsigned long next_tid(unsigned long tid)
1802 {
1803 	return tid + TID_STEP;
1804 }
1805 
1806 static inline unsigned int tid_to_cpu(unsigned long tid)
1807 {
1808 	return tid % TID_STEP;
1809 }
1810 
1811 static inline unsigned long tid_to_event(unsigned long tid)
1812 {
1813 	return tid / TID_STEP;
1814 }
1815 
1816 static inline unsigned int init_tid(int cpu)
1817 {
1818 	return cpu;
1819 }
1820 
1821 static inline void note_cmpxchg_failure(const char *n,
1822 		const struct kmem_cache *s, unsigned long tid)
1823 {
1824 #ifdef SLUB_DEBUG_CMPXCHG
1825 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1826 
1827 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1828 
1829 #ifdef CONFIG_PREEMPT
1830 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1831 		pr_warn("due to cpu change %d -> %d\n",
1832 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1833 	else
1834 #endif
1835 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1836 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1837 			tid_to_event(tid), tid_to_event(actual_tid));
1838 	else
1839 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1840 			actual_tid, tid, next_tid(tid));
1841 #endif
1842 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1843 }
1844 
1845 static void init_kmem_cache_cpus(struct kmem_cache *s)
1846 {
1847 	int cpu;
1848 
1849 	for_each_possible_cpu(cpu)
1850 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1851 }
1852 
1853 /*
1854  * Remove the cpu slab
1855  */
1856 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1857 				void *freelist)
1858 {
1859 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1860 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1861 	int lock = 0;
1862 	enum slab_modes l = M_NONE, m = M_NONE;
1863 	void *nextfree;
1864 	int tail = DEACTIVATE_TO_HEAD;
1865 	struct page new;
1866 	struct page old;
1867 
1868 	if (page->freelist) {
1869 		stat(s, DEACTIVATE_REMOTE_FREES);
1870 		tail = DEACTIVATE_TO_TAIL;
1871 	}
1872 
1873 	/*
1874 	 * Stage one: Free all available per cpu objects back
1875 	 * to the page freelist while it is still frozen. Leave the
1876 	 * last one.
1877 	 *
1878 	 * There is no need to take the list->lock because the page
1879 	 * is still frozen.
1880 	 */
1881 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1882 		void *prior;
1883 		unsigned long counters;
1884 
1885 		do {
1886 			prior = page->freelist;
1887 			counters = page->counters;
1888 			set_freepointer(s, freelist, prior);
1889 			new.counters = counters;
1890 			new.inuse--;
1891 			VM_BUG_ON(!new.frozen);
1892 
1893 		} while (!__cmpxchg_double_slab(s, page,
1894 			prior, counters,
1895 			freelist, new.counters,
1896 			"drain percpu freelist"));
1897 
1898 		freelist = nextfree;
1899 	}
1900 
1901 	/*
1902 	 * Stage two: Ensure that the page is unfrozen while the
1903 	 * list presence reflects the actual number of objects
1904 	 * during unfreeze.
1905 	 *
1906 	 * We setup the list membership and then perform a cmpxchg
1907 	 * with the count. If there is a mismatch then the page
1908 	 * is not unfrozen but the page is on the wrong list.
1909 	 *
1910 	 * Then we restart the process which may have to remove
1911 	 * the page from the list that we just put it on again
1912 	 * because the number of objects in the slab may have
1913 	 * changed.
1914 	 */
1915 redo:
1916 
1917 	old.freelist = page->freelist;
1918 	old.counters = page->counters;
1919 	VM_BUG_ON(!old.frozen);
1920 
1921 	/* Determine target state of the slab */
1922 	new.counters = old.counters;
1923 	if (freelist) {
1924 		new.inuse--;
1925 		set_freepointer(s, freelist, old.freelist);
1926 		new.freelist = freelist;
1927 	} else
1928 		new.freelist = old.freelist;
1929 
1930 	new.frozen = 0;
1931 
1932 	if (!new.inuse && n->nr_partial >= s->min_partial)
1933 		m = M_FREE;
1934 	else if (new.freelist) {
1935 		m = M_PARTIAL;
1936 		if (!lock) {
1937 			lock = 1;
1938 			/*
1939 			 * Taking the spinlock removes the possiblity
1940 			 * that acquire_slab() will see a slab page that
1941 			 * is frozen
1942 			 */
1943 			spin_lock(&n->list_lock);
1944 		}
1945 	} else {
1946 		m = M_FULL;
1947 		if (kmem_cache_debug(s) && !lock) {
1948 			lock = 1;
1949 			/*
1950 			 * This also ensures that the scanning of full
1951 			 * slabs from diagnostic functions will not see
1952 			 * any frozen slabs.
1953 			 */
1954 			spin_lock(&n->list_lock);
1955 		}
1956 	}
1957 
1958 	if (l != m) {
1959 
1960 		if (l == M_PARTIAL)
1961 
1962 			remove_partial(n, page);
1963 
1964 		else if (l == M_FULL)
1965 
1966 			remove_full(s, n, page);
1967 
1968 		if (m == M_PARTIAL) {
1969 
1970 			add_partial(n, page, tail);
1971 			stat(s, tail);
1972 
1973 		} else if (m == M_FULL) {
1974 
1975 			stat(s, DEACTIVATE_FULL);
1976 			add_full(s, n, page);
1977 
1978 		}
1979 	}
1980 
1981 	l = m;
1982 	if (!__cmpxchg_double_slab(s, page,
1983 				old.freelist, old.counters,
1984 				new.freelist, new.counters,
1985 				"unfreezing slab"))
1986 		goto redo;
1987 
1988 	if (lock)
1989 		spin_unlock(&n->list_lock);
1990 
1991 	if (m == M_FREE) {
1992 		stat(s, DEACTIVATE_EMPTY);
1993 		discard_slab(s, page);
1994 		stat(s, FREE_SLAB);
1995 	}
1996 }
1997 
1998 /*
1999  * Unfreeze all the cpu partial slabs.
2000  *
2001  * This function must be called with interrupts disabled
2002  * for the cpu using c (or some other guarantee must be there
2003  * to guarantee no concurrent accesses).
2004  */
2005 static void unfreeze_partials(struct kmem_cache *s,
2006 		struct kmem_cache_cpu *c)
2007 {
2008 #ifdef CONFIG_SLUB_CPU_PARTIAL
2009 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2010 	struct page *page, *discard_page = NULL;
2011 
2012 	while ((page = c->partial)) {
2013 		struct page new;
2014 		struct page old;
2015 
2016 		c->partial = page->next;
2017 
2018 		n2 = get_node(s, page_to_nid(page));
2019 		if (n != n2) {
2020 			if (n)
2021 				spin_unlock(&n->list_lock);
2022 
2023 			n = n2;
2024 			spin_lock(&n->list_lock);
2025 		}
2026 
2027 		do {
2028 
2029 			old.freelist = page->freelist;
2030 			old.counters = page->counters;
2031 			VM_BUG_ON(!old.frozen);
2032 
2033 			new.counters = old.counters;
2034 			new.freelist = old.freelist;
2035 
2036 			new.frozen = 0;
2037 
2038 		} while (!__cmpxchg_double_slab(s, page,
2039 				old.freelist, old.counters,
2040 				new.freelist, new.counters,
2041 				"unfreezing slab"));
2042 
2043 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2044 			page->next = discard_page;
2045 			discard_page = page;
2046 		} else {
2047 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2048 			stat(s, FREE_ADD_PARTIAL);
2049 		}
2050 	}
2051 
2052 	if (n)
2053 		spin_unlock(&n->list_lock);
2054 
2055 	while (discard_page) {
2056 		page = discard_page;
2057 		discard_page = discard_page->next;
2058 
2059 		stat(s, DEACTIVATE_EMPTY);
2060 		discard_slab(s, page);
2061 		stat(s, FREE_SLAB);
2062 	}
2063 #endif
2064 }
2065 
2066 /*
2067  * Put a page that was just frozen (in __slab_free) into a partial page
2068  * slot if available. This is done without interrupts disabled and without
2069  * preemption disabled. The cmpxchg is racy and may put the partial page
2070  * onto a random cpus partial slot.
2071  *
2072  * If we did not find a slot then simply move all the partials to the
2073  * per node partial list.
2074  */
2075 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2076 {
2077 #ifdef CONFIG_SLUB_CPU_PARTIAL
2078 	struct page *oldpage;
2079 	int pages;
2080 	int pobjects;
2081 
2082 	preempt_disable();
2083 	do {
2084 		pages = 0;
2085 		pobjects = 0;
2086 		oldpage = this_cpu_read(s->cpu_slab->partial);
2087 
2088 		if (oldpage) {
2089 			pobjects = oldpage->pobjects;
2090 			pages = oldpage->pages;
2091 			if (drain && pobjects > s->cpu_partial) {
2092 				unsigned long flags;
2093 				/*
2094 				 * partial array is full. Move the existing
2095 				 * set to the per node partial list.
2096 				 */
2097 				local_irq_save(flags);
2098 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2099 				local_irq_restore(flags);
2100 				oldpage = NULL;
2101 				pobjects = 0;
2102 				pages = 0;
2103 				stat(s, CPU_PARTIAL_DRAIN);
2104 			}
2105 		}
2106 
2107 		pages++;
2108 		pobjects += page->objects - page->inuse;
2109 
2110 		page->pages = pages;
2111 		page->pobjects = pobjects;
2112 		page->next = oldpage;
2113 
2114 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2115 								!= oldpage);
2116 	if (unlikely(!s->cpu_partial)) {
2117 		unsigned long flags;
2118 
2119 		local_irq_save(flags);
2120 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2121 		local_irq_restore(flags);
2122 	}
2123 	preempt_enable();
2124 #endif
2125 }
2126 
2127 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2128 {
2129 	stat(s, CPUSLAB_FLUSH);
2130 	deactivate_slab(s, c->page, c->freelist);
2131 
2132 	c->tid = next_tid(c->tid);
2133 	c->page = NULL;
2134 	c->freelist = NULL;
2135 }
2136 
2137 /*
2138  * Flush cpu slab.
2139  *
2140  * Called from IPI handler with interrupts disabled.
2141  */
2142 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2143 {
2144 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2145 
2146 	if (likely(c)) {
2147 		if (c->page)
2148 			flush_slab(s, c);
2149 
2150 		unfreeze_partials(s, c);
2151 	}
2152 }
2153 
2154 static void flush_cpu_slab(void *d)
2155 {
2156 	struct kmem_cache *s = d;
2157 
2158 	__flush_cpu_slab(s, smp_processor_id());
2159 }
2160 
2161 static bool has_cpu_slab(int cpu, void *info)
2162 {
2163 	struct kmem_cache *s = info;
2164 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2165 
2166 	return c->page || c->partial;
2167 }
2168 
2169 static void flush_all(struct kmem_cache *s)
2170 {
2171 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2172 }
2173 
2174 /*
2175  * Check if the objects in a per cpu structure fit numa
2176  * locality expectations.
2177  */
2178 static inline int node_match(struct page *page, int node)
2179 {
2180 #ifdef CONFIG_NUMA
2181 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2182 		return 0;
2183 #endif
2184 	return 1;
2185 }
2186 
2187 #ifdef CONFIG_SLUB_DEBUG
2188 static int count_free(struct page *page)
2189 {
2190 	return page->objects - page->inuse;
2191 }
2192 
2193 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2194 {
2195 	return atomic_long_read(&n->total_objects);
2196 }
2197 #endif /* CONFIG_SLUB_DEBUG */
2198 
2199 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2200 static unsigned long count_partial(struct kmem_cache_node *n,
2201 					int (*get_count)(struct page *))
2202 {
2203 	unsigned long flags;
2204 	unsigned long x = 0;
2205 	struct page *page;
2206 
2207 	spin_lock_irqsave(&n->list_lock, flags);
2208 	list_for_each_entry(page, &n->partial, lru)
2209 		x += get_count(page);
2210 	spin_unlock_irqrestore(&n->list_lock, flags);
2211 	return x;
2212 }
2213 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2214 
2215 static noinline void
2216 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2217 {
2218 #ifdef CONFIG_SLUB_DEBUG
2219 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2220 				      DEFAULT_RATELIMIT_BURST);
2221 	int node;
2222 	struct kmem_cache_node *n;
2223 
2224 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2225 		return;
2226 
2227 	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2228 		nid, gfpflags);
2229 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2230 		s->name, s->object_size, s->size, oo_order(s->oo),
2231 		oo_order(s->min));
2232 
2233 	if (oo_order(s->min) > get_order(s->object_size))
2234 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2235 			s->name);
2236 
2237 	for_each_kmem_cache_node(s, node, n) {
2238 		unsigned long nr_slabs;
2239 		unsigned long nr_objs;
2240 		unsigned long nr_free;
2241 
2242 		nr_free  = count_partial(n, count_free);
2243 		nr_slabs = node_nr_slabs(n);
2244 		nr_objs  = node_nr_objs(n);
2245 
2246 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2247 			node, nr_slabs, nr_objs, nr_free);
2248 	}
2249 #endif
2250 }
2251 
2252 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2253 			int node, struct kmem_cache_cpu **pc)
2254 {
2255 	void *freelist;
2256 	struct kmem_cache_cpu *c = *pc;
2257 	struct page *page;
2258 
2259 	freelist = get_partial(s, flags, node, c);
2260 
2261 	if (freelist)
2262 		return freelist;
2263 
2264 	page = new_slab(s, flags, node);
2265 	if (page) {
2266 		c = raw_cpu_ptr(s->cpu_slab);
2267 		if (c->page)
2268 			flush_slab(s, c);
2269 
2270 		/*
2271 		 * No other reference to the page yet so we can
2272 		 * muck around with it freely without cmpxchg
2273 		 */
2274 		freelist = page->freelist;
2275 		page->freelist = NULL;
2276 
2277 		stat(s, ALLOC_SLAB);
2278 		c->page = page;
2279 		*pc = c;
2280 	} else
2281 		freelist = NULL;
2282 
2283 	return freelist;
2284 }
2285 
2286 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2287 {
2288 	if (unlikely(PageSlabPfmemalloc(page)))
2289 		return gfp_pfmemalloc_allowed(gfpflags);
2290 
2291 	return true;
2292 }
2293 
2294 /*
2295  * Check the page->freelist of a page and either transfer the freelist to the
2296  * per cpu freelist or deactivate the page.
2297  *
2298  * The page is still frozen if the return value is not NULL.
2299  *
2300  * If this function returns NULL then the page has been unfrozen.
2301  *
2302  * This function must be called with interrupt disabled.
2303  */
2304 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2305 {
2306 	struct page new;
2307 	unsigned long counters;
2308 	void *freelist;
2309 
2310 	do {
2311 		freelist = page->freelist;
2312 		counters = page->counters;
2313 
2314 		new.counters = counters;
2315 		VM_BUG_ON(!new.frozen);
2316 
2317 		new.inuse = page->objects;
2318 		new.frozen = freelist != NULL;
2319 
2320 	} while (!__cmpxchg_double_slab(s, page,
2321 		freelist, counters,
2322 		NULL, new.counters,
2323 		"get_freelist"));
2324 
2325 	return freelist;
2326 }
2327 
2328 /*
2329  * Slow path. The lockless freelist is empty or we need to perform
2330  * debugging duties.
2331  *
2332  * Processing is still very fast if new objects have been freed to the
2333  * regular freelist. In that case we simply take over the regular freelist
2334  * as the lockless freelist and zap the regular freelist.
2335  *
2336  * If that is not working then we fall back to the partial lists. We take the
2337  * first element of the freelist as the object to allocate now and move the
2338  * rest of the freelist to the lockless freelist.
2339  *
2340  * And if we were unable to get a new slab from the partial slab lists then
2341  * we need to allocate a new slab. This is the slowest path since it involves
2342  * a call to the page allocator and the setup of a new slab.
2343  *
2344  * Version of __slab_alloc to use when we know that interrupts are
2345  * already disabled (which is the case for bulk allocation).
2346  */
2347 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2348 			  unsigned long addr, struct kmem_cache_cpu *c)
2349 {
2350 	void *freelist;
2351 	struct page *page;
2352 
2353 	page = c->page;
2354 	if (!page)
2355 		goto new_slab;
2356 redo:
2357 
2358 	if (unlikely(!node_match(page, node))) {
2359 		int searchnode = node;
2360 
2361 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2362 			searchnode = node_to_mem_node(node);
2363 
2364 		if (unlikely(!node_match(page, searchnode))) {
2365 			stat(s, ALLOC_NODE_MISMATCH);
2366 			deactivate_slab(s, page, c->freelist);
2367 			c->page = NULL;
2368 			c->freelist = NULL;
2369 			goto new_slab;
2370 		}
2371 	}
2372 
2373 	/*
2374 	 * By rights, we should be searching for a slab page that was
2375 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2376 	 * information when the page leaves the per-cpu allocator
2377 	 */
2378 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2379 		deactivate_slab(s, page, c->freelist);
2380 		c->page = NULL;
2381 		c->freelist = NULL;
2382 		goto new_slab;
2383 	}
2384 
2385 	/* must check again c->freelist in case of cpu migration or IRQ */
2386 	freelist = c->freelist;
2387 	if (freelist)
2388 		goto load_freelist;
2389 
2390 	freelist = get_freelist(s, page);
2391 
2392 	if (!freelist) {
2393 		c->page = NULL;
2394 		stat(s, DEACTIVATE_BYPASS);
2395 		goto new_slab;
2396 	}
2397 
2398 	stat(s, ALLOC_REFILL);
2399 
2400 load_freelist:
2401 	/*
2402 	 * freelist is pointing to the list of objects to be used.
2403 	 * page is pointing to the page from which the objects are obtained.
2404 	 * That page must be frozen for per cpu allocations to work.
2405 	 */
2406 	VM_BUG_ON(!c->page->frozen);
2407 	c->freelist = get_freepointer(s, freelist);
2408 	c->tid = next_tid(c->tid);
2409 	return freelist;
2410 
2411 new_slab:
2412 
2413 	if (c->partial) {
2414 		page = c->page = c->partial;
2415 		c->partial = page->next;
2416 		stat(s, CPU_PARTIAL_ALLOC);
2417 		c->freelist = NULL;
2418 		goto redo;
2419 	}
2420 
2421 	freelist = new_slab_objects(s, gfpflags, node, &c);
2422 
2423 	if (unlikely(!freelist)) {
2424 		slab_out_of_memory(s, gfpflags, node);
2425 		return NULL;
2426 	}
2427 
2428 	page = c->page;
2429 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2430 		goto load_freelist;
2431 
2432 	/* Only entered in the debug case */
2433 	if (kmem_cache_debug(s) &&
2434 			!alloc_debug_processing(s, page, freelist, addr))
2435 		goto new_slab;	/* Slab failed checks. Next slab needed */
2436 
2437 	deactivate_slab(s, page, get_freepointer(s, freelist));
2438 	c->page = NULL;
2439 	c->freelist = NULL;
2440 	return freelist;
2441 }
2442 
2443 /*
2444  * Another one that disabled interrupt and compensates for possible
2445  * cpu changes by refetching the per cpu area pointer.
2446  */
2447 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2448 			  unsigned long addr, struct kmem_cache_cpu *c)
2449 {
2450 	void *p;
2451 	unsigned long flags;
2452 
2453 	local_irq_save(flags);
2454 #ifdef CONFIG_PREEMPT
2455 	/*
2456 	 * We may have been preempted and rescheduled on a different
2457 	 * cpu before disabling interrupts. Need to reload cpu area
2458 	 * pointer.
2459 	 */
2460 	c = this_cpu_ptr(s->cpu_slab);
2461 #endif
2462 
2463 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2464 	local_irq_restore(flags);
2465 	return p;
2466 }
2467 
2468 /*
2469  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2470  * have the fastpath folded into their functions. So no function call
2471  * overhead for requests that can be satisfied on the fastpath.
2472  *
2473  * The fastpath works by first checking if the lockless freelist can be used.
2474  * If not then __slab_alloc is called for slow processing.
2475  *
2476  * Otherwise we can simply pick the next object from the lockless free list.
2477  */
2478 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2479 		gfp_t gfpflags, int node, unsigned long addr)
2480 {
2481 	void *object;
2482 	struct kmem_cache_cpu *c;
2483 	struct page *page;
2484 	unsigned long tid;
2485 
2486 	s = slab_pre_alloc_hook(s, gfpflags);
2487 	if (!s)
2488 		return NULL;
2489 redo:
2490 	/*
2491 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2492 	 * enabled. We may switch back and forth between cpus while
2493 	 * reading from one cpu area. That does not matter as long
2494 	 * as we end up on the original cpu again when doing the cmpxchg.
2495 	 *
2496 	 * We should guarantee that tid and kmem_cache are retrieved on
2497 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2498 	 * to check if it is matched or not.
2499 	 */
2500 	do {
2501 		tid = this_cpu_read(s->cpu_slab->tid);
2502 		c = raw_cpu_ptr(s->cpu_slab);
2503 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2504 		 unlikely(tid != READ_ONCE(c->tid)));
2505 
2506 	/*
2507 	 * Irqless object alloc/free algorithm used here depends on sequence
2508 	 * of fetching cpu_slab's data. tid should be fetched before anything
2509 	 * on c to guarantee that object and page associated with previous tid
2510 	 * won't be used with current tid. If we fetch tid first, object and
2511 	 * page could be one associated with next tid and our alloc/free
2512 	 * request will be failed. In this case, we will retry. So, no problem.
2513 	 */
2514 	barrier();
2515 
2516 	/*
2517 	 * The transaction ids are globally unique per cpu and per operation on
2518 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2519 	 * occurs on the right processor and that there was no operation on the
2520 	 * linked list in between.
2521 	 */
2522 
2523 	object = c->freelist;
2524 	page = c->page;
2525 	if (unlikely(!object || !node_match(page, node))) {
2526 		object = __slab_alloc(s, gfpflags, node, addr, c);
2527 		stat(s, ALLOC_SLOWPATH);
2528 	} else {
2529 		void *next_object = get_freepointer_safe(s, object);
2530 
2531 		/*
2532 		 * The cmpxchg will only match if there was no additional
2533 		 * operation and if we are on the right processor.
2534 		 *
2535 		 * The cmpxchg does the following atomically (without lock
2536 		 * semantics!)
2537 		 * 1. Relocate first pointer to the current per cpu area.
2538 		 * 2. Verify that tid and freelist have not been changed
2539 		 * 3. If they were not changed replace tid and freelist
2540 		 *
2541 		 * Since this is without lock semantics the protection is only
2542 		 * against code executing on this cpu *not* from access by
2543 		 * other cpus.
2544 		 */
2545 		if (unlikely(!this_cpu_cmpxchg_double(
2546 				s->cpu_slab->freelist, s->cpu_slab->tid,
2547 				object, tid,
2548 				next_object, next_tid(tid)))) {
2549 
2550 			note_cmpxchg_failure("slab_alloc", s, tid);
2551 			goto redo;
2552 		}
2553 		prefetch_freepointer(s, next_object);
2554 		stat(s, ALLOC_FASTPATH);
2555 	}
2556 
2557 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2558 		memset(object, 0, s->object_size);
2559 
2560 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2561 
2562 	return object;
2563 }
2564 
2565 static __always_inline void *slab_alloc(struct kmem_cache *s,
2566 		gfp_t gfpflags, unsigned long addr)
2567 {
2568 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2569 }
2570 
2571 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2572 {
2573 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2574 
2575 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2576 				s->size, gfpflags);
2577 
2578 	return ret;
2579 }
2580 EXPORT_SYMBOL(kmem_cache_alloc);
2581 
2582 #ifdef CONFIG_TRACING
2583 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2584 {
2585 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2586 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2587 	kasan_kmalloc(s, ret, size);
2588 	return ret;
2589 }
2590 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2591 #endif
2592 
2593 #ifdef CONFIG_NUMA
2594 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2595 {
2596 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2597 
2598 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2599 				    s->object_size, s->size, gfpflags, node);
2600 
2601 	return ret;
2602 }
2603 EXPORT_SYMBOL(kmem_cache_alloc_node);
2604 
2605 #ifdef CONFIG_TRACING
2606 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2607 				    gfp_t gfpflags,
2608 				    int node, size_t size)
2609 {
2610 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2611 
2612 	trace_kmalloc_node(_RET_IP_, ret,
2613 			   size, s->size, gfpflags, node);
2614 
2615 	kasan_kmalloc(s, ret, size);
2616 	return ret;
2617 }
2618 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2619 #endif
2620 #endif
2621 
2622 /*
2623  * Slow path handling. This may still be called frequently since objects
2624  * have a longer lifetime than the cpu slabs in most processing loads.
2625  *
2626  * So we still attempt to reduce cache line usage. Just take the slab
2627  * lock and free the item. If there is no additional partial page
2628  * handling required then we can return immediately.
2629  */
2630 static void __slab_free(struct kmem_cache *s, struct page *page,
2631 			void *head, void *tail, int cnt,
2632 			unsigned long addr)
2633 
2634 {
2635 	void *prior;
2636 	int was_frozen;
2637 	struct page new;
2638 	unsigned long counters;
2639 	struct kmem_cache_node *n = NULL;
2640 	unsigned long uninitialized_var(flags);
2641 
2642 	stat(s, FREE_SLOWPATH);
2643 
2644 	if (kmem_cache_debug(s) &&
2645 	    !(n = free_debug_processing(s, page, head, tail, cnt,
2646 					addr, &flags)))
2647 		return;
2648 
2649 	do {
2650 		if (unlikely(n)) {
2651 			spin_unlock_irqrestore(&n->list_lock, flags);
2652 			n = NULL;
2653 		}
2654 		prior = page->freelist;
2655 		counters = page->counters;
2656 		set_freepointer(s, tail, prior);
2657 		new.counters = counters;
2658 		was_frozen = new.frozen;
2659 		new.inuse -= cnt;
2660 		if ((!new.inuse || !prior) && !was_frozen) {
2661 
2662 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2663 
2664 				/*
2665 				 * Slab was on no list before and will be
2666 				 * partially empty
2667 				 * We can defer the list move and instead
2668 				 * freeze it.
2669 				 */
2670 				new.frozen = 1;
2671 
2672 			} else { /* Needs to be taken off a list */
2673 
2674 				n = get_node(s, page_to_nid(page));
2675 				/*
2676 				 * Speculatively acquire the list_lock.
2677 				 * If the cmpxchg does not succeed then we may
2678 				 * drop the list_lock without any processing.
2679 				 *
2680 				 * Otherwise the list_lock will synchronize with
2681 				 * other processors updating the list of slabs.
2682 				 */
2683 				spin_lock_irqsave(&n->list_lock, flags);
2684 
2685 			}
2686 		}
2687 
2688 	} while (!cmpxchg_double_slab(s, page,
2689 		prior, counters,
2690 		head, new.counters,
2691 		"__slab_free"));
2692 
2693 	if (likely(!n)) {
2694 
2695 		/*
2696 		 * If we just froze the page then put it onto the
2697 		 * per cpu partial list.
2698 		 */
2699 		if (new.frozen && !was_frozen) {
2700 			put_cpu_partial(s, page, 1);
2701 			stat(s, CPU_PARTIAL_FREE);
2702 		}
2703 		/*
2704 		 * The list lock was not taken therefore no list
2705 		 * activity can be necessary.
2706 		 */
2707 		if (was_frozen)
2708 			stat(s, FREE_FROZEN);
2709 		return;
2710 	}
2711 
2712 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2713 		goto slab_empty;
2714 
2715 	/*
2716 	 * Objects left in the slab. If it was not on the partial list before
2717 	 * then add it.
2718 	 */
2719 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2720 		if (kmem_cache_debug(s))
2721 			remove_full(s, n, page);
2722 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2723 		stat(s, FREE_ADD_PARTIAL);
2724 	}
2725 	spin_unlock_irqrestore(&n->list_lock, flags);
2726 	return;
2727 
2728 slab_empty:
2729 	if (prior) {
2730 		/*
2731 		 * Slab on the partial list.
2732 		 */
2733 		remove_partial(n, page);
2734 		stat(s, FREE_REMOVE_PARTIAL);
2735 	} else {
2736 		/* Slab must be on the full list */
2737 		remove_full(s, n, page);
2738 	}
2739 
2740 	spin_unlock_irqrestore(&n->list_lock, flags);
2741 	stat(s, FREE_SLAB);
2742 	discard_slab(s, page);
2743 }
2744 
2745 /*
2746  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2747  * can perform fastpath freeing without additional function calls.
2748  *
2749  * The fastpath is only possible if we are freeing to the current cpu slab
2750  * of this processor. This typically the case if we have just allocated
2751  * the item before.
2752  *
2753  * If fastpath is not possible then fall back to __slab_free where we deal
2754  * with all sorts of special processing.
2755  *
2756  * Bulk free of a freelist with several objects (all pointing to the
2757  * same page) possible by specifying head and tail ptr, plus objects
2758  * count (cnt). Bulk free indicated by tail pointer being set.
2759  */
2760 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2761 				      void *head, void *tail, int cnt,
2762 				      unsigned long addr)
2763 {
2764 	void *tail_obj = tail ? : head;
2765 	struct kmem_cache_cpu *c;
2766 	unsigned long tid;
2767 
2768 	slab_free_freelist_hook(s, head, tail);
2769 
2770 redo:
2771 	/*
2772 	 * Determine the currently cpus per cpu slab.
2773 	 * The cpu may change afterward. However that does not matter since
2774 	 * data is retrieved via this pointer. If we are on the same cpu
2775 	 * during the cmpxchg then the free will succeed.
2776 	 */
2777 	do {
2778 		tid = this_cpu_read(s->cpu_slab->tid);
2779 		c = raw_cpu_ptr(s->cpu_slab);
2780 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2781 		 unlikely(tid != READ_ONCE(c->tid)));
2782 
2783 	/* Same with comment on barrier() in slab_alloc_node() */
2784 	barrier();
2785 
2786 	if (likely(page == c->page)) {
2787 		set_freepointer(s, tail_obj, c->freelist);
2788 
2789 		if (unlikely(!this_cpu_cmpxchg_double(
2790 				s->cpu_slab->freelist, s->cpu_slab->tid,
2791 				c->freelist, tid,
2792 				head, next_tid(tid)))) {
2793 
2794 			note_cmpxchg_failure("slab_free", s, tid);
2795 			goto redo;
2796 		}
2797 		stat(s, FREE_FASTPATH);
2798 	} else
2799 		__slab_free(s, page, head, tail_obj, cnt, addr);
2800 
2801 }
2802 
2803 void kmem_cache_free(struct kmem_cache *s, void *x)
2804 {
2805 	s = cache_from_obj(s, x);
2806 	if (!s)
2807 		return;
2808 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2809 	trace_kmem_cache_free(_RET_IP_, x);
2810 }
2811 EXPORT_SYMBOL(kmem_cache_free);
2812 
2813 struct detached_freelist {
2814 	struct page *page;
2815 	void *tail;
2816 	void *freelist;
2817 	int cnt;
2818 };
2819 
2820 /*
2821  * This function progressively scans the array with free objects (with
2822  * a limited look ahead) and extract objects belonging to the same
2823  * page.  It builds a detached freelist directly within the given
2824  * page/objects.  This can happen without any need for
2825  * synchronization, because the objects are owned by running process.
2826  * The freelist is build up as a single linked list in the objects.
2827  * The idea is, that this detached freelist can then be bulk
2828  * transferred to the real freelist(s), but only requiring a single
2829  * synchronization primitive.  Look ahead in the array is limited due
2830  * to performance reasons.
2831  */
2832 static int build_detached_freelist(struct kmem_cache *s, size_t size,
2833 				   void **p, struct detached_freelist *df)
2834 {
2835 	size_t first_skipped_index = 0;
2836 	int lookahead = 3;
2837 	void *object;
2838 
2839 	/* Always re-init detached_freelist */
2840 	df->page = NULL;
2841 
2842 	do {
2843 		object = p[--size];
2844 	} while (!object && size);
2845 
2846 	if (!object)
2847 		return 0;
2848 
2849 	/* Start new detached freelist */
2850 	set_freepointer(s, object, NULL);
2851 	df->page = virt_to_head_page(object);
2852 	df->tail = object;
2853 	df->freelist = object;
2854 	p[size] = NULL; /* mark object processed */
2855 	df->cnt = 1;
2856 
2857 	while (size) {
2858 		object = p[--size];
2859 		if (!object)
2860 			continue; /* Skip processed objects */
2861 
2862 		/* df->page is always set at this point */
2863 		if (df->page == virt_to_head_page(object)) {
2864 			/* Opportunity build freelist */
2865 			set_freepointer(s, object, df->freelist);
2866 			df->freelist = object;
2867 			df->cnt++;
2868 			p[size] = NULL; /* mark object processed */
2869 
2870 			continue;
2871 		}
2872 
2873 		/* Limit look ahead search */
2874 		if (!--lookahead)
2875 			break;
2876 
2877 		if (!first_skipped_index)
2878 			first_skipped_index = size + 1;
2879 	}
2880 
2881 	return first_skipped_index;
2882 }
2883 
2884 
2885 /* Note that interrupts must be enabled when calling this function. */
2886 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
2887 {
2888 	if (WARN_ON(!size))
2889 		return;
2890 
2891 	do {
2892 		struct detached_freelist df;
2893 		struct kmem_cache *s;
2894 
2895 		/* Support for memcg */
2896 		s = cache_from_obj(orig_s, p[size - 1]);
2897 
2898 		size = build_detached_freelist(s, size, p, &df);
2899 		if (unlikely(!df.page))
2900 			continue;
2901 
2902 		slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
2903 	} while (likely(size));
2904 }
2905 EXPORT_SYMBOL(kmem_cache_free_bulk);
2906 
2907 /* Note that interrupts must be enabled when calling this function. */
2908 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2909 			  void **p)
2910 {
2911 	struct kmem_cache_cpu *c;
2912 	int i;
2913 
2914 	/* memcg and kmem_cache debug support */
2915 	s = slab_pre_alloc_hook(s, flags);
2916 	if (unlikely(!s))
2917 		return false;
2918 	/*
2919 	 * Drain objects in the per cpu slab, while disabling local
2920 	 * IRQs, which protects against PREEMPT and interrupts
2921 	 * handlers invoking normal fastpath.
2922 	 */
2923 	local_irq_disable();
2924 	c = this_cpu_ptr(s->cpu_slab);
2925 
2926 	for (i = 0; i < size; i++) {
2927 		void *object = c->freelist;
2928 
2929 		if (unlikely(!object)) {
2930 			/*
2931 			 * Invoking slow path likely have side-effect
2932 			 * of re-populating per CPU c->freelist
2933 			 */
2934 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2935 					    _RET_IP_, c);
2936 			if (unlikely(!p[i]))
2937 				goto error;
2938 
2939 			c = this_cpu_ptr(s->cpu_slab);
2940 			continue; /* goto for-loop */
2941 		}
2942 		c->freelist = get_freepointer(s, object);
2943 		p[i] = object;
2944 	}
2945 	c->tid = next_tid(c->tid);
2946 	local_irq_enable();
2947 
2948 	/* Clear memory outside IRQ disabled fastpath loop */
2949 	if (unlikely(flags & __GFP_ZERO)) {
2950 		int j;
2951 
2952 		for (j = 0; j < i; j++)
2953 			memset(p[j], 0, s->object_size);
2954 	}
2955 
2956 	/* memcg and kmem_cache debug support */
2957 	slab_post_alloc_hook(s, flags, size, p);
2958 	return i;
2959 error:
2960 	local_irq_enable();
2961 	slab_post_alloc_hook(s, flags, i, p);
2962 	__kmem_cache_free_bulk(s, i, p);
2963 	return 0;
2964 }
2965 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2966 
2967 
2968 /*
2969  * Object placement in a slab is made very easy because we always start at
2970  * offset 0. If we tune the size of the object to the alignment then we can
2971  * get the required alignment by putting one properly sized object after
2972  * another.
2973  *
2974  * Notice that the allocation order determines the sizes of the per cpu
2975  * caches. Each processor has always one slab available for allocations.
2976  * Increasing the allocation order reduces the number of times that slabs
2977  * must be moved on and off the partial lists and is therefore a factor in
2978  * locking overhead.
2979  */
2980 
2981 /*
2982  * Mininum / Maximum order of slab pages. This influences locking overhead
2983  * and slab fragmentation. A higher order reduces the number of partial slabs
2984  * and increases the number of allocations possible without having to
2985  * take the list_lock.
2986  */
2987 static int slub_min_order;
2988 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2989 static int slub_min_objects;
2990 
2991 /*
2992  * Calculate the order of allocation given an slab object size.
2993  *
2994  * The order of allocation has significant impact on performance and other
2995  * system components. Generally order 0 allocations should be preferred since
2996  * order 0 does not cause fragmentation in the page allocator. Larger objects
2997  * be problematic to put into order 0 slabs because there may be too much
2998  * unused space left. We go to a higher order if more than 1/16th of the slab
2999  * would be wasted.
3000  *
3001  * In order to reach satisfactory performance we must ensure that a minimum
3002  * number of objects is in one slab. Otherwise we may generate too much
3003  * activity on the partial lists which requires taking the list_lock. This is
3004  * less a concern for large slabs though which are rarely used.
3005  *
3006  * slub_max_order specifies the order where we begin to stop considering the
3007  * number of objects in a slab as critical. If we reach slub_max_order then
3008  * we try to keep the page order as low as possible. So we accept more waste
3009  * of space in favor of a small page order.
3010  *
3011  * Higher order allocations also allow the placement of more objects in a
3012  * slab and thereby reduce object handling overhead. If the user has
3013  * requested a higher mininum order then we start with that one instead of
3014  * the smallest order which will fit the object.
3015  */
3016 static inline int slab_order(int size, int min_objects,
3017 				int max_order, int fract_leftover, int reserved)
3018 {
3019 	int order;
3020 	int rem;
3021 	int min_order = slub_min_order;
3022 
3023 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3024 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3025 
3026 	for (order = max(min_order, get_order(min_objects * size + reserved));
3027 			order <= max_order; order++) {
3028 
3029 		unsigned long slab_size = PAGE_SIZE << order;
3030 
3031 		rem = (slab_size - reserved) % size;
3032 
3033 		if (rem <= slab_size / fract_leftover)
3034 			break;
3035 	}
3036 
3037 	return order;
3038 }
3039 
3040 static inline int calculate_order(int size, int reserved)
3041 {
3042 	int order;
3043 	int min_objects;
3044 	int fraction;
3045 	int max_objects;
3046 
3047 	/*
3048 	 * Attempt to find best configuration for a slab. This
3049 	 * works by first attempting to generate a layout with
3050 	 * the best configuration and backing off gradually.
3051 	 *
3052 	 * First we increase the acceptable waste in a slab. Then
3053 	 * we reduce the minimum objects required in a slab.
3054 	 */
3055 	min_objects = slub_min_objects;
3056 	if (!min_objects)
3057 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3058 	max_objects = order_objects(slub_max_order, size, reserved);
3059 	min_objects = min(min_objects, max_objects);
3060 
3061 	while (min_objects > 1) {
3062 		fraction = 16;
3063 		while (fraction >= 4) {
3064 			order = slab_order(size, min_objects,
3065 					slub_max_order, fraction, reserved);
3066 			if (order <= slub_max_order)
3067 				return order;
3068 			fraction /= 2;
3069 		}
3070 		min_objects--;
3071 	}
3072 
3073 	/*
3074 	 * We were unable to place multiple objects in a slab. Now
3075 	 * lets see if we can place a single object there.
3076 	 */
3077 	order = slab_order(size, 1, slub_max_order, 1, reserved);
3078 	if (order <= slub_max_order)
3079 		return order;
3080 
3081 	/*
3082 	 * Doh this slab cannot be placed using slub_max_order.
3083 	 */
3084 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3085 	if (order < MAX_ORDER)
3086 		return order;
3087 	return -ENOSYS;
3088 }
3089 
3090 static void
3091 init_kmem_cache_node(struct kmem_cache_node *n)
3092 {
3093 	n->nr_partial = 0;
3094 	spin_lock_init(&n->list_lock);
3095 	INIT_LIST_HEAD(&n->partial);
3096 #ifdef CONFIG_SLUB_DEBUG
3097 	atomic_long_set(&n->nr_slabs, 0);
3098 	atomic_long_set(&n->total_objects, 0);
3099 	INIT_LIST_HEAD(&n->full);
3100 #endif
3101 }
3102 
3103 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3104 {
3105 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3106 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3107 
3108 	/*
3109 	 * Must align to double word boundary for the double cmpxchg
3110 	 * instructions to work; see __pcpu_double_call_return_bool().
3111 	 */
3112 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3113 				     2 * sizeof(void *));
3114 
3115 	if (!s->cpu_slab)
3116 		return 0;
3117 
3118 	init_kmem_cache_cpus(s);
3119 
3120 	return 1;
3121 }
3122 
3123 static struct kmem_cache *kmem_cache_node;
3124 
3125 /*
3126  * No kmalloc_node yet so do it by hand. We know that this is the first
3127  * slab on the node for this slabcache. There are no concurrent accesses
3128  * possible.
3129  *
3130  * Note that this function only works on the kmem_cache_node
3131  * when allocating for the kmem_cache_node. This is used for bootstrapping
3132  * memory on a fresh node that has no slab structures yet.
3133  */
3134 static void early_kmem_cache_node_alloc(int node)
3135 {
3136 	struct page *page;
3137 	struct kmem_cache_node *n;
3138 
3139 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3140 
3141 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3142 
3143 	BUG_ON(!page);
3144 	if (page_to_nid(page) != node) {
3145 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3146 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3147 	}
3148 
3149 	n = page->freelist;
3150 	BUG_ON(!n);
3151 	page->freelist = get_freepointer(kmem_cache_node, n);
3152 	page->inuse = 1;
3153 	page->frozen = 0;
3154 	kmem_cache_node->node[node] = n;
3155 #ifdef CONFIG_SLUB_DEBUG
3156 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3157 	init_tracking(kmem_cache_node, n);
3158 #endif
3159 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3160 	init_kmem_cache_node(n);
3161 	inc_slabs_node(kmem_cache_node, node, page->objects);
3162 
3163 	/*
3164 	 * No locks need to be taken here as it has just been
3165 	 * initialized and there is no concurrent access.
3166 	 */
3167 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3168 }
3169 
3170 static void free_kmem_cache_nodes(struct kmem_cache *s)
3171 {
3172 	int node;
3173 	struct kmem_cache_node *n;
3174 
3175 	for_each_kmem_cache_node(s, node, n) {
3176 		kmem_cache_free(kmem_cache_node, n);
3177 		s->node[node] = NULL;
3178 	}
3179 }
3180 
3181 void __kmem_cache_release(struct kmem_cache *s)
3182 {
3183 	free_percpu(s->cpu_slab);
3184 	free_kmem_cache_nodes(s);
3185 }
3186 
3187 static int init_kmem_cache_nodes(struct kmem_cache *s)
3188 {
3189 	int node;
3190 
3191 	for_each_node_state(node, N_NORMAL_MEMORY) {
3192 		struct kmem_cache_node *n;
3193 
3194 		if (slab_state == DOWN) {
3195 			early_kmem_cache_node_alloc(node);
3196 			continue;
3197 		}
3198 		n = kmem_cache_alloc_node(kmem_cache_node,
3199 						GFP_KERNEL, node);
3200 
3201 		if (!n) {
3202 			free_kmem_cache_nodes(s);
3203 			return 0;
3204 		}
3205 
3206 		s->node[node] = n;
3207 		init_kmem_cache_node(n);
3208 	}
3209 	return 1;
3210 }
3211 
3212 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3213 {
3214 	if (min < MIN_PARTIAL)
3215 		min = MIN_PARTIAL;
3216 	else if (min > MAX_PARTIAL)
3217 		min = MAX_PARTIAL;
3218 	s->min_partial = min;
3219 }
3220 
3221 /*
3222  * calculate_sizes() determines the order and the distribution of data within
3223  * a slab object.
3224  */
3225 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3226 {
3227 	unsigned long flags = s->flags;
3228 	unsigned long size = s->object_size;
3229 	int order;
3230 
3231 	/*
3232 	 * Round up object size to the next word boundary. We can only
3233 	 * place the free pointer at word boundaries and this determines
3234 	 * the possible location of the free pointer.
3235 	 */
3236 	size = ALIGN(size, sizeof(void *));
3237 
3238 #ifdef CONFIG_SLUB_DEBUG
3239 	/*
3240 	 * Determine if we can poison the object itself. If the user of
3241 	 * the slab may touch the object after free or before allocation
3242 	 * then we should never poison the object itself.
3243 	 */
3244 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3245 			!s->ctor)
3246 		s->flags |= __OBJECT_POISON;
3247 	else
3248 		s->flags &= ~__OBJECT_POISON;
3249 
3250 
3251 	/*
3252 	 * If we are Redzoning then check if there is some space between the
3253 	 * end of the object and the free pointer. If not then add an
3254 	 * additional word to have some bytes to store Redzone information.
3255 	 */
3256 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3257 		size += sizeof(void *);
3258 #endif
3259 
3260 	/*
3261 	 * With that we have determined the number of bytes in actual use
3262 	 * by the object. This is the potential offset to the free pointer.
3263 	 */
3264 	s->inuse = size;
3265 
3266 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3267 		s->ctor)) {
3268 		/*
3269 		 * Relocate free pointer after the object if it is not
3270 		 * permitted to overwrite the first word of the object on
3271 		 * kmem_cache_free.
3272 		 *
3273 		 * This is the case if we do RCU, have a constructor or
3274 		 * destructor or are poisoning the objects.
3275 		 */
3276 		s->offset = size;
3277 		size += sizeof(void *);
3278 	}
3279 
3280 #ifdef CONFIG_SLUB_DEBUG
3281 	if (flags & SLAB_STORE_USER)
3282 		/*
3283 		 * Need to store information about allocs and frees after
3284 		 * the object.
3285 		 */
3286 		size += 2 * sizeof(struct track);
3287 
3288 	if (flags & SLAB_RED_ZONE)
3289 		/*
3290 		 * Add some empty padding so that we can catch
3291 		 * overwrites from earlier objects rather than let
3292 		 * tracking information or the free pointer be
3293 		 * corrupted if a user writes before the start
3294 		 * of the object.
3295 		 */
3296 		size += sizeof(void *);
3297 #endif
3298 
3299 	/*
3300 	 * SLUB stores one object immediately after another beginning from
3301 	 * offset 0. In order to align the objects we have to simply size
3302 	 * each object to conform to the alignment.
3303 	 */
3304 	size = ALIGN(size, s->align);
3305 	s->size = size;
3306 	if (forced_order >= 0)
3307 		order = forced_order;
3308 	else
3309 		order = calculate_order(size, s->reserved);
3310 
3311 	if (order < 0)
3312 		return 0;
3313 
3314 	s->allocflags = 0;
3315 	if (order)
3316 		s->allocflags |= __GFP_COMP;
3317 
3318 	if (s->flags & SLAB_CACHE_DMA)
3319 		s->allocflags |= GFP_DMA;
3320 
3321 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3322 		s->allocflags |= __GFP_RECLAIMABLE;
3323 
3324 	/*
3325 	 * Determine the number of objects per slab
3326 	 */
3327 	s->oo = oo_make(order, size, s->reserved);
3328 	s->min = oo_make(get_order(size), size, s->reserved);
3329 	if (oo_objects(s->oo) > oo_objects(s->max))
3330 		s->max = s->oo;
3331 
3332 	return !!oo_objects(s->oo);
3333 }
3334 
3335 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3336 {
3337 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3338 	s->reserved = 0;
3339 
3340 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3341 		s->reserved = sizeof(struct rcu_head);
3342 
3343 	if (!calculate_sizes(s, -1))
3344 		goto error;
3345 	if (disable_higher_order_debug) {
3346 		/*
3347 		 * Disable debugging flags that store metadata if the min slab
3348 		 * order increased.
3349 		 */
3350 		if (get_order(s->size) > get_order(s->object_size)) {
3351 			s->flags &= ~DEBUG_METADATA_FLAGS;
3352 			s->offset = 0;
3353 			if (!calculate_sizes(s, -1))
3354 				goto error;
3355 		}
3356 	}
3357 
3358 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3359     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3360 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3361 		/* Enable fast mode */
3362 		s->flags |= __CMPXCHG_DOUBLE;
3363 #endif
3364 
3365 	/*
3366 	 * The larger the object size is, the more pages we want on the partial
3367 	 * list to avoid pounding the page allocator excessively.
3368 	 */
3369 	set_min_partial(s, ilog2(s->size) / 2);
3370 
3371 	/*
3372 	 * cpu_partial determined the maximum number of objects kept in the
3373 	 * per cpu partial lists of a processor.
3374 	 *
3375 	 * Per cpu partial lists mainly contain slabs that just have one
3376 	 * object freed. If they are used for allocation then they can be
3377 	 * filled up again with minimal effort. The slab will never hit the
3378 	 * per node partial lists and therefore no locking will be required.
3379 	 *
3380 	 * This setting also determines
3381 	 *
3382 	 * A) The number of objects from per cpu partial slabs dumped to the
3383 	 *    per node list when we reach the limit.
3384 	 * B) The number of objects in cpu partial slabs to extract from the
3385 	 *    per node list when we run out of per cpu objects. We only fetch
3386 	 *    50% to keep some capacity around for frees.
3387 	 */
3388 	if (!kmem_cache_has_cpu_partial(s))
3389 		s->cpu_partial = 0;
3390 	else if (s->size >= PAGE_SIZE)
3391 		s->cpu_partial = 2;
3392 	else if (s->size >= 1024)
3393 		s->cpu_partial = 6;
3394 	else if (s->size >= 256)
3395 		s->cpu_partial = 13;
3396 	else
3397 		s->cpu_partial = 30;
3398 
3399 #ifdef CONFIG_NUMA
3400 	s->remote_node_defrag_ratio = 1000;
3401 #endif
3402 	if (!init_kmem_cache_nodes(s))
3403 		goto error;
3404 
3405 	if (alloc_kmem_cache_cpus(s))
3406 		return 0;
3407 
3408 	free_kmem_cache_nodes(s);
3409 error:
3410 	if (flags & SLAB_PANIC)
3411 		panic("Cannot create slab %s size=%lu realsize=%u "
3412 			"order=%u offset=%u flags=%lx\n",
3413 			s->name, (unsigned long)s->size, s->size,
3414 			oo_order(s->oo), s->offset, flags);
3415 	return -EINVAL;
3416 }
3417 
3418 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3419 							const char *text)
3420 {
3421 #ifdef CONFIG_SLUB_DEBUG
3422 	void *addr = page_address(page);
3423 	void *p;
3424 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3425 				     sizeof(long), GFP_ATOMIC);
3426 	if (!map)
3427 		return;
3428 	slab_err(s, page, text, s->name);
3429 	slab_lock(page);
3430 
3431 	get_map(s, page, map);
3432 	for_each_object(p, s, addr, page->objects) {
3433 
3434 		if (!test_bit(slab_index(p, s, addr), map)) {
3435 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3436 			print_tracking(s, p);
3437 		}
3438 	}
3439 	slab_unlock(page);
3440 	kfree(map);
3441 #endif
3442 }
3443 
3444 /*
3445  * Attempt to free all partial slabs on a node.
3446  * This is called from __kmem_cache_shutdown(). We must take list_lock
3447  * because sysfs file might still access partial list after the shutdowning.
3448  */
3449 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3450 {
3451 	struct page *page, *h;
3452 
3453 	BUG_ON(irqs_disabled());
3454 	spin_lock_irq(&n->list_lock);
3455 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3456 		if (!page->inuse) {
3457 			remove_partial(n, page);
3458 			discard_slab(s, page);
3459 		} else {
3460 			list_slab_objects(s, page,
3461 			"Objects remaining in %s on __kmem_cache_shutdown()");
3462 		}
3463 	}
3464 	spin_unlock_irq(&n->list_lock);
3465 }
3466 
3467 /*
3468  * Release all resources used by a slab cache.
3469  */
3470 int __kmem_cache_shutdown(struct kmem_cache *s)
3471 {
3472 	int node;
3473 	struct kmem_cache_node *n;
3474 
3475 	flush_all(s);
3476 	/* Attempt to free all objects */
3477 	for_each_kmem_cache_node(s, node, n) {
3478 		free_partial(s, n);
3479 		if (n->nr_partial || slabs_node(s, node))
3480 			return 1;
3481 	}
3482 	return 0;
3483 }
3484 
3485 /********************************************************************
3486  *		Kmalloc subsystem
3487  *******************************************************************/
3488 
3489 static int __init setup_slub_min_order(char *str)
3490 {
3491 	get_option(&str, &slub_min_order);
3492 
3493 	return 1;
3494 }
3495 
3496 __setup("slub_min_order=", setup_slub_min_order);
3497 
3498 static int __init setup_slub_max_order(char *str)
3499 {
3500 	get_option(&str, &slub_max_order);
3501 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3502 
3503 	return 1;
3504 }
3505 
3506 __setup("slub_max_order=", setup_slub_max_order);
3507 
3508 static int __init setup_slub_min_objects(char *str)
3509 {
3510 	get_option(&str, &slub_min_objects);
3511 
3512 	return 1;
3513 }
3514 
3515 __setup("slub_min_objects=", setup_slub_min_objects);
3516 
3517 void *__kmalloc(size_t size, gfp_t flags)
3518 {
3519 	struct kmem_cache *s;
3520 	void *ret;
3521 
3522 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3523 		return kmalloc_large(size, flags);
3524 
3525 	s = kmalloc_slab(size, flags);
3526 
3527 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3528 		return s;
3529 
3530 	ret = slab_alloc(s, flags, _RET_IP_);
3531 
3532 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3533 
3534 	kasan_kmalloc(s, ret, size);
3535 
3536 	return ret;
3537 }
3538 EXPORT_SYMBOL(__kmalloc);
3539 
3540 #ifdef CONFIG_NUMA
3541 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3542 {
3543 	struct page *page;
3544 	void *ptr = NULL;
3545 
3546 	flags |= __GFP_COMP | __GFP_NOTRACK;
3547 	page = alloc_kmem_pages_node(node, flags, get_order(size));
3548 	if (page)
3549 		ptr = page_address(page);
3550 
3551 	kmalloc_large_node_hook(ptr, size, flags);
3552 	return ptr;
3553 }
3554 
3555 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3556 {
3557 	struct kmem_cache *s;
3558 	void *ret;
3559 
3560 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3561 		ret = kmalloc_large_node(size, flags, node);
3562 
3563 		trace_kmalloc_node(_RET_IP_, ret,
3564 				   size, PAGE_SIZE << get_order(size),
3565 				   flags, node);
3566 
3567 		return ret;
3568 	}
3569 
3570 	s = kmalloc_slab(size, flags);
3571 
3572 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3573 		return s;
3574 
3575 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3576 
3577 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3578 
3579 	kasan_kmalloc(s, ret, size);
3580 
3581 	return ret;
3582 }
3583 EXPORT_SYMBOL(__kmalloc_node);
3584 #endif
3585 
3586 static size_t __ksize(const void *object)
3587 {
3588 	struct page *page;
3589 
3590 	if (unlikely(object == ZERO_SIZE_PTR))
3591 		return 0;
3592 
3593 	page = virt_to_head_page(object);
3594 
3595 	if (unlikely(!PageSlab(page))) {
3596 		WARN_ON(!PageCompound(page));
3597 		return PAGE_SIZE << compound_order(page);
3598 	}
3599 
3600 	return slab_ksize(page->slab_cache);
3601 }
3602 
3603 size_t ksize(const void *object)
3604 {
3605 	size_t size = __ksize(object);
3606 	/* We assume that ksize callers could use whole allocated area,
3607 	   so we need unpoison this area. */
3608 	kasan_krealloc(object, size);
3609 	return size;
3610 }
3611 EXPORT_SYMBOL(ksize);
3612 
3613 void kfree(const void *x)
3614 {
3615 	struct page *page;
3616 	void *object = (void *)x;
3617 
3618 	trace_kfree(_RET_IP_, x);
3619 
3620 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3621 		return;
3622 
3623 	page = virt_to_head_page(x);
3624 	if (unlikely(!PageSlab(page))) {
3625 		BUG_ON(!PageCompound(page));
3626 		kfree_hook(x);
3627 		__free_kmem_pages(page, compound_order(page));
3628 		return;
3629 	}
3630 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3631 }
3632 EXPORT_SYMBOL(kfree);
3633 
3634 #define SHRINK_PROMOTE_MAX 32
3635 
3636 /*
3637  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3638  * up most to the head of the partial lists. New allocations will then
3639  * fill those up and thus they can be removed from the partial lists.
3640  *
3641  * The slabs with the least items are placed last. This results in them
3642  * being allocated from last increasing the chance that the last objects
3643  * are freed in them.
3644  */
3645 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3646 {
3647 	int node;
3648 	int i;
3649 	struct kmem_cache_node *n;
3650 	struct page *page;
3651 	struct page *t;
3652 	struct list_head discard;
3653 	struct list_head promote[SHRINK_PROMOTE_MAX];
3654 	unsigned long flags;
3655 	int ret = 0;
3656 
3657 	if (deactivate) {
3658 		/*
3659 		 * Disable empty slabs caching. Used to avoid pinning offline
3660 		 * memory cgroups by kmem pages that can be freed.
3661 		 */
3662 		s->cpu_partial = 0;
3663 		s->min_partial = 0;
3664 
3665 		/*
3666 		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3667 		 * so we have to make sure the change is visible.
3668 		 */
3669 		kick_all_cpus_sync();
3670 	}
3671 
3672 	flush_all(s);
3673 	for_each_kmem_cache_node(s, node, n) {
3674 		INIT_LIST_HEAD(&discard);
3675 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3676 			INIT_LIST_HEAD(promote + i);
3677 
3678 		spin_lock_irqsave(&n->list_lock, flags);
3679 
3680 		/*
3681 		 * Build lists of slabs to discard or promote.
3682 		 *
3683 		 * Note that concurrent frees may occur while we hold the
3684 		 * list_lock. page->inuse here is the upper limit.
3685 		 */
3686 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3687 			int free = page->objects - page->inuse;
3688 
3689 			/* Do not reread page->inuse */
3690 			barrier();
3691 
3692 			/* We do not keep full slabs on the list */
3693 			BUG_ON(free <= 0);
3694 
3695 			if (free == page->objects) {
3696 				list_move(&page->lru, &discard);
3697 				n->nr_partial--;
3698 			} else if (free <= SHRINK_PROMOTE_MAX)
3699 				list_move(&page->lru, promote + free - 1);
3700 		}
3701 
3702 		/*
3703 		 * Promote the slabs filled up most to the head of the
3704 		 * partial list.
3705 		 */
3706 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3707 			list_splice(promote + i, &n->partial);
3708 
3709 		spin_unlock_irqrestore(&n->list_lock, flags);
3710 
3711 		/* Release empty slabs */
3712 		list_for_each_entry_safe(page, t, &discard, lru)
3713 			discard_slab(s, page);
3714 
3715 		if (slabs_node(s, node))
3716 			ret = 1;
3717 	}
3718 
3719 	return ret;
3720 }
3721 
3722 static int slab_mem_going_offline_callback(void *arg)
3723 {
3724 	struct kmem_cache *s;
3725 
3726 	mutex_lock(&slab_mutex);
3727 	list_for_each_entry(s, &slab_caches, list)
3728 		__kmem_cache_shrink(s, false);
3729 	mutex_unlock(&slab_mutex);
3730 
3731 	return 0;
3732 }
3733 
3734 static void slab_mem_offline_callback(void *arg)
3735 {
3736 	struct kmem_cache_node *n;
3737 	struct kmem_cache *s;
3738 	struct memory_notify *marg = arg;
3739 	int offline_node;
3740 
3741 	offline_node = marg->status_change_nid_normal;
3742 
3743 	/*
3744 	 * If the node still has available memory. we need kmem_cache_node
3745 	 * for it yet.
3746 	 */
3747 	if (offline_node < 0)
3748 		return;
3749 
3750 	mutex_lock(&slab_mutex);
3751 	list_for_each_entry(s, &slab_caches, list) {
3752 		n = get_node(s, offline_node);
3753 		if (n) {
3754 			/*
3755 			 * if n->nr_slabs > 0, slabs still exist on the node
3756 			 * that is going down. We were unable to free them,
3757 			 * and offline_pages() function shouldn't call this
3758 			 * callback. So, we must fail.
3759 			 */
3760 			BUG_ON(slabs_node(s, offline_node));
3761 
3762 			s->node[offline_node] = NULL;
3763 			kmem_cache_free(kmem_cache_node, n);
3764 		}
3765 	}
3766 	mutex_unlock(&slab_mutex);
3767 }
3768 
3769 static int slab_mem_going_online_callback(void *arg)
3770 {
3771 	struct kmem_cache_node *n;
3772 	struct kmem_cache *s;
3773 	struct memory_notify *marg = arg;
3774 	int nid = marg->status_change_nid_normal;
3775 	int ret = 0;
3776 
3777 	/*
3778 	 * If the node's memory is already available, then kmem_cache_node is
3779 	 * already created. Nothing to do.
3780 	 */
3781 	if (nid < 0)
3782 		return 0;
3783 
3784 	/*
3785 	 * We are bringing a node online. No memory is available yet. We must
3786 	 * allocate a kmem_cache_node structure in order to bring the node
3787 	 * online.
3788 	 */
3789 	mutex_lock(&slab_mutex);
3790 	list_for_each_entry(s, &slab_caches, list) {
3791 		/*
3792 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3793 		 *      since memory is not yet available from the node that
3794 		 *      is brought up.
3795 		 */
3796 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3797 		if (!n) {
3798 			ret = -ENOMEM;
3799 			goto out;
3800 		}
3801 		init_kmem_cache_node(n);
3802 		s->node[nid] = n;
3803 	}
3804 out:
3805 	mutex_unlock(&slab_mutex);
3806 	return ret;
3807 }
3808 
3809 static int slab_memory_callback(struct notifier_block *self,
3810 				unsigned long action, void *arg)
3811 {
3812 	int ret = 0;
3813 
3814 	switch (action) {
3815 	case MEM_GOING_ONLINE:
3816 		ret = slab_mem_going_online_callback(arg);
3817 		break;
3818 	case MEM_GOING_OFFLINE:
3819 		ret = slab_mem_going_offline_callback(arg);
3820 		break;
3821 	case MEM_OFFLINE:
3822 	case MEM_CANCEL_ONLINE:
3823 		slab_mem_offline_callback(arg);
3824 		break;
3825 	case MEM_ONLINE:
3826 	case MEM_CANCEL_OFFLINE:
3827 		break;
3828 	}
3829 	if (ret)
3830 		ret = notifier_from_errno(ret);
3831 	else
3832 		ret = NOTIFY_OK;
3833 	return ret;
3834 }
3835 
3836 static struct notifier_block slab_memory_callback_nb = {
3837 	.notifier_call = slab_memory_callback,
3838 	.priority = SLAB_CALLBACK_PRI,
3839 };
3840 
3841 /********************************************************************
3842  *			Basic setup of slabs
3843  *******************************************************************/
3844 
3845 /*
3846  * Used for early kmem_cache structures that were allocated using
3847  * the page allocator. Allocate them properly then fix up the pointers
3848  * that may be pointing to the wrong kmem_cache structure.
3849  */
3850 
3851 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3852 {
3853 	int node;
3854 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3855 	struct kmem_cache_node *n;
3856 
3857 	memcpy(s, static_cache, kmem_cache->object_size);
3858 
3859 	/*
3860 	 * This runs very early, and only the boot processor is supposed to be
3861 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3862 	 * IPIs around.
3863 	 */
3864 	__flush_cpu_slab(s, smp_processor_id());
3865 	for_each_kmem_cache_node(s, node, n) {
3866 		struct page *p;
3867 
3868 		list_for_each_entry(p, &n->partial, lru)
3869 			p->slab_cache = s;
3870 
3871 #ifdef CONFIG_SLUB_DEBUG
3872 		list_for_each_entry(p, &n->full, lru)
3873 			p->slab_cache = s;
3874 #endif
3875 	}
3876 	slab_init_memcg_params(s);
3877 	list_add(&s->list, &slab_caches);
3878 	return s;
3879 }
3880 
3881 void __init kmem_cache_init(void)
3882 {
3883 	static __initdata struct kmem_cache boot_kmem_cache,
3884 		boot_kmem_cache_node;
3885 
3886 	if (debug_guardpage_minorder())
3887 		slub_max_order = 0;
3888 
3889 	kmem_cache_node = &boot_kmem_cache_node;
3890 	kmem_cache = &boot_kmem_cache;
3891 
3892 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3893 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3894 
3895 	register_hotmemory_notifier(&slab_memory_callback_nb);
3896 
3897 	/* Able to allocate the per node structures */
3898 	slab_state = PARTIAL;
3899 
3900 	create_boot_cache(kmem_cache, "kmem_cache",
3901 			offsetof(struct kmem_cache, node) +
3902 				nr_node_ids * sizeof(struct kmem_cache_node *),
3903 		       SLAB_HWCACHE_ALIGN);
3904 
3905 	kmem_cache = bootstrap(&boot_kmem_cache);
3906 
3907 	/*
3908 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3909 	 * kmem_cache_node is separately allocated so no need to
3910 	 * update any list pointers.
3911 	 */
3912 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3913 
3914 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3915 	setup_kmalloc_cache_index_table();
3916 	create_kmalloc_caches(0);
3917 
3918 #ifdef CONFIG_SMP
3919 	register_cpu_notifier(&slab_notifier);
3920 #endif
3921 
3922 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3923 		cache_line_size(),
3924 		slub_min_order, slub_max_order, slub_min_objects,
3925 		nr_cpu_ids, nr_node_ids);
3926 }
3927 
3928 void __init kmem_cache_init_late(void)
3929 {
3930 }
3931 
3932 struct kmem_cache *
3933 __kmem_cache_alias(const char *name, size_t size, size_t align,
3934 		   unsigned long flags, void (*ctor)(void *))
3935 {
3936 	struct kmem_cache *s, *c;
3937 
3938 	s = find_mergeable(size, align, flags, name, ctor);
3939 	if (s) {
3940 		s->refcount++;
3941 
3942 		/*
3943 		 * Adjust the object sizes so that we clear
3944 		 * the complete object on kzalloc.
3945 		 */
3946 		s->object_size = max(s->object_size, (int)size);
3947 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3948 
3949 		for_each_memcg_cache(c, s) {
3950 			c->object_size = s->object_size;
3951 			c->inuse = max_t(int, c->inuse,
3952 					 ALIGN(size, sizeof(void *)));
3953 		}
3954 
3955 		if (sysfs_slab_alias(s, name)) {
3956 			s->refcount--;
3957 			s = NULL;
3958 		}
3959 	}
3960 
3961 	return s;
3962 }
3963 
3964 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3965 {
3966 	int err;
3967 
3968 	err = kmem_cache_open(s, flags);
3969 	if (err)
3970 		return err;
3971 
3972 	/* Mutex is not taken during early boot */
3973 	if (slab_state <= UP)
3974 		return 0;
3975 
3976 	memcg_propagate_slab_attrs(s);
3977 	err = sysfs_slab_add(s);
3978 	if (err)
3979 		__kmem_cache_release(s);
3980 
3981 	return err;
3982 }
3983 
3984 #ifdef CONFIG_SMP
3985 /*
3986  * Use the cpu notifier to insure that the cpu slabs are flushed when
3987  * necessary.
3988  */
3989 static int slab_cpuup_callback(struct notifier_block *nfb,
3990 		unsigned long action, void *hcpu)
3991 {
3992 	long cpu = (long)hcpu;
3993 	struct kmem_cache *s;
3994 	unsigned long flags;
3995 
3996 	switch (action) {
3997 	case CPU_UP_CANCELED:
3998 	case CPU_UP_CANCELED_FROZEN:
3999 	case CPU_DEAD:
4000 	case CPU_DEAD_FROZEN:
4001 		mutex_lock(&slab_mutex);
4002 		list_for_each_entry(s, &slab_caches, list) {
4003 			local_irq_save(flags);
4004 			__flush_cpu_slab(s, cpu);
4005 			local_irq_restore(flags);
4006 		}
4007 		mutex_unlock(&slab_mutex);
4008 		break;
4009 	default:
4010 		break;
4011 	}
4012 	return NOTIFY_OK;
4013 }
4014 
4015 static struct notifier_block slab_notifier = {
4016 	.notifier_call = slab_cpuup_callback
4017 };
4018 
4019 #endif
4020 
4021 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4022 {
4023 	struct kmem_cache *s;
4024 	void *ret;
4025 
4026 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4027 		return kmalloc_large(size, gfpflags);
4028 
4029 	s = kmalloc_slab(size, gfpflags);
4030 
4031 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4032 		return s;
4033 
4034 	ret = slab_alloc(s, gfpflags, caller);
4035 
4036 	/* Honor the call site pointer we received. */
4037 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4038 
4039 	return ret;
4040 }
4041 
4042 #ifdef CONFIG_NUMA
4043 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4044 					int node, unsigned long caller)
4045 {
4046 	struct kmem_cache *s;
4047 	void *ret;
4048 
4049 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4050 		ret = kmalloc_large_node(size, gfpflags, node);
4051 
4052 		trace_kmalloc_node(caller, ret,
4053 				   size, PAGE_SIZE << get_order(size),
4054 				   gfpflags, node);
4055 
4056 		return ret;
4057 	}
4058 
4059 	s = kmalloc_slab(size, gfpflags);
4060 
4061 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4062 		return s;
4063 
4064 	ret = slab_alloc_node(s, gfpflags, node, caller);
4065 
4066 	/* Honor the call site pointer we received. */
4067 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4068 
4069 	return ret;
4070 }
4071 #endif
4072 
4073 #ifdef CONFIG_SYSFS
4074 static int count_inuse(struct page *page)
4075 {
4076 	return page->inuse;
4077 }
4078 
4079 static int count_total(struct page *page)
4080 {
4081 	return page->objects;
4082 }
4083 #endif
4084 
4085 #ifdef CONFIG_SLUB_DEBUG
4086 static int validate_slab(struct kmem_cache *s, struct page *page,
4087 						unsigned long *map)
4088 {
4089 	void *p;
4090 	void *addr = page_address(page);
4091 
4092 	if (!check_slab(s, page) ||
4093 			!on_freelist(s, page, NULL))
4094 		return 0;
4095 
4096 	/* Now we know that a valid freelist exists */
4097 	bitmap_zero(map, page->objects);
4098 
4099 	get_map(s, page, map);
4100 	for_each_object(p, s, addr, page->objects) {
4101 		if (test_bit(slab_index(p, s, addr), map))
4102 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4103 				return 0;
4104 	}
4105 
4106 	for_each_object(p, s, addr, page->objects)
4107 		if (!test_bit(slab_index(p, s, addr), map))
4108 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4109 				return 0;
4110 	return 1;
4111 }
4112 
4113 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4114 						unsigned long *map)
4115 {
4116 	slab_lock(page);
4117 	validate_slab(s, page, map);
4118 	slab_unlock(page);
4119 }
4120 
4121 static int validate_slab_node(struct kmem_cache *s,
4122 		struct kmem_cache_node *n, unsigned long *map)
4123 {
4124 	unsigned long count = 0;
4125 	struct page *page;
4126 	unsigned long flags;
4127 
4128 	spin_lock_irqsave(&n->list_lock, flags);
4129 
4130 	list_for_each_entry(page, &n->partial, lru) {
4131 		validate_slab_slab(s, page, map);
4132 		count++;
4133 	}
4134 	if (count != n->nr_partial)
4135 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4136 		       s->name, count, n->nr_partial);
4137 
4138 	if (!(s->flags & SLAB_STORE_USER))
4139 		goto out;
4140 
4141 	list_for_each_entry(page, &n->full, lru) {
4142 		validate_slab_slab(s, page, map);
4143 		count++;
4144 	}
4145 	if (count != atomic_long_read(&n->nr_slabs))
4146 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4147 		       s->name, count, atomic_long_read(&n->nr_slabs));
4148 
4149 out:
4150 	spin_unlock_irqrestore(&n->list_lock, flags);
4151 	return count;
4152 }
4153 
4154 static long validate_slab_cache(struct kmem_cache *s)
4155 {
4156 	int node;
4157 	unsigned long count = 0;
4158 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4159 				sizeof(unsigned long), GFP_KERNEL);
4160 	struct kmem_cache_node *n;
4161 
4162 	if (!map)
4163 		return -ENOMEM;
4164 
4165 	flush_all(s);
4166 	for_each_kmem_cache_node(s, node, n)
4167 		count += validate_slab_node(s, n, map);
4168 	kfree(map);
4169 	return count;
4170 }
4171 /*
4172  * Generate lists of code addresses where slabcache objects are allocated
4173  * and freed.
4174  */
4175 
4176 struct location {
4177 	unsigned long count;
4178 	unsigned long addr;
4179 	long long sum_time;
4180 	long min_time;
4181 	long max_time;
4182 	long min_pid;
4183 	long max_pid;
4184 	DECLARE_BITMAP(cpus, NR_CPUS);
4185 	nodemask_t nodes;
4186 };
4187 
4188 struct loc_track {
4189 	unsigned long max;
4190 	unsigned long count;
4191 	struct location *loc;
4192 };
4193 
4194 static void free_loc_track(struct loc_track *t)
4195 {
4196 	if (t->max)
4197 		free_pages((unsigned long)t->loc,
4198 			get_order(sizeof(struct location) * t->max));
4199 }
4200 
4201 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4202 {
4203 	struct location *l;
4204 	int order;
4205 
4206 	order = get_order(sizeof(struct location) * max);
4207 
4208 	l = (void *)__get_free_pages(flags, order);
4209 	if (!l)
4210 		return 0;
4211 
4212 	if (t->count) {
4213 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4214 		free_loc_track(t);
4215 	}
4216 	t->max = max;
4217 	t->loc = l;
4218 	return 1;
4219 }
4220 
4221 static int add_location(struct loc_track *t, struct kmem_cache *s,
4222 				const struct track *track)
4223 {
4224 	long start, end, pos;
4225 	struct location *l;
4226 	unsigned long caddr;
4227 	unsigned long age = jiffies - track->when;
4228 
4229 	start = -1;
4230 	end = t->count;
4231 
4232 	for ( ; ; ) {
4233 		pos = start + (end - start + 1) / 2;
4234 
4235 		/*
4236 		 * There is nothing at "end". If we end up there
4237 		 * we need to add something to before end.
4238 		 */
4239 		if (pos == end)
4240 			break;
4241 
4242 		caddr = t->loc[pos].addr;
4243 		if (track->addr == caddr) {
4244 
4245 			l = &t->loc[pos];
4246 			l->count++;
4247 			if (track->when) {
4248 				l->sum_time += age;
4249 				if (age < l->min_time)
4250 					l->min_time = age;
4251 				if (age > l->max_time)
4252 					l->max_time = age;
4253 
4254 				if (track->pid < l->min_pid)
4255 					l->min_pid = track->pid;
4256 				if (track->pid > l->max_pid)
4257 					l->max_pid = track->pid;
4258 
4259 				cpumask_set_cpu(track->cpu,
4260 						to_cpumask(l->cpus));
4261 			}
4262 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4263 			return 1;
4264 		}
4265 
4266 		if (track->addr < caddr)
4267 			end = pos;
4268 		else
4269 			start = pos;
4270 	}
4271 
4272 	/*
4273 	 * Not found. Insert new tracking element.
4274 	 */
4275 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4276 		return 0;
4277 
4278 	l = t->loc + pos;
4279 	if (pos < t->count)
4280 		memmove(l + 1, l,
4281 			(t->count - pos) * sizeof(struct location));
4282 	t->count++;
4283 	l->count = 1;
4284 	l->addr = track->addr;
4285 	l->sum_time = age;
4286 	l->min_time = age;
4287 	l->max_time = age;
4288 	l->min_pid = track->pid;
4289 	l->max_pid = track->pid;
4290 	cpumask_clear(to_cpumask(l->cpus));
4291 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4292 	nodes_clear(l->nodes);
4293 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4294 	return 1;
4295 }
4296 
4297 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4298 		struct page *page, enum track_item alloc,
4299 		unsigned long *map)
4300 {
4301 	void *addr = page_address(page);
4302 	void *p;
4303 
4304 	bitmap_zero(map, page->objects);
4305 	get_map(s, page, map);
4306 
4307 	for_each_object(p, s, addr, page->objects)
4308 		if (!test_bit(slab_index(p, s, addr), map))
4309 			add_location(t, s, get_track(s, p, alloc));
4310 }
4311 
4312 static int list_locations(struct kmem_cache *s, char *buf,
4313 					enum track_item alloc)
4314 {
4315 	int len = 0;
4316 	unsigned long i;
4317 	struct loc_track t = { 0, 0, NULL };
4318 	int node;
4319 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4320 				     sizeof(unsigned long), GFP_KERNEL);
4321 	struct kmem_cache_node *n;
4322 
4323 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4324 				     GFP_TEMPORARY)) {
4325 		kfree(map);
4326 		return sprintf(buf, "Out of memory\n");
4327 	}
4328 	/* Push back cpu slabs */
4329 	flush_all(s);
4330 
4331 	for_each_kmem_cache_node(s, node, n) {
4332 		unsigned long flags;
4333 		struct page *page;
4334 
4335 		if (!atomic_long_read(&n->nr_slabs))
4336 			continue;
4337 
4338 		spin_lock_irqsave(&n->list_lock, flags);
4339 		list_for_each_entry(page, &n->partial, lru)
4340 			process_slab(&t, s, page, alloc, map);
4341 		list_for_each_entry(page, &n->full, lru)
4342 			process_slab(&t, s, page, alloc, map);
4343 		spin_unlock_irqrestore(&n->list_lock, flags);
4344 	}
4345 
4346 	for (i = 0; i < t.count; i++) {
4347 		struct location *l = &t.loc[i];
4348 
4349 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4350 			break;
4351 		len += sprintf(buf + len, "%7ld ", l->count);
4352 
4353 		if (l->addr)
4354 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4355 		else
4356 			len += sprintf(buf + len, "<not-available>");
4357 
4358 		if (l->sum_time != l->min_time) {
4359 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4360 				l->min_time,
4361 				(long)div_u64(l->sum_time, l->count),
4362 				l->max_time);
4363 		} else
4364 			len += sprintf(buf + len, " age=%ld",
4365 				l->min_time);
4366 
4367 		if (l->min_pid != l->max_pid)
4368 			len += sprintf(buf + len, " pid=%ld-%ld",
4369 				l->min_pid, l->max_pid);
4370 		else
4371 			len += sprintf(buf + len, " pid=%ld",
4372 				l->min_pid);
4373 
4374 		if (num_online_cpus() > 1 &&
4375 				!cpumask_empty(to_cpumask(l->cpus)) &&
4376 				len < PAGE_SIZE - 60)
4377 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4378 					 " cpus=%*pbl",
4379 					 cpumask_pr_args(to_cpumask(l->cpus)));
4380 
4381 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4382 				len < PAGE_SIZE - 60)
4383 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4384 					 " nodes=%*pbl",
4385 					 nodemask_pr_args(&l->nodes));
4386 
4387 		len += sprintf(buf + len, "\n");
4388 	}
4389 
4390 	free_loc_track(&t);
4391 	kfree(map);
4392 	if (!t.count)
4393 		len += sprintf(buf, "No data\n");
4394 	return len;
4395 }
4396 #endif
4397 
4398 #ifdef SLUB_RESILIENCY_TEST
4399 static void __init resiliency_test(void)
4400 {
4401 	u8 *p;
4402 
4403 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4404 
4405 	pr_err("SLUB resiliency testing\n");
4406 	pr_err("-----------------------\n");
4407 	pr_err("A. Corruption after allocation\n");
4408 
4409 	p = kzalloc(16, GFP_KERNEL);
4410 	p[16] = 0x12;
4411 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4412 	       p + 16);
4413 
4414 	validate_slab_cache(kmalloc_caches[4]);
4415 
4416 	/* Hmmm... The next two are dangerous */
4417 	p = kzalloc(32, GFP_KERNEL);
4418 	p[32 + sizeof(void *)] = 0x34;
4419 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4420 	       p);
4421 	pr_err("If allocated object is overwritten then not detectable\n\n");
4422 
4423 	validate_slab_cache(kmalloc_caches[5]);
4424 	p = kzalloc(64, GFP_KERNEL);
4425 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4426 	*p = 0x56;
4427 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4428 	       p);
4429 	pr_err("If allocated object is overwritten then not detectable\n\n");
4430 	validate_slab_cache(kmalloc_caches[6]);
4431 
4432 	pr_err("\nB. Corruption after free\n");
4433 	p = kzalloc(128, GFP_KERNEL);
4434 	kfree(p);
4435 	*p = 0x78;
4436 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4437 	validate_slab_cache(kmalloc_caches[7]);
4438 
4439 	p = kzalloc(256, GFP_KERNEL);
4440 	kfree(p);
4441 	p[50] = 0x9a;
4442 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4443 	validate_slab_cache(kmalloc_caches[8]);
4444 
4445 	p = kzalloc(512, GFP_KERNEL);
4446 	kfree(p);
4447 	p[512] = 0xab;
4448 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4449 	validate_slab_cache(kmalloc_caches[9]);
4450 }
4451 #else
4452 #ifdef CONFIG_SYSFS
4453 static void resiliency_test(void) {};
4454 #endif
4455 #endif
4456 
4457 #ifdef CONFIG_SYSFS
4458 enum slab_stat_type {
4459 	SL_ALL,			/* All slabs */
4460 	SL_PARTIAL,		/* Only partially allocated slabs */
4461 	SL_CPU,			/* Only slabs used for cpu caches */
4462 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4463 	SL_TOTAL		/* Determine object capacity not slabs */
4464 };
4465 
4466 #define SO_ALL		(1 << SL_ALL)
4467 #define SO_PARTIAL	(1 << SL_PARTIAL)
4468 #define SO_CPU		(1 << SL_CPU)
4469 #define SO_OBJECTS	(1 << SL_OBJECTS)
4470 #define SO_TOTAL	(1 << SL_TOTAL)
4471 
4472 static ssize_t show_slab_objects(struct kmem_cache *s,
4473 			    char *buf, unsigned long flags)
4474 {
4475 	unsigned long total = 0;
4476 	int node;
4477 	int x;
4478 	unsigned long *nodes;
4479 
4480 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4481 	if (!nodes)
4482 		return -ENOMEM;
4483 
4484 	if (flags & SO_CPU) {
4485 		int cpu;
4486 
4487 		for_each_possible_cpu(cpu) {
4488 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4489 							       cpu);
4490 			int node;
4491 			struct page *page;
4492 
4493 			page = READ_ONCE(c->page);
4494 			if (!page)
4495 				continue;
4496 
4497 			node = page_to_nid(page);
4498 			if (flags & SO_TOTAL)
4499 				x = page->objects;
4500 			else if (flags & SO_OBJECTS)
4501 				x = page->inuse;
4502 			else
4503 				x = 1;
4504 
4505 			total += x;
4506 			nodes[node] += x;
4507 
4508 			page = READ_ONCE(c->partial);
4509 			if (page) {
4510 				node = page_to_nid(page);
4511 				if (flags & SO_TOTAL)
4512 					WARN_ON_ONCE(1);
4513 				else if (flags & SO_OBJECTS)
4514 					WARN_ON_ONCE(1);
4515 				else
4516 					x = page->pages;
4517 				total += x;
4518 				nodes[node] += x;
4519 			}
4520 		}
4521 	}
4522 
4523 	get_online_mems();
4524 #ifdef CONFIG_SLUB_DEBUG
4525 	if (flags & SO_ALL) {
4526 		struct kmem_cache_node *n;
4527 
4528 		for_each_kmem_cache_node(s, node, n) {
4529 
4530 			if (flags & SO_TOTAL)
4531 				x = atomic_long_read(&n->total_objects);
4532 			else if (flags & SO_OBJECTS)
4533 				x = atomic_long_read(&n->total_objects) -
4534 					count_partial(n, count_free);
4535 			else
4536 				x = atomic_long_read(&n->nr_slabs);
4537 			total += x;
4538 			nodes[node] += x;
4539 		}
4540 
4541 	} else
4542 #endif
4543 	if (flags & SO_PARTIAL) {
4544 		struct kmem_cache_node *n;
4545 
4546 		for_each_kmem_cache_node(s, node, n) {
4547 			if (flags & SO_TOTAL)
4548 				x = count_partial(n, count_total);
4549 			else if (flags & SO_OBJECTS)
4550 				x = count_partial(n, count_inuse);
4551 			else
4552 				x = n->nr_partial;
4553 			total += x;
4554 			nodes[node] += x;
4555 		}
4556 	}
4557 	x = sprintf(buf, "%lu", total);
4558 #ifdef CONFIG_NUMA
4559 	for (node = 0; node < nr_node_ids; node++)
4560 		if (nodes[node])
4561 			x += sprintf(buf + x, " N%d=%lu",
4562 					node, nodes[node]);
4563 #endif
4564 	put_online_mems();
4565 	kfree(nodes);
4566 	return x + sprintf(buf + x, "\n");
4567 }
4568 
4569 #ifdef CONFIG_SLUB_DEBUG
4570 static int any_slab_objects(struct kmem_cache *s)
4571 {
4572 	int node;
4573 	struct kmem_cache_node *n;
4574 
4575 	for_each_kmem_cache_node(s, node, n)
4576 		if (atomic_long_read(&n->total_objects))
4577 			return 1;
4578 
4579 	return 0;
4580 }
4581 #endif
4582 
4583 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4584 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4585 
4586 struct slab_attribute {
4587 	struct attribute attr;
4588 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4589 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4590 };
4591 
4592 #define SLAB_ATTR_RO(_name) \
4593 	static struct slab_attribute _name##_attr = \
4594 	__ATTR(_name, 0400, _name##_show, NULL)
4595 
4596 #define SLAB_ATTR(_name) \
4597 	static struct slab_attribute _name##_attr =  \
4598 	__ATTR(_name, 0600, _name##_show, _name##_store)
4599 
4600 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4601 {
4602 	return sprintf(buf, "%d\n", s->size);
4603 }
4604 SLAB_ATTR_RO(slab_size);
4605 
4606 static ssize_t align_show(struct kmem_cache *s, char *buf)
4607 {
4608 	return sprintf(buf, "%d\n", s->align);
4609 }
4610 SLAB_ATTR_RO(align);
4611 
4612 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4613 {
4614 	return sprintf(buf, "%d\n", s->object_size);
4615 }
4616 SLAB_ATTR_RO(object_size);
4617 
4618 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4619 {
4620 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4621 }
4622 SLAB_ATTR_RO(objs_per_slab);
4623 
4624 static ssize_t order_store(struct kmem_cache *s,
4625 				const char *buf, size_t length)
4626 {
4627 	unsigned long order;
4628 	int err;
4629 
4630 	err = kstrtoul(buf, 10, &order);
4631 	if (err)
4632 		return err;
4633 
4634 	if (order > slub_max_order || order < slub_min_order)
4635 		return -EINVAL;
4636 
4637 	calculate_sizes(s, order);
4638 	return length;
4639 }
4640 
4641 static ssize_t order_show(struct kmem_cache *s, char *buf)
4642 {
4643 	return sprintf(buf, "%d\n", oo_order(s->oo));
4644 }
4645 SLAB_ATTR(order);
4646 
4647 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4648 {
4649 	return sprintf(buf, "%lu\n", s->min_partial);
4650 }
4651 
4652 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4653 				 size_t length)
4654 {
4655 	unsigned long min;
4656 	int err;
4657 
4658 	err = kstrtoul(buf, 10, &min);
4659 	if (err)
4660 		return err;
4661 
4662 	set_min_partial(s, min);
4663 	return length;
4664 }
4665 SLAB_ATTR(min_partial);
4666 
4667 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4668 {
4669 	return sprintf(buf, "%u\n", s->cpu_partial);
4670 }
4671 
4672 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4673 				 size_t length)
4674 {
4675 	unsigned long objects;
4676 	int err;
4677 
4678 	err = kstrtoul(buf, 10, &objects);
4679 	if (err)
4680 		return err;
4681 	if (objects && !kmem_cache_has_cpu_partial(s))
4682 		return -EINVAL;
4683 
4684 	s->cpu_partial = objects;
4685 	flush_all(s);
4686 	return length;
4687 }
4688 SLAB_ATTR(cpu_partial);
4689 
4690 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4691 {
4692 	if (!s->ctor)
4693 		return 0;
4694 	return sprintf(buf, "%pS\n", s->ctor);
4695 }
4696 SLAB_ATTR_RO(ctor);
4697 
4698 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4699 {
4700 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4701 }
4702 SLAB_ATTR_RO(aliases);
4703 
4704 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4705 {
4706 	return show_slab_objects(s, buf, SO_PARTIAL);
4707 }
4708 SLAB_ATTR_RO(partial);
4709 
4710 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4711 {
4712 	return show_slab_objects(s, buf, SO_CPU);
4713 }
4714 SLAB_ATTR_RO(cpu_slabs);
4715 
4716 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4717 {
4718 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4719 }
4720 SLAB_ATTR_RO(objects);
4721 
4722 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4723 {
4724 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4725 }
4726 SLAB_ATTR_RO(objects_partial);
4727 
4728 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4729 {
4730 	int objects = 0;
4731 	int pages = 0;
4732 	int cpu;
4733 	int len;
4734 
4735 	for_each_online_cpu(cpu) {
4736 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4737 
4738 		if (page) {
4739 			pages += page->pages;
4740 			objects += page->pobjects;
4741 		}
4742 	}
4743 
4744 	len = sprintf(buf, "%d(%d)", objects, pages);
4745 
4746 #ifdef CONFIG_SMP
4747 	for_each_online_cpu(cpu) {
4748 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4749 
4750 		if (page && len < PAGE_SIZE - 20)
4751 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4752 				page->pobjects, page->pages);
4753 	}
4754 #endif
4755 	return len + sprintf(buf + len, "\n");
4756 }
4757 SLAB_ATTR_RO(slabs_cpu_partial);
4758 
4759 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4760 {
4761 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4762 }
4763 
4764 static ssize_t reclaim_account_store(struct kmem_cache *s,
4765 				const char *buf, size_t length)
4766 {
4767 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4768 	if (buf[0] == '1')
4769 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4770 	return length;
4771 }
4772 SLAB_ATTR(reclaim_account);
4773 
4774 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4775 {
4776 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4777 }
4778 SLAB_ATTR_RO(hwcache_align);
4779 
4780 #ifdef CONFIG_ZONE_DMA
4781 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4782 {
4783 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4784 }
4785 SLAB_ATTR_RO(cache_dma);
4786 #endif
4787 
4788 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4789 {
4790 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4791 }
4792 SLAB_ATTR_RO(destroy_by_rcu);
4793 
4794 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4795 {
4796 	return sprintf(buf, "%d\n", s->reserved);
4797 }
4798 SLAB_ATTR_RO(reserved);
4799 
4800 #ifdef CONFIG_SLUB_DEBUG
4801 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4802 {
4803 	return show_slab_objects(s, buf, SO_ALL);
4804 }
4805 SLAB_ATTR_RO(slabs);
4806 
4807 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4808 {
4809 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4810 }
4811 SLAB_ATTR_RO(total_objects);
4812 
4813 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4814 {
4815 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4816 }
4817 
4818 static ssize_t sanity_checks_store(struct kmem_cache *s,
4819 				const char *buf, size_t length)
4820 {
4821 	s->flags &= ~SLAB_DEBUG_FREE;
4822 	if (buf[0] == '1') {
4823 		s->flags &= ~__CMPXCHG_DOUBLE;
4824 		s->flags |= SLAB_DEBUG_FREE;
4825 	}
4826 	return length;
4827 }
4828 SLAB_ATTR(sanity_checks);
4829 
4830 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4831 {
4832 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4833 }
4834 
4835 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4836 							size_t length)
4837 {
4838 	/*
4839 	 * Tracing a merged cache is going to give confusing results
4840 	 * as well as cause other issues like converting a mergeable
4841 	 * cache into an umergeable one.
4842 	 */
4843 	if (s->refcount > 1)
4844 		return -EINVAL;
4845 
4846 	s->flags &= ~SLAB_TRACE;
4847 	if (buf[0] == '1') {
4848 		s->flags &= ~__CMPXCHG_DOUBLE;
4849 		s->flags |= SLAB_TRACE;
4850 	}
4851 	return length;
4852 }
4853 SLAB_ATTR(trace);
4854 
4855 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4856 {
4857 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4858 }
4859 
4860 static ssize_t red_zone_store(struct kmem_cache *s,
4861 				const char *buf, size_t length)
4862 {
4863 	if (any_slab_objects(s))
4864 		return -EBUSY;
4865 
4866 	s->flags &= ~SLAB_RED_ZONE;
4867 	if (buf[0] == '1') {
4868 		s->flags &= ~__CMPXCHG_DOUBLE;
4869 		s->flags |= SLAB_RED_ZONE;
4870 	}
4871 	calculate_sizes(s, -1);
4872 	return length;
4873 }
4874 SLAB_ATTR(red_zone);
4875 
4876 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4877 {
4878 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4879 }
4880 
4881 static ssize_t poison_store(struct kmem_cache *s,
4882 				const char *buf, size_t length)
4883 {
4884 	if (any_slab_objects(s))
4885 		return -EBUSY;
4886 
4887 	s->flags &= ~SLAB_POISON;
4888 	if (buf[0] == '1') {
4889 		s->flags &= ~__CMPXCHG_DOUBLE;
4890 		s->flags |= SLAB_POISON;
4891 	}
4892 	calculate_sizes(s, -1);
4893 	return length;
4894 }
4895 SLAB_ATTR(poison);
4896 
4897 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4898 {
4899 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4900 }
4901 
4902 static ssize_t store_user_store(struct kmem_cache *s,
4903 				const char *buf, size_t length)
4904 {
4905 	if (any_slab_objects(s))
4906 		return -EBUSY;
4907 
4908 	s->flags &= ~SLAB_STORE_USER;
4909 	if (buf[0] == '1') {
4910 		s->flags &= ~__CMPXCHG_DOUBLE;
4911 		s->flags |= SLAB_STORE_USER;
4912 	}
4913 	calculate_sizes(s, -1);
4914 	return length;
4915 }
4916 SLAB_ATTR(store_user);
4917 
4918 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4919 {
4920 	return 0;
4921 }
4922 
4923 static ssize_t validate_store(struct kmem_cache *s,
4924 			const char *buf, size_t length)
4925 {
4926 	int ret = -EINVAL;
4927 
4928 	if (buf[0] == '1') {
4929 		ret = validate_slab_cache(s);
4930 		if (ret >= 0)
4931 			ret = length;
4932 	}
4933 	return ret;
4934 }
4935 SLAB_ATTR(validate);
4936 
4937 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4938 {
4939 	if (!(s->flags & SLAB_STORE_USER))
4940 		return -ENOSYS;
4941 	return list_locations(s, buf, TRACK_ALLOC);
4942 }
4943 SLAB_ATTR_RO(alloc_calls);
4944 
4945 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4946 {
4947 	if (!(s->flags & SLAB_STORE_USER))
4948 		return -ENOSYS;
4949 	return list_locations(s, buf, TRACK_FREE);
4950 }
4951 SLAB_ATTR_RO(free_calls);
4952 #endif /* CONFIG_SLUB_DEBUG */
4953 
4954 #ifdef CONFIG_FAILSLAB
4955 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4956 {
4957 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4958 }
4959 
4960 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4961 							size_t length)
4962 {
4963 	if (s->refcount > 1)
4964 		return -EINVAL;
4965 
4966 	s->flags &= ~SLAB_FAILSLAB;
4967 	if (buf[0] == '1')
4968 		s->flags |= SLAB_FAILSLAB;
4969 	return length;
4970 }
4971 SLAB_ATTR(failslab);
4972 #endif
4973 
4974 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4975 {
4976 	return 0;
4977 }
4978 
4979 static ssize_t shrink_store(struct kmem_cache *s,
4980 			const char *buf, size_t length)
4981 {
4982 	if (buf[0] == '1')
4983 		kmem_cache_shrink(s);
4984 	else
4985 		return -EINVAL;
4986 	return length;
4987 }
4988 SLAB_ATTR(shrink);
4989 
4990 #ifdef CONFIG_NUMA
4991 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4992 {
4993 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4994 }
4995 
4996 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4997 				const char *buf, size_t length)
4998 {
4999 	unsigned long ratio;
5000 	int err;
5001 
5002 	err = kstrtoul(buf, 10, &ratio);
5003 	if (err)
5004 		return err;
5005 
5006 	if (ratio <= 100)
5007 		s->remote_node_defrag_ratio = ratio * 10;
5008 
5009 	return length;
5010 }
5011 SLAB_ATTR(remote_node_defrag_ratio);
5012 #endif
5013 
5014 #ifdef CONFIG_SLUB_STATS
5015 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5016 {
5017 	unsigned long sum  = 0;
5018 	int cpu;
5019 	int len;
5020 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5021 
5022 	if (!data)
5023 		return -ENOMEM;
5024 
5025 	for_each_online_cpu(cpu) {
5026 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5027 
5028 		data[cpu] = x;
5029 		sum += x;
5030 	}
5031 
5032 	len = sprintf(buf, "%lu", sum);
5033 
5034 #ifdef CONFIG_SMP
5035 	for_each_online_cpu(cpu) {
5036 		if (data[cpu] && len < PAGE_SIZE - 20)
5037 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5038 	}
5039 #endif
5040 	kfree(data);
5041 	return len + sprintf(buf + len, "\n");
5042 }
5043 
5044 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5045 {
5046 	int cpu;
5047 
5048 	for_each_online_cpu(cpu)
5049 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5050 }
5051 
5052 #define STAT_ATTR(si, text) 					\
5053 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5054 {								\
5055 	return show_stat(s, buf, si);				\
5056 }								\
5057 static ssize_t text##_store(struct kmem_cache *s,		\
5058 				const char *buf, size_t length)	\
5059 {								\
5060 	if (buf[0] != '0')					\
5061 		return -EINVAL;					\
5062 	clear_stat(s, si);					\
5063 	return length;						\
5064 }								\
5065 SLAB_ATTR(text);						\
5066 
5067 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5068 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5069 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5070 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5071 STAT_ATTR(FREE_FROZEN, free_frozen);
5072 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5073 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5074 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5075 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5076 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5077 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5078 STAT_ATTR(FREE_SLAB, free_slab);
5079 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5080 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5081 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5082 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5083 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5084 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5085 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5086 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5087 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5088 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5089 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5090 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5091 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5092 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5093 #endif
5094 
5095 static struct attribute *slab_attrs[] = {
5096 	&slab_size_attr.attr,
5097 	&object_size_attr.attr,
5098 	&objs_per_slab_attr.attr,
5099 	&order_attr.attr,
5100 	&min_partial_attr.attr,
5101 	&cpu_partial_attr.attr,
5102 	&objects_attr.attr,
5103 	&objects_partial_attr.attr,
5104 	&partial_attr.attr,
5105 	&cpu_slabs_attr.attr,
5106 	&ctor_attr.attr,
5107 	&aliases_attr.attr,
5108 	&align_attr.attr,
5109 	&hwcache_align_attr.attr,
5110 	&reclaim_account_attr.attr,
5111 	&destroy_by_rcu_attr.attr,
5112 	&shrink_attr.attr,
5113 	&reserved_attr.attr,
5114 	&slabs_cpu_partial_attr.attr,
5115 #ifdef CONFIG_SLUB_DEBUG
5116 	&total_objects_attr.attr,
5117 	&slabs_attr.attr,
5118 	&sanity_checks_attr.attr,
5119 	&trace_attr.attr,
5120 	&red_zone_attr.attr,
5121 	&poison_attr.attr,
5122 	&store_user_attr.attr,
5123 	&validate_attr.attr,
5124 	&alloc_calls_attr.attr,
5125 	&free_calls_attr.attr,
5126 #endif
5127 #ifdef CONFIG_ZONE_DMA
5128 	&cache_dma_attr.attr,
5129 #endif
5130 #ifdef CONFIG_NUMA
5131 	&remote_node_defrag_ratio_attr.attr,
5132 #endif
5133 #ifdef CONFIG_SLUB_STATS
5134 	&alloc_fastpath_attr.attr,
5135 	&alloc_slowpath_attr.attr,
5136 	&free_fastpath_attr.attr,
5137 	&free_slowpath_attr.attr,
5138 	&free_frozen_attr.attr,
5139 	&free_add_partial_attr.attr,
5140 	&free_remove_partial_attr.attr,
5141 	&alloc_from_partial_attr.attr,
5142 	&alloc_slab_attr.attr,
5143 	&alloc_refill_attr.attr,
5144 	&alloc_node_mismatch_attr.attr,
5145 	&free_slab_attr.attr,
5146 	&cpuslab_flush_attr.attr,
5147 	&deactivate_full_attr.attr,
5148 	&deactivate_empty_attr.attr,
5149 	&deactivate_to_head_attr.attr,
5150 	&deactivate_to_tail_attr.attr,
5151 	&deactivate_remote_frees_attr.attr,
5152 	&deactivate_bypass_attr.attr,
5153 	&order_fallback_attr.attr,
5154 	&cmpxchg_double_fail_attr.attr,
5155 	&cmpxchg_double_cpu_fail_attr.attr,
5156 	&cpu_partial_alloc_attr.attr,
5157 	&cpu_partial_free_attr.attr,
5158 	&cpu_partial_node_attr.attr,
5159 	&cpu_partial_drain_attr.attr,
5160 #endif
5161 #ifdef CONFIG_FAILSLAB
5162 	&failslab_attr.attr,
5163 #endif
5164 
5165 	NULL
5166 };
5167 
5168 static struct attribute_group slab_attr_group = {
5169 	.attrs = slab_attrs,
5170 };
5171 
5172 static ssize_t slab_attr_show(struct kobject *kobj,
5173 				struct attribute *attr,
5174 				char *buf)
5175 {
5176 	struct slab_attribute *attribute;
5177 	struct kmem_cache *s;
5178 	int err;
5179 
5180 	attribute = to_slab_attr(attr);
5181 	s = to_slab(kobj);
5182 
5183 	if (!attribute->show)
5184 		return -EIO;
5185 
5186 	err = attribute->show(s, buf);
5187 
5188 	return err;
5189 }
5190 
5191 static ssize_t slab_attr_store(struct kobject *kobj,
5192 				struct attribute *attr,
5193 				const char *buf, size_t len)
5194 {
5195 	struct slab_attribute *attribute;
5196 	struct kmem_cache *s;
5197 	int err;
5198 
5199 	attribute = to_slab_attr(attr);
5200 	s = to_slab(kobj);
5201 
5202 	if (!attribute->store)
5203 		return -EIO;
5204 
5205 	err = attribute->store(s, buf, len);
5206 #ifdef CONFIG_MEMCG
5207 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5208 		struct kmem_cache *c;
5209 
5210 		mutex_lock(&slab_mutex);
5211 		if (s->max_attr_size < len)
5212 			s->max_attr_size = len;
5213 
5214 		/*
5215 		 * This is a best effort propagation, so this function's return
5216 		 * value will be determined by the parent cache only. This is
5217 		 * basically because not all attributes will have a well
5218 		 * defined semantics for rollbacks - most of the actions will
5219 		 * have permanent effects.
5220 		 *
5221 		 * Returning the error value of any of the children that fail
5222 		 * is not 100 % defined, in the sense that users seeing the
5223 		 * error code won't be able to know anything about the state of
5224 		 * the cache.
5225 		 *
5226 		 * Only returning the error code for the parent cache at least
5227 		 * has well defined semantics. The cache being written to
5228 		 * directly either failed or succeeded, in which case we loop
5229 		 * through the descendants with best-effort propagation.
5230 		 */
5231 		for_each_memcg_cache(c, s)
5232 			attribute->store(c, buf, len);
5233 		mutex_unlock(&slab_mutex);
5234 	}
5235 #endif
5236 	return err;
5237 }
5238 
5239 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5240 {
5241 #ifdef CONFIG_MEMCG
5242 	int i;
5243 	char *buffer = NULL;
5244 	struct kmem_cache *root_cache;
5245 
5246 	if (is_root_cache(s))
5247 		return;
5248 
5249 	root_cache = s->memcg_params.root_cache;
5250 
5251 	/*
5252 	 * This mean this cache had no attribute written. Therefore, no point
5253 	 * in copying default values around
5254 	 */
5255 	if (!root_cache->max_attr_size)
5256 		return;
5257 
5258 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5259 		char mbuf[64];
5260 		char *buf;
5261 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5262 
5263 		if (!attr || !attr->store || !attr->show)
5264 			continue;
5265 
5266 		/*
5267 		 * It is really bad that we have to allocate here, so we will
5268 		 * do it only as a fallback. If we actually allocate, though,
5269 		 * we can just use the allocated buffer until the end.
5270 		 *
5271 		 * Most of the slub attributes will tend to be very small in
5272 		 * size, but sysfs allows buffers up to a page, so they can
5273 		 * theoretically happen.
5274 		 */
5275 		if (buffer)
5276 			buf = buffer;
5277 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5278 			buf = mbuf;
5279 		else {
5280 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5281 			if (WARN_ON(!buffer))
5282 				continue;
5283 			buf = buffer;
5284 		}
5285 
5286 		attr->show(root_cache, buf);
5287 		attr->store(s, buf, strlen(buf));
5288 	}
5289 
5290 	if (buffer)
5291 		free_page((unsigned long)buffer);
5292 #endif
5293 }
5294 
5295 static void kmem_cache_release(struct kobject *k)
5296 {
5297 	slab_kmem_cache_release(to_slab(k));
5298 }
5299 
5300 static const struct sysfs_ops slab_sysfs_ops = {
5301 	.show = slab_attr_show,
5302 	.store = slab_attr_store,
5303 };
5304 
5305 static struct kobj_type slab_ktype = {
5306 	.sysfs_ops = &slab_sysfs_ops,
5307 	.release = kmem_cache_release,
5308 };
5309 
5310 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5311 {
5312 	struct kobj_type *ktype = get_ktype(kobj);
5313 
5314 	if (ktype == &slab_ktype)
5315 		return 1;
5316 	return 0;
5317 }
5318 
5319 static const struct kset_uevent_ops slab_uevent_ops = {
5320 	.filter = uevent_filter,
5321 };
5322 
5323 static struct kset *slab_kset;
5324 
5325 static inline struct kset *cache_kset(struct kmem_cache *s)
5326 {
5327 #ifdef CONFIG_MEMCG
5328 	if (!is_root_cache(s))
5329 		return s->memcg_params.root_cache->memcg_kset;
5330 #endif
5331 	return slab_kset;
5332 }
5333 
5334 #define ID_STR_LENGTH 64
5335 
5336 /* Create a unique string id for a slab cache:
5337  *
5338  * Format	:[flags-]size
5339  */
5340 static char *create_unique_id(struct kmem_cache *s)
5341 {
5342 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5343 	char *p = name;
5344 
5345 	BUG_ON(!name);
5346 
5347 	*p++ = ':';
5348 	/*
5349 	 * First flags affecting slabcache operations. We will only
5350 	 * get here for aliasable slabs so we do not need to support
5351 	 * too many flags. The flags here must cover all flags that
5352 	 * are matched during merging to guarantee that the id is
5353 	 * unique.
5354 	 */
5355 	if (s->flags & SLAB_CACHE_DMA)
5356 		*p++ = 'd';
5357 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5358 		*p++ = 'a';
5359 	if (s->flags & SLAB_DEBUG_FREE)
5360 		*p++ = 'F';
5361 	if (!(s->flags & SLAB_NOTRACK))
5362 		*p++ = 't';
5363 	if (s->flags & SLAB_ACCOUNT)
5364 		*p++ = 'A';
5365 	if (p != name + 1)
5366 		*p++ = '-';
5367 	p += sprintf(p, "%07d", s->size);
5368 
5369 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5370 	return name;
5371 }
5372 
5373 static int sysfs_slab_add(struct kmem_cache *s)
5374 {
5375 	int err;
5376 	const char *name;
5377 	int unmergeable = slab_unmergeable(s);
5378 
5379 	if (unmergeable) {
5380 		/*
5381 		 * Slabcache can never be merged so we can use the name proper.
5382 		 * This is typically the case for debug situations. In that
5383 		 * case we can catch duplicate names easily.
5384 		 */
5385 		sysfs_remove_link(&slab_kset->kobj, s->name);
5386 		name = s->name;
5387 	} else {
5388 		/*
5389 		 * Create a unique name for the slab as a target
5390 		 * for the symlinks.
5391 		 */
5392 		name = create_unique_id(s);
5393 	}
5394 
5395 	s->kobj.kset = cache_kset(s);
5396 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5397 	if (err)
5398 		goto out;
5399 
5400 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5401 	if (err)
5402 		goto out_del_kobj;
5403 
5404 #ifdef CONFIG_MEMCG
5405 	if (is_root_cache(s)) {
5406 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5407 		if (!s->memcg_kset) {
5408 			err = -ENOMEM;
5409 			goto out_del_kobj;
5410 		}
5411 	}
5412 #endif
5413 
5414 	kobject_uevent(&s->kobj, KOBJ_ADD);
5415 	if (!unmergeable) {
5416 		/* Setup first alias */
5417 		sysfs_slab_alias(s, s->name);
5418 	}
5419 out:
5420 	if (!unmergeable)
5421 		kfree(name);
5422 	return err;
5423 out_del_kobj:
5424 	kobject_del(&s->kobj);
5425 	goto out;
5426 }
5427 
5428 void sysfs_slab_remove(struct kmem_cache *s)
5429 {
5430 	if (slab_state < FULL)
5431 		/*
5432 		 * Sysfs has not been setup yet so no need to remove the
5433 		 * cache from sysfs.
5434 		 */
5435 		return;
5436 
5437 #ifdef CONFIG_MEMCG
5438 	kset_unregister(s->memcg_kset);
5439 #endif
5440 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5441 	kobject_del(&s->kobj);
5442 	kobject_put(&s->kobj);
5443 }
5444 
5445 /*
5446  * Need to buffer aliases during bootup until sysfs becomes
5447  * available lest we lose that information.
5448  */
5449 struct saved_alias {
5450 	struct kmem_cache *s;
5451 	const char *name;
5452 	struct saved_alias *next;
5453 };
5454 
5455 static struct saved_alias *alias_list;
5456 
5457 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5458 {
5459 	struct saved_alias *al;
5460 
5461 	if (slab_state == FULL) {
5462 		/*
5463 		 * If we have a leftover link then remove it.
5464 		 */
5465 		sysfs_remove_link(&slab_kset->kobj, name);
5466 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5467 	}
5468 
5469 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5470 	if (!al)
5471 		return -ENOMEM;
5472 
5473 	al->s = s;
5474 	al->name = name;
5475 	al->next = alias_list;
5476 	alias_list = al;
5477 	return 0;
5478 }
5479 
5480 static int __init slab_sysfs_init(void)
5481 {
5482 	struct kmem_cache *s;
5483 	int err;
5484 
5485 	mutex_lock(&slab_mutex);
5486 
5487 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5488 	if (!slab_kset) {
5489 		mutex_unlock(&slab_mutex);
5490 		pr_err("Cannot register slab subsystem.\n");
5491 		return -ENOSYS;
5492 	}
5493 
5494 	slab_state = FULL;
5495 
5496 	list_for_each_entry(s, &slab_caches, list) {
5497 		err = sysfs_slab_add(s);
5498 		if (err)
5499 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5500 			       s->name);
5501 	}
5502 
5503 	while (alias_list) {
5504 		struct saved_alias *al = alias_list;
5505 
5506 		alias_list = alias_list->next;
5507 		err = sysfs_slab_alias(al->s, al->name);
5508 		if (err)
5509 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5510 			       al->name);
5511 		kfree(al);
5512 	}
5513 
5514 	mutex_unlock(&slab_mutex);
5515 	resiliency_test();
5516 	return 0;
5517 }
5518 
5519 __initcall(slab_sysfs_init);
5520 #endif /* CONFIG_SYSFS */
5521 
5522 /*
5523  * The /proc/slabinfo ABI
5524  */
5525 #ifdef CONFIG_SLABINFO
5526 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5527 {
5528 	unsigned long nr_slabs = 0;
5529 	unsigned long nr_objs = 0;
5530 	unsigned long nr_free = 0;
5531 	int node;
5532 	struct kmem_cache_node *n;
5533 
5534 	for_each_kmem_cache_node(s, node, n) {
5535 		nr_slabs += node_nr_slabs(n);
5536 		nr_objs += node_nr_objs(n);
5537 		nr_free += count_partial(n, count_free);
5538 	}
5539 
5540 	sinfo->active_objs = nr_objs - nr_free;
5541 	sinfo->num_objs = nr_objs;
5542 	sinfo->active_slabs = nr_slabs;
5543 	sinfo->num_slabs = nr_slabs;
5544 	sinfo->objects_per_slab = oo_objects(s->oo);
5545 	sinfo->cache_order = oo_order(s->oo);
5546 }
5547 
5548 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5549 {
5550 }
5551 
5552 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5553 		       size_t count, loff_t *ppos)
5554 {
5555 	return -EIO;
5556 }
5557 #endif /* CONFIG_SLABINFO */
5558