1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/kfence.h> 32 #include <linux/memory.h> 33 #include <linux/math64.h> 34 #include <linux/fault-inject.h> 35 #include <linux/stacktrace.h> 36 #include <linux/prefetch.h> 37 #include <linux/memcontrol.h> 38 #include <linux/random.h> 39 #include <kunit/test.h> 40 41 #include <linux/debugfs.h> 42 #include <trace/events/kmem.h> 43 44 #include "internal.h" 45 46 /* 47 * Lock order: 48 * 1. slab_mutex (Global Mutex) 49 * 2. node->list_lock (Spinlock) 50 * 3. kmem_cache->cpu_slab->lock (Local lock) 51 * 4. slab_lock(slab) (Only on some arches or for debugging) 52 * 5. object_map_lock (Only for debugging) 53 * 54 * slab_mutex 55 * 56 * The role of the slab_mutex is to protect the list of all the slabs 57 * and to synchronize major metadata changes to slab cache structures. 58 * Also synchronizes memory hotplug callbacks. 59 * 60 * slab_lock 61 * 62 * The slab_lock is a wrapper around the page lock, thus it is a bit 63 * spinlock. 64 * 65 * The slab_lock is only used for debugging and on arches that do not 66 * have the ability to do a cmpxchg_double. It only protects: 67 * A. slab->freelist -> List of free objects in a slab 68 * B. slab->inuse -> Number of objects in use 69 * C. slab->objects -> Number of objects in slab 70 * D. slab->frozen -> frozen state 71 * 72 * Frozen slabs 73 * 74 * If a slab is frozen then it is exempt from list management. It is not 75 * on any list except per cpu partial list. The processor that froze the 76 * slab is the one who can perform list operations on the slab. Other 77 * processors may put objects onto the freelist but the processor that 78 * froze the slab is the only one that can retrieve the objects from the 79 * slab's freelist. 80 * 81 * list_lock 82 * 83 * The list_lock protects the partial and full list on each node and 84 * the partial slab counter. If taken then no new slabs may be added or 85 * removed from the lists nor make the number of partial slabs be modified. 86 * (Note that the total number of slabs is an atomic value that may be 87 * modified without taking the list lock). 88 * 89 * The list_lock is a centralized lock and thus we avoid taking it as 90 * much as possible. As long as SLUB does not have to handle partial 91 * slabs, operations can continue without any centralized lock. F.e. 92 * allocating a long series of objects that fill up slabs does not require 93 * the list lock. 94 * 95 * cpu_slab->lock local lock 96 * 97 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 98 * except the stat counters. This is a percpu structure manipulated only by 99 * the local cpu, so the lock protects against being preempted or interrupted 100 * by an irq. Fast path operations rely on lockless operations instead. 101 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus 102 * prevent the lockless operations), so fastpath operations also need to take 103 * the lock and are no longer lockless. 104 * 105 * lockless fastpaths 106 * 107 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 108 * are fully lockless when satisfied from the percpu slab (and when 109 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 110 * They also don't disable preemption or migration or irqs. They rely on 111 * the transaction id (tid) field to detect being preempted or moved to 112 * another cpu. 113 * 114 * irq, preemption, migration considerations 115 * 116 * Interrupts are disabled as part of list_lock or local_lock operations, or 117 * around the slab_lock operation, in order to make the slab allocator safe 118 * to use in the context of an irq. 119 * 120 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 121 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 122 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 123 * doesn't have to be revalidated in each section protected by the local lock. 124 * 125 * SLUB assigns one slab for allocation to each processor. 126 * Allocations only occur from these slabs called cpu slabs. 127 * 128 * Slabs with free elements are kept on a partial list and during regular 129 * operations no list for full slabs is used. If an object in a full slab is 130 * freed then the slab will show up again on the partial lists. 131 * We track full slabs for debugging purposes though because otherwise we 132 * cannot scan all objects. 133 * 134 * Slabs are freed when they become empty. Teardown and setup is 135 * minimal so we rely on the page allocators per cpu caches for 136 * fast frees and allocs. 137 * 138 * slab->frozen The slab is frozen and exempt from list processing. 139 * This means that the slab is dedicated to a purpose 140 * such as satisfying allocations for a specific 141 * processor. Objects may be freed in the slab while 142 * it is frozen but slab_free will then skip the usual 143 * list operations. It is up to the processor holding 144 * the slab to integrate the slab into the slab lists 145 * when the slab is no longer needed. 146 * 147 * One use of this flag is to mark slabs that are 148 * used for allocations. Then such a slab becomes a cpu 149 * slab. The cpu slab may be equipped with an additional 150 * freelist that allows lockless access to 151 * free objects in addition to the regular freelist 152 * that requires the slab lock. 153 * 154 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 155 * options set. This moves slab handling out of 156 * the fast path and disables lockless freelists. 157 */ 158 159 /* 160 * We could simply use migrate_disable()/enable() but as long as it's a 161 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 162 */ 163 #ifndef CONFIG_PREEMPT_RT 164 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 165 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 166 #else 167 #define slub_get_cpu_ptr(var) \ 168 ({ \ 169 migrate_disable(); \ 170 this_cpu_ptr(var); \ 171 }) 172 #define slub_put_cpu_ptr(var) \ 173 do { \ 174 (void)(var); \ 175 migrate_enable(); \ 176 } while (0) 177 #endif 178 179 #ifdef CONFIG_SLUB_DEBUG 180 #ifdef CONFIG_SLUB_DEBUG_ON 181 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 182 #else 183 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 184 #endif 185 #endif /* CONFIG_SLUB_DEBUG */ 186 187 static inline bool kmem_cache_debug(struct kmem_cache *s) 188 { 189 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 190 } 191 192 void *fixup_red_left(struct kmem_cache *s, void *p) 193 { 194 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 195 p += s->red_left_pad; 196 197 return p; 198 } 199 200 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 201 { 202 #ifdef CONFIG_SLUB_CPU_PARTIAL 203 return !kmem_cache_debug(s); 204 #else 205 return false; 206 #endif 207 } 208 209 /* 210 * Issues still to be resolved: 211 * 212 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 213 * 214 * - Variable sizing of the per node arrays 215 */ 216 217 /* Enable to log cmpxchg failures */ 218 #undef SLUB_DEBUG_CMPXCHG 219 220 /* 221 * Minimum number of partial slabs. These will be left on the partial 222 * lists even if they are empty. kmem_cache_shrink may reclaim them. 223 */ 224 #define MIN_PARTIAL 5 225 226 /* 227 * Maximum number of desirable partial slabs. 228 * The existence of more partial slabs makes kmem_cache_shrink 229 * sort the partial list by the number of objects in use. 230 */ 231 #define MAX_PARTIAL 10 232 233 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 234 SLAB_POISON | SLAB_STORE_USER) 235 236 /* 237 * These debug flags cannot use CMPXCHG because there might be consistency 238 * issues when checking or reading debug information 239 */ 240 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 241 SLAB_TRACE) 242 243 244 /* 245 * Debugging flags that require metadata to be stored in the slab. These get 246 * disabled when slub_debug=O is used and a cache's min order increases with 247 * metadata. 248 */ 249 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 250 251 #define OO_SHIFT 16 252 #define OO_MASK ((1 << OO_SHIFT) - 1) 253 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 254 255 /* Internal SLUB flags */ 256 /* Poison object */ 257 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 258 /* Use cmpxchg_double */ 259 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 260 261 /* 262 * Tracking user of a slab. 263 */ 264 #define TRACK_ADDRS_COUNT 16 265 struct track { 266 unsigned long addr; /* Called from address */ 267 #ifdef CONFIG_STACKTRACE 268 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 269 #endif 270 int cpu; /* Was running on cpu */ 271 int pid; /* Pid context */ 272 unsigned long when; /* When did the operation occur */ 273 }; 274 275 enum track_item { TRACK_ALLOC, TRACK_FREE }; 276 277 #ifdef CONFIG_SYSFS 278 static int sysfs_slab_add(struct kmem_cache *); 279 static int sysfs_slab_alias(struct kmem_cache *, const char *); 280 #else 281 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 282 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 283 { return 0; } 284 #endif 285 286 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 287 static void debugfs_slab_add(struct kmem_cache *); 288 #else 289 static inline void debugfs_slab_add(struct kmem_cache *s) { } 290 #endif 291 292 static inline void stat(const struct kmem_cache *s, enum stat_item si) 293 { 294 #ifdef CONFIG_SLUB_STATS 295 /* 296 * The rmw is racy on a preemptible kernel but this is acceptable, so 297 * avoid this_cpu_add()'s irq-disable overhead. 298 */ 299 raw_cpu_inc(s->cpu_slab->stat[si]); 300 #endif 301 } 302 303 /* 304 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 305 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 306 * differ during memory hotplug/hotremove operations. 307 * Protected by slab_mutex. 308 */ 309 static nodemask_t slab_nodes; 310 311 /******************************************************************** 312 * Core slab cache functions 313 *******************************************************************/ 314 315 /* 316 * Returns freelist pointer (ptr). With hardening, this is obfuscated 317 * with an XOR of the address where the pointer is held and a per-cache 318 * random number. 319 */ 320 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 321 unsigned long ptr_addr) 322 { 323 #ifdef CONFIG_SLAB_FREELIST_HARDENED 324 /* 325 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 326 * Normally, this doesn't cause any issues, as both set_freepointer() 327 * and get_freepointer() are called with a pointer with the same tag. 328 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 329 * example, when __free_slub() iterates over objects in a cache, it 330 * passes untagged pointers to check_object(). check_object() in turns 331 * calls get_freepointer() with an untagged pointer, which causes the 332 * freepointer to be restored incorrectly. 333 */ 334 return (void *)((unsigned long)ptr ^ s->random ^ 335 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 336 #else 337 return ptr; 338 #endif 339 } 340 341 /* Returns the freelist pointer recorded at location ptr_addr. */ 342 static inline void *freelist_dereference(const struct kmem_cache *s, 343 void *ptr_addr) 344 { 345 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 346 (unsigned long)ptr_addr); 347 } 348 349 static inline void *get_freepointer(struct kmem_cache *s, void *object) 350 { 351 object = kasan_reset_tag(object); 352 return freelist_dereference(s, object + s->offset); 353 } 354 355 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 356 { 357 prefetchw(object + s->offset); 358 } 359 360 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 361 { 362 unsigned long freepointer_addr; 363 void *p; 364 365 if (!debug_pagealloc_enabled_static()) 366 return get_freepointer(s, object); 367 368 object = kasan_reset_tag(object); 369 freepointer_addr = (unsigned long)object + s->offset; 370 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 371 return freelist_ptr(s, p, freepointer_addr); 372 } 373 374 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 375 { 376 unsigned long freeptr_addr = (unsigned long)object + s->offset; 377 378 #ifdef CONFIG_SLAB_FREELIST_HARDENED 379 BUG_ON(object == fp); /* naive detection of double free or corruption */ 380 #endif 381 382 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 383 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 384 } 385 386 /* Loop over all objects in a slab */ 387 #define for_each_object(__p, __s, __addr, __objects) \ 388 for (__p = fixup_red_left(__s, __addr); \ 389 __p < (__addr) + (__objects) * (__s)->size; \ 390 __p += (__s)->size) 391 392 static inline unsigned int order_objects(unsigned int order, unsigned int size) 393 { 394 return ((unsigned int)PAGE_SIZE << order) / size; 395 } 396 397 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 398 unsigned int size) 399 { 400 struct kmem_cache_order_objects x = { 401 (order << OO_SHIFT) + order_objects(order, size) 402 }; 403 404 return x; 405 } 406 407 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 408 { 409 return x.x >> OO_SHIFT; 410 } 411 412 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 413 { 414 return x.x & OO_MASK; 415 } 416 417 #ifdef CONFIG_SLUB_CPU_PARTIAL 418 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 419 { 420 unsigned int nr_slabs; 421 422 s->cpu_partial = nr_objects; 423 424 /* 425 * We take the number of objects but actually limit the number of 426 * slabs on the per cpu partial list, in order to limit excessive 427 * growth of the list. For simplicity we assume that the slabs will 428 * be half-full. 429 */ 430 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 431 s->cpu_partial_slabs = nr_slabs; 432 } 433 #else 434 static inline void 435 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 436 { 437 } 438 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 439 440 /* 441 * Per slab locking using the pagelock 442 */ 443 static __always_inline void __slab_lock(struct slab *slab) 444 { 445 struct page *page = slab_page(slab); 446 447 VM_BUG_ON_PAGE(PageTail(page), page); 448 bit_spin_lock(PG_locked, &page->flags); 449 } 450 451 static __always_inline void __slab_unlock(struct slab *slab) 452 { 453 struct page *page = slab_page(slab); 454 455 VM_BUG_ON_PAGE(PageTail(page), page); 456 __bit_spin_unlock(PG_locked, &page->flags); 457 } 458 459 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags) 460 { 461 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 462 local_irq_save(*flags); 463 __slab_lock(slab); 464 } 465 466 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags) 467 { 468 __slab_unlock(slab); 469 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 470 local_irq_restore(*flags); 471 } 472 473 /* 474 * Interrupts must be disabled (for the fallback code to work right), typically 475 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different 476 * so we disable interrupts as part of slab_[un]lock(). 477 */ 478 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 479 void *freelist_old, unsigned long counters_old, 480 void *freelist_new, unsigned long counters_new, 481 const char *n) 482 { 483 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 484 lockdep_assert_irqs_disabled(); 485 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 486 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 487 if (s->flags & __CMPXCHG_DOUBLE) { 488 if (cmpxchg_double(&slab->freelist, &slab->counters, 489 freelist_old, counters_old, 490 freelist_new, counters_new)) 491 return true; 492 } else 493 #endif 494 { 495 /* init to 0 to prevent spurious warnings */ 496 unsigned long flags = 0; 497 498 slab_lock(slab, &flags); 499 if (slab->freelist == freelist_old && 500 slab->counters == counters_old) { 501 slab->freelist = freelist_new; 502 slab->counters = counters_new; 503 slab_unlock(slab, &flags); 504 return true; 505 } 506 slab_unlock(slab, &flags); 507 } 508 509 cpu_relax(); 510 stat(s, CMPXCHG_DOUBLE_FAIL); 511 512 #ifdef SLUB_DEBUG_CMPXCHG 513 pr_info("%s %s: cmpxchg double redo ", n, s->name); 514 #endif 515 516 return false; 517 } 518 519 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 520 void *freelist_old, unsigned long counters_old, 521 void *freelist_new, unsigned long counters_new, 522 const char *n) 523 { 524 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 525 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 526 if (s->flags & __CMPXCHG_DOUBLE) { 527 if (cmpxchg_double(&slab->freelist, &slab->counters, 528 freelist_old, counters_old, 529 freelist_new, counters_new)) 530 return true; 531 } else 532 #endif 533 { 534 unsigned long flags; 535 536 local_irq_save(flags); 537 __slab_lock(slab); 538 if (slab->freelist == freelist_old && 539 slab->counters == counters_old) { 540 slab->freelist = freelist_new; 541 slab->counters = counters_new; 542 __slab_unlock(slab); 543 local_irq_restore(flags); 544 return true; 545 } 546 __slab_unlock(slab); 547 local_irq_restore(flags); 548 } 549 550 cpu_relax(); 551 stat(s, CMPXCHG_DOUBLE_FAIL); 552 553 #ifdef SLUB_DEBUG_CMPXCHG 554 pr_info("%s %s: cmpxchg double redo ", n, s->name); 555 #endif 556 557 return false; 558 } 559 560 #ifdef CONFIG_SLUB_DEBUG 561 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 562 static DEFINE_RAW_SPINLOCK(object_map_lock); 563 564 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 565 struct slab *slab) 566 { 567 void *addr = slab_address(slab); 568 void *p; 569 570 bitmap_zero(obj_map, slab->objects); 571 572 for (p = slab->freelist; p; p = get_freepointer(s, p)) 573 set_bit(__obj_to_index(s, addr, p), obj_map); 574 } 575 576 #if IS_ENABLED(CONFIG_KUNIT) 577 static bool slab_add_kunit_errors(void) 578 { 579 struct kunit_resource *resource; 580 581 if (likely(!current->kunit_test)) 582 return false; 583 584 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 585 if (!resource) 586 return false; 587 588 (*(int *)resource->data)++; 589 kunit_put_resource(resource); 590 return true; 591 } 592 #else 593 static inline bool slab_add_kunit_errors(void) { return false; } 594 #endif 595 596 /* 597 * Determine a map of objects in use in a slab. 598 * 599 * Node listlock must be held to guarantee that the slab does 600 * not vanish from under us. 601 */ 602 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab) 603 __acquires(&object_map_lock) 604 { 605 VM_BUG_ON(!irqs_disabled()); 606 607 raw_spin_lock(&object_map_lock); 608 609 __fill_map(object_map, s, slab); 610 611 return object_map; 612 } 613 614 static void put_map(unsigned long *map) __releases(&object_map_lock) 615 { 616 VM_BUG_ON(map != object_map); 617 raw_spin_unlock(&object_map_lock); 618 } 619 620 static inline unsigned int size_from_object(struct kmem_cache *s) 621 { 622 if (s->flags & SLAB_RED_ZONE) 623 return s->size - s->red_left_pad; 624 625 return s->size; 626 } 627 628 static inline void *restore_red_left(struct kmem_cache *s, void *p) 629 { 630 if (s->flags & SLAB_RED_ZONE) 631 p -= s->red_left_pad; 632 633 return p; 634 } 635 636 /* 637 * Debug settings: 638 */ 639 #if defined(CONFIG_SLUB_DEBUG_ON) 640 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 641 #else 642 static slab_flags_t slub_debug; 643 #endif 644 645 static char *slub_debug_string; 646 static int disable_higher_order_debug; 647 648 /* 649 * slub is about to manipulate internal object metadata. This memory lies 650 * outside the range of the allocated object, so accessing it would normally 651 * be reported by kasan as a bounds error. metadata_access_enable() is used 652 * to tell kasan that these accesses are OK. 653 */ 654 static inline void metadata_access_enable(void) 655 { 656 kasan_disable_current(); 657 } 658 659 static inline void metadata_access_disable(void) 660 { 661 kasan_enable_current(); 662 } 663 664 /* 665 * Object debugging 666 */ 667 668 /* Verify that a pointer has an address that is valid within a slab page */ 669 static inline int check_valid_pointer(struct kmem_cache *s, 670 struct slab *slab, void *object) 671 { 672 void *base; 673 674 if (!object) 675 return 1; 676 677 base = slab_address(slab); 678 object = kasan_reset_tag(object); 679 object = restore_red_left(s, object); 680 if (object < base || object >= base + slab->objects * s->size || 681 (object - base) % s->size) { 682 return 0; 683 } 684 685 return 1; 686 } 687 688 static void print_section(char *level, char *text, u8 *addr, 689 unsigned int length) 690 { 691 metadata_access_enable(); 692 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 693 16, 1, kasan_reset_tag((void *)addr), length, 1); 694 metadata_access_disable(); 695 } 696 697 /* 698 * See comment in calculate_sizes(). 699 */ 700 static inline bool freeptr_outside_object(struct kmem_cache *s) 701 { 702 return s->offset >= s->inuse; 703 } 704 705 /* 706 * Return offset of the end of info block which is inuse + free pointer if 707 * not overlapping with object. 708 */ 709 static inline unsigned int get_info_end(struct kmem_cache *s) 710 { 711 if (freeptr_outside_object(s)) 712 return s->inuse + sizeof(void *); 713 else 714 return s->inuse; 715 } 716 717 static struct track *get_track(struct kmem_cache *s, void *object, 718 enum track_item alloc) 719 { 720 struct track *p; 721 722 p = object + get_info_end(s); 723 724 return kasan_reset_tag(p + alloc); 725 } 726 727 static void set_track(struct kmem_cache *s, void *object, 728 enum track_item alloc, unsigned long addr) 729 { 730 struct track *p = get_track(s, object, alloc); 731 732 if (addr) { 733 #ifdef CONFIG_STACKTRACE 734 unsigned int nr_entries; 735 736 metadata_access_enable(); 737 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), 738 TRACK_ADDRS_COUNT, 3); 739 metadata_access_disable(); 740 741 if (nr_entries < TRACK_ADDRS_COUNT) 742 p->addrs[nr_entries] = 0; 743 #endif 744 p->addr = addr; 745 p->cpu = smp_processor_id(); 746 p->pid = current->pid; 747 p->when = jiffies; 748 } else { 749 memset(p, 0, sizeof(struct track)); 750 } 751 } 752 753 static void init_tracking(struct kmem_cache *s, void *object) 754 { 755 if (!(s->flags & SLAB_STORE_USER)) 756 return; 757 758 set_track(s, object, TRACK_FREE, 0UL); 759 set_track(s, object, TRACK_ALLOC, 0UL); 760 } 761 762 static void print_track(const char *s, struct track *t, unsigned long pr_time) 763 { 764 if (!t->addr) 765 return; 766 767 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 768 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 769 #ifdef CONFIG_STACKTRACE 770 { 771 int i; 772 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 773 if (t->addrs[i]) 774 pr_err("\t%pS\n", (void *)t->addrs[i]); 775 else 776 break; 777 } 778 #endif 779 } 780 781 void print_tracking(struct kmem_cache *s, void *object) 782 { 783 unsigned long pr_time = jiffies; 784 if (!(s->flags & SLAB_STORE_USER)) 785 return; 786 787 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 788 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 789 } 790 791 static void print_slab_info(const struct slab *slab) 792 { 793 struct folio *folio = (struct folio *)slab_folio(slab); 794 795 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 796 slab, slab->objects, slab->inuse, slab->freelist, 797 folio_flags(folio, 0)); 798 } 799 800 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 801 { 802 struct va_format vaf; 803 va_list args; 804 805 va_start(args, fmt); 806 vaf.fmt = fmt; 807 vaf.va = &args; 808 pr_err("=============================================================================\n"); 809 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 810 pr_err("-----------------------------------------------------------------------------\n\n"); 811 va_end(args); 812 } 813 814 __printf(2, 3) 815 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 816 { 817 struct va_format vaf; 818 va_list args; 819 820 if (slab_add_kunit_errors()) 821 return; 822 823 va_start(args, fmt); 824 vaf.fmt = fmt; 825 vaf.va = &args; 826 pr_err("FIX %s: %pV\n", s->name, &vaf); 827 va_end(args); 828 } 829 830 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 831 { 832 unsigned int off; /* Offset of last byte */ 833 u8 *addr = slab_address(slab); 834 835 print_tracking(s, p); 836 837 print_slab_info(slab); 838 839 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 840 p, p - addr, get_freepointer(s, p)); 841 842 if (s->flags & SLAB_RED_ZONE) 843 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 844 s->red_left_pad); 845 else if (p > addr + 16) 846 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 847 848 print_section(KERN_ERR, "Object ", p, 849 min_t(unsigned int, s->object_size, PAGE_SIZE)); 850 if (s->flags & SLAB_RED_ZONE) 851 print_section(KERN_ERR, "Redzone ", p + s->object_size, 852 s->inuse - s->object_size); 853 854 off = get_info_end(s); 855 856 if (s->flags & SLAB_STORE_USER) 857 off += 2 * sizeof(struct track); 858 859 off += kasan_metadata_size(s); 860 861 if (off != size_from_object(s)) 862 /* Beginning of the filler is the free pointer */ 863 print_section(KERN_ERR, "Padding ", p + off, 864 size_from_object(s) - off); 865 866 dump_stack(); 867 } 868 869 static void object_err(struct kmem_cache *s, struct slab *slab, 870 u8 *object, char *reason) 871 { 872 if (slab_add_kunit_errors()) 873 return; 874 875 slab_bug(s, "%s", reason); 876 print_trailer(s, slab, object); 877 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 878 } 879 880 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 881 void **freelist, void *nextfree) 882 { 883 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 884 !check_valid_pointer(s, slab, nextfree) && freelist) { 885 object_err(s, slab, *freelist, "Freechain corrupt"); 886 *freelist = NULL; 887 slab_fix(s, "Isolate corrupted freechain"); 888 return true; 889 } 890 891 return false; 892 } 893 894 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 895 const char *fmt, ...) 896 { 897 va_list args; 898 char buf[100]; 899 900 if (slab_add_kunit_errors()) 901 return; 902 903 va_start(args, fmt); 904 vsnprintf(buf, sizeof(buf), fmt, args); 905 va_end(args); 906 slab_bug(s, "%s", buf); 907 print_slab_info(slab); 908 dump_stack(); 909 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 910 } 911 912 static void init_object(struct kmem_cache *s, void *object, u8 val) 913 { 914 u8 *p = kasan_reset_tag(object); 915 916 if (s->flags & SLAB_RED_ZONE) 917 memset(p - s->red_left_pad, val, s->red_left_pad); 918 919 if (s->flags & __OBJECT_POISON) { 920 memset(p, POISON_FREE, s->object_size - 1); 921 p[s->object_size - 1] = POISON_END; 922 } 923 924 if (s->flags & SLAB_RED_ZONE) 925 memset(p + s->object_size, val, s->inuse - s->object_size); 926 } 927 928 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 929 void *from, void *to) 930 { 931 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 932 memset(from, data, to - from); 933 } 934 935 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 936 u8 *object, char *what, 937 u8 *start, unsigned int value, unsigned int bytes) 938 { 939 u8 *fault; 940 u8 *end; 941 u8 *addr = slab_address(slab); 942 943 metadata_access_enable(); 944 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 945 metadata_access_disable(); 946 if (!fault) 947 return 1; 948 949 end = start + bytes; 950 while (end > fault && end[-1] == value) 951 end--; 952 953 if (slab_add_kunit_errors()) 954 goto skip_bug_print; 955 956 slab_bug(s, "%s overwritten", what); 957 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 958 fault, end - 1, fault - addr, 959 fault[0], value); 960 print_trailer(s, slab, object); 961 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 962 963 skip_bug_print: 964 restore_bytes(s, what, value, fault, end); 965 return 0; 966 } 967 968 /* 969 * Object layout: 970 * 971 * object address 972 * Bytes of the object to be managed. 973 * If the freepointer may overlay the object then the free 974 * pointer is at the middle of the object. 975 * 976 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 977 * 0xa5 (POISON_END) 978 * 979 * object + s->object_size 980 * Padding to reach word boundary. This is also used for Redzoning. 981 * Padding is extended by another word if Redzoning is enabled and 982 * object_size == inuse. 983 * 984 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 985 * 0xcc (RED_ACTIVE) for objects in use. 986 * 987 * object + s->inuse 988 * Meta data starts here. 989 * 990 * A. Free pointer (if we cannot overwrite object on free) 991 * B. Tracking data for SLAB_STORE_USER 992 * C. Padding to reach required alignment boundary or at minimum 993 * one word if debugging is on to be able to detect writes 994 * before the word boundary. 995 * 996 * Padding is done using 0x5a (POISON_INUSE) 997 * 998 * object + s->size 999 * Nothing is used beyond s->size. 1000 * 1001 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1002 * ignored. And therefore no slab options that rely on these boundaries 1003 * may be used with merged slabcaches. 1004 */ 1005 1006 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1007 { 1008 unsigned long off = get_info_end(s); /* The end of info */ 1009 1010 if (s->flags & SLAB_STORE_USER) 1011 /* We also have user information there */ 1012 off += 2 * sizeof(struct track); 1013 1014 off += kasan_metadata_size(s); 1015 1016 if (size_from_object(s) == off) 1017 return 1; 1018 1019 return check_bytes_and_report(s, slab, p, "Object padding", 1020 p + off, POISON_INUSE, size_from_object(s) - off); 1021 } 1022 1023 /* Check the pad bytes at the end of a slab page */ 1024 static int slab_pad_check(struct kmem_cache *s, struct slab *slab) 1025 { 1026 u8 *start; 1027 u8 *fault; 1028 u8 *end; 1029 u8 *pad; 1030 int length; 1031 int remainder; 1032 1033 if (!(s->flags & SLAB_POISON)) 1034 return 1; 1035 1036 start = slab_address(slab); 1037 length = slab_size(slab); 1038 end = start + length; 1039 remainder = length % s->size; 1040 if (!remainder) 1041 return 1; 1042 1043 pad = end - remainder; 1044 metadata_access_enable(); 1045 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1046 metadata_access_disable(); 1047 if (!fault) 1048 return 1; 1049 while (end > fault && end[-1] == POISON_INUSE) 1050 end--; 1051 1052 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1053 fault, end - 1, fault - start); 1054 print_section(KERN_ERR, "Padding ", pad, remainder); 1055 1056 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1057 return 0; 1058 } 1059 1060 static int check_object(struct kmem_cache *s, struct slab *slab, 1061 void *object, u8 val) 1062 { 1063 u8 *p = object; 1064 u8 *endobject = object + s->object_size; 1065 1066 if (s->flags & SLAB_RED_ZONE) { 1067 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1068 object - s->red_left_pad, val, s->red_left_pad)) 1069 return 0; 1070 1071 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1072 endobject, val, s->inuse - s->object_size)) 1073 return 0; 1074 } else { 1075 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1076 check_bytes_and_report(s, slab, p, "Alignment padding", 1077 endobject, POISON_INUSE, 1078 s->inuse - s->object_size); 1079 } 1080 } 1081 1082 if (s->flags & SLAB_POISON) { 1083 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1084 (!check_bytes_and_report(s, slab, p, "Poison", p, 1085 POISON_FREE, s->object_size - 1) || 1086 !check_bytes_and_report(s, slab, p, "End Poison", 1087 p + s->object_size - 1, POISON_END, 1))) 1088 return 0; 1089 /* 1090 * check_pad_bytes cleans up on its own. 1091 */ 1092 check_pad_bytes(s, slab, p); 1093 } 1094 1095 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1096 /* 1097 * Object and freepointer overlap. Cannot check 1098 * freepointer while object is allocated. 1099 */ 1100 return 1; 1101 1102 /* Check free pointer validity */ 1103 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1104 object_err(s, slab, p, "Freepointer corrupt"); 1105 /* 1106 * No choice but to zap it and thus lose the remainder 1107 * of the free objects in this slab. May cause 1108 * another error because the object count is now wrong. 1109 */ 1110 set_freepointer(s, p, NULL); 1111 return 0; 1112 } 1113 return 1; 1114 } 1115 1116 static int check_slab(struct kmem_cache *s, struct slab *slab) 1117 { 1118 int maxobj; 1119 1120 if (!folio_test_slab(slab_folio(slab))) { 1121 slab_err(s, slab, "Not a valid slab page"); 1122 return 0; 1123 } 1124 1125 maxobj = order_objects(slab_order(slab), s->size); 1126 if (slab->objects > maxobj) { 1127 slab_err(s, slab, "objects %u > max %u", 1128 slab->objects, maxobj); 1129 return 0; 1130 } 1131 if (slab->inuse > slab->objects) { 1132 slab_err(s, slab, "inuse %u > max %u", 1133 slab->inuse, slab->objects); 1134 return 0; 1135 } 1136 /* Slab_pad_check fixes things up after itself */ 1137 slab_pad_check(s, slab); 1138 return 1; 1139 } 1140 1141 /* 1142 * Determine if a certain object in a slab is on the freelist. Must hold the 1143 * slab lock to guarantee that the chains are in a consistent state. 1144 */ 1145 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1146 { 1147 int nr = 0; 1148 void *fp; 1149 void *object = NULL; 1150 int max_objects; 1151 1152 fp = slab->freelist; 1153 while (fp && nr <= slab->objects) { 1154 if (fp == search) 1155 return 1; 1156 if (!check_valid_pointer(s, slab, fp)) { 1157 if (object) { 1158 object_err(s, slab, object, 1159 "Freechain corrupt"); 1160 set_freepointer(s, object, NULL); 1161 } else { 1162 slab_err(s, slab, "Freepointer corrupt"); 1163 slab->freelist = NULL; 1164 slab->inuse = slab->objects; 1165 slab_fix(s, "Freelist cleared"); 1166 return 0; 1167 } 1168 break; 1169 } 1170 object = fp; 1171 fp = get_freepointer(s, object); 1172 nr++; 1173 } 1174 1175 max_objects = order_objects(slab_order(slab), s->size); 1176 if (max_objects > MAX_OBJS_PER_PAGE) 1177 max_objects = MAX_OBJS_PER_PAGE; 1178 1179 if (slab->objects != max_objects) { 1180 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1181 slab->objects, max_objects); 1182 slab->objects = max_objects; 1183 slab_fix(s, "Number of objects adjusted"); 1184 } 1185 if (slab->inuse != slab->objects - nr) { 1186 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1187 slab->inuse, slab->objects - nr); 1188 slab->inuse = slab->objects - nr; 1189 slab_fix(s, "Object count adjusted"); 1190 } 1191 return search == NULL; 1192 } 1193 1194 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1195 int alloc) 1196 { 1197 if (s->flags & SLAB_TRACE) { 1198 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1199 s->name, 1200 alloc ? "alloc" : "free", 1201 object, slab->inuse, 1202 slab->freelist); 1203 1204 if (!alloc) 1205 print_section(KERN_INFO, "Object ", (void *)object, 1206 s->object_size); 1207 1208 dump_stack(); 1209 } 1210 } 1211 1212 /* 1213 * Tracking of fully allocated slabs for debugging purposes. 1214 */ 1215 static void add_full(struct kmem_cache *s, 1216 struct kmem_cache_node *n, struct slab *slab) 1217 { 1218 if (!(s->flags & SLAB_STORE_USER)) 1219 return; 1220 1221 lockdep_assert_held(&n->list_lock); 1222 list_add(&slab->slab_list, &n->full); 1223 } 1224 1225 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1226 { 1227 if (!(s->flags & SLAB_STORE_USER)) 1228 return; 1229 1230 lockdep_assert_held(&n->list_lock); 1231 list_del(&slab->slab_list); 1232 } 1233 1234 /* Tracking of the number of slabs for debugging purposes */ 1235 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1236 { 1237 struct kmem_cache_node *n = get_node(s, node); 1238 1239 return atomic_long_read(&n->nr_slabs); 1240 } 1241 1242 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1243 { 1244 return atomic_long_read(&n->nr_slabs); 1245 } 1246 1247 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1248 { 1249 struct kmem_cache_node *n = get_node(s, node); 1250 1251 /* 1252 * May be called early in order to allocate a slab for the 1253 * kmem_cache_node structure. Solve the chicken-egg 1254 * dilemma by deferring the increment of the count during 1255 * bootstrap (see early_kmem_cache_node_alloc). 1256 */ 1257 if (likely(n)) { 1258 atomic_long_inc(&n->nr_slabs); 1259 atomic_long_add(objects, &n->total_objects); 1260 } 1261 } 1262 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1263 { 1264 struct kmem_cache_node *n = get_node(s, node); 1265 1266 atomic_long_dec(&n->nr_slabs); 1267 atomic_long_sub(objects, &n->total_objects); 1268 } 1269 1270 /* Object debug checks for alloc/free paths */ 1271 static void setup_object_debug(struct kmem_cache *s, struct slab *slab, 1272 void *object) 1273 { 1274 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1275 return; 1276 1277 init_object(s, object, SLUB_RED_INACTIVE); 1278 init_tracking(s, object); 1279 } 1280 1281 static 1282 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1283 { 1284 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1285 return; 1286 1287 metadata_access_enable(); 1288 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1289 metadata_access_disable(); 1290 } 1291 1292 static inline int alloc_consistency_checks(struct kmem_cache *s, 1293 struct slab *slab, void *object) 1294 { 1295 if (!check_slab(s, slab)) 1296 return 0; 1297 1298 if (!check_valid_pointer(s, slab, object)) { 1299 object_err(s, slab, object, "Freelist Pointer check fails"); 1300 return 0; 1301 } 1302 1303 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1304 return 0; 1305 1306 return 1; 1307 } 1308 1309 static noinline int alloc_debug_processing(struct kmem_cache *s, 1310 struct slab *slab, 1311 void *object, unsigned long addr) 1312 { 1313 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1314 if (!alloc_consistency_checks(s, slab, object)) 1315 goto bad; 1316 } 1317 1318 /* Success perform special debug activities for allocs */ 1319 if (s->flags & SLAB_STORE_USER) 1320 set_track(s, object, TRACK_ALLOC, addr); 1321 trace(s, slab, object, 1); 1322 init_object(s, object, SLUB_RED_ACTIVE); 1323 return 1; 1324 1325 bad: 1326 if (folio_test_slab(slab_folio(slab))) { 1327 /* 1328 * If this is a slab page then lets do the best we can 1329 * to avoid issues in the future. Marking all objects 1330 * as used avoids touching the remaining objects. 1331 */ 1332 slab_fix(s, "Marking all objects used"); 1333 slab->inuse = slab->objects; 1334 slab->freelist = NULL; 1335 } 1336 return 0; 1337 } 1338 1339 static inline int free_consistency_checks(struct kmem_cache *s, 1340 struct slab *slab, void *object, unsigned long addr) 1341 { 1342 if (!check_valid_pointer(s, slab, object)) { 1343 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1344 return 0; 1345 } 1346 1347 if (on_freelist(s, slab, object)) { 1348 object_err(s, slab, object, "Object already free"); 1349 return 0; 1350 } 1351 1352 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1353 return 0; 1354 1355 if (unlikely(s != slab->slab_cache)) { 1356 if (!folio_test_slab(slab_folio(slab))) { 1357 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1358 object); 1359 } else if (!slab->slab_cache) { 1360 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1361 object); 1362 dump_stack(); 1363 } else 1364 object_err(s, slab, object, 1365 "page slab pointer corrupt."); 1366 return 0; 1367 } 1368 return 1; 1369 } 1370 1371 /* Supports checking bulk free of a constructed freelist */ 1372 static noinline int free_debug_processing( 1373 struct kmem_cache *s, struct slab *slab, 1374 void *head, void *tail, int bulk_cnt, 1375 unsigned long addr) 1376 { 1377 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 1378 void *object = head; 1379 int cnt = 0; 1380 unsigned long flags, flags2; 1381 int ret = 0; 1382 1383 spin_lock_irqsave(&n->list_lock, flags); 1384 slab_lock(slab, &flags2); 1385 1386 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1387 if (!check_slab(s, slab)) 1388 goto out; 1389 } 1390 1391 next_object: 1392 cnt++; 1393 1394 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1395 if (!free_consistency_checks(s, slab, object, addr)) 1396 goto out; 1397 } 1398 1399 if (s->flags & SLAB_STORE_USER) 1400 set_track(s, object, TRACK_FREE, addr); 1401 trace(s, slab, object, 0); 1402 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1403 init_object(s, object, SLUB_RED_INACTIVE); 1404 1405 /* Reached end of constructed freelist yet? */ 1406 if (object != tail) { 1407 object = get_freepointer(s, object); 1408 goto next_object; 1409 } 1410 ret = 1; 1411 1412 out: 1413 if (cnt != bulk_cnt) 1414 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n", 1415 bulk_cnt, cnt); 1416 1417 slab_unlock(slab, &flags2); 1418 spin_unlock_irqrestore(&n->list_lock, flags); 1419 if (!ret) 1420 slab_fix(s, "Object at 0x%p not freed", object); 1421 return ret; 1422 } 1423 1424 /* 1425 * Parse a block of slub_debug options. Blocks are delimited by ';' 1426 * 1427 * @str: start of block 1428 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1429 * @slabs: return start of list of slabs, or NULL when there's no list 1430 * @init: assume this is initial parsing and not per-kmem-create parsing 1431 * 1432 * returns the start of next block if there's any, or NULL 1433 */ 1434 static char * 1435 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1436 { 1437 bool higher_order_disable = false; 1438 1439 /* Skip any completely empty blocks */ 1440 while (*str && *str == ';') 1441 str++; 1442 1443 if (*str == ',') { 1444 /* 1445 * No options but restriction on slabs. This means full 1446 * debugging for slabs matching a pattern. 1447 */ 1448 *flags = DEBUG_DEFAULT_FLAGS; 1449 goto check_slabs; 1450 } 1451 *flags = 0; 1452 1453 /* Determine which debug features should be switched on */ 1454 for (; *str && *str != ',' && *str != ';'; str++) { 1455 switch (tolower(*str)) { 1456 case '-': 1457 *flags = 0; 1458 break; 1459 case 'f': 1460 *flags |= SLAB_CONSISTENCY_CHECKS; 1461 break; 1462 case 'z': 1463 *flags |= SLAB_RED_ZONE; 1464 break; 1465 case 'p': 1466 *flags |= SLAB_POISON; 1467 break; 1468 case 'u': 1469 *flags |= SLAB_STORE_USER; 1470 break; 1471 case 't': 1472 *flags |= SLAB_TRACE; 1473 break; 1474 case 'a': 1475 *flags |= SLAB_FAILSLAB; 1476 break; 1477 case 'o': 1478 /* 1479 * Avoid enabling debugging on caches if its minimum 1480 * order would increase as a result. 1481 */ 1482 higher_order_disable = true; 1483 break; 1484 default: 1485 if (init) 1486 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1487 } 1488 } 1489 check_slabs: 1490 if (*str == ',') 1491 *slabs = ++str; 1492 else 1493 *slabs = NULL; 1494 1495 /* Skip over the slab list */ 1496 while (*str && *str != ';') 1497 str++; 1498 1499 /* Skip any completely empty blocks */ 1500 while (*str && *str == ';') 1501 str++; 1502 1503 if (init && higher_order_disable) 1504 disable_higher_order_debug = 1; 1505 1506 if (*str) 1507 return str; 1508 else 1509 return NULL; 1510 } 1511 1512 static int __init setup_slub_debug(char *str) 1513 { 1514 slab_flags_t flags; 1515 slab_flags_t global_flags; 1516 char *saved_str; 1517 char *slab_list; 1518 bool global_slub_debug_changed = false; 1519 bool slab_list_specified = false; 1520 1521 global_flags = DEBUG_DEFAULT_FLAGS; 1522 if (*str++ != '=' || !*str) 1523 /* 1524 * No options specified. Switch on full debugging. 1525 */ 1526 goto out; 1527 1528 saved_str = str; 1529 while (str) { 1530 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1531 1532 if (!slab_list) { 1533 global_flags = flags; 1534 global_slub_debug_changed = true; 1535 } else { 1536 slab_list_specified = true; 1537 } 1538 } 1539 1540 /* 1541 * For backwards compatibility, a single list of flags with list of 1542 * slabs means debugging is only changed for those slabs, so the global 1543 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1544 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1545 * long as there is no option specifying flags without a slab list. 1546 */ 1547 if (slab_list_specified) { 1548 if (!global_slub_debug_changed) 1549 global_flags = slub_debug; 1550 slub_debug_string = saved_str; 1551 } 1552 out: 1553 slub_debug = global_flags; 1554 if (slub_debug != 0 || slub_debug_string) 1555 static_branch_enable(&slub_debug_enabled); 1556 else 1557 static_branch_disable(&slub_debug_enabled); 1558 if ((static_branch_unlikely(&init_on_alloc) || 1559 static_branch_unlikely(&init_on_free)) && 1560 (slub_debug & SLAB_POISON)) 1561 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1562 return 1; 1563 } 1564 1565 __setup("slub_debug", setup_slub_debug); 1566 1567 /* 1568 * kmem_cache_flags - apply debugging options to the cache 1569 * @object_size: the size of an object without meta data 1570 * @flags: flags to set 1571 * @name: name of the cache 1572 * 1573 * Debug option(s) are applied to @flags. In addition to the debug 1574 * option(s), if a slab name (or multiple) is specified i.e. 1575 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1576 * then only the select slabs will receive the debug option(s). 1577 */ 1578 slab_flags_t kmem_cache_flags(unsigned int object_size, 1579 slab_flags_t flags, const char *name) 1580 { 1581 char *iter; 1582 size_t len; 1583 char *next_block; 1584 slab_flags_t block_flags; 1585 slab_flags_t slub_debug_local = slub_debug; 1586 1587 /* 1588 * If the slab cache is for debugging (e.g. kmemleak) then 1589 * don't store user (stack trace) information by default, 1590 * but let the user enable it via the command line below. 1591 */ 1592 if (flags & SLAB_NOLEAKTRACE) 1593 slub_debug_local &= ~SLAB_STORE_USER; 1594 1595 len = strlen(name); 1596 next_block = slub_debug_string; 1597 /* Go through all blocks of debug options, see if any matches our slab's name */ 1598 while (next_block) { 1599 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1600 if (!iter) 1601 continue; 1602 /* Found a block that has a slab list, search it */ 1603 while (*iter) { 1604 char *end, *glob; 1605 size_t cmplen; 1606 1607 end = strchrnul(iter, ','); 1608 if (next_block && next_block < end) 1609 end = next_block - 1; 1610 1611 glob = strnchr(iter, end - iter, '*'); 1612 if (glob) 1613 cmplen = glob - iter; 1614 else 1615 cmplen = max_t(size_t, len, (end - iter)); 1616 1617 if (!strncmp(name, iter, cmplen)) { 1618 flags |= block_flags; 1619 return flags; 1620 } 1621 1622 if (!*end || *end == ';') 1623 break; 1624 iter = end + 1; 1625 } 1626 } 1627 1628 return flags | slub_debug_local; 1629 } 1630 #else /* !CONFIG_SLUB_DEBUG */ 1631 static inline void setup_object_debug(struct kmem_cache *s, 1632 struct slab *slab, void *object) {} 1633 static inline 1634 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1635 1636 static inline int alloc_debug_processing(struct kmem_cache *s, 1637 struct slab *slab, void *object, unsigned long addr) { return 0; } 1638 1639 static inline int free_debug_processing( 1640 struct kmem_cache *s, struct slab *slab, 1641 void *head, void *tail, int bulk_cnt, 1642 unsigned long addr) { return 0; } 1643 1644 static inline int slab_pad_check(struct kmem_cache *s, struct slab *slab) 1645 { return 1; } 1646 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1647 void *object, u8 val) { return 1; } 1648 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1649 struct slab *slab) {} 1650 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1651 struct slab *slab) {} 1652 slab_flags_t kmem_cache_flags(unsigned int object_size, 1653 slab_flags_t flags, const char *name) 1654 { 1655 return flags; 1656 } 1657 #define slub_debug 0 1658 1659 #define disable_higher_order_debug 0 1660 1661 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1662 { return 0; } 1663 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1664 { return 0; } 1665 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1666 int objects) {} 1667 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1668 int objects) {} 1669 1670 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1671 void **freelist, void *nextfree) 1672 { 1673 return false; 1674 } 1675 #endif /* CONFIG_SLUB_DEBUG */ 1676 1677 /* 1678 * Hooks for other subsystems that check memory allocations. In a typical 1679 * production configuration these hooks all should produce no code at all. 1680 */ 1681 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1682 { 1683 ptr = kasan_kmalloc_large(ptr, size, flags); 1684 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1685 kmemleak_alloc(ptr, size, 1, flags); 1686 return ptr; 1687 } 1688 1689 static __always_inline void kfree_hook(void *x) 1690 { 1691 kmemleak_free(x); 1692 kasan_kfree_large(x); 1693 } 1694 1695 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1696 void *x, bool init) 1697 { 1698 kmemleak_free_recursive(x, s->flags); 1699 1700 debug_check_no_locks_freed(x, s->object_size); 1701 1702 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1703 debug_check_no_obj_freed(x, s->object_size); 1704 1705 /* Use KCSAN to help debug racy use-after-free. */ 1706 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1707 __kcsan_check_access(x, s->object_size, 1708 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1709 1710 /* 1711 * As memory initialization might be integrated into KASAN, 1712 * kasan_slab_free and initialization memset's must be 1713 * kept together to avoid discrepancies in behavior. 1714 * 1715 * The initialization memset's clear the object and the metadata, 1716 * but don't touch the SLAB redzone. 1717 */ 1718 if (init) { 1719 int rsize; 1720 1721 if (!kasan_has_integrated_init()) 1722 memset(kasan_reset_tag(x), 0, s->object_size); 1723 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1724 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1725 s->size - s->inuse - rsize); 1726 } 1727 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1728 return kasan_slab_free(s, x, init); 1729 } 1730 1731 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1732 void **head, void **tail, 1733 int *cnt) 1734 { 1735 1736 void *object; 1737 void *next = *head; 1738 void *old_tail = *tail ? *tail : *head; 1739 1740 if (is_kfence_address(next)) { 1741 slab_free_hook(s, next, false); 1742 return true; 1743 } 1744 1745 /* Head and tail of the reconstructed freelist */ 1746 *head = NULL; 1747 *tail = NULL; 1748 1749 do { 1750 object = next; 1751 next = get_freepointer(s, object); 1752 1753 /* If object's reuse doesn't have to be delayed */ 1754 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1755 /* Move object to the new freelist */ 1756 set_freepointer(s, object, *head); 1757 *head = object; 1758 if (!*tail) 1759 *tail = object; 1760 } else { 1761 /* 1762 * Adjust the reconstructed freelist depth 1763 * accordingly if object's reuse is delayed. 1764 */ 1765 --(*cnt); 1766 } 1767 } while (object != old_tail); 1768 1769 if (*head == *tail) 1770 *tail = NULL; 1771 1772 return *head != NULL; 1773 } 1774 1775 static void *setup_object(struct kmem_cache *s, struct slab *slab, 1776 void *object) 1777 { 1778 setup_object_debug(s, slab, object); 1779 object = kasan_init_slab_obj(s, object); 1780 if (unlikely(s->ctor)) { 1781 kasan_unpoison_object_data(s, object); 1782 s->ctor(object); 1783 kasan_poison_object_data(s, object); 1784 } 1785 return object; 1786 } 1787 1788 /* 1789 * Slab allocation and freeing 1790 */ 1791 static inline struct slab *alloc_slab_page(struct kmem_cache *s, 1792 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1793 { 1794 struct folio *folio; 1795 struct slab *slab; 1796 unsigned int order = oo_order(oo); 1797 1798 if (node == NUMA_NO_NODE) 1799 folio = (struct folio *)alloc_pages(flags, order); 1800 else 1801 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1802 1803 if (!folio) 1804 return NULL; 1805 1806 slab = folio_slab(folio); 1807 __folio_set_slab(folio); 1808 if (page_is_pfmemalloc(folio_page(folio, 0))) 1809 slab_set_pfmemalloc(slab); 1810 1811 return slab; 1812 } 1813 1814 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1815 /* Pre-initialize the random sequence cache */ 1816 static int init_cache_random_seq(struct kmem_cache *s) 1817 { 1818 unsigned int count = oo_objects(s->oo); 1819 int err; 1820 1821 /* Bailout if already initialised */ 1822 if (s->random_seq) 1823 return 0; 1824 1825 err = cache_random_seq_create(s, count, GFP_KERNEL); 1826 if (err) { 1827 pr_err("SLUB: Unable to initialize free list for %s\n", 1828 s->name); 1829 return err; 1830 } 1831 1832 /* Transform to an offset on the set of pages */ 1833 if (s->random_seq) { 1834 unsigned int i; 1835 1836 for (i = 0; i < count; i++) 1837 s->random_seq[i] *= s->size; 1838 } 1839 return 0; 1840 } 1841 1842 /* Initialize each random sequence freelist per cache */ 1843 static void __init init_freelist_randomization(void) 1844 { 1845 struct kmem_cache *s; 1846 1847 mutex_lock(&slab_mutex); 1848 1849 list_for_each_entry(s, &slab_caches, list) 1850 init_cache_random_seq(s); 1851 1852 mutex_unlock(&slab_mutex); 1853 } 1854 1855 /* Get the next entry on the pre-computed freelist randomized */ 1856 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1857 unsigned long *pos, void *start, 1858 unsigned long page_limit, 1859 unsigned long freelist_count) 1860 { 1861 unsigned int idx; 1862 1863 /* 1864 * If the target page allocation failed, the number of objects on the 1865 * page might be smaller than the usual size defined by the cache. 1866 */ 1867 do { 1868 idx = s->random_seq[*pos]; 1869 *pos += 1; 1870 if (*pos >= freelist_count) 1871 *pos = 0; 1872 } while (unlikely(idx >= page_limit)); 1873 1874 return (char *)start + idx; 1875 } 1876 1877 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1878 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1879 { 1880 void *start; 1881 void *cur; 1882 void *next; 1883 unsigned long idx, pos, page_limit, freelist_count; 1884 1885 if (slab->objects < 2 || !s->random_seq) 1886 return false; 1887 1888 freelist_count = oo_objects(s->oo); 1889 pos = get_random_int() % freelist_count; 1890 1891 page_limit = slab->objects * s->size; 1892 start = fixup_red_left(s, slab_address(slab)); 1893 1894 /* First entry is used as the base of the freelist */ 1895 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1896 freelist_count); 1897 cur = setup_object(s, slab, cur); 1898 slab->freelist = cur; 1899 1900 for (idx = 1; idx < slab->objects; idx++) { 1901 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1902 freelist_count); 1903 next = setup_object(s, slab, next); 1904 set_freepointer(s, cur, next); 1905 cur = next; 1906 } 1907 set_freepointer(s, cur, NULL); 1908 1909 return true; 1910 } 1911 #else 1912 static inline int init_cache_random_seq(struct kmem_cache *s) 1913 { 1914 return 0; 1915 } 1916 static inline void init_freelist_randomization(void) { } 1917 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1918 { 1919 return false; 1920 } 1921 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1922 1923 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1924 { 1925 struct slab *slab; 1926 struct kmem_cache_order_objects oo = s->oo; 1927 gfp_t alloc_gfp; 1928 void *start, *p, *next; 1929 int idx; 1930 bool shuffle; 1931 1932 flags &= gfp_allowed_mask; 1933 1934 flags |= s->allocflags; 1935 1936 /* 1937 * Let the initial higher-order allocation fail under memory pressure 1938 * so we fall-back to the minimum order allocation. 1939 */ 1940 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1941 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1942 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1943 1944 slab = alloc_slab_page(s, alloc_gfp, node, oo); 1945 if (unlikely(!slab)) { 1946 oo = s->min; 1947 alloc_gfp = flags; 1948 /* 1949 * Allocation may have failed due to fragmentation. 1950 * Try a lower order alloc if possible 1951 */ 1952 slab = alloc_slab_page(s, alloc_gfp, node, oo); 1953 if (unlikely(!slab)) 1954 goto out; 1955 stat(s, ORDER_FALLBACK); 1956 } 1957 1958 slab->objects = oo_objects(oo); 1959 1960 account_slab(slab, oo_order(oo), s, flags); 1961 1962 slab->slab_cache = s; 1963 1964 kasan_poison_slab(slab); 1965 1966 start = slab_address(slab); 1967 1968 setup_slab_debug(s, slab, start); 1969 1970 shuffle = shuffle_freelist(s, slab); 1971 1972 if (!shuffle) { 1973 start = fixup_red_left(s, start); 1974 start = setup_object(s, slab, start); 1975 slab->freelist = start; 1976 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 1977 next = p + s->size; 1978 next = setup_object(s, slab, next); 1979 set_freepointer(s, p, next); 1980 p = next; 1981 } 1982 set_freepointer(s, p, NULL); 1983 } 1984 1985 slab->inuse = slab->objects; 1986 slab->frozen = 1; 1987 1988 out: 1989 if (!slab) 1990 return NULL; 1991 1992 inc_slabs_node(s, slab_nid(slab), slab->objects); 1993 1994 return slab; 1995 } 1996 1997 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1998 { 1999 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2000 flags = kmalloc_fix_flags(flags); 2001 2002 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2003 2004 return allocate_slab(s, 2005 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2006 } 2007 2008 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2009 { 2010 struct folio *folio = slab_folio(slab); 2011 int order = folio_order(folio); 2012 int pages = 1 << order; 2013 2014 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2015 void *p; 2016 2017 slab_pad_check(s, slab); 2018 for_each_object(p, s, slab_address(slab), slab->objects) 2019 check_object(s, slab, p, SLUB_RED_INACTIVE); 2020 } 2021 2022 __slab_clear_pfmemalloc(slab); 2023 __folio_clear_slab(folio); 2024 folio->mapping = NULL; 2025 if (current->reclaim_state) 2026 current->reclaim_state->reclaimed_slab += pages; 2027 unaccount_slab(slab, order, s); 2028 __free_pages(folio_page(folio, 0), order); 2029 } 2030 2031 static void rcu_free_slab(struct rcu_head *h) 2032 { 2033 struct slab *slab = container_of(h, struct slab, rcu_head); 2034 2035 __free_slab(slab->slab_cache, slab); 2036 } 2037 2038 static void free_slab(struct kmem_cache *s, struct slab *slab) 2039 { 2040 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 2041 call_rcu(&slab->rcu_head, rcu_free_slab); 2042 } else 2043 __free_slab(s, slab); 2044 } 2045 2046 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2047 { 2048 dec_slabs_node(s, slab_nid(slab), slab->objects); 2049 free_slab(s, slab); 2050 } 2051 2052 /* 2053 * Management of partially allocated slabs. 2054 */ 2055 static inline void 2056 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2057 { 2058 n->nr_partial++; 2059 if (tail == DEACTIVATE_TO_TAIL) 2060 list_add_tail(&slab->slab_list, &n->partial); 2061 else 2062 list_add(&slab->slab_list, &n->partial); 2063 } 2064 2065 static inline void add_partial(struct kmem_cache_node *n, 2066 struct slab *slab, int tail) 2067 { 2068 lockdep_assert_held(&n->list_lock); 2069 __add_partial(n, slab, tail); 2070 } 2071 2072 static inline void remove_partial(struct kmem_cache_node *n, 2073 struct slab *slab) 2074 { 2075 lockdep_assert_held(&n->list_lock); 2076 list_del(&slab->slab_list); 2077 n->nr_partial--; 2078 } 2079 2080 /* 2081 * Remove slab from the partial list, freeze it and 2082 * return the pointer to the freelist. 2083 * 2084 * Returns a list of objects or NULL if it fails. 2085 */ 2086 static inline void *acquire_slab(struct kmem_cache *s, 2087 struct kmem_cache_node *n, struct slab *slab, 2088 int mode) 2089 { 2090 void *freelist; 2091 unsigned long counters; 2092 struct slab new; 2093 2094 lockdep_assert_held(&n->list_lock); 2095 2096 /* 2097 * Zap the freelist and set the frozen bit. 2098 * The old freelist is the list of objects for the 2099 * per cpu allocation list. 2100 */ 2101 freelist = slab->freelist; 2102 counters = slab->counters; 2103 new.counters = counters; 2104 if (mode) { 2105 new.inuse = slab->objects; 2106 new.freelist = NULL; 2107 } else { 2108 new.freelist = freelist; 2109 } 2110 2111 VM_BUG_ON(new.frozen); 2112 new.frozen = 1; 2113 2114 if (!__cmpxchg_double_slab(s, slab, 2115 freelist, counters, 2116 new.freelist, new.counters, 2117 "acquire_slab")) 2118 return NULL; 2119 2120 remove_partial(n, slab); 2121 WARN_ON(!freelist); 2122 return freelist; 2123 } 2124 2125 #ifdef CONFIG_SLUB_CPU_PARTIAL 2126 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2127 #else 2128 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2129 int drain) { } 2130 #endif 2131 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2132 2133 /* 2134 * Try to allocate a partial slab from a specific node. 2135 */ 2136 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2137 struct slab **ret_slab, gfp_t gfpflags) 2138 { 2139 struct slab *slab, *slab2; 2140 void *object = NULL; 2141 unsigned long flags; 2142 unsigned int partial_slabs = 0; 2143 2144 /* 2145 * Racy check. If we mistakenly see no partial slabs then we 2146 * just allocate an empty slab. If we mistakenly try to get a 2147 * partial slab and there is none available then get_partial() 2148 * will return NULL. 2149 */ 2150 if (!n || !n->nr_partial) 2151 return NULL; 2152 2153 spin_lock_irqsave(&n->list_lock, flags); 2154 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2155 void *t; 2156 2157 if (!pfmemalloc_match(slab, gfpflags)) 2158 continue; 2159 2160 t = acquire_slab(s, n, slab, object == NULL); 2161 if (!t) 2162 break; 2163 2164 if (!object) { 2165 *ret_slab = slab; 2166 stat(s, ALLOC_FROM_PARTIAL); 2167 object = t; 2168 } else { 2169 put_cpu_partial(s, slab, 0); 2170 stat(s, CPU_PARTIAL_NODE); 2171 partial_slabs++; 2172 } 2173 #ifdef CONFIG_SLUB_CPU_PARTIAL 2174 if (!kmem_cache_has_cpu_partial(s) 2175 || partial_slabs > s->cpu_partial_slabs / 2) 2176 break; 2177 #else 2178 break; 2179 #endif 2180 2181 } 2182 spin_unlock_irqrestore(&n->list_lock, flags); 2183 return object; 2184 } 2185 2186 /* 2187 * Get a slab from somewhere. Search in increasing NUMA distances. 2188 */ 2189 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2190 struct slab **ret_slab) 2191 { 2192 #ifdef CONFIG_NUMA 2193 struct zonelist *zonelist; 2194 struct zoneref *z; 2195 struct zone *zone; 2196 enum zone_type highest_zoneidx = gfp_zone(flags); 2197 void *object; 2198 unsigned int cpuset_mems_cookie; 2199 2200 /* 2201 * The defrag ratio allows a configuration of the tradeoffs between 2202 * inter node defragmentation and node local allocations. A lower 2203 * defrag_ratio increases the tendency to do local allocations 2204 * instead of attempting to obtain partial slabs from other nodes. 2205 * 2206 * If the defrag_ratio is set to 0 then kmalloc() always 2207 * returns node local objects. If the ratio is higher then kmalloc() 2208 * may return off node objects because partial slabs are obtained 2209 * from other nodes and filled up. 2210 * 2211 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2212 * (which makes defrag_ratio = 1000) then every (well almost) 2213 * allocation will first attempt to defrag slab caches on other nodes. 2214 * This means scanning over all nodes to look for partial slabs which 2215 * may be expensive if we do it every time we are trying to find a slab 2216 * with available objects. 2217 */ 2218 if (!s->remote_node_defrag_ratio || 2219 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2220 return NULL; 2221 2222 do { 2223 cpuset_mems_cookie = read_mems_allowed_begin(); 2224 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2225 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2226 struct kmem_cache_node *n; 2227 2228 n = get_node(s, zone_to_nid(zone)); 2229 2230 if (n && cpuset_zone_allowed(zone, flags) && 2231 n->nr_partial > s->min_partial) { 2232 object = get_partial_node(s, n, ret_slab, flags); 2233 if (object) { 2234 /* 2235 * Don't check read_mems_allowed_retry() 2236 * here - if mems_allowed was updated in 2237 * parallel, that was a harmless race 2238 * between allocation and the cpuset 2239 * update 2240 */ 2241 return object; 2242 } 2243 } 2244 } 2245 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2246 #endif /* CONFIG_NUMA */ 2247 return NULL; 2248 } 2249 2250 /* 2251 * Get a partial slab, lock it and return it. 2252 */ 2253 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2254 struct slab **ret_slab) 2255 { 2256 void *object; 2257 int searchnode = node; 2258 2259 if (node == NUMA_NO_NODE) 2260 searchnode = numa_mem_id(); 2261 2262 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags); 2263 if (object || node != NUMA_NO_NODE) 2264 return object; 2265 2266 return get_any_partial(s, flags, ret_slab); 2267 } 2268 2269 #ifdef CONFIG_PREEMPTION 2270 /* 2271 * Calculate the next globally unique transaction for disambiguation 2272 * during cmpxchg. The transactions start with the cpu number and are then 2273 * incremented by CONFIG_NR_CPUS. 2274 */ 2275 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2276 #else 2277 /* 2278 * No preemption supported therefore also no need to check for 2279 * different cpus. 2280 */ 2281 #define TID_STEP 1 2282 #endif 2283 2284 static inline unsigned long next_tid(unsigned long tid) 2285 { 2286 return tid + TID_STEP; 2287 } 2288 2289 #ifdef SLUB_DEBUG_CMPXCHG 2290 static inline unsigned int tid_to_cpu(unsigned long tid) 2291 { 2292 return tid % TID_STEP; 2293 } 2294 2295 static inline unsigned long tid_to_event(unsigned long tid) 2296 { 2297 return tid / TID_STEP; 2298 } 2299 #endif 2300 2301 static inline unsigned int init_tid(int cpu) 2302 { 2303 return cpu; 2304 } 2305 2306 static inline void note_cmpxchg_failure(const char *n, 2307 const struct kmem_cache *s, unsigned long tid) 2308 { 2309 #ifdef SLUB_DEBUG_CMPXCHG 2310 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2311 2312 pr_info("%s %s: cmpxchg redo ", n, s->name); 2313 2314 #ifdef CONFIG_PREEMPTION 2315 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2316 pr_warn("due to cpu change %d -> %d\n", 2317 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2318 else 2319 #endif 2320 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2321 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2322 tid_to_event(tid), tid_to_event(actual_tid)); 2323 else 2324 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2325 actual_tid, tid, next_tid(tid)); 2326 #endif 2327 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2328 } 2329 2330 static void init_kmem_cache_cpus(struct kmem_cache *s) 2331 { 2332 int cpu; 2333 struct kmem_cache_cpu *c; 2334 2335 for_each_possible_cpu(cpu) { 2336 c = per_cpu_ptr(s->cpu_slab, cpu); 2337 local_lock_init(&c->lock); 2338 c->tid = init_tid(cpu); 2339 } 2340 } 2341 2342 /* 2343 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2344 * unfreezes the slabs and puts it on the proper list. 2345 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2346 * by the caller. 2347 */ 2348 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2349 void *freelist) 2350 { 2351 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2352 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2353 int lock = 0, free_delta = 0; 2354 enum slab_modes l = M_NONE, m = M_NONE; 2355 void *nextfree, *freelist_iter, *freelist_tail; 2356 int tail = DEACTIVATE_TO_HEAD; 2357 unsigned long flags = 0; 2358 struct slab new; 2359 struct slab old; 2360 2361 if (slab->freelist) { 2362 stat(s, DEACTIVATE_REMOTE_FREES); 2363 tail = DEACTIVATE_TO_TAIL; 2364 } 2365 2366 /* 2367 * Stage one: Count the objects on cpu's freelist as free_delta and 2368 * remember the last object in freelist_tail for later splicing. 2369 */ 2370 freelist_tail = NULL; 2371 freelist_iter = freelist; 2372 while (freelist_iter) { 2373 nextfree = get_freepointer(s, freelist_iter); 2374 2375 /* 2376 * If 'nextfree' is invalid, it is possible that the object at 2377 * 'freelist_iter' is already corrupted. So isolate all objects 2378 * starting at 'freelist_iter' by skipping them. 2379 */ 2380 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2381 break; 2382 2383 freelist_tail = freelist_iter; 2384 free_delta++; 2385 2386 freelist_iter = nextfree; 2387 } 2388 2389 /* 2390 * Stage two: Unfreeze the slab while splicing the per-cpu 2391 * freelist to the head of slab's freelist. 2392 * 2393 * Ensure that the slab is unfrozen while the list presence 2394 * reflects the actual number of objects during unfreeze. 2395 * 2396 * We setup the list membership and then perform a cmpxchg 2397 * with the count. If there is a mismatch then the slab 2398 * is not unfrozen but the slab is on the wrong list. 2399 * 2400 * Then we restart the process which may have to remove 2401 * the slab from the list that we just put it on again 2402 * because the number of objects in the slab may have 2403 * changed. 2404 */ 2405 redo: 2406 2407 old.freelist = READ_ONCE(slab->freelist); 2408 old.counters = READ_ONCE(slab->counters); 2409 VM_BUG_ON(!old.frozen); 2410 2411 /* Determine target state of the slab */ 2412 new.counters = old.counters; 2413 if (freelist_tail) { 2414 new.inuse -= free_delta; 2415 set_freepointer(s, freelist_tail, old.freelist); 2416 new.freelist = freelist; 2417 } else 2418 new.freelist = old.freelist; 2419 2420 new.frozen = 0; 2421 2422 if (!new.inuse && n->nr_partial >= s->min_partial) 2423 m = M_FREE; 2424 else if (new.freelist) { 2425 m = M_PARTIAL; 2426 if (!lock) { 2427 lock = 1; 2428 /* 2429 * Taking the spinlock removes the possibility that 2430 * acquire_slab() will see a slab that is frozen 2431 */ 2432 spin_lock_irqsave(&n->list_lock, flags); 2433 } 2434 } else { 2435 m = M_FULL; 2436 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { 2437 lock = 1; 2438 /* 2439 * This also ensures that the scanning of full 2440 * slabs from diagnostic functions will not see 2441 * any frozen slabs. 2442 */ 2443 spin_lock_irqsave(&n->list_lock, flags); 2444 } 2445 } 2446 2447 if (l != m) { 2448 if (l == M_PARTIAL) 2449 remove_partial(n, slab); 2450 else if (l == M_FULL) 2451 remove_full(s, n, slab); 2452 2453 if (m == M_PARTIAL) 2454 add_partial(n, slab, tail); 2455 else if (m == M_FULL) 2456 add_full(s, n, slab); 2457 } 2458 2459 l = m; 2460 if (!cmpxchg_double_slab(s, slab, 2461 old.freelist, old.counters, 2462 new.freelist, new.counters, 2463 "unfreezing slab")) 2464 goto redo; 2465 2466 if (lock) 2467 spin_unlock_irqrestore(&n->list_lock, flags); 2468 2469 if (m == M_PARTIAL) 2470 stat(s, tail); 2471 else if (m == M_FULL) 2472 stat(s, DEACTIVATE_FULL); 2473 else if (m == M_FREE) { 2474 stat(s, DEACTIVATE_EMPTY); 2475 discard_slab(s, slab); 2476 stat(s, FREE_SLAB); 2477 } 2478 } 2479 2480 #ifdef CONFIG_SLUB_CPU_PARTIAL 2481 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2482 { 2483 struct kmem_cache_node *n = NULL, *n2 = NULL; 2484 struct slab *slab, *slab_to_discard = NULL; 2485 unsigned long flags = 0; 2486 2487 while (partial_slab) { 2488 struct slab new; 2489 struct slab old; 2490 2491 slab = partial_slab; 2492 partial_slab = slab->next; 2493 2494 n2 = get_node(s, slab_nid(slab)); 2495 if (n != n2) { 2496 if (n) 2497 spin_unlock_irqrestore(&n->list_lock, flags); 2498 2499 n = n2; 2500 spin_lock_irqsave(&n->list_lock, flags); 2501 } 2502 2503 do { 2504 2505 old.freelist = slab->freelist; 2506 old.counters = slab->counters; 2507 VM_BUG_ON(!old.frozen); 2508 2509 new.counters = old.counters; 2510 new.freelist = old.freelist; 2511 2512 new.frozen = 0; 2513 2514 } while (!__cmpxchg_double_slab(s, slab, 2515 old.freelist, old.counters, 2516 new.freelist, new.counters, 2517 "unfreezing slab")); 2518 2519 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2520 slab->next = slab_to_discard; 2521 slab_to_discard = slab; 2522 } else { 2523 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2524 stat(s, FREE_ADD_PARTIAL); 2525 } 2526 } 2527 2528 if (n) 2529 spin_unlock_irqrestore(&n->list_lock, flags); 2530 2531 while (slab_to_discard) { 2532 slab = slab_to_discard; 2533 slab_to_discard = slab_to_discard->next; 2534 2535 stat(s, DEACTIVATE_EMPTY); 2536 discard_slab(s, slab); 2537 stat(s, FREE_SLAB); 2538 } 2539 } 2540 2541 /* 2542 * Unfreeze all the cpu partial slabs. 2543 */ 2544 static void unfreeze_partials(struct kmem_cache *s) 2545 { 2546 struct slab *partial_slab; 2547 unsigned long flags; 2548 2549 local_lock_irqsave(&s->cpu_slab->lock, flags); 2550 partial_slab = this_cpu_read(s->cpu_slab->partial); 2551 this_cpu_write(s->cpu_slab->partial, NULL); 2552 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2553 2554 if (partial_slab) 2555 __unfreeze_partials(s, partial_slab); 2556 } 2557 2558 static void unfreeze_partials_cpu(struct kmem_cache *s, 2559 struct kmem_cache_cpu *c) 2560 { 2561 struct slab *partial_slab; 2562 2563 partial_slab = slub_percpu_partial(c); 2564 c->partial = NULL; 2565 2566 if (partial_slab) 2567 __unfreeze_partials(s, partial_slab); 2568 } 2569 2570 /* 2571 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2572 * partial slab slot if available. 2573 * 2574 * If we did not find a slot then simply move all the partials to the 2575 * per node partial list. 2576 */ 2577 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2578 { 2579 struct slab *oldslab; 2580 struct slab *slab_to_unfreeze = NULL; 2581 unsigned long flags; 2582 int slabs = 0; 2583 2584 local_lock_irqsave(&s->cpu_slab->lock, flags); 2585 2586 oldslab = this_cpu_read(s->cpu_slab->partial); 2587 2588 if (oldslab) { 2589 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2590 /* 2591 * Partial array is full. Move the existing set to the 2592 * per node partial list. Postpone the actual unfreezing 2593 * outside of the critical section. 2594 */ 2595 slab_to_unfreeze = oldslab; 2596 oldslab = NULL; 2597 } else { 2598 slabs = oldslab->slabs; 2599 } 2600 } 2601 2602 slabs++; 2603 2604 slab->slabs = slabs; 2605 slab->next = oldslab; 2606 2607 this_cpu_write(s->cpu_slab->partial, slab); 2608 2609 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2610 2611 if (slab_to_unfreeze) { 2612 __unfreeze_partials(s, slab_to_unfreeze); 2613 stat(s, CPU_PARTIAL_DRAIN); 2614 } 2615 } 2616 2617 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2618 2619 static inline void unfreeze_partials(struct kmem_cache *s) { } 2620 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2621 struct kmem_cache_cpu *c) { } 2622 2623 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2624 2625 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2626 { 2627 unsigned long flags; 2628 struct slab *slab; 2629 void *freelist; 2630 2631 local_lock_irqsave(&s->cpu_slab->lock, flags); 2632 2633 slab = c->slab; 2634 freelist = c->freelist; 2635 2636 c->slab = NULL; 2637 c->freelist = NULL; 2638 c->tid = next_tid(c->tid); 2639 2640 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2641 2642 if (slab) { 2643 deactivate_slab(s, slab, freelist); 2644 stat(s, CPUSLAB_FLUSH); 2645 } 2646 } 2647 2648 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2649 { 2650 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2651 void *freelist = c->freelist; 2652 struct slab *slab = c->slab; 2653 2654 c->slab = NULL; 2655 c->freelist = NULL; 2656 c->tid = next_tid(c->tid); 2657 2658 if (slab) { 2659 deactivate_slab(s, slab, freelist); 2660 stat(s, CPUSLAB_FLUSH); 2661 } 2662 2663 unfreeze_partials_cpu(s, c); 2664 } 2665 2666 struct slub_flush_work { 2667 struct work_struct work; 2668 struct kmem_cache *s; 2669 bool skip; 2670 }; 2671 2672 /* 2673 * Flush cpu slab. 2674 * 2675 * Called from CPU work handler with migration disabled. 2676 */ 2677 static void flush_cpu_slab(struct work_struct *w) 2678 { 2679 struct kmem_cache *s; 2680 struct kmem_cache_cpu *c; 2681 struct slub_flush_work *sfw; 2682 2683 sfw = container_of(w, struct slub_flush_work, work); 2684 2685 s = sfw->s; 2686 c = this_cpu_ptr(s->cpu_slab); 2687 2688 if (c->slab) 2689 flush_slab(s, c); 2690 2691 unfreeze_partials(s); 2692 } 2693 2694 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2695 { 2696 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2697 2698 return c->slab || slub_percpu_partial(c); 2699 } 2700 2701 static DEFINE_MUTEX(flush_lock); 2702 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2703 2704 static void flush_all_cpus_locked(struct kmem_cache *s) 2705 { 2706 struct slub_flush_work *sfw; 2707 unsigned int cpu; 2708 2709 lockdep_assert_cpus_held(); 2710 mutex_lock(&flush_lock); 2711 2712 for_each_online_cpu(cpu) { 2713 sfw = &per_cpu(slub_flush, cpu); 2714 if (!has_cpu_slab(cpu, s)) { 2715 sfw->skip = true; 2716 continue; 2717 } 2718 INIT_WORK(&sfw->work, flush_cpu_slab); 2719 sfw->skip = false; 2720 sfw->s = s; 2721 schedule_work_on(cpu, &sfw->work); 2722 } 2723 2724 for_each_online_cpu(cpu) { 2725 sfw = &per_cpu(slub_flush, cpu); 2726 if (sfw->skip) 2727 continue; 2728 flush_work(&sfw->work); 2729 } 2730 2731 mutex_unlock(&flush_lock); 2732 } 2733 2734 static void flush_all(struct kmem_cache *s) 2735 { 2736 cpus_read_lock(); 2737 flush_all_cpus_locked(s); 2738 cpus_read_unlock(); 2739 } 2740 2741 /* 2742 * Use the cpu notifier to insure that the cpu slabs are flushed when 2743 * necessary. 2744 */ 2745 static int slub_cpu_dead(unsigned int cpu) 2746 { 2747 struct kmem_cache *s; 2748 2749 mutex_lock(&slab_mutex); 2750 list_for_each_entry(s, &slab_caches, list) 2751 __flush_cpu_slab(s, cpu); 2752 mutex_unlock(&slab_mutex); 2753 return 0; 2754 } 2755 2756 /* 2757 * Check if the objects in a per cpu structure fit numa 2758 * locality expectations. 2759 */ 2760 static inline int node_match(struct slab *slab, int node) 2761 { 2762 #ifdef CONFIG_NUMA 2763 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2764 return 0; 2765 #endif 2766 return 1; 2767 } 2768 2769 #ifdef CONFIG_SLUB_DEBUG 2770 static int count_free(struct slab *slab) 2771 { 2772 return slab->objects - slab->inuse; 2773 } 2774 2775 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2776 { 2777 return atomic_long_read(&n->total_objects); 2778 } 2779 #endif /* CONFIG_SLUB_DEBUG */ 2780 2781 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2782 static unsigned long count_partial(struct kmem_cache_node *n, 2783 int (*get_count)(struct slab *)) 2784 { 2785 unsigned long flags; 2786 unsigned long x = 0; 2787 struct slab *slab; 2788 2789 spin_lock_irqsave(&n->list_lock, flags); 2790 list_for_each_entry(slab, &n->partial, slab_list) 2791 x += get_count(slab); 2792 spin_unlock_irqrestore(&n->list_lock, flags); 2793 return x; 2794 } 2795 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2796 2797 static noinline void 2798 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2799 { 2800 #ifdef CONFIG_SLUB_DEBUG 2801 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2802 DEFAULT_RATELIMIT_BURST); 2803 int node; 2804 struct kmem_cache_node *n; 2805 2806 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2807 return; 2808 2809 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2810 nid, gfpflags, &gfpflags); 2811 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2812 s->name, s->object_size, s->size, oo_order(s->oo), 2813 oo_order(s->min)); 2814 2815 if (oo_order(s->min) > get_order(s->object_size)) 2816 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2817 s->name); 2818 2819 for_each_kmem_cache_node(s, node, n) { 2820 unsigned long nr_slabs; 2821 unsigned long nr_objs; 2822 unsigned long nr_free; 2823 2824 nr_free = count_partial(n, count_free); 2825 nr_slabs = node_nr_slabs(n); 2826 nr_objs = node_nr_objs(n); 2827 2828 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2829 node, nr_slabs, nr_objs, nr_free); 2830 } 2831 #endif 2832 } 2833 2834 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 2835 { 2836 if (unlikely(slab_test_pfmemalloc(slab))) 2837 return gfp_pfmemalloc_allowed(gfpflags); 2838 2839 return true; 2840 } 2841 2842 /* 2843 * Check the slab->freelist and either transfer the freelist to the 2844 * per cpu freelist or deactivate the slab. 2845 * 2846 * The slab is still frozen if the return value is not NULL. 2847 * 2848 * If this function returns NULL then the slab has been unfrozen. 2849 */ 2850 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 2851 { 2852 struct slab new; 2853 unsigned long counters; 2854 void *freelist; 2855 2856 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2857 2858 do { 2859 freelist = slab->freelist; 2860 counters = slab->counters; 2861 2862 new.counters = counters; 2863 VM_BUG_ON(!new.frozen); 2864 2865 new.inuse = slab->objects; 2866 new.frozen = freelist != NULL; 2867 2868 } while (!__cmpxchg_double_slab(s, slab, 2869 freelist, counters, 2870 NULL, new.counters, 2871 "get_freelist")); 2872 2873 return freelist; 2874 } 2875 2876 /* 2877 * Slow path. The lockless freelist is empty or we need to perform 2878 * debugging duties. 2879 * 2880 * Processing is still very fast if new objects have been freed to the 2881 * regular freelist. In that case we simply take over the regular freelist 2882 * as the lockless freelist and zap the regular freelist. 2883 * 2884 * If that is not working then we fall back to the partial lists. We take the 2885 * first element of the freelist as the object to allocate now and move the 2886 * rest of the freelist to the lockless freelist. 2887 * 2888 * And if we were unable to get a new slab from the partial slab lists then 2889 * we need to allocate a new slab. This is the slowest path since it involves 2890 * a call to the page allocator and the setup of a new slab. 2891 * 2892 * Version of __slab_alloc to use when we know that preemption is 2893 * already disabled (which is the case for bulk allocation). 2894 */ 2895 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2896 unsigned long addr, struct kmem_cache_cpu *c) 2897 { 2898 void *freelist; 2899 struct slab *slab; 2900 unsigned long flags; 2901 2902 stat(s, ALLOC_SLOWPATH); 2903 2904 reread_slab: 2905 2906 slab = READ_ONCE(c->slab); 2907 if (!slab) { 2908 /* 2909 * if the node is not online or has no normal memory, just 2910 * ignore the node constraint 2911 */ 2912 if (unlikely(node != NUMA_NO_NODE && 2913 !node_isset(node, slab_nodes))) 2914 node = NUMA_NO_NODE; 2915 goto new_slab; 2916 } 2917 redo: 2918 2919 if (unlikely(!node_match(slab, node))) { 2920 /* 2921 * same as above but node_match() being false already 2922 * implies node != NUMA_NO_NODE 2923 */ 2924 if (!node_isset(node, slab_nodes)) { 2925 node = NUMA_NO_NODE; 2926 goto redo; 2927 } else { 2928 stat(s, ALLOC_NODE_MISMATCH); 2929 goto deactivate_slab; 2930 } 2931 } 2932 2933 /* 2934 * By rights, we should be searching for a slab page that was 2935 * PFMEMALLOC but right now, we are losing the pfmemalloc 2936 * information when the page leaves the per-cpu allocator 2937 */ 2938 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 2939 goto deactivate_slab; 2940 2941 /* must check again c->slab in case we got preempted and it changed */ 2942 local_lock_irqsave(&s->cpu_slab->lock, flags); 2943 if (unlikely(slab != c->slab)) { 2944 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2945 goto reread_slab; 2946 } 2947 freelist = c->freelist; 2948 if (freelist) 2949 goto load_freelist; 2950 2951 freelist = get_freelist(s, slab); 2952 2953 if (!freelist) { 2954 c->slab = NULL; 2955 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2956 stat(s, DEACTIVATE_BYPASS); 2957 goto new_slab; 2958 } 2959 2960 stat(s, ALLOC_REFILL); 2961 2962 load_freelist: 2963 2964 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2965 2966 /* 2967 * freelist is pointing to the list of objects to be used. 2968 * slab is pointing to the slab from which the objects are obtained. 2969 * That slab must be frozen for per cpu allocations to work. 2970 */ 2971 VM_BUG_ON(!c->slab->frozen); 2972 c->freelist = get_freepointer(s, freelist); 2973 c->tid = next_tid(c->tid); 2974 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2975 return freelist; 2976 2977 deactivate_slab: 2978 2979 local_lock_irqsave(&s->cpu_slab->lock, flags); 2980 if (slab != c->slab) { 2981 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2982 goto reread_slab; 2983 } 2984 freelist = c->freelist; 2985 c->slab = NULL; 2986 c->freelist = NULL; 2987 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2988 deactivate_slab(s, slab, freelist); 2989 2990 new_slab: 2991 2992 if (slub_percpu_partial(c)) { 2993 local_lock_irqsave(&s->cpu_slab->lock, flags); 2994 if (unlikely(c->slab)) { 2995 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2996 goto reread_slab; 2997 } 2998 if (unlikely(!slub_percpu_partial(c))) { 2999 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3000 /* we were preempted and partial list got empty */ 3001 goto new_objects; 3002 } 3003 3004 slab = c->slab = slub_percpu_partial(c); 3005 slub_set_percpu_partial(c, slab); 3006 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3007 stat(s, CPU_PARTIAL_ALLOC); 3008 goto redo; 3009 } 3010 3011 new_objects: 3012 3013 freelist = get_partial(s, gfpflags, node, &slab); 3014 if (freelist) 3015 goto check_new_slab; 3016 3017 slub_put_cpu_ptr(s->cpu_slab); 3018 slab = new_slab(s, gfpflags, node); 3019 c = slub_get_cpu_ptr(s->cpu_slab); 3020 3021 if (unlikely(!slab)) { 3022 slab_out_of_memory(s, gfpflags, node); 3023 return NULL; 3024 } 3025 3026 /* 3027 * No other reference to the slab yet so we can 3028 * muck around with it freely without cmpxchg 3029 */ 3030 freelist = slab->freelist; 3031 slab->freelist = NULL; 3032 3033 stat(s, ALLOC_SLAB); 3034 3035 check_new_slab: 3036 3037 if (kmem_cache_debug(s)) { 3038 if (!alloc_debug_processing(s, slab, freelist, addr)) { 3039 /* Slab failed checks. Next slab needed */ 3040 goto new_slab; 3041 } else { 3042 /* 3043 * For debug case, we don't load freelist so that all 3044 * allocations go through alloc_debug_processing() 3045 */ 3046 goto return_single; 3047 } 3048 } 3049 3050 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3051 /* 3052 * For !pfmemalloc_match() case we don't load freelist so that 3053 * we don't make further mismatched allocations easier. 3054 */ 3055 goto return_single; 3056 3057 retry_load_slab: 3058 3059 local_lock_irqsave(&s->cpu_slab->lock, flags); 3060 if (unlikely(c->slab)) { 3061 void *flush_freelist = c->freelist; 3062 struct slab *flush_slab = c->slab; 3063 3064 c->slab = NULL; 3065 c->freelist = NULL; 3066 c->tid = next_tid(c->tid); 3067 3068 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3069 3070 deactivate_slab(s, flush_slab, flush_freelist); 3071 3072 stat(s, CPUSLAB_FLUSH); 3073 3074 goto retry_load_slab; 3075 } 3076 c->slab = slab; 3077 3078 goto load_freelist; 3079 3080 return_single: 3081 3082 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3083 return freelist; 3084 } 3085 3086 /* 3087 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3088 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3089 * pointer. 3090 */ 3091 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3092 unsigned long addr, struct kmem_cache_cpu *c) 3093 { 3094 void *p; 3095 3096 #ifdef CONFIG_PREEMPT_COUNT 3097 /* 3098 * We may have been preempted and rescheduled on a different 3099 * cpu before disabling preemption. Need to reload cpu area 3100 * pointer. 3101 */ 3102 c = slub_get_cpu_ptr(s->cpu_slab); 3103 #endif 3104 3105 p = ___slab_alloc(s, gfpflags, node, addr, c); 3106 #ifdef CONFIG_PREEMPT_COUNT 3107 slub_put_cpu_ptr(s->cpu_slab); 3108 #endif 3109 return p; 3110 } 3111 3112 /* 3113 * If the object has been wiped upon free, make sure it's fully initialized by 3114 * zeroing out freelist pointer. 3115 */ 3116 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3117 void *obj) 3118 { 3119 if (unlikely(slab_want_init_on_free(s)) && obj) 3120 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3121 0, sizeof(void *)); 3122 } 3123 3124 /* 3125 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3126 * have the fastpath folded into their functions. So no function call 3127 * overhead for requests that can be satisfied on the fastpath. 3128 * 3129 * The fastpath works by first checking if the lockless freelist can be used. 3130 * If not then __slab_alloc is called for slow processing. 3131 * 3132 * Otherwise we can simply pick the next object from the lockless free list. 3133 */ 3134 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3135 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3136 { 3137 void *object; 3138 struct kmem_cache_cpu *c; 3139 struct slab *slab; 3140 unsigned long tid; 3141 struct obj_cgroup *objcg = NULL; 3142 bool init = false; 3143 3144 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3145 if (!s) 3146 return NULL; 3147 3148 object = kfence_alloc(s, orig_size, gfpflags); 3149 if (unlikely(object)) 3150 goto out; 3151 3152 redo: 3153 /* 3154 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3155 * enabled. We may switch back and forth between cpus while 3156 * reading from one cpu area. That does not matter as long 3157 * as we end up on the original cpu again when doing the cmpxchg. 3158 * 3159 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3160 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3161 * the tid. If we are preempted and switched to another cpu between the 3162 * two reads, it's OK as the two are still associated with the same cpu 3163 * and cmpxchg later will validate the cpu. 3164 */ 3165 c = raw_cpu_ptr(s->cpu_slab); 3166 tid = READ_ONCE(c->tid); 3167 3168 /* 3169 * Irqless object alloc/free algorithm used here depends on sequence 3170 * of fetching cpu_slab's data. tid should be fetched before anything 3171 * on c to guarantee that object and slab associated with previous tid 3172 * won't be used with current tid. If we fetch tid first, object and 3173 * slab could be one associated with next tid and our alloc/free 3174 * request will be failed. In this case, we will retry. So, no problem. 3175 */ 3176 barrier(); 3177 3178 /* 3179 * The transaction ids are globally unique per cpu and per operation on 3180 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3181 * occurs on the right processor and that there was no operation on the 3182 * linked list in between. 3183 */ 3184 3185 object = c->freelist; 3186 slab = c->slab; 3187 /* 3188 * We cannot use the lockless fastpath on PREEMPT_RT because if a 3189 * slowpath has taken the local_lock_irqsave(), it is not protected 3190 * against a fast path operation in an irq handler. So we need to take 3191 * the slow path which uses local_lock. It is still relatively fast if 3192 * there is a suitable cpu freelist. 3193 */ 3194 if (IS_ENABLED(CONFIG_PREEMPT_RT) || 3195 unlikely(!object || !slab || !node_match(slab, node))) { 3196 object = __slab_alloc(s, gfpflags, node, addr, c); 3197 } else { 3198 void *next_object = get_freepointer_safe(s, object); 3199 3200 /* 3201 * The cmpxchg will only match if there was no additional 3202 * operation and if we are on the right processor. 3203 * 3204 * The cmpxchg does the following atomically (without lock 3205 * semantics!) 3206 * 1. Relocate first pointer to the current per cpu area. 3207 * 2. Verify that tid and freelist have not been changed 3208 * 3. If they were not changed replace tid and freelist 3209 * 3210 * Since this is without lock semantics the protection is only 3211 * against code executing on this cpu *not* from access by 3212 * other cpus. 3213 */ 3214 if (unlikely(!this_cpu_cmpxchg_double( 3215 s->cpu_slab->freelist, s->cpu_slab->tid, 3216 object, tid, 3217 next_object, next_tid(tid)))) { 3218 3219 note_cmpxchg_failure("slab_alloc", s, tid); 3220 goto redo; 3221 } 3222 prefetch_freepointer(s, next_object); 3223 stat(s, ALLOC_FASTPATH); 3224 } 3225 3226 maybe_wipe_obj_freeptr(s, object); 3227 init = slab_want_init_on_alloc(gfpflags, s); 3228 3229 out: 3230 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); 3231 3232 return object; 3233 } 3234 3235 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, 3236 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3237 { 3238 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); 3239 } 3240 3241 static __always_inline 3242 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3243 gfp_t gfpflags) 3244 { 3245 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); 3246 3247 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 3248 s->size, gfpflags); 3249 3250 return ret; 3251 } 3252 3253 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3254 { 3255 return __kmem_cache_alloc_lru(s, NULL, gfpflags); 3256 } 3257 EXPORT_SYMBOL(kmem_cache_alloc); 3258 3259 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3260 gfp_t gfpflags) 3261 { 3262 return __kmem_cache_alloc_lru(s, lru, gfpflags); 3263 } 3264 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3265 3266 #ifdef CONFIG_TRACING 3267 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 3268 { 3269 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size); 3270 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 3271 ret = kasan_kmalloc(s, ret, size, gfpflags); 3272 return ret; 3273 } 3274 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3275 #endif 3276 3277 #ifdef CONFIG_NUMA 3278 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3279 { 3280 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3281 3282 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3283 s->object_size, s->size, gfpflags, node); 3284 3285 return ret; 3286 } 3287 EXPORT_SYMBOL(kmem_cache_alloc_node); 3288 3289 #ifdef CONFIG_TRACING 3290 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 3291 gfp_t gfpflags, 3292 int node, size_t size) 3293 { 3294 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 3295 3296 trace_kmalloc_node(_RET_IP_, ret, 3297 size, s->size, gfpflags, node); 3298 3299 ret = kasan_kmalloc(s, ret, size, gfpflags); 3300 return ret; 3301 } 3302 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3303 #endif 3304 #endif /* CONFIG_NUMA */ 3305 3306 /* 3307 * Slow path handling. This may still be called frequently since objects 3308 * have a longer lifetime than the cpu slabs in most processing loads. 3309 * 3310 * So we still attempt to reduce cache line usage. Just take the slab 3311 * lock and free the item. If there is no additional partial slab 3312 * handling required then we can return immediately. 3313 */ 3314 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3315 void *head, void *tail, int cnt, 3316 unsigned long addr) 3317 3318 { 3319 void *prior; 3320 int was_frozen; 3321 struct slab new; 3322 unsigned long counters; 3323 struct kmem_cache_node *n = NULL; 3324 unsigned long flags; 3325 3326 stat(s, FREE_SLOWPATH); 3327 3328 if (kfence_free(head)) 3329 return; 3330 3331 if (kmem_cache_debug(s) && 3332 !free_debug_processing(s, slab, head, tail, cnt, addr)) 3333 return; 3334 3335 do { 3336 if (unlikely(n)) { 3337 spin_unlock_irqrestore(&n->list_lock, flags); 3338 n = NULL; 3339 } 3340 prior = slab->freelist; 3341 counters = slab->counters; 3342 set_freepointer(s, tail, prior); 3343 new.counters = counters; 3344 was_frozen = new.frozen; 3345 new.inuse -= cnt; 3346 if ((!new.inuse || !prior) && !was_frozen) { 3347 3348 if (kmem_cache_has_cpu_partial(s) && !prior) { 3349 3350 /* 3351 * Slab was on no list before and will be 3352 * partially empty 3353 * We can defer the list move and instead 3354 * freeze it. 3355 */ 3356 new.frozen = 1; 3357 3358 } else { /* Needs to be taken off a list */ 3359 3360 n = get_node(s, slab_nid(slab)); 3361 /* 3362 * Speculatively acquire the list_lock. 3363 * If the cmpxchg does not succeed then we may 3364 * drop the list_lock without any processing. 3365 * 3366 * Otherwise the list_lock will synchronize with 3367 * other processors updating the list of slabs. 3368 */ 3369 spin_lock_irqsave(&n->list_lock, flags); 3370 3371 } 3372 } 3373 3374 } while (!cmpxchg_double_slab(s, slab, 3375 prior, counters, 3376 head, new.counters, 3377 "__slab_free")); 3378 3379 if (likely(!n)) { 3380 3381 if (likely(was_frozen)) { 3382 /* 3383 * The list lock was not taken therefore no list 3384 * activity can be necessary. 3385 */ 3386 stat(s, FREE_FROZEN); 3387 } else if (new.frozen) { 3388 /* 3389 * If we just froze the slab then put it onto the 3390 * per cpu partial list. 3391 */ 3392 put_cpu_partial(s, slab, 1); 3393 stat(s, CPU_PARTIAL_FREE); 3394 } 3395 3396 return; 3397 } 3398 3399 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3400 goto slab_empty; 3401 3402 /* 3403 * Objects left in the slab. If it was not on the partial list before 3404 * then add it. 3405 */ 3406 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3407 remove_full(s, n, slab); 3408 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3409 stat(s, FREE_ADD_PARTIAL); 3410 } 3411 spin_unlock_irqrestore(&n->list_lock, flags); 3412 return; 3413 3414 slab_empty: 3415 if (prior) { 3416 /* 3417 * Slab on the partial list. 3418 */ 3419 remove_partial(n, slab); 3420 stat(s, FREE_REMOVE_PARTIAL); 3421 } else { 3422 /* Slab must be on the full list */ 3423 remove_full(s, n, slab); 3424 } 3425 3426 spin_unlock_irqrestore(&n->list_lock, flags); 3427 stat(s, FREE_SLAB); 3428 discard_slab(s, slab); 3429 } 3430 3431 /* 3432 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3433 * can perform fastpath freeing without additional function calls. 3434 * 3435 * The fastpath is only possible if we are freeing to the current cpu slab 3436 * of this processor. This typically the case if we have just allocated 3437 * the item before. 3438 * 3439 * If fastpath is not possible then fall back to __slab_free where we deal 3440 * with all sorts of special processing. 3441 * 3442 * Bulk free of a freelist with several objects (all pointing to the 3443 * same slab) possible by specifying head and tail ptr, plus objects 3444 * count (cnt). Bulk free indicated by tail pointer being set. 3445 */ 3446 static __always_inline void do_slab_free(struct kmem_cache *s, 3447 struct slab *slab, void *head, void *tail, 3448 int cnt, unsigned long addr) 3449 { 3450 void *tail_obj = tail ? : head; 3451 struct kmem_cache_cpu *c; 3452 unsigned long tid; 3453 3454 /* memcg_slab_free_hook() is already called for bulk free. */ 3455 if (!tail) 3456 memcg_slab_free_hook(s, &head, 1); 3457 redo: 3458 /* 3459 * Determine the currently cpus per cpu slab. 3460 * The cpu may change afterward. However that does not matter since 3461 * data is retrieved via this pointer. If we are on the same cpu 3462 * during the cmpxchg then the free will succeed. 3463 */ 3464 c = raw_cpu_ptr(s->cpu_slab); 3465 tid = READ_ONCE(c->tid); 3466 3467 /* Same with comment on barrier() in slab_alloc_node() */ 3468 barrier(); 3469 3470 if (likely(slab == c->slab)) { 3471 #ifndef CONFIG_PREEMPT_RT 3472 void **freelist = READ_ONCE(c->freelist); 3473 3474 set_freepointer(s, tail_obj, freelist); 3475 3476 if (unlikely(!this_cpu_cmpxchg_double( 3477 s->cpu_slab->freelist, s->cpu_slab->tid, 3478 freelist, tid, 3479 head, next_tid(tid)))) { 3480 3481 note_cmpxchg_failure("slab_free", s, tid); 3482 goto redo; 3483 } 3484 #else /* CONFIG_PREEMPT_RT */ 3485 /* 3486 * We cannot use the lockless fastpath on PREEMPT_RT because if 3487 * a slowpath has taken the local_lock_irqsave(), it is not 3488 * protected against a fast path operation in an irq handler. So 3489 * we need to take the local_lock. We shouldn't simply defer to 3490 * __slab_free() as that wouldn't use the cpu freelist at all. 3491 */ 3492 void **freelist; 3493 3494 local_lock(&s->cpu_slab->lock); 3495 c = this_cpu_ptr(s->cpu_slab); 3496 if (unlikely(slab != c->slab)) { 3497 local_unlock(&s->cpu_slab->lock); 3498 goto redo; 3499 } 3500 tid = c->tid; 3501 freelist = c->freelist; 3502 3503 set_freepointer(s, tail_obj, freelist); 3504 c->freelist = head; 3505 c->tid = next_tid(tid); 3506 3507 local_unlock(&s->cpu_slab->lock); 3508 #endif 3509 stat(s, FREE_FASTPATH); 3510 } else 3511 __slab_free(s, slab, head, tail_obj, cnt, addr); 3512 3513 } 3514 3515 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3516 void *head, void *tail, int cnt, 3517 unsigned long addr) 3518 { 3519 /* 3520 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3521 * to remove objects, whose reuse must be delayed. 3522 */ 3523 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3524 do_slab_free(s, slab, head, tail, cnt, addr); 3525 } 3526 3527 #ifdef CONFIG_KASAN_GENERIC 3528 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3529 { 3530 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3531 } 3532 #endif 3533 3534 void kmem_cache_free(struct kmem_cache *s, void *x) 3535 { 3536 s = cache_from_obj(s, x); 3537 if (!s) 3538 return; 3539 trace_kmem_cache_free(_RET_IP_, x, s->name); 3540 slab_free(s, virt_to_slab(x), x, NULL, 1, _RET_IP_); 3541 } 3542 EXPORT_SYMBOL(kmem_cache_free); 3543 3544 struct detached_freelist { 3545 struct slab *slab; 3546 void *tail; 3547 void *freelist; 3548 int cnt; 3549 struct kmem_cache *s; 3550 }; 3551 3552 static inline void free_large_kmalloc(struct folio *folio, void *object) 3553 { 3554 unsigned int order = folio_order(folio); 3555 3556 if (WARN_ON_ONCE(order == 0)) 3557 pr_warn_once("object pointer: 0x%p\n", object); 3558 3559 kfree_hook(object); 3560 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B, 3561 -(PAGE_SIZE << order)); 3562 __free_pages(folio_page(folio, 0), order); 3563 } 3564 3565 /* 3566 * This function progressively scans the array with free objects (with 3567 * a limited look ahead) and extract objects belonging to the same 3568 * slab. It builds a detached freelist directly within the given 3569 * slab/objects. This can happen without any need for 3570 * synchronization, because the objects are owned by running process. 3571 * The freelist is build up as a single linked list in the objects. 3572 * The idea is, that this detached freelist can then be bulk 3573 * transferred to the real freelist(s), but only requiring a single 3574 * synchronization primitive. Look ahead in the array is limited due 3575 * to performance reasons. 3576 */ 3577 static inline 3578 int build_detached_freelist(struct kmem_cache *s, size_t size, 3579 void **p, struct detached_freelist *df) 3580 { 3581 size_t first_skipped_index = 0; 3582 int lookahead = 3; 3583 void *object; 3584 struct folio *folio; 3585 struct slab *slab; 3586 3587 /* Always re-init detached_freelist */ 3588 df->slab = NULL; 3589 3590 do { 3591 object = p[--size]; 3592 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3593 } while (!object && size); 3594 3595 if (!object) 3596 return 0; 3597 3598 folio = virt_to_folio(object); 3599 if (!s) { 3600 /* Handle kalloc'ed objects */ 3601 if (unlikely(!folio_test_slab(folio))) { 3602 free_large_kmalloc(folio, object); 3603 p[size] = NULL; /* mark object processed */ 3604 return size; 3605 } 3606 /* Derive kmem_cache from object */ 3607 slab = folio_slab(folio); 3608 df->s = slab->slab_cache; 3609 } else { 3610 slab = folio_slab(folio); 3611 df->s = cache_from_obj(s, object); /* Support for memcg */ 3612 } 3613 3614 if (is_kfence_address(object)) { 3615 slab_free_hook(df->s, object, false); 3616 __kfence_free(object); 3617 p[size] = NULL; /* mark object processed */ 3618 return size; 3619 } 3620 3621 /* Start new detached freelist */ 3622 df->slab = slab; 3623 set_freepointer(df->s, object, NULL); 3624 df->tail = object; 3625 df->freelist = object; 3626 p[size] = NULL; /* mark object processed */ 3627 df->cnt = 1; 3628 3629 while (size) { 3630 object = p[--size]; 3631 if (!object) 3632 continue; /* Skip processed objects */ 3633 3634 /* df->slab is always set at this point */ 3635 if (df->slab == virt_to_slab(object)) { 3636 /* Opportunity build freelist */ 3637 set_freepointer(df->s, object, df->freelist); 3638 df->freelist = object; 3639 df->cnt++; 3640 p[size] = NULL; /* mark object processed */ 3641 3642 continue; 3643 } 3644 3645 /* Limit look ahead search */ 3646 if (!--lookahead) 3647 break; 3648 3649 if (!first_skipped_index) 3650 first_skipped_index = size + 1; 3651 } 3652 3653 return first_skipped_index; 3654 } 3655 3656 /* Note that interrupts must be enabled when calling this function. */ 3657 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3658 { 3659 if (WARN_ON(!size)) 3660 return; 3661 3662 memcg_slab_free_hook(s, p, size); 3663 do { 3664 struct detached_freelist df; 3665 3666 size = build_detached_freelist(s, size, p, &df); 3667 if (!df.slab) 3668 continue; 3669 3670 slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, _RET_IP_); 3671 } while (likely(size)); 3672 } 3673 EXPORT_SYMBOL(kmem_cache_free_bulk); 3674 3675 /* Note that interrupts must be enabled when calling this function. */ 3676 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3677 void **p) 3678 { 3679 struct kmem_cache_cpu *c; 3680 int i; 3681 struct obj_cgroup *objcg = NULL; 3682 3683 /* memcg and kmem_cache debug support */ 3684 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3685 if (unlikely(!s)) 3686 return false; 3687 /* 3688 * Drain objects in the per cpu slab, while disabling local 3689 * IRQs, which protects against PREEMPT and interrupts 3690 * handlers invoking normal fastpath. 3691 */ 3692 c = slub_get_cpu_ptr(s->cpu_slab); 3693 local_lock_irq(&s->cpu_slab->lock); 3694 3695 for (i = 0; i < size; i++) { 3696 void *object = kfence_alloc(s, s->object_size, flags); 3697 3698 if (unlikely(object)) { 3699 p[i] = object; 3700 continue; 3701 } 3702 3703 object = c->freelist; 3704 if (unlikely(!object)) { 3705 /* 3706 * We may have removed an object from c->freelist using 3707 * the fastpath in the previous iteration; in that case, 3708 * c->tid has not been bumped yet. 3709 * Since ___slab_alloc() may reenable interrupts while 3710 * allocating memory, we should bump c->tid now. 3711 */ 3712 c->tid = next_tid(c->tid); 3713 3714 local_unlock_irq(&s->cpu_slab->lock); 3715 3716 /* 3717 * Invoking slow path likely have side-effect 3718 * of re-populating per CPU c->freelist 3719 */ 3720 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3721 _RET_IP_, c); 3722 if (unlikely(!p[i])) 3723 goto error; 3724 3725 c = this_cpu_ptr(s->cpu_slab); 3726 maybe_wipe_obj_freeptr(s, p[i]); 3727 3728 local_lock_irq(&s->cpu_slab->lock); 3729 3730 continue; /* goto for-loop */ 3731 } 3732 c->freelist = get_freepointer(s, object); 3733 p[i] = object; 3734 maybe_wipe_obj_freeptr(s, p[i]); 3735 } 3736 c->tid = next_tid(c->tid); 3737 local_unlock_irq(&s->cpu_slab->lock); 3738 slub_put_cpu_ptr(s->cpu_slab); 3739 3740 /* 3741 * memcg and kmem_cache debug support and memory initialization. 3742 * Done outside of the IRQ disabled fastpath loop. 3743 */ 3744 slab_post_alloc_hook(s, objcg, flags, size, p, 3745 slab_want_init_on_alloc(flags, s)); 3746 return i; 3747 error: 3748 slub_put_cpu_ptr(s->cpu_slab); 3749 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3750 __kmem_cache_free_bulk(s, i, p); 3751 return 0; 3752 } 3753 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3754 3755 3756 /* 3757 * Object placement in a slab is made very easy because we always start at 3758 * offset 0. If we tune the size of the object to the alignment then we can 3759 * get the required alignment by putting one properly sized object after 3760 * another. 3761 * 3762 * Notice that the allocation order determines the sizes of the per cpu 3763 * caches. Each processor has always one slab available for allocations. 3764 * Increasing the allocation order reduces the number of times that slabs 3765 * must be moved on and off the partial lists and is therefore a factor in 3766 * locking overhead. 3767 */ 3768 3769 /* 3770 * Minimum / Maximum order of slab pages. This influences locking overhead 3771 * and slab fragmentation. A higher order reduces the number of partial slabs 3772 * and increases the number of allocations possible without having to 3773 * take the list_lock. 3774 */ 3775 static unsigned int slub_min_order; 3776 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3777 static unsigned int slub_min_objects; 3778 3779 /* 3780 * Calculate the order of allocation given an slab object size. 3781 * 3782 * The order of allocation has significant impact on performance and other 3783 * system components. Generally order 0 allocations should be preferred since 3784 * order 0 does not cause fragmentation in the page allocator. Larger objects 3785 * be problematic to put into order 0 slabs because there may be too much 3786 * unused space left. We go to a higher order if more than 1/16th of the slab 3787 * would be wasted. 3788 * 3789 * In order to reach satisfactory performance we must ensure that a minimum 3790 * number of objects is in one slab. Otherwise we may generate too much 3791 * activity on the partial lists which requires taking the list_lock. This is 3792 * less a concern for large slabs though which are rarely used. 3793 * 3794 * slub_max_order specifies the order where we begin to stop considering the 3795 * number of objects in a slab as critical. If we reach slub_max_order then 3796 * we try to keep the page order as low as possible. So we accept more waste 3797 * of space in favor of a small page order. 3798 * 3799 * Higher order allocations also allow the placement of more objects in a 3800 * slab and thereby reduce object handling overhead. If the user has 3801 * requested a higher minimum order then we start with that one instead of 3802 * the smallest order which will fit the object. 3803 */ 3804 static inline unsigned int calc_slab_order(unsigned int size, 3805 unsigned int min_objects, unsigned int max_order, 3806 unsigned int fract_leftover) 3807 { 3808 unsigned int min_order = slub_min_order; 3809 unsigned int order; 3810 3811 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3812 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3813 3814 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3815 order <= max_order; order++) { 3816 3817 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3818 unsigned int rem; 3819 3820 rem = slab_size % size; 3821 3822 if (rem <= slab_size / fract_leftover) 3823 break; 3824 } 3825 3826 return order; 3827 } 3828 3829 static inline int calculate_order(unsigned int size) 3830 { 3831 unsigned int order; 3832 unsigned int min_objects; 3833 unsigned int max_objects; 3834 unsigned int nr_cpus; 3835 3836 /* 3837 * Attempt to find best configuration for a slab. This 3838 * works by first attempting to generate a layout with 3839 * the best configuration and backing off gradually. 3840 * 3841 * First we increase the acceptable waste in a slab. Then 3842 * we reduce the minimum objects required in a slab. 3843 */ 3844 min_objects = slub_min_objects; 3845 if (!min_objects) { 3846 /* 3847 * Some architectures will only update present cpus when 3848 * onlining them, so don't trust the number if it's just 1. But 3849 * we also don't want to use nr_cpu_ids always, as on some other 3850 * architectures, there can be many possible cpus, but never 3851 * onlined. Here we compromise between trying to avoid too high 3852 * order on systems that appear larger than they are, and too 3853 * low order on systems that appear smaller than they are. 3854 */ 3855 nr_cpus = num_present_cpus(); 3856 if (nr_cpus <= 1) 3857 nr_cpus = nr_cpu_ids; 3858 min_objects = 4 * (fls(nr_cpus) + 1); 3859 } 3860 max_objects = order_objects(slub_max_order, size); 3861 min_objects = min(min_objects, max_objects); 3862 3863 while (min_objects > 1) { 3864 unsigned int fraction; 3865 3866 fraction = 16; 3867 while (fraction >= 4) { 3868 order = calc_slab_order(size, min_objects, 3869 slub_max_order, fraction); 3870 if (order <= slub_max_order) 3871 return order; 3872 fraction /= 2; 3873 } 3874 min_objects--; 3875 } 3876 3877 /* 3878 * We were unable to place multiple objects in a slab. Now 3879 * lets see if we can place a single object there. 3880 */ 3881 order = calc_slab_order(size, 1, slub_max_order, 1); 3882 if (order <= slub_max_order) 3883 return order; 3884 3885 /* 3886 * Doh this slab cannot be placed using slub_max_order. 3887 */ 3888 order = calc_slab_order(size, 1, MAX_ORDER, 1); 3889 if (order < MAX_ORDER) 3890 return order; 3891 return -ENOSYS; 3892 } 3893 3894 static void 3895 init_kmem_cache_node(struct kmem_cache_node *n) 3896 { 3897 n->nr_partial = 0; 3898 spin_lock_init(&n->list_lock); 3899 INIT_LIST_HEAD(&n->partial); 3900 #ifdef CONFIG_SLUB_DEBUG 3901 atomic_long_set(&n->nr_slabs, 0); 3902 atomic_long_set(&n->total_objects, 0); 3903 INIT_LIST_HEAD(&n->full); 3904 #endif 3905 } 3906 3907 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3908 { 3909 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3910 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3911 3912 /* 3913 * Must align to double word boundary for the double cmpxchg 3914 * instructions to work; see __pcpu_double_call_return_bool(). 3915 */ 3916 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3917 2 * sizeof(void *)); 3918 3919 if (!s->cpu_slab) 3920 return 0; 3921 3922 init_kmem_cache_cpus(s); 3923 3924 return 1; 3925 } 3926 3927 static struct kmem_cache *kmem_cache_node; 3928 3929 /* 3930 * No kmalloc_node yet so do it by hand. We know that this is the first 3931 * slab on the node for this slabcache. There are no concurrent accesses 3932 * possible. 3933 * 3934 * Note that this function only works on the kmem_cache_node 3935 * when allocating for the kmem_cache_node. This is used for bootstrapping 3936 * memory on a fresh node that has no slab structures yet. 3937 */ 3938 static void early_kmem_cache_node_alloc(int node) 3939 { 3940 struct slab *slab; 3941 struct kmem_cache_node *n; 3942 3943 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3944 3945 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3946 3947 BUG_ON(!slab); 3948 if (slab_nid(slab) != node) { 3949 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3950 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3951 } 3952 3953 n = slab->freelist; 3954 BUG_ON(!n); 3955 #ifdef CONFIG_SLUB_DEBUG 3956 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3957 init_tracking(kmem_cache_node, n); 3958 #endif 3959 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 3960 slab->freelist = get_freepointer(kmem_cache_node, n); 3961 slab->inuse = 1; 3962 slab->frozen = 0; 3963 kmem_cache_node->node[node] = n; 3964 init_kmem_cache_node(n); 3965 inc_slabs_node(kmem_cache_node, node, slab->objects); 3966 3967 /* 3968 * No locks need to be taken here as it has just been 3969 * initialized and there is no concurrent access. 3970 */ 3971 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 3972 } 3973 3974 static void free_kmem_cache_nodes(struct kmem_cache *s) 3975 { 3976 int node; 3977 struct kmem_cache_node *n; 3978 3979 for_each_kmem_cache_node(s, node, n) { 3980 s->node[node] = NULL; 3981 kmem_cache_free(kmem_cache_node, n); 3982 } 3983 } 3984 3985 void __kmem_cache_release(struct kmem_cache *s) 3986 { 3987 cache_random_seq_destroy(s); 3988 free_percpu(s->cpu_slab); 3989 free_kmem_cache_nodes(s); 3990 } 3991 3992 static int init_kmem_cache_nodes(struct kmem_cache *s) 3993 { 3994 int node; 3995 3996 for_each_node_mask(node, slab_nodes) { 3997 struct kmem_cache_node *n; 3998 3999 if (slab_state == DOWN) { 4000 early_kmem_cache_node_alloc(node); 4001 continue; 4002 } 4003 n = kmem_cache_alloc_node(kmem_cache_node, 4004 GFP_KERNEL, node); 4005 4006 if (!n) { 4007 free_kmem_cache_nodes(s); 4008 return 0; 4009 } 4010 4011 init_kmem_cache_node(n); 4012 s->node[node] = n; 4013 } 4014 return 1; 4015 } 4016 4017 static void set_min_partial(struct kmem_cache *s, unsigned long min) 4018 { 4019 if (min < MIN_PARTIAL) 4020 min = MIN_PARTIAL; 4021 else if (min > MAX_PARTIAL) 4022 min = MAX_PARTIAL; 4023 s->min_partial = min; 4024 } 4025 4026 static void set_cpu_partial(struct kmem_cache *s) 4027 { 4028 #ifdef CONFIG_SLUB_CPU_PARTIAL 4029 unsigned int nr_objects; 4030 4031 /* 4032 * cpu_partial determined the maximum number of objects kept in the 4033 * per cpu partial lists of a processor. 4034 * 4035 * Per cpu partial lists mainly contain slabs that just have one 4036 * object freed. If they are used for allocation then they can be 4037 * filled up again with minimal effort. The slab will never hit the 4038 * per node partial lists and therefore no locking will be required. 4039 * 4040 * For backwards compatibility reasons, this is determined as number 4041 * of objects, even though we now limit maximum number of pages, see 4042 * slub_set_cpu_partial() 4043 */ 4044 if (!kmem_cache_has_cpu_partial(s)) 4045 nr_objects = 0; 4046 else if (s->size >= PAGE_SIZE) 4047 nr_objects = 6; 4048 else if (s->size >= 1024) 4049 nr_objects = 24; 4050 else if (s->size >= 256) 4051 nr_objects = 52; 4052 else 4053 nr_objects = 120; 4054 4055 slub_set_cpu_partial(s, nr_objects); 4056 #endif 4057 } 4058 4059 /* 4060 * calculate_sizes() determines the order and the distribution of data within 4061 * a slab object. 4062 */ 4063 static int calculate_sizes(struct kmem_cache *s, int forced_order) 4064 { 4065 slab_flags_t flags = s->flags; 4066 unsigned int size = s->object_size; 4067 unsigned int order; 4068 4069 /* 4070 * Round up object size to the next word boundary. We can only 4071 * place the free pointer at word boundaries and this determines 4072 * the possible location of the free pointer. 4073 */ 4074 size = ALIGN(size, sizeof(void *)); 4075 4076 #ifdef CONFIG_SLUB_DEBUG 4077 /* 4078 * Determine if we can poison the object itself. If the user of 4079 * the slab may touch the object after free or before allocation 4080 * then we should never poison the object itself. 4081 */ 4082 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4083 !s->ctor) 4084 s->flags |= __OBJECT_POISON; 4085 else 4086 s->flags &= ~__OBJECT_POISON; 4087 4088 4089 /* 4090 * If we are Redzoning then check if there is some space between the 4091 * end of the object and the free pointer. If not then add an 4092 * additional word to have some bytes to store Redzone information. 4093 */ 4094 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4095 size += sizeof(void *); 4096 #endif 4097 4098 /* 4099 * With that we have determined the number of bytes in actual use 4100 * by the object and redzoning. 4101 */ 4102 s->inuse = size; 4103 4104 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4105 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4106 s->ctor) { 4107 /* 4108 * Relocate free pointer after the object if it is not 4109 * permitted to overwrite the first word of the object on 4110 * kmem_cache_free. 4111 * 4112 * This is the case if we do RCU, have a constructor or 4113 * destructor, are poisoning the objects, or are 4114 * redzoning an object smaller than sizeof(void *). 4115 * 4116 * The assumption that s->offset >= s->inuse means free 4117 * pointer is outside of the object is used in the 4118 * freeptr_outside_object() function. If that is no 4119 * longer true, the function needs to be modified. 4120 */ 4121 s->offset = size; 4122 size += sizeof(void *); 4123 } else { 4124 /* 4125 * Store freelist pointer near middle of object to keep 4126 * it away from the edges of the object to avoid small 4127 * sized over/underflows from neighboring allocations. 4128 */ 4129 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4130 } 4131 4132 #ifdef CONFIG_SLUB_DEBUG 4133 if (flags & SLAB_STORE_USER) 4134 /* 4135 * Need to store information about allocs and frees after 4136 * the object. 4137 */ 4138 size += 2 * sizeof(struct track); 4139 #endif 4140 4141 kasan_cache_create(s, &size, &s->flags); 4142 #ifdef CONFIG_SLUB_DEBUG 4143 if (flags & SLAB_RED_ZONE) { 4144 /* 4145 * Add some empty padding so that we can catch 4146 * overwrites from earlier objects rather than let 4147 * tracking information or the free pointer be 4148 * corrupted if a user writes before the start 4149 * of the object. 4150 */ 4151 size += sizeof(void *); 4152 4153 s->red_left_pad = sizeof(void *); 4154 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4155 size += s->red_left_pad; 4156 } 4157 #endif 4158 4159 /* 4160 * SLUB stores one object immediately after another beginning from 4161 * offset 0. In order to align the objects we have to simply size 4162 * each object to conform to the alignment. 4163 */ 4164 size = ALIGN(size, s->align); 4165 s->size = size; 4166 s->reciprocal_size = reciprocal_value(size); 4167 if (forced_order >= 0) 4168 order = forced_order; 4169 else 4170 order = calculate_order(size); 4171 4172 if ((int)order < 0) 4173 return 0; 4174 4175 s->allocflags = 0; 4176 if (order) 4177 s->allocflags |= __GFP_COMP; 4178 4179 if (s->flags & SLAB_CACHE_DMA) 4180 s->allocflags |= GFP_DMA; 4181 4182 if (s->flags & SLAB_CACHE_DMA32) 4183 s->allocflags |= GFP_DMA32; 4184 4185 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4186 s->allocflags |= __GFP_RECLAIMABLE; 4187 4188 /* 4189 * Determine the number of objects per slab 4190 */ 4191 s->oo = oo_make(order, size); 4192 s->min = oo_make(get_order(size), size); 4193 if (oo_objects(s->oo) > oo_objects(s->max)) 4194 s->max = s->oo; 4195 4196 return !!oo_objects(s->oo); 4197 } 4198 4199 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4200 { 4201 s->flags = kmem_cache_flags(s->size, flags, s->name); 4202 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4203 s->random = get_random_long(); 4204 #endif 4205 4206 if (!calculate_sizes(s, -1)) 4207 goto error; 4208 if (disable_higher_order_debug) { 4209 /* 4210 * Disable debugging flags that store metadata if the min slab 4211 * order increased. 4212 */ 4213 if (get_order(s->size) > get_order(s->object_size)) { 4214 s->flags &= ~DEBUG_METADATA_FLAGS; 4215 s->offset = 0; 4216 if (!calculate_sizes(s, -1)) 4217 goto error; 4218 } 4219 } 4220 4221 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 4222 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 4223 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 4224 /* Enable fast mode */ 4225 s->flags |= __CMPXCHG_DOUBLE; 4226 #endif 4227 4228 /* 4229 * The larger the object size is, the more slabs we want on the partial 4230 * list to avoid pounding the page allocator excessively. 4231 */ 4232 set_min_partial(s, ilog2(s->size) / 2); 4233 4234 set_cpu_partial(s); 4235 4236 #ifdef CONFIG_NUMA 4237 s->remote_node_defrag_ratio = 1000; 4238 #endif 4239 4240 /* Initialize the pre-computed randomized freelist if slab is up */ 4241 if (slab_state >= UP) { 4242 if (init_cache_random_seq(s)) 4243 goto error; 4244 } 4245 4246 if (!init_kmem_cache_nodes(s)) 4247 goto error; 4248 4249 if (alloc_kmem_cache_cpus(s)) 4250 return 0; 4251 4252 error: 4253 __kmem_cache_release(s); 4254 return -EINVAL; 4255 } 4256 4257 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4258 const char *text) 4259 { 4260 #ifdef CONFIG_SLUB_DEBUG 4261 void *addr = slab_address(slab); 4262 unsigned long flags; 4263 unsigned long *map; 4264 void *p; 4265 4266 slab_err(s, slab, text, s->name); 4267 slab_lock(slab, &flags); 4268 4269 map = get_map(s, slab); 4270 for_each_object(p, s, addr, slab->objects) { 4271 4272 if (!test_bit(__obj_to_index(s, addr, p), map)) { 4273 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4274 print_tracking(s, p); 4275 } 4276 } 4277 put_map(map); 4278 slab_unlock(slab, &flags); 4279 #endif 4280 } 4281 4282 /* 4283 * Attempt to free all partial slabs on a node. 4284 * This is called from __kmem_cache_shutdown(). We must take list_lock 4285 * because sysfs file might still access partial list after the shutdowning. 4286 */ 4287 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4288 { 4289 LIST_HEAD(discard); 4290 struct slab *slab, *h; 4291 4292 BUG_ON(irqs_disabled()); 4293 spin_lock_irq(&n->list_lock); 4294 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4295 if (!slab->inuse) { 4296 remove_partial(n, slab); 4297 list_add(&slab->slab_list, &discard); 4298 } else { 4299 list_slab_objects(s, slab, 4300 "Objects remaining in %s on __kmem_cache_shutdown()"); 4301 } 4302 } 4303 spin_unlock_irq(&n->list_lock); 4304 4305 list_for_each_entry_safe(slab, h, &discard, slab_list) 4306 discard_slab(s, slab); 4307 } 4308 4309 bool __kmem_cache_empty(struct kmem_cache *s) 4310 { 4311 int node; 4312 struct kmem_cache_node *n; 4313 4314 for_each_kmem_cache_node(s, node, n) 4315 if (n->nr_partial || slabs_node(s, node)) 4316 return false; 4317 return true; 4318 } 4319 4320 /* 4321 * Release all resources used by a slab cache. 4322 */ 4323 int __kmem_cache_shutdown(struct kmem_cache *s) 4324 { 4325 int node; 4326 struct kmem_cache_node *n; 4327 4328 flush_all_cpus_locked(s); 4329 /* Attempt to free all objects */ 4330 for_each_kmem_cache_node(s, node, n) { 4331 free_partial(s, n); 4332 if (n->nr_partial || slabs_node(s, node)) 4333 return 1; 4334 } 4335 return 0; 4336 } 4337 4338 #ifdef CONFIG_PRINTK 4339 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4340 { 4341 void *base; 4342 int __maybe_unused i; 4343 unsigned int objnr; 4344 void *objp; 4345 void *objp0; 4346 struct kmem_cache *s = slab->slab_cache; 4347 struct track __maybe_unused *trackp; 4348 4349 kpp->kp_ptr = object; 4350 kpp->kp_slab = slab; 4351 kpp->kp_slab_cache = s; 4352 base = slab_address(slab); 4353 objp0 = kasan_reset_tag(object); 4354 #ifdef CONFIG_SLUB_DEBUG 4355 objp = restore_red_left(s, objp0); 4356 #else 4357 objp = objp0; 4358 #endif 4359 objnr = obj_to_index(s, slab, objp); 4360 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4361 objp = base + s->size * objnr; 4362 kpp->kp_objp = objp; 4363 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4364 || (objp - base) % s->size) || 4365 !(s->flags & SLAB_STORE_USER)) 4366 return; 4367 #ifdef CONFIG_SLUB_DEBUG 4368 objp = fixup_red_left(s, objp); 4369 trackp = get_track(s, objp, TRACK_ALLOC); 4370 kpp->kp_ret = (void *)trackp->addr; 4371 #ifdef CONFIG_STACKTRACE 4372 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { 4373 kpp->kp_stack[i] = (void *)trackp->addrs[i]; 4374 if (!kpp->kp_stack[i]) 4375 break; 4376 } 4377 4378 trackp = get_track(s, objp, TRACK_FREE); 4379 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { 4380 kpp->kp_free_stack[i] = (void *)trackp->addrs[i]; 4381 if (!kpp->kp_free_stack[i]) 4382 break; 4383 } 4384 #endif 4385 #endif 4386 } 4387 #endif 4388 4389 /******************************************************************** 4390 * Kmalloc subsystem 4391 *******************************************************************/ 4392 4393 static int __init setup_slub_min_order(char *str) 4394 { 4395 get_option(&str, (int *)&slub_min_order); 4396 4397 return 1; 4398 } 4399 4400 __setup("slub_min_order=", setup_slub_min_order); 4401 4402 static int __init setup_slub_max_order(char *str) 4403 { 4404 get_option(&str, (int *)&slub_max_order); 4405 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4406 4407 return 1; 4408 } 4409 4410 __setup("slub_max_order=", setup_slub_max_order); 4411 4412 static int __init setup_slub_min_objects(char *str) 4413 { 4414 get_option(&str, (int *)&slub_min_objects); 4415 4416 return 1; 4417 } 4418 4419 __setup("slub_min_objects=", setup_slub_min_objects); 4420 4421 void *__kmalloc(size_t size, gfp_t flags) 4422 { 4423 struct kmem_cache *s; 4424 void *ret; 4425 4426 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4427 return kmalloc_large(size, flags); 4428 4429 s = kmalloc_slab(size, flags); 4430 4431 if (unlikely(ZERO_OR_NULL_PTR(s))) 4432 return s; 4433 4434 ret = slab_alloc(s, NULL, flags, _RET_IP_, size); 4435 4436 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 4437 4438 ret = kasan_kmalloc(s, ret, size, flags); 4439 4440 return ret; 4441 } 4442 EXPORT_SYMBOL(__kmalloc); 4443 4444 #ifdef CONFIG_NUMA 4445 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4446 { 4447 struct page *page; 4448 void *ptr = NULL; 4449 unsigned int order = get_order(size); 4450 4451 flags |= __GFP_COMP; 4452 page = alloc_pages_node(node, flags, order); 4453 if (page) { 4454 ptr = page_address(page); 4455 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4456 PAGE_SIZE << order); 4457 } 4458 4459 return kmalloc_large_node_hook(ptr, size, flags); 4460 } 4461 4462 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4463 { 4464 struct kmem_cache *s; 4465 void *ret; 4466 4467 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4468 ret = kmalloc_large_node(size, flags, node); 4469 4470 trace_kmalloc_node(_RET_IP_, ret, 4471 size, PAGE_SIZE << get_order(size), 4472 flags, node); 4473 4474 return ret; 4475 } 4476 4477 s = kmalloc_slab(size, flags); 4478 4479 if (unlikely(ZERO_OR_NULL_PTR(s))) 4480 return s; 4481 4482 ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size); 4483 4484 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 4485 4486 ret = kasan_kmalloc(s, ret, size, flags); 4487 4488 return ret; 4489 } 4490 EXPORT_SYMBOL(__kmalloc_node); 4491 #endif /* CONFIG_NUMA */ 4492 4493 #ifdef CONFIG_HARDENED_USERCOPY 4494 /* 4495 * Rejects incorrectly sized objects and objects that are to be copied 4496 * to/from userspace but do not fall entirely within the containing slab 4497 * cache's usercopy region. 4498 * 4499 * Returns NULL if check passes, otherwise const char * to name of cache 4500 * to indicate an error. 4501 */ 4502 void __check_heap_object(const void *ptr, unsigned long n, 4503 const struct slab *slab, bool to_user) 4504 { 4505 struct kmem_cache *s; 4506 unsigned int offset; 4507 bool is_kfence = is_kfence_address(ptr); 4508 4509 ptr = kasan_reset_tag(ptr); 4510 4511 /* Find object and usable object size. */ 4512 s = slab->slab_cache; 4513 4514 /* Reject impossible pointers. */ 4515 if (ptr < slab_address(slab)) 4516 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4517 to_user, 0, n); 4518 4519 /* Find offset within object. */ 4520 if (is_kfence) 4521 offset = ptr - kfence_object_start(ptr); 4522 else 4523 offset = (ptr - slab_address(slab)) % s->size; 4524 4525 /* Adjust for redzone and reject if within the redzone. */ 4526 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4527 if (offset < s->red_left_pad) 4528 usercopy_abort("SLUB object in left red zone", 4529 s->name, to_user, offset, n); 4530 offset -= s->red_left_pad; 4531 } 4532 4533 /* Allow address range falling entirely within usercopy region. */ 4534 if (offset >= s->useroffset && 4535 offset - s->useroffset <= s->usersize && 4536 n <= s->useroffset - offset + s->usersize) 4537 return; 4538 4539 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4540 } 4541 #endif /* CONFIG_HARDENED_USERCOPY */ 4542 4543 size_t __ksize(const void *object) 4544 { 4545 struct folio *folio; 4546 4547 if (unlikely(object == ZERO_SIZE_PTR)) 4548 return 0; 4549 4550 folio = virt_to_folio(object); 4551 4552 if (unlikely(!folio_test_slab(folio))) 4553 return folio_size(folio); 4554 4555 return slab_ksize(folio_slab(folio)->slab_cache); 4556 } 4557 EXPORT_SYMBOL(__ksize); 4558 4559 void kfree(const void *x) 4560 { 4561 struct folio *folio; 4562 struct slab *slab; 4563 void *object = (void *)x; 4564 4565 trace_kfree(_RET_IP_, x); 4566 4567 if (unlikely(ZERO_OR_NULL_PTR(x))) 4568 return; 4569 4570 folio = virt_to_folio(x); 4571 if (unlikely(!folio_test_slab(folio))) { 4572 free_large_kmalloc(folio, object); 4573 return; 4574 } 4575 slab = folio_slab(folio); 4576 slab_free(slab->slab_cache, slab, object, NULL, 1, _RET_IP_); 4577 } 4578 EXPORT_SYMBOL(kfree); 4579 4580 #define SHRINK_PROMOTE_MAX 32 4581 4582 /* 4583 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4584 * up most to the head of the partial lists. New allocations will then 4585 * fill those up and thus they can be removed from the partial lists. 4586 * 4587 * The slabs with the least items are placed last. This results in them 4588 * being allocated from last increasing the chance that the last objects 4589 * are freed in them. 4590 */ 4591 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4592 { 4593 int node; 4594 int i; 4595 struct kmem_cache_node *n; 4596 struct slab *slab; 4597 struct slab *t; 4598 struct list_head discard; 4599 struct list_head promote[SHRINK_PROMOTE_MAX]; 4600 unsigned long flags; 4601 int ret = 0; 4602 4603 for_each_kmem_cache_node(s, node, n) { 4604 INIT_LIST_HEAD(&discard); 4605 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4606 INIT_LIST_HEAD(promote + i); 4607 4608 spin_lock_irqsave(&n->list_lock, flags); 4609 4610 /* 4611 * Build lists of slabs to discard or promote. 4612 * 4613 * Note that concurrent frees may occur while we hold the 4614 * list_lock. slab->inuse here is the upper limit. 4615 */ 4616 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4617 int free = slab->objects - slab->inuse; 4618 4619 /* Do not reread slab->inuse */ 4620 barrier(); 4621 4622 /* We do not keep full slabs on the list */ 4623 BUG_ON(free <= 0); 4624 4625 if (free == slab->objects) { 4626 list_move(&slab->slab_list, &discard); 4627 n->nr_partial--; 4628 } else if (free <= SHRINK_PROMOTE_MAX) 4629 list_move(&slab->slab_list, promote + free - 1); 4630 } 4631 4632 /* 4633 * Promote the slabs filled up most to the head of the 4634 * partial list. 4635 */ 4636 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4637 list_splice(promote + i, &n->partial); 4638 4639 spin_unlock_irqrestore(&n->list_lock, flags); 4640 4641 /* Release empty slabs */ 4642 list_for_each_entry_safe(slab, t, &discard, slab_list) 4643 discard_slab(s, slab); 4644 4645 if (slabs_node(s, node)) 4646 ret = 1; 4647 } 4648 4649 return ret; 4650 } 4651 4652 int __kmem_cache_shrink(struct kmem_cache *s) 4653 { 4654 flush_all(s); 4655 return __kmem_cache_do_shrink(s); 4656 } 4657 4658 static int slab_mem_going_offline_callback(void *arg) 4659 { 4660 struct kmem_cache *s; 4661 4662 mutex_lock(&slab_mutex); 4663 list_for_each_entry(s, &slab_caches, list) { 4664 flush_all_cpus_locked(s); 4665 __kmem_cache_do_shrink(s); 4666 } 4667 mutex_unlock(&slab_mutex); 4668 4669 return 0; 4670 } 4671 4672 static void slab_mem_offline_callback(void *arg) 4673 { 4674 struct memory_notify *marg = arg; 4675 int offline_node; 4676 4677 offline_node = marg->status_change_nid_normal; 4678 4679 /* 4680 * If the node still has available memory. we need kmem_cache_node 4681 * for it yet. 4682 */ 4683 if (offline_node < 0) 4684 return; 4685 4686 mutex_lock(&slab_mutex); 4687 node_clear(offline_node, slab_nodes); 4688 /* 4689 * We no longer free kmem_cache_node structures here, as it would be 4690 * racy with all get_node() users, and infeasible to protect them with 4691 * slab_mutex. 4692 */ 4693 mutex_unlock(&slab_mutex); 4694 } 4695 4696 static int slab_mem_going_online_callback(void *arg) 4697 { 4698 struct kmem_cache_node *n; 4699 struct kmem_cache *s; 4700 struct memory_notify *marg = arg; 4701 int nid = marg->status_change_nid_normal; 4702 int ret = 0; 4703 4704 /* 4705 * If the node's memory is already available, then kmem_cache_node is 4706 * already created. Nothing to do. 4707 */ 4708 if (nid < 0) 4709 return 0; 4710 4711 /* 4712 * We are bringing a node online. No memory is available yet. We must 4713 * allocate a kmem_cache_node structure in order to bring the node 4714 * online. 4715 */ 4716 mutex_lock(&slab_mutex); 4717 list_for_each_entry(s, &slab_caches, list) { 4718 /* 4719 * The structure may already exist if the node was previously 4720 * onlined and offlined. 4721 */ 4722 if (get_node(s, nid)) 4723 continue; 4724 /* 4725 * XXX: kmem_cache_alloc_node will fallback to other nodes 4726 * since memory is not yet available from the node that 4727 * is brought up. 4728 */ 4729 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4730 if (!n) { 4731 ret = -ENOMEM; 4732 goto out; 4733 } 4734 init_kmem_cache_node(n); 4735 s->node[nid] = n; 4736 } 4737 /* 4738 * Any cache created after this point will also have kmem_cache_node 4739 * initialized for the new node. 4740 */ 4741 node_set(nid, slab_nodes); 4742 out: 4743 mutex_unlock(&slab_mutex); 4744 return ret; 4745 } 4746 4747 static int slab_memory_callback(struct notifier_block *self, 4748 unsigned long action, void *arg) 4749 { 4750 int ret = 0; 4751 4752 switch (action) { 4753 case MEM_GOING_ONLINE: 4754 ret = slab_mem_going_online_callback(arg); 4755 break; 4756 case MEM_GOING_OFFLINE: 4757 ret = slab_mem_going_offline_callback(arg); 4758 break; 4759 case MEM_OFFLINE: 4760 case MEM_CANCEL_ONLINE: 4761 slab_mem_offline_callback(arg); 4762 break; 4763 case MEM_ONLINE: 4764 case MEM_CANCEL_OFFLINE: 4765 break; 4766 } 4767 if (ret) 4768 ret = notifier_from_errno(ret); 4769 else 4770 ret = NOTIFY_OK; 4771 return ret; 4772 } 4773 4774 static struct notifier_block slab_memory_callback_nb = { 4775 .notifier_call = slab_memory_callback, 4776 .priority = SLAB_CALLBACK_PRI, 4777 }; 4778 4779 /******************************************************************** 4780 * Basic setup of slabs 4781 *******************************************************************/ 4782 4783 /* 4784 * Used for early kmem_cache structures that were allocated using 4785 * the page allocator. Allocate them properly then fix up the pointers 4786 * that may be pointing to the wrong kmem_cache structure. 4787 */ 4788 4789 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4790 { 4791 int node; 4792 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4793 struct kmem_cache_node *n; 4794 4795 memcpy(s, static_cache, kmem_cache->object_size); 4796 4797 /* 4798 * This runs very early, and only the boot processor is supposed to be 4799 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4800 * IPIs around. 4801 */ 4802 __flush_cpu_slab(s, smp_processor_id()); 4803 for_each_kmem_cache_node(s, node, n) { 4804 struct slab *p; 4805 4806 list_for_each_entry(p, &n->partial, slab_list) 4807 p->slab_cache = s; 4808 4809 #ifdef CONFIG_SLUB_DEBUG 4810 list_for_each_entry(p, &n->full, slab_list) 4811 p->slab_cache = s; 4812 #endif 4813 } 4814 list_add(&s->list, &slab_caches); 4815 return s; 4816 } 4817 4818 void __init kmem_cache_init(void) 4819 { 4820 static __initdata struct kmem_cache boot_kmem_cache, 4821 boot_kmem_cache_node; 4822 int node; 4823 4824 if (debug_guardpage_minorder()) 4825 slub_max_order = 0; 4826 4827 /* Print slub debugging pointers without hashing */ 4828 if (__slub_debug_enabled()) 4829 no_hash_pointers_enable(NULL); 4830 4831 kmem_cache_node = &boot_kmem_cache_node; 4832 kmem_cache = &boot_kmem_cache; 4833 4834 /* 4835 * Initialize the nodemask for which we will allocate per node 4836 * structures. Here we don't need taking slab_mutex yet. 4837 */ 4838 for_each_node_state(node, N_NORMAL_MEMORY) 4839 node_set(node, slab_nodes); 4840 4841 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4842 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4843 4844 register_hotmemory_notifier(&slab_memory_callback_nb); 4845 4846 /* Able to allocate the per node structures */ 4847 slab_state = PARTIAL; 4848 4849 create_boot_cache(kmem_cache, "kmem_cache", 4850 offsetof(struct kmem_cache, node) + 4851 nr_node_ids * sizeof(struct kmem_cache_node *), 4852 SLAB_HWCACHE_ALIGN, 0, 0); 4853 4854 kmem_cache = bootstrap(&boot_kmem_cache); 4855 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4856 4857 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4858 setup_kmalloc_cache_index_table(); 4859 create_kmalloc_caches(0); 4860 4861 /* Setup random freelists for each cache */ 4862 init_freelist_randomization(); 4863 4864 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4865 slub_cpu_dead); 4866 4867 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4868 cache_line_size(), 4869 slub_min_order, slub_max_order, slub_min_objects, 4870 nr_cpu_ids, nr_node_ids); 4871 } 4872 4873 void __init kmem_cache_init_late(void) 4874 { 4875 } 4876 4877 struct kmem_cache * 4878 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4879 slab_flags_t flags, void (*ctor)(void *)) 4880 { 4881 struct kmem_cache *s; 4882 4883 s = find_mergeable(size, align, flags, name, ctor); 4884 if (s) { 4885 s->refcount++; 4886 4887 /* 4888 * Adjust the object sizes so that we clear 4889 * the complete object on kzalloc. 4890 */ 4891 s->object_size = max(s->object_size, size); 4892 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4893 4894 if (sysfs_slab_alias(s, name)) { 4895 s->refcount--; 4896 s = NULL; 4897 } 4898 } 4899 4900 return s; 4901 } 4902 4903 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4904 { 4905 int err; 4906 4907 err = kmem_cache_open(s, flags); 4908 if (err) 4909 return err; 4910 4911 /* Mutex is not taken during early boot */ 4912 if (slab_state <= UP) 4913 return 0; 4914 4915 err = sysfs_slab_add(s); 4916 if (err) { 4917 __kmem_cache_release(s); 4918 return err; 4919 } 4920 4921 if (s->flags & SLAB_STORE_USER) 4922 debugfs_slab_add(s); 4923 4924 return 0; 4925 } 4926 4927 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4928 { 4929 struct kmem_cache *s; 4930 void *ret; 4931 4932 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4933 return kmalloc_large(size, gfpflags); 4934 4935 s = kmalloc_slab(size, gfpflags); 4936 4937 if (unlikely(ZERO_OR_NULL_PTR(s))) 4938 return s; 4939 4940 ret = slab_alloc(s, NULL, gfpflags, caller, size); 4941 4942 /* Honor the call site pointer we received. */ 4943 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4944 4945 return ret; 4946 } 4947 EXPORT_SYMBOL(__kmalloc_track_caller); 4948 4949 #ifdef CONFIG_NUMA 4950 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4951 int node, unsigned long caller) 4952 { 4953 struct kmem_cache *s; 4954 void *ret; 4955 4956 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4957 ret = kmalloc_large_node(size, gfpflags, node); 4958 4959 trace_kmalloc_node(caller, ret, 4960 size, PAGE_SIZE << get_order(size), 4961 gfpflags, node); 4962 4963 return ret; 4964 } 4965 4966 s = kmalloc_slab(size, gfpflags); 4967 4968 if (unlikely(ZERO_OR_NULL_PTR(s))) 4969 return s; 4970 4971 ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size); 4972 4973 /* Honor the call site pointer we received. */ 4974 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4975 4976 return ret; 4977 } 4978 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4979 #endif 4980 4981 #ifdef CONFIG_SYSFS 4982 static int count_inuse(struct slab *slab) 4983 { 4984 return slab->inuse; 4985 } 4986 4987 static int count_total(struct slab *slab) 4988 { 4989 return slab->objects; 4990 } 4991 #endif 4992 4993 #ifdef CONFIG_SLUB_DEBUG 4994 static void validate_slab(struct kmem_cache *s, struct slab *slab, 4995 unsigned long *obj_map) 4996 { 4997 void *p; 4998 void *addr = slab_address(slab); 4999 unsigned long flags; 5000 5001 slab_lock(slab, &flags); 5002 5003 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5004 goto unlock; 5005 5006 /* Now we know that a valid freelist exists */ 5007 __fill_map(obj_map, s, slab); 5008 for_each_object(p, s, addr, slab->objects) { 5009 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5010 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5011 5012 if (!check_object(s, slab, p, val)) 5013 break; 5014 } 5015 unlock: 5016 slab_unlock(slab, &flags); 5017 } 5018 5019 static int validate_slab_node(struct kmem_cache *s, 5020 struct kmem_cache_node *n, unsigned long *obj_map) 5021 { 5022 unsigned long count = 0; 5023 struct slab *slab; 5024 unsigned long flags; 5025 5026 spin_lock_irqsave(&n->list_lock, flags); 5027 5028 list_for_each_entry(slab, &n->partial, slab_list) { 5029 validate_slab(s, slab, obj_map); 5030 count++; 5031 } 5032 if (count != n->nr_partial) { 5033 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5034 s->name, count, n->nr_partial); 5035 slab_add_kunit_errors(); 5036 } 5037 5038 if (!(s->flags & SLAB_STORE_USER)) 5039 goto out; 5040 5041 list_for_each_entry(slab, &n->full, slab_list) { 5042 validate_slab(s, slab, obj_map); 5043 count++; 5044 } 5045 if (count != atomic_long_read(&n->nr_slabs)) { 5046 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5047 s->name, count, atomic_long_read(&n->nr_slabs)); 5048 slab_add_kunit_errors(); 5049 } 5050 5051 out: 5052 spin_unlock_irqrestore(&n->list_lock, flags); 5053 return count; 5054 } 5055 5056 long validate_slab_cache(struct kmem_cache *s) 5057 { 5058 int node; 5059 unsigned long count = 0; 5060 struct kmem_cache_node *n; 5061 unsigned long *obj_map; 5062 5063 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5064 if (!obj_map) 5065 return -ENOMEM; 5066 5067 flush_all(s); 5068 for_each_kmem_cache_node(s, node, n) 5069 count += validate_slab_node(s, n, obj_map); 5070 5071 bitmap_free(obj_map); 5072 5073 return count; 5074 } 5075 EXPORT_SYMBOL(validate_slab_cache); 5076 5077 #ifdef CONFIG_DEBUG_FS 5078 /* 5079 * Generate lists of code addresses where slabcache objects are allocated 5080 * and freed. 5081 */ 5082 5083 struct location { 5084 unsigned long count; 5085 unsigned long addr; 5086 long long sum_time; 5087 long min_time; 5088 long max_time; 5089 long min_pid; 5090 long max_pid; 5091 DECLARE_BITMAP(cpus, NR_CPUS); 5092 nodemask_t nodes; 5093 }; 5094 5095 struct loc_track { 5096 unsigned long max; 5097 unsigned long count; 5098 struct location *loc; 5099 loff_t idx; 5100 }; 5101 5102 static struct dentry *slab_debugfs_root; 5103 5104 static void free_loc_track(struct loc_track *t) 5105 { 5106 if (t->max) 5107 free_pages((unsigned long)t->loc, 5108 get_order(sizeof(struct location) * t->max)); 5109 } 5110 5111 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5112 { 5113 struct location *l; 5114 int order; 5115 5116 order = get_order(sizeof(struct location) * max); 5117 5118 l = (void *)__get_free_pages(flags, order); 5119 if (!l) 5120 return 0; 5121 5122 if (t->count) { 5123 memcpy(l, t->loc, sizeof(struct location) * t->count); 5124 free_loc_track(t); 5125 } 5126 t->max = max; 5127 t->loc = l; 5128 return 1; 5129 } 5130 5131 static int add_location(struct loc_track *t, struct kmem_cache *s, 5132 const struct track *track) 5133 { 5134 long start, end, pos; 5135 struct location *l; 5136 unsigned long caddr; 5137 unsigned long age = jiffies - track->when; 5138 5139 start = -1; 5140 end = t->count; 5141 5142 for ( ; ; ) { 5143 pos = start + (end - start + 1) / 2; 5144 5145 /* 5146 * There is nothing at "end". If we end up there 5147 * we need to add something to before end. 5148 */ 5149 if (pos == end) 5150 break; 5151 5152 caddr = t->loc[pos].addr; 5153 if (track->addr == caddr) { 5154 5155 l = &t->loc[pos]; 5156 l->count++; 5157 if (track->when) { 5158 l->sum_time += age; 5159 if (age < l->min_time) 5160 l->min_time = age; 5161 if (age > l->max_time) 5162 l->max_time = age; 5163 5164 if (track->pid < l->min_pid) 5165 l->min_pid = track->pid; 5166 if (track->pid > l->max_pid) 5167 l->max_pid = track->pid; 5168 5169 cpumask_set_cpu(track->cpu, 5170 to_cpumask(l->cpus)); 5171 } 5172 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5173 return 1; 5174 } 5175 5176 if (track->addr < caddr) 5177 end = pos; 5178 else 5179 start = pos; 5180 } 5181 5182 /* 5183 * Not found. Insert new tracking element. 5184 */ 5185 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5186 return 0; 5187 5188 l = t->loc + pos; 5189 if (pos < t->count) 5190 memmove(l + 1, l, 5191 (t->count - pos) * sizeof(struct location)); 5192 t->count++; 5193 l->count = 1; 5194 l->addr = track->addr; 5195 l->sum_time = age; 5196 l->min_time = age; 5197 l->max_time = age; 5198 l->min_pid = track->pid; 5199 l->max_pid = track->pid; 5200 cpumask_clear(to_cpumask(l->cpus)); 5201 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5202 nodes_clear(l->nodes); 5203 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5204 return 1; 5205 } 5206 5207 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5208 struct slab *slab, enum track_item alloc, 5209 unsigned long *obj_map) 5210 { 5211 void *addr = slab_address(slab); 5212 void *p; 5213 5214 __fill_map(obj_map, s, slab); 5215 5216 for_each_object(p, s, addr, slab->objects) 5217 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5218 add_location(t, s, get_track(s, p, alloc)); 5219 } 5220 #endif /* CONFIG_DEBUG_FS */ 5221 #endif /* CONFIG_SLUB_DEBUG */ 5222 5223 #ifdef CONFIG_SYSFS 5224 enum slab_stat_type { 5225 SL_ALL, /* All slabs */ 5226 SL_PARTIAL, /* Only partially allocated slabs */ 5227 SL_CPU, /* Only slabs used for cpu caches */ 5228 SL_OBJECTS, /* Determine allocated objects not slabs */ 5229 SL_TOTAL /* Determine object capacity not slabs */ 5230 }; 5231 5232 #define SO_ALL (1 << SL_ALL) 5233 #define SO_PARTIAL (1 << SL_PARTIAL) 5234 #define SO_CPU (1 << SL_CPU) 5235 #define SO_OBJECTS (1 << SL_OBJECTS) 5236 #define SO_TOTAL (1 << SL_TOTAL) 5237 5238 static ssize_t show_slab_objects(struct kmem_cache *s, 5239 char *buf, unsigned long flags) 5240 { 5241 unsigned long total = 0; 5242 int node; 5243 int x; 5244 unsigned long *nodes; 5245 int len = 0; 5246 5247 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5248 if (!nodes) 5249 return -ENOMEM; 5250 5251 if (flags & SO_CPU) { 5252 int cpu; 5253 5254 for_each_possible_cpu(cpu) { 5255 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5256 cpu); 5257 int node; 5258 struct slab *slab; 5259 5260 slab = READ_ONCE(c->slab); 5261 if (!slab) 5262 continue; 5263 5264 node = slab_nid(slab); 5265 if (flags & SO_TOTAL) 5266 x = slab->objects; 5267 else if (flags & SO_OBJECTS) 5268 x = slab->inuse; 5269 else 5270 x = 1; 5271 5272 total += x; 5273 nodes[node] += x; 5274 5275 #ifdef CONFIG_SLUB_CPU_PARTIAL 5276 slab = slub_percpu_partial_read_once(c); 5277 if (slab) { 5278 node = slab_nid(slab); 5279 if (flags & SO_TOTAL) 5280 WARN_ON_ONCE(1); 5281 else if (flags & SO_OBJECTS) 5282 WARN_ON_ONCE(1); 5283 else 5284 x = slab->slabs; 5285 total += x; 5286 nodes[node] += x; 5287 } 5288 #endif 5289 } 5290 } 5291 5292 /* 5293 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5294 * already held which will conflict with an existing lock order: 5295 * 5296 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5297 * 5298 * We don't really need mem_hotplug_lock (to hold off 5299 * slab_mem_going_offline_callback) here because slab's memory hot 5300 * unplug code doesn't destroy the kmem_cache->node[] data. 5301 */ 5302 5303 #ifdef CONFIG_SLUB_DEBUG 5304 if (flags & SO_ALL) { 5305 struct kmem_cache_node *n; 5306 5307 for_each_kmem_cache_node(s, node, n) { 5308 5309 if (flags & SO_TOTAL) 5310 x = atomic_long_read(&n->total_objects); 5311 else if (flags & SO_OBJECTS) 5312 x = atomic_long_read(&n->total_objects) - 5313 count_partial(n, count_free); 5314 else 5315 x = atomic_long_read(&n->nr_slabs); 5316 total += x; 5317 nodes[node] += x; 5318 } 5319 5320 } else 5321 #endif 5322 if (flags & SO_PARTIAL) { 5323 struct kmem_cache_node *n; 5324 5325 for_each_kmem_cache_node(s, node, n) { 5326 if (flags & SO_TOTAL) 5327 x = count_partial(n, count_total); 5328 else if (flags & SO_OBJECTS) 5329 x = count_partial(n, count_inuse); 5330 else 5331 x = n->nr_partial; 5332 total += x; 5333 nodes[node] += x; 5334 } 5335 } 5336 5337 len += sysfs_emit_at(buf, len, "%lu", total); 5338 #ifdef CONFIG_NUMA 5339 for (node = 0; node < nr_node_ids; node++) { 5340 if (nodes[node]) 5341 len += sysfs_emit_at(buf, len, " N%d=%lu", 5342 node, nodes[node]); 5343 } 5344 #endif 5345 len += sysfs_emit_at(buf, len, "\n"); 5346 kfree(nodes); 5347 5348 return len; 5349 } 5350 5351 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5352 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5353 5354 struct slab_attribute { 5355 struct attribute attr; 5356 ssize_t (*show)(struct kmem_cache *s, char *buf); 5357 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5358 }; 5359 5360 #define SLAB_ATTR_RO(_name) \ 5361 static struct slab_attribute _name##_attr = \ 5362 __ATTR(_name, 0400, _name##_show, NULL) 5363 5364 #define SLAB_ATTR(_name) \ 5365 static struct slab_attribute _name##_attr = \ 5366 __ATTR(_name, 0600, _name##_show, _name##_store) 5367 5368 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5369 { 5370 return sysfs_emit(buf, "%u\n", s->size); 5371 } 5372 SLAB_ATTR_RO(slab_size); 5373 5374 static ssize_t align_show(struct kmem_cache *s, char *buf) 5375 { 5376 return sysfs_emit(buf, "%u\n", s->align); 5377 } 5378 SLAB_ATTR_RO(align); 5379 5380 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5381 { 5382 return sysfs_emit(buf, "%u\n", s->object_size); 5383 } 5384 SLAB_ATTR_RO(object_size); 5385 5386 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5387 { 5388 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5389 } 5390 SLAB_ATTR_RO(objs_per_slab); 5391 5392 static ssize_t order_show(struct kmem_cache *s, char *buf) 5393 { 5394 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5395 } 5396 SLAB_ATTR_RO(order); 5397 5398 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5399 { 5400 return sysfs_emit(buf, "%lu\n", s->min_partial); 5401 } 5402 5403 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5404 size_t length) 5405 { 5406 unsigned long min; 5407 int err; 5408 5409 err = kstrtoul(buf, 10, &min); 5410 if (err) 5411 return err; 5412 5413 set_min_partial(s, min); 5414 return length; 5415 } 5416 SLAB_ATTR(min_partial); 5417 5418 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5419 { 5420 unsigned int nr_partial = 0; 5421 #ifdef CONFIG_SLUB_CPU_PARTIAL 5422 nr_partial = s->cpu_partial; 5423 #endif 5424 5425 return sysfs_emit(buf, "%u\n", nr_partial); 5426 } 5427 5428 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5429 size_t length) 5430 { 5431 unsigned int objects; 5432 int err; 5433 5434 err = kstrtouint(buf, 10, &objects); 5435 if (err) 5436 return err; 5437 if (objects && !kmem_cache_has_cpu_partial(s)) 5438 return -EINVAL; 5439 5440 slub_set_cpu_partial(s, objects); 5441 flush_all(s); 5442 return length; 5443 } 5444 SLAB_ATTR(cpu_partial); 5445 5446 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5447 { 5448 if (!s->ctor) 5449 return 0; 5450 return sysfs_emit(buf, "%pS\n", s->ctor); 5451 } 5452 SLAB_ATTR_RO(ctor); 5453 5454 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5455 { 5456 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5457 } 5458 SLAB_ATTR_RO(aliases); 5459 5460 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5461 { 5462 return show_slab_objects(s, buf, SO_PARTIAL); 5463 } 5464 SLAB_ATTR_RO(partial); 5465 5466 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5467 { 5468 return show_slab_objects(s, buf, SO_CPU); 5469 } 5470 SLAB_ATTR_RO(cpu_slabs); 5471 5472 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5473 { 5474 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5475 } 5476 SLAB_ATTR_RO(objects); 5477 5478 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5479 { 5480 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5481 } 5482 SLAB_ATTR_RO(objects_partial); 5483 5484 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5485 { 5486 int objects = 0; 5487 int slabs = 0; 5488 int cpu __maybe_unused; 5489 int len = 0; 5490 5491 #ifdef CONFIG_SLUB_CPU_PARTIAL 5492 for_each_online_cpu(cpu) { 5493 struct slab *slab; 5494 5495 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5496 5497 if (slab) 5498 slabs += slab->slabs; 5499 } 5500 #endif 5501 5502 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5503 objects = (slabs * oo_objects(s->oo)) / 2; 5504 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5505 5506 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) 5507 for_each_online_cpu(cpu) { 5508 struct slab *slab; 5509 5510 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5511 if (slab) { 5512 slabs = READ_ONCE(slab->slabs); 5513 objects = (slabs * oo_objects(s->oo)) / 2; 5514 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5515 cpu, objects, slabs); 5516 } 5517 } 5518 #endif 5519 len += sysfs_emit_at(buf, len, "\n"); 5520 5521 return len; 5522 } 5523 SLAB_ATTR_RO(slabs_cpu_partial); 5524 5525 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5526 { 5527 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5528 } 5529 SLAB_ATTR_RO(reclaim_account); 5530 5531 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5532 { 5533 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5534 } 5535 SLAB_ATTR_RO(hwcache_align); 5536 5537 #ifdef CONFIG_ZONE_DMA 5538 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5539 { 5540 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5541 } 5542 SLAB_ATTR_RO(cache_dma); 5543 #endif 5544 5545 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5546 { 5547 return sysfs_emit(buf, "%u\n", s->usersize); 5548 } 5549 SLAB_ATTR_RO(usersize); 5550 5551 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5552 { 5553 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5554 } 5555 SLAB_ATTR_RO(destroy_by_rcu); 5556 5557 #ifdef CONFIG_SLUB_DEBUG 5558 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5559 { 5560 return show_slab_objects(s, buf, SO_ALL); 5561 } 5562 SLAB_ATTR_RO(slabs); 5563 5564 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5565 { 5566 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5567 } 5568 SLAB_ATTR_RO(total_objects); 5569 5570 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5571 { 5572 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5573 } 5574 SLAB_ATTR_RO(sanity_checks); 5575 5576 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5577 { 5578 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5579 } 5580 SLAB_ATTR_RO(trace); 5581 5582 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5583 { 5584 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5585 } 5586 5587 SLAB_ATTR_RO(red_zone); 5588 5589 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5590 { 5591 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5592 } 5593 5594 SLAB_ATTR_RO(poison); 5595 5596 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5597 { 5598 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5599 } 5600 5601 SLAB_ATTR_RO(store_user); 5602 5603 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5604 { 5605 return 0; 5606 } 5607 5608 static ssize_t validate_store(struct kmem_cache *s, 5609 const char *buf, size_t length) 5610 { 5611 int ret = -EINVAL; 5612 5613 if (buf[0] == '1') { 5614 ret = validate_slab_cache(s); 5615 if (ret >= 0) 5616 ret = length; 5617 } 5618 return ret; 5619 } 5620 SLAB_ATTR(validate); 5621 5622 #endif /* CONFIG_SLUB_DEBUG */ 5623 5624 #ifdef CONFIG_FAILSLAB 5625 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5626 { 5627 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5628 } 5629 SLAB_ATTR_RO(failslab); 5630 #endif 5631 5632 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5633 { 5634 return 0; 5635 } 5636 5637 static ssize_t shrink_store(struct kmem_cache *s, 5638 const char *buf, size_t length) 5639 { 5640 if (buf[0] == '1') 5641 kmem_cache_shrink(s); 5642 else 5643 return -EINVAL; 5644 return length; 5645 } 5646 SLAB_ATTR(shrink); 5647 5648 #ifdef CONFIG_NUMA 5649 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5650 { 5651 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5652 } 5653 5654 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5655 const char *buf, size_t length) 5656 { 5657 unsigned int ratio; 5658 int err; 5659 5660 err = kstrtouint(buf, 10, &ratio); 5661 if (err) 5662 return err; 5663 if (ratio > 100) 5664 return -ERANGE; 5665 5666 s->remote_node_defrag_ratio = ratio * 10; 5667 5668 return length; 5669 } 5670 SLAB_ATTR(remote_node_defrag_ratio); 5671 #endif 5672 5673 #ifdef CONFIG_SLUB_STATS 5674 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5675 { 5676 unsigned long sum = 0; 5677 int cpu; 5678 int len = 0; 5679 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5680 5681 if (!data) 5682 return -ENOMEM; 5683 5684 for_each_online_cpu(cpu) { 5685 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5686 5687 data[cpu] = x; 5688 sum += x; 5689 } 5690 5691 len += sysfs_emit_at(buf, len, "%lu", sum); 5692 5693 #ifdef CONFIG_SMP 5694 for_each_online_cpu(cpu) { 5695 if (data[cpu]) 5696 len += sysfs_emit_at(buf, len, " C%d=%u", 5697 cpu, data[cpu]); 5698 } 5699 #endif 5700 kfree(data); 5701 len += sysfs_emit_at(buf, len, "\n"); 5702 5703 return len; 5704 } 5705 5706 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5707 { 5708 int cpu; 5709 5710 for_each_online_cpu(cpu) 5711 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5712 } 5713 5714 #define STAT_ATTR(si, text) \ 5715 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5716 { \ 5717 return show_stat(s, buf, si); \ 5718 } \ 5719 static ssize_t text##_store(struct kmem_cache *s, \ 5720 const char *buf, size_t length) \ 5721 { \ 5722 if (buf[0] != '0') \ 5723 return -EINVAL; \ 5724 clear_stat(s, si); \ 5725 return length; \ 5726 } \ 5727 SLAB_ATTR(text); \ 5728 5729 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5730 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5731 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5732 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5733 STAT_ATTR(FREE_FROZEN, free_frozen); 5734 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5735 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5736 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5737 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5738 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5739 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5740 STAT_ATTR(FREE_SLAB, free_slab); 5741 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5742 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5743 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5744 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5745 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5746 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5747 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5748 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5749 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5750 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5751 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5752 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5753 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5754 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5755 #endif /* CONFIG_SLUB_STATS */ 5756 5757 static struct attribute *slab_attrs[] = { 5758 &slab_size_attr.attr, 5759 &object_size_attr.attr, 5760 &objs_per_slab_attr.attr, 5761 &order_attr.attr, 5762 &min_partial_attr.attr, 5763 &cpu_partial_attr.attr, 5764 &objects_attr.attr, 5765 &objects_partial_attr.attr, 5766 &partial_attr.attr, 5767 &cpu_slabs_attr.attr, 5768 &ctor_attr.attr, 5769 &aliases_attr.attr, 5770 &align_attr.attr, 5771 &hwcache_align_attr.attr, 5772 &reclaim_account_attr.attr, 5773 &destroy_by_rcu_attr.attr, 5774 &shrink_attr.attr, 5775 &slabs_cpu_partial_attr.attr, 5776 #ifdef CONFIG_SLUB_DEBUG 5777 &total_objects_attr.attr, 5778 &slabs_attr.attr, 5779 &sanity_checks_attr.attr, 5780 &trace_attr.attr, 5781 &red_zone_attr.attr, 5782 &poison_attr.attr, 5783 &store_user_attr.attr, 5784 &validate_attr.attr, 5785 #endif 5786 #ifdef CONFIG_ZONE_DMA 5787 &cache_dma_attr.attr, 5788 #endif 5789 #ifdef CONFIG_NUMA 5790 &remote_node_defrag_ratio_attr.attr, 5791 #endif 5792 #ifdef CONFIG_SLUB_STATS 5793 &alloc_fastpath_attr.attr, 5794 &alloc_slowpath_attr.attr, 5795 &free_fastpath_attr.attr, 5796 &free_slowpath_attr.attr, 5797 &free_frozen_attr.attr, 5798 &free_add_partial_attr.attr, 5799 &free_remove_partial_attr.attr, 5800 &alloc_from_partial_attr.attr, 5801 &alloc_slab_attr.attr, 5802 &alloc_refill_attr.attr, 5803 &alloc_node_mismatch_attr.attr, 5804 &free_slab_attr.attr, 5805 &cpuslab_flush_attr.attr, 5806 &deactivate_full_attr.attr, 5807 &deactivate_empty_attr.attr, 5808 &deactivate_to_head_attr.attr, 5809 &deactivate_to_tail_attr.attr, 5810 &deactivate_remote_frees_attr.attr, 5811 &deactivate_bypass_attr.attr, 5812 &order_fallback_attr.attr, 5813 &cmpxchg_double_fail_attr.attr, 5814 &cmpxchg_double_cpu_fail_attr.attr, 5815 &cpu_partial_alloc_attr.attr, 5816 &cpu_partial_free_attr.attr, 5817 &cpu_partial_node_attr.attr, 5818 &cpu_partial_drain_attr.attr, 5819 #endif 5820 #ifdef CONFIG_FAILSLAB 5821 &failslab_attr.attr, 5822 #endif 5823 &usersize_attr.attr, 5824 5825 NULL 5826 }; 5827 5828 static const struct attribute_group slab_attr_group = { 5829 .attrs = slab_attrs, 5830 }; 5831 5832 static ssize_t slab_attr_show(struct kobject *kobj, 5833 struct attribute *attr, 5834 char *buf) 5835 { 5836 struct slab_attribute *attribute; 5837 struct kmem_cache *s; 5838 int err; 5839 5840 attribute = to_slab_attr(attr); 5841 s = to_slab(kobj); 5842 5843 if (!attribute->show) 5844 return -EIO; 5845 5846 err = attribute->show(s, buf); 5847 5848 return err; 5849 } 5850 5851 static ssize_t slab_attr_store(struct kobject *kobj, 5852 struct attribute *attr, 5853 const char *buf, size_t len) 5854 { 5855 struct slab_attribute *attribute; 5856 struct kmem_cache *s; 5857 int err; 5858 5859 attribute = to_slab_attr(attr); 5860 s = to_slab(kobj); 5861 5862 if (!attribute->store) 5863 return -EIO; 5864 5865 err = attribute->store(s, buf, len); 5866 return err; 5867 } 5868 5869 static void kmem_cache_release(struct kobject *k) 5870 { 5871 slab_kmem_cache_release(to_slab(k)); 5872 } 5873 5874 static const struct sysfs_ops slab_sysfs_ops = { 5875 .show = slab_attr_show, 5876 .store = slab_attr_store, 5877 }; 5878 5879 static struct kobj_type slab_ktype = { 5880 .sysfs_ops = &slab_sysfs_ops, 5881 .release = kmem_cache_release, 5882 }; 5883 5884 static struct kset *slab_kset; 5885 5886 static inline struct kset *cache_kset(struct kmem_cache *s) 5887 { 5888 return slab_kset; 5889 } 5890 5891 #define ID_STR_LENGTH 64 5892 5893 /* Create a unique string id for a slab cache: 5894 * 5895 * Format :[flags-]size 5896 */ 5897 static char *create_unique_id(struct kmem_cache *s) 5898 { 5899 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5900 char *p = name; 5901 5902 BUG_ON(!name); 5903 5904 *p++ = ':'; 5905 /* 5906 * First flags affecting slabcache operations. We will only 5907 * get here for aliasable slabs so we do not need to support 5908 * too many flags. The flags here must cover all flags that 5909 * are matched during merging to guarantee that the id is 5910 * unique. 5911 */ 5912 if (s->flags & SLAB_CACHE_DMA) 5913 *p++ = 'd'; 5914 if (s->flags & SLAB_CACHE_DMA32) 5915 *p++ = 'D'; 5916 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5917 *p++ = 'a'; 5918 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5919 *p++ = 'F'; 5920 if (s->flags & SLAB_ACCOUNT) 5921 *p++ = 'A'; 5922 if (p != name + 1) 5923 *p++ = '-'; 5924 p += sprintf(p, "%07u", s->size); 5925 5926 BUG_ON(p > name + ID_STR_LENGTH - 1); 5927 return name; 5928 } 5929 5930 static int sysfs_slab_add(struct kmem_cache *s) 5931 { 5932 int err; 5933 const char *name; 5934 struct kset *kset = cache_kset(s); 5935 int unmergeable = slab_unmergeable(s); 5936 5937 if (!kset) { 5938 kobject_init(&s->kobj, &slab_ktype); 5939 return 0; 5940 } 5941 5942 if (!unmergeable && disable_higher_order_debug && 5943 (slub_debug & DEBUG_METADATA_FLAGS)) 5944 unmergeable = 1; 5945 5946 if (unmergeable) { 5947 /* 5948 * Slabcache can never be merged so we can use the name proper. 5949 * This is typically the case for debug situations. In that 5950 * case we can catch duplicate names easily. 5951 */ 5952 sysfs_remove_link(&slab_kset->kobj, s->name); 5953 name = s->name; 5954 } else { 5955 /* 5956 * Create a unique name for the slab as a target 5957 * for the symlinks. 5958 */ 5959 name = create_unique_id(s); 5960 } 5961 5962 s->kobj.kset = kset; 5963 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5964 if (err) 5965 goto out; 5966 5967 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5968 if (err) 5969 goto out_del_kobj; 5970 5971 if (!unmergeable) { 5972 /* Setup first alias */ 5973 sysfs_slab_alias(s, s->name); 5974 } 5975 out: 5976 if (!unmergeable) 5977 kfree(name); 5978 return err; 5979 out_del_kobj: 5980 kobject_del(&s->kobj); 5981 goto out; 5982 } 5983 5984 void sysfs_slab_unlink(struct kmem_cache *s) 5985 { 5986 if (slab_state >= FULL) 5987 kobject_del(&s->kobj); 5988 } 5989 5990 void sysfs_slab_release(struct kmem_cache *s) 5991 { 5992 if (slab_state >= FULL) 5993 kobject_put(&s->kobj); 5994 } 5995 5996 /* 5997 * Need to buffer aliases during bootup until sysfs becomes 5998 * available lest we lose that information. 5999 */ 6000 struct saved_alias { 6001 struct kmem_cache *s; 6002 const char *name; 6003 struct saved_alias *next; 6004 }; 6005 6006 static struct saved_alias *alias_list; 6007 6008 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6009 { 6010 struct saved_alias *al; 6011 6012 if (slab_state == FULL) { 6013 /* 6014 * If we have a leftover link then remove it. 6015 */ 6016 sysfs_remove_link(&slab_kset->kobj, name); 6017 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6018 } 6019 6020 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6021 if (!al) 6022 return -ENOMEM; 6023 6024 al->s = s; 6025 al->name = name; 6026 al->next = alias_list; 6027 alias_list = al; 6028 return 0; 6029 } 6030 6031 static int __init slab_sysfs_init(void) 6032 { 6033 struct kmem_cache *s; 6034 int err; 6035 6036 mutex_lock(&slab_mutex); 6037 6038 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6039 if (!slab_kset) { 6040 mutex_unlock(&slab_mutex); 6041 pr_err("Cannot register slab subsystem.\n"); 6042 return -ENOSYS; 6043 } 6044 6045 slab_state = FULL; 6046 6047 list_for_each_entry(s, &slab_caches, list) { 6048 err = sysfs_slab_add(s); 6049 if (err) 6050 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6051 s->name); 6052 } 6053 6054 while (alias_list) { 6055 struct saved_alias *al = alias_list; 6056 6057 alias_list = alias_list->next; 6058 err = sysfs_slab_alias(al->s, al->name); 6059 if (err) 6060 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6061 al->name); 6062 kfree(al); 6063 } 6064 6065 mutex_unlock(&slab_mutex); 6066 return 0; 6067 } 6068 6069 __initcall(slab_sysfs_init); 6070 #endif /* CONFIG_SYSFS */ 6071 6072 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6073 static int slab_debugfs_show(struct seq_file *seq, void *v) 6074 { 6075 struct loc_track *t = seq->private; 6076 struct location *l; 6077 unsigned long idx; 6078 6079 idx = (unsigned long) t->idx; 6080 if (idx < t->count) { 6081 l = &t->loc[idx]; 6082 6083 seq_printf(seq, "%7ld ", l->count); 6084 6085 if (l->addr) 6086 seq_printf(seq, "%pS", (void *)l->addr); 6087 else 6088 seq_puts(seq, "<not-available>"); 6089 6090 if (l->sum_time != l->min_time) { 6091 seq_printf(seq, " age=%ld/%llu/%ld", 6092 l->min_time, div_u64(l->sum_time, l->count), 6093 l->max_time); 6094 } else 6095 seq_printf(seq, " age=%ld", l->min_time); 6096 6097 if (l->min_pid != l->max_pid) 6098 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6099 else 6100 seq_printf(seq, " pid=%ld", 6101 l->min_pid); 6102 6103 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6104 seq_printf(seq, " cpus=%*pbl", 6105 cpumask_pr_args(to_cpumask(l->cpus))); 6106 6107 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6108 seq_printf(seq, " nodes=%*pbl", 6109 nodemask_pr_args(&l->nodes)); 6110 6111 seq_puts(seq, "\n"); 6112 } 6113 6114 if (!idx && !t->count) 6115 seq_puts(seq, "No data\n"); 6116 6117 return 0; 6118 } 6119 6120 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6121 { 6122 } 6123 6124 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6125 { 6126 struct loc_track *t = seq->private; 6127 6128 t->idx = ++(*ppos); 6129 if (*ppos <= t->count) 6130 return ppos; 6131 6132 return NULL; 6133 } 6134 6135 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6136 { 6137 struct loc_track *t = seq->private; 6138 6139 t->idx = *ppos; 6140 return ppos; 6141 } 6142 6143 static const struct seq_operations slab_debugfs_sops = { 6144 .start = slab_debugfs_start, 6145 .next = slab_debugfs_next, 6146 .stop = slab_debugfs_stop, 6147 .show = slab_debugfs_show, 6148 }; 6149 6150 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6151 { 6152 6153 struct kmem_cache_node *n; 6154 enum track_item alloc; 6155 int node; 6156 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6157 sizeof(struct loc_track)); 6158 struct kmem_cache *s = file_inode(filep)->i_private; 6159 unsigned long *obj_map; 6160 6161 if (!t) 6162 return -ENOMEM; 6163 6164 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6165 if (!obj_map) { 6166 seq_release_private(inode, filep); 6167 return -ENOMEM; 6168 } 6169 6170 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6171 alloc = TRACK_ALLOC; 6172 else 6173 alloc = TRACK_FREE; 6174 6175 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6176 bitmap_free(obj_map); 6177 seq_release_private(inode, filep); 6178 return -ENOMEM; 6179 } 6180 6181 for_each_kmem_cache_node(s, node, n) { 6182 unsigned long flags; 6183 struct slab *slab; 6184 6185 if (!atomic_long_read(&n->nr_slabs)) 6186 continue; 6187 6188 spin_lock_irqsave(&n->list_lock, flags); 6189 list_for_each_entry(slab, &n->partial, slab_list) 6190 process_slab(t, s, slab, alloc, obj_map); 6191 list_for_each_entry(slab, &n->full, slab_list) 6192 process_slab(t, s, slab, alloc, obj_map); 6193 spin_unlock_irqrestore(&n->list_lock, flags); 6194 } 6195 6196 bitmap_free(obj_map); 6197 return 0; 6198 } 6199 6200 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6201 { 6202 struct seq_file *seq = file->private_data; 6203 struct loc_track *t = seq->private; 6204 6205 free_loc_track(t); 6206 return seq_release_private(inode, file); 6207 } 6208 6209 static const struct file_operations slab_debugfs_fops = { 6210 .open = slab_debug_trace_open, 6211 .read = seq_read, 6212 .llseek = seq_lseek, 6213 .release = slab_debug_trace_release, 6214 }; 6215 6216 static void debugfs_slab_add(struct kmem_cache *s) 6217 { 6218 struct dentry *slab_cache_dir; 6219 6220 if (unlikely(!slab_debugfs_root)) 6221 return; 6222 6223 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6224 6225 debugfs_create_file("alloc_traces", 0400, 6226 slab_cache_dir, s, &slab_debugfs_fops); 6227 6228 debugfs_create_file("free_traces", 0400, 6229 slab_cache_dir, s, &slab_debugfs_fops); 6230 } 6231 6232 void debugfs_slab_release(struct kmem_cache *s) 6233 { 6234 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); 6235 } 6236 6237 static int __init slab_debugfs_init(void) 6238 { 6239 struct kmem_cache *s; 6240 6241 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6242 6243 list_for_each_entry(s, &slab_caches, list) 6244 if (s->flags & SLAB_STORE_USER) 6245 debugfs_slab_add(s); 6246 6247 return 0; 6248 6249 } 6250 __initcall(slab_debugfs_init); 6251 #endif 6252 /* 6253 * The /proc/slabinfo ABI 6254 */ 6255 #ifdef CONFIG_SLUB_DEBUG 6256 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6257 { 6258 unsigned long nr_slabs = 0; 6259 unsigned long nr_objs = 0; 6260 unsigned long nr_free = 0; 6261 int node; 6262 struct kmem_cache_node *n; 6263 6264 for_each_kmem_cache_node(s, node, n) { 6265 nr_slabs += node_nr_slabs(n); 6266 nr_objs += node_nr_objs(n); 6267 nr_free += count_partial(n, count_free); 6268 } 6269 6270 sinfo->active_objs = nr_objs - nr_free; 6271 sinfo->num_objs = nr_objs; 6272 sinfo->active_slabs = nr_slabs; 6273 sinfo->num_slabs = nr_slabs; 6274 sinfo->objects_per_slab = oo_objects(s->oo); 6275 sinfo->cache_order = oo_order(s->oo); 6276 } 6277 6278 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6279 { 6280 } 6281 6282 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6283 size_t count, loff_t *ppos) 6284 { 6285 return -EIO; 6286 } 6287 #endif /* CONFIG_SLUB_DEBUG */ 6288