xref: /openbmc/linux/mm/slub.c (revision cb1aaebe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * Overloading of page flags that are otherwise used for LRU management.
97  *
98  * PageActive 		The slab is frozen and exempt from list processing.
99  * 			This means that the slab is dedicated to a purpose
100  * 			such as satisfying allocations for a specific
101  * 			processor. Objects may be freed in the slab while
102  * 			it is frozen but slab_free will then skip the usual
103  * 			list operations. It is up to the processor holding
104  * 			the slab to integrate the slab into the slab lists
105  * 			when the slab is no longer needed.
106  *
107  * 			One use of this flag is to mark slabs that are
108  * 			used for allocations. Then such a slab becomes a cpu
109  * 			slab. The cpu slab may be equipped with an additional
110  * 			freelist that allows lockless access to
111  * 			free objects in addition to the regular freelist
112  * 			that requires the slab lock.
113  *
114  * PageError		Slab requires special handling due to debug
115  * 			options set. This moves	slab handling out of
116  * 			the fast path and disables lockless freelists.
117  */
118 
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 	return 0;
125 #endif
126 }
127 
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 		p += s->red_left_pad;
132 
133 	return p;
134 }
135 
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 	return !kmem_cache_debug(s);
140 #else
141 	return false;
142 #endif
143 }
144 
145 /*
146  * Issues still to be resolved:
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158 
159 /*
160  * Mininum number of partial slabs. These will be left on the partial
161  * lists even if they are empty. kmem_cache_shrink may reclaim them.
162  */
163 #define MIN_PARTIAL 5
164 
165 /*
166  * Maximum number of desirable partial slabs.
167  * The existence of more partial slabs makes kmem_cache_shrink
168  * sort the partial list by the number of objects in use.
169  */
170 #define MAX_PARTIAL 10
171 
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 				SLAB_POISON | SLAB_STORE_USER)
174 
175 /*
176  * These debug flags cannot use CMPXCHG because there might be consistency
177  * issues when checking or reading debug information
178  */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 				SLAB_TRACE)
181 
182 
183 /*
184  * Debugging flags that require metadata to be stored in the slab.  These get
185  * disabled when slub_debug=O is used and a cache's min order increases with
186  * metadata.
187  */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 
190 #define OO_SHIFT	16
191 #define OO_MASK		((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193 
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
199 
200 /*
201  * Tracking user of a slab.
202  */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 	unsigned long addr;	/* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
208 #endif
209 	int cpu;		/* Was running on cpu */
210 	int pid;		/* Pid context */
211 	unsigned long when;	/* When did the operation occur */
212 };
213 
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228 
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 	/*
233 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 	 * avoid this_cpu_add()'s irq-disable overhead.
235 	 */
236 	raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239 
240 /********************************************************************
241  * 			Core slab cache functions
242  *******************************************************************/
243 
244 /*
245  * Returns freelist pointer (ptr). With hardening, this is obfuscated
246  * with an XOR of the address where the pointer is held and a per-cache
247  * random number.
248  */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 				 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 	/*
254 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 	 * Normally, this doesn't cause any issues, as both set_freepointer()
256 	 * and get_freepointer() are called with a pointer with the same tag.
257 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 	 * example, when __free_slub() iterates over objects in a cache, it
259 	 * passes untagged pointers to check_object(). check_object() in turns
260 	 * calls get_freepointer() with an untagged pointer, which causes the
261 	 * freepointer to be restored incorrectly.
262 	 */
263 	return (void *)((unsigned long)ptr ^ s->random ^
264 			(unsigned long)kasan_reset_tag((void *)ptr_addr));
265 #else
266 	return ptr;
267 #endif
268 }
269 
270 /* Returns the freelist pointer recorded at location ptr_addr. */
271 static inline void *freelist_dereference(const struct kmem_cache *s,
272 					 void *ptr_addr)
273 {
274 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 			    (unsigned long)ptr_addr);
276 }
277 
278 static inline void *get_freepointer(struct kmem_cache *s, void *object)
279 {
280 	return freelist_dereference(s, object + s->offset);
281 }
282 
283 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284 {
285 	prefetch(object + s->offset);
286 }
287 
288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289 {
290 	unsigned long freepointer_addr;
291 	void *p;
292 
293 	if (!debug_pagealloc_enabled())
294 		return get_freepointer(s, object);
295 
296 	freepointer_addr = (unsigned long)object + s->offset;
297 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 	return freelist_ptr(s, p, freepointer_addr);
299 }
300 
301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302 {
303 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
304 
305 #ifdef CONFIG_SLAB_FREELIST_HARDENED
306 	BUG_ON(object == fp); /* naive detection of double free or corruption */
307 #endif
308 
309 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 }
311 
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 	for (__p = fixup_red_left(__s, __addr); \
315 		__p < (__addr) + (__objects) * (__s)->size; \
316 		__p += (__s)->size)
317 
318 /* Determine object index from a given position */
319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
320 {
321 	return (kasan_reset_tag(p) - addr) / s->size;
322 }
323 
324 static inline unsigned int order_objects(unsigned int order, unsigned int size)
325 {
326 	return ((unsigned int)PAGE_SIZE << order) / size;
327 }
328 
329 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
330 		unsigned int size)
331 {
332 	struct kmem_cache_order_objects x = {
333 		(order << OO_SHIFT) + order_objects(order, size)
334 	};
335 
336 	return x;
337 }
338 
339 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
340 {
341 	return x.x >> OO_SHIFT;
342 }
343 
344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
345 {
346 	return x.x & OO_MASK;
347 }
348 
349 /*
350  * Per slab locking using the pagelock
351  */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 	VM_BUG_ON_PAGE(PageTail(page), page);
355 	bit_spin_lock(PG_locked, &page->flags);
356 }
357 
358 static __always_inline void slab_unlock(struct page *page)
359 {
360 	VM_BUG_ON_PAGE(PageTail(page), page);
361 	__bit_spin_unlock(PG_locked, &page->flags);
362 }
363 
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 		void *freelist_old, unsigned long counters_old,
367 		void *freelist_new, unsigned long counters_new,
368 		const char *n)
369 {
370 	VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 	if (s->flags & __CMPXCHG_DOUBLE) {
374 		if (cmpxchg_double(&page->freelist, &page->counters,
375 				   freelist_old, counters_old,
376 				   freelist_new, counters_new))
377 			return true;
378 	} else
379 #endif
380 	{
381 		slab_lock(page);
382 		if (page->freelist == freelist_old &&
383 					page->counters == counters_old) {
384 			page->freelist = freelist_new;
385 			page->counters = counters_new;
386 			slab_unlock(page);
387 			return true;
388 		}
389 		slab_unlock(page);
390 	}
391 
392 	cpu_relax();
393 	stat(s, CMPXCHG_DOUBLE_FAIL);
394 
395 #ifdef SLUB_DEBUG_CMPXCHG
396 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398 
399 	return false;
400 }
401 
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 		void *freelist_old, unsigned long counters_old,
404 		void *freelist_new, unsigned long counters_new,
405 		const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 	if (s->flags & __CMPXCHG_DOUBLE) {
410 		if (cmpxchg_double(&page->freelist, &page->counters,
411 				   freelist_old, counters_old,
412 				   freelist_new, counters_new))
413 			return true;
414 	} else
415 #endif
416 	{
417 		unsigned long flags;
418 
419 		local_irq_save(flags);
420 		slab_lock(page);
421 		if (page->freelist == freelist_old &&
422 					page->counters == counters_old) {
423 			page->freelist = freelist_new;
424 			page->counters = counters_new;
425 			slab_unlock(page);
426 			local_irq_restore(flags);
427 			return true;
428 		}
429 		slab_unlock(page);
430 		local_irq_restore(flags);
431 	}
432 
433 	cpu_relax();
434 	stat(s, CMPXCHG_DOUBLE_FAIL);
435 
436 #ifdef SLUB_DEBUG_CMPXCHG
437 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439 
440 	return false;
441 }
442 
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445  * Determine a map of object in use on a page.
446  *
447  * Node listlock must be held to guarantee that the page does
448  * not vanish from under us.
449  */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 	void *p;
453 	void *addr = page_address(page);
454 
455 	for (p = page->freelist; p; p = get_freepointer(s, p))
456 		set_bit(slab_index(p, s, addr), map);
457 }
458 
459 static inline unsigned int size_from_object(struct kmem_cache *s)
460 {
461 	if (s->flags & SLAB_RED_ZONE)
462 		return s->size - s->red_left_pad;
463 
464 	return s->size;
465 }
466 
467 static inline void *restore_red_left(struct kmem_cache *s, void *p)
468 {
469 	if (s->flags & SLAB_RED_ZONE)
470 		p -= s->red_left_pad;
471 
472 	return p;
473 }
474 
475 /*
476  * Debug settings:
477  */
478 #if defined(CONFIG_SLUB_DEBUG_ON)
479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
480 #else
481 static slab_flags_t slub_debug;
482 #endif
483 
484 static char *slub_debug_slabs;
485 static int disable_higher_order_debug;
486 
487 /*
488  * slub is about to manipulate internal object metadata.  This memory lies
489  * outside the range of the allocated object, so accessing it would normally
490  * be reported by kasan as a bounds error.  metadata_access_enable() is used
491  * to tell kasan that these accesses are OK.
492  */
493 static inline void metadata_access_enable(void)
494 {
495 	kasan_disable_current();
496 }
497 
498 static inline void metadata_access_disable(void)
499 {
500 	kasan_enable_current();
501 }
502 
503 /*
504  * Object debugging
505  */
506 
507 /* Verify that a pointer has an address that is valid within a slab page */
508 static inline int check_valid_pointer(struct kmem_cache *s,
509 				struct page *page, void *object)
510 {
511 	void *base;
512 
513 	if (!object)
514 		return 1;
515 
516 	base = page_address(page);
517 	object = kasan_reset_tag(object);
518 	object = restore_red_left(s, object);
519 	if (object < base || object >= base + page->objects * s->size ||
520 		(object - base) % s->size) {
521 		return 0;
522 	}
523 
524 	return 1;
525 }
526 
527 static void print_section(char *level, char *text, u8 *addr,
528 			  unsigned int length)
529 {
530 	metadata_access_enable();
531 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
532 			length, 1);
533 	metadata_access_disable();
534 }
535 
536 static struct track *get_track(struct kmem_cache *s, void *object,
537 	enum track_item alloc)
538 {
539 	struct track *p;
540 
541 	if (s->offset)
542 		p = object + s->offset + sizeof(void *);
543 	else
544 		p = object + s->inuse;
545 
546 	return p + alloc;
547 }
548 
549 static void set_track(struct kmem_cache *s, void *object,
550 			enum track_item alloc, unsigned long addr)
551 {
552 	struct track *p = get_track(s, object, alloc);
553 
554 	if (addr) {
555 #ifdef CONFIG_STACKTRACE
556 		unsigned int nr_entries;
557 
558 		metadata_access_enable();
559 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
560 		metadata_access_disable();
561 
562 		if (nr_entries < TRACK_ADDRS_COUNT)
563 			p->addrs[nr_entries] = 0;
564 #endif
565 		p->addr = addr;
566 		p->cpu = smp_processor_id();
567 		p->pid = current->pid;
568 		p->when = jiffies;
569 	} else {
570 		memset(p, 0, sizeof(struct track));
571 	}
572 }
573 
574 static void init_tracking(struct kmem_cache *s, void *object)
575 {
576 	if (!(s->flags & SLAB_STORE_USER))
577 		return;
578 
579 	set_track(s, object, TRACK_FREE, 0UL);
580 	set_track(s, object, TRACK_ALLOC, 0UL);
581 }
582 
583 static void print_track(const char *s, struct track *t, unsigned long pr_time)
584 {
585 	if (!t->addr)
586 		return;
587 
588 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
589 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
590 #ifdef CONFIG_STACKTRACE
591 	{
592 		int i;
593 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 			if (t->addrs[i])
595 				pr_err("\t%pS\n", (void *)t->addrs[i]);
596 			else
597 				break;
598 	}
599 #endif
600 }
601 
602 static void print_tracking(struct kmem_cache *s, void *object)
603 {
604 	unsigned long pr_time = jiffies;
605 	if (!(s->flags & SLAB_STORE_USER))
606 		return;
607 
608 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
610 }
611 
612 static void print_page_info(struct page *page)
613 {
614 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
615 	       page, page->objects, page->inuse, page->freelist, page->flags);
616 
617 }
618 
619 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620 {
621 	struct va_format vaf;
622 	va_list args;
623 
624 	va_start(args, fmt);
625 	vaf.fmt = fmt;
626 	vaf.va = &args;
627 	pr_err("=============================================================================\n");
628 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
629 	pr_err("-----------------------------------------------------------------------------\n\n");
630 
631 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
632 	va_end(args);
633 }
634 
635 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636 {
637 	struct va_format vaf;
638 	va_list args;
639 
640 	va_start(args, fmt);
641 	vaf.fmt = fmt;
642 	vaf.va = &args;
643 	pr_err("FIX %s: %pV\n", s->name, &vaf);
644 	va_end(args);
645 }
646 
647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
648 {
649 	unsigned int off;	/* Offset of last byte */
650 	u8 *addr = page_address(page);
651 
652 	print_tracking(s, p);
653 
654 	print_page_info(page);
655 
656 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 	       p, p - addr, get_freepointer(s, p));
658 
659 	if (s->flags & SLAB_RED_ZONE)
660 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 			      s->red_left_pad);
662 	else if (p > addr + 16)
663 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
664 
665 	print_section(KERN_ERR, "Object ", p,
666 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
667 	if (s->flags & SLAB_RED_ZONE)
668 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
669 			s->inuse - s->object_size);
670 
671 	if (s->offset)
672 		off = s->offset + sizeof(void *);
673 	else
674 		off = s->inuse;
675 
676 	if (s->flags & SLAB_STORE_USER)
677 		off += 2 * sizeof(struct track);
678 
679 	off += kasan_metadata_size(s);
680 
681 	if (off != size_from_object(s))
682 		/* Beginning of the filler is the free pointer */
683 		print_section(KERN_ERR, "Padding ", p + off,
684 			      size_from_object(s) - off);
685 
686 	dump_stack();
687 }
688 
689 void object_err(struct kmem_cache *s, struct page *page,
690 			u8 *object, char *reason)
691 {
692 	slab_bug(s, "%s", reason);
693 	print_trailer(s, page, object);
694 }
695 
696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
697 			const char *fmt, ...)
698 {
699 	va_list args;
700 	char buf[100];
701 
702 	va_start(args, fmt);
703 	vsnprintf(buf, sizeof(buf), fmt, args);
704 	va_end(args);
705 	slab_bug(s, "%s", buf);
706 	print_page_info(page);
707 	dump_stack();
708 }
709 
710 static void init_object(struct kmem_cache *s, void *object, u8 val)
711 {
712 	u8 *p = object;
713 
714 	if (s->flags & SLAB_RED_ZONE)
715 		memset(p - s->red_left_pad, val, s->red_left_pad);
716 
717 	if (s->flags & __OBJECT_POISON) {
718 		memset(p, POISON_FREE, s->object_size - 1);
719 		p[s->object_size - 1] = POISON_END;
720 	}
721 
722 	if (s->flags & SLAB_RED_ZONE)
723 		memset(p + s->object_size, val, s->inuse - s->object_size);
724 }
725 
726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 						void *from, void *to)
728 {
729 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 	memset(from, data, to - from);
731 }
732 
733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 			u8 *object, char *what,
735 			u8 *start, unsigned int value, unsigned int bytes)
736 {
737 	u8 *fault;
738 	u8 *end;
739 
740 	metadata_access_enable();
741 	fault = memchr_inv(start, value, bytes);
742 	metadata_access_disable();
743 	if (!fault)
744 		return 1;
745 
746 	end = start + bytes;
747 	while (end > fault && end[-1] == value)
748 		end--;
749 
750 	slab_bug(s, "%s overwritten", what);
751 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
752 					fault, end - 1, fault[0], value);
753 	print_trailer(s, page, object);
754 
755 	restore_bytes(s, what, value, fault, end);
756 	return 0;
757 }
758 
759 /*
760  * Object layout:
761  *
762  * object address
763  * 	Bytes of the object to be managed.
764  * 	If the freepointer may overlay the object then the free
765  * 	pointer is the first word of the object.
766  *
767  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
768  * 	0xa5 (POISON_END)
769  *
770  * object + s->object_size
771  * 	Padding to reach word boundary. This is also used for Redzoning.
772  * 	Padding is extended by another word if Redzoning is enabled and
773  * 	object_size == inuse.
774  *
775  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776  * 	0xcc (RED_ACTIVE) for objects in use.
777  *
778  * object + s->inuse
779  * 	Meta data starts here.
780  *
781  * 	A. Free pointer (if we cannot overwrite object on free)
782  * 	B. Tracking data for SLAB_STORE_USER
783  * 	C. Padding to reach required alignment boundary or at mininum
784  * 		one word if debugging is on to be able to detect writes
785  * 		before the word boundary.
786  *
787  *	Padding is done using 0x5a (POISON_INUSE)
788  *
789  * object + s->size
790  * 	Nothing is used beyond s->size.
791  *
792  * If slabcaches are merged then the object_size and inuse boundaries are mostly
793  * ignored. And therefore no slab options that rely on these boundaries
794  * may be used with merged slabcaches.
795  */
796 
797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798 {
799 	unsigned long off = s->inuse;	/* The end of info */
800 
801 	if (s->offset)
802 		/* Freepointer is placed after the object. */
803 		off += sizeof(void *);
804 
805 	if (s->flags & SLAB_STORE_USER)
806 		/* We also have user information there */
807 		off += 2 * sizeof(struct track);
808 
809 	off += kasan_metadata_size(s);
810 
811 	if (size_from_object(s) == off)
812 		return 1;
813 
814 	return check_bytes_and_report(s, page, p, "Object padding",
815 			p + off, POISON_INUSE, size_from_object(s) - off);
816 }
817 
818 /* Check the pad bytes at the end of a slab page */
819 static int slab_pad_check(struct kmem_cache *s, struct page *page)
820 {
821 	u8 *start;
822 	u8 *fault;
823 	u8 *end;
824 	u8 *pad;
825 	int length;
826 	int remainder;
827 
828 	if (!(s->flags & SLAB_POISON))
829 		return 1;
830 
831 	start = page_address(page);
832 	length = PAGE_SIZE << compound_order(page);
833 	end = start + length;
834 	remainder = length % s->size;
835 	if (!remainder)
836 		return 1;
837 
838 	pad = end - remainder;
839 	metadata_access_enable();
840 	fault = memchr_inv(pad, POISON_INUSE, remainder);
841 	metadata_access_disable();
842 	if (!fault)
843 		return 1;
844 	while (end > fault && end[-1] == POISON_INUSE)
845 		end--;
846 
847 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
848 	print_section(KERN_ERR, "Padding ", pad, remainder);
849 
850 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
851 	return 0;
852 }
853 
854 static int check_object(struct kmem_cache *s, struct page *page,
855 					void *object, u8 val)
856 {
857 	u8 *p = object;
858 	u8 *endobject = object + s->object_size;
859 
860 	if (s->flags & SLAB_RED_ZONE) {
861 		if (!check_bytes_and_report(s, page, object, "Redzone",
862 			object - s->red_left_pad, val, s->red_left_pad))
863 			return 0;
864 
865 		if (!check_bytes_and_report(s, page, object, "Redzone",
866 			endobject, val, s->inuse - s->object_size))
867 			return 0;
868 	} else {
869 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
870 			check_bytes_and_report(s, page, p, "Alignment padding",
871 				endobject, POISON_INUSE,
872 				s->inuse - s->object_size);
873 		}
874 	}
875 
876 	if (s->flags & SLAB_POISON) {
877 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
878 			(!check_bytes_and_report(s, page, p, "Poison", p,
879 					POISON_FREE, s->object_size - 1) ||
880 			 !check_bytes_and_report(s, page, p, "Poison",
881 				p + s->object_size - 1, POISON_END, 1)))
882 			return 0;
883 		/*
884 		 * check_pad_bytes cleans up on its own.
885 		 */
886 		check_pad_bytes(s, page, p);
887 	}
888 
889 	if (!s->offset && val == SLUB_RED_ACTIVE)
890 		/*
891 		 * Object and freepointer overlap. Cannot check
892 		 * freepointer while object is allocated.
893 		 */
894 		return 1;
895 
896 	/* Check free pointer validity */
897 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 		object_err(s, page, p, "Freepointer corrupt");
899 		/*
900 		 * No choice but to zap it and thus lose the remainder
901 		 * of the free objects in this slab. May cause
902 		 * another error because the object count is now wrong.
903 		 */
904 		set_freepointer(s, p, NULL);
905 		return 0;
906 	}
907 	return 1;
908 }
909 
910 static int check_slab(struct kmem_cache *s, struct page *page)
911 {
912 	int maxobj;
913 
914 	VM_BUG_ON(!irqs_disabled());
915 
916 	if (!PageSlab(page)) {
917 		slab_err(s, page, "Not a valid slab page");
918 		return 0;
919 	}
920 
921 	maxobj = order_objects(compound_order(page), s->size);
922 	if (page->objects > maxobj) {
923 		slab_err(s, page, "objects %u > max %u",
924 			page->objects, maxobj);
925 		return 0;
926 	}
927 	if (page->inuse > page->objects) {
928 		slab_err(s, page, "inuse %u > max %u",
929 			page->inuse, page->objects);
930 		return 0;
931 	}
932 	/* Slab_pad_check fixes things up after itself */
933 	slab_pad_check(s, page);
934 	return 1;
935 }
936 
937 /*
938  * Determine if a certain object on a page is on the freelist. Must hold the
939  * slab lock to guarantee that the chains are in a consistent state.
940  */
941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942 {
943 	int nr = 0;
944 	void *fp;
945 	void *object = NULL;
946 	int max_objects;
947 
948 	fp = page->freelist;
949 	while (fp && nr <= page->objects) {
950 		if (fp == search)
951 			return 1;
952 		if (!check_valid_pointer(s, page, fp)) {
953 			if (object) {
954 				object_err(s, page, object,
955 					"Freechain corrupt");
956 				set_freepointer(s, object, NULL);
957 			} else {
958 				slab_err(s, page, "Freepointer corrupt");
959 				page->freelist = NULL;
960 				page->inuse = page->objects;
961 				slab_fix(s, "Freelist cleared");
962 				return 0;
963 			}
964 			break;
965 		}
966 		object = fp;
967 		fp = get_freepointer(s, object);
968 		nr++;
969 	}
970 
971 	max_objects = order_objects(compound_order(page), s->size);
972 	if (max_objects > MAX_OBJS_PER_PAGE)
973 		max_objects = MAX_OBJS_PER_PAGE;
974 
975 	if (page->objects != max_objects) {
976 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 			 page->objects, max_objects);
978 		page->objects = max_objects;
979 		slab_fix(s, "Number of objects adjusted.");
980 	}
981 	if (page->inuse != page->objects - nr) {
982 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 			 page->inuse, page->objects - nr);
984 		page->inuse = page->objects - nr;
985 		slab_fix(s, "Object count adjusted.");
986 	}
987 	return search == NULL;
988 }
989 
990 static void trace(struct kmem_cache *s, struct page *page, void *object,
991 								int alloc)
992 {
993 	if (s->flags & SLAB_TRACE) {
994 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
995 			s->name,
996 			alloc ? "alloc" : "free",
997 			object, page->inuse,
998 			page->freelist);
999 
1000 		if (!alloc)
1001 			print_section(KERN_INFO, "Object ", (void *)object,
1002 					s->object_size);
1003 
1004 		dump_stack();
1005 	}
1006 }
1007 
1008 /*
1009  * Tracking of fully allocated slabs for debugging purposes.
1010  */
1011 static void add_full(struct kmem_cache *s,
1012 	struct kmem_cache_node *n, struct page *page)
1013 {
1014 	if (!(s->flags & SLAB_STORE_USER))
1015 		return;
1016 
1017 	lockdep_assert_held(&n->list_lock);
1018 	list_add(&page->slab_list, &n->full);
1019 }
1020 
1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1022 {
1023 	if (!(s->flags & SLAB_STORE_USER))
1024 		return;
1025 
1026 	lockdep_assert_held(&n->list_lock);
1027 	list_del(&page->slab_list);
1028 }
1029 
1030 /* Tracking of the number of slabs for debugging purposes */
1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032 {
1033 	struct kmem_cache_node *n = get_node(s, node);
1034 
1035 	return atomic_long_read(&n->nr_slabs);
1036 }
1037 
1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039 {
1040 	return atomic_long_read(&n->nr_slabs);
1041 }
1042 
1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1044 {
1045 	struct kmem_cache_node *n = get_node(s, node);
1046 
1047 	/*
1048 	 * May be called early in order to allocate a slab for the
1049 	 * kmem_cache_node structure. Solve the chicken-egg
1050 	 * dilemma by deferring the increment of the count during
1051 	 * bootstrap (see early_kmem_cache_node_alloc).
1052 	 */
1053 	if (likely(n)) {
1054 		atomic_long_inc(&n->nr_slabs);
1055 		atomic_long_add(objects, &n->total_objects);
1056 	}
1057 }
1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1059 {
1060 	struct kmem_cache_node *n = get_node(s, node);
1061 
1062 	atomic_long_dec(&n->nr_slabs);
1063 	atomic_long_sub(objects, &n->total_objects);
1064 }
1065 
1066 /* Object debug checks for alloc/free paths */
1067 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 								void *object)
1069 {
1070 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 		return;
1072 
1073 	init_object(s, object, SLUB_RED_INACTIVE);
1074 	init_tracking(s, object);
1075 }
1076 
1077 static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1078 {
1079 	if (!(s->flags & SLAB_POISON))
1080 		return;
1081 
1082 	metadata_access_enable();
1083 	memset(addr, POISON_INUSE, PAGE_SIZE << order);
1084 	metadata_access_disable();
1085 }
1086 
1087 static inline int alloc_consistency_checks(struct kmem_cache *s,
1088 					struct page *page, void *object)
1089 {
1090 	if (!check_slab(s, page))
1091 		return 0;
1092 
1093 	if (!check_valid_pointer(s, page, object)) {
1094 		object_err(s, page, object, "Freelist Pointer check fails");
1095 		return 0;
1096 	}
1097 
1098 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1099 		return 0;
1100 
1101 	return 1;
1102 }
1103 
1104 static noinline int alloc_debug_processing(struct kmem_cache *s,
1105 					struct page *page,
1106 					void *object, unsigned long addr)
1107 {
1108 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1109 		if (!alloc_consistency_checks(s, page, object))
1110 			goto bad;
1111 	}
1112 
1113 	/* Success perform special debug activities for allocs */
1114 	if (s->flags & SLAB_STORE_USER)
1115 		set_track(s, object, TRACK_ALLOC, addr);
1116 	trace(s, page, object, 1);
1117 	init_object(s, object, SLUB_RED_ACTIVE);
1118 	return 1;
1119 
1120 bad:
1121 	if (PageSlab(page)) {
1122 		/*
1123 		 * If this is a slab page then lets do the best we can
1124 		 * to avoid issues in the future. Marking all objects
1125 		 * as used avoids touching the remaining objects.
1126 		 */
1127 		slab_fix(s, "Marking all objects used");
1128 		page->inuse = page->objects;
1129 		page->freelist = NULL;
1130 	}
1131 	return 0;
1132 }
1133 
1134 static inline int free_consistency_checks(struct kmem_cache *s,
1135 		struct page *page, void *object, unsigned long addr)
1136 {
1137 	if (!check_valid_pointer(s, page, object)) {
1138 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1139 		return 0;
1140 	}
1141 
1142 	if (on_freelist(s, page, object)) {
1143 		object_err(s, page, object, "Object already free");
1144 		return 0;
1145 	}
1146 
1147 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1148 		return 0;
1149 
1150 	if (unlikely(s != page->slab_cache)) {
1151 		if (!PageSlab(page)) {
1152 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1153 				 object);
1154 		} else if (!page->slab_cache) {
1155 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1156 			       object);
1157 			dump_stack();
1158 		} else
1159 			object_err(s, page, object,
1160 					"page slab pointer corrupt.");
1161 		return 0;
1162 	}
1163 	return 1;
1164 }
1165 
1166 /* Supports checking bulk free of a constructed freelist */
1167 static noinline int free_debug_processing(
1168 	struct kmem_cache *s, struct page *page,
1169 	void *head, void *tail, int bulk_cnt,
1170 	unsigned long addr)
1171 {
1172 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173 	void *object = head;
1174 	int cnt = 0;
1175 	unsigned long uninitialized_var(flags);
1176 	int ret = 0;
1177 
1178 	spin_lock_irqsave(&n->list_lock, flags);
1179 	slab_lock(page);
1180 
1181 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 		if (!check_slab(s, page))
1183 			goto out;
1184 	}
1185 
1186 next_object:
1187 	cnt++;
1188 
1189 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190 		if (!free_consistency_checks(s, page, object, addr))
1191 			goto out;
1192 	}
1193 
1194 	if (s->flags & SLAB_STORE_USER)
1195 		set_track(s, object, TRACK_FREE, addr);
1196 	trace(s, page, object, 0);
1197 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1198 	init_object(s, object, SLUB_RED_INACTIVE);
1199 
1200 	/* Reached end of constructed freelist yet? */
1201 	if (object != tail) {
1202 		object = get_freepointer(s, object);
1203 		goto next_object;
1204 	}
1205 	ret = 1;
1206 
1207 out:
1208 	if (cnt != bulk_cnt)
1209 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1210 			 bulk_cnt, cnt);
1211 
1212 	slab_unlock(page);
1213 	spin_unlock_irqrestore(&n->list_lock, flags);
1214 	if (!ret)
1215 		slab_fix(s, "Object at 0x%p not freed", object);
1216 	return ret;
1217 }
1218 
1219 static int __init setup_slub_debug(char *str)
1220 {
1221 	slub_debug = DEBUG_DEFAULT_FLAGS;
1222 	if (*str++ != '=' || !*str)
1223 		/*
1224 		 * No options specified. Switch on full debugging.
1225 		 */
1226 		goto out;
1227 
1228 	if (*str == ',')
1229 		/*
1230 		 * No options but restriction on slabs. This means full
1231 		 * debugging for slabs matching a pattern.
1232 		 */
1233 		goto check_slabs;
1234 
1235 	slub_debug = 0;
1236 	if (*str == '-')
1237 		/*
1238 		 * Switch off all debugging measures.
1239 		 */
1240 		goto out;
1241 
1242 	/*
1243 	 * Determine which debug features should be switched on
1244 	 */
1245 	for (; *str && *str != ','; str++) {
1246 		switch (tolower(*str)) {
1247 		case 'f':
1248 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1249 			break;
1250 		case 'z':
1251 			slub_debug |= SLAB_RED_ZONE;
1252 			break;
1253 		case 'p':
1254 			slub_debug |= SLAB_POISON;
1255 			break;
1256 		case 'u':
1257 			slub_debug |= SLAB_STORE_USER;
1258 			break;
1259 		case 't':
1260 			slub_debug |= SLAB_TRACE;
1261 			break;
1262 		case 'a':
1263 			slub_debug |= SLAB_FAILSLAB;
1264 			break;
1265 		case 'o':
1266 			/*
1267 			 * Avoid enabling debugging on caches if its minimum
1268 			 * order would increase as a result.
1269 			 */
1270 			disable_higher_order_debug = 1;
1271 			break;
1272 		default:
1273 			pr_err("slub_debug option '%c' unknown. skipped\n",
1274 			       *str);
1275 		}
1276 	}
1277 
1278 check_slabs:
1279 	if (*str == ',')
1280 		slub_debug_slabs = str + 1;
1281 out:
1282 	return 1;
1283 }
1284 
1285 __setup("slub_debug", setup_slub_debug);
1286 
1287 /*
1288  * kmem_cache_flags - apply debugging options to the cache
1289  * @object_size:	the size of an object without meta data
1290  * @flags:		flags to set
1291  * @name:		name of the cache
1292  * @ctor:		constructor function
1293  *
1294  * Debug option(s) are applied to @flags. In addition to the debug
1295  * option(s), if a slab name (or multiple) is specified i.e.
1296  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1297  * then only the select slabs will receive the debug option(s).
1298  */
1299 slab_flags_t kmem_cache_flags(unsigned int object_size,
1300 	slab_flags_t flags, const char *name,
1301 	void (*ctor)(void *))
1302 {
1303 	char *iter;
1304 	size_t len;
1305 
1306 	/* If slub_debug = 0, it folds into the if conditional. */
1307 	if (!slub_debug_slabs)
1308 		return flags | slub_debug;
1309 
1310 	len = strlen(name);
1311 	iter = slub_debug_slabs;
1312 	while (*iter) {
1313 		char *end, *glob;
1314 		size_t cmplen;
1315 
1316 		end = strchr(iter, ',');
1317 		if (!end)
1318 			end = iter + strlen(iter);
1319 
1320 		glob = strnchr(iter, end - iter, '*');
1321 		if (glob)
1322 			cmplen = glob - iter;
1323 		else
1324 			cmplen = max_t(size_t, len, (end - iter));
1325 
1326 		if (!strncmp(name, iter, cmplen)) {
1327 			flags |= slub_debug;
1328 			break;
1329 		}
1330 
1331 		if (!*end)
1332 			break;
1333 		iter = end + 1;
1334 	}
1335 
1336 	return flags;
1337 }
1338 #else /* !CONFIG_SLUB_DEBUG */
1339 static inline void setup_object_debug(struct kmem_cache *s,
1340 			struct page *page, void *object) {}
1341 static inline void setup_page_debug(struct kmem_cache *s,
1342 			void *addr, int order) {}
1343 
1344 static inline int alloc_debug_processing(struct kmem_cache *s,
1345 	struct page *page, void *object, unsigned long addr) { return 0; }
1346 
1347 static inline int free_debug_processing(
1348 	struct kmem_cache *s, struct page *page,
1349 	void *head, void *tail, int bulk_cnt,
1350 	unsigned long addr) { return 0; }
1351 
1352 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1353 			{ return 1; }
1354 static inline int check_object(struct kmem_cache *s, struct page *page,
1355 			void *object, u8 val) { return 1; }
1356 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1357 					struct page *page) {}
1358 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1359 					struct page *page) {}
1360 slab_flags_t kmem_cache_flags(unsigned int object_size,
1361 	slab_flags_t flags, const char *name,
1362 	void (*ctor)(void *))
1363 {
1364 	return flags;
1365 }
1366 #define slub_debug 0
1367 
1368 #define disable_higher_order_debug 0
1369 
1370 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1371 							{ return 0; }
1372 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1373 							{ return 0; }
1374 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1375 							int objects) {}
1376 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1377 							int objects) {}
1378 
1379 #endif /* CONFIG_SLUB_DEBUG */
1380 
1381 /*
1382  * Hooks for other subsystems that check memory allocations. In a typical
1383  * production configuration these hooks all should produce no code at all.
1384  */
1385 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1386 {
1387 	ptr = kasan_kmalloc_large(ptr, size, flags);
1388 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1389 	kmemleak_alloc(ptr, size, 1, flags);
1390 	return ptr;
1391 }
1392 
1393 static __always_inline void kfree_hook(void *x)
1394 {
1395 	kmemleak_free(x);
1396 	kasan_kfree_large(x, _RET_IP_);
1397 }
1398 
1399 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1400 {
1401 	kmemleak_free_recursive(x, s->flags);
1402 
1403 	/*
1404 	 * Trouble is that we may no longer disable interrupts in the fast path
1405 	 * So in order to make the debug calls that expect irqs to be
1406 	 * disabled we need to disable interrupts temporarily.
1407 	 */
1408 #ifdef CONFIG_LOCKDEP
1409 	{
1410 		unsigned long flags;
1411 
1412 		local_irq_save(flags);
1413 		debug_check_no_locks_freed(x, s->object_size);
1414 		local_irq_restore(flags);
1415 	}
1416 #endif
1417 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1418 		debug_check_no_obj_freed(x, s->object_size);
1419 
1420 	/* KASAN might put x into memory quarantine, delaying its reuse */
1421 	return kasan_slab_free(s, x, _RET_IP_);
1422 }
1423 
1424 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1425 					   void **head, void **tail)
1426 {
1427 /*
1428  * Compiler cannot detect this function can be removed if slab_free_hook()
1429  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1430  */
1431 #if defined(CONFIG_LOCKDEP)	||		\
1432 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1433 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1434 	defined(CONFIG_KASAN)
1435 
1436 	void *object;
1437 	void *next = *head;
1438 	void *old_tail = *tail ? *tail : *head;
1439 
1440 	/* Head and tail of the reconstructed freelist */
1441 	*head = NULL;
1442 	*tail = NULL;
1443 
1444 	do {
1445 		object = next;
1446 		next = get_freepointer(s, object);
1447 		/* If object's reuse doesn't have to be delayed */
1448 		if (!slab_free_hook(s, object)) {
1449 			/* Move object to the new freelist */
1450 			set_freepointer(s, object, *head);
1451 			*head = object;
1452 			if (!*tail)
1453 				*tail = object;
1454 		}
1455 	} while (object != old_tail);
1456 
1457 	if (*head == *tail)
1458 		*tail = NULL;
1459 
1460 	return *head != NULL;
1461 #else
1462 	return true;
1463 #endif
1464 }
1465 
1466 static void *setup_object(struct kmem_cache *s, struct page *page,
1467 				void *object)
1468 {
1469 	setup_object_debug(s, page, object);
1470 	object = kasan_init_slab_obj(s, object);
1471 	if (unlikely(s->ctor)) {
1472 		kasan_unpoison_object_data(s, object);
1473 		s->ctor(object);
1474 		kasan_poison_object_data(s, object);
1475 	}
1476 	return object;
1477 }
1478 
1479 /*
1480  * Slab allocation and freeing
1481  */
1482 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1483 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1484 {
1485 	struct page *page;
1486 	unsigned int order = oo_order(oo);
1487 
1488 	if (node == NUMA_NO_NODE)
1489 		page = alloc_pages(flags, order);
1490 	else
1491 		page = __alloc_pages_node(node, flags, order);
1492 
1493 	if (page && memcg_charge_slab(page, flags, order, s)) {
1494 		__free_pages(page, order);
1495 		page = NULL;
1496 	}
1497 
1498 	return page;
1499 }
1500 
1501 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1502 /* Pre-initialize the random sequence cache */
1503 static int init_cache_random_seq(struct kmem_cache *s)
1504 {
1505 	unsigned int count = oo_objects(s->oo);
1506 	int err;
1507 
1508 	/* Bailout if already initialised */
1509 	if (s->random_seq)
1510 		return 0;
1511 
1512 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1513 	if (err) {
1514 		pr_err("SLUB: Unable to initialize free list for %s\n",
1515 			s->name);
1516 		return err;
1517 	}
1518 
1519 	/* Transform to an offset on the set of pages */
1520 	if (s->random_seq) {
1521 		unsigned int i;
1522 
1523 		for (i = 0; i < count; i++)
1524 			s->random_seq[i] *= s->size;
1525 	}
1526 	return 0;
1527 }
1528 
1529 /* Initialize each random sequence freelist per cache */
1530 static void __init init_freelist_randomization(void)
1531 {
1532 	struct kmem_cache *s;
1533 
1534 	mutex_lock(&slab_mutex);
1535 
1536 	list_for_each_entry(s, &slab_caches, list)
1537 		init_cache_random_seq(s);
1538 
1539 	mutex_unlock(&slab_mutex);
1540 }
1541 
1542 /* Get the next entry on the pre-computed freelist randomized */
1543 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1544 				unsigned long *pos, void *start,
1545 				unsigned long page_limit,
1546 				unsigned long freelist_count)
1547 {
1548 	unsigned int idx;
1549 
1550 	/*
1551 	 * If the target page allocation failed, the number of objects on the
1552 	 * page might be smaller than the usual size defined by the cache.
1553 	 */
1554 	do {
1555 		idx = s->random_seq[*pos];
1556 		*pos += 1;
1557 		if (*pos >= freelist_count)
1558 			*pos = 0;
1559 	} while (unlikely(idx >= page_limit));
1560 
1561 	return (char *)start + idx;
1562 }
1563 
1564 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1565 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1566 {
1567 	void *start;
1568 	void *cur;
1569 	void *next;
1570 	unsigned long idx, pos, page_limit, freelist_count;
1571 
1572 	if (page->objects < 2 || !s->random_seq)
1573 		return false;
1574 
1575 	freelist_count = oo_objects(s->oo);
1576 	pos = get_random_int() % freelist_count;
1577 
1578 	page_limit = page->objects * s->size;
1579 	start = fixup_red_left(s, page_address(page));
1580 
1581 	/* First entry is used as the base of the freelist */
1582 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1583 				freelist_count);
1584 	cur = setup_object(s, page, cur);
1585 	page->freelist = cur;
1586 
1587 	for (idx = 1; idx < page->objects; idx++) {
1588 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1589 			freelist_count);
1590 		next = setup_object(s, page, next);
1591 		set_freepointer(s, cur, next);
1592 		cur = next;
1593 	}
1594 	set_freepointer(s, cur, NULL);
1595 
1596 	return true;
1597 }
1598 #else
1599 static inline int init_cache_random_seq(struct kmem_cache *s)
1600 {
1601 	return 0;
1602 }
1603 static inline void init_freelist_randomization(void) { }
1604 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1605 {
1606 	return false;
1607 }
1608 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1609 
1610 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1611 {
1612 	struct page *page;
1613 	struct kmem_cache_order_objects oo = s->oo;
1614 	gfp_t alloc_gfp;
1615 	void *start, *p, *next;
1616 	int idx, order;
1617 	bool shuffle;
1618 
1619 	flags &= gfp_allowed_mask;
1620 
1621 	if (gfpflags_allow_blocking(flags))
1622 		local_irq_enable();
1623 
1624 	flags |= s->allocflags;
1625 
1626 	/*
1627 	 * Let the initial higher-order allocation fail under memory pressure
1628 	 * so we fall-back to the minimum order allocation.
1629 	 */
1630 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1631 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1632 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1633 
1634 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1635 	if (unlikely(!page)) {
1636 		oo = s->min;
1637 		alloc_gfp = flags;
1638 		/*
1639 		 * Allocation may have failed due to fragmentation.
1640 		 * Try a lower order alloc if possible
1641 		 */
1642 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1643 		if (unlikely(!page))
1644 			goto out;
1645 		stat(s, ORDER_FALLBACK);
1646 	}
1647 
1648 	page->objects = oo_objects(oo);
1649 
1650 	order = compound_order(page);
1651 	page->slab_cache = s;
1652 	__SetPageSlab(page);
1653 	if (page_is_pfmemalloc(page))
1654 		SetPageSlabPfmemalloc(page);
1655 
1656 	kasan_poison_slab(page);
1657 
1658 	start = page_address(page);
1659 
1660 	setup_page_debug(s, start, order);
1661 
1662 	shuffle = shuffle_freelist(s, page);
1663 
1664 	if (!shuffle) {
1665 		start = fixup_red_left(s, start);
1666 		start = setup_object(s, page, start);
1667 		page->freelist = start;
1668 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1669 			next = p + s->size;
1670 			next = setup_object(s, page, next);
1671 			set_freepointer(s, p, next);
1672 			p = next;
1673 		}
1674 		set_freepointer(s, p, NULL);
1675 	}
1676 
1677 	page->inuse = page->objects;
1678 	page->frozen = 1;
1679 
1680 out:
1681 	if (gfpflags_allow_blocking(flags))
1682 		local_irq_disable();
1683 	if (!page)
1684 		return NULL;
1685 
1686 	mod_lruvec_page_state(page,
1687 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1688 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1689 		1 << oo_order(oo));
1690 
1691 	inc_slabs_node(s, page_to_nid(page), page->objects);
1692 
1693 	return page;
1694 }
1695 
1696 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1697 {
1698 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1699 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1700 		flags &= ~GFP_SLAB_BUG_MASK;
1701 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1702 				invalid_mask, &invalid_mask, flags, &flags);
1703 		dump_stack();
1704 	}
1705 
1706 	return allocate_slab(s,
1707 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1708 }
1709 
1710 static void __free_slab(struct kmem_cache *s, struct page *page)
1711 {
1712 	int order = compound_order(page);
1713 	int pages = 1 << order;
1714 
1715 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1716 		void *p;
1717 
1718 		slab_pad_check(s, page);
1719 		for_each_object(p, s, page_address(page),
1720 						page->objects)
1721 			check_object(s, page, p, SLUB_RED_INACTIVE);
1722 	}
1723 
1724 	mod_lruvec_page_state(page,
1725 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1726 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1727 		-pages);
1728 
1729 	__ClearPageSlabPfmemalloc(page);
1730 	__ClearPageSlab(page);
1731 
1732 	page->mapping = NULL;
1733 	if (current->reclaim_state)
1734 		current->reclaim_state->reclaimed_slab += pages;
1735 	memcg_uncharge_slab(page, order, s);
1736 	__free_pages(page, order);
1737 }
1738 
1739 static void rcu_free_slab(struct rcu_head *h)
1740 {
1741 	struct page *page = container_of(h, struct page, rcu_head);
1742 
1743 	__free_slab(page->slab_cache, page);
1744 }
1745 
1746 static void free_slab(struct kmem_cache *s, struct page *page)
1747 {
1748 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1749 		call_rcu(&page->rcu_head, rcu_free_slab);
1750 	} else
1751 		__free_slab(s, page);
1752 }
1753 
1754 static void discard_slab(struct kmem_cache *s, struct page *page)
1755 {
1756 	dec_slabs_node(s, page_to_nid(page), page->objects);
1757 	free_slab(s, page);
1758 }
1759 
1760 /*
1761  * Management of partially allocated slabs.
1762  */
1763 static inline void
1764 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1765 {
1766 	n->nr_partial++;
1767 	if (tail == DEACTIVATE_TO_TAIL)
1768 		list_add_tail(&page->slab_list, &n->partial);
1769 	else
1770 		list_add(&page->slab_list, &n->partial);
1771 }
1772 
1773 static inline void add_partial(struct kmem_cache_node *n,
1774 				struct page *page, int tail)
1775 {
1776 	lockdep_assert_held(&n->list_lock);
1777 	__add_partial(n, page, tail);
1778 }
1779 
1780 static inline void remove_partial(struct kmem_cache_node *n,
1781 					struct page *page)
1782 {
1783 	lockdep_assert_held(&n->list_lock);
1784 	list_del(&page->slab_list);
1785 	n->nr_partial--;
1786 }
1787 
1788 /*
1789  * Remove slab from the partial list, freeze it and
1790  * return the pointer to the freelist.
1791  *
1792  * Returns a list of objects or NULL if it fails.
1793  */
1794 static inline void *acquire_slab(struct kmem_cache *s,
1795 		struct kmem_cache_node *n, struct page *page,
1796 		int mode, int *objects)
1797 {
1798 	void *freelist;
1799 	unsigned long counters;
1800 	struct page new;
1801 
1802 	lockdep_assert_held(&n->list_lock);
1803 
1804 	/*
1805 	 * Zap the freelist and set the frozen bit.
1806 	 * The old freelist is the list of objects for the
1807 	 * per cpu allocation list.
1808 	 */
1809 	freelist = page->freelist;
1810 	counters = page->counters;
1811 	new.counters = counters;
1812 	*objects = new.objects - new.inuse;
1813 	if (mode) {
1814 		new.inuse = page->objects;
1815 		new.freelist = NULL;
1816 	} else {
1817 		new.freelist = freelist;
1818 	}
1819 
1820 	VM_BUG_ON(new.frozen);
1821 	new.frozen = 1;
1822 
1823 	if (!__cmpxchg_double_slab(s, page,
1824 			freelist, counters,
1825 			new.freelist, new.counters,
1826 			"acquire_slab"))
1827 		return NULL;
1828 
1829 	remove_partial(n, page);
1830 	WARN_ON(!freelist);
1831 	return freelist;
1832 }
1833 
1834 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1835 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1836 
1837 /*
1838  * Try to allocate a partial slab from a specific node.
1839  */
1840 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1841 				struct kmem_cache_cpu *c, gfp_t flags)
1842 {
1843 	struct page *page, *page2;
1844 	void *object = NULL;
1845 	unsigned int available = 0;
1846 	int objects;
1847 
1848 	/*
1849 	 * Racy check. If we mistakenly see no partial slabs then we
1850 	 * just allocate an empty slab. If we mistakenly try to get a
1851 	 * partial slab and there is none available then get_partials()
1852 	 * will return NULL.
1853 	 */
1854 	if (!n || !n->nr_partial)
1855 		return NULL;
1856 
1857 	spin_lock(&n->list_lock);
1858 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1859 		void *t;
1860 
1861 		if (!pfmemalloc_match(page, flags))
1862 			continue;
1863 
1864 		t = acquire_slab(s, n, page, object == NULL, &objects);
1865 		if (!t)
1866 			break;
1867 
1868 		available += objects;
1869 		if (!object) {
1870 			c->page = page;
1871 			stat(s, ALLOC_FROM_PARTIAL);
1872 			object = t;
1873 		} else {
1874 			put_cpu_partial(s, page, 0);
1875 			stat(s, CPU_PARTIAL_NODE);
1876 		}
1877 		if (!kmem_cache_has_cpu_partial(s)
1878 			|| available > slub_cpu_partial(s) / 2)
1879 			break;
1880 
1881 	}
1882 	spin_unlock(&n->list_lock);
1883 	return object;
1884 }
1885 
1886 /*
1887  * Get a page from somewhere. Search in increasing NUMA distances.
1888  */
1889 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1890 		struct kmem_cache_cpu *c)
1891 {
1892 #ifdef CONFIG_NUMA
1893 	struct zonelist *zonelist;
1894 	struct zoneref *z;
1895 	struct zone *zone;
1896 	enum zone_type high_zoneidx = gfp_zone(flags);
1897 	void *object;
1898 	unsigned int cpuset_mems_cookie;
1899 
1900 	/*
1901 	 * The defrag ratio allows a configuration of the tradeoffs between
1902 	 * inter node defragmentation and node local allocations. A lower
1903 	 * defrag_ratio increases the tendency to do local allocations
1904 	 * instead of attempting to obtain partial slabs from other nodes.
1905 	 *
1906 	 * If the defrag_ratio is set to 0 then kmalloc() always
1907 	 * returns node local objects. If the ratio is higher then kmalloc()
1908 	 * may return off node objects because partial slabs are obtained
1909 	 * from other nodes and filled up.
1910 	 *
1911 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1912 	 * (which makes defrag_ratio = 1000) then every (well almost)
1913 	 * allocation will first attempt to defrag slab caches on other nodes.
1914 	 * This means scanning over all nodes to look for partial slabs which
1915 	 * may be expensive if we do it every time we are trying to find a slab
1916 	 * with available objects.
1917 	 */
1918 	if (!s->remote_node_defrag_ratio ||
1919 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1920 		return NULL;
1921 
1922 	do {
1923 		cpuset_mems_cookie = read_mems_allowed_begin();
1924 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1925 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1926 			struct kmem_cache_node *n;
1927 
1928 			n = get_node(s, zone_to_nid(zone));
1929 
1930 			if (n && cpuset_zone_allowed(zone, flags) &&
1931 					n->nr_partial > s->min_partial) {
1932 				object = get_partial_node(s, n, c, flags);
1933 				if (object) {
1934 					/*
1935 					 * Don't check read_mems_allowed_retry()
1936 					 * here - if mems_allowed was updated in
1937 					 * parallel, that was a harmless race
1938 					 * between allocation and the cpuset
1939 					 * update
1940 					 */
1941 					return object;
1942 				}
1943 			}
1944 		}
1945 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1946 #endif	/* CONFIG_NUMA */
1947 	return NULL;
1948 }
1949 
1950 /*
1951  * Get a partial page, lock it and return it.
1952  */
1953 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1954 		struct kmem_cache_cpu *c)
1955 {
1956 	void *object;
1957 	int searchnode = node;
1958 
1959 	if (node == NUMA_NO_NODE)
1960 		searchnode = numa_mem_id();
1961 	else if (!node_present_pages(node))
1962 		searchnode = node_to_mem_node(node);
1963 
1964 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1965 	if (object || node != NUMA_NO_NODE)
1966 		return object;
1967 
1968 	return get_any_partial(s, flags, c);
1969 }
1970 
1971 #ifdef CONFIG_PREEMPT
1972 /*
1973  * Calculate the next globally unique transaction for disambiguiation
1974  * during cmpxchg. The transactions start with the cpu number and are then
1975  * incremented by CONFIG_NR_CPUS.
1976  */
1977 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1978 #else
1979 /*
1980  * No preemption supported therefore also no need to check for
1981  * different cpus.
1982  */
1983 #define TID_STEP 1
1984 #endif
1985 
1986 static inline unsigned long next_tid(unsigned long tid)
1987 {
1988 	return tid + TID_STEP;
1989 }
1990 
1991 static inline unsigned int tid_to_cpu(unsigned long tid)
1992 {
1993 	return tid % TID_STEP;
1994 }
1995 
1996 static inline unsigned long tid_to_event(unsigned long tid)
1997 {
1998 	return tid / TID_STEP;
1999 }
2000 
2001 static inline unsigned int init_tid(int cpu)
2002 {
2003 	return cpu;
2004 }
2005 
2006 static inline void note_cmpxchg_failure(const char *n,
2007 		const struct kmem_cache *s, unsigned long tid)
2008 {
2009 #ifdef SLUB_DEBUG_CMPXCHG
2010 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2011 
2012 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2013 
2014 #ifdef CONFIG_PREEMPT
2015 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2016 		pr_warn("due to cpu change %d -> %d\n",
2017 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2018 	else
2019 #endif
2020 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2021 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2022 			tid_to_event(tid), tid_to_event(actual_tid));
2023 	else
2024 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2025 			actual_tid, tid, next_tid(tid));
2026 #endif
2027 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2028 }
2029 
2030 static void init_kmem_cache_cpus(struct kmem_cache *s)
2031 {
2032 	int cpu;
2033 
2034 	for_each_possible_cpu(cpu)
2035 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2036 }
2037 
2038 /*
2039  * Remove the cpu slab
2040  */
2041 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2042 				void *freelist, struct kmem_cache_cpu *c)
2043 {
2044 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2045 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2046 	int lock = 0;
2047 	enum slab_modes l = M_NONE, m = M_NONE;
2048 	void *nextfree;
2049 	int tail = DEACTIVATE_TO_HEAD;
2050 	struct page new;
2051 	struct page old;
2052 
2053 	if (page->freelist) {
2054 		stat(s, DEACTIVATE_REMOTE_FREES);
2055 		tail = DEACTIVATE_TO_TAIL;
2056 	}
2057 
2058 	/*
2059 	 * Stage one: Free all available per cpu objects back
2060 	 * to the page freelist while it is still frozen. Leave the
2061 	 * last one.
2062 	 *
2063 	 * There is no need to take the list->lock because the page
2064 	 * is still frozen.
2065 	 */
2066 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2067 		void *prior;
2068 		unsigned long counters;
2069 
2070 		do {
2071 			prior = page->freelist;
2072 			counters = page->counters;
2073 			set_freepointer(s, freelist, prior);
2074 			new.counters = counters;
2075 			new.inuse--;
2076 			VM_BUG_ON(!new.frozen);
2077 
2078 		} while (!__cmpxchg_double_slab(s, page,
2079 			prior, counters,
2080 			freelist, new.counters,
2081 			"drain percpu freelist"));
2082 
2083 		freelist = nextfree;
2084 	}
2085 
2086 	/*
2087 	 * Stage two: Ensure that the page is unfrozen while the
2088 	 * list presence reflects the actual number of objects
2089 	 * during unfreeze.
2090 	 *
2091 	 * We setup the list membership and then perform a cmpxchg
2092 	 * with the count. If there is a mismatch then the page
2093 	 * is not unfrozen but the page is on the wrong list.
2094 	 *
2095 	 * Then we restart the process which may have to remove
2096 	 * the page from the list that we just put it on again
2097 	 * because the number of objects in the slab may have
2098 	 * changed.
2099 	 */
2100 redo:
2101 
2102 	old.freelist = page->freelist;
2103 	old.counters = page->counters;
2104 	VM_BUG_ON(!old.frozen);
2105 
2106 	/* Determine target state of the slab */
2107 	new.counters = old.counters;
2108 	if (freelist) {
2109 		new.inuse--;
2110 		set_freepointer(s, freelist, old.freelist);
2111 		new.freelist = freelist;
2112 	} else
2113 		new.freelist = old.freelist;
2114 
2115 	new.frozen = 0;
2116 
2117 	if (!new.inuse && n->nr_partial >= s->min_partial)
2118 		m = M_FREE;
2119 	else if (new.freelist) {
2120 		m = M_PARTIAL;
2121 		if (!lock) {
2122 			lock = 1;
2123 			/*
2124 			 * Taking the spinlock removes the possibility
2125 			 * that acquire_slab() will see a slab page that
2126 			 * is frozen
2127 			 */
2128 			spin_lock(&n->list_lock);
2129 		}
2130 	} else {
2131 		m = M_FULL;
2132 		if (kmem_cache_debug(s) && !lock) {
2133 			lock = 1;
2134 			/*
2135 			 * This also ensures that the scanning of full
2136 			 * slabs from diagnostic functions will not see
2137 			 * any frozen slabs.
2138 			 */
2139 			spin_lock(&n->list_lock);
2140 		}
2141 	}
2142 
2143 	if (l != m) {
2144 		if (l == M_PARTIAL)
2145 			remove_partial(n, page);
2146 		else if (l == M_FULL)
2147 			remove_full(s, n, page);
2148 
2149 		if (m == M_PARTIAL)
2150 			add_partial(n, page, tail);
2151 		else if (m == M_FULL)
2152 			add_full(s, n, page);
2153 	}
2154 
2155 	l = m;
2156 	if (!__cmpxchg_double_slab(s, page,
2157 				old.freelist, old.counters,
2158 				new.freelist, new.counters,
2159 				"unfreezing slab"))
2160 		goto redo;
2161 
2162 	if (lock)
2163 		spin_unlock(&n->list_lock);
2164 
2165 	if (m == M_PARTIAL)
2166 		stat(s, tail);
2167 	else if (m == M_FULL)
2168 		stat(s, DEACTIVATE_FULL);
2169 	else if (m == M_FREE) {
2170 		stat(s, DEACTIVATE_EMPTY);
2171 		discard_slab(s, page);
2172 		stat(s, FREE_SLAB);
2173 	}
2174 
2175 	c->page = NULL;
2176 	c->freelist = NULL;
2177 }
2178 
2179 /*
2180  * Unfreeze all the cpu partial slabs.
2181  *
2182  * This function must be called with interrupts disabled
2183  * for the cpu using c (or some other guarantee must be there
2184  * to guarantee no concurrent accesses).
2185  */
2186 static void unfreeze_partials(struct kmem_cache *s,
2187 		struct kmem_cache_cpu *c)
2188 {
2189 #ifdef CONFIG_SLUB_CPU_PARTIAL
2190 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2191 	struct page *page, *discard_page = NULL;
2192 
2193 	while ((page = c->partial)) {
2194 		struct page new;
2195 		struct page old;
2196 
2197 		c->partial = page->next;
2198 
2199 		n2 = get_node(s, page_to_nid(page));
2200 		if (n != n2) {
2201 			if (n)
2202 				spin_unlock(&n->list_lock);
2203 
2204 			n = n2;
2205 			spin_lock(&n->list_lock);
2206 		}
2207 
2208 		do {
2209 
2210 			old.freelist = page->freelist;
2211 			old.counters = page->counters;
2212 			VM_BUG_ON(!old.frozen);
2213 
2214 			new.counters = old.counters;
2215 			new.freelist = old.freelist;
2216 
2217 			new.frozen = 0;
2218 
2219 		} while (!__cmpxchg_double_slab(s, page,
2220 				old.freelist, old.counters,
2221 				new.freelist, new.counters,
2222 				"unfreezing slab"));
2223 
2224 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2225 			page->next = discard_page;
2226 			discard_page = page;
2227 		} else {
2228 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2229 			stat(s, FREE_ADD_PARTIAL);
2230 		}
2231 	}
2232 
2233 	if (n)
2234 		spin_unlock(&n->list_lock);
2235 
2236 	while (discard_page) {
2237 		page = discard_page;
2238 		discard_page = discard_page->next;
2239 
2240 		stat(s, DEACTIVATE_EMPTY);
2241 		discard_slab(s, page);
2242 		stat(s, FREE_SLAB);
2243 	}
2244 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2245 }
2246 
2247 /*
2248  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2249  * partial page slot if available.
2250  *
2251  * If we did not find a slot then simply move all the partials to the
2252  * per node partial list.
2253  */
2254 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2255 {
2256 #ifdef CONFIG_SLUB_CPU_PARTIAL
2257 	struct page *oldpage;
2258 	int pages;
2259 	int pobjects;
2260 
2261 	preempt_disable();
2262 	do {
2263 		pages = 0;
2264 		pobjects = 0;
2265 		oldpage = this_cpu_read(s->cpu_slab->partial);
2266 
2267 		if (oldpage) {
2268 			pobjects = oldpage->pobjects;
2269 			pages = oldpage->pages;
2270 			if (drain && pobjects > s->cpu_partial) {
2271 				unsigned long flags;
2272 				/*
2273 				 * partial array is full. Move the existing
2274 				 * set to the per node partial list.
2275 				 */
2276 				local_irq_save(flags);
2277 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2278 				local_irq_restore(flags);
2279 				oldpage = NULL;
2280 				pobjects = 0;
2281 				pages = 0;
2282 				stat(s, CPU_PARTIAL_DRAIN);
2283 			}
2284 		}
2285 
2286 		pages++;
2287 		pobjects += page->objects - page->inuse;
2288 
2289 		page->pages = pages;
2290 		page->pobjects = pobjects;
2291 		page->next = oldpage;
2292 
2293 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2294 								!= oldpage);
2295 	if (unlikely(!s->cpu_partial)) {
2296 		unsigned long flags;
2297 
2298 		local_irq_save(flags);
2299 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2300 		local_irq_restore(flags);
2301 	}
2302 	preempt_enable();
2303 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2304 }
2305 
2306 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2307 {
2308 	stat(s, CPUSLAB_FLUSH);
2309 	deactivate_slab(s, c->page, c->freelist, c);
2310 
2311 	c->tid = next_tid(c->tid);
2312 }
2313 
2314 /*
2315  * Flush cpu slab.
2316  *
2317  * Called from IPI handler with interrupts disabled.
2318  */
2319 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2320 {
2321 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2322 
2323 	if (c->page)
2324 		flush_slab(s, c);
2325 
2326 	unfreeze_partials(s, c);
2327 }
2328 
2329 static void flush_cpu_slab(void *d)
2330 {
2331 	struct kmem_cache *s = d;
2332 
2333 	__flush_cpu_slab(s, smp_processor_id());
2334 }
2335 
2336 static bool has_cpu_slab(int cpu, void *info)
2337 {
2338 	struct kmem_cache *s = info;
2339 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2340 
2341 	return c->page || slub_percpu_partial(c);
2342 }
2343 
2344 static void flush_all(struct kmem_cache *s)
2345 {
2346 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2347 }
2348 
2349 /*
2350  * Use the cpu notifier to insure that the cpu slabs are flushed when
2351  * necessary.
2352  */
2353 static int slub_cpu_dead(unsigned int cpu)
2354 {
2355 	struct kmem_cache *s;
2356 	unsigned long flags;
2357 
2358 	mutex_lock(&slab_mutex);
2359 	list_for_each_entry(s, &slab_caches, list) {
2360 		local_irq_save(flags);
2361 		__flush_cpu_slab(s, cpu);
2362 		local_irq_restore(flags);
2363 	}
2364 	mutex_unlock(&slab_mutex);
2365 	return 0;
2366 }
2367 
2368 /*
2369  * Check if the objects in a per cpu structure fit numa
2370  * locality expectations.
2371  */
2372 static inline int node_match(struct page *page, int node)
2373 {
2374 #ifdef CONFIG_NUMA
2375 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2376 		return 0;
2377 #endif
2378 	return 1;
2379 }
2380 
2381 #ifdef CONFIG_SLUB_DEBUG
2382 static int count_free(struct page *page)
2383 {
2384 	return page->objects - page->inuse;
2385 }
2386 
2387 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2388 {
2389 	return atomic_long_read(&n->total_objects);
2390 }
2391 #endif /* CONFIG_SLUB_DEBUG */
2392 
2393 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2394 static unsigned long count_partial(struct kmem_cache_node *n,
2395 					int (*get_count)(struct page *))
2396 {
2397 	unsigned long flags;
2398 	unsigned long x = 0;
2399 	struct page *page;
2400 
2401 	spin_lock_irqsave(&n->list_lock, flags);
2402 	list_for_each_entry(page, &n->partial, slab_list)
2403 		x += get_count(page);
2404 	spin_unlock_irqrestore(&n->list_lock, flags);
2405 	return x;
2406 }
2407 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2408 
2409 static noinline void
2410 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2411 {
2412 #ifdef CONFIG_SLUB_DEBUG
2413 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2414 				      DEFAULT_RATELIMIT_BURST);
2415 	int node;
2416 	struct kmem_cache_node *n;
2417 
2418 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2419 		return;
2420 
2421 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2422 		nid, gfpflags, &gfpflags);
2423 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2424 		s->name, s->object_size, s->size, oo_order(s->oo),
2425 		oo_order(s->min));
2426 
2427 	if (oo_order(s->min) > get_order(s->object_size))
2428 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2429 			s->name);
2430 
2431 	for_each_kmem_cache_node(s, node, n) {
2432 		unsigned long nr_slabs;
2433 		unsigned long nr_objs;
2434 		unsigned long nr_free;
2435 
2436 		nr_free  = count_partial(n, count_free);
2437 		nr_slabs = node_nr_slabs(n);
2438 		nr_objs  = node_nr_objs(n);
2439 
2440 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2441 			node, nr_slabs, nr_objs, nr_free);
2442 	}
2443 #endif
2444 }
2445 
2446 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2447 			int node, struct kmem_cache_cpu **pc)
2448 {
2449 	void *freelist;
2450 	struct kmem_cache_cpu *c = *pc;
2451 	struct page *page;
2452 
2453 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2454 
2455 	freelist = get_partial(s, flags, node, c);
2456 
2457 	if (freelist)
2458 		return freelist;
2459 
2460 	page = new_slab(s, flags, node);
2461 	if (page) {
2462 		c = raw_cpu_ptr(s->cpu_slab);
2463 		if (c->page)
2464 			flush_slab(s, c);
2465 
2466 		/*
2467 		 * No other reference to the page yet so we can
2468 		 * muck around with it freely without cmpxchg
2469 		 */
2470 		freelist = page->freelist;
2471 		page->freelist = NULL;
2472 
2473 		stat(s, ALLOC_SLAB);
2474 		c->page = page;
2475 		*pc = c;
2476 	}
2477 
2478 	return freelist;
2479 }
2480 
2481 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2482 {
2483 	if (unlikely(PageSlabPfmemalloc(page)))
2484 		return gfp_pfmemalloc_allowed(gfpflags);
2485 
2486 	return true;
2487 }
2488 
2489 /*
2490  * Check the page->freelist of a page and either transfer the freelist to the
2491  * per cpu freelist or deactivate the page.
2492  *
2493  * The page is still frozen if the return value is not NULL.
2494  *
2495  * If this function returns NULL then the page has been unfrozen.
2496  *
2497  * This function must be called with interrupt disabled.
2498  */
2499 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2500 {
2501 	struct page new;
2502 	unsigned long counters;
2503 	void *freelist;
2504 
2505 	do {
2506 		freelist = page->freelist;
2507 		counters = page->counters;
2508 
2509 		new.counters = counters;
2510 		VM_BUG_ON(!new.frozen);
2511 
2512 		new.inuse = page->objects;
2513 		new.frozen = freelist != NULL;
2514 
2515 	} while (!__cmpxchg_double_slab(s, page,
2516 		freelist, counters,
2517 		NULL, new.counters,
2518 		"get_freelist"));
2519 
2520 	return freelist;
2521 }
2522 
2523 /*
2524  * Slow path. The lockless freelist is empty or we need to perform
2525  * debugging duties.
2526  *
2527  * Processing is still very fast if new objects have been freed to the
2528  * regular freelist. In that case we simply take over the regular freelist
2529  * as the lockless freelist and zap the regular freelist.
2530  *
2531  * If that is not working then we fall back to the partial lists. We take the
2532  * first element of the freelist as the object to allocate now and move the
2533  * rest of the freelist to the lockless freelist.
2534  *
2535  * And if we were unable to get a new slab from the partial slab lists then
2536  * we need to allocate a new slab. This is the slowest path since it involves
2537  * a call to the page allocator and the setup of a new slab.
2538  *
2539  * Version of __slab_alloc to use when we know that interrupts are
2540  * already disabled (which is the case for bulk allocation).
2541  */
2542 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2543 			  unsigned long addr, struct kmem_cache_cpu *c)
2544 {
2545 	void *freelist;
2546 	struct page *page;
2547 
2548 	page = c->page;
2549 	if (!page)
2550 		goto new_slab;
2551 redo:
2552 
2553 	if (unlikely(!node_match(page, node))) {
2554 		int searchnode = node;
2555 
2556 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2557 			searchnode = node_to_mem_node(node);
2558 
2559 		if (unlikely(!node_match(page, searchnode))) {
2560 			stat(s, ALLOC_NODE_MISMATCH);
2561 			deactivate_slab(s, page, c->freelist, c);
2562 			goto new_slab;
2563 		}
2564 	}
2565 
2566 	/*
2567 	 * By rights, we should be searching for a slab page that was
2568 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2569 	 * information when the page leaves the per-cpu allocator
2570 	 */
2571 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2572 		deactivate_slab(s, page, c->freelist, c);
2573 		goto new_slab;
2574 	}
2575 
2576 	/* must check again c->freelist in case of cpu migration or IRQ */
2577 	freelist = c->freelist;
2578 	if (freelist)
2579 		goto load_freelist;
2580 
2581 	freelist = get_freelist(s, page);
2582 
2583 	if (!freelist) {
2584 		c->page = NULL;
2585 		stat(s, DEACTIVATE_BYPASS);
2586 		goto new_slab;
2587 	}
2588 
2589 	stat(s, ALLOC_REFILL);
2590 
2591 load_freelist:
2592 	/*
2593 	 * freelist is pointing to the list of objects to be used.
2594 	 * page is pointing to the page from which the objects are obtained.
2595 	 * That page must be frozen for per cpu allocations to work.
2596 	 */
2597 	VM_BUG_ON(!c->page->frozen);
2598 	c->freelist = get_freepointer(s, freelist);
2599 	c->tid = next_tid(c->tid);
2600 	return freelist;
2601 
2602 new_slab:
2603 
2604 	if (slub_percpu_partial(c)) {
2605 		page = c->page = slub_percpu_partial(c);
2606 		slub_set_percpu_partial(c, page);
2607 		stat(s, CPU_PARTIAL_ALLOC);
2608 		goto redo;
2609 	}
2610 
2611 	freelist = new_slab_objects(s, gfpflags, node, &c);
2612 
2613 	if (unlikely(!freelist)) {
2614 		slab_out_of_memory(s, gfpflags, node);
2615 		return NULL;
2616 	}
2617 
2618 	page = c->page;
2619 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2620 		goto load_freelist;
2621 
2622 	/* Only entered in the debug case */
2623 	if (kmem_cache_debug(s) &&
2624 			!alloc_debug_processing(s, page, freelist, addr))
2625 		goto new_slab;	/* Slab failed checks. Next slab needed */
2626 
2627 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2628 	return freelist;
2629 }
2630 
2631 /*
2632  * Another one that disabled interrupt and compensates for possible
2633  * cpu changes by refetching the per cpu area pointer.
2634  */
2635 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2636 			  unsigned long addr, struct kmem_cache_cpu *c)
2637 {
2638 	void *p;
2639 	unsigned long flags;
2640 
2641 	local_irq_save(flags);
2642 #ifdef CONFIG_PREEMPT
2643 	/*
2644 	 * We may have been preempted and rescheduled on a different
2645 	 * cpu before disabling interrupts. Need to reload cpu area
2646 	 * pointer.
2647 	 */
2648 	c = this_cpu_ptr(s->cpu_slab);
2649 #endif
2650 
2651 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2652 	local_irq_restore(flags);
2653 	return p;
2654 }
2655 
2656 /*
2657  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2658  * have the fastpath folded into their functions. So no function call
2659  * overhead for requests that can be satisfied on the fastpath.
2660  *
2661  * The fastpath works by first checking if the lockless freelist can be used.
2662  * If not then __slab_alloc is called for slow processing.
2663  *
2664  * Otherwise we can simply pick the next object from the lockless free list.
2665  */
2666 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2667 		gfp_t gfpflags, int node, unsigned long addr)
2668 {
2669 	void *object;
2670 	struct kmem_cache_cpu *c;
2671 	struct page *page;
2672 	unsigned long tid;
2673 
2674 	s = slab_pre_alloc_hook(s, gfpflags);
2675 	if (!s)
2676 		return NULL;
2677 redo:
2678 	/*
2679 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2680 	 * enabled. We may switch back and forth between cpus while
2681 	 * reading from one cpu area. That does not matter as long
2682 	 * as we end up on the original cpu again when doing the cmpxchg.
2683 	 *
2684 	 * We should guarantee that tid and kmem_cache are retrieved on
2685 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2686 	 * to check if it is matched or not.
2687 	 */
2688 	do {
2689 		tid = this_cpu_read(s->cpu_slab->tid);
2690 		c = raw_cpu_ptr(s->cpu_slab);
2691 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2692 		 unlikely(tid != READ_ONCE(c->tid)));
2693 
2694 	/*
2695 	 * Irqless object alloc/free algorithm used here depends on sequence
2696 	 * of fetching cpu_slab's data. tid should be fetched before anything
2697 	 * on c to guarantee that object and page associated with previous tid
2698 	 * won't be used with current tid. If we fetch tid first, object and
2699 	 * page could be one associated with next tid and our alloc/free
2700 	 * request will be failed. In this case, we will retry. So, no problem.
2701 	 */
2702 	barrier();
2703 
2704 	/*
2705 	 * The transaction ids are globally unique per cpu and per operation on
2706 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2707 	 * occurs on the right processor and that there was no operation on the
2708 	 * linked list in between.
2709 	 */
2710 
2711 	object = c->freelist;
2712 	page = c->page;
2713 	if (unlikely(!object || !node_match(page, node))) {
2714 		object = __slab_alloc(s, gfpflags, node, addr, c);
2715 		stat(s, ALLOC_SLOWPATH);
2716 	} else {
2717 		void *next_object = get_freepointer_safe(s, object);
2718 
2719 		/*
2720 		 * The cmpxchg will only match if there was no additional
2721 		 * operation and if we are on the right processor.
2722 		 *
2723 		 * The cmpxchg does the following atomically (without lock
2724 		 * semantics!)
2725 		 * 1. Relocate first pointer to the current per cpu area.
2726 		 * 2. Verify that tid and freelist have not been changed
2727 		 * 3. If they were not changed replace tid and freelist
2728 		 *
2729 		 * Since this is without lock semantics the protection is only
2730 		 * against code executing on this cpu *not* from access by
2731 		 * other cpus.
2732 		 */
2733 		if (unlikely(!this_cpu_cmpxchg_double(
2734 				s->cpu_slab->freelist, s->cpu_slab->tid,
2735 				object, tid,
2736 				next_object, next_tid(tid)))) {
2737 
2738 			note_cmpxchg_failure("slab_alloc", s, tid);
2739 			goto redo;
2740 		}
2741 		prefetch_freepointer(s, next_object);
2742 		stat(s, ALLOC_FASTPATH);
2743 	}
2744 
2745 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2746 		memset(object, 0, s->object_size);
2747 
2748 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2749 
2750 	return object;
2751 }
2752 
2753 static __always_inline void *slab_alloc(struct kmem_cache *s,
2754 		gfp_t gfpflags, unsigned long addr)
2755 {
2756 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2757 }
2758 
2759 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2760 {
2761 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2762 
2763 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2764 				s->size, gfpflags);
2765 
2766 	return ret;
2767 }
2768 EXPORT_SYMBOL(kmem_cache_alloc);
2769 
2770 #ifdef CONFIG_TRACING
2771 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2772 {
2773 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2774 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2775 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2776 	return ret;
2777 }
2778 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2779 #endif
2780 
2781 #ifdef CONFIG_NUMA
2782 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2783 {
2784 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2785 
2786 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2787 				    s->object_size, s->size, gfpflags, node);
2788 
2789 	return ret;
2790 }
2791 EXPORT_SYMBOL(kmem_cache_alloc_node);
2792 
2793 #ifdef CONFIG_TRACING
2794 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2795 				    gfp_t gfpflags,
2796 				    int node, size_t size)
2797 {
2798 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2799 
2800 	trace_kmalloc_node(_RET_IP_, ret,
2801 			   size, s->size, gfpflags, node);
2802 
2803 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2804 	return ret;
2805 }
2806 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2807 #endif
2808 #endif	/* CONFIG_NUMA */
2809 
2810 /*
2811  * Slow path handling. This may still be called frequently since objects
2812  * have a longer lifetime than the cpu slabs in most processing loads.
2813  *
2814  * So we still attempt to reduce cache line usage. Just take the slab
2815  * lock and free the item. If there is no additional partial page
2816  * handling required then we can return immediately.
2817  */
2818 static void __slab_free(struct kmem_cache *s, struct page *page,
2819 			void *head, void *tail, int cnt,
2820 			unsigned long addr)
2821 
2822 {
2823 	void *prior;
2824 	int was_frozen;
2825 	struct page new;
2826 	unsigned long counters;
2827 	struct kmem_cache_node *n = NULL;
2828 	unsigned long uninitialized_var(flags);
2829 
2830 	stat(s, FREE_SLOWPATH);
2831 
2832 	if (kmem_cache_debug(s) &&
2833 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2834 		return;
2835 
2836 	do {
2837 		if (unlikely(n)) {
2838 			spin_unlock_irqrestore(&n->list_lock, flags);
2839 			n = NULL;
2840 		}
2841 		prior = page->freelist;
2842 		counters = page->counters;
2843 		set_freepointer(s, tail, prior);
2844 		new.counters = counters;
2845 		was_frozen = new.frozen;
2846 		new.inuse -= cnt;
2847 		if ((!new.inuse || !prior) && !was_frozen) {
2848 
2849 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2850 
2851 				/*
2852 				 * Slab was on no list before and will be
2853 				 * partially empty
2854 				 * We can defer the list move and instead
2855 				 * freeze it.
2856 				 */
2857 				new.frozen = 1;
2858 
2859 			} else { /* Needs to be taken off a list */
2860 
2861 				n = get_node(s, page_to_nid(page));
2862 				/*
2863 				 * Speculatively acquire the list_lock.
2864 				 * If the cmpxchg does not succeed then we may
2865 				 * drop the list_lock without any processing.
2866 				 *
2867 				 * Otherwise the list_lock will synchronize with
2868 				 * other processors updating the list of slabs.
2869 				 */
2870 				spin_lock_irqsave(&n->list_lock, flags);
2871 
2872 			}
2873 		}
2874 
2875 	} while (!cmpxchg_double_slab(s, page,
2876 		prior, counters,
2877 		head, new.counters,
2878 		"__slab_free"));
2879 
2880 	if (likely(!n)) {
2881 
2882 		/*
2883 		 * If we just froze the page then put it onto the
2884 		 * per cpu partial list.
2885 		 */
2886 		if (new.frozen && !was_frozen) {
2887 			put_cpu_partial(s, page, 1);
2888 			stat(s, CPU_PARTIAL_FREE);
2889 		}
2890 		/*
2891 		 * The list lock was not taken therefore no list
2892 		 * activity can be necessary.
2893 		 */
2894 		if (was_frozen)
2895 			stat(s, FREE_FROZEN);
2896 		return;
2897 	}
2898 
2899 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2900 		goto slab_empty;
2901 
2902 	/*
2903 	 * Objects left in the slab. If it was not on the partial list before
2904 	 * then add it.
2905 	 */
2906 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2907 		remove_full(s, n, page);
2908 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2909 		stat(s, FREE_ADD_PARTIAL);
2910 	}
2911 	spin_unlock_irqrestore(&n->list_lock, flags);
2912 	return;
2913 
2914 slab_empty:
2915 	if (prior) {
2916 		/*
2917 		 * Slab on the partial list.
2918 		 */
2919 		remove_partial(n, page);
2920 		stat(s, FREE_REMOVE_PARTIAL);
2921 	} else {
2922 		/* Slab must be on the full list */
2923 		remove_full(s, n, page);
2924 	}
2925 
2926 	spin_unlock_irqrestore(&n->list_lock, flags);
2927 	stat(s, FREE_SLAB);
2928 	discard_slab(s, page);
2929 }
2930 
2931 /*
2932  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2933  * can perform fastpath freeing without additional function calls.
2934  *
2935  * The fastpath is only possible if we are freeing to the current cpu slab
2936  * of this processor. This typically the case if we have just allocated
2937  * the item before.
2938  *
2939  * If fastpath is not possible then fall back to __slab_free where we deal
2940  * with all sorts of special processing.
2941  *
2942  * Bulk free of a freelist with several objects (all pointing to the
2943  * same page) possible by specifying head and tail ptr, plus objects
2944  * count (cnt). Bulk free indicated by tail pointer being set.
2945  */
2946 static __always_inline void do_slab_free(struct kmem_cache *s,
2947 				struct page *page, void *head, void *tail,
2948 				int cnt, unsigned long addr)
2949 {
2950 	void *tail_obj = tail ? : head;
2951 	struct kmem_cache_cpu *c;
2952 	unsigned long tid;
2953 redo:
2954 	/*
2955 	 * Determine the currently cpus per cpu slab.
2956 	 * The cpu may change afterward. However that does not matter since
2957 	 * data is retrieved via this pointer. If we are on the same cpu
2958 	 * during the cmpxchg then the free will succeed.
2959 	 */
2960 	do {
2961 		tid = this_cpu_read(s->cpu_slab->tid);
2962 		c = raw_cpu_ptr(s->cpu_slab);
2963 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2964 		 unlikely(tid != READ_ONCE(c->tid)));
2965 
2966 	/* Same with comment on barrier() in slab_alloc_node() */
2967 	barrier();
2968 
2969 	if (likely(page == c->page)) {
2970 		set_freepointer(s, tail_obj, c->freelist);
2971 
2972 		if (unlikely(!this_cpu_cmpxchg_double(
2973 				s->cpu_slab->freelist, s->cpu_slab->tid,
2974 				c->freelist, tid,
2975 				head, next_tid(tid)))) {
2976 
2977 			note_cmpxchg_failure("slab_free", s, tid);
2978 			goto redo;
2979 		}
2980 		stat(s, FREE_FASTPATH);
2981 	} else
2982 		__slab_free(s, page, head, tail_obj, cnt, addr);
2983 
2984 }
2985 
2986 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2987 				      void *head, void *tail, int cnt,
2988 				      unsigned long addr)
2989 {
2990 	/*
2991 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2992 	 * to remove objects, whose reuse must be delayed.
2993 	 */
2994 	if (slab_free_freelist_hook(s, &head, &tail))
2995 		do_slab_free(s, page, head, tail, cnt, addr);
2996 }
2997 
2998 #ifdef CONFIG_KASAN_GENERIC
2999 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3000 {
3001 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3002 }
3003 #endif
3004 
3005 void kmem_cache_free(struct kmem_cache *s, void *x)
3006 {
3007 	s = cache_from_obj(s, x);
3008 	if (!s)
3009 		return;
3010 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3011 	trace_kmem_cache_free(_RET_IP_, x);
3012 }
3013 EXPORT_SYMBOL(kmem_cache_free);
3014 
3015 struct detached_freelist {
3016 	struct page *page;
3017 	void *tail;
3018 	void *freelist;
3019 	int cnt;
3020 	struct kmem_cache *s;
3021 };
3022 
3023 /*
3024  * This function progressively scans the array with free objects (with
3025  * a limited look ahead) and extract objects belonging to the same
3026  * page.  It builds a detached freelist directly within the given
3027  * page/objects.  This can happen without any need for
3028  * synchronization, because the objects are owned by running process.
3029  * The freelist is build up as a single linked list in the objects.
3030  * The idea is, that this detached freelist can then be bulk
3031  * transferred to the real freelist(s), but only requiring a single
3032  * synchronization primitive.  Look ahead in the array is limited due
3033  * to performance reasons.
3034  */
3035 static inline
3036 int build_detached_freelist(struct kmem_cache *s, size_t size,
3037 			    void **p, struct detached_freelist *df)
3038 {
3039 	size_t first_skipped_index = 0;
3040 	int lookahead = 3;
3041 	void *object;
3042 	struct page *page;
3043 
3044 	/* Always re-init detached_freelist */
3045 	df->page = NULL;
3046 
3047 	do {
3048 		object = p[--size];
3049 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3050 	} while (!object && size);
3051 
3052 	if (!object)
3053 		return 0;
3054 
3055 	page = virt_to_head_page(object);
3056 	if (!s) {
3057 		/* Handle kalloc'ed objects */
3058 		if (unlikely(!PageSlab(page))) {
3059 			BUG_ON(!PageCompound(page));
3060 			kfree_hook(object);
3061 			__free_pages(page, compound_order(page));
3062 			p[size] = NULL; /* mark object processed */
3063 			return size;
3064 		}
3065 		/* Derive kmem_cache from object */
3066 		df->s = page->slab_cache;
3067 	} else {
3068 		df->s = cache_from_obj(s, object); /* Support for memcg */
3069 	}
3070 
3071 	/* Start new detached freelist */
3072 	df->page = page;
3073 	set_freepointer(df->s, object, NULL);
3074 	df->tail = object;
3075 	df->freelist = object;
3076 	p[size] = NULL; /* mark object processed */
3077 	df->cnt = 1;
3078 
3079 	while (size) {
3080 		object = p[--size];
3081 		if (!object)
3082 			continue; /* Skip processed objects */
3083 
3084 		/* df->page is always set at this point */
3085 		if (df->page == virt_to_head_page(object)) {
3086 			/* Opportunity build freelist */
3087 			set_freepointer(df->s, object, df->freelist);
3088 			df->freelist = object;
3089 			df->cnt++;
3090 			p[size] = NULL; /* mark object processed */
3091 
3092 			continue;
3093 		}
3094 
3095 		/* Limit look ahead search */
3096 		if (!--lookahead)
3097 			break;
3098 
3099 		if (!first_skipped_index)
3100 			first_skipped_index = size + 1;
3101 	}
3102 
3103 	return first_skipped_index;
3104 }
3105 
3106 /* Note that interrupts must be enabled when calling this function. */
3107 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3108 {
3109 	if (WARN_ON(!size))
3110 		return;
3111 
3112 	do {
3113 		struct detached_freelist df;
3114 
3115 		size = build_detached_freelist(s, size, p, &df);
3116 		if (!df.page)
3117 			continue;
3118 
3119 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3120 	} while (likely(size));
3121 }
3122 EXPORT_SYMBOL(kmem_cache_free_bulk);
3123 
3124 /* Note that interrupts must be enabled when calling this function. */
3125 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3126 			  void **p)
3127 {
3128 	struct kmem_cache_cpu *c;
3129 	int i;
3130 
3131 	/* memcg and kmem_cache debug support */
3132 	s = slab_pre_alloc_hook(s, flags);
3133 	if (unlikely(!s))
3134 		return false;
3135 	/*
3136 	 * Drain objects in the per cpu slab, while disabling local
3137 	 * IRQs, which protects against PREEMPT and interrupts
3138 	 * handlers invoking normal fastpath.
3139 	 */
3140 	local_irq_disable();
3141 	c = this_cpu_ptr(s->cpu_slab);
3142 
3143 	for (i = 0; i < size; i++) {
3144 		void *object = c->freelist;
3145 
3146 		if (unlikely(!object)) {
3147 			/*
3148 			 * Invoking slow path likely have side-effect
3149 			 * of re-populating per CPU c->freelist
3150 			 */
3151 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3152 					    _RET_IP_, c);
3153 			if (unlikely(!p[i]))
3154 				goto error;
3155 
3156 			c = this_cpu_ptr(s->cpu_slab);
3157 			continue; /* goto for-loop */
3158 		}
3159 		c->freelist = get_freepointer(s, object);
3160 		p[i] = object;
3161 	}
3162 	c->tid = next_tid(c->tid);
3163 	local_irq_enable();
3164 
3165 	/* Clear memory outside IRQ disabled fastpath loop */
3166 	if (unlikely(flags & __GFP_ZERO)) {
3167 		int j;
3168 
3169 		for (j = 0; j < i; j++)
3170 			memset(p[j], 0, s->object_size);
3171 	}
3172 
3173 	/* memcg and kmem_cache debug support */
3174 	slab_post_alloc_hook(s, flags, size, p);
3175 	return i;
3176 error:
3177 	local_irq_enable();
3178 	slab_post_alloc_hook(s, flags, i, p);
3179 	__kmem_cache_free_bulk(s, i, p);
3180 	return 0;
3181 }
3182 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3183 
3184 
3185 /*
3186  * Object placement in a slab is made very easy because we always start at
3187  * offset 0. If we tune the size of the object to the alignment then we can
3188  * get the required alignment by putting one properly sized object after
3189  * another.
3190  *
3191  * Notice that the allocation order determines the sizes of the per cpu
3192  * caches. Each processor has always one slab available for allocations.
3193  * Increasing the allocation order reduces the number of times that slabs
3194  * must be moved on and off the partial lists and is therefore a factor in
3195  * locking overhead.
3196  */
3197 
3198 /*
3199  * Mininum / Maximum order of slab pages. This influences locking overhead
3200  * and slab fragmentation. A higher order reduces the number of partial slabs
3201  * and increases the number of allocations possible without having to
3202  * take the list_lock.
3203  */
3204 static unsigned int slub_min_order;
3205 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3206 static unsigned int slub_min_objects;
3207 
3208 /*
3209  * Calculate the order of allocation given an slab object size.
3210  *
3211  * The order of allocation has significant impact on performance and other
3212  * system components. Generally order 0 allocations should be preferred since
3213  * order 0 does not cause fragmentation in the page allocator. Larger objects
3214  * be problematic to put into order 0 slabs because there may be too much
3215  * unused space left. We go to a higher order if more than 1/16th of the slab
3216  * would be wasted.
3217  *
3218  * In order to reach satisfactory performance we must ensure that a minimum
3219  * number of objects is in one slab. Otherwise we may generate too much
3220  * activity on the partial lists which requires taking the list_lock. This is
3221  * less a concern for large slabs though which are rarely used.
3222  *
3223  * slub_max_order specifies the order where we begin to stop considering the
3224  * number of objects in a slab as critical. If we reach slub_max_order then
3225  * we try to keep the page order as low as possible. So we accept more waste
3226  * of space in favor of a small page order.
3227  *
3228  * Higher order allocations also allow the placement of more objects in a
3229  * slab and thereby reduce object handling overhead. If the user has
3230  * requested a higher mininum order then we start with that one instead of
3231  * the smallest order which will fit the object.
3232  */
3233 static inline unsigned int slab_order(unsigned int size,
3234 		unsigned int min_objects, unsigned int max_order,
3235 		unsigned int fract_leftover)
3236 {
3237 	unsigned int min_order = slub_min_order;
3238 	unsigned int order;
3239 
3240 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3241 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3242 
3243 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3244 			order <= max_order; order++) {
3245 
3246 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3247 		unsigned int rem;
3248 
3249 		rem = slab_size % size;
3250 
3251 		if (rem <= slab_size / fract_leftover)
3252 			break;
3253 	}
3254 
3255 	return order;
3256 }
3257 
3258 static inline int calculate_order(unsigned int size)
3259 {
3260 	unsigned int order;
3261 	unsigned int min_objects;
3262 	unsigned int max_objects;
3263 
3264 	/*
3265 	 * Attempt to find best configuration for a slab. This
3266 	 * works by first attempting to generate a layout with
3267 	 * the best configuration and backing off gradually.
3268 	 *
3269 	 * First we increase the acceptable waste in a slab. Then
3270 	 * we reduce the minimum objects required in a slab.
3271 	 */
3272 	min_objects = slub_min_objects;
3273 	if (!min_objects)
3274 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3275 	max_objects = order_objects(slub_max_order, size);
3276 	min_objects = min(min_objects, max_objects);
3277 
3278 	while (min_objects > 1) {
3279 		unsigned int fraction;
3280 
3281 		fraction = 16;
3282 		while (fraction >= 4) {
3283 			order = slab_order(size, min_objects,
3284 					slub_max_order, fraction);
3285 			if (order <= slub_max_order)
3286 				return order;
3287 			fraction /= 2;
3288 		}
3289 		min_objects--;
3290 	}
3291 
3292 	/*
3293 	 * We were unable to place multiple objects in a slab. Now
3294 	 * lets see if we can place a single object there.
3295 	 */
3296 	order = slab_order(size, 1, slub_max_order, 1);
3297 	if (order <= slub_max_order)
3298 		return order;
3299 
3300 	/*
3301 	 * Doh this slab cannot be placed using slub_max_order.
3302 	 */
3303 	order = slab_order(size, 1, MAX_ORDER, 1);
3304 	if (order < MAX_ORDER)
3305 		return order;
3306 	return -ENOSYS;
3307 }
3308 
3309 static void
3310 init_kmem_cache_node(struct kmem_cache_node *n)
3311 {
3312 	n->nr_partial = 0;
3313 	spin_lock_init(&n->list_lock);
3314 	INIT_LIST_HEAD(&n->partial);
3315 #ifdef CONFIG_SLUB_DEBUG
3316 	atomic_long_set(&n->nr_slabs, 0);
3317 	atomic_long_set(&n->total_objects, 0);
3318 	INIT_LIST_HEAD(&n->full);
3319 #endif
3320 }
3321 
3322 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3323 {
3324 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3325 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3326 
3327 	/*
3328 	 * Must align to double word boundary for the double cmpxchg
3329 	 * instructions to work; see __pcpu_double_call_return_bool().
3330 	 */
3331 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3332 				     2 * sizeof(void *));
3333 
3334 	if (!s->cpu_slab)
3335 		return 0;
3336 
3337 	init_kmem_cache_cpus(s);
3338 
3339 	return 1;
3340 }
3341 
3342 static struct kmem_cache *kmem_cache_node;
3343 
3344 /*
3345  * No kmalloc_node yet so do it by hand. We know that this is the first
3346  * slab on the node for this slabcache. There are no concurrent accesses
3347  * possible.
3348  *
3349  * Note that this function only works on the kmem_cache_node
3350  * when allocating for the kmem_cache_node. This is used for bootstrapping
3351  * memory on a fresh node that has no slab structures yet.
3352  */
3353 static void early_kmem_cache_node_alloc(int node)
3354 {
3355 	struct page *page;
3356 	struct kmem_cache_node *n;
3357 
3358 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3359 
3360 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3361 
3362 	BUG_ON(!page);
3363 	if (page_to_nid(page) != node) {
3364 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3365 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3366 	}
3367 
3368 	n = page->freelist;
3369 	BUG_ON(!n);
3370 #ifdef CONFIG_SLUB_DEBUG
3371 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3372 	init_tracking(kmem_cache_node, n);
3373 #endif
3374 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3375 		      GFP_KERNEL);
3376 	page->freelist = get_freepointer(kmem_cache_node, n);
3377 	page->inuse = 1;
3378 	page->frozen = 0;
3379 	kmem_cache_node->node[node] = n;
3380 	init_kmem_cache_node(n);
3381 	inc_slabs_node(kmem_cache_node, node, page->objects);
3382 
3383 	/*
3384 	 * No locks need to be taken here as it has just been
3385 	 * initialized and there is no concurrent access.
3386 	 */
3387 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3388 }
3389 
3390 static void free_kmem_cache_nodes(struct kmem_cache *s)
3391 {
3392 	int node;
3393 	struct kmem_cache_node *n;
3394 
3395 	for_each_kmem_cache_node(s, node, n) {
3396 		s->node[node] = NULL;
3397 		kmem_cache_free(kmem_cache_node, n);
3398 	}
3399 }
3400 
3401 void __kmem_cache_release(struct kmem_cache *s)
3402 {
3403 	cache_random_seq_destroy(s);
3404 	free_percpu(s->cpu_slab);
3405 	free_kmem_cache_nodes(s);
3406 }
3407 
3408 static int init_kmem_cache_nodes(struct kmem_cache *s)
3409 {
3410 	int node;
3411 
3412 	for_each_node_state(node, N_NORMAL_MEMORY) {
3413 		struct kmem_cache_node *n;
3414 
3415 		if (slab_state == DOWN) {
3416 			early_kmem_cache_node_alloc(node);
3417 			continue;
3418 		}
3419 		n = kmem_cache_alloc_node(kmem_cache_node,
3420 						GFP_KERNEL, node);
3421 
3422 		if (!n) {
3423 			free_kmem_cache_nodes(s);
3424 			return 0;
3425 		}
3426 
3427 		init_kmem_cache_node(n);
3428 		s->node[node] = n;
3429 	}
3430 	return 1;
3431 }
3432 
3433 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3434 {
3435 	if (min < MIN_PARTIAL)
3436 		min = MIN_PARTIAL;
3437 	else if (min > MAX_PARTIAL)
3438 		min = MAX_PARTIAL;
3439 	s->min_partial = min;
3440 }
3441 
3442 static void set_cpu_partial(struct kmem_cache *s)
3443 {
3444 #ifdef CONFIG_SLUB_CPU_PARTIAL
3445 	/*
3446 	 * cpu_partial determined the maximum number of objects kept in the
3447 	 * per cpu partial lists of a processor.
3448 	 *
3449 	 * Per cpu partial lists mainly contain slabs that just have one
3450 	 * object freed. If they are used for allocation then they can be
3451 	 * filled up again with minimal effort. The slab will never hit the
3452 	 * per node partial lists and therefore no locking will be required.
3453 	 *
3454 	 * This setting also determines
3455 	 *
3456 	 * A) The number of objects from per cpu partial slabs dumped to the
3457 	 *    per node list when we reach the limit.
3458 	 * B) The number of objects in cpu partial slabs to extract from the
3459 	 *    per node list when we run out of per cpu objects. We only fetch
3460 	 *    50% to keep some capacity around for frees.
3461 	 */
3462 	if (!kmem_cache_has_cpu_partial(s))
3463 		s->cpu_partial = 0;
3464 	else if (s->size >= PAGE_SIZE)
3465 		s->cpu_partial = 2;
3466 	else if (s->size >= 1024)
3467 		s->cpu_partial = 6;
3468 	else if (s->size >= 256)
3469 		s->cpu_partial = 13;
3470 	else
3471 		s->cpu_partial = 30;
3472 #endif
3473 }
3474 
3475 /*
3476  * calculate_sizes() determines the order and the distribution of data within
3477  * a slab object.
3478  */
3479 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3480 {
3481 	slab_flags_t flags = s->flags;
3482 	unsigned int size = s->object_size;
3483 	unsigned int order;
3484 
3485 	/*
3486 	 * Round up object size to the next word boundary. We can only
3487 	 * place the free pointer at word boundaries and this determines
3488 	 * the possible location of the free pointer.
3489 	 */
3490 	size = ALIGN(size, sizeof(void *));
3491 
3492 #ifdef CONFIG_SLUB_DEBUG
3493 	/*
3494 	 * Determine if we can poison the object itself. If the user of
3495 	 * the slab may touch the object after free or before allocation
3496 	 * then we should never poison the object itself.
3497 	 */
3498 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3499 			!s->ctor)
3500 		s->flags |= __OBJECT_POISON;
3501 	else
3502 		s->flags &= ~__OBJECT_POISON;
3503 
3504 
3505 	/*
3506 	 * If we are Redzoning then check if there is some space between the
3507 	 * end of the object and the free pointer. If not then add an
3508 	 * additional word to have some bytes to store Redzone information.
3509 	 */
3510 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3511 		size += sizeof(void *);
3512 #endif
3513 
3514 	/*
3515 	 * With that we have determined the number of bytes in actual use
3516 	 * by the object. This is the potential offset to the free pointer.
3517 	 */
3518 	s->inuse = size;
3519 
3520 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3521 		s->ctor)) {
3522 		/*
3523 		 * Relocate free pointer after the object if it is not
3524 		 * permitted to overwrite the first word of the object on
3525 		 * kmem_cache_free.
3526 		 *
3527 		 * This is the case if we do RCU, have a constructor or
3528 		 * destructor or are poisoning the objects.
3529 		 */
3530 		s->offset = size;
3531 		size += sizeof(void *);
3532 	}
3533 
3534 #ifdef CONFIG_SLUB_DEBUG
3535 	if (flags & SLAB_STORE_USER)
3536 		/*
3537 		 * Need to store information about allocs and frees after
3538 		 * the object.
3539 		 */
3540 		size += 2 * sizeof(struct track);
3541 #endif
3542 
3543 	kasan_cache_create(s, &size, &s->flags);
3544 #ifdef CONFIG_SLUB_DEBUG
3545 	if (flags & SLAB_RED_ZONE) {
3546 		/*
3547 		 * Add some empty padding so that we can catch
3548 		 * overwrites from earlier objects rather than let
3549 		 * tracking information or the free pointer be
3550 		 * corrupted if a user writes before the start
3551 		 * of the object.
3552 		 */
3553 		size += sizeof(void *);
3554 
3555 		s->red_left_pad = sizeof(void *);
3556 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3557 		size += s->red_left_pad;
3558 	}
3559 #endif
3560 
3561 	/*
3562 	 * SLUB stores one object immediately after another beginning from
3563 	 * offset 0. In order to align the objects we have to simply size
3564 	 * each object to conform to the alignment.
3565 	 */
3566 	size = ALIGN(size, s->align);
3567 	s->size = size;
3568 	if (forced_order >= 0)
3569 		order = forced_order;
3570 	else
3571 		order = calculate_order(size);
3572 
3573 	if ((int)order < 0)
3574 		return 0;
3575 
3576 	s->allocflags = 0;
3577 	if (order)
3578 		s->allocflags |= __GFP_COMP;
3579 
3580 	if (s->flags & SLAB_CACHE_DMA)
3581 		s->allocflags |= GFP_DMA;
3582 
3583 	if (s->flags & SLAB_CACHE_DMA32)
3584 		s->allocflags |= GFP_DMA32;
3585 
3586 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3587 		s->allocflags |= __GFP_RECLAIMABLE;
3588 
3589 	/*
3590 	 * Determine the number of objects per slab
3591 	 */
3592 	s->oo = oo_make(order, size);
3593 	s->min = oo_make(get_order(size), size);
3594 	if (oo_objects(s->oo) > oo_objects(s->max))
3595 		s->max = s->oo;
3596 
3597 	return !!oo_objects(s->oo);
3598 }
3599 
3600 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3601 {
3602 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3603 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3604 	s->random = get_random_long();
3605 #endif
3606 
3607 	if (!calculate_sizes(s, -1))
3608 		goto error;
3609 	if (disable_higher_order_debug) {
3610 		/*
3611 		 * Disable debugging flags that store metadata if the min slab
3612 		 * order increased.
3613 		 */
3614 		if (get_order(s->size) > get_order(s->object_size)) {
3615 			s->flags &= ~DEBUG_METADATA_FLAGS;
3616 			s->offset = 0;
3617 			if (!calculate_sizes(s, -1))
3618 				goto error;
3619 		}
3620 	}
3621 
3622 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3623     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3624 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3625 		/* Enable fast mode */
3626 		s->flags |= __CMPXCHG_DOUBLE;
3627 #endif
3628 
3629 	/*
3630 	 * The larger the object size is, the more pages we want on the partial
3631 	 * list to avoid pounding the page allocator excessively.
3632 	 */
3633 	set_min_partial(s, ilog2(s->size) / 2);
3634 
3635 	set_cpu_partial(s);
3636 
3637 #ifdef CONFIG_NUMA
3638 	s->remote_node_defrag_ratio = 1000;
3639 #endif
3640 
3641 	/* Initialize the pre-computed randomized freelist if slab is up */
3642 	if (slab_state >= UP) {
3643 		if (init_cache_random_seq(s))
3644 			goto error;
3645 	}
3646 
3647 	if (!init_kmem_cache_nodes(s))
3648 		goto error;
3649 
3650 	if (alloc_kmem_cache_cpus(s))
3651 		return 0;
3652 
3653 	free_kmem_cache_nodes(s);
3654 error:
3655 	if (flags & SLAB_PANIC)
3656 		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3657 		      s->name, s->size, s->size,
3658 		      oo_order(s->oo), s->offset, (unsigned long)flags);
3659 	return -EINVAL;
3660 }
3661 
3662 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3663 							const char *text)
3664 {
3665 #ifdef CONFIG_SLUB_DEBUG
3666 	void *addr = page_address(page);
3667 	void *p;
3668 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3669 	if (!map)
3670 		return;
3671 	slab_err(s, page, text, s->name);
3672 	slab_lock(page);
3673 
3674 	get_map(s, page, map);
3675 	for_each_object(p, s, addr, page->objects) {
3676 
3677 		if (!test_bit(slab_index(p, s, addr), map)) {
3678 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3679 			print_tracking(s, p);
3680 		}
3681 	}
3682 	slab_unlock(page);
3683 	bitmap_free(map);
3684 #endif
3685 }
3686 
3687 /*
3688  * Attempt to free all partial slabs on a node.
3689  * This is called from __kmem_cache_shutdown(). We must take list_lock
3690  * because sysfs file might still access partial list after the shutdowning.
3691  */
3692 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3693 {
3694 	LIST_HEAD(discard);
3695 	struct page *page, *h;
3696 
3697 	BUG_ON(irqs_disabled());
3698 	spin_lock_irq(&n->list_lock);
3699 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3700 		if (!page->inuse) {
3701 			remove_partial(n, page);
3702 			list_add(&page->slab_list, &discard);
3703 		} else {
3704 			list_slab_objects(s, page,
3705 			"Objects remaining in %s on __kmem_cache_shutdown()");
3706 		}
3707 	}
3708 	spin_unlock_irq(&n->list_lock);
3709 
3710 	list_for_each_entry_safe(page, h, &discard, slab_list)
3711 		discard_slab(s, page);
3712 }
3713 
3714 bool __kmem_cache_empty(struct kmem_cache *s)
3715 {
3716 	int node;
3717 	struct kmem_cache_node *n;
3718 
3719 	for_each_kmem_cache_node(s, node, n)
3720 		if (n->nr_partial || slabs_node(s, node))
3721 			return false;
3722 	return true;
3723 }
3724 
3725 /*
3726  * Release all resources used by a slab cache.
3727  */
3728 int __kmem_cache_shutdown(struct kmem_cache *s)
3729 {
3730 	int node;
3731 	struct kmem_cache_node *n;
3732 
3733 	flush_all(s);
3734 	/* Attempt to free all objects */
3735 	for_each_kmem_cache_node(s, node, n) {
3736 		free_partial(s, n);
3737 		if (n->nr_partial || slabs_node(s, node))
3738 			return 1;
3739 	}
3740 	sysfs_slab_remove(s);
3741 	return 0;
3742 }
3743 
3744 /********************************************************************
3745  *		Kmalloc subsystem
3746  *******************************************************************/
3747 
3748 static int __init setup_slub_min_order(char *str)
3749 {
3750 	get_option(&str, (int *)&slub_min_order);
3751 
3752 	return 1;
3753 }
3754 
3755 __setup("slub_min_order=", setup_slub_min_order);
3756 
3757 static int __init setup_slub_max_order(char *str)
3758 {
3759 	get_option(&str, (int *)&slub_max_order);
3760 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3761 
3762 	return 1;
3763 }
3764 
3765 __setup("slub_max_order=", setup_slub_max_order);
3766 
3767 static int __init setup_slub_min_objects(char *str)
3768 {
3769 	get_option(&str, (int *)&slub_min_objects);
3770 
3771 	return 1;
3772 }
3773 
3774 __setup("slub_min_objects=", setup_slub_min_objects);
3775 
3776 void *__kmalloc(size_t size, gfp_t flags)
3777 {
3778 	struct kmem_cache *s;
3779 	void *ret;
3780 
3781 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3782 		return kmalloc_large(size, flags);
3783 
3784 	s = kmalloc_slab(size, flags);
3785 
3786 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3787 		return s;
3788 
3789 	ret = slab_alloc(s, flags, _RET_IP_);
3790 
3791 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3792 
3793 	ret = kasan_kmalloc(s, ret, size, flags);
3794 
3795 	return ret;
3796 }
3797 EXPORT_SYMBOL(__kmalloc);
3798 
3799 #ifdef CONFIG_NUMA
3800 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3801 {
3802 	struct page *page;
3803 	void *ptr = NULL;
3804 
3805 	flags |= __GFP_COMP;
3806 	page = alloc_pages_node(node, flags, get_order(size));
3807 	if (page)
3808 		ptr = page_address(page);
3809 
3810 	return kmalloc_large_node_hook(ptr, size, flags);
3811 }
3812 
3813 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3814 {
3815 	struct kmem_cache *s;
3816 	void *ret;
3817 
3818 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3819 		ret = kmalloc_large_node(size, flags, node);
3820 
3821 		trace_kmalloc_node(_RET_IP_, ret,
3822 				   size, PAGE_SIZE << get_order(size),
3823 				   flags, node);
3824 
3825 		return ret;
3826 	}
3827 
3828 	s = kmalloc_slab(size, flags);
3829 
3830 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3831 		return s;
3832 
3833 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3834 
3835 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3836 
3837 	ret = kasan_kmalloc(s, ret, size, flags);
3838 
3839 	return ret;
3840 }
3841 EXPORT_SYMBOL(__kmalloc_node);
3842 #endif	/* CONFIG_NUMA */
3843 
3844 #ifdef CONFIG_HARDENED_USERCOPY
3845 /*
3846  * Rejects incorrectly sized objects and objects that are to be copied
3847  * to/from userspace but do not fall entirely within the containing slab
3848  * cache's usercopy region.
3849  *
3850  * Returns NULL if check passes, otherwise const char * to name of cache
3851  * to indicate an error.
3852  */
3853 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3854 			 bool to_user)
3855 {
3856 	struct kmem_cache *s;
3857 	unsigned int offset;
3858 	size_t object_size;
3859 
3860 	ptr = kasan_reset_tag(ptr);
3861 
3862 	/* Find object and usable object size. */
3863 	s = page->slab_cache;
3864 
3865 	/* Reject impossible pointers. */
3866 	if (ptr < page_address(page))
3867 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3868 			       to_user, 0, n);
3869 
3870 	/* Find offset within object. */
3871 	offset = (ptr - page_address(page)) % s->size;
3872 
3873 	/* Adjust for redzone and reject if within the redzone. */
3874 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3875 		if (offset < s->red_left_pad)
3876 			usercopy_abort("SLUB object in left red zone",
3877 				       s->name, to_user, offset, n);
3878 		offset -= s->red_left_pad;
3879 	}
3880 
3881 	/* Allow address range falling entirely within usercopy region. */
3882 	if (offset >= s->useroffset &&
3883 	    offset - s->useroffset <= s->usersize &&
3884 	    n <= s->useroffset - offset + s->usersize)
3885 		return;
3886 
3887 	/*
3888 	 * If the copy is still within the allocated object, produce
3889 	 * a warning instead of rejecting the copy. This is intended
3890 	 * to be a temporary method to find any missing usercopy
3891 	 * whitelists.
3892 	 */
3893 	object_size = slab_ksize(s);
3894 	if (usercopy_fallback &&
3895 	    offset <= object_size && n <= object_size - offset) {
3896 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3897 		return;
3898 	}
3899 
3900 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3901 }
3902 #endif /* CONFIG_HARDENED_USERCOPY */
3903 
3904 static size_t __ksize(const void *object)
3905 {
3906 	struct page *page;
3907 
3908 	if (unlikely(object == ZERO_SIZE_PTR))
3909 		return 0;
3910 
3911 	page = virt_to_head_page(object);
3912 
3913 	if (unlikely(!PageSlab(page))) {
3914 		WARN_ON(!PageCompound(page));
3915 		return PAGE_SIZE << compound_order(page);
3916 	}
3917 
3918 	return slab_ksize(page->slab_cache);
3919 }
3920 
3921 size_t ksize(const void *object)
3922 {
3923 	size_t size = __ksize(object);
3924 	/* We assume that ksize callers could use whole allocated area,
3925 	 * so we need to unpoison this area.
3926 	 */
3927 	kasan_unpoison_shadow(object, size);
3928 	return size;
3929 }
3930 EXPORT_SYMBOL(ksize);
3931 
3932 void kfree(const void *x)
3933 {
3934 	struct page *page;
3935 	void *object = (void *)x;
3936 
3937 	trace_kfree(_RET_IP_, x);
3938 
3939 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3940 		return;
3941 
3942 	page = virt_to_head_page(x);
3943 	if (unlikely(!PageSlab(page))) {
3944 		BUG_ON(!PageCompound(page));
3945 		kfree_hook(object);
3946 		__free_pages(page, compound_order(page));
3947 		return;
3948 	}
3949 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3950 }
3951 EXPORT_SYMBOL(kfree);
3952 
3953 #define SHRINK_PROMOTE_MAX 32
3954 
3955 /*
3956  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3957  * up most to the head of the partial lists. New allocations will then
3958  * fill those up and thus they can be removed from the partial lists.
3959  *
3960  * The slabs with the least items are placed last. This results in them
3961  * being allocated from last increasing the chance that the last objects
3962  * are freed in them.
3963  */
3964 int __kmem_cache_shrink(struct kmem_cache *s)
3965 {
3966 	int node;
3967 	int i;
3968 	struct kmem_cache_node *n;
3969 	struct page *page;
3970 	struct page *t;
3971 	struct list_head discard;
3972 	struct list_head promote[SHRINK_PROMOTE_MAX];
3973 	unsigned long flags;
3974 	int ret = 0;
3975 
3976 	flush_all(s);
3977 	for_each_kmem_cache_node(s, node, n) {
3978 		INIT_LIST_HEAD(&discard);
3979 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3980 			INIT_LIST_HEAD(promote + i);
3981 
3982 		spin_lock_irqsave(&n->list_lock, flags);
3983 
3984 		/*
3985 		 * Build lists of slabs to discard or promote.
3986 		 *
3987 		 * Note that concurrent frees may occur while we hold the
3988 		 * list_lock. page->inuse here is the upper limit.
3989 		 */
3990 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3991 			int free = page->objects - page->inuse;
3992 
3993 			/* Do not reread page->inuse */
3994 			barrier();
3995 
3996 			/* We do not keep full slabs on the list */
3997 			BUG_ON(free <= 0);
3998 
3999 			if (free == page->objects) {
4000 				list_move(&page->slab_list, &discard);
4001 				n->nr_partial--;
4002 			} else if (free <= SHRINK_PROMOTE_MAX)
4003 				list_move(&page->slab_list, promote + free - 1);
4004 		}
4005 
4006 		/*
4007 		 * Promote the slabs filled up most to the head of the
4008 		 * partial list.
4009 		 */
4010 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4011 			list_splice(promote + i, &n->partial);
4012 
4013 		spin_unlock_irqrestore(&n->list_lock, flags);
4014 
4015 		/* Release empty slabs */
4016 		list_for_each_entry_safe(page, t, &discard, slab_list)
4017 			discard_slab(s, page);
4018 
4019 		if (slabs_node(s, node))
4020 			ret = 1;
4021 	}
4022 
4023 	return ret;
4024 }
4025 
4026 #ifdef CONFIG_MEMCG
4027 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4028 {
4029 	/*
4030 	 * Called with all the locks held after a sched RCU grace period.
4031 	 * Even if @s becomes empty after shrinking, we can't know that @s
4032 	 * doesn't have allocations already in-flight and thus can't
4033 	 * destroy @s until the associated memcg is released.
4034 	 *
4035 	 * However, let's remove the sysfs files for empty caches here.
4036 	 * Each cache has a lot of interface files which aren't
4037 	 * particularly useful for empty draining caches; otherwise, we can
4038 	 * easily end up with millions of unnecessary sysfs files on
4039 	 * systems which have a lot of memory and transient cgroups.
4040 	 */
4041 	if (!__kmem_cache_shrink(s))
4042 		sysfs_slab_remove(s);
4043 }
4044 
4045 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4046 {
4047 	/*
4048 	 * Disable empty slabs caching. Used to avoid pinning offline
4049 	 * memory cgroups by kmem pages that can be freed.
4050 	 */
4051 	slub_set_cpu_partial(s, 0);
4052 	s->min_partial = 0;
4053 
4054 	/*
4055 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4056 	 * we have to make sure the change is visible before shrinking.
4057 	 */
4058 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4059 }
4060 #endif	/* CONFIG_MEMCG */
4061 
4062 static int slab_mem_going_offline_callback(void *arg)
4063 {
4064 	struct kmem_cache *s;
4065 
4066 	mutex_lock(&slab_mutex);
4067 	list_for_each_entry(s, &slab_caches, list)
4068 		__kmem_cache_shrink(s);
4069 	mutex_unlock(&slab_mutex);
4070 
4071 	return 0;
4072 }
4073 
4074 static void slab_mem_offline_callback(void *arg)
4075 {
4076 	struct kmem_cache_node *n;
4077 	struct kmem_cache *s;
4078 	struct memory_notify *marg = arg;
4079 	int offline_node;
4080 
4081 	offline_node = marg->status_change_nid_normal;
4082 
4083 	/*
4084 	 * If the node still has available memory. we need kmem_cache_node
4085 	 * for it yet.
4086 	 */
4087 	if (offline_node < 0)
4088 		return;
4089 
4090 	mutex_lock(&slab_mutex);
4091 	list_for_each_entry(s, &slab_caches, list) {
4092 		n = get_node(s, offline_node);
4093 		if (n) {
4094 			/*
4095 			 * if n->nr_slabs > 0, slabs still exist on the node
4096 			 * that is going down. We were unable to free them,
4097 			 * and offline_pages() function shouldn't call this
4098 			 * callback. So, we must fail.
4099 			 */
4100 			BUG_ON(slabs_node(s, offline_node));
4101 
4102 			s->node[offline_node] = NULL;
4103 			kmem_cache_free(kmem_cache_node, n);
4104 		}
4105 	}
4106 	mutex_unlock(&slab_mutex);
4107 }
4108 
4109 static int slab_mem_going_online_callback(void *arg)
4110 {
4111 	struct kmem_cache_node *n;
4112 	struct kmem_cache *s;
4113 	struct memory_notify *marg = arg;
4114 	int nid = marg->status_change_nid_normal;
4115 	int ret = 0;
4116 
4117 	/*
4118 	 * If the node's memory is already available, then kmem_cache_node is
4119 	 * already created. Nothing to do.
4120 	 */
4121 	if (nid < 0)
4122 		return 0;
4123 
4124 	/*
4125 	 * We are bringing a node online. No memory is available yet. We must
4126 	 * allocate a kmem_cache_node structure in order to bring the node
4127 	 * online.
4128 	 */
4129 	mutex_lock(&slab_mutex);
4130 	list_for_each_entry(s, &slab_caches, list) {
4131 		/*
4132 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4133 		 *      since memory is not yet available from the node that
4134 		 *      is brought up.
4135 		 */
4136 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4137 		if (!n) {
4138 			ret = -ENOMEM;
4139 			goto out;
4140 		}
4141 		init_kmem_cache_node(n);
4142 		s->node[nid] = n;
4143 	}
4144 out:
4145 	mutex_unlock(&slab_mutex);
4146 	return ret;
4147 }
4148 
4149 static int slab_memory_callback(struct notifier_block *self,
4150 				unsigned long action, void *arg)
4151 {
4152 	int ret = 0;
4153 
4154 	switch (action) {
4155 	case MEM_GOING_ONLINE:
4156 		ret = slab_mem_going_online_callback(arg);
4157 		break;
4158 	case MEM_GOING_OFFLINE:
4159 		ret = slab_mem_going_offline_callback(arg);
4160 		break;
4161 	case MEM_OFFLINE:
4162 	case MEM_CANCEL_ONLINE:
4163 		slab_mem_offline_callback(arg);
4164 		break;
4165 	case MEM_ONLINE:
4166 	case MEM_CANCEL_OFFLINE:
4167 		break;
4168 	}
4169 	if (ret)
4170 		ret = notifier_from_errno(ret);
4171 	else
4172 		ret = NOTIFY_OK;
4173 	return ret;
4174 }
4175 
4176 static struct notifier_block slab_memory_callback_nb = {
4177 	.notifier_call = slab_memory_callback,
4178 	.priority = SLAB_CALLBACK_PRI,
4179 };
4180 
4181 /********************************************************************
4182  *			Basic setup of slabs
4183  *******************************************************************/
4184 
4185 /*
4186  * Used for early kmem_cache structures that were allocated using
4187  * the page allocator. Allocate them properly then fix up the pointers
4188  * that may be pointing to the wrong kmem_cache structure.
4189  */
4190 
4191 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4192 {
4193 	int node;
4194 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4195 	struct kmem_cache_node *n;
4196 
4197 	memcpy(s, static_cache, kmem_cache->object_size);
4198 
4199 	/*
4200 	 * This runs very early, and only the boot processor is supposed to be
4201 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4202 	 * IPIs around.
4203 	 */
4204 	__flush_cpu_slab(s, smp_processor_id());
4205 	for_each_kmem_cache_node(s, node, n) {
4206 		struct page *p;
4207 
4208 		list_for_each_entry(p, &n->partial, slab_list)
4209 			p->slab_cache = s;
4210 
4211 #ifdef CONFIG_SLUB_DEBUG
4212 		list_for_each_entry(p, &n->full, slab_list)
4213 			p->slab_cache = s;
4214 #endif
4215 	}
4216 	slab_init_memcg_params(s);
4217 	list_add(&s->list, &slab_caches);
4218 	memcg_link_cache(s);
4219 	return s;
4220 }
4221 
4222 void __init kmem_cache_init(void)
4223 {
4224 	static __initdata struct kmem_cache boot_kmem_cache,
4225 		boot_kmem_cache_node;
4226 
4227 	if (debug_guardpage_minorder())
4228 		slub_max_order = 0;
4229 
4230 	kmem_cache_node = &boot_kmem_cache_node;
4231 	kmem_cache = &boot_kmem_cache;
4232 
4233 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4234 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4235 
4236 	register_hotmemory_notifier(&slab_memory_callback_nb);
4237 
4238 	/* Able to allocate the per node structures */
4239 	slab_state = PARTIAL;
4240 
4241 	create_boot_cache(kmem_cache, "kmem_cache",
4242 			offsetof(struct kmem_cache, node) +
4243 				nr_node_ids * sizeof(struct kmem_cache_node *),
4244 		       SLAB_HWCACHE_ALIGN, 0, 0);
4245 
4246 	kmem_cache = bootstrap(&boot_kmem_cache);
4247 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4248 
4249 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4250 	setup_kmalloc_cache_index_table();
4251 	create_kmalloc_caches(0);
4252 
4253 	/* Setup random freelists for each cache */
4254 	init_freelist_randomization();
4255 
4256 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4257 				  slub_cpu_dead);
4258 
4259 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4260 		cache_line_size(),
4261 		slub_min_order, slub_max_order, slub_min_objects,
4262 		nr_cpu_ids, nr_node_ids);
4263 }
4264 
4265 void __init kmem_cache_init_late(void)
4266 {
4267 }
4268 
4269 struct kmem_cache *
4270 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4271 		   slab_flags_t flags, void (*ctor)(void *))
4272 {
4273 	struct kmem_cache *s, *c;
4274 
4275 	s = find_mergeable(size, align, flags, name, ctor);
4276 	if (s) {
4277 		s->refcount++;
4278 
4279 		/*
4280 		 * Adjust the object sizes so that we clear
4281 		 * the complete object on kzalloc.
4282 		 */
4283 		s->object_size = max(s->object_size, size);
4284 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4285 
4286 		for_each_memcg_cache(c, s) {
4287 			c->object_size = s->object_size;
4288 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4289 		}
4290 
4291 		if (sysfs_slab_alias(s, name)) {
4292 			s->refcount--;
4293 			s = NULL;
4294 		}
4295 	}
4296 
4297 	return s;
4298 }
4299 
4300 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4301 {
4302 	int err;
4303 
4304 	err = kmem_cache_open(s, flags);
4305 	if (err)
4306 		return err;
4307 
4308 	/* Mutex is not taken during early boot */
4309 	if (slab_state <= UP)
4310 		return 0;
4311 
4312 	memcg_propagate_slab_attrs(s);
4313 	err = sysfs_slab_add(s);
4314 	if (err)
4315 		__kmem_cache_release(s);
4316 
4317 	return err;
4318 }
4319 
4320 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4321 {
4322 	struct kmem_cache *s;
4323 	void *ret;
4324 
4325 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4326 		return kmalloc_large(size, gfpflags);
4327 
4328 	s = kmalloc_slab(size, gfpflags);
4329 
4330 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4331 		return s;
4332 
4333 	ret = slab_alloc(s, gfpflags, caller);
4334 
4335 	/* Honor the call site pointer we received. */
4336 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4337 
4338 	return ret;
4339 }
4340 
4341 #ifdef CONFIG_NUMA
4342 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4343 					int node, unsigned long caller)
4344 {
4345 	struct kmem_cache *s;
4346 	void *ret;
4347 
4348 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4349 		ret = kmalloc_large_node(size, gfpflags, node);
4350 
4351 		trace_kmalloc_node(caller, ret,
4352 				   size, PAGE_SIZE << get_order(size),
4353 				   gfpflags, node);
4354 
4355 		return ret;
4356 	}
4357 
4358 	s = kmalloc_slab(size, gfpflags);
4359 
4360 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4361 		return s;
4362 
4363 	ret = slab_alloc_node(s, gfpflags, node, caller);
4364 
4365 	/* Honor the call site pointer we received. */
4366 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4367 
4368 	return ret;
4369 }
4370 #endif
4371 
4372 #ifdef CONFIG_SYSFS
4373 static int count_inuse(struct page *page)
4374 {
4375 	return page->inuse;
4376 }
4377 
4378 static int count_total(struct page *page)
4379 {
4380 	return page->objects;
4381 }
4382 #endif
4383 
4384 #ifdef CONFIG_SLUB_DEBUG
4385 static int validate_slab(struct kmem_cache *s, struct page *page,
4386 						unsigned long *map)
4387 {
4388 	void *p;
4389 	void *addr = page_address(page);
4390 
4391 	if (!check_slab(s, page) ||
4392 			!on_freelist(s, page, NULL))
4393 		return 0;
4394 
4395 	/* Now we know that a valid freelist exists */
4396 	bitmap_zero(map, page->objects);
4397 
4398 	get_map(s, page, map);
4399 	for_each_object(p, s, addr, page->objects) {
4400 		if (test_bit(slab_index(p, s, addr), map))
4401 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4402 				return 0;
4403 	}
4404 
4405 	for_each_object(p, s, addr, page->objects)
4406 		if (!test_bit(slab_index(p, s, addr), map))
4407 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4408 				return 0;
4409 	return 1;
4410 }
4411 
4412 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4413 						unsigned long *map)
4414 {
4415 	slab_lock(page);
4416 	validate_slab(s, page, map);
4417 	slab_unlock(page);
4418 }
4419 
4420 static int validate_slab_node(struct kmem_cache *s,
4421 		struct kmem_cache_node *n, unsigned long *map)
4422 {
4423 	unsigned long count = 0;
4424 	struct page *page;
4425 	unsigned long flags;
4426 
4427 	spin_lock_irqsave(&n->list_lock, flags);
4428 
4429 	list_for_each_entry(page, &n->partial, slab_list) {
4430 		validate_slab_slab(s, page, map);
4431 		count++;
4432 	}
4433 	if (count != n->nr_partial)
4434 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4435 		       s->name, count, n->nr_partial);
4436 
4437 	if (!(s->flags & SLAB_STORE_USER))
4438 		goto out;
4439 
4440 	list_for_each_entry(page, &n->full, slab_list) {
4441 		validate_slab_slab(s, page, map);
4442 		count++;
4443 	}
4444 	if (count != atomic_long_read(&n->nr_slabs))
4445 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4446 		       s->name, count, atomic_long_read(&n->nr_slabs));
4447 
4448 out:
4449 	spin_unlock_irqrestore(&n->list_lock, flags);
4450 	return count;
4451 }
4452 
4453 static long validate_slab_cache(struct kmem_cache *s)
4454 {
4455 	int node;
4456 	unsigned long count = 0;
4457 	struct kmem_cache_node *n;
4458 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4459 
4460 	if (!map)
4461 		return -ENOMEM;
4462 
4463 	flush_all(s);
4464 	for_each_kmem_cache_node(s, node, n)
4465 		count += validate_slab_node(s, n, map);
4466 	bitmap_free(map);
4467 	return count;
4468 }
4469 /*
4470  * Generate lists of code addresses where slabcache objects are allocated
4471  * and freed.
4472  */
4473 
4474 struct location {
4475 	unsigned long count;
4476 	unsigned long addr;
4477 	long long sum_time;
4478 	long min_time;
4479 	long max_time;
4480 	long min_pid;
4481 	long max_pid;
4482 	DECLARE_BITMAP(cpus, NR_CPUS);
4483 	nodemask_t nodes;
4484 };
4485 
4486 struct loc_track {
4487 	unsigned long max;
4488 	unsigned long count;
4489 	struct location *loc;
4490 };
4491 
4492 static void free_loc_track(struct loc_track *t)
4493 {
4494 	if (t->max)
4495 		free_pages((unsigned long)t->loc,
4496 			get_order(sizeof(struct location) * t->max));
4497 }
4498 
4499 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4500 {
4501 	struct location *l;
4502 	int order;
4503 
4504 	order = get_order(sizeof(struct location) * max);
4505 
4506 	l = (void *)__get_free_pages(flags, order);
4507 	if (!l)
4508 		return 0;
4509 
4510 	if (t->count) {
4511 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4512 		free_loc_track(t);
4513 	}
4514 	t->max = max;
4515 	t->loc = l;
4516 	return 1;
4517 }
4518 
4519 static int add_location(struct loc_track *t, struct kmem_cache *s,
4520 				const struct track *track)
4521 {
4522 	long start, end, pos;
4523 	struct location *l;
4524 	unsigned long caddr;
4525 	unsigned long age = jiffies - track->when;
4526 
4527 	start = -1;
4528 	end = t->count;
4529 
4530 	for ( ; ; ) {
4531 		pos = start + (end - start + 1) / 2;
4532 
4533 		/*
4534 		 * There is nothing at "end". If we end up there
4535 		 * we need to add something to before end.
4536 		 */
4537 		if (pos == end)
4538 			break;
4539 
4540 		caddr = t->loc[pos].addr;
4541 		if (track->addr == caddr) {
4542 
4543 			l = &t->loc[pos];
4544 			l->count++;
4545 			if (track->when) {
4546 				l->sum_time += age;
4547 				if (age < l->min_time)
4548 					l->min_time = age;
4549 				if (age > l->max_time)
4550 					l->max_time = age;
4551 
4552 				if (track->pid < l->min_pid)
4553 					l->min_pid = track->pid;
4554 				if (track->pid > l->max_pid)
4555 					l->max_pid = track->pid;
4556 
4557 				cpumask_set_cpu(track->cpu,
4558 						to_cpumask(l->cpus));
4559 			}
4560 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4561 			return 1;
4562 		}
4563 
4564 		if (track->addr < caddr)
4565 			end = pos;
4566 		else
4567 			start = pos;
4568 	}
4569 
4570 	/*
4571 	 * Not found. Insert new tracking element.
4572 	 */
4573 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4574 		return 0;
4575 
4576 	l = t->loc + pos;
4577 	if (pos < t->count)
4578 		memmove(l + 1, l,
4579 			(t->count - pos) * sizeof(struct location));
4580 	t->count++;
4581 	l->count = 1;
4582 	l->addr = track->addr;
4583 	l->sum_time = age;
4584 	l->min_time = age;
4585 	l->max_time = age;
4586 	l->min_pid = track->pid;
4587 	l->max_pid = track->pid;
4588 	cpumask_clear(to_cpumask(l->cpus));
4589 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4590 	nodes_clear(l->nodes);
4591 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4592 	return 1;
4593 }
4594 
4595 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4596 		struct page *page, enum track_item alloc,
4597 		unsigned long *map)
4598 {
4599 	void *addr = page_address(page);
4600 	void *p;
4601 
4602 	bitmap_zero(map, page->objects);
4603 	get_map(s, page, map);
4604 
4605 	for_each_object(p, s, addr, page->objects)
4606 		if (!test_bit(slab_index(p, s, addr), map))
4607 			add_location(t, s, get_track(s, p, alloc));
4608 }
4609 
4610 static int list_locations(struct kmem_cache *s, char *buf,
4611 					enum track_item alloc)
4612 {
4613 	int len = 0;
4614 	unsigned long i;
4615 	struct loc_track t = { 0, 0, NULL };
4616 	int node;
4617 	struct kmem_cache_node *n;
4618 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4619 
4620 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4621 				     GFP_KERNEL)) {
4622 		bitmap_free(map);
4623 		return sprintf(buf, "Out of memory\n");
4624 	}
4625 	/* Push back cpu slabs */
4626 	flush_all(s);
4627 
4628 	for_each_kmem_cache_node(s, node, n) {
4629 		unsigned long flags;
4630 		struct page *page;
4631 
4632 		if (!atomic_long_read(&n->nr_slabs))
4633 			continue;
4634 
4635 		spin_lock_irqsave(&n->list_lock, flags);
4636 		list_for_each_entry(page, &n->partial, slab_list)
4637 			process_slab(&t, s, page, alloc, map);
4638 		list_for_each_entry(page, &n->full, slab_list)
4639 			process_slab(&t, s, page, alloc, map);
4640 		spin_unlock_irqrestore(&n->list_lock, flags);
4641 	}
4642 
4643 	for (i = 0; i < t.count; i++) {
4644 		struct location *l = &t.loc[i];
4645 
4646 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4647 			break;
4648 		len += sprintf(buf + len, "%7ld ", l->count);
4649 
4650 		if (l->addr)
4651 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4652 		else
4653 			len += sprintf(buf + len, "<not-available>");
4654 
4655 		if (l->sum_time != l->min_time) {
4656 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4657 				l->min_time,
4658 				(long)div_u64(l->sum_time, l->count),
4659 				l->max_time);
4660 		} else
4661 			len += sprintf(buf + len, " age=%ld",
4662 				l->min_time);
4663 
4664 		if (l->min_pid != l->max_pid)
4665 			len += sprintf(buf + len, " pid=%ld-%ld",
4666 				l->min_pid, l->max_pid);
4667 		else
4668 			len += sprintf(buf + len, " pid=%ld",
4669 				l->min_pid);
4670 
4671 		if (num_online_cpus() > 1 &&
4672 				!cpumask_empty(to_cpumask(l->cpus)) &&
4673 				len < PAGE_SIZE - 60)
4674 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4675 					 " cpus=%*pbl",
4676 					 cpumask_pr_args(to_cpumask(l->cpus)));
4677 
4678 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4679 				len < PAGE_SIZE - 60)
4680 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4681 					 " nodes=%*pbl",
4682 					 nodemask_pr_args(&l->nodes));
4683 
4684 		len += sprintf(buf + len, "\n");
4685 	}
4686 
4687 	free_loc_track(&t);
4688 	bitmap_free(map);
4689 	if (!t.count)
4690 		len += sprintf(buf, "No data\n");
4691 	return len;
4692 }
4693 #endif	/* CONFIG_SLUB_DEBUG */
4694 
4695 #ifdef SLUB_RESILIENCY_TEST
4696 static void __init resiliency_test(void)
4697 {
4698 	u8 *p;
4699 	int type = KMALLOC_NORMAL;
4700 
4701 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4702 
4703 	pr_err("SLUB resiliency testing\n");
4704 	pr_err("-----------------------\n");
4705 	pr_err("A. Corruption after allocation\n");
4706 
4707 	p = kzalloc(16, GFP_KERNEL);
4708 	p[16] = 0x12;
4709 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4710 	       p + 16);
4711 
4712 	validate_slab_cache(kmalloc_caches[type][4]);
4713 
4714 	/* Hmmm... The next two are dangerous */
4715 	p = kzalloc(32, GFP_KERNEL);
4716 	p[32 + sizeof(void *)] = 0x34;
4717 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4718 	       p);
4719 	pr_err("If allocated object is overwritten then not detectable\n\n");
4720 
4721 	validate_slab_cache(kmalloc_caches[type][5]);
4722 	p = kzalloc(64, GFP_KERNEL);
4723 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4724 	*p = 0x56;
4725 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4726 	       p);
4727 	pr_err("If allocated object is overwritten then not detectable\n\n");
4728 	validate_slab_cache(kmalloc_caches[type][6]);
4729 
4730 	pr_err("\nB. Corruption after free\n");
4731 	p = kzalloc(128, GFP_KERNEL);
4732 	kfree(p);
4733 	*p = 0x78;
4734 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4735 	validate_slab_cache(kmalloc_caches[type][7]);
4736 
4737 	p = kzalloc(256, GFP_KERNEL);
4738 	kfree(p);
4739 	p[50] = 0x9a;
4740 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4741 	validate_slab_cache(kmalloc_caches[type][8]);
4742 
4743 	p = kzalloc(512, GFP_KERNEL);
4744 	kfree(p);
4745 	p[512] = 0xab;
4746 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4747 	validate_slab_cache(kmalloc_caches[type][9]);
4748 }
4749 #else
4750 #ifdef CONFIG_SYSFS
4751 static void resiliency_test(void) {};
4752 #endif
4753 #endif	/* SLUB_RESILIENCY_TEST */
4754 
4755 #ifdef CONFIG_SYSFS
4756 enum slab_stat_type {
4757 	SL_ALL,			/* All slabs */
4758 	SL_PARTIAL,		/* Only partially allocated slabs */
4759 	SL_CPU,			/* Only slabs used for cpu caches */
4760 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4761 	SL_TOTAL		/* Determine object capacity not slabs */
4762 };
4763 
4764 #define SO_ALL		(1 << SL_ALL)
4765 #define SO_PARTIAL	(1 << SL_PARTIAL)
4766 #define SO_CPU		(1 << SL_CPU)
4767 #define SO_OBJECTS	(1 << SL_OBJECTS)
4768 #define SO_TOTAL	(1 << SL_TOTAL)
4769 
4770 #ifdef CONFIG_MEMCG
4771 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4772 
4773 static int __init setup_slub_memcg_sysfs(char *str)
4774 {
4775 	int v;
4776 
4777 	if (get_option(&str, &v) > 0)
4778 		memcg_sysfs_enabled = v;
4779 
4780 	return 1;
4781 }
4782 
4783 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4784 #endif
4785 
4786 static ssize_t show_slab_objects(struct kmem_cache *s,
4787 			    char *buf, unsigned long flags)
4788 {
4789 	unsigned long total = 0;
4790 	int node;
4791 	int x;
4792 	unsigned long *nodes;
4793 
4794 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4795 	if (!nodes)
4796 		return -ENOMEM;
4797 
4798 	if (flags & SO_CPU) {
4799 		int cpu;
4800 
4801 		for_each_possible_cpu(cpu) {
4802 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4803 							       cpu);
4804 			int node;
4805 			struct page *page;
4806 
4807 			page = READ_ONCE(c->page);
4808 			if (!page)
4809 				continue;
4810 
4811 			node = page_to_nid(page);
4812 			if (flags & SO_TOTAL)
4813 				x = page->objects;
4814 			else if (flags & SO_OBJECTS)
4815 				x = page->inuse;
4816 			else
4817 				x = 1;
4818 
4819 			total += x;
4820 			nodes[node] += x;
4821 
4822 			page = slub_percpu_partial_read_once(c);
4823 			if (page) {
4824 				node = page_to_nid(page);
4825 				if (flags & SO_TOTAL)
4826 					WARN_ON_ONCE(1);
4827 				else if (flags & SO_OBJECTS)
4828 					WARN_ON_ONCE(1);
4829 				else
4830 					x = page->pages;
4831 				total += x;
4832 				nodes[node] += x;
4833 			}
4834 		}
4835 	}
4836 
4837 	get_online_mems();
4838 #ifdef CONFIG_SLUB_DEBUG
4839 	if (flags & SO_ALL) {
4840 		struct kmem_cache_node *n;
4841 
4842 		for_each_kmem_cache_node(s, node, n) {
4843 
4844 			if (flags & SO_TOTAL)
4845 				x = atomic_long_read(&n->total_objects);
4846 			else if (flags & SO_OBJECTS)
4847 				x = atomic_long_read(&n->total_objects) -
4848 					count_partial(n, count_free);
4849 			else
4850 				x = atomic_long_read(&n->nr_slabs);
4851 			total += x;
4852 			nodes[node] += x;
4853 		}
4854 
4855 	} else
4856 #endif
4857 	if (flags & SO_PARTIAL) {
4858 		struct kmem_cache_node *n;
4859 
4860 		for_each_kmem_cache_node(s, node, n) {
4861 			if (flags & SO_TOTAL)
4862 				x = count_partial(n, count_total);
4863 			else if (flags & SO_OBJECTS)
4864 				x = count_partial(n, count_inuse);
4865 			else
4866 				x = n->nr_partial;
4867 			total += x;
4868 			nodes[node] += x;
4869 		}
4870 	}
4871 	x = sprintf(buf, "%lu", total);
4872 #ifdef CONFIG_NUMA
4873 	for (node = 0; node < nr_node_ids; node++)
4874 		if (nodes[node])
4875 			x += sprintf(buf + x, " N%d=%lu",
4876 					node, nodes[node]);
4877 #endif
4878 	put_online_mems();
4879 	kfree(nodes);
4880 	return x + sprintf(buf + x, "\n");
4881 }
4882 
4883 #ifdef CONFIG_SLUB_DEBUG
4884 static int any_slab_objects(struct kmem_cache *s)
4885 {
4886 	int node;
4887 	struct kmem_cache_node *n;
4888 
4889 	for_each_kmem_cache_node(s, node, n)
4890 		if (atomic_long_read(&n->total_objects))
4891 			return 1;
4892 
4893 	return 0;
4894 }
4895 #endif
4896 
4897 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4898 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4899 
4900 struct slab_attribute {
4901 	struct attribute attr;
4902 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4903 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4904 };
4905 
4906 #define SLAB_ATTR_RO(_name) \
4907 	static struct slab_attribute _name##_attr = \
4908 	__ATTR(_name, 0400, _name##_show, NULL)
4909 
4910 #define SLAB_ATTR(_name) \
4911 	static struct slab_attribute _name##_attr =  \
4912 	__ATTR(_name, 0600, _name##_show, _name##_store)
4913 
4914 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4915 {
4916 	return sprintf(buf, "%u\n", s->size);
4917 }
4918 SLAB_ATTR_RO(slab_size);
4919 
4920 static ssize_t align_show(struct kmem_cache *s, char *buf)
4921 {
4922 	return sprintf(buf, "%u\n", s->align);
4923 }
4924 SLAB_ATTR_RO(align);
4925 
4926 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4927 {
4928 	return sprintf(buf, "%u\n", s->object_size);
4929 }
4930 SLAB_ATTR_RO(object_size);
4931 
4932 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4933 {
4934 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4935 }
4936 SLAB_ATTR_RO(objs_per_slab);
4937 
4938 static ssize_t order_store(struct kmem_cache *s,
4939 				const char *buf, size_t length)
4940 {
4941 	unsigned int order;
4942 	int err;
4943 
4944 	err = kstrtouint(buf, 10, &order);
4945 	if (err)
4946 		return err;
4947 
4948 	if (order > slub_max_order || order < slub_min_order)
4949 		return -EINVAL;
4950 
4951 	calculate_sizes(s, order);
4952 	return length;
4953 }
4954 
4955 static ssize_t order_show(struct kmem_cache *s, char *buf)
4956 {
4957 	return sprintf(buf, "%u\n", oo_order(s->oo));
4958 }
4959 SLAB_ATTR(order);
4960 
4961 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4962 {
4963 	return sprintf(buf, "%lu\n", s->min_partial);
4964 }
4965 
4966 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4967 				 size_t length)
4968 {
4969 	unsigned long min;
4970 	int err;
4971 
4972 	err = kstrtoul(buf, 10, &min);
4973 	if (err)
4974 		return err;
4975 
4976 	set_min_partial(s, min);
4977 	return length;
4978 }
4979 SLAB_ATTR(min_partial);
4980 
4981 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4982 {
4983 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4984 }
4985 
4986 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4987 				 size_t length)
4988 {
4989 	unsigned int objects;
4990 	int err;
4991 
4992 	err = kstrtouint(buf, 10, &objects);
4993 	if (err)
4994 		return err;
4995 	if (objects && !kmem_cache_has_cpu_partial(s))
4996 		return -EINVAL;
4997 
4998 	slub_set_cpu_partial(s, objects);
4999 	flush_all(s);
5000 	return length;
5001 }
5002 SLAB_ATTR(cpu_partial);
5003 
5004 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5005 {
5006 	if (!s->ctor)
5007 		return 0;
5008 	return sprintf(buf, "%pS\n", s->ctor);
5009 }
5010 SLAB_ATTR_RO(ctor);
5011 
5012 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5013 {
5014 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5015 }
5016 SLAB_ATTR_RO(aliases);
5017 
5018 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5019 {
5020 	return show_slab_objects(s, buf, SO_PARTIAL);
5021 }
5022 SLAB_ATTR_RO(partial);
5023 
5024 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5025 {
5026 	return show_slab_objects(s, buf, SO_CPU);
5027 }
5028 SLAB_ATTR_RO(cpu_slabs);
5029 
5030 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5031 {
5032 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5033 }
5034 SLAB_ATTR_RO(objects);
5035 
5036 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5037 {
5038 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5039 }
5040 SLAB_ATTR_RO(objects_partial);
5041 
5042 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5043 {
5044 	int objects = 0;
5045 	int pages = 0;
5046 	int cpu;
5047 	int len;
5048 
5049 	for_each_online_cpu(cpu) {
5050 		struct page *page;
5051 
5052 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5053 
5054 		if (page) {
5055 			pages += page->pages;
5056 			objects += page->pobjects;
5057 		}
5058 	}
5059 
5060 	len = sprintf(buf, "%d(%d)", objects, pages);
5061 
5062 #ifdef CONFIG_SMP
5063 	for_each_online_cpu(cpu) {
5064 		struct page *page;
5065 
5066 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5067 
5068 		if (page && len < PAGE_SIZE - 20)
5069 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5070 				page->pobjects, page->pages);
5071 	}
5072 #endif
5073 	return len + sprintf(buf + len, "\n");
5074 }
5075 SLAB_ATTR_RO(slabs_cpu_partial);
5076 
5077 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5078 {
5079 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5080 }
5081 
5082 static ssize_t reclaim_account_store(struct kmem_cache *s,
5083 				const char *buf, size_t length)
5084 {
5085 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5086 	if (buf[0] == '1')
5087 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5088 	return length;
5089 }
5090 SLAB_ATTR(reclaim_account);
5091 
5092 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5093 {
5094 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5095 }
5096 SLAB_ATTR_RO(hwcache_align);
5097 
5098 #ifdef CONFIG_ZONE_DMA
5099 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5100 {
5101 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5102 }
5103 SLAB_ATTR_RO(cache_dma);
5104 #endif
5105 
5106 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5107 {
5108 	return sprintf(buf, "%u\n", s->usersize);
5109 }
5110 SLAB_ATTR_RO(usersize);
5111 
5112 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5113 {
5114 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5115 }
5116 SLAB_ATTR_RO(destroy_by_rcu);
5117 
5118 #ifdef CONFIG_SLUB_DEBUG
5119 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5120 {
5121 	return show_slab_objects(s, buf, SO_ALL);
5122 }
5123 SLAB_ATTR_RO(slabs);
5124 
5125 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5126 {
5127 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5128 }
5129 SLAB_ATTR_RO(total_objects);
5130 
5131 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5132 {
5133 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5134 }
5135 
5136 static ssize_t sanity_checks_store(struct kmem_cache *s,
5137 				const char *buf, size_t length)
5138 {
5139 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5140 	if (buf[0] == '1') {
5141 		s->flags &= ~__CMPXCHG_DOUBLE;
5142 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5143 	}
5144 	return length;
5145 }
5146 SLAB_ATTR(sanity_checks);
5147 
5148 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5149 {
5150 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5151 }
5152 
5153 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5154 							size_t length)
5155 {
5156 	/*
5157 	 * Tracing a merged cache is going to give confusing results
5158 	 * as well as cause other issues like converting a mergeable
5159 	 * cache into an umergeable one.
5160 	 */
5161 	if (s->refcount > 1)
5162 		return -EINVAL;
5163 
5164 	s->flags &= ~SLAB_TRACE;
5165 	if (buf[0] == '1') {
5166 		s->flags &= ~__CMPXCHG_DOUBLE;
5167 		s->flags |= SLAB_TRACE;
5168 	}
5169 	return length;
5170 }
5171 SLAB_ATTR(trace);
5172 
5173 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5174 {
5175 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5176 }
5177 
5178 static ssize_t red_zone_store(struct kmem_cache *s,
5179 				const char *buf, size_t length)
5180 {
5181 	if (any_slab_objects(s))
5182 		return -EBUSY;
5183 
5184 	s->flags &= ~SLAB_RED_ZONE;
5185 	if (buf[0] == '1') {
5186 		s->flags |= SLAB_RED_ZONE;
5187 	}
5188 	calculate_sizes(s, -1);
5189 	return length;
5190 }
5191 SLAB_ATTR(red_zone);
5192 
5193 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5194 {
5195 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5196 }
5197 
5198 static ssize_t poison_store(struct kmem_cache *s,
5199 				const char *buf, size_t length)
5200 {
5201 	if (any_slab_objects(s))
5202 		return -EBUSY;
5203 
5204 	s->flags &= ~SLAB_POISON;
5205 	if (buf[0] == '1') {
5206 		s->flags |= SLAB_POISON;
5207 	}
5208 	calculate_sizes(s, -1);
5209 	return length;
5210 }
5211 SLAB_ATTR(poison);
5212 
5213 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5214 {
5215 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5216 }
5217 
5218 static ssize_t store_user_store(struct kmem_cache *s,
5219 				const char *buf, size_t length)
5220 {
5221 	if (any_slab_objects(s))
5222 		return -EBUSY;
5223 
5224 	s->flags &= ~SLAB_STORE_USER;
5225 	if (buf[0] == '1') {
5226 		s->flags &= ~__CMPXCHG_DOUBLE;
5227 		s->flags |= SLAB_STORE_USER;
5228 	}
5229 	calculate_sizes(s, -1);
5230 	return length;
5231 }
5232 SLAB_ATTR(store_user);
5233 
5234 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5235 {
5236 	return 0;
5237 }
5238 
5239 static ssize_t validate_store(struct kmem_cache *s,
5240 			const char *buf, size_t length)
5241 {
5242 	int ret = -EINVAL;
5243 
5244 	if (buf[0] == '1') {
5245 		ret = validate_slab_cache(s);
5246 		if (ret >= 0)
5247 			ret = length;
5248 	}
5249 	return ret;
5250 }
5251 SLAB_ATTR(validate);
5252 
5253 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5254 {
5255 	if (!(s->flags & SLAB_STORE_USER))
5256 		return -ENOSYS;
5257 	return list_locations(s, buf, TRACK_ALLOC);
5258 }
5259 SLAB_ATTR_RO(alloc_calls);
5260 
5261 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5262 {
5263 	if (!(s->flags & SLAB_STORE_USER))
5264 		return -ENOSYS;
5265 	return list_locations(s, buf, TRACK_FREE);
5266 }
5267 SLAB_ATTR_RO(free_calls);
5268 #endif /* CONFIG_SLUB_DEBUG */
5269 
5270 #ifdef CONFIG_FAILSLAB
5271 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5272 {
5273 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5274 }
5275 
5276 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5277 							size_t length)
5278 {
5279 	if (s->refcount > 1)
5280 		return -EINVAL;
5281 
5282 	s->flags &= ~SLAB_FAILSLAB;
5283 	if (buf[0] == '1')
5284 		s->flags |= SLAB_FAILSLAB;
5285 	return length;
5286 }
5287 SLAB_ATTR(failslab);
5288 #endif
5289 
5290 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5291 {
5292 	return 0;
5293 }
5294 
5295 static ssize_t shrink_store(struct kmem_cache *s,
5296 			const char *buf, size_t length)
5297 {
5298 	if (buf[0] == '1')
5299 		kmem_cache_shrink(s);
5300 	else
5301 		return -EINVAL;
5302 	return length;
5303 }
5304 SLAB_ATTR(shrink);
5305 
5306 #ifdef CONFIG_NUMA
5307 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5308 {
5309 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5310 }
5311 
5312 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5313 				const char *buf, size_t length)
5314 {
5315 	unsigned int ratio;
5316 	int err;
5317 
5318 	err = kstrtouint(buf, 10, &ratio);
5319 	if (err)
5320 		return err;
5321 	if (ratio > 100)
5322 		return -ERANGE;
5323 
5324 	s->remote_node_defrag_ratio = ratio * 10;
5325 
5326 	return length;
5327 }
5328 SLAB_ATTR(remote_node_defrag_ratio);
5329 #endif
5330 
5331 #ifdef CONFIG_SLUB_STATS
5332 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5333 {
5334 	unsigned long sum  = 0;
5335 	int cpu;
5336 	int len;
5337 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5338 
5339 	if (!data)
5340 		return -ENOMEM;
5341 
5342 	for_each_online_cpu(cpu) {
5343 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5344 
5345 		data[cpu] = x;
5346 		sum += x;
5347 	}
5348 
5349 	len = sprintf(buf, "%lu", sum);
5350 
5351 #ifdef CONFIG_SMP
5352 	for_each_online_cpu(cpu) {
5353 		if (data[cpu] && len < PAGE_SIZE - 20)
5354 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5355 	}
5356 #endif
5357 	kfree(data);
5358 	return len + sprintf(buf + len, "\n");
5359 }
5360 
5361 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5362 {
5363 	int cpu;
5364 
5365 	for_each_online_cpu(cpu)
5366 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5367 }
5368 
5369 #define STAT_ATTR(si, text) 					\
5370 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5371 {								\
5372 	return show_stat(s, buf, si);				\
5373 }								\
5374 static ssize_t text##_store(struct kmem_cache *s,		\
5375 				const char *buf, size_t length)	\
5376 {								\
5377 	if (buf[0] != '0')					\
5378 		return -EINVAL;					\
5379 	clear_stat(s, si);					\
5380 	return length;						\
5381 }								\
5382 SLAB_ATTR(text);						\
5383 
5384 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5385 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5386 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5387 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5388 STAT_ATTR(FREE_FROZEN, free_frozen);
5389 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5390 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5391 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5392 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5393 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5394 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5395 STAT_ATTR(FREE_SLAB, free_slab);
5396 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5397 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5398 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5399 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5400 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5401 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5402 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5403 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5404 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5405 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5406 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5407 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5408 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5409 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5410 #endif	/* CONFIG_SLUB_STATS */
5411 
5412 static struct attribute *slab_attrs[] = {
5413 	&slab_size_attr.attr,
5414 	&object_size_attr.attr,
5415 	&objs_per_slab_attr.attr,
5416 	&order_attr.attr,
5417 	&min_partial_attr.attr,
5418 	&cpu_partial_attr.attr,
5419 	&objects_attr.attr,
5420 	&objects_partial_attr.attr,
5421 	&partial_attr.attr,
5422 	&cpu_slabs_attr.attr,
5423 	&ctor_attr.attr,
5424 	&aliases_attr.attr,
5425 	&align_attr.attr,
5426 	&hwcache_align_attr.attr,
5427 	&reclaim_account_attr.attr,
5428 	&destroy_by_rcu_attr.attr,
5429 	&shrink_attr.attr,
5430 	&slabs_cpu_partial_attr.attr,
5431 #ifdef CONFIG_SLUB_DEBUG
5432 	&total_objects_attr.attr,
5433 	&slabs_attr.attr,
5434 	&sanity_checks_attr.attr,
5435 	&trace_attr.attr,
5436 	&red_zone_attr.attr,
5437 	&poison_attr.attr,
5438 	&store_user_attr.attr,
5439 	&validate_attr.attr,
5440 	&alloc_calls_attr.attr,
5441 	&free_calls_attr.attr,
5442 #endif
5443 #ifdef CONFIG_ZONE_DMA
5444 	&cache_dma_attr.attr,
5445 #endif
5446 #ifdef CONFIG_NUMA
5447 	&remote_node_defrag_ratio_attr.attr,
5448 #endif
5449 #ifdef CONFIG_SLUB_STATS
5450 	&alloc_fastpath_attr.attr,
5451 	&alloc_slowpath_attr.attr,
5452 	&free_fastpath_attr.attr,
5453 	&free_slowpath_attr.attr,
5454 	&free_frozen_attr.attr,
5455 	&free_add_partial_attr.attr,
5456 	&free_remove_partial_attr.attr,
5457 	&alloc_from_partial_attr.attr,
5458 	&alloc_slab_attr.attr,
5459 	&alloc_refill_attr.attr,
5460 	&alloc_node_mismatch_attr.attr,
5461 	&free_slab_attr.attr,
5462 	&cpuslab_flush_attr.attr,
5463 	&deactivate_full_attr.attr,
5464 	&deactivate_empty_attr.attr,
5465 	&deactivate_to_head_attr.attr,
5466 	&deactivate_to_tail_attr.attr,
5467 	&deactivate_remote_frees_attr.attr,
5468 	&deactivate_bypass_attr.attr,
5469 	&order_fallback_attr.attr,
5470 	&cmpxchg_double_fail_attr.attr,
5471 	&cmpxchg_double_cpu_fail_attr.attr,
5472 	&cpu_partial_alloc_attr.attr,
5473 	&cpu_partial_free_attr.attr,
5474 	&cpu_partial_node_attr.attr,
5475 	&cpu_partial_drain_attr.attr,
5476 #endif
5477 #ifdef CONFIG_FAILSLAB
5478 	&failslab_attr.attr,
5479 #endif
5480 	&usersize_attr.attr,
5481 
5482 	NULL
5483 };
5484 
5485 static const struct attribute_group slab_attr_group = {
5486 	.attrs = slab_attrs,
5487 };
5488 
5489 static ssize_t slab_attr_show(struct kobject *kobj,
5490 				struct attribute *attr,
5491 				char *buf)
5492 {
5493 	struct slab_attribute *attribute;
5494 	struct kmem_cache *s;
5495 	int err;
5496 
5497 	attribute = to_slab_attr(attr);
5498 	s = to_slab(kobj);
5499 
5500 	if (!attribute->show)
5501 		return -EIO;
5502 
5503 	err = attribute->show(s, buf);
5504 
5505 	return err;
5506 }
5507 
5508 static ssize_t slab_attr_store(struct kobject *kobj,
5509 				struct attribute *attr,
5510 				const char *buf, size_t len)
5511 {
5512 	struct slab_attribute *attribute;
5513 	struct kmem_cache *s;
5514 	int err;
5515 
5516 	attribute = to_slab_attr(attr);
5517 	s = to_slab(kobj);
5518 
5519 	if (!attribute->store)
5520 		return -EIO;
5521 
5522 	err = attribute->store(s, buf, len);
5523 #ifdef CONFIG_MEMCG
5524 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5525 		struct kmem_cache *c;
5526 
5527 		mutex_lock(&slab_mutex);
5528 		if (s->max_attr_size < len)
5529 			s->max_attr_size = len;
5530 
5531 		/*
5532 		 * This is a best effort propagation, so this function's return
5533 		 * value will be determined by the parent cache only. This is
5534 		 * basically because not all attributes will have a well
5535 		 * defined semantics for rollbacks - most of the actions will
5536 		 * have permanent effects.
5537 		 *
5538 		 * Returning the error value of any of the children that fail
5539 		 * is not 100 % defined, in the sense that users seeing the
5540 		 * error code won't be able to know anything about the state of
5541 		 * the cache.
5542 		 *
5543 		 * Only returning the error code for the parent cache at least
5544 		 * has well defined semantics. The cache being written to
5545 		 * directly either failed or succeeded, in which case we loop
5546 		 * through the descendants with best-effort propagation.
5547 		 */
5548 		for_each_memcg_cache(c, s)
5549 			attribute->store(c, buf, len);
5550 		mutex_unlock(&slab_mutex);
5551 	}
5552 #endif
5553 	return err;
5554 }
5555 
5556 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5557 {
5558 #ifdef CONFIG_MEMCG
5559 	int i;
5560 	char *buffer = NULL;
5561 	struct kmem_cache *root_cache;
5562 
5563 	if (is_root_cache(s))
5564 		return;
5565 
5566 	root_cache = s->memcg_params.root_cache;
5567 
5568 	/*
5569 	 * This mean this cache had no attribute written. Therefore, no point
5570 	 * in copying default values around
5571 	 */
5572 	if (!root_cache->max_attr_size)
5573 		return;
5574 
5575 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5576 		char mbuf[64];
5577 		char *buf;
5578 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5579 		ssize_t len;
5580 
5581 		if (!attr || !attr->store || !attr->show)
5582 			continue;
5583 
5584 		/*
5585 		 * It is really bad that we have to allocate here, so we will
5586 		 * do it only as a fallback. If we actually allocate, though,
5587 		 * we can just use the allocated buffer until the end.
5588 		 *
5589 		 * Most of the slub attributes will tend to be very small in
5590 		 * size, but sysfs allows buffers up to a page, so they can
5591 		 * theoretically happen.
5592 		 */
5593 		if (buffer)
5594 			buf = buffer;
5595 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5596 			buf = mbuf;
5597 		else {
5598 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5599 			if (WARN_ON(!buffer))
5600 				continue;
5601 			buf = buffer;
5602 		}
5603 
5604 		len = attr->show(root_cache, buf);
5605 		if (len > 0)
5606 			attr->store(s, buf, len);
5607 	}
5608 
5609 	if (buffer)
5610 		free_page((unsigned long)buffer);
5611 #endif	/* CONFIG_MEMCG */
5612 }
5613 
5614 static void kmem_cache_release(struct kobject *k)
5615 {
5616 	slab_kmem_cache_release(to_slab(k));
5617 }
5618 
5619 static const struct sysfs_ops slab_sysfs_ops = {
5620 	.show = slab_attr_show,
5621 	.store = slab_attr_store,
5622 };
5623 
5624 static struct kobj_type slab_ktype = {
5625 	.sysfs_ops = &slab_sysfs_ops,
5626 	.release = kmem_cache_release,
5627 };
5628 
5629 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5630 {
5631 	struct kobj_type *ktype = get_ktype(kobj);
5632 
5633 	if (ktype == &slab_ktype)
5634 		return 1;
5635 	return 0;
5636 }
5637 
5638 static const struct kset_uevent_ops slab_uevent_ops = {
5639 	.filter = uevent_filter,
5640 };
5641 
5642 static struct kset *slab_kset;
5643 
5644 static inline struct kset *cache_kset(struct kmem_cache *s)
5645 {
5646 #ifdef CONFIG_MEMCG
5647 	if (!is_root_cache(s))
5648 		return s->memcg_params.root_cache->memcg_kset;
5649 #endif
5650 	return slab_kset;
5651 }
5652 
5653 #define ID_STR_LENGTH 64
5654 
5655 /* Create a unique string id for a slab cache:
5656  *
5657  * Format	:[flags-]size
5658  */
5659 static char *create_unique_id(struct kmem_cache *s)
5660 {
5661 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5662 	char *p = name;
5663 
5664 	BUG_ON(!name);
5665 
5666 	*p++ = ':';
5667 	/*
5668 	 * First flags affecting slabcache operations. We will only
5669 	 * get here for aliasable slabs so we do not need to support
5670 	 * too many flags. The flags here must cover all flags that
5671 	 * are matched during merging to guarantee that the id is
5672 	 * unique.
5673 	 */
5674 	if (s->flags & SLAB_CACHE_DMA)
5675 		*p++ = 'd';
5676 	if (s->flags & SLAB_CACHE_DMA32)
5677 		*p++ = 'D';
5678 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5679 		*p++ = 'a';
5680 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5681 		*p++ = 'F';
5682 	if (s->flags & SLAB_ACCOUNT)
5683 		*p++ = 'A';
5684 	if (p != name + 1)
5685 		*p++ = '-';
5686 	p += sprintf(p, "%07u", s->size);
5687 
5688 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5689 	return name;
5690 }
5691 
5692 static void sysfs_slab_remove_workfn(struct work_struct *work)
5693 {
5694 	struct kmem_cache *s =
5695 		container_of(work, struct kmem_cache, kobj_remove_work);
5696 
5697 	if (!s->kobj.state_in_sysfs)
5698 		/*
5699 		 * For a memcg cache, this may be called during
5700 		 * deactivation and again on shutdown.  Remove only once.
5701 		 * A cache is never shut down before deactivation is
5702 		 * complete, so no need to worry about synchronization.
5703 		 */
5704 		goto out;
5705 
5706 #ifdef CONFIG_MEMCG
5707 	kset_unregister(s->memcg_kset);
5708 #endif
5709 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5710 out:
5711 	kobject_put(&s->kobj);
5712 }
5713 
5714 static int sysfs_slab_add(struct kmem_cache *s)
5715 {
5716 	int err;
5717 	const char *name;
5718 	struct kset *kset = cache_kset(s);
5719 	int unmergeable = slab_unmergeable(s);
5720 
5721 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5722 
5723 	if (!kset) {
5724 		kobject_init(&s->kobj, &slab_ktype);
5725 		return 0;
5726 	}
5727 
5728 	if (!unmergeable && disable_higher_order_debug &&
5729 			(slub_debug & DEBUG_METADATA_FLAGS))
5730 		unmergeable = 1;
5731 
5732 	if (unmergeable) {
5733 		/*
5734 		 * Slabcache can never be merged so we can use the name proper.
5735 		 * This is typically the case for debug situations. In that
5736 		 * case we can catch duplicate names easily.
5737 		 */
5738 		sysfs_remove_link(&slab_kset->kobj, s->name);
5739 		name = s->name;
5740 	} else {
5741 		/*
5742 		 * Create a unique name for the slab as a target
5743 		 * for the symlinks.
5744 		 */
5745 		name = create_unique_id(s);
5746 	}
5747 
5748 	s->kobj.kset = kset;
5749 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5750 	if (err)
5751 		goto out;
5752 
5753 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5754 	if (err)
5755 		goto out_del_kobj;
5756 
5757 #ifdef CONFIG_MEMCG
5758 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5759 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5760 		if (!s->memcg_kset) {
5761 			err = -ENOMEM;
5762 			goto out_del_kobj;
5763 		}
5764 	}
5765 #endif
5766 
5767 	kobject_uevent(&s->kobj, KOBJ_ADD);
5768 	if (!unmergeable) {
5769 		/* Setup first alias */
5770 		sysfs_slab_alias(s, s->name);
5771 	}
5772 out:
5773 	if (!unmergeable)
5774 		kfree(name);
5775 	return err;
5776 out_del_kobj:
5777 	kobject_del(&s->kobj);
5778 	goto out;
5779 }
5780 
5781 static void sysfs_slab_remove(struct kmem_cache *s)
5782 {
5783 	if (slab_state < FULL)
5784 		/*
5785 		 * Sysfs has not been setup yet so no need to remove the
5786 		 * cache from sysfs.
5787 		 */
5788 		return;
5789 
5790 	kobject_get(&s->kobj);
5791 	schedule_work(&s->kobj_remove_work);
5792 }
5793 
5794 void sysfs_slab_unlink(struct kmem_cache *s)
5795 {
5796 	if (slab_state >= FULL)
5797 		kobject_del(&s->kobj);
5798 }
5799 
5800 void sysfs_slab_release(struct kmem_cache *s)
5801 {
5802 	if (slab_state >= FULL)
5803 		kobject_put(&s->kobj);
5804 }
5805 
5806 /*
5807  * Need to buffer aliases during bootup until sysfs becomes
5808  * available lest we lose that information.
5809  */
5810 struct saved_alias {
5811 	struct kmem_cache *s;
5812 	const char *name;
5813 	struct saved_alias *next;
5814 };
5815 
5816 static struct saved_alias *alias_list;
5817 
5818 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5819 {
5820 	struct saved_alias *al;
5821 
5822 	if (slab_state == FULL) {
5823 		/*
5824 		 * If we have a leftover link then remove it.
5825 		 */
5826 		sysfs_remove_link(&slab_kset->kobj, name);
5827 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5828 	}
5829 
5830 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5831 	if (!al)
5832 		return -ENOMEM;
5833 
5834 	al->s = s;
5835 	al->name = name;
5836 	al->next = alias_list;
5837 	alias_list = al;
5838 	return 0;
5839 }
5840 
5841 static int __init slab_sysfs_init(void)
5842 {
5843 	struct kmem_cache *s;
5844 	int err;
5845 
5846 	mutex_lock(&slab_mutex);
5847 
5848 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5849 	if (!slab_kset) {
5850 		mutex_unlock(&slab_mutex);
5851 		pr_err("Cannot register slab subsystem.\n");
5852 		return -ENOSYS;
5853 	}
5854 
5855 	slab_state = FULL;
5856 
5857 	list_for_each_entry(s, &slab_caches, list) {
5858 		err = sysfs_slab_add(s);
5859 		if (err)
5860 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5861 			       s->name);
5862 	}
5863 
5864 	while (alias_list) {
5865 		struct saved_alias *al = alias_list;
5866 
5867 		alias_list = alias_list->next;
5868 		err = sysfs_slab_alias(al->s, al->name);
5869 		if (err)
5870 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5871 			       al->name);
5872 		kfree(al);
5873 	}
5874 
5875 	mutex_unlock(&slab_mutex);
5876 	resiliency_test();
5877 	return 0;
5878 }
5879 
5880 __initcall(slab_sysfs_init);
5881 #endif /* CONFIG_SYSFS */
5882 
5883 /*
5884  * The /proc/slabinfo ABI
5885  */
5886 #ifdef CONFIG_SLUB_DEBUG
5887 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5888 {
5889 	unsigned long nr_slabs = 0;
5890 	unsigned long nr_objs = 0;
5891 	unsigned long nr_free = 0;
5892 	int node;
5893 	struct kmem_cache_node *n;
5894 
5895 	for_each_kmem_cache_node(s, node, n) {
5896 		nr_slabs += node_nr_slabs(n);
5897 		nr_objs += node_nr_objs(n);
5898 		nr_free += count_partial(n, count_free);
5899 	}
5900 
5901 	sinfo->active_objs = nr_objs - nr_free;
5902 	sinfo->num_objs = nr_objs;
5903 	sinfo->active_slabs = nr_slabs;
5904 	sinfo->num_slabs = nr_slabs;
5905 	sinfo->objects_per_slab = oo_objects(s->oo);
5906 	sinfo->cache_order = oo_order(s->oo);
5907 }
5908 
5909 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5910 {
5911 }
5912 
5913 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5914 		       size_t count, loff_t *ppos)
5915 {
5916 	return -EIO;
5917 }
5918 #endif /* CONFIG_SLUB_DEBUG */
5919