xref: /openbmc/linux/mm/slub.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects the second
55  *   double word in the page struct. Meaning
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->counters	-> Counters of objects
58  *	C. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 	return !kmem_cache_debug(s);
131 #else
132 	return false;
133 #endif
134 }
135 
136 /*
137  * Issues still to be resolved:
138  *
139  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140  *
141  * - Variable sizing of the per node arrays
142  */
143 
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146 
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149 
150 /*
151  * Mininum number of partial slabs. These will be left on the partial
152  * lists even if they are empty. kmem_cache_shrink may reclaim them.
153  */
154 #define MIN_PARTIAL 5
155 
156 /*
157  * Maximum number of desirable partial slabs.
158  * The existence of more partial slabs makes kmem_cache_shrink
159  * sort the partial list by the number of objects in use.
160  */
161 #define MAX_PARTIAL 10
162 
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 				SLAB_POISON | SLAB_STORE_USER)
165 
166 /*
167  * Debugging flags that require metadata to be stored in the slab.  These get
168  * disabled when slub_debug=O is used and a cache's min order increases with
169  * metadata.
170  */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172 
173 #define OO_SHIFT	16
174 #define OO_MASK		((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176 
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON		0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
180 
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184 
185 /*
186  * Tracking user of a slab.
187  */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 	unsigned long addr;	/* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
193 #endif
194 	int cpu;		/* Was running on cpu */
195 	int pid;		/* Pid context */
196 	unsigned long when;	/* When did the operation occur */
197 };
198 
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200 
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 							{ return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211 
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 	/*
216 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 	 * avoid this_cpu_add()'s irq-disable overhead.
218 	 */
219 	raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222 
223 /********************************************************************
224  * 			Core slab cache functions
225  *******************************************************************/
226 
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 				struct page *page, const void *object)
230 {
231 	void *base;
232 
233 	if (!object)
234 		return 1;
235 
236 	base = page_address(page);
237 	if (object < base || object >= base + page->objects * s->size ||
238 		(object - base) % s->size) {
239 		return 0;
240 	}
241 
242 	return 1;
243 }
244 
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 	return *(void **)(object + s->offset);
248 }
249 
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 	prefetch(object + s->offset);
253 }
254 
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 	void *p;
258 
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 	p = get_freepointer(s, object);
263 #endif
264 	return p;
265 }
266 
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 	*(void **)(object + s->offset) = fp;
270 }
271 
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 			__p += (__s)->size)
276 
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 	for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 			__p += (__s)->size, __idx++)
280 
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 	return (p - addr) / s->size;
285 }
286 
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 	/*
291 	 * Debugging requires use of the padding between object
292 	 * and whatever may come after it.
293 	 */
294 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 		return s->object_size;
296 
297 #endif
298 	/*
299 	 * If we have the need to store the freelist pointer
300 	 * back there or track user information then we can
301 	 * only use the space before that information.
302 	 */
303 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 		return s->inuse;
305 	/*
306 	 * Else we can use all the padding etc for the allocation
307 	 */
308 	return s->size;
309 }
310 
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 	return ((PAGE_SIZE << order) - reserved) / size;
314 }
315 
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 		unsigned long size, int reserved)
318 {
319 	struct kmem_cache_order_objects x = {
320 		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 	};
322 
323 	return x;
324 }
325 
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 	return x.x >> OO_SHIFT;
329 }
330 
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 	return x.x & OO_MASK;
334 }
335 
336 /*
337  * Per slab locking using the pagelock
338  */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 	bit_spin_lock(PG_locked, &page->flags);
342 }
343 
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 	__bit_spin_unlock(PG_locked, &page->flags);
347 }
348 
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 	struct page tmp;
352 	tmp.counters = counters_new;
353 	/*
354 	 * page->counters can cover frozen/inuse/objects as well
355 	 * as page->_count.  If we assign to ->counters directly
356 	 * we run the risk of losing updates to page->_count, so
357 	 * be careful and only assign to the fields we need.
358 	 */
359 	page->frozen  = tmp.frozen;
360 	page->inuse   = tmp.inuse;
361 	page->objects = tmp.objects;
362 }
363 
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 		void *freelist_old, unsigned long counters_old,
367 		void *freelist_new, unsigned long counters_new,
368 		const char *n)
369 {
370 	VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 	if (s->flags & __CMPXCHG_DOUBLE) {
374 		if (cmpxchg_double(&page->freelist, &page->counters,
375 				   freelist_old, counters_old,
376 				   freelist_new, counters_new))
377 			return true;
378 	} else
379 #endif
380 	{
381 		slab_lock(page);
382 		if (page->freelist == freelist_old &&
383 					page->counters == counters_old) {
384 			page->freelist = freelist_new;
385 			set_page_slub_counters(page, counters_new);
386 			slab_unlock(page);
387 			return true;
388 		}
389 		slab_unlock(page);
390 	}
391 
392 	cpu_relax();
393 	stat(s, CMPXCHG_DOUBLE_FAIL);
394 
395 #ifdef SLUB_DEBUG_CMPXCHG
396 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398 
399 	return false;
400 }
401 
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 		void *freelist_old, unsigned long counters_old,
404 		void *freelist_new, unsigned long counters_new,
405 		const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 	if (s->flags & __CMPXCHG_DOUBLE) {
410 		if (cmpxchg_double(&page->freelist, &page->counters,
411 				   freelist_old, counters_old,
412 				   freelist_new, counters_new))
413 			return true;
414 	} else
415 #endif
416 	{
417 		unsigned long flags;
418 
419 		local_irq_save(flags);
420 		slab_lock(page);
421 		if (page->freelist == freelist_old &&
422 					page->counters == counters_old) {
423 			page->freelist = freelist_new;
424 			set_page_slub_counters(page, counters_new);
425 			slab_unlock(page);
426 			local_irq_restore(flags);
427 			return true;
428 		}
429 		slab_unlock(page);
430 		local_irq_restore(flags);
431 	}
432 
433 	cpu_relax();
434 	stat(s, CMPXCHG_DOUBLE_FAIL);
435 
436 #ifdef SLUB_DEBUG_CMPXCHG
437 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439 
440 	return false;
441 }
442 
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445  * Determine a map of object in use on a page.
446  *
447  * Node listlock must be held to guarantee that the page does
448  * not vanish from under us.
449  */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 	void *p;
453 	void *addr = page_address(page);
454 
455 	for (p = page->freelist; p; p = get_freepointer(s, p))
456 		set_bit(slab_index(p, s, addr), map);
457 }
458 
459 /*
460  * Debug settings:
461  */
462 #ifdef CONFIG_SLUB_DEBUG_ON
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #else
465 static int slub_debug;
466 #endif
467 
468 static char *slub_debug_slabs;
469 static int disable_higher_order_debug;
470 
471 /*
472  * slub is about to manipulate internal object metadata.  This memory lies
473  * outside the range of the allocated object, so accessing it would normally
474  * be reported by kasan as a bounds error.  metadata_access_enable() is used
475  * to tell kasan that these accesses are OK.
476  */
477 static inline void metadata_access_enable(void)
478 {
479 	kasan_disable_current();
480 }
481 
482 static inline void metadata_access_disable(void)
483 {
484 	kasan_enable_current();
485 }
486 
487 /*
488  * Object debugging
489  */
490 static void print_section(char *text, u8 *addr, unsigned int length)
491 {
492 	metadata_access_enable();
493 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 			length, 1);
495 	metadata_access_disable();
496 }
497 
498 static struct track *get_track(struct kmem_cache *s, void *object,
499 	enum track_item alloc)
500 {
501 	struct track *p;
502 
503 	if (s->offset)
504 		p = object + s->offset + sizeof(void *);
505 	else
506 		p = object + s->inuse;
507 
508 	return p + alloc;
509 }
510 
511 static void set_track(struct kmem_cache *s, void *object,
512 			enum track_item alloc, unsigned long addr)
513 {
514 	struct track *p = get_track(s, object, alloc);
515 
516 	if (addr) {
517 #ifdef CONFIG_STACKTRACE
518 		struct stack_trace trace;
519 		int i;
520 
521 		trace.nr_entries = 0;
522 		trace.max_entries = TRACK_ADDRS_COUNT;
523 		trace.entries = p->addrs;
524 		trace.skip = 3;
525 		metadata_access_enable();
526 		save_stack_trace(&trace);
527 		metadata_access_disable();
528 
529 		/* See rant in lockdep.c */
530 		if (trace.nr_entries != 0 &&
531 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 			trace.nr_entries--;
533 
534 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 			p->addrs[i] = 0;
536 #endif
537 		p->addr = addr;
538 		p->cpu = smp_processor_id();
539 		p->pid = current->pid;
540 		p->when = jiffies;
541 	} else
542 		memset(p, 0, sizeof(struct track));
543 }
544 
545 static void init_tracking(struct kmem_cache *s, void *object)
546 {
547 	if (!(s->flags & SLAB_STORE_USER))
548 		return;
549 
550 	set_track(s, object, TRACK_FREE, 0UL);
551 	set_track(s, object, TRACK_ALLOC, 0UL);
552 }
553 
554 static void print_track(const char *s, struct track *t)
555 {
556 	if (!t->addr)
557 		return;
558 
559 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 #ifdef CONFIG_STACKTRACE
562 	{
563 		int i;
564 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 			if (t->addrs[i])
566 				pr_err("\t%pS\n", (void *)t->addrs[i]);
567 			else
568 				break;
569 	}
570 #endif
571 }
572 
573 static void print_tracking(struct kmem_cache *s, void *object)
574 {
575 	if (!(s->flags & SLAB_STORE_USER))
576 		return;
577 
578 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 	print_track("Freed", get_track(s, object, TRACK_FREE));
580 }
581 
582 static void print_page_info(struct page *page)
583 {
584 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 	       page, page->objects, page->inuse, page->freelist, page->flags);
586 
587 }
588 
589 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590 {
591 	struct va_format vaf;
592 	va_list args;
593 
594 	va_start(args, fmt);
595 	vaf.fmt = fmt;
596 	vaf.va = &args;
597 	pr_err("=============================================================================\n");
598 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599 	pr_err("-----------------------------------------------------------------------------\n\n");
600 
601 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602 	va_end(args);
603 }
604 
605 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606 {
607 	struct va_format vaf;
608 	va_list args;
609 
610 	va_start(args, fmt);
611 	vaf.fmt = fmt;
612 	vaf.va = &args;
613 	pr_err("FIX %s: %pV\n", s->name, &vaf);
614 	va_end(args);
615 }
616 
617 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
618 {
619 	unsigned int off;	/* Offset of last byte */
620 	u8 *addr = page_address(page);
621 
622 	print_tracking(s, p);
623 
624 	print_page_info(page);
625 
626 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 	       p, p - addr, get_freepointer(s, p));
628 
629 	if (p > addr + 16)
630 		print_section("Bytes b4 ", p - 16, 16);
631 
632 	print_section("Object ", p, min_t(unsigned long, s->object_size,
633 				PAGE_SIZE));
634 	if (s->flags & SLAB_RED_ZONE)
635 		print_section("Redzone ", p + s->object_size,
636 			s->inuse - s->object_size);
637 
638 	if (s->offset)
639 		off = s->offset + sizeof(void *);
640 	else
641 		off = s->inuse;
642 
643 	if (s->flags & SLAB_STORE_USER)
644 		off += 2 * sizeof(struct track);
645 
646 	if (off != s->size)
647 		/* Beginning of the filler is the free pointer */
648 		print_section("Padding ", p + off, s->size - off);
649 
650 	dump_stack();
651 }
652 
653 void object_err(struct kmem_cache *s, struct page *page,
654 			u8 *object, char *reason)
655 {
656 	slab_bug(s, "%s", reason);
657 	print_trailer(s, page, object);
658 }
659 
660 static void slab_err(struct kmem_cache *s, struct page *page,
661 			const char *fmt, ...)
662 {
663 	va_list args;
664 	char buf[100];
665 
666 	va_start(args, fmt);
667 	vsnprintf(buf, sizeof(buf), fmt, args);
668 	va_end(args);
669 	slab_bug(s, "%s", buf);
670 	print_page_info(page);
671 	dump_stack();
672 }
673 
674 static void init_object(struct kmem_cache *s, void *object, u8 val)
675 {
676 	u8 *p = object;
677 
678 	if (s->flags & __OBJECT_POISON) {
679 		memset(p, POISON_FREE, s->object_size - 1);
680 		p[s->object_size - 1] = POISON_END;
681 	}
682 
683 	if (s->flags & SLAB_RED_ZONE)
684 		memset(p + s->object_size, val, s->inuse - s->object_size);
685 }
686 
687 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 						void *from, void *to)
689 {
690 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 	memset(from, data, to - from);
692 }
693 
694 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 			u8 *object, char *what,
696 			u8 *start, unsigned int value, unsigned int bytes)
697 {
698 	u8 *fault;
699 	u8 *end;
700 
701 	metadata_access_enable();
702 	fault = memchr_inv(start, value, bytes);
703 	metadata_access_disable();
704 	if (!fault)
705 		return 1;
706 
707 	end = start + bytes;
708 	while (end > fault && end[-1] == value)
709 		end--;
710 
711 	slab_bug(s, "%s overwritten", what);
712 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 					fault, end - 1, fault[0], value);
714 	print_trailer(s, page, object);
715 
716 	restore_bytes(s, what, value, fault, end);
717 	return 0;
718 }
719 
720 /*
721  * Object layout:
722  *
723  * object address
724  * 	Bytes of the object to be managed.
725  * 	If the freepointer may overlay the object then the free
726  * 	pointer is the first word of the object.
727  *
728  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
729  * 	0xa5 (POISON_END)
730  *
731  * object + s->object_size
732  * 	Padding to reach word boundary. This is also used for Redzoning.
733  * 	Padding is extended by another word if Redzoning is enabled and
734  * 	object_size == inuse.
735  *
736  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737  * 	0xcc (RED_ACTIVE) for objects in use.
738  *
739  * object + s->inuse
740  * 	Meta data starts here.
741  *
742  * 	A. Free pointer (if we cannot overwrite object on free)
743  * 	B. Tracking data for SLAB_STORE_USER
744  * 	C. Padding to reach required alignment boundary or at mininum
745  * 		one word if debugging is on to be able to detect writes
746  * 		before the word boundary.
747  *
748  *	Padding is done using 0x5a (POISON_INUSE)
749  *
750  * object + s->size
751  * 	Nothing is used beyond s->size.
752  *
753  * If slabcaches are merged then the object_size and inuse boundaries are mostly
754  * ignored. And therefore no slab options that rely on these boundaries
755  * may be used with merged slabcaches.
756  */
757 
758 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759 {
760 	unsigned long off = s->inuse;	/* The end of info */
761 
762 	if (s->offset)
763 		/* Freepointer is placed after the object. */
764 		off += sizeof(void *);
765 
766 	if (s->flags & SLAB_STORE_USER)
767 		/* We also have user information there */
768 		off += 2 * sizeof(struct track);
769 
770 	if (s->size == off)
771 		return 1;
772 
773 	return check_bytes_and_report(s, page, p, "Object padding",
774 				p + off, POISON_INUSE, s->size - off);
775 }
776 
777 /* Check the pad bytes at the end of a slab page */
778 static int slab_pad_check(struct kmem_cache *s, struct page *page)
779 {
780 	u8 *start;
781 	u8 *fault;
782 	u8 *end;
783 	int length;
784 	int remainder;
785 
786 	if (!(s->flags & SLAB_POISON))
787 		return 1;
788 
789 	start = page_address(page);
790 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 	end = start + length;
792 	remainder = length % s->size;
793 	if (!remainder)
794 		return 1;
795 
796 	metadata_access_enable();
797 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798 	metadata_access_disable();
799 	if (!fault)
800 		return 1;
801 	while (end > fault && end[-1] == POISON_INUSE)
802 		end--;
803 
804 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805 	print_section("Padding ", end - remainder, remainder);
806 
807 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808 	return 0;
809 }
810 
811 static int check_object(struct kmem_cache *s, struct page *page,
812 					void *object, u8 val)
813 {
814 	u8 *p = object;
815 	u8 *endobject = object + s->object_size;
816 
817 	if (s->flags & SLAB_RED_ZONE) {
818 		if (!check_bytes_and_report(s, page, object, "Redzone",
819 			endobject, val, s->inuse - s->object_size))
820 			return 0;
821 	} else {
822 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
823 			check_bytes_and_report(s, page, p, "Alignment padding",
824 				endobject, POISON_INUSE,
825 				s->inuse - s->object_size);
826 		}
827 	}
828 
829 	if (s->flags & SLAB_POISON) {
830 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831 			(!check_bytes_and_report(s, page, p, "Poison", p,
832 					POISON_FREE, s->object_size - 1) ||
833 			 !check_bytes_and_report(s, page, p, "Poison",
834 				p + s->object_size - 1, POISON_END, 1)))
835 			return 0;
836 		/*
837 		 * check_pad_bytes cleans up on its own.
838 		 */
839 		check_pad_bytes(s, page, p);
840 	}
841 
842 	if (!s->offset && val == SLUB_RED_ACTIVE)
843 		/*
844 		 * Object and freepointer overlap. Cannot check
845 		 * freepointer while object is allocated.
846 		 */
847 		return 1;
848 
849 	/* Check free pointer validity */
850 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 		object_err(s, page, p, "Freepointer corrupt");
852 		/*
853 		 * No choice but to zap it and thus lose the remainder
854 		 * of the free objects in this slab. May cause
855 		 * another error because the object count is now wrong.
856 		 */
857 		set_freepointer(s, p, NULL);
858 		return 0;
859 	}
860 	return 1;
861 }
862 
863 static int check_slab(struct kmem_cache *s, struct page *page)
864 {
865 	int maxobj;
866 
867 	VM_BUG_ON(!irqs_disabled());
868 
869 	if (!PageSlab(page)) {
870 		slab_err(s, page, "Not a valid slab page");
871 		return 0;
872 	}
873 
874 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 	if (page->objects > maxobj) {
876 		slab_err(s, page, "objects %u > max %u",
877 			page->objects, maxobj);
878 		return 0;
879 	}
880 	if (page->inuse > page->objects) {
881 		slab_err(s, page, "inuse %u > max %u",
882 			page->inuse, page->objects);
883 		return 0;
884 	}
885 	/* Slab_pad_check fixes things up after itself */
886 	slab_pad_check(s, page);
887 	return 1;
888 }
889 
890 /*
891  * Determine if a certain object on a page is on the freelist. Must hold the
892  * slab lock to guarantee that the chains are in a consistent state.
893  */
894 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895 {
896 	int nr = 0;
897 	void *fp;
898 	void *object = NULL;
899 	int max_objects;
900 
901 	fp = page->freelist;
902 	while (fp && nr <= page->objects) {
903 		if (fp == search)
904 			return 1;
905 		if (!check_valid_pointer(s, page, fp)) {
906 			if (object) {
907 				object_err(s, page, object,
908 					"Freechain corrupt");
909 				set_freepointer(s, object, NULL);
910 			} else {
911 				slab_err(s, page, "Freepointer corrupt");
912 				page->freelist = NULL;
913 				page->inuse = page->objects;
914 				slab_fix(s, "Freelist cleared");
915 				return 0;
916 			}
917 			break;
918 		}
919 		object = fp;
920 		fp = get_freepointer(s, object);
921 		nr++;
922 	}
923 
924 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 	if (max_objects > MAX_OBJS_PER_PAGE)
926 		max_objects = MAX_OBJS_PER_PAGE;
927 
928 	if (page->objects != max_objects) {
929 		slab_err(s, page, "Wrong number of objects. Found %d but "
930 			"should be %d", page->objects, max_objects);
931 		page->objects = max_objects;
932 		slab_fix(s, "Number of objects adjusted.");
933 	}
934 	if (page->inuse != page->objects - nr) {
935 		slab_err(s, page, "Wrong object count. Counter is %d but "
936 			"counted were %d", page->inuse, page->objects - nr);
937 		page->inuse = page->objects - nr;
938 		slab_fix(s, "Object count adjusted.");
939 	}
940 	return search == NULL;
941 }
942 
943 static void trace(struct kmem_cache *s, struct page *page, void *object,
944 								int alloc)
945 {
946 	if (s->flags & SLAB_TRACE) {
947 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
948 			s->name,
949 			alloc ? "alloc" : "free",
950 			object, page->inuse,
951 			page->freelist);
952 
953 		if (!alloc)
954 			print_section("Object ", (void *)object,
955 					s->object_size);
956 
957 		dump_stack();
958 	}
959 }
960 
961 /*
962  * Tracking of fully allocated slabs for debugging purposes.
963  */
964 static void add_full(struct kmem_cache *s,
965 	struct kmem_cache_node *n, struct page *page)
966 {
967 	if (!(s->flags & SLAB_STORE_USER))
968 		return;
969 
970 	lockdep_assert_held(&n->list_lock);
971 	list_add(&page->lru, &n->full);
972 }
973 
974 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 {
976 	if (!(s->flags & SLAB_STORE_USER))
977 		return;
978 
979 	lockdep_assert_held(&n->list_lock);
980 	list_del(&page->lru);
981 }
982 
983 /* Tracking of the number of slabs for debugging purposes */
984 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985 {
986 	struct kmem_cache_node *n = get_node(s, node);
987 
988 	return atomic_long_read(&n->nr_slabs);
989 }
990 
991 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992 {
993 	return atomic_long_read(&n->nr_slabs);
994 }
995 
996 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 {
998 	struct kmem_cache_node *n = get_node(s, node);
999 
1000 	/*
1001 	 * May be called early in order to allocate a slab for the
1002 	 * kmem_cache_node structure. Solve the chicken-egg
1003 	 * dilemma by deferring the increment of the count during
1004 	 * bootstrap (see early_kmem_cache_node_alloc).
1005 	 */
1006 	if (likely(n)) {
1007 		atomic_long_inc(&n->nr_slabs);
1008 		atomic_long_add(objects, &n->total_objects);
1009 	}
1010 }
1011 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 {
1013 	struct kmem_cache_node *n = get_node(s, node);
1014 
1015 	atomic_long_dec(&n->nr_slabs);
1016 	atomic_long_sub(objects, &n->total_objects);
1017 }
1018 
1019 /* Object debug checks for alloc/free paths */
1020 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 								void *object)
1022 {
1023 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 		return;
1025 
1026 	init_object(s, object, SLUB_RED_INACTIVE);
1027 	init_tracking(s, object);
1028 }
1029 
1030 static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 					struct page *page,
1032 					void *object, unsigned long addr)
1033 {
1034 	if (!check_slab(s, page))
1035 		goto bad;
1036 
1037 	if (!check_valid_pointer(s, page, object)) {
1038 		object_err(s, page, object, "Freelist Pointer check fails");
1039 		goto bad;
1040 	}
1041 
1042 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1043 		goto bad;
1044 
1045 	/* Success perform special debug activities for allocs */
1046 	if (s->flags & SLAB_STORE_USER)
1047 		set_track(s, object, TRACK_ALLOC, addr);
1048 	trace(s, page, object, 1);
1049 	init_object(s, object, SLUB_RED_ACTIVE);
1050 	return 1;
1051 
1052 bad:
1053 	if (PageSlab(page)) {
1054 		/*
1055 		 * If this is a slab page then lets do the best we can
1056 		 * to avoid issues in the future. Marking all objects
1057 		 * as used avoids touching the remaining objects.
1058 		 */
1059 		slab_fix(s, "Marking all objects used");
1060 		page->inuse = page->objects;
1061 		page->freelist = NULL;
1062 	}
1063 	return 0;
1064 }
1065 
1066 static noinline struct kmem_cache_node *free_debug_processing(
1067 	struct kmem_cache *s, struct page *page, void *object,
1068 	unsigned long addr, unsigned long *flags)
1069 {
1070 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071 
1072 	spin_lock_irqsave(&n->list_lock, *flags);
1073 	slab_lock(page);
1074 
1075 	if (!check_slab(s, page))
1076 		goto fail;
1077 
1078 	if (!check_valid_pointer(s, page, object)) {
1079 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1080 		goto fail;
1081 	}
1082 
1083 	if (on_freelist(s, page, object)) {
1084 		object_err(s, page, object, "Object already free");
1085 		goto fail;
1086 	}
1087 
1088 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089 		goto out;
1090 
1091 	if (unlikely(s != page->slab_cache)) {
1092 		if (!PageSlab(page)) {
1093 			slab_err(s, page, "Attempt to free object(0x%p) "
1094 				"outside of slab", object);
1095 		} else if (!page->slab_cache) {
1096 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 			       object);
1098 			dump_stack();
1099 		} else
1100 			object_err(s, page, object,
1101 					"page slab pointer corrupt.");
1102 		goto fail;
1103 	}
1104 
1105 	if (s->flags & SLAB_STORE_USER)
1106 		set_track(s, object, TRACK_FREE, addr);
1107 	trace(s, page, object, 0);
1108 	init_object(s, object, SLUB_RED_INACTIVE);
1109 out:
1110 	slab_unlock(page);
1111 	/*
1112 	 * Keep node_lock to preserve integrity
1113 	 * until the object is actually freed
1114 	 */
1115 	return n;
1116 
1117 fail:
1118 	slab_unlock(page);
1119 	spin_unlock_irqrestore(&n->list_lock, *flags);
1120 	slab_fix(s, "Object at 0x%p not freed", object);
1121 	return NULL;
1122 }
1123 
1124 static int __init setup_slub_debug(char *str)
1125 {
1126 	slub_debug = DEBUG_DEFAULT_FLAGS;
1127 	if (*str++ != '=' || !*str)
1128 		/*
1129 		 * No options specified. Switch on full debugging.
1130 		 */
1131 		goto out;
1132 
1133 	if (*str == ',')
1134 		/*
1135 		 * No options but restriction on slabs. This means full
1136 		 * debugging for slabs matching a pattern.
1137 		 */
1138 		goto check_slabs;
1139 
1140 	slub_debug = 0;
1141 	if (*str == '-')
1142 		/*
1143 		 * Switch off all debugging measures.
1144 		 */
1145 		goto out;
1146 
1147 	/*
1148 	 * Determine which debug features should be switched on
1149 	 */
1150 	for (; *str && *str != ','; str++) {
1151 		switch (tolower(*str)) {
1152 		case 'f':
1153 			slub_debug |= SLAB_DEBUG_FREE;
1154 			break;
1155 		case 'z':
1156 			slub_debug |= SLAB_RED_ZONE;
1157 			break;
1158 		case 'p':
1159 			slub_debug |= SLAB_POISON;
1160 			break;
1161 		case 'u':
1162 			slub_debug |= SLAB_STORE_USER;
1163 			break;
1164 		case 't':
1165 			slub_debug |= SLAB_TRACE;
1166 			break;
1167 		case 'a':
1168 			slub_debug |= SLAB_FAILSLAB;
1169 			break;
1170 		case 'o':
1171 			/*
1172 			 * Avoid enabling debugging on caches if its minimum
1173 			 * order would increase as a result.
1174 			 */
1175 			disable_higher_order_debug = 1;
1176 			break;
1177 		default:
1178 			pr_err("slub_debug option '%c' unknown. skipped\n",
1179 			       *str);
1180 		}
1181 	}
1182 
1183 check_slabs:
1184 	if (*str == ',')
1185 		slub_debug_slabs = str + 1;
1186 out:
1187 	return 1;
1188 }
1189 
1190 __setup("slub_debug", setup_slub_debug);
1191 
1192 unsigned long kmem_cache_flags(unsigned long object_size,
1193 	unsigned long flags, const char *name,
1194 	void (*ctor)(void *))
1195 {
1196 	/*
1197 	 * Enable debugging if selected on the kernel commandline.
1198 	 */
1199 	if (slub_debug && (!slub_debug_slabs || (name &&
1200 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1201 		flags |= slub_debug;
1202 
1203 	return flags;
1204 }
1205 #else
1206 static inline void setup_object_debug(struct kmem_cache *s,
1207 			struct page *page, void *object) {}
1208 
1209 static inline int alloc_debug_processing(struct kmem_cache *s,
1210 	struct page *page, void *object, unsigned long addr) { return 0; }
1211 
1212 static inline struct kmem_cache_node *free_debug_processing(
1213 	struct kmem_cache *s, struct page *page, void *object,
1214 	unsigned long addr, unsigned long *flags) { return NULL; }
1215 
1216 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1217 			{ return 1; }
1218 static inline int check_object(struct kmem_cache *s, struct page *page,
1219 			void *object, u8 val) { return 1; }
1220 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1221 					struct page *page) {}
1222 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 					struct page *page) {}
1224 unsigned long kmem_cache_flags(unsigned long object_size,
1225 	unsigned long flags, const char *name,
1226 	void (*ctor)(void *))
1227 {
1228 	return flags;
1229 }
1230 #define slub_debug 0
1231 
1232 #define disable_higher_order_debug 0
1233 
1234 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1235 							{ return 0; }
1236 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1237 							{ return 0; }
1238 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1239 							int objects) {}
1240 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1241 							int objects) {}
1242 
1243 #endif /* CONFIG_SLUB_DEBUG */
1244 
1245 /*
1246  * Hooks for other subsystems that check memory allocations. In a typical
1247  * production configuration these hooks all should produce no code at all.
1248  */
1249 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1250 {
1251 	kmemleak_alloc(ptr, size, 1, flags);
1252 	kasan_kmalloc_large(ptr, size);
1253 }
1254 
1255 static inline void kfree_hook(const void *x)
1256 {
1257 	kmemleak_free(x);
1258 	kasan_kfree_large(x);
1259 }
1260 
1261 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1262 						     gfp_t flags)
1263 {
1264 	flags &= gfp_allowed_mask;
1265 	lockdep_trace_alloc(flags);
1266 	might_sleep_if(flags & __GFP_WAIT);
1267 
1268 	if (should_failslab(s->object_size, flags, s->flags))
1269 		return NULL;
1270 
1271 	return memcg_kmem_get_cache(s, flags);
1272 }
1273 
1274 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1275 					gfp_t flags, void *object)
1276 {
1277 	flags &= gfp_allowed_mask;
1278 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1279 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1280 	memcg_kmem_put_cache(s);
1281 	kasan_slab_alloc(s, object);
1282 }
1283 
1284 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1285 {
1286 	kmemleak_free_recursive(x, s->flags);
1287 
1288 	/*
1289 	 * Trouble is that we may no longer disable interrupts in the fast path
1290 	 * So in order to make the debug calls that expect irqs to be
1291 	 * disabled we need to disable interrupts temporarily.
1292 	 */
1293 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1294 	{
1295 		unsigned long flags;
1296 
1297 		local_irq_save(flags);
1298 		kmemcheck_slab_free(s, x, s->object_size);
1299 		debug_check_no_locks_freed(x, s->object_size);
1300 		local_irq_restore(flags);
1301 	}
1302 #endif
1303 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1304 		debug_check_no_obj_freed(x, s->object_size);
1305 
1306 	kasan_slab_free(s, x);
1307 }
1308 
1309 static void setup_object(struct kmem_cache *s, struct page *page,
1310 				void *object)
1311 {
1312 	setup_object_debug(s, page, object);
1313 	if (unlikely(s->ctor)) {
1314 		kasan_unpoison_object_data(s, object);
1315 		s->ctor(object);
1316 		kasan_poison_object_data(s, object);
1317 	}
1318 }
1319 
1320 /*
1321  * Slab allocation and freeing
1322  */
1323 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1324 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1325 {
1326 	struct page *page;
1327 	int order = oo_order(oo);
1328 
1329 	flags |= __GFP_NOTRACK;
1330 
1331 	if (memcg_charge_slab(s, flags, order))
1332 		return NULL;
1333 
1334 	if (node == NUMA_NO_NODE)
1335 		page = alloc_pages(flags, order);
1336 	else
1337 		page = __alloc_pages_node(node, flags, order);
1338 
1339 	if (!page)
1340 		memcg_uncharge_slab(s, order);
1341 
1342 	return page;
1343 }
1344 
1345 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1346 {
1347 	struct page *page;
1348 	struct kmem_cache_order_objects oo = s->oo;
1349 	gfp_t alloc_gfp;
1350 	void *start, *p;
1351 	int idx, order;
1352 
1353 	flags &= gfp_allowed_mask;
1354 
1355 	if (flags & __GFP_WAIT)
1356 		local_irq_enable();
1357 
1358 	flags |= s->allocflags;
1359 
1360 	/*
1361 	 * Let the initial higher-order allocation fail under memory pressure
1362 	 * so we fall-back to the minimum order allocation.
1363 	 */
1364 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1365 	if ((alloc_gfp & __GFP_WAIT) && oo_order(oo) > oo_order(s->min))
1366 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_WAIT;
1367 
1368 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1369 	if (unlikely(!page)) {
1370 		oo = s->min;
1371 		alloc_gfp = flags;
1372 		/*
1373 		 * Allocation may have failed due to fragmentation.
1374 		 * Try a lower order alloc if possible
1375 		 */
1376 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1377 		if (unlikely(!page))
1378 			goto out;
1379 		stat(s, ORDER_FALLBACK);
1380 	}
1381 
1382 	if (kmemcheck_enabled &&
1383 	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1384 		int pages = 1 << oo_order(oo);
1385 
1386 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1387 
1388 		/*
1389 		 * Objects from caches that have a constructor don't get
1390 		 * cleared when they're allocated, so we need to do it here.
1391 		 */
1392 		if (s->ctor)
1393 			kmemcheck_mark_uninitialized_pages(page, pages);
1394 		else
1395 			kmemcheck_mark_unallocated_pages(page, pages);
1396 	}
1397 
1398 	page->objects = oo_objects(oo);
1399 
1400 	order = compound_order(page);
1401 	page->slab_cache = s;
1402 	__SetPageSlab(page);
1403 	if (page_is_pfmemalloc(page))
1404 		SetPageSlabPfmemalloc(page);
1405 
1406 	start = page_address(page);
1407 
1408 	if (unlikely(s->flags & SLAB_POISON))
1409 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1410 
1411 	kasan_poison_slab(page);
1412 
1413 	for_each_object_idx(p, idx, s, start, page->objects) {
1414 		setup_object(s, page, p);
1415 		if (likely(idx < page->objects))
1416 			set_freepointer(s, p, p + s->size);
1417 		else
1418 			set_freepointer(s, p, NULL);
1419 	}
1420 
1421 	page->freelist = start;
1422 	page->inuse = page->objects;
1423 	page->frozen = 1;
1424 
1425 out:
1426 	if (flags & __GFP_WAIT)
1427 		local_irq_disable();
1428 	if (!page)
1429 		return NULL;
1430 
1431 	mod_zone_page_state(page_zone(page),
1432 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1433 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1434 		1 << oo_order(oo));
1435 
1436 	inc_slabs_node(s, page_to_nid(page), page->objects);
1437 
1438 	return page;
1439 }
1440 
1441 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1442 {
1443 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1444 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1445 		BUG();
1446 	}
1447 
1448 	return allocate_slab(s,
1449 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1450 }
1451 
1452 static void __free_slab(struct kmem_cache *s, struct page *page)
1453 {
1454 	int order = compound_order(page);
1455 	int pages = 1 << order;
1456 
1457 	if (kmem_cache_debug(s)) {
1458 		void *p;
1459 
1460 		slab_pad_check(s, page);
1461 		for_each_object(p, s, page_address(page),
1462 						page->objects)
1463 			check_object(s, page, p, SLUB_RED_INACTIVE);
1464 	}
1465 
1466 	kmemcheck_free_shadow(page, compound_order(page));
1467 
1468 	mod_zone_page_state(page_zone(page),
1469 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1470 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1471 		-pages);
1472 
1473 	__ClearPageSlabPfmemalloc(page);
1474 	__ClearPageSlab(page);
1475 
1476 	page_mapcount_reset(page);
1477 	if (current->reclaim_state)
1478 		current->reclaim_state->reclaimed_slab += pages;
1479 	__free_pages(page, order);
1480 	memcg_uncharge_slab(s, order);
1481 }
1482 
1483 #define need_reserve_slab_rcu						\
1484 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1485 
1486 static void rcu_free_slab(struct rcu_head *h)
1487 {
1488 	struct page *page;
1489 
1490 	if (need_reserve_slab_rcu)
1491 		page = virt_to_head_page(h);
1492 	else
1493 		page = container_of((struct list_head *)h, struct page, lru);
1494 
1495 	__free_slab(page->slab_cache, page);
1496 }
1497 
1498 static void free_slab(struct kmem_cache *s, struct page *page)
1499 {
1500 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1501 		struct rcu_head *head;
1502 
1503 		if (need_reserve_slab_rcu) {
1504 			int order = compound_order(page);
1505 			int offset = (PAGE_SIZE << order) - s->reserved;
1506 
1507 			VM_BUG_ON(s->reserved != sizeof(*head));
1508 			head = page_address(page) + offset;
1509 		} else {
1510 			/*
1511 			 * RCU free overloads the RCU head over the LRU
1512 			 */
1513 			head = (void *)&page->lru;
1514 		}
1515 
1516 		call_rcu(head, rcu_free_slab);
1517 	} else
1518 		__free_slab(s, page);
1519 }
1520 
1521 static void discard_slab(struct kmem_cache *s, struct page *page)
1522 {
1523 	dec_slabs_node(s, page_to_nid(page), page->objects);
1524 	free_slab(s, page);
1525 }
1526 
1527 /*
1528  * Management of partially allocated slabs.
1529  */
1530 static inline void
1531 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1532 {
1533 	n->nr_partial++;
1534 	if (tail == DEACTIVATE_TO_TAIL)
1535 		list_add_tail(&page->lru, &n->partial);
1536 	else
1537 		list_add(&page->lru, &n->partial);
1538 }
1539 
1540 static inline void add_partial(struct kmem_cache_node *n,
1541 				struct page *page, int tail)
1542 {
1543 	lockdep_assert_held(&n->list_lock);
1544 	__add_partial(n, page, tail);
1545 }
1546 
1547 static inline void
1548 __remove_partial(struct kmem_cache_node *n, struct page *page)
1549 {
1550 	list_del(&page->lru);
1551 	n->nr_partial--;
1552 }
1553 
1554 static inline void remove_partial(struct kmem_cache_node *n,
1555 					struct page *page)
1556 {
1557 	lockdep_assert_held(&n->list_lock);
1558 	__remove_partial(n, page);
1559 }
1560 
1561 /*
1562  * Remove slab from the partial list, freeze it and
1563  * return the pointer to the freelist.
1564  *
1565  * Returns a list of objects or NULL if it fails.
1566  */
1567 static inline void *acquire_slab(struct kmem_cache *s,
1568 		struct kmem_cache_node *n, struct page *page,
1569 		int mode, int *objects)
1570 {
1571 	void *freelist;
1572 	unsigned long counters;
1573 	struct page new;
1574 
1575 	lockdep_assert_held(&n->list_lock);
1576 
1577 	/*
1578 	 * Zap the freelist and set the frozen bit.
1579 	 * The old freelist is the list of objects for the
1580 	 * per cpu allocation list.
1581 	 */
1582 	freelist = page->freelist;
1583 	counters = page->counters;
1584 	new.counters = counters;
1585 	*objects = new.objects - new.inuse;
1586 	if (mode) {
1587 		new.inuse = page->objects;
1588 		new.freelist = NULL;
1589 	} else {
1590 		new.freelist = freelist;
1591 	}
1592 
1593 	VM_BUG_ON(new.frozen);
1594 	new.frozen = 1;
1595 
1596 	if (!__cmpxchg_double_slab(s, page,
1597 			freelist, counters,
1598 			new.freelist, new.counters,
1599 			"acquire_slab"))
1600 		return NULL;
1601 
1602 	remove_partial(n, page);
1603 	WARN_ON(!freelist);
1604 	return freelist;
1605 }
1606 
1607 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1608 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1609 
1610 /*
1611  * Try to allocate a partial slab from a specific node.
1612  */
1613 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1614 				struct kmem_cache_cpu *c, gfp_t flags)
1615 {
1616 	struct page *page, *page2;
1617 	void *object = NULL;
1618 	int available = 0;
1619 	int objects;
1620 
1621 	/*
1622 	 * Racy check. If we mistakenly see no partial slabs then we
1623 	 * just allocate an empty slab. If we mistakenly try to get a
1624 	 * partial slab and there is none available then get_partials()
1625 	 * will return NULL.
1626 	 */
1627 	if (!n || !n->nr_partial)
1628 		return NULL;
1629 
1630 	spin_lock(&n->list_lock);
1631 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1632 		void *t;
1633 
1634 		if (!pfmemalloc_match(page, flags))
1635 			continue;
1636 
1637 		t = acquire_slab(s, n, page, object == NULL, &objects);
1638 		if (!t)
1639 			break;
1640 
1641 		available += objects;
1642 		if (!object) {
1643 			c->page = page;
1644 			stat(s, ALLOC_FROM_PARTIAL);
1645 			object = t;
1646 		} else {
1647 			put_cpu_partial(s, page, 0);
1648 			stat(s, CPU_PARTIAL_NODE);
1649 		}
1650 		if (!kmem_cache_has_cpu_partial(s)
1651 			|| available > s->cpu_partial / 2)
1652 			break;
1653 
1654 	}
1655 	spin_unlock(&n->list_lock);
1656 	return object;
1657 }
1658 
1659 /*
1660  * Get a page from somewhere. Search in increasing NUMA distances.
1661  */
1662 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1663 		struct kmem_cache_cpu *c)
1664 {
1665 #ifdef CONFIG_NUMA
1666 	struct zonelist *zonelist;
1667 	struct zoneref *z;
1668 	struct zone *zone;
1669 	enum zone_type high_zoneidx = gfp_zone(flags);
1670 	void *object;
1671 	unsigned int cpuset_mems_cookie;
1672 
1673 	/*
1674 	 * The defrag ratio allows a configuration of the tradeoffs between
1675 	 * inter node defragmentation and node local allocations. A lower
1676 	 * defrag_ratio increases the tendency to do local allocations
1677 	 * instead of attempting to obtain partial slabs from other nodes.
1678 	 *
1679 	 * If the defrag_ratio is set to 0 then kmalloc() always
1680 	 * returns node local objects. If the ratio is higher then kmalloc()
1681 	 * may return off node objects because partial slabs are obtained
1682 	 * from other nodes and filled up.
1683 	 *
1684 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1685 	 * defrag_ratio = 1000) then every (well almost) allocation will
1686 	 * first attempt to defrag slab caches on other nodes. This means
1687 	 * scanning over all nodes to look for partial slabs which may be
1688 	 * expensive if we do it every time we are trying to find a slab
1689 	 * with available objects.
1690 	 */
1691 	if (!s->remote_node_defrag_ratio ||
1692 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1693 		return NULL;
1694 
1695 	do {
1696 		cpuset_mems_cookie = read_mems_allowed_begin();
1697 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1698 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1699 			struct kmem_cache_node *n;
1700 
1701 			n = get_node(s, zone_to_nid(zone));
1702 
1703 			if (n && cpuset_zone_allowed(zone, flags) &&
1704 					n->nr_partial > s->min_partial) {
1705 				object = get_partial_node(s, n, c, flags);
1706 				if (object) {
1707 					/*
1708 					 * Don't check read_mems_allowed_retry()
1709 					 * here - if mems_allowed was updated in
1710 					 * parallel, that was a harmless race
1711 					 * between allocation and the cpuset
1712 					 * update
1713 					 */
1714 					return object;
1715 				}
1716 			}
1717 		}
1718 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1719 #endif
1720 	return NULL;
1721 }
1722 
1723 /*
1724  * Get a partial page, lock it and return it.
1725  */
1726 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1727 		struct kmem_cache_cpu *c)
1728 {
1729 	void *object;
1730 	int searchnode = node;
1731 
1732 	if (node == NUMA_NO_NODE)
1733 		searchnode = numa_mem_id();
1734 	else if (!node_present_pages(node))
1735 		searchnode = node_to_mem_node(node);
1736 
1737 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1738 	if (object || node != NUMA_NO_NODE)
1739 		return object;
1740 
1741 	return get_any_partial(s, flags, c);
1742 }
1743 
1744 #ifdef CONFIG_PREEMPT
1745 /*
1746  * Calculate the next globally unique transaction for disambiguiation
1747  * during cmpxchg. The transactions start with the cpu number and are then
1748  * incremented by CONFIG_NR_CPUS.
1749  */
1750 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1751 #else
1752 /*
1753  * No preemption supported therefore also no need to check for
1754  * different cpus.
1755  */
1756 #define TID_STEP 1
1757 #endif
1758 
1759 static inline unsigned long next_tid(unsigned long tid)
1760 {
1761 	return tid + TID_STEP;
1762 }
1763 
1764 static inline unsigned int tid_to_cpu(unsigned long tid)
1765 {
1766 	return tid % TID_STEP;
1767 }
1768 
1769 static inline unsigned long tid_to_event(unsigned long tid)
1770 {
1771 	return tid / TID_STEP;
1772 }
1773 
1774 static inline unsigned int init_tid(int cpu)
1775 {
1776 	return cpu;
1777 }
1778 
1779 static inline void note_cmpxchg_failure(const char *n,
1780 		const struct kmem_cache *s, unsigned long tid)
1781 {
1782 #ifdef SLUB_DEBUG_CMPXCHG
1783 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1784 
1785 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1786 
1787 #ifdef CONFIG_PREEMPT
1788 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1789 		pr_warn("due to cpu change %d -> %d\n",
1790 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1791 	else
1792 #endif
1793 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1794 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1795 			tid_to_event(tid), tid_to_event(actual_tid));
1796 	else
1797 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1798 			actual_tid, tid, next_tid(tid));
1799 #endif
1800 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1801 }
1802 
1803 static void init_kmem_cache_cpus(struct kmem_cache *s)
1804 {
1805 	int cpu;
1806 
1807 	for_each_possible_cpu(cpu)
1808 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1809 }
1810 
1811 /*
1812  * Remove the cpu slab
1813  */
1814 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1815 				void *freelist)
1816 {
1817 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1818 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1819 	int lock = 0;
1820 	enum slab_modes l = M_NONE, m = M_NONE;
1821 	void *nextfree;
1822 	int tail = DEACTIVATE_TO_HEAD;
1823 	struct page new;
1824 	struct page old;
1825 
1826 	if (page->freelist) {
1827 		stat(s, DEACTIVATE_REMOTE_FREES);
1828 		tail = DEACTIVATE_TO_TAIL;
1829 	}
1830 
1831 	/*
1832 	 * Stage one: Free all available per cpu objects back
1833 	 * to the page freelist while it is still frozen. Leave the
1834 	 * last one.
1835 	 *
1836 	 * There is no need to take the list->lock because the page
1837 	 * is still frozen.
1838 	 */
1839 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1840 		void *prior;
1841 		unsigned long counters;
1842 
1843 		do {
1844 			prior = page->freelist;
1845 			counters = page->counters;
1846 			set_freepointer(s, freelist, prior);
1847 			new.counters = counters;
1848 			new.inuse--;
1849 			VM_BUG_ON(!new.frozen);
1850 
1851 		} while (!__cmpxchg_double_slab(s, page,
1852 			prior, counters,
1853 			freelist, new.counters,
1854 			"drain percpu freelist"));
1855 
1856 		freelist = nextfree;
1857 	}
1858 
1859 	/*
1860 	 * Stage two: Ensure that the page is unfrozen while the
1861 	 * list presence reflects the actual number of objects
1862 	 * during unfreeze.
1863 	 *
1864 	 * We setup the list membership and then perform a cmpxchg
1865 	 * with the count. If there is a mismatch then the page
1866 	 * is not unfrozen but the page is on the wrong list.
1867 	 *
1868 	 * Then we restart the process which may have to remove
1869 	 * the page from the list that we just put it on again
1870 	 * because the number of objects in the slab may have
1871 	 * changed.
1872 	 */
1873 redo:
1874 
1875 	old.freelist = page->freelist;
1876 	old.counters = page->counters;
1877 	VM_BUG_ON(!old.frozen);
1878 
1879 	/* Determine target state of the slab */
1880 	new.counters = old.counters;
1881 	if (freelist) {
1882 		new.inuse--;
1883 		set_freepointer(s, freelist, old.freelist);
1884 		new.freelist = freelist;
1885 	} else
1886 		new.freelist = old.freelist;
1887 
1888 	new.frozen = 0;
1889 
1890 	if (!new.inuse && n->nr_partial >= s->min_partial)
1891 		m = M_FREE;
1892 	else if (new.freelist) {
1893 		m = M_PARTIAL;
1894 		if (!lock) {
1895 			lock = 1;
1896 			/*
1897 			 * Taking the spinlock removes the possiblity
1898 			 * that acquire_slab() will see a slab page that
1899 			 * is frozen
1900 			 */
1901 			spin_lock(&n->list_lock);
1902 		}
1903 	} else {
1904 		m = M_FULL;
1905 		if (kmem_cache_debug(s) && !lock) {
1906 			lock = 1;
1907 			/*
1908 			 * This also ensures that the scanning of full
1909 			 * slabs from diagnostic functions will not see
1910 			 * any frozen slabs.
1911 			 */
1912 			spin_lock(&n->list_lock);
1913 		}
1914 	}
1915 
1916 	if (l != m) {
1917 
1918 		if (l == M_PARTIAL)
1919 
1920 			remove_partial(n, page);
1921 
1922 		else if (l == M_FULL)
1923 
1924 			remove_full(s, n, page);
1925 
1926 		if (m == M_PARTIAL) {
1927 
1928 			add_partial(n, page, tail);
1929 			stat(s, tail);
1930 
1931 		} else if (m == M_FULL) {
1932 
1933 			stat(s, DEACTIVATE_FULL);
1934 			add_full(s, n, page);
1935 
1936 		}
1937 	}
1938 
1939 	l = m;
1940 	if (!__cmpxchg_double_slab(s, page,
1941 				old.freelist, old.counters,
1942 				new.freelist, new.counters,
1943 				"unfreezing slab"))
1944 		goto redo;
1945 
1946 	if (lock)
1947 		spin_unlock(&n->list_lock);
1948 
1949 	if (m == M_FREE) {
1950 		stat(s, DEACTIVATE_EMPTY);
1951 		discard_slab(s, page);
1952 		stat(s, FREE_SLAB);
1953 	}
1954 }
1955 
1956 /*
1957  * Unfreeze all the cpu partial slabs.
1958  *
1959  * This function must be called with interrupts disabled
1960  * for the cpu using c (or some other guarantee must be there
1961  * to guarantee no concurrent accesses).
1962  */
1963 static void unfreeze_partials(struct kmem_cache *s,
1964 		struct kmem_cache_cpu *c)
1965 {
1966 #ifdef CONFIG_SLUB_CPU_PARTIAL
1967 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1968 	struct page *page, *discard_page = NULL;
1969 
1970 	while ((page = c->partial)) {
1971 		struct page new;
1972 		struct page old;
1973 
1974 		c->partial = page->next;
1975 
1976 		n2 = get_node(s, page_to_nid(page));
1977 		if (n != n2) {
1978 			if (n)
1979 				spin_unlock(&n->list_lock);
1980 
1981 			n = n2;
1982 			spin_lock(&n->list_lock);
1983 		}
1984 
1985 		do {
1986 
1987 			old.freelist = page->freelist;
1988 			old.counters = page->counters;
1989 			VM_BUG_ON(!old.frozen);
1990 
1991 			new.counters = old.counters;
1992 			new.freelist = old.freelist;
1993 
1994 			new.frozen = 0;
1995 
1996 		} while (!__cmpxchg_double_slab(s, page,
1997 				old.freelist, old.counters,
1998 				new.freelist, new.counters,
1999 				"unfreezing slab"));
2000 
2001 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2002 			page->next = discard_page;
2003 			discard_page = page;
2004 		} else {
2005 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2006 			stat(s, FREE_ADD_PARTIAL);
2007 		}
2008 	}
2009 
2010 	if (n)
2011 		spin_unlock(&n->list_lock);
2012 
2013 	while (discard_page) {
2014 		page = discard_page;
2015 		discard_page = discard_page->next;
2016 
2017 		stat(s, DEACTIVATE_EMPTY);
2018 		discard_slab(s, page);
2019 		stat(s, FREE_SLAB);
2020 	}
2021 #endif
2022 }
2023 
2024 /*
2025  * Put a page that was just frozen (in __slab_free) into a partial page
2026  * slot if available. This is done without interrupts disabled and without
2027  * preemption disabled. The cmpxchg is racy and may put the partial page
2028  * onto a random cpus partial slot.
2029  *
2030  * If we did not find a slot then simply move all the partials to the
2031  * per node partial list.
2032  */
2033 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2034 {
2035 #ifdef CONFIG_SLUB_CPU_PARTIAL
2036 	struct page *oldpage;
2037 	int pages;
2038 	int pobjects;
2039 
2040 	preempt_disable();
2041 	do {
2042 		pages = 0;
2043 		pobjects = 0;
2044 		oldpage = this_cpu_read(s->cpu_slab->partial);
2045 
2046 		if (oldpage) {
2047 			pobjects = oldpage->pobjects;
2048 			pages = oldpage->pages;
2049 			if (drain && pobjects > s->cpu_partial) {
2050 				unsigned long flags;
2051 				/*
2052 				 * partial array is full. Move the existing
2053 				 * set to the per node partial list.
2054 				 */
2055 				local_irq_save(flags);
2056 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2057 				local_irq_restore(flags);
2058 				oldpage = NULL;
2059 				pobjects = 0;
2060 				pages = 0;
2061 				stat(s, CPU_PARTIAL_DRAIN);
2062 			}
2063 		}
2064 
2065 		pages++;
2066 		pobjects += page->objects - page->inuse;
2067 
2068 		page->pages = pages;
2069 		page->pobjects = pobjects;
2070 		page->next = oldpage;
2071 
2072 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2073 								!= oldpage);
2074 	if (unlikely(!s->cpu_partial)) {
2075 		unsigned long flags;
2076 
2077 		local_irq_save(flags);
2078 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2079 		local_irq_restore(flags);
2080 	}
2081 	preempt_enable();
2082 #endif
2083 }
2084 
2085 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2086 {
2087 	stat(s, CPUSLAB_FLUSH);
2088 	deactivate_slab(s, c->page, c->freelist);
2089 
2090 	c->tid = next_tid(c->tid);
2091 	c->page = NULL;
2092 	c->freelist = NULL;
2093 }
2094 
2095 /*
2096  * Flush cpu slab.
2097  *
2098  * Called from IPI handler with interrupts disabled.
2099  */
2100 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2101 {
2102 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2103 
2104 	if (likely(c)) {
2105 		if (c->page)
2106 			flush_slab(s, c);
2107 
2108 		unfreeze_partials(s, c);
2109 	}
2110 }
2111 
2112 static void flush_cpu_slab(void *d)
2113 {
2114 	struct kmem_cache *s = d;
2115 
2116 	__flush_cpu_slab(s, smp_processor_id());
2117 }
2118 
2119 static bool has_cpu_slab(int cpu, void *info)
2120 {
2121 	struct kmem_cache *s = info;
2122 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2123 
2124 	return c->page || c->partial;
2125 }
2126 
2127 static void flush_all(struct kmem_cache *s)
2128 {
2129 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2130 }
2131 
2132 /*
2133  * Check if the objects in a per cpu structure fit numa
2134  * locality expectations.
2135  */
2136 static inline int node_match(struct page *page, int node)
2137 {
2138 #ifdef CONFIG_NUMA
2139 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2140 		return 0;
2141 #endif
2142 	return 1;
2143 }
2144 
2145 #ifdef CONFIG_SLUB_DEBUG
2146 static int count_free(struct page *page)
2147 {
2148 	return page->objects - page->inuse;
2149 }
2150 
2151 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2152 {
2153 	return atomic_long_read(&n->total_objects);
2154 }
2155 #endif /* CONFIG_SLUB_DEBUG */
2156 
2157 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2158 static unsigned long count_partial(struct kmem_cache_node *n,
2159 					int (*get_count)(struct page *))
2160 {
2161 	unsigned long flags;
2162 	unsigned long x = 0;
2163 	struct page *page;
2164 
2165 	spin_lock_irqsave(&n->list_lock, flags);
2166 	list_for_each_entry(page, &n->partial, lru)
2167 		x += get_count(page);
2168 	spin_unlock_irqrestore(&n->list_lock, flags);
2169 	return x;
2170 }
2171 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2172 
2173 static noinline void
2174 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2175 {
2176 #ifdef CONFIG_SLUB_DEBUG
2177 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2178 				      DEFAULT_RATELIMIT_BURST);
2179 	int node;
2180 	struct kmem_cache_node *n;
2181 
2182 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2183 		return;
2184 
2185 	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2186 		nid, gfpflags);
2187 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2188 		s->name, s->object_size, s->size, oo_order(s->oo),
2189 		oo_order(s->min));
2190 
2191 	if (oo_order(s->min) > get_order(s->object_size))
2192 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2193 			s->name);
2194 
2195 	for_each_kmem_cache_node(s, node, n) {
2196 		unsigned long nr_slabs;
2197 		unsigned long nr_objs;
2198 		unsigned long nr_free;
2199 
2200 		nr_free  = count_partial(n, count_free);
2201 		nr_slabs = node_nr_slabs(n);
2202 		nr_objs  = node_nr_objs(n);
2203 
2204 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2205 			node, nr_slabs, nr_objs, nr_free);
2206 	}
2207 #endif
2208 }
2209 
2210 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2211 			int node, struct kmem_cache_cpu **pc)
2212 {
2213 	void *freelist;
2214 	struct kmem_cache_cpu *c = *pc;
2215 	struct page *page;
2216 
2217 	freelist = get_partial(s, flags, node, c);
2218 
2219 	if (freelist)
2220 		return freelist;
2221 
2222 	page = new_slab(s, flags, node);
2223 	if (page) {
2224 		c = raw_cpu_ptr(s->cpu_slab);
2225 		if (c->page)
2226 			flush_slab(s, c);
2227 
2228 		/*
2229 		 * No other reference to the page yet so we can
2230 		 * muck around with it freely without cmpxchg
2231 		 */
2232 		freelist = page->freelist;
2233 		page->freelist = NULL;
2234 
2235 		stat(s, ALLOC_SLAB);
2236 		c->page = page;
2237 		*pc = c;
2238 	} else
2239 		freelist = NULL;
2240 
2241 	return freelist;
2242 }
2243 
2244 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2245 {
2246 	if (unlikely(PageSlabPfmemalloc(page)))
2247 		return gfp_pfmemalloc_allowed(gfpflags);
2248 
2249 	return true;
2250 }
2251 
2252 /*
2253  * Check the page->freelist of a page and either transfer the freelist to the
2254  * per cpu freelist or deactivate the page.
2255  *
2256  * The page is still frozen if the return value is not NULL.
2257  *
2258  * If this function returns NULL then the page has been unfrozen.
2259  *
2260  * This function must be called with interrupt disabled.
2261  */
2262 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2263 {
2264 	struct page new;
2265 	unsigned long counters;
2266 	void *freelist;
2267 
2268 	do {
2269 		freelist = page->freelist;
2270 		counters = page->counters;
2271 
2272 		new.counters = counters;
2273 		VM_BUG_ON(!new.frozen);
2274 
2275 		new.inuse = page->objects;
2276 		new.frozen = freelist != NULL;
2277 
2278 	} while (!__cmpxchg_double_slab(s, page,
2279 		freelist, counters,
2280 		NULL, new.counters,
2281 		"get_freelist"));
2282 
2283 	return freelist;
2284 }
2285 
2286 /*
2287  * Slow path. The lockless freelist is empty or we need to perform
2288  * debugging duties.
2289  *
2290  * Processing is still very fast if new objects have been freed to the
2291  * regular freelist. In that case we simply take over the regular freelist
2292  * as the lockless freelist and zap the regular freelist.
2293  *
2294  * If that is not working then we fall back to the partial lists. We take the
2295  * first element of the freelist as the object to allocate now and move the
2296  * rest of the freelist to the lockless freelist.
2297  *
2298  * And if we were unable to get a new slab from the partial slab lists then
2299  * we need to allocate a new slab. This is the slowest path since it involves
2300  * a call to the page allocator and the setup of a new slab.
2301  */
2302 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2303 			  unsigned long addr, struct kmem_cache_cpu *c)
2304 {
2305 	void *freelist;
2306 	struct page *page;
2307 	unsigned long flags;
2308 
2309 	local_irq_save(flags);
2310 #ifdef CONFIG_PREEMPT
2311 	/*
2312 	 * We may have been preempted and rescheduled on a different
2313 	 * cpu before disabling interrupts. Need to reload cpu area
2314 	 * pointer.
2315 	 */
2316 	c = this_cpu_ptr(s->cpu_slab);
2317 #endif
2318 
2319 	page = c->page;
2320 	if (!page)
2321 		goto new_slab;
2322 redo:
2323 
2324 	if (unlikely(!node_match(page, node))) {
2325 		int searchnode = node;
2326 
2327 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2328 			searchnode = node_to_mem_node(node);
2329 
2330 		if (unlikely(!node_match(page, searchnode))) {
2331 			stat(s, ALLOC_NODE_MISMATCH);
2332 			deactivate_slab(s, page, c->freelist);
2333 			c->page = NULL;
2334 			c->freelist = NULL;
2335 			goto new_slab;
2336 		}
2337 	}
2338 
2339 	/*
2340 	 * By rights, we should be searching for a slab page that was
2341 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2342 	 * information when the page leaves the per-cpu allocator
2343 	 */
2344 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2345 		deactivate_slab(s, page, c->freelist);
2346 		c->page = NULL;
2347 		c->freelist = NULL;
2348 		goto new_slab;
2349 	}
2350 
2351 	/* must check again c->freelist in case of cpu migration or IRQ */
2352 	freelist = c->freelist;
2353 	if (freelist)
2354 		goto load_freelist;
2355 
2356 	freelist = get_freelist(s, page);
2357 
2358 	if (!freelist) {
2359 		c->page = NULL;
2360 		stat(s, DEACTIVATE_BYPASS);
2361 		goto new_slab;
2362 	}
2363 
2364 	stat(s, ALLOC_REFILL);
2365 
2366 load_freelist:
2367 	/*
2368 	 * freelist is pointing to the list of objects to be used.
2369 	 * page is pointing to the page from which the objects are obtained.
2370 	 * That page must be frozen for per cpu allocations to work.
2371 	 */
2372 	VM_BUG_ON(!c->page->frozen);
2373 	c->freelist = get_freepointer(s, freelist);
2374 	c->tid = next_tid(c->tid);
2375 	local_irq_restore(flags);
2376 	return freelist;
2377 
2378 new_slab:
2379 
2380 	if (c->partial) {
2381 		page = c->page = c->partial;
2382 		c->partial = page->next;
2383 		stat(s, CPU_PARTIAL_ALLOC);
2384 		c->freelist = NULL;
2385 		goto redo;
2386 	}
2387 
2388 	freelist = new_slab_objects(s, gfpflags, node, &c);
2389 
2390 	if (unlikely(!freelist)) {
2391 		slab_out_of_memory(s, gfpflags, node);
2392 		local_irq_restore(flags);
2393 		return NULL;
2394 	}
2395 
2396 	page = c->page;
2397 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2398 		goto load_freelist;
2399 
2400 	/* Only entered in the debug case */
2401 	if (kmem_cache_debug(s) &&
2402 			!alloc_debug_processing(s, page, freelist, addr))
2403 		goto new_slab;	/* Slab failed checks. Next slab needed */
2404 
2405 	deactivate_slab(s, page, get_freepointer(s, freelist));
2406 	c->page = NULL;
2407 	c->freelist = NULL;
2408 	local_irq_restore(flags);
2409 	return freelist;
2410 }
2411 
2412 /*
2413  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2414  * have the fastpath folded into their functions. So no function call
2415  * overhead for requests that can be satisfied on the fastpath.
2416  *
2417  * The fastpath works by first checking if the lockless freelist can be used.
2418  * If not then __slab_alloc is called for slow processing.
2419  *
2420  * Otherwise we can simply pick the next object from the lockless free list.
2421  */
2422 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2423 		gfp_t gfpflags, int node, unsigned long addr)
2424 {
2425 	void **object;
2426 	struct kmem_cache_cpu *c;
2427 	struct page *page;
2428 	unsigned long tid;
2429 
2430 	s = slab_pre_alloc_hook(s, gfpflags);
2431 	if (!s)
2432 		return NULL;
2433 redo:
2434 	/*
2435 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2436 	 * enabled. We may switch back and forth between cpus while
2437 	 * reading from one cpu area. That does not matter as long
2438 	 * as we end up on the original cpu again when doing the cmpxchg.
2439 	 *
2440 	 * We should guarantee that tid and kmem_cache are retrieved on
2441 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2442 	 * to check if it is matched or not.
2443 	 */
2444 	do {
2445 		tid = this_cpu_read(s->cpu_slab->tid);
2446 		c = raw_cpu_ptr(s->cpu_slab);
2447 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2448 		 unlikely(tid != READ_ONCE(c->tid)));
2449 
2450 	/*
2451 	 * Irqless object alloc/free algorithm used here depends on sequence
2452 	 * of fetching cpu_slab's data. tid should be fetched before anything
2453 	 * on c to guarantee that object and page associated with previous tid
2454 	 * won't be used with current tid. If we fetch tid first, object and
2455 	 * page could be one associated with next tid and our alloc/free
2456 	 * request will be failed. In this case, we will retry. So, no problem.
2457 	 */
2458 	barrier();
2459 
2460 	/*
2461 	 * The transaction ids are globally unique per cpu and per operation on
2462 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2463 	 * occurs on the right processor and that there was no operation on the
2464 	 * linked list in between.
2465 	 */
2466 
2467 	object = c->freelist;
2468 	page = c->page;
2469 	if (unlikely(!object || !node_match(page, node))) {
2470 		object = __slab_alloc(s, gfpflags, node, addr, c);
2471 		stat(s, ALLOC_SLOWPATH);
2472 	} else {
2473 		void *next_object = get_freepointer_safe(s, object);
2474 
2475 		/*
2476 		 * The cmpxchg will only match if there was no additional
2477 		 * operation and if we are on the right processor.
2478 		 *
2479 		 * The cmpxchg does the following atomically (without lock
2480 		 * semantics!)
2481 		 * 1. Relocate first pointer to the current per cpu area.
2482 		 * 2. Verify that tid and freelist have not been changed
2483 		 * 3. If they were not changed replace tid and freelist
2484 		 *
2485 		 * Since this is without lock semantics the protection is only
2486 		 * against code executing on this cpu *not* from access by
2487 		 * other cpus.
2488 		 */
2489 		if (unlikely(!this_cpu_cmpxchg_double(
2490 				s->cpu_slab->freelist, s->cpu_slab->tid,
2491 				object, tid,
2492 				next_object, next_tid(tid)))) {
2493 
2494 			note_cmpxchg_failure("slab_alloc", s, tid);
2495 			goto redo;
2496 		}
2497 		prefetch_freepointer(s, next_object);
2498 		stat(s, ALLOC_FASTPATH);
2499 	}
2500 
2501 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2502 		memset(object, 0, s->object_size);
2503 
2504 	slab_post_alloc_hook(s, gfpflags, object);
2505 
2506 	return object;
2507 }
2508 
2509 static __always_inline void *slab_alloc(struct kmem_cache *s,
2510 		gfp_t gfpflags, unsigned long addr)
2511 {
2512 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2513 }
2514 
2515 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2516 {
2517 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2518 
2519 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2520 				s->size, gfpflags);
2521 
2522 	return ret;
2523 }
2524 EXPORT_SYMBOL(kmem_cache_alloc);
2525 
2526 #ifdef CONFIG_TRACING
2527 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2528 {
2529 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2530 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2531 	kasan_kmalloc(s, ret, size);
2532 	return ret;
2533 }
2534 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2535 #endif
2536 
2537 #ifdef CONFIG_NUMA
2538 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2539 {
2540 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2541 
2542 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2543 				    s->object_size, s->size, gfpflags, node);
2544 
2545 	return ret;
2546 }
2547 EXPORT_SYMBOL(kmem_cache_alloc_node);
2548 
2549 #ifdef CONFIG_TRACING
2550 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2551 				    gfp_t gfpflags,
2552 				    int node, size_t size)
2553 {
2554 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2555 
2556 	trace_kmalloc_node(_RET_IP_, ret,
2557 			   size, s->size, gfpflags, node);
2558 
2559 	kasan_kmalloc(s, ret, size);
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2563 #endif
2564 #endif
2565 
2566 /*
2567  * Slow path handling. This may still be called frequently since objects
2568  * have a longer lifetime than the cpu slabs in most processing loads.
2569  *
2570  * So we still attempt to reduce cache line usage. Just take the slab
2571  * lock and free the item. If there is no additional partial page
2572  * handling required then we can return immediately.
2573  */
2574 static void __slab_free(struct kmem_cache *s, struct page *page,
2575 			void *x, unsigned long addr)
2576 {
2577 	void *prior;
2578 	void **object = (void *)x;
2579 	int was_frozen;
2580 	struct page new;
2581 	unsigned long counters;
2582 	struct kmem_cache_node *n = NULL;
2583 	unsigned long uninitialized_var(flags);
2584 
2585 	stat(s, FREE_SLOWPATH);
2586 
2587 	if (kmem_cache_debug(s) &&
2588 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2589 		return;
2590 
2591 	do {
2592 		if (unlikely(n)) {
2593 			spin_unlock_irqrestore(&n->list_lock, flags);
2594 			n = NULL;
2595 		}
2596 		prior = page->freelist;
2597 		counters = page->counters;
2598 		set_freepointer(s, object, prior);
2599 		new.counters = counters;
2600 		was_frozen = new.frozen;
2601 		new.inuse--;
2602 		if ((!new.inuse || !prior) && !was_frozen) {
2603 
2604 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2605 
2606 				/*
2607 				 * Slab was on no list before and will be
2608 				 * partially empty
2609 				 * We can defer the list move and instead
2610 				 * freeze it.
2611 				 */
2612 				new.frozen = 1;
2613 
2614 			} else { /* Needs to be taken off a list */
2615 
2616 				n = get_node(s, page_to_nid(page));
2617 				/*
2618 				 * Speculatively acquire the list_lock.
2619 				 * If the cmpxchg does not succeed then we may
2620 				 * drop the list_lock without any processing.
2621 				 *
2622 				 * Otherwise the list_lock will synchronize with
2623 				 * other processors updating the list of slabs.
2624 				 */
2625 				spin_lock_irqsave(&n->list_lock, flags);
2626 
2627 			}
2628 		}
2629 
2630 	} while (!cmpxchg_double_slab(s, page,
2631 		prior, counters,
2632 		object, new.counters,
2633 		"__slab_free"));
2634 
2635 	if (likely(!n)) {
2636 
2637 		/*
2638 		 * If we just froze the page then put it onto the
2639 		 * per cpu partial list.
2640 		 */
2641 		if (new.frozen && !was_frozen) {
2642 			put_cpu_partial(s, page, 1);
2643 			stat(s, CPU_PARTIAL_FREE);
2644 		}
2645 		/*
2646 		 * The list lock was not taken therefore no list
2647 		 * activity can be necessary.
2648 		 */
2649 		if (was_frozen)
2650 			stat(s, FREE_FROZEN);
2651 		return;
2652 	}
2653 
2654 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2655 		goto slab_empty;
2656 
2657 	/*
2658 	 * Objects left in the slab. If it was not on the partial list before
2659 	 * then add it.
2660 	 */
2661 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2662 		if (kmem_cache_debug(s))
2663 			remove_full(s, n, page);
2664 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2665 		stat(s, FREE_ADD_PARTIAL);
2666 	}
2667 	spin_unlock_irqrestore(&n->list_lock, flags);
2668 	return;
2669 
2670 slab_empty:
2671 	if (prior) {
2672 		/*
2673 		 * Slab on the partial list.
2674 		 */
2675 		remove_partial(n, page);
2676 		stat(s, FREE_REMOVE_PARTIAL);
2677 	} else {
2678 		/* Slab must be on the full list */
2679 		remove_full(s, n, page);
2680 	}
2681 
2682 	spin_unlock_irqrestore(&n->list_lock, flags);
2683 	stat(s, FREE_SLAB);
2684 	discard_slab(s, page);
2685 }
2686 
2687 /*
2688  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2689  * can perform fastpath freeing without additional function calls.
2690  *
2691  * The fastpath is only possible if we are freeing to the current cpu slab
2692  * of this processor. This typically the case if we have just allocated
2693  * the item before.
2694  *
2695  * If fastpath is not possible then fall back to __slab_free where we deal
2696  * with all sorts of special processing.
2697  */
2698 static __always_inline void slab_free(struct kmem_cache *s,
2699 			struct page *page, void *x, unsigned long addr)
2700 {
2701 	void **object = (void *)x;
2702 	struct kmem_cache_cpu *c;
2703 	unsigned long tid;
2704 
2705 	slab_free_hook(s, x);
2706 
2707 redo:
2708 	/*
2709 	 * Determine the currently cpus per cpu slab.
2710 	 * The cpu may change afterward. However that does not matter since
2711 	 * data is retrieved via this pointer. If we are on the same cpu
2712 	 * during the cmpxchg then the free will succeed.
2713 	 */
2714 	do {
2715 		tid = this_cpu_read(s->cpu_slab->tid);
2716 		c = raw_cpu_ptr(s->cpu_slab);
2717 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2718 		 unlikely(tid != READ_ONCE(c->tid)));
2719 
2720 	/* Same with comment on barrier() in slab_alloc_node() */
2721 	barrier();
2722 
2723 	if (likely(page == c->page)) {
2724 		set_freepointer(s, object, c->freelist);
2725 
2726 		if (unlikely(!this_cpu_cmpxchg_double(
2727 				s->cpu_slab->freelist, s->cpu_slab->tid,
2728 				c->freelist, tid,
2729 				object, next_tid(tid)))) {
2730 
2731 			note_cmpxchg_failure("slab_free", s, tid);
2732 			goto redo;
2733 		}
2734 		stat(s, FREE_FASTPATH);
2735 	} else
2736 		__slab_free(s, page, x, addr);
2737 
2738 }
2739 
2740 void kmem_cache_free(struct kmem_cache *s, void *x)
2741 {
2742 	s = cache_from_obj(s, x);
2743 	if (!s)
2744 		return;
2745 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2746 	trace_kmem_cache_free(_RET_IP_, x);
2747 }
2748 EXPORT_SYMBOL(kmem_cache_free);
2749 
2750 /* Note that interrupts must be enabled when calling this function. */
2751 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2752 {
2753 	struct kmem_cache_cpu *c;
2754 	struct page *page;
2755 	int i;
2756 
2757 	local_irq_disable();
2758 	c = this_cpu_ptr(s->cpu_slab);
2759 
2760 	for (i = 0; i < size; i++) {
2761 		void *object = p[i];
2762 
2763 		BUG_ON(!object);
2764 		/* kmem cache debug support */
2765 		s = cache_from_obj(s, object);
2766 		if (unlikely(!s))
2767 			goto exit;
2768 		slab_free_hook(s, object);
2769 
2770 		page = virt_to_head_page(object);
2771 
2772 		if (c->page == page) {
2773 			/* Fastpath: local CPU free */
2774 			set_freepointer(s, object, c->freelist);
2775 			c->freelist = object;
2776 		} else {
2777 			c->tid = next_tid(c->tid);
2778 			local_irq_enable();
2779 			/* Slowpath: overhead locked cmpxchg_double_slab */
2780 			__slab_free(s, page, object, _RET_IP_);
2781 			local_irq_disable();
2782 			c = this_cpu_ptr(s->cpu_slab);
2783 		}
2784 	}
2785 exit:
2786 	c->tid = next_tid(c->tid);
2787 	local_irq_enable();
2788 }
2789 EXPORT_SYMBOL(kmem_cache_free_bulk);
2790 
2791 /* Note that interrupts must be enabled when calling this function. */
2792 bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2793 			   void **p)
2794 {
2795 	struct kmem_cache_cpu *c;
2796 	int i;
2797 
2798 	/*
2799 	 * Drain objects in the per cpu slab, while disabling local
2800 	 * IRQs, which protects against PREEMPT and interrupts
2801 	 * handlers invoking normal fastpath.
2802 	 */
2803 	local_irq_disable();
2804 	c = this_cpu_ptr(s->cpu_slab);
2805 
2806 	for (i = 0; i < size; i++) {
2807 		void *object = c->freelist;
2808 
2809 		if (unlikely(!object)) {
2810 			local_irq_enable();
2811 			/*
2812 			 * Invoking slow path likely have side-effect
2813 			 * of re-populating per CPU c->freelist
2814 			 */
2815 			p[i] = __slab_alloc(s, flags, NUMA_NO_NODE,
2816 					    _RET_IP_, c);
2817 			if (unlikely(!p[i])) {
2818 				__kmem_cache_free_bulk(s, i, p);
2819 				return false;
2820 			}
2821 			local_irq_disable();
2822 			c = this_cpu_ptr(s->cpu_slab);
2823 			continue; /* goto for-loop */
2824 		}
2825 
2826 		/* kmem_cache debug support */
2827 		s = slab_pre_alloc_hook(s, flags);
2828 		if (unlikely(!s)) {
2829 			__kmem_cache_free_bulk(s, i, p);
2830 			c->tid = next_tid(c->tid);
2831 			local_irq_enable();
2832 			return false;
2833 		}
2834 
2835 		c->freelist = get_freepointer(s, object);
2836 		p[i] = object;
2837 
2838 		/* kmem_cache debug support */
2839 		slab_post_alloc_hook(s, flags, object);
2840 	}
2841 	c->tid = next_tid(c->tid);
2842 	local_irq_enable();
2843 
2844 	/* Clear memory outside IRQ disabled fastpath loop */
2845 	if (unlikely(flags & __GFP_ZERO)) {
2846 		int j;
2847 
2848 		for (j = 0; j < i; j++)
2849 			memset(p[j], 0, s->object_size);
2850 	}
2851 
2852 	return true;
2853 }
2854 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2855 
2856 
2857 /*
2858  * Object placement in a slab is made very easy because we always start at
2859  * offset 0. If we tune the size of the object to the alignment then we can
2860  * get the required alignment by putting one properly sized object after
2861  * another.
2862  *
2863  * Notice that the allocation order determines the sizes of the per cpu
2864  * caches. Each processor has always one slab available for allocations.
2865  * Increasing the allocation order reduces the number of times that slabs
2866  * must be moved on and off the partial lists and is therefore a factor in
2867  * locking overhead.
2868  */
2869 
2870 /*
2871  * Mininum / Maximum order of slab pages. This influences locking overhead
2872  * and slab fragmentation. A higher order reduces the number of partial slabs
2873  * and increases the number of allocations possible without having to
2874  * take the list_lock.
2875  */
2876 static int slub_min_order;
2877 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2878 static int slub_min_objects;
2879 
2880 /*
2881  * Calculate the order of allocation given an slab object size.
2882  *
2883  * The order of allocation has significant impact on performance and other
2884  * system components. Generally order 0 allocations should be preferred since
2885  * order 0 does not cause fragmentation in the page allocator. Larger objects
2886  * be problematic to put into order 0 slabs because there may be too much
2887  * unused space left. We go to a higher order if more than 1/16th of the slab
2888  * would be wasted.
2889  *
2890  * In order to reach satisfactory performance we must ensure that a minimum
2891  * number of objects is in one slab. Otherwise we may generate too much
2892  * activity on the partial lists which requires taking the list_lock. This is
2893  * less a concern for large slabs though which are rarely used.
2894  *
2895  * slub_max_order specifies the order where we begin to stop considering the
2896  * number of objects in a slab as critical. If we reach slub_max_order then
2897  * we try to keep the page order as low as possible. So we accept more waste
2898  * of space in favor of a small page order.
2899  *
2900  * Higher order allocations also allow the placement of more objects in a
2901  * slab and thereby reduce object handling overhead. If the user has
2902  * requested a higher mininum order then we start with that one instead of
2903  * the smallest order which will fit the object.
2904  */
2905 static inline int slab_order(int size, int min_objects,
2906 				int max_order, int fract_leftover, int reserved)
2907 {
2908 	int order;
2909 	int rem;
2910 	int min_order = slub_min_order;
2911 
2912 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2913 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2914 
2915 	for (order = max(min_order,
2916 				fls(min_objects * size - 1) - PAGE_SHIFT);
2917 			order <= max_order; order++) {
2918 
2919 		unsigned long slab_size = PAGE_SIZE << order;
2920 
2921 		if (slab_size < min_objects * size + reserved)
2922 			continue;
2923 
2924 		rem = (slab_size - reserved) % size;
2925 
2926 		if (rem <= slab_size / fract_leftover)
2927 			break;
2928 
2929 	}
2930 
2931 	return order;
2932 }
2933 
2934 static inline int calculate_order(int size, int reserved)
2935 {
2936 	int order;
2937 	int min_objects;
2938 	int fraction;
2939 	int max_objects;
2940 
2941 	/*
2942 	 * Attempt to find best configuration for a slab. This
2943 	 * works by first attempting to generate a layout with
2944 	 * the best configuration and backing off gradually.
2945 	 *
2946 	 * First we reduce the acceptable waste in a slab. Then
2947 	 * we reduce the minimum objects required in a slab.
2948 	 */
2949 	min_objects = slub_min_objects;
2950 	if (!min_objects)
2951 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2952 	max_objects = order_objects(slub_max_order, size, reserved);
2953 	min_objects = min(min_objects, max_objects);
2954 
2955 	while (min_objects > 1) {
2956 		fraction = 16;
2957 		while (fraction >= 4) {
2958 			order = slab_order(size, min_objects,
2959 					slub_max_order, fraction, reserved);
2960 			if (order <= slub_max_order)
2961 				return order;
2962 			fraction /= 2;
2963 		}
2964 		min_objects--;
2965 	}
2966 
2967 	/*
2968 	 * We were unable to place multiple objects in a slab. Now
2969 	 * lets see if we can place a single object there.
2970 	 */
2971 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2972 	if (order <= slub_max_order)
2973 		return order;
2974 
2975 	/*
2976 	 * Doh this slab cannot be placed using slub_max_order.
2977 	 */
2978 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2979 	if (order < MAX_ORDER)
2980 		return order;
2981 	return -ENOSYS;
2982 }
2983 
2984 static void
2985 init_kmem_cache_node(struct kmem_cache_node *n)
2986 {
2987 	n->nr_partial = 0;
2988 	spin_lock_init(&n->list_lock);
2989 	INIT_LIST_HEAD(&n->partial);
2990 #ifdef CONFIG_SLUB_DEBUG
2991 	atomic_long_set(&n->nr_slabs, 0);
2992 	atomic_long_set(&n->total_objects, 0);
2993 	INIT_LIST_HEAD(&n->full);
2994 #endif
2995 }
2996 
2997 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2998 {
2999 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3000 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3001 
3002 	/*
3003 	 * Must align to double word boundary for the double cmpxchg
3004 	 * instructions to work; see __pcpu_double_call_return_bool().
3005 	 */
3006 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3007 				     2 * sizeof(void *));
3008 
3009 	if (!s->cpu_slab)
3010 		return 0;
3011 
3012 	init_kmem_cache_cpus(s);
3013 
3014 	return 1;
3015 }
3016 
3017 static struct kmem_cache *kmem_cache_node;
3018 
3019 /*
3020  * No kmalloc_node yet so do it by hand. We know that this is the first
3021  * slab on the node for this slabcache. There are no concurrent accesses
3022  * possible.
3023  *
3024  * Note that this function only works on the kmem_cache_node
3025  * when allocating for the kmem_cache_node. This is used for bootstrapping
3026  * memory on a fresh node that has no slab structures yet.
3027  */
3028 static void early_kmem_cache_node_alloc(int node)
3029 {
3030 	struct page *page;
3031 	struct kmem_cache_node *n;
3032 
3033 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3034 
3035 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3036 
3037 	BUG_ON(!page);
3038 	if (page_to_nid(page) != node) {
3039 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3040 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3041 	}
3042 
3043 	n = page->freelist;
3044 	BUG_ON(!n);
3045 	page->freelist = get_freepointer(kmem_cache_node, n);
3046 	page->inuse = 1;
3047 	page->frozen = 0;
3048 	kmem_cache_node->node[node] = n;
3049 #ifdef CONFIG_SLUB_DEBUG
3050 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3051 	init_tracking(kmem_cache_node, n);
3052 #endif
3053 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3054 	init_kmem_cache_node(n);
3055 	inc_slabs_node(kmem_cache_node, node, page->objects);
3056 
3057 	/*
3058 	 * No locks need to be taken here as it has just been
3059 	 * initialized and there is no concurrent access.
3060 	 */
3061 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3062 }
3063 
3064 static void free_kmem_cache_nodes(struct kmem_cache *s)
3065 {
3066 	int node;
3067 	struct kmem_cache_node *n;
3068 
3069 	for_each_kmem_cache_node(s, node, n) {
3070 		kmem_cache_free(kmem_cache_node, n);
3071 		s->node[node] = NULL;
3072 	}
3073 }
3074 
3075 static int init_kmem_cache_nodes(struct kmem_cache *s)
3076 {
3077 	int node;
3078 
3079 	for_each_node_state(node, N_NORMAL_MEMORY) {
3080 		struct kmem_cache_node *n;
3081 
3082 		if (slab_state == DOWN) {
3083 			early_kmem_cache_node_alloc(node);
3084 			continue;
3085 		}
3086 		n = kmem_cache_alloc_node(kmem_cache_node,
3087 						GFP_KERNEL, node);
3088 
3089 		if (!n) {
3090 			free_kmem_cache_nodes(s);
3091 			return 0;
3092 		}
3093 
3094 		s->node[node] = n;
3095 		init_kmem_cache_node(n);
3096 	}
3097 	return 1;
3098 }
3099 
3100 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3101 {
3102 	if (min < MIN_PARTIAL)
3103 		min = MIN_PARTIAL;
3104 	else if (min > MAX_PARTIAL)
3105 		min = MAX_PARTIAL;
3106 	s->min_partial = min;
3107 }
3108 
3109 /*
3110  * calculate_sizes() determines the order and the distribution of data within
3111  * a slab object.
3112  */
3113 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3114 {
3115 	unsigned long flags = s->flags;
3116 	unsigned long size = s->object_size;
3117 	int order;
3118 
3119 	/*
3120 	 * Round up object size to the next word boundary. We can only
3121 	 * place the free pointer at word boundaries and this determines
3122 	 * the possible location of the free pointer.
3123 	 */
3124 	size = ALIGN(size, sizeof(void *));
3125 
3126 #ifdef CONFIG_SLUB_DEBUG
3127 	/*
3128 	 * Determine if we can poison the object itself. If the user of
3129 	 * the slab may touch the object after free or before allocation
3130 	 * then we should never poison the object itself.
3131 	 */
3132 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3133 			!s->ctor)
3134 		s->flags |= __OBJECT_POISON;
3135 	else
3136 		s->flags &= ~__OBJECT_POISON;
3137 
3138 
3139 	/*
3140 	 * If we are Redzoning then check if there is some space between the
3141 	 * end of the object and the free pointer. If not then add an
3142 	 * additional word to have some bytes to store Redzone information.
3143 	 */
3144 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3145 		size += sizeof(void *);
3146 #endif
3147 
3148 	/*
3149 	 * With that we have determined the number of bytes in actual use
3150 	 * by the object. This is the potential offset to the free pointer.
3151 	 */
3152 	s->inuse = size;
3153 
3154 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3155 		s->ctor)) {
3156 		/*
3157 		 * Relocate free pointer after the object if it is not
3158 		 * permitted to overwrite the first word of the object on
3159 		 * kmem_cache_free.
3160 		 *
3161 		 * This is the case if we do RCU, have a constructor or
3162 		 * destructor or are poisoning the objects.
3163 		 */
3164 		s->offset = size;
3165 		size += sizeof(void *);
3166 	}
3167 
3168 #ifdef CONFIG_SLUB_DEBUG
3169 	if (flags & SLAB_STORE_USER)
3170 		/*
3171 		 * Need to store information about allocs and frees after
3172 		 * the object.
3173 		 */
3174 		size += 2 * sizeof(struct track);
3175 
3176 	if (flags & SLAB_RED_ZONE)
3177 		/*
3178 		 * Add some empty padding so that we can catch
3179 		 * overwrites from earlier objects rather than let
3180 		 * tracking information or the free pointer be
3181 		 * corrupted if a user writes before the start
3182 		 * of the object.
3183 		 */
3184 		size += sizeof(void *);
3185 #endif
3186 
3187 	/*
3188 	 * SLUB stores one object immediately after another beginning from
3189 	 * offset 0. In order to align the objects we have to simply size
3190 	 * each object to conform to the alignment.
3191 	 */
3192 	size = ALIGN(size, s->align);
3193 	s->size = size;
3194 	if (forced_order >= 0)
3195 		order = forced_order;
3196 	else
3197 		order = calculate_order(size, s->reserved);
3198 
3199 	if (order < 0)
3200 		return 0;
3201 
3202 	s->allocflags = 0;
3203 	if (order)
3204 		s->allocflags |= __GFP_COMP;
3205 
3206 	if (s->flags & SLAB_CACHE_DMA)
3207 		s->allocflags |= GFP_DMA;
3208 
3209 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3210 		s->allocflags |= __GFP_RECLAIMABLE;
3211 
3212 	/*
3213 	 * Determine the number of objects per slab
3214 	 */
3215 	s->oo = oo_make(order, size, s->reserved);
3216 	s->min = oo_make(get_order(size), size, s->reserved);
3217 	if (oo_objects(s->oo) > oo_objects(s->max))
3218 		s->max = s->oo;
3219 
3220 	return !!oo_objects(s->oo);
3221 }
3222 
3223 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3224 {
3225 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3226 	s->reserved = 0;
3227 
3228 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3229 		s->reserved = sizeof(struct rcu_head);
3230 
3231 	if (!calculate_sizes(s, -1))
3232 		goto error;
3233 	if (disable_higher_order_debug) {
3234 		/*
3235 		 * Disable debugging flags that store metadata if the min slab
3236 		 * order increased.
3237 		 */
3238 		if (get_order(s->size) > get_order(s->object_size)) {
3239 			s->flags &= ~DEBUG_METADATA_FLAGS;
3240 			s->offset = 0;
3241 			if (!calculate_sizes(s, -1))
3242 				goto error;
3243 		}
3244 	}
3245 
3246 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3247     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3248 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3249 		/* Enable fast mode */
3250 		s->flags |= __CMPXCHG_DOUBLE;
3251 #endif
3252 
3253 	/*
3254 	 * The larger the object size is, the more pages we want on the partial
3255 	 * list to avoid pounding the page allocator excessively.
3256 	 */
3257 	set_min_partial(s, ilog2(s->size) / 2);
3258 
3259 	/*
3260 	 * cpu_partial determined the maximum number of objects kept in the
3261 	 * per cpu partial lists of a processor.
3262 	 *
3263 	 * Per cpu partial lists mainly contain slabs that just have one
3264 	 * object freed. If they are used for allocation then they can be
3265 	 * filled up again with minimal effort. The slab will never hit the
3266 	 * per node partial lists and therefore no locking will be required.
3267 	 *
3268 	 * This setting also determines
3269 	 *
3270 	 * A) The number of objects from per cpu partial slabs dumped to the
3271 	 *    per node list when we reach the limit.
3272 	 * B) The number of objects in cpu partial slabs to extract from the
3273 	 *    per node list when we run out of per cpu objects. We only fetch
3274 	 *    50% to keep some capacity around for frees.
3275 	 */
3276 	if (!kmem_cache_has_cpu_partial(s))
3277 		s->cpu_partial = 0;
3278 	else if (s->size >= PAGE_SIZE)
3279 		s->cpu_partial = 2;
3280 	else if (s->size >= 1024)
3281 		s->cpu_partial = 6;
3282 	else if (s->size >= 256)
3283 		s->cpu_partial = 13;
3284 	else
3285 		s->cpu_partial = 30;
3286 
3287 #ifdef CONFIG_NUMA
3288 	s->remote_node_defrag_ratio = 1000;
3289 #endif
3290 	if (!init_kmem_cache_nodes(s))
3291 		goto error;
3292 
3293 	if (alloc_kmem_cache_cpus(s))
3294 		return 0;
3295 
3296 	free_kmem_cache_nodes(s);
3297 error:
3298 	if (flags & SLAB_PANIC)
3299 		panic("Cannot create slab %s size=%lu realsize=%u "
3300 			"order=%u offset=%u flags=%lx\n",
3301 			s->name, (unsigned long)s->size, s->size,
3302 			oo_order(s->oo), s->offset, flags);
3303 	return -EINVAL;
3304 }
3305 
3306 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3307 							const char *text)
3308 {
3309 #ifdef CONFIG_SLUB_DEBUG
3310 	void *addr = page_address(page);
3311 	void *p;
3312 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3313 				     sizeof(long), GFP_ATOMIC);
3314 	if (!map)
3315 		return;
3316 	slab_err(s, page, text, s->name);
3317 	slab_lock(page);
3318 
3319 	get_map(s, page, map);
3320 	for_each_object(p, s, addr, page->objects) {
3321 
3322 		if (!test_bit(slab_index(p, s, addr), map)) {
3323 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3324 			print_tracking(s, p);
3325 		}
3326 	}
3327 	slab_unlock(page);
3328 	kfree(map);
3329 #endif
3330 }
3331 
3332 /*
3333  * Attempt to free all partial slabs on a node.
3334  * This is called from kmem_cache_close(). We must be the last thread
3335  * using the cache and therefore we do not need to lock anymore.
3336  */
3337 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3338 {
3339 	struct page *page, *h;
3340 
3341 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3342 		if (!page->inuse) {
3343 			__remove_partial(n, page);
3344 			discard_slab(s, page);
3345 		} else {
3346 			list_slab_objects(s, page,
3347 			"Objects remaining in %s on kmem_cache_close()");
3348 		}
3349 	}
3350 }
3351 
3352 /*
3353  * Release all resources used by a slab cache.
3354  */
3355 static inline int kmem_cache_close(struct kmem_cache *s)
3356 {
3357 	int node;
3358 	struct kmem_cache_node *n;
3359 
3360 	flush_all(s);
3361 	/* Attempt to free all objects */
3362 	for_each_kmem_cache_node(s, node, n) {
3363 		free_partial(s, n);
3364 		if (n->nr_partial || slabs_node(s, node))
3365 			return 1;
3366 	}
3367 	free_percpu(s->cpu_slab);
3368 	free_kmem_cache_nodes(s);
3369 	return 0;
3370 }
3371 
3372 int __kmem_cache_shutdown(struct kmem_cache *s)
3373 {
3374 	return kmem_cache_close(s);
3375 }
3376 
3377 /********************************************************************
3378  *		Kmalloc subsystem
3379  *******************************************************************/
3380 
3381 static int __init setup_slub_min_order(char *str)
3382 {
3383 	get_option(&str, &slub_min_order);
3384 
3385 	return 1;
3386 }
3387 
3388 __setup("slub_min_order=", setup_slub_min_order);
3389 
3390 static int __init setup_slub_max_order(char *str)
3391 {
3392 	get_option(&str, &slub_max_order);
3393 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3394 
3395 	return 1;
3396 }
3397 
3398 __setup("slub_max_order=", setup_slub_max_order);
3399 
3400 static int __init setup_slub_min_objects(char *str)
3401 {
3402 	get_option(&str, &slub_min_objects);
3403 
3404 	return 1;
3405 }
3406 
3407 __setup("slub_min_objects=", setup_slub_min_objects);
3408 
3409 void *__kmalloc(size_t size, gfp_t flags)
3410 {
3411 	struct kmem_cache *s;
3412 	void *ret;
3413 
3414 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3415 		return kmalloc_large(size, flags);
3416 
3417 	s = kmalloc_slab(size, flags);
3418 
3419 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3420 		return s;
3421 
3422 	ret = slab_alloc(s, flags, _RET_IP_);
3423 
3424 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3425 
3426 	kasan_kmalloc(s, ret, size);
3427 
3428 	return ret;
3429 }
3430 EXPORT_SYMBOL(__kmalloc);
3431 
3432 #ifdef CONFIG_NUMA
3433 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3434 {
3435 	struct page *page;
3436 	void *ptr = NULL;
3437 
3438 	flags |= __GFP_COMP | __GFP_NOTRACK;
3439 	page = alloc_kmem_pages_node(node, flags, get_order(size));
3440 	if (page)
3441 		ptr = page_address(page);
3442 
3443 	kmalloc_large_node_hook(ptr, size, flags);
3444 	return ptr;
3445 }
3446 
3447 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3448 {
3449 	struct kmem_cache *s;
3450 	void *ret;
3451 
3452 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3453 		ret = kmalloc_large_node(size, flags, node);
3454 
3455 		trace_kmalloc_node(_RET_IP_, ret,
3456 				   size, PAGE_SIZE << get_order(size),
3457 				   flags, node);
3458 
3459 		return ret;
3460 	}
3461 
3462 	s = kmalloc_slab(size, flags);
3463 
3464 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3465 		return s;
3466 
3467 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3468 
3469 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3470 
3471 	kasan_kmalloc(s, ret, size);
3472 
3473 	return ret;
3474 }
3475 EXPORT_SYMBOL(__kmalloc_node);
3476 #endif
3477 
3478 static size_t __ksize(const void *object)
3479 {
3480 	struct page *page;
3481 
3482 	if (unlikely(object == ZERO_SIZE_PTR))
3483 		return 0;
3484 
3485 	page = virt_to_head_page(object);
3486 
3487 	if (unlikely(!PageSlab(page))) {
3488 		WARN_ON(!PageCompound(page));
3489 		return PAGE_SIZE << compound_order(page);
3490 	}
3491 
3492 	return slab_ksize(page->slab_cache);
3493 }
3494 
3495 size_t ksize(const void *object)
3496 {
3497 	size_t size = __ksize(object);
3498 	/* We assume that ksize callers could use whole allocated area,
3499 	   so we need unpoison this area. */
3500 	kasan_krealloc(object, size);
3501 	return size;
3502 }
3503 EXPORT_SYMBOL(ksize);
3504 
3505 void kfree(const void *x)
3506 {
3507 	struct page *page;
3508 	void *object = (void *)x;
3509 
3510 	trace_kfree(_RET_IP_, x);
3511 
3512 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3513 		return;
3514 
3515 	page = virt_to_head_page(x);
3516 	if (unlikely(!PageSlab(page))) {
3517 		BUG_ON(!PageCompound(page));
3518 		kfree_hook(x);
3519 		__free_kmem_pages(page, compound_order(page));
3520 		return;
3521 	}
3522 	slab_free(page->slab_cache, page, object, _RET_IP_);
3523 }
3524 EXPORT_SYMBOL(kfree);
3525 
3526 #define SHRINK_PROMOTE_MAX 32
3527 
3528 /*
3529  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3530  * up most to the head of the partial lists. New allocations will then
3531  * fill those up and thus they can be removed from the partial lists.
3532  *
3533  * The slabs with the least items are placed last. This results in them
3534  * being allocated from last increasing the chance that the last objects
3535  * are freed in them.
3536  */
3537 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3538 {
3539 	int node;
3540 	int i;
3541 	struct kmem_cache_node *n;
3542 	struct page *page;
3543 	struct page *t;
3544 	struct list_head discard;
3545 	struct list_head promote[SHRINK_PROMOTE_MAX];
3546 	unsigned long flags;
3547 	int ret = 0;
3548 
3549 	if (deactivate) {
3550 		/*
3551 		 * Disable empty slabs caching. Used to avoid pinning offline
3552 		 * memory cgroups by kmem pages that can be freed.
3553 		 */
3554 		s->cpu_partial = 0;
3555 		s->min_partial = 0;
3556 
3557 		/*
3558 		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3559 		 * so we have to make sure the change is visible.
3560 		 */
3561 		kick_all_cpus_sync();
3562 	}
3563 
3564 	flush_all(s);
3565 	for_each_kmem_cache_node(s, node, n) {
3566 		INIT_LIST_HEAD(&discard);
3567 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3568 			INIT_LIST_HEAD(promote + i);
3569 
3570 		spin_lock_irqsave(&n->list_lock, flags);
3571 
3572 		/*
3573 		 * Build lists of slabs to discard or promote.
3574 		 *
3575 		 * Note that concurrent frees may occur while we hold the
3576 		 * list_lock. page->inuse here is the upper limit.
3577 		 */
3578 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3579 			int free = page->objects - page->inuse;
3580 
3581 			/* Do not reread page->inuse */
3582 			barrier();
3583 
3584 			/* We do not keep full slabs on the list */
3585 			BUG_ON(free <= 0);
3586 
3587 			if (free == page->objects) {
3588 				list_move(&page->lru, &discard);
3589 				n->nr_partial--;
3590 			} else if (free <= SHRINK_PROMOTE_MAX)
3591 				list_move(&page->lru, promote + free - 1);
3592 		}
3593 
3594 		/*
3595 		 * Promote the slabs filled up most to the head of the
3596 		 * partial list.
3597 		 */
3598 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3599 			list_splice(promote + i, &n->partial);
3600 
3601 		spin_unlock_irqrestore(&n->list_lock, flags);
3602 
3603 		/* Release empty slabs */
3604 		list_for_each_entry_safe(page, t, &discard, lru)
3605 			discard_slab(s, page);
3606 
3607 		if (slabs_node(s, node))
3608 			ret = 1;
3609 	}
3610 
3611 	return ret;
3612 }
3613 
3614 static int slab_mem_going_offline_callback(void *arg)
3615 {
3616 	struct kmem_cache *s;
3617 
3618 	mutex_lock(&slab_mutex);
3619 	list_for_each_entry(s, &slab_caches, list)
3620 		__kmem_cache_shrink(s, false);
3621 	mutex_unlock(&slab_mutex);
3622 
3623 	return 0;
3624 }
3625 
3626 static void slab_mem_offline_callback(void *arg)
3627 {
3628 	struct kmem_cache_node *n;
3629 	struct kmem_cache *s;
3630 	struct memory_notify *marg = arg;
3631 	int offline_node;
3632 
3633 	offline_node = marg->status_change_nid_normal;
3634 
3635 	/*
3636 	 * If the node still has available memory. we need kmem_cache_node
3637 	 * for it yet.
3638 	 */
3639 	if (offline_node < 0)
3640 		return;
3641 
3642 	mutex_lock(&slab_mutex);
3643 	list_for_each_entry(s, &slab_caches, list) {
3644 		n = get_node(s, offline_node);
3645 		if (n) {
3646 			/*
3647 			 * if n->nr_slabs > 0, slabs still exist on the node
3648 			 * that is going down. We were unable to free them,
3649 			 * and offline_pages() function shouldn't call this
3650 			 * callback. So, we must fail.
3651 			 */
3652 			BUG_ON(slabs_node(s, offline_node));
3653 
3654 			s->node[offline_node] = NULL;
3655 			kmem_cache_free(kmem_cache_node, n);
3656 		}
3657 	}
3658 	mutex_unlock(&slab_mutex);
3659 }
3660 
3661 static int slab_mem_going_online_callback(void *arg)
3662 {
3663 	struct kmem_cache_node *n;
3664 	struct kmem_cache *s;
3665 	struct memory_notify *marg = arg;
3666 	int nid = marg->status_change_nid_normal;
3667 	int ret = 0;
3668 
3669 	/*
3670 	 * If the node's memory is already available, then kmem_cache_node is
3671 	 * already created. Nothing to do.
3672 	 */
3673 	if (nid < 0)
3674 		return 0;
3675 
3676 	/*
3677 	 * We are bringing a node online. No memory is available yet. We must
3678 	 * allocate a kmem_cache_node structure in order to bring the node
3679 	 * online.
3680 	 */
3681 	mutex_lock(&slab_mutex);
3682 	list_for_each_entry(s, &slab_caches, list) {
3683 		/*
3684 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3685 		 *      since memory is not yet available from the node that
3686 		 *      is brought up.
3687 		 */
3688 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3689 		if (!n) {
3690 			ret = -ENOMEM;
3691 			goto out;
3692 		}
3693 		init_kmem_cache_node(n);
3694 		s->node[nid] = n;
3695 	}
3696 out:
3697 	mutex_unlock(&slab_mutex);
3698 	return ret;
3699 }
3700 
3701 static int slab_memory_callback(struct notifier_block *self,
3702 				unsigned long action, void *arg)
3703 {
3704 	int ret = 0;
3705 
3706 	switch (action) {
3707 	case MEM_GOING_ONLINE:
3708 		ret = slab_mem_going_online_callback(arg);
3709 		break;
3710 	case MEM_GOING_OFFLINE:
3711 		ret = slab_mem_going_offline_callback(arg);
3712 		break;
3713 	case MEM_OFFLINE:
3714 	case MEM_CANCEL_ONLINE:
3715 		slab_mem_offline_callback(arg);
3716 		break;
3717 	case MEM_ONLINE:
3718 	case MEM_CANCEL_OFFLINE:
3719 		break;
3720 	}
3721 	if (ret)
3722 		ret = notifier_from_errno(ret);
3723 	else
3724 		ret = NOTIFY_OK;
3725 	return ret;
3726 }
3727 
3728 static struct notifier_block slab_memory_callback_nb = {
3729 	.notifier_call = slab_memory_callback,
3730 	.priority = SLAB_CALLBACK_PRI,
3731 };
3732 
3733 /********************************************************************
3734  *			Basic setup of slabs
3735  *******************************************************************/
3736 
3737 /*
3738  * Used for early kmem_cache structures that were allocated using
3739  * the page allocator. Allocate them properly then fix up the pointers
3740  * that may be pointing to the wrong kmem_cache structure.
3741  */
3742 
3743 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3744 {
3745 	int node;
3746 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3747 	struct kmem_cache_node *n;
3748 
3749 	memcpy(s, static_cache, kmem_cache->object_size);
3750 
3751 	/*
3752 	 * This runs very early, and only the boot processor is supposed to be
3753 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3754 	 * IPIs around.
3755 	 */
3756 	__flush_cpu_slab(s, smp_processor_id());
3757 	for_each_kmem_cache_node(s, node, n) {
3758 		struct page *p;
3759 
3760 		list_for_each_entry(p, &n->partial, lru)
3761 			p->slab_cache = s;
3762 
3763 #ifdef CONFIG_SLUB_DEBUG
3764 		list_for_each_entry(p, &n->full, lru)
3765 			p->slab_cache = s;
3766 #endif
3767 	}
3768 	slab_init_memcg_params(s);
3769 	list_add(&s->list, &slab_caches);
3770 	return s;
3771 }
3772 
3773 void __init kmem_cache_init(void)
3774 {
3775 	static __initdata struct kmem_cache boot_kmem_cache,
3776 		boot_kmem_cache_node;
3777 
3778 	if (debug_guardpage_minorder())
3779 		slub_max_order = 0;
3780 
3781 	kmem_cache_node = &boot_kmem_cache_node;
3782 	kmem_cache = &boot_kmem_cache;
3783 
3784 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3785 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3786 
3787 	register_hotmemory_notifier(&slab_memory_callback_nb);
3788 
3789 	/* Able to allocate the per node structures */
3790 	slab_state = PARTIAL;
3791 
3792 	create_boot_cache(kmem_cache, "kmem_cache",
3793 			offsetof(struct kmem_cache, node) +
3794 				nr_node_ids * sizeof(struct kmem_cache_node *),
3795 		       SLAB_HWCACHE_ALIGN);
3796 
3797 	kmem_cache = bootstrap(&boot_kmem_cache);
3798 
3799 	/*
3800 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3801 	 * kmem_cache_node is separately allocated so no need to
3802 	 * update any list pointers.
3803 	 */
3804 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3805 
3806 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3807 	setup_kmalloc_cache_index_table();
3808 	create_kmalloc_caches(0);
3809 
3810 #ifdef CONFIG_SMP
3811 	register_cpu_notifier(&slab_notifier);
3812 #endif
3813 
3814 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3815 		cache_line_size(),
3816 		slub_min_order, slub_max_order, slub_min_objects,
3817 		nr_cpu_ids, nr_node_ids);
3818 }
3819 
3820 void __init kmem_cache_init_late(void)
3821 {
3822 }
3823 
3824 struct kmem_cache *
3825 __kmem_cache_alias(const char *name, size_t size, size_t align,
3826 		   unsigned long flags, void (*ctor)(void *))
3827 {
3828 	struct kmem_cache *s, *c;
3829 
3830 	s = find_mergeable(size, align, flags, name, ctor);
3831 	if (s) {
3832 		s->refcount++;
3833 
3834 		/*
3835 		 * Adjust the object sizes so that we clear
3836 		 * the complete object on kzalloc.
3837 		 */
3838 		s->object_size = max(s->object_size, (int)size);
3839 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3840 
3841 		for_each_memcg_cache(c, s) {
3842 			c->object_size = s->object_size;
3843 			c->inuse = max_t(int, c->inuse,
3844 					 ALIGN(size, sizeof(void *)));
3845 		}
3846 
3847 		if (sysfs_slab_alias(s, name)) {
3848 			s->refcount--;
3849 			s = NULL;
3850 		}
3851 	}
3852 
3853 	return s;
3854 }
3855 
3856 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3857 {
3858 	int err;
3859 
3860 	err = kmem_cache_open(s, flags);
3861 	if (err)
3862 		return err;
3863 
3864 	/* Mutex is not taken during early boot */
3865 	if (slab_state <= UP)
3866 		return 0;
3867 
3868 	memcg_propagate_slab_attrs(s);
3869 	err = sysfs_slab_add(s);
3870 	if (err)
3871 		kmem_cache_close(s);
3872 
3873 	return err;
3874 }
3875 
3876 #ifdef CONFIG_SMP
3877 /*
3878  * Use the cpu notifier to insure that the cpu slabs are flushed when
3879  * necessary.
3880  */
3881 static int slab_cpuup_callback(struct notifier_block *nfb,
3882 		unsigned long action, void *hcpu)
3883 {
3884 	long cpu = (long)hcpu;
3885 	struct kmem_cache *s;
3886 	unsigned long flags;
3887 
3888 	switch (action) {
3889 	case CPU_UP_CANCELED:
3890 	case CPU_UP_CANCELED_FROZEN:
3891 	case CPU_DEAD:
3892 	case CPU_DEAD_FROZEN:
3893 		mutex_lock(&slab_mutex);
3894 		list_for_each_entry(s, &slab_caches, list) {
3895 			local_irq_save(flags);
3896 			__flush_cpu_slab(s, cpu);
3897 			local_irq_restore(flags);
3898 		}
3899 		mutex_unlock(&slab_mutex);
3900 		break;
3901 	default:
3902 		break;
3903 	}
3904 	return NOTIFY_OK;
3905 }
3906 
3907 static struct notifier_block slab_notifier = {
3908 	.notifier_call = slab_cpuup_callback
3909 };
3910 
3911 #endif
3912 
3913 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3914 {
3915 	struct kmem_cache *s;
3916 	void *ret;
3917 
3918 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3919 		return kmalloc_large(size, gfpflags);
3920 
3921 	s = kmalloc_slab(size, gfpflags);
3922 
3923 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3924 		return s;
3925 
3926 	ret = slab_alloc(s, gfpflags, caller);
3927 
3928 	/* Honor the call site pointer we received. */
3929 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3930 
3931 	return ret;
3932 }
3933 
3934 #ifdef CONFIG_NUMA
3935 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3936 					int node, unsigned long caller)
3937 {
3938 	struct kmem_cache *s;
3939 	void *ret;
3940 
3941 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3942 		ret = kmalloc_large_node(size, gfpflags, node);
3943 
3944 		trace_kmalloc_node(caller, ret,
3945 				   size, PAGE_SIZE << get_order(size),
3946 				   gfpflags, node);
3947 
3948 		return ret;
3949 	}
3950 
3951 	s = kmalloc_slab(size, gfpflags);
3952 
3953 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3954 		return s;
3955 
3956 	ret = slab_alloc_node(s, gfpflags, node, caller);
3957 
3958 	/* Honor the call site pointer we received. */
3959 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3960 
3961 	return ret;
3962 }
3963 #endif
3964 
3965 #ifdef CONFIG_SYSFS
3966 static int count_inuse(struct page *page)
3967 {
3968 	return page->inuse;
3969 }
3970 
3971 static int count_total(struct page *page)
3972 {
3973 	return page->objects;
3974 }
3975 #endif
3976 
3977 #ifdef CONFIG_SLUB_DEBUG
3978 static int validate_slab(struct kmem_cache *s, struct page *page,
3979 						unsigned long *map)
3980 {
3981 	void *p;
3982 	void *addr = page_address(page);
3983 
3984 	if (!check_slab(s, page) ||
3985 			!on_freelist(s, page, NULL))
3986 		return 0;
3987 
3988 	/* Now we know that a valid freelist exists */
3989 	bitmap_zero(map, page->objects);
3990 
3991 	get_map(s, page, map);
3992 	for_each_object(p, s, addr, page->objects) {
3993 		if (test_bit(slab_index(p, s, addr), map))
3994 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3995 				return 0;
3996 	}
3997 
3998 	for_each_object(p, s, addr, page->objects)
3999 		if (!test_bit(slab_index(p, s, addr), map))
4000 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4001 				return 0;
4002 	return 1;
4003 }
4004 
4005 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4006 						unsigned long *map)
4007 {
4008 	slab_lock(page);
4009 	validate_slab(s, page, map);
4010 	slab_unlock(page);
4011 }
4012 
4013 static int validate_slab_node(struct kmem_cache *s,
4014 		struct kmem_cache_node *n, unsigned long *map)
4015 {
4016 	unsigned long count = 0;
4017 	struct page *page;
4018 	unsigned long flags;
4019 
4020 	spin_lock_irqsave(&n->list_lock, flags);
4021 
4022 	list_for_each_entry(page, &n->partial, lru) {
4023 		validate_slab_slab(s, page, map);
4024 		count++;
4025 	}
4026 	if (count != n->nr_partial)
4027 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4028 		       s->name, count, n->nr_partial);
4029 
4030 	if (!(s->flags & SLAB_STORE_USER))
4031 		goto out;
4032 
4033 	list_for_each_entry(page, &n->full, lru) {
4034 		validate_slab_slab(s, page, map);
4035 		count++;
4036 	}
4037 	if (count != atomic_long_read(&n->nr_slabs))
4038 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4039 		       s->name, count, atomic_long_read(&n->nr_slabs));
4040 
4041 out:
4042 	spin_unlock_irqrestore(&n->list_lock, flags);
4043 	return count;
4044 }
4045 
4046 static long validate_slab_cache(struct kmem_cache *s)
4047 {
4048 	int node;
4049 	unsigned long count = 0;
4050 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4051 				sizeof(unsigned long), GFP_KERNEL);
4052 	struct kmem_cache_node *n;
4053 
4054 	if (!map)
4055 		return -ENOMEM;
4056 
4057 	flush_all(s);
4058 	for_each_kmem_cache_node(s, node, n)
4059 		count += validate_slab_node(s, n, map);
4060 	kfree(map);
4061 	return count;
4062 }
4063 /*
4064  * Generate lists of code addresses where slabcache objects are allocated
4065  * and freed.
4066  */
4067 
4068 struct location {
4069 	unsigned long count;
4070 	unsigned long addr;
4071 	long long sum_time;
4072 	long min_time;
4073 	long max_time;
4074 	long min_pid;
4075 	long max_pid;
4076 	DECLARE_BITMAP(cpus, NR_CPUS);
4077 	nodemask_t nodes;
4078 };
4079 
4080 struct loc_track {
4081 	unsigned long max;
4082 	unsigned long count;
4083 	struct location *loc;
4084 };
4085 
4086 static void free_loc_track(struct loc_track *t)
4087 {
4088 	if (t->max)
4089 		free_pages((unsigned long)t->loc,
4090 			get_order(sizeof(struct location) * t->max));
4091 }
4092 
4093 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4094 {
4095 	struct location *l;
4096 	int order;
4097 
4098 	order = get_order(sizeof(struct location) * max);
4099 
4100 	l = (void *)__get_free_pages(flags, order);
4101 	if (!l)
4102 		return 0;
4103 
4104 	if (t->count) {
4105 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4106 		free_loc_track(t);
4107 	}
4108 	t->max = max;
4109 	t->loc = l;
4110 	return 1;
4111 }
4112 
4113 static int add_location(struct loc_track *t, struct kmem_cache *s,
4114 				const struct track *track)
4115 {
4116 	long start, end, pos;
4117 	struct location *l;
4118 	unsigned long caddr;
4119 	unsigned long age = jiffies - track->when;
4120 
4121 	start = -1;
4122 	end = t->count;
4123 
4124 	for ( ; ; ) {
4125 		pos = start + (end - start + 1) / 2;
4126 
4127 		/*
4128 		 * There is nothing at "end". If we end up there
4129 		 * we need to add something to before end.
4130 		 */
4131 		if (pos == end)
4132 			break;
4133 
4134 		caddr = t->loc[pos].addr;
4135 		if (track->addr == caddr) {
4136 
4137 			l = &t->loc[pos];
4138 			l->count++;
4139 			if (track->when) {
4140 				l->sum_time += age;
4141 				if (age < l->min_time)
4142 					l->min_time = age;
4143 				if (age > l->max_time)
4144 					l->max_time = age;
4145 
4146 				if (track->pid < l->min_pid)
4147 					l->min_pid = track->pid;
4148 				if (track->pid > l->max_pid)
4149 					l->max_pid = track->pid;
4150 
4151 				cpumask_set_cpu(track->cpu,
4152 						to_cpumask(l->cpus));
4153 			}
4154 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4155 			return 1;
4156 		}
4157 
4158 		if (track->addr < caddr)
4159 			end = pos;
4160 		else
4161 			start = pos;
4162 	}
4163 
4164 	/*
4165 	 * Not found. Insert new tracking element.
4166 	 */
4167 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4168 		return 0;
4169 
4170 	l = t->loc + pos;
4171 	if (pos < t->count)
4172 		memmove(l + 1, l,
4173 			(t->count - pos) * sizeof(struct location));
4174 	t->count++;
4175 	l->count = 1;
4176 	l->addr = track->addr;
4177 	l->sum_time = age;
4178 	l->min_time = age;
4179 	l->max_time = age;
4180 	l->min_pid = track->pid;
4181 	l->max_pid = track->pid;
4182 	cpumask_clear(to_cpumask(l->cpus));
4183 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4184 	nodes_clear(l->nodes);
4185 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4186 	return 1;
4187 }
4188 
4189 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4190 		struct page *page, enum track_item alloc,
4191 		unsigned long *map)
4192 {
4193 	void *addr = page_address(page);
4194 	void *p;
4195 
4196 	bitmap_zero(map, page->objects);
4197 	get_map(s, page, map);
4198 
4199 	for_each_object(p, s, addr, page->objects)
4200 		if (!test_bit(slab_index(p, s, addr), map))
4201 			add_location(t, s, get_track(s, p, alloc));
4202 }
4203 
4204 static int list_locations(struct kmem_cache *s, char *buf,
4205 					enum track_item alloc)
4206 {
4207 	int len = 0;
4208 	unsigned long i;
4209 	struct loc_track t = { 0, 0, NULL };
4210 	int node;
4211 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4212 				     sizeof(unsigned long), GFP_KERNEL);
4213 	struct kmem_cache_node *n;
4214 
4215 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4216 				     GFP_TEMPORARY)) {
4217 		kfree(map);
4218 		return sprintf(buf, "Out of memory\n");
4219 	}
4220 	/* Push back cpu slabs */
4221 	flush_all(s);
4222 
4223 	for_each_kmem_cache_node(s, node, n) {
4224 		unsigned long flags;
4225 		struct page *page;
4226 
4227 		if (!atomic_long_read(&n->nr_slabs))
4228 			continue;
4229 
4230 		spin_lock_irqsave(&n->list_lock, flags);
4231 		list_for_each_entry(page, &n->partial, lru)
4232 			process_slab(&t, s, page, alloc, map);
4233 		list_for_each_entry(page, &n->full, lru)
4234 			process_slab(&t, s, page, alloc, map);
4235 		spin_unlock_irqrestore(&n->list_lock, flags);
4236 	}
4237 
4238 	for (i = 0; i < t.count; i++) {
4239 		struct location *l = &t.loc[i];
4240 
4241 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4242 			break;
4243 		len += sprintf(buf + len, "%7ld ", l->count);
4244 
4245 		if (l->addr)
4246 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4247 		else
4248 			len += sprintf(buf + len, "<not-available>");
4249 
4250 		if (l->sum_time != l->min_time) {
4251 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4252 				l->min_time,
4253 				(long)div_u64(l->sum_time, l->count),
4254 				l->max_time);
4255 		} else
4256 			len += sprintf(buf + len, " age=%ld",
4257 				l->min_time);
4258 
4259 		if (l->min_pid != l->max_pid)
4260 			len += sprintf(buf + len, " pid=%ld-%ld",
4261 				l->min_pid, l->max_pid);
4262 		else
4263 			len += sprintf(buf + len, " pid=%ld",
4264 				l->min_pid);
4265 
4266 		if (num_online_cpus() > 1 &&
4267 				!cpumask_empty(to_cpumask(l->cpus)) &&
4268 				len < PAGE_SIZE - 60)
4269 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4270 					 " cpus=%*pbl",
4271 					 cpumask_pr_args(to_cpumask(l->cpus)));
4272 
4273 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4274 				len < PAGE_SIZE - 60)
4275 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4276 					 " nodes=%*pbl",
4277 					 nodemask_pr_args(&l->nodes));
4278 
4279 		len += sprintf(buf + len, "\n");
4280 	}
4281 
4282 	free_loc_track(&t);
4283 	kfree(map);
4284 	if (!t.count)
4285 		len += sprintf(buf, "No data\n");
4286 	return len;
4287 }
4288 #endif
4289 
4290 #ifdef SLUB_RESILIENCY_TEST
4291 static void __init resiliency_test(void)
4292 {
4293 	u8 *p;
4294 
4295 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4296 
4297 	pr_err("SLUB resiliency testing\n");
4298 	pr_err("-----------------------\n");
4299 	pr_err("A. Corruption after allocation\n");
4300 
4301 	p = kzalloc(16, GFP_KERNEL);
4302 	p[16] = 0x12;
4303 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4304 	       p + 16);
4305 
4306 	validate_slab_cache(kmalloc_caches[4]);
4307 
4308 	/* Hmmm... The next two are dangerous */
4309 	p = kzalloc(32, GFP_KERNEL);
4310 	p[32 + sizeof(void *)] = 0x34;
4311 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4312 	       p);
4313 	pr_err("If allocated object is overwritten then not detectable\n\n");
4314 
4315 	validate_slab_cache(kmalloc_caches[5]);
4316 	p = kzalloc(64, GFP_KERNEL);
4317 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4318 	*p = 0x56;
4319 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4320 	       p);
4321 	pr_err("If allocated object is overwritten then not detectable\n\n");
4322 	validate_slab_cache(kmalloc_caches[6]);
4323 
4324 	pr_err("\nB. Corruption after free\n");
4325 	p = kzalloc(128, GFP_KERNEL);
4326 	kfree(p);
4327 	*p = 0x78;
4328 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4329 	validate_slab_cache(kmalloc_caches[7]);
4330 
4331 	p = kzalloc(256, GFP_KERNEL);
4332 	kfree(p);
4333 	p[50] = 0x9a;
4334 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4335 	validate_slab_cache(kmalloc_caches[8]);
4336 
4337 	p = kzalloc(512, GFP_KERNEL);
4338 	kfree(p);
4339 	p[512] = 0xab;
4340 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4341 	validate_slab_cache(kmalloc_caches[9]);
4342 }
4343 #else
4344 #ifdef CONFIG_SYSFS
4345 static void resiliency_test(void) {};
4346 #endif
4347 #endif
4348 
4349 #ifdef CONFIG_SYSFS
4350 enum slab_stat_type {
4351 	SL_ALL,			/* All slabs */
4352 	SL_PARTIAL,		/* Only partially allocated slabs */
4353 	SL_CPU,			/* Only slabs used for cpu caches */
4354 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4355 	SL_TOTAL		/* Determine object capacity not slabs */
4356 };
4357 
4358 #define SO_ALL		(1 << SL_ALL)
4359 #define SO_PARTIAL	(1 << SL_PARTIAL)
4360 #define SO_CPU		(1 << SL_CPU)
4361 #define SO_OBJECTS	(1 << SL_OBJECTS)
4362 #define SO_TOTAL	(1 << SL_TOTAL)
4363 
4364 static ssize_t show_slab_objects(struct kmem_cache *s,
4365 			    char *buf, unsigned long flags)
4366 {
4367 	unsigned long total = 0;
4368 	int node;
4369 	int x;
4370 	unsigned long *nodes;
4371 
4372 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4373 	if (!nodes)
4374 		return -ENOMEM;
4375 
4376 	if (flags & SO_CPU) {
4377 		int cpu;
4378 
4379 		for_each_possible_cpu(cpu) {
4380 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4381 							       cpu);
4382 			int node;
4383 			struct page *page;
4384 
4385 			page = READ_ONCE(c->page);
4386 			if (!page)
4387 				continue;
4388 
4389 			node = page_to_nid(page);
4390 			if (flags & SO_TOTAL)
4391 				x = page->objects;
4392 			else if (flags & SO_OBJECTS)
4393 				x = page->inuse;
4394 			else
4395 				x = 1;
4396 
4397 			total += x;
4398 			nodes[node] += x;
4399 
4400 			page = READ_ONCE(c->partial);
4401 			if (page) {
4402 				node = page_to_nid(page);
4403 				if (flags & SO_TOTAL)
4404 					WARN_ON_ONCE(1);
4405 				else if (flags & SO_OBJECTS)
4406 					WARN_ON_ONCE(1);
4407 				else
4408 					x = page->pages;
4409 				total += x;
4410 				nodes[node] += x;
4411 			}
4412 		}
4413 	}
4414 
4415 	get_online_mems();
4416 #ifdef CONFIG_SLUB_DEBUG
4417 	if (flags & SO_ALL) {
4418 		struct kmem_cache_node *n;
4419 
4420 		for_each_kmem_cache_node(s, node, n) {
4421 
4422 			if (flags & SO_TOTAL)
4423 				x = atomic_long_read(&n->total_objects);
4424 			else if (flags & SO_OBJECTS)
4425 				x = atomic_long_read(&n->total_objects) -
4426 					count_partial(n, count_free);
4427 			else
4428 				x = atomic_long_read(&n->nr_slabs);
4429 			total += x;
4430 			nodes[node] += x;
4431 		}
4432 
4433 	} else
4434 #endif
4435 	if (flags & SO_PARTIAL) {
4436 		struct kmem_cache_node *n;
4437 
4438 		for_each_kmem_cache_node(s, node, n) {
4439 			if (flags & SO_TOTAL)
4440 				x = count_partial(n, count_total);
4441 			else if (flags & SO_OBJECTS)
4442 				x = count_partial(n, count_inuse);
4443 			else
4444 				x = n->nr_partial;
4445 			total += x;
4446 			nodes[node] += x;
4447 		}
4448 	}
4449 	x = sprintf(buf, "%lu", total);
4450 #ifdef CONFIG_NUMA
4451 	for (node = 0; node < nr_node_ids; node++)
4452 		if (nodes[node])
4453 			x += sprintf(buf + x, " N%d=%lu",
4454 					node, nodes[node]);
4455 #endif
4456 	put_online_mems();
4457 	kfree(nodes);
4458 	return x + sprintf(buf + x, "\n");
4459 }
4460 
4461 #ifdef CONFIG_SLUB_DEBUG
4462 static int any_slab_objects(struct kmem_cache *s)
4463 {
4464 	int node;
4465 	struct kmem_cache_node *n;
4466 
4467 	for_each_kmem_cache_node(s, node, n)
4468 		if (atomic_long_read(&n->total_objects))
4469 			return 1;
4470 
4471 	return 0;
4472 }
4473 #endif
4474 
4475 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4476 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4477 
4478 struct slab_attribute {
4479 	struct attribute attr;
4480 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4481 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4482 };
4483 
4484 #define SLAB_ATTR_RO(_name) \
4485 	static struct slab_attribute _name##_attr = \
4486 	__ATTR(_name, 0400, _name##_show, NULL)
4487 
4488 #define SLAB_ATTR(_name) \
4489 	static struct slab_attribute _name##_attr =  \
4490 	__ATTR(_name, 0600, _name##_show, _name##_store)
4491 
4492 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4493 {
4494 	return sprintf(buf, "%d\n", s->size);
4495 }
4496 SLAB_ATTR_RO(slab_size);
4497 
4498 static ssize_t align_show(struct kmem_cache *s, char *buf)
4499 {
4500 	return sprintf(buf, "%d\n", s->align);
4501 }
4502 SLAB_ATTR_RO(align);
4503 
4504 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4505 {
4506 	return sprintf(buf, "%d\n", s->object_size);
4507 }
4508 SLAB_ATTR_RO(object_size);
4509 
4510 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4511 {
4512 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4513 }
4514 SLAB_ATTR_RO(objs_per_slab);
4515 
4516 static ssize_t order_store(struct kmem_cache *s,
4517 				const char *buf, size_t length)
4518 {
4519 	unsigned long order;
4520 	int err;
4521 
4522 	err = kstrtoul(buf, 10, &order);
4523 	if (err)
4524 		return err;
4525 
4526 	if (order > slub_max_order || order < slub_min_order)
4527 		return -EINVAL;
4528 
4529 	calculate_sizes(s, order);
4530 	return length;
4531 }
4532 
4533 static ssize_t order_show(struct kmem_cache *s, char *buf)
4534 {
4535 	return sprintf(buf, "%d\n", oo_order(s->oo));
4536 }
4537 SLAB_ATTR(order);
4538 
4539 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4540 {
4541 	return sprintf(buf, "%lu\n", s->min_partial);
4542 }
4543 
4544 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4545 				 size_t length)
4546 {
4547 	unsigned long min;
4548 	int err;
4549 
4550 	err = kstrtoul(buf, 10, &min);
4551 	if (err)
4552 		return err;
4553 
4554 	set_min_partial(s, min);
4555 	return length;
4556 }
4557 SLAB_ATTR(min_partial);
4558 
4559 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4560 {
4561 	return sprintf(buf, "%u\n", s->cpu_partial);
4562 }
4563 
4564 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4565 				 size_t length)
4566 {
4567 	unsigned long objects;
4568 	int err;
4569 
4570 	err = kstrtoul(buf, 10, &objects);
4571 	if (err)
4572 		return err;
4573 	if (objects && !kmem_cache_has_cpu_partial(s))
4574 		return -EINVAL;
4575 
4576 	s->cpu_partial = objects;
4577 	flush_all(s);
4578 	return length;
4579 }
4580 SLAB_ATTR(cpu_partial);
4581 
4582 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4583 {
4584 	if (!s->ctor)
4585 		return 0;
4586 	return sprintf(buf, "%pS\n", s->ctor);
4587 }
4588 SLAB_ATTR_RO(ctor);
4589 
4590 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4591 {
4592 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4593 }
4594 SLAB_ATTR_RO(aliases);
4595 
4596 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4597 {
4598 	return show_slab_objects(s, buf, SO_PARTIAL);
4599 }
4600 SLAB_ATTR_RO(partial);
4601 
4602 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4603 {
4604 	return show_slab_objects(s, buf, SO_CPU);
4605 }
4606 SLAB_ATTR_RO(cpu_slabs);
4607 
4608 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4609 {
4610 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4611 }
4612 SLAB_ATTR_RO(objects);
4613 
4614 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4615 {
4616 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4617 }
4618 SLAB_ATTR_RO(objects_partial);
4619 
4620 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4621 {
4622 	int objects = 0;
4623 	int pages = 0;
4624 	int cpu;
4625 	int len;
4626 
4627 	for_each_online_cpu(cpu) {
4628 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4629 
4630 		if (page) {
4631 			pages += page->pages;
4632 			objects += page->pobjects;
4633 		}
4634 	}
4635 
4636 	len = sprintf(buf, "%d(%d)", objects, pages);
4637 
4638 #ifdef CONFIG_SMP
4639 	for_each_online_cpu(cpu) {
4640 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4641 
4642 		if (page && len < PAGE_SIZE - 20)
4643 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4644 				page->pobjects, page->pages);
4645 	}
4646 #endif
4647 	return len + sprintf(buf + len, "\n");
4648 }
4649 SLAB_ATTR_RO(slabs_cpu_partial);
4650 
4651 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4652 {
4653 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4654 }
4655 
4656 static ssize_t reclaim_account_store(struct kmem_cache *s,
4657 				const char *buf, size_t length)
4658 {
4659 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4660 	if (buf[0] == '1')
4661 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4662 	return length;
4663 }
4664 SLAB_ATTR(reclaim_account);
4665 
4666 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4667 {
4668 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4669 }
4670 SLAB_ATTR_RO(hwcache_align);
4671 
4672 #ifdef CONFIG_ZONE_DMA
4673 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4674 {
4675 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4676 }
4677 SLAB_ATTR_RO(cache_dma);
4678 #endif
4679 
4680 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4681 {
4682 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4683 }
4684 SLAB_ATTR_RO(destroy_by_rcu);
4685 
4686 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4687 {
4688 	return sprintf(buf, "%d\n", s->reserved);
4689 }
4690 SLAB_ATTR_RO(reserved);
4691 
4692 #ifdef CONFIG_SLUB_DEBUG
4693 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4694 {
4695 	return show_slab_objects(s, buf, SO_ALL);
4696 }
4697 SLAB_ATTR_RO(slabs);
4698 
4699 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4700 {
4701 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4702 }
4703 SLAB_ATTR_RO(total_objects);
4704 
4705 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4706 {
4707 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4708 }
4709 
4710 static ssize_t sanity_checks_store(struct kmem_cache *s,
4711 				const char *buf, size_t length)
4712 {
4713 	s->flags &= ~SLAB_DEBUG_FREE;
4714 	if (buf[0] == '1') {
4715 		s->flags &= ~__CMPXCHG_DOUBLE;
4716 		s->flags |= SLAB_DEBUG_FREE;
4717 	}
4718 	return length;
4719 }
4720 SLAB_ATTR(sanity_checks);
4721 
4722 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4723 {
4724 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4725 }
4726 
4727 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4728 							size_t length)
4729 {
4730 	/*
4731 	 * Tracing a merged cache is going to give confusing results
4732 	 * as well as cause other issues like converting a mergeable
4733 	 * cache into an umergeable one.
4734 	 */
4735 	if (s->refcount > 1)
4736 		return -EINVAL;
4737 
4738 	s->flags &= ~SLAB_TRACE;
4739 	if (buf[0] == '1') {
4740 		s->flags &= ~__CMPXCHG_DOUBLE;
4741 		s->flags |= SLAB_TRACE;
4742 	}
4743 	return length;
4744 }
4745 SLAB_ATTR(trace);
4746 
4747 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4748 {
4749 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4750 }
4751 
4752 static ssize_t red_zone_store(struct kmem_cache *s,
4753 				const char *buf, size_t length)
4754 {
4755 	if (any_slab_objects(s))
4756 		return -EBUSY;
4757 
4758 	s->flags &= ~SLAB_RED_ZONE;
4759 	if (buf[0] == '1') {
4760 		s->flags &= ~__CMPXCHG_DOUBLE;
4761 		s->flags |= SLAB_RED_ZONE;
4762 	}
4763 	calculate_sizes(s, -1);
4764 	return length;
4765 }
4766 SLAB_ATTR(red_zone);
4767 
4768 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4769 {
4770 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4771 }
4772 
4773 static ssize_t poison_store(struct kmem_cache *s,
4774 				const char *buf, size_t length)
4775 {
4776 	if (any_slab_objects(s))
4777 		return -EBUSY;
4778 
4779 	s->flags &= ~SLAB_POISON;
4780 	if (buf[0] == '1') {
4781 		s->flags &= ~__CMPXCHG_DOUBLE;
4782 		s->flags |= SLAB_POISON;
4783 	}
4784 	calculate_sizes(s, -1);
4785 	return length;
4786 }
4787 SLAB_ATTR(poison);
4788 
4789 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4790 {
4791 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4792 }
4793 
4794 static ssize_t store_user_store(struct kmem_cache *s,
4795 				const char *buf, size_t length)
4796 {
4797 	if (any_slab_objects(s))
4798 		return -EBUSY;
4799 
4800 	s->flags &= ~SLAB_STORE_USER;
4801 	if (buf[0] == '1') {
4802 		s->flags &= ~__CMPXCHG_DOUBLE;
4803 		s->flags |= SLAB_STORE_USER;
4804 	}
4805 	calculate_sizes(s, -1);
4806 	return length;
4807 }
4808 SLAB_ATTR(store_user);
4809 
4810 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4811 {
4812 	return 0;
4813 }
4814 
4815 static ssize_t validate_store(struct kmem_cache *s,
4816 			const char *buf, size_t length)
4817 {
4818 	int ret = -EINVAL;
4819 
4820 	if (buf[0] == '1') {
4821 		ret = validate_slab_cache(s);
4822 		if (ret >= 0)
4823 			ret = length;
4824 	}
4825 	return ret;
4826 }
4827 SLAB_ATTR(validate);
4828 
4829 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4830 {
4831 	if (!(s->flags & SLAB_STORE_USER))
4832 		return -ENOSYS;
4833 	return list_locations(s, buf, TRACK_ALLOC);
4834 }
4835 SLAB_ATTR_RO(alloc_calls);
4836 
4837 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4838 {
4839 	if (!(s->flags & SLAB_STORE_USER))
4840 		return -ENOSYS;
4841 	return list_locations(s, buf, TRACK_FREE);
4842 }
4843 SLAB_ATTR_RO(free_calls);
4844 #endif /* CONFIG_SLUB_DEBUG */
4845 
4846 #ifdef CONFIG_FAILSLAB
4847 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4848 {
4849 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4850 }
4851 
4852 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4853 							size_t length)
4854 {
4855 	if (s->refcount > 1)
4856 		return -EINVAL;
4857 
4858 	s->flags &= ~SLAB_FAILSLAB;
4859 	if (buf[0] == '1')
4860 		s->flags |= SLAB_FAILSLAB;
4861 	return length;
4862 }
4863 SLAB_ATTR(failslab);
4864 #endif
4865 
4866 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4867 {
4868 	return 0;
4869 }
4870 
4871 static ssize_t shrink_store(struct kmem_cache *s,
4872 			const char *buf, size_t length)
4873 {
4874 	if (buf[0] == '1')
4875 		kmem_cache_shrink(s);
4876 	else
4877 		return -EINVAL;
4878 	return length;
4879 }
4880 SLAB_ATTR(shrink);
4881 
4882 #ifdef CONFIG_NUMA
4883 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4884 {
4885 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4886 }
4887 
4888 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4889 				const char *buf, size_t length)
4890 {
4891 	unsigned long ratio;
4892 	int err;
4893 
4894 	err = kstrtoul(buf, 10, &ratio);
4895 	if (err)
4896 		return err;
4897 
4898 	if (ratio <= 100)
4899 		s->remote_node_defrag_ratio = ratio * 10;
4900 
4901 	return length;
4902 }
4903 SLAB_ATTR(remote_node_defrag_ratio);
4904 #endif
4905 
4906 #ifdef CONFIG_SLUB_STATS
4907 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4908 {
4909 	unsigned long sum  = 0;
4910 	int cpu;
4911 	int len;
4912 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4913 
4914 	if (!data)
4915 		return -ENOMEM;
4916 
4917 	for_each_online_cpu(cpu) {
4918 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4919 
4920 		data[cpu] = x;
4921 		sum += x;
4922 	}
4923 
4924 	len = sprintf(buf, "%lu", sum);
4925 
4926 #ifdef CONFIG_SMP
4927 	for_each_online_cpu(cpu) {
4928 		if (data[cpu] && len < PAGE_SIZE - 20)
4929 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4930 	}
4931 #endif
4932 	kfree(data);
4933 	return len + sprintf(buf + len, "\n");
4934 }
4935 
4936 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4937 {
4938 	int cpu;
4939 
4940 	for_each_online_cpu(cpu)
4941 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4942 }
4943 
4944 #define STAT_ATTR(si, text) 					\
4945 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4946 {								\
4947 	return show_stat(s, buf, si);				\
4948 }								\
4949 static ssize_t text##_store(struct kmem_cache *s,		\
4950 				const char *buf, size_t length)	\
4951 {								\
4952 	if (buf[0] != '0')					\
4953 		return -EINVAL;					\
4954 	clear_stat(s, si);					\
4955 	return length;						\
4956 }								\
4957 SLAB_ATTR(text);						\
4958 
4959 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4960 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4961 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4962 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4963 STAT_ATTR(FREE_FROZEN, free_frozen);
4964 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4965 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4966 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4967 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4968 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4969 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4970 STAT_ATTR(FREE_SLAB, free_slab);
4971 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4972 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4973 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4974 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4975 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4976 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4977 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4978 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4979 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4980 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4981 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4982 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4983 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4984 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4985 #endif
4986 
4987 static struct attribute *slab_attrs[] = {
4988 	&slab_size_attr.attr,
4989 	&object_size_attr.attr,
4990 	&objs_per_slab_attr.attr,
4991 	&order_attr.attr,
4992 	&min_partial_attr.attr,
4993 	&cpu_partial_attr.attr,
4994 	&objects_attr.attr,
4995 	&objects_partial_attr.attr,
4996 	&partial_attr.attr,
4997 	&cpu_slabs_attr.attr,
4998 	&ctor_attr.attr,
4999 	&aliases_attr.attr,
5000 	&align_attr.attr,
5001 	&hwcache_align_attr.attr,
5002 	&reclaim_account_attr.attr,
5003 	&destroy_by_rcu_attr.attr,
5004 	&shrink_attr.attr,
5005 	&reserved_attr.attr,
5006 	&slabs_cpu_partial_attr.attr,
5007 #ifdef CONFIG_SLUB_DEBUG
5008 	&total_objects_attr.attr,
5009 	&slabs_attr.attr,
5010 	&sanity_checks_attr.attr,
5011 	&trace_attr.attr,
5012 	&red_zone_attr.attr,
5013 	&poison_attr.attr,
5014 	&store_user_attr.attr,
5015 	&validate_attr.attr,
5016 	&alloc_calls_attr.attr,
5017 	&free_calls_attr.attr,
5018 #endif
5019 #ifdef CONFIG_ZONE_DMA
5020 	&cache_dma_attr.attr,
5021 #endif
5022 #ifdef CONFIG_NUMA
5023 	&remote_node_defrag_ratio_attr.attr,
5024 #endif
5025 #ifdef CONFIG_SLUB_STATS
5026 	&alloc_fastpath_attr.attr,
5027 	&alloc_slowpath_attr.attr,
5028 	&free_fastpath_attr.attr,
5029 	&free_slowpath_attr.attr,
5030 	&free_frozen_attr.attr,
5031 	&free_add_partial_attr.attr,
5032 	&free_remove_partial_attr.attr,
5033 	&alloc_from_partial_attr.attr,
5034 	&alloc_slab_attr.attr,
5035 	&alloc_refill_attr.attr,
5036 	&alloc_node_mismatch_attr.attr,
5037 	&free_slab_attr.attr,
5038 	&cpuslab_flush_attr.attr,
5039 	&deactivate_full_attr.attr,
5040 	&deactivate_empty_attr.attr,
5041 	&deactivate_to_head_attr.attr,
5042 	&deactivate_to_tail_attr.attr,
5043 	&deactivate_remote_frees_attr.attr,
5044 	&deactivate_bypass_attr.attr,
5045 	&order_fallback_attr.attr,
5046 	&cmpxchg_double_fail_attr.attr,
5047 	&cmpxchg_double_cpu_fail_attr.attr,
5048 	&cpu_partial_alloc_attr.attr,
5049 	&cpu_partial_free_attr.attr,
5050 	&cpu_partial_node_attr.attr,
5051 	&cpu_partial_drain_attr.attr,
5052 #endif
5053 #ifdef CONFIG_FAILSLAB
5054 	&failslab_attr.attr,
5055 #endif
5056 
5057 	NULL
5058 };
5059 
5060 static struct attribute_group slab_attr_group = {
5061 	.attrs = slab_attrs,
5062 };
5063 
5064 static ssize_t slab_attr_show(struct kobject *kobj,
5065 				struct attribute *attr,
5066 				char *buf)
5067 {
5068 	struct slab_attribute *attribute;
5069 	struct kmem_cache *s;
5070 	int err;
5071 
5072 	attribute = to_slab_attr(attr);
5073 	s = to_slab(kobj);
5074 
5075 	if (!attribute->show)
5076 		return -EIO;
5077 
5078 	err = attribute->show(s, buf);
5079 
5080 	return err;
5081 }
5082 
5083 static ssize_t slab_attr_store(struct kobject *kobj,
5084 				struct attribute *attr,
5085 				const char *buf, size_t len)
5086 {
5087 	struct slab_attribute *attribute;
5088 	struct kmem_cache *s;
5089 	int err;
5090 
5091 	attribute = to_slab_attr(attr);
5092 	s = to_slab(kobj);
5093 
5094 	if (!attribute->store)
5095 		return -EIO;
5096 
5097 	err = attribute->store(s, buf, len);
5098 #ifdef CONFIG_MEMCG_KMEM
5099 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5100 		struct kmem_cache *c;
5101 
5102 		mutex_lock(&slab_mutex);
5103 		if (s->max_attr_size < len)
5104 			s->max_attr_size = len;
5105 
5106 		/*
5107 		 * This is a best effort propagation, so this function's return
5108 		 * value will be determined by the parent cache only. This is
5109 		 * basically because not all attributes will have a well
5110 		 * defined semantics for rollbacks - most of the actions will
5111 		 * have permanent effects.
5112 		 *
5113 		 * Returning the error value of any of the children that fail
5114 		 * is not 100 % defined, in the sense that users seeing the
5115 		 * error code won't be able to know anything about the state of
5116 		 * the cache.
5117 		 *
5118 		 * Only returning the error code for the parent cache at least
5119 		 * has well defined semantics. The cache being written to
5120 		 * directly either failed or succeeded, in which case we loop
5121 		 * through the descendants with best-effort propagation.
5122 		 */
5123 		for_each_memcg_cache(c, s)
5124 			attribute->store(c, buf, len);
5125 		mutex_unlock(&slab_mutex);
5126 	}
5127 #endif
5128 	return err;
5129 }
5130 
5131 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5132 {
5133 #ifdef CONFIG_MEMCG_KMEM
5134 	int i;
5135 	char *buffer = NULL;
5136 	struct kmem_cache *root_cache;
5137 
5138 	if (is_root_cache(s))
5139 		return;
5140 
5141 	root_cache = s->memcg_params.root_cache;
5142 
5143 	/*
5144 	 * This mean this cache had no attribute written. Therefore, no point
5145 	 * in copying default values around
5146 	 */
5147 	if (!root_cache->max_attr_size)
5148 		return;
5149 
5150 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5151 		char mbuf[64];
5152 		char *buf;
5153 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5154 
5155 		if (!attr || !attr->store || !attr->show)
5156 			continue;
5157 
5158 		/*
5159 		 * It is really bad that we have to allocate here, so we will
5160 		 * do it only as a fallback. If we actually allocate, though,
5161 		 * we can just use the allocated buffer until the end.
5162 		 *
5163 		 * Most of the slub attributes will tend to be very small in
5164 		 * size, but sysfs allows buffers up to a page, so they can
5165 		 * theoretically happen.
5166 		 */
5167 		if (buffer)
5168 			buf = buffer;
5169 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5170 			buf = mbuf;
5171 		else {
5172 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5173 			if (WARN_ON(!buffer))
5174 				continue;
5175 			buf = buffer;
5176 		}
5177 
5178 		attr->show(root_cache, buf);
5179 		attr->store(s, buf, strlen(buf));
5180 	}
5181 
5182 	if (buffer)
5183 		free_page((unsigned long)buffer);
5184 #endif
5185 }
5186 
5187 static void kmem_cache_release(struct kobject *k)
5188 {
5189 	slab_kmem_cache_release(to_slab(k));
5190 }
5191 
5192 static const struct sysfs_ops slab_sysfs_ops = {
5193 	.show = slab_attr_show,
5194 	.store = slab_attr_store,
5195 };
5196 
5197 static struct kobj_type slab_ktype = {
5198 	.sysfs_ops = &slab_sysfs_ops,
5199 	.release = kmem_cache_release,
5200 };
5201 
5202 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5203 {
5204 	struct kobj_type *ktype = get_ktype(kobj);
5205 
5206 	if (ktype == &slab_ktype)
5207 		return 1;
5208 	return 0;
5209 }
5210 
5211 static const struct kset_uevent_ops slab_uevent_ops = {
5212 	.filter = uevent_filter,
5213 };
5214 
5215 static struct kset *slab_kset;
5216 
5217 static inline struct kset *cache_kset(struct kmem_cache *s)
5218 {
5219 #ifdef CONFIG_MEMCG_KMEM
5220 	if (!is_root_cache(s))
5221 		return s->memcg_params.root_cache->memcg_kset;
5222 #endif
5223 	return slab_kset;
5224 }
5225 
5226 #define ID_STR_LENGTH 64
5227 
5228 /* Create a unique string id for a slab cache:
5229  *
5230  * Format	:[flags-]size
5231  */
5232 static char *create_unique_id(struct kmem_cache *s)
5233 {
5234 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5235 	char *p = name;
5236 
5237 	BUG_ON(!name);
5238 
5239 	*p++ = ':';
5240 	/*
5241 	 * First flags affecting slabcache operations. We will only
5242 	 * get here for aliasable slabs so we do not need to support
5243 	 * too many flags. The flags here must cover all flags that
5244 	 * are matched during merging to guarantee that the id is
5245 	 * unique.
5246 	 */
5247 	if (s->flags & SLAB_CACHE_DMA)
5248 		*p++ = 'd';
5249 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5250 		*p++ = 'a';
5251 	if (s->flags & SLAB_DEBUG_FREE)
5252 		*p++ = 'F';
5253 	if (!(s->flags & SLAB_NOTRACK))
5254 		*p++ = 't';
5255 	if (p != name + 1)
5256 		*p++ = '-';
5257 	p += sprintf(p, "%07d", s->size);
5258 
5259 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5260 	return name;
5261 }
5262 
5263 static int sysfs_slab_add(struct kmem_cache *s)
5264 {
5265 	int err;
5266 	const char *name;
5267 	int unmergeable = slab_unmergeable(s);
5268 
5269 	if (unmergeable) {
5270 		/*
5271 		 * Slabcache can never be merged so we can use the name proper.
5272 		 * This is typically the case for debug situations. In that
5273 		 * case we can catch duplicate names easily.
5274 		 */
5275 		sysfs_remove_link(&slab_kset->kobj, s->name);
5276 		name = s->name;
5277 	} else {
5278 		/*
5279 		 * Create a unique name for the slab as a target
5280 		 * for the symlinks.
5281 		 */
5282 		name = create_unique_id(s);
5283 	}
5284 
5285 	s->kobj.kset = cache_kset(s);
5286 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5287 	if (err)
5288 		goto out;
5289 
5290 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5291 	if (err)
5292 		goto out_del_kobj;
5293 
5294 #ifdef CONFIG_MEMCG_KMEM
5295 	if (is_root_cache(s)) {
5296 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5297 		if (!s->memcg_kset) {
5298 			err = -ENOMEM;
5299 			goto out_del_kobj;
5300 		}
5301 	}
5302 #endif
5303 
5304 	kobject_uevent(&s->kobj, KOBJ_ADD);
5305 	if (!unmergeable) {
5306 		/* Setup first alias */
5307 		sysfs_slab_alias(s, s->name);
5308 	}
5309 out:
5310 	if (!unmergeable)
5311 		kfree(name);
5312 	return err;
5313 out_del_kobj:
5314 	kobject_del(&s->kobj);
5315 	goto out;
5316 }
5317 
5318 void sysfs_slab_remove(struct kmem_cache *s)
5319 {
5320 	if (slab_state < FULL)
5321 		/*
5322 		 * Sysfs has not been setup yet so no need to remove the
5323 		 * cache from sysfs.
5324 		 */
5325 		return;
5326 
5327 #ifdef CONFIG_MEMCG_KMEM
5328 	kset_unregister(s->memcg_kset);
5329 #endif
5330 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5331 	kobject_del(&s->kobj);
5332 	kobject_put(&s->kobj);
5333 }
5334 
5335 /*
5336  * Need to buffer aliases during bootup until sysfs becomes
5337  * available lest we lose that information.
5338  */
5339 struct saved_alias {
5340 	struct kmem_cache *s;
5341 	const char *name;
5342 	struct saved_alias *next;
5343 };
5344 
5345 static struct saved_alias *alias_list;
5346 
5347 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5348 {
5349 	struct saved_alias *al;
5350 
5351 	if (slab_state == FULL) {
5352 		/*
5353 		 * If we have a leftover link then remove it.
5354 		 */
5355 		sysfs_remove_link(&slab_kset->kobj, name);
5356 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5357 	}
5358 
5359 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5360 	if (!al)
5361 		return -ENOMEM;
5362 
5363 	al->s = s;
5364 	al->name = name;
5365 	al->next = alias_list;
5366 	alias_list = al;
5367 	return 0;
5368 }
5369 
5370 static int __init slab_sysfs_init(void)
5371 {
5372 	struct kmem_cache *s;
5373 	int err;
5374 
5375 	mutex_lock(&slab_mutex);
5376 
5377 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5378 	if (!slab_kset) {
5379 		mutex_unlock(&slab_mutex);
5380 		pr_err("Cannot register slab subsystem.\n");
5381 		return -ENOSYS;
5382 	}
5383 
5384 	slab_state = FULL;
5385 
5386 	list_for_each_entry(s, &slab_caches, list) {
5387 		err = sysfs_slab_add(s);
5388 		if (err)
5389 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5390 			       s->name);
5391 	}
5392 
5393 	while (alias_list) {
5394 		struct saved_alias *al = alias_list;
5395 
5396 		alias_list = alias_list->next;
5397 		err = sysfs_slab_alias(al->s, al->name);
5398 		if (err)
5399 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5400 			       al->name);
5401 		kfree(al);
5402 	}
5403 
5404 	mutex_unlock(&slab_mutex);
5405 	resiliency_test();
5406 	return 0;
5407 }
5408 
5409 __initcall(slab_sysfs_init);
5410 #endif /* CONFIG_SYSFS */
5411 
5412 /*
5413  * The /proc/slabinfo ABI
5414  */
5415 #ifdef CONFIG_SLABINFO
5416 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5417 {
5418 	unsigned long nr_slabs = 0;
5419 	unsigned long nr_objs = 0;
5420 	unsigned long nr_free = 0;
5421 	int node;
5422 	struct kmem_cache_node *n;
5423 
5424 	for_each_kmem_cache_node(s, node, n) {
5425 		nr_slabs += node_nr_slabs(n);
5426 		nr_objs += node_nr_objs(n);
5427 		nr_free += count_partial(n, count_free);
5428 	}
5429 
5430 	sinfo->active_objs = nr_objs - nr_free;
5431 	sinfo->num_objs = nr_objs;
5432 	sinfo->active_slabs = nr_slabs;
5433 	sinfo->num_slabs = nr_slabs;
5434 	sinfo->objects_per_slab = oo_objects(s->oo);
5435 	sinfo->cache_order = oo_order(s->oo);
5436 }
5437 
5438 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5439 {
5440 }
5441 
5442 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5443 		       size_t count, loff_t *ppos)
5444 {
5445 	return -EIO;
5446 }
5447 #endif /* CONFIG_SLABINFO */
5448