1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * Overloading of page flags that are otherwise used for LRU management. 97 * 98 * PageActive The slab is frozen and exempt from list processing. 99 * This means that the slab is dedicated to a purpose 100 * such as satisfying allocations for a specific 101 * processor. Objects may be freed in the slab while 102 * it is frozen but slab_free will then skip the usual 103 * list operations. It is up to the processor holding 104 * the slab to integrate the slab into the slab lists 105 * when the slab is no longer needed. 106 * 107 * One use of this flag is to mark slabs that are 108 * used for allocations. Then such a slab becomes a cpu 109 * slab. The cpu slab may be equipped with an additional 110 * freelist that allows lockless access to 111 * free objects in addition to the regular freelist 112 * that requires the slab lock. 113 * 114 * PageError Slab requires special handling due to debug 115 * options set. This moves slab handling out of 116 * the fast path and disables lockless freelists. 117 */ 118 119 static inline int kmem_cache_debug(struct kmem_cache *s) 120 { 121 #ifdef CONFIG_SLUB_DEBUG 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 123 #else 124 return 0; 125 #endif 126 } 127 128 void *fixup_red_left(struct kmem_cache *s, void *p) 129 { 130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 131 p += s->red_left_pad; 132 133 return p; 134 } 135 136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 137 { 138 #ifdef CONFIG_SLUB_CPU_PARTIAL 139 return !kmem_cache_debug(s); 140 #else 141 return false; 142 #endif 143 } 144 145 /* 146 * Issues still to be resolved: 147 * 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 149 * 150 * - Variable sizing of the per node arrays 151 */ 152 153 /* Enable to test recovery from slab corruption on boot */ 154 #undef SLUB_RESILIENCY_TEST 155 156 /* Enable to log cmpxchg failures */ 157 #undef SLUB_DEBUG_CMPXCHG 158 159 /* 160 * Mininum number of partial slabs. These will be left on the partial 161 * lists even if they are empty. kmem_cache_shrink may reclaim them. 162 */ 163 #define MIN_PARTIAL 5 164 165 /* 166 * Maximum number of desirable partial slabs. 167 * The existence of more partial slabs makes kmem_cache_shrink 168 * sort the partial list by the number of objects in use. 169 */ 170 #define MAX_PARTIAL 10 171 172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 173 SLAB_POISON | SLAB_STORE_USER) 174 175 /* 176 * These debug flags cannot use CMPXCHG because there might be consistency 177 * issues when checking or reading debug information 178 */ 179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 180 SLAB_TRACE) 181 182 183 /* 184 * Debugging flags that require metadata to be stored in the slab. These get 185 * disabled when slub_debug=O is used and a cache's min order increases with 186 * metadata. 187 */ 188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 189 190 #define OO_SHIFT 16 191 #define OO_MASK ((1 << OO_SHIFT) - 1) 192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 193 194 /* Internal SLUB flags */ 195 /* Poison object */ 196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 197 /* Use cmpxchg_double */ 198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 199 200 /* 201 * Tracking user of a slab. 202 */ 203 #define TRACK_ADDRS_COUNT 16 204 struct track { 205 unsigned long addr; /* Called from address */ 206 #ifdef CONFIG_STACKTRACE 207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 208 #endif 209 int cpu; /* Was running on cpu */ 210 int pid; /* Pid context */ 211 unsigned long when; /* When did the operation occur */ 212 }; 213 214 enum track_item { TRACK_ALLOC, TRACK_FREE }; 215 216 #ifdef CONFIG_SYSFS 217 static int sysfs_slab_add(struct kmem_cache *); 218 static int sysfs_slab_alias(struct kmem_cache *, const char *); 219 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 220 static void sysfs_slab_remove(struct kmem_cache *s); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 226 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 227 #endif 228 229 static inline void stat(const struct kmem_cache *s, enum stat_item si) 230 { 231 #ifdef CONFIG_SLUB_STATS 232 /* 233 * The rmw is racy on a preemptible kernel but this is acceptable, so 234 * avoid this_cpu_add()'s irq-disable overhead. 235 */ 236 raw_cpu_inc(s->cpu_slab->stat[si]); 237 #endif 238 } 239 240 /******************************************************************** 241 * Core slab cache functions 242 *******************************************************************/ 243 244 /* 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated 246 * with an XOR of the address where the pointer is held and a per-cache 247 * random number. 248 */ 249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 250 unsigned long ptr_addr) 251 { 252 #ifdef CONFIG_SLAB_FREELIST_HARDENED 253 /* 254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 255 * Normally, this doesn't cause any issues, as both set_freepointer() 256 * and get_freepointer() are called with a pointer with the same tag. 257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 258 * example, when __free_slub() iterates over objects in a cache, it 259 * passes untagged pointers to check_object(). check_object() in turns 260 * calls get_freepointer() with an untagged pointer, which causes the 261 * freepointer to be restored incorrectly. 262 */ 263 return (void *)((unsigned long)ptr ^ s->random ^ 264 (unsigned long)kasan_reset_tag((void *)ptr_addr)); 265 #else 266 return ptr; 267 #endif 268 } 269 270 /* Returns the freelist pointer recorded at location ptr_addr. */ 271 static inline void *freelist_dereference(const struct kmem_cache *s, 272 void *ptr_addr) 273 { 274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 275 (unsigned long)ptr_addr); 276 } 277 278 static inline void *get_freepointer(struct kmem_cache *s, void *object) 279 { 280 return freelist_dereference(s, object + s->offset); 281 } 282 283 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 284 { 285 prefetch(object + s->offset); 286 } 287 288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 289 { 290 unsigned long freepointer_addr; 291 void *p; 292 293 if (!debug_pagealloc_enabled()) 294 return get_freepointer(s, object); 295 296 freepointer_addr = (unsigned long)object + s->offset; 297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 298 return freelist_ptr(s, p, freepointer_addr); 299 } 300 301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 302 { 303 unsigned long freeptr_addr = (unsigned long)object + s->offset; 304 305 #ifdef CONFIG_SLAB_FREELIST_HARDENED 306 BUG_ON(object == fp); /* naive detection of double free or corruption */ 307 #endif 308 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 310 } 311 312 /* Loop over all objects in a slab */ 313 #define for_each_object(__p, __s, __addr, __objects) \ 314 for (__p = fixup_red_left(__s, __addr); \ 315 __p < (__addr) + (__objects) * (__s)->size; \ 316 __p += (__s)->size) 317 318 /* Determine object index from a given position */ 319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 320 { 321 return (kasan_reset_tag(p) - addr) / s->size; 322 } 323 324 static inline unsigned int order_objects(unsigned int order, unsigned int size) 325 { 326 return ((unsigned int)PAGE_SIZE << order) / size; 327 } 328 329 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 330 unsigned int size) 331 { 332 struct kmem_cache_order_objects x = { 333 (order << OO_SHIFT) + order_objects(order, size) 334 }; 335 336 return x; 337 } 338 339 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 340 { 341 return x.x >> OO_SHIFT; 342 } 343 344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 345 { 346 return x.x & OO_MASK; 347 } 348 349 /* 350 * Per slab locking using the pagelock 351 */ 352 static __always_inline void slab_lock(struct page *page) 353 { 354 VM_BUG_ON_PAGE(PageTail(page), page); 355 bit_spin_lock(PG_locked, &page->flags); 356 } 357 358 static __always_inline void slab_unlock(struct page *page) 359 { 360 VM_BUG_ON_PAGE(PageTail(page), page); 361 __bit_spin_unlock(PG_locked, &page->flags); 362 } 363 364 /* Interrupts must be disabled (for the fallback code to work right) */ 365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 366 void *freelist_old, unsigned long counters_old, 367 void *freelist_new, unsigned long counters_new, 368 const char *n) 369 { 370 VM_BUG_ON(!irqs_disabled()); 371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 373 if (s->flags & __CMPXCHG_DOUBLE) { 374 if (cmpxchg_double(&page->freelist, &page->counters, 375 freelist_old, counters_old, 376 freelist_new, counters_new)) 377 return true; 378 } else 379 #endif 380 { 381 slab_lock(page); 382 if (page->freelist == freelist_old && 383 page->counters == counters_old) { 384 page->freelist = freelist_new; 385 page->counters = counters_new; 386 slab_unlock(page); 387 return true; 388 } 389 slab_unlock(page); 390 } 391 392 cpu_relax(); 393 stat(s, CMPXCHG_DOUBLE_FAIL); 394 395 #ifdef SLUB_DEBUG_CMPXCHG 396 pr_info("%s %s: cmpxchg double redo ", n, s->name); 397 #endif 398 399 return false; 400 } 401 402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 403 void *freelist_old, unsigned long counters_old, 404 void *freelist_new, unsigned long counters_new, 405 const char *n) 406 { 407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 409 if (s->flags & __CMPXCHG_DOUBLE) { 410 if (cmpxchg_double(&page->freelist, &page->counters, 411 freelist_old, counters_old, 412 freelist_new, counters_new)) 413 return true; 414 } else 415 #endif 416 { 417 unsigned long flags; 418 419 local_irq_save(flags); 420 slab_lock(page); 421 if (page->freelist == freelist_old && 422 page->counters == counters_old) { 423 page->freelist = freelist_new; 424 page->counters = counters_new; 425 slab_unlock(page); 426 local_irq_restore(flags); 427 return true; 428 } 429 slab_unlock(page); 430 local_irq_restore(flags); 431 } 432 433 cpu_relax(); 434 stat(s, CMPXCHG_DOUBLE_FAIL); 435 436 #ifdef SLUB_DEBUG_CMPXCHG 437 pr_info("%s %s: cmpxchg double redo ", n, s->name); 438 #endif 439 440 return false; 441 } 442 443 #ifdef CONFIG_SLUB_DEBUG 444 /* 445 * Determine a map of object in use on a page. 446 * 447 * Node listlock must be held to guarantee that the page does 448 * not vanish from under us. 449 */ 450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 451 { 452 void *p; 453 void *addr = page_address(page); 454 455 for (p = page->freelist; p; p = get_freepointer(s, p)) 456 set_bit(slab_index(p, s, addr), map); 457 } 458 459 static inline unsigned int size_from_object(struct kmem_cache *s) 460 { 461 if (s->flags & SLAB_RED_ZONE) 462 return s->size - s->red_left_pad; 463 464 return s->size; 465 } 466 467 static inline void *restore_red_left(struct kmem_cache *s, void *p) 468 { 469 if (s->flags & SLAB_RED_ZONE) 470 p -= s->red_left_pad; 471 472 return p; 473 } 474 475 /* 476 * Debug settings: 477 */ 478 #if defined(CONFIG_SLUB_DEBUG_ON) 479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 480 #else 481 static slab_flags_t slub_debug; 482 #endif 483 484 static char *slub_debug_slabs; 485 static int disable_higher_order_debug; 486 487 /* 488 * slub is about to manipulate internal object metadata. This memory lies 489 * outside the range of the allocated object, so accessing it would normally 490 * be reported by kasan as a bounds error. metadata_access_enable() is used 491 * to tell kasan that these accesses are OK. 492 */ 493 static inline void metadata_access_enable(void) 494 { 495 kasan_disable_current(); 496 } 497 498 static inline void metadata_access_disable(void) 499 { 500 kasan_enable_current(); 501 } 502 503 /* 504 * Object debugging 505 */ 506 507 /* Verify that a pointer has an address that is valid within a slab page */ 508 static inline int check_valid_pointer(struct kmem_cache *s, 509 struct page *page, void *object) 510 { 511 void *base; 512 513 if (!object) 514 return 1; 515 516 base = page_address(page); 517 object = kasan_reset_tag(object); 518 object = restore_red_left(s, object); 519 if (object < base || object >= base + page->objects * s->size || 520 (object - base) % s->size) { 521 return 0; 522 } 523 524 return 1; 525 } 526 527 static void print_section(char *level, char *text, u8 *addr, 528 unsigned int length) 529 { 530 metadata_access_enable(); 531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 532 length, 1); 533 metadata_access_disable(); 534 } 535 536 static struct track *get_track(struct kmem_cache *s, void *object, 537 enum track_item alloc) 538 { 539 struct track *p; 540 541 if (s->offset) 542 p = object + s->offset + sizeof(void *); 543 else 544 p = object + s->inuse; 545 546 return p + alloc; 547 } 548 549 static void set_track(struct kmem_cache *s, void *object, 550 enum track_item alloc, unsigned long addr) 551 { 552 struct track *p = get_track(s, object, alloc); 553 554 if (addr) { 555 #ifdef CONFIG_STACKTRACE 556 unsigned int nr_entries; 557 558 metadata_access_enable(); 559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 560 metadata_access_disable(); 561 562 if (nr_entries < TRACK_ADDRS_COUNT) 563 p->addrs[nr_entries] = 0; 564 #endif 565 p->addr = addr; 566 p->cpu = smp_processor_id(); 567 p->pid = current->pid; 568 p->when = jiffies; 569 } else { 570 memset(p, 0, sizeof(struct track)); 571 } 572 } 573 574 static void init_tracking(struct kmem_cache *s, void *object) 575 { 576 if (!(s->flags & SLAB_STORE_USER)) 577 return; 578 579 set_track(s, object, TRACK_FREE, 0UL); 580 set_track(s, object, TRACK_ALLOC, 0UL); 581 } 582 583 static void print_track(const char *s, struct track *t, unsigned long pr_time) 584 { 585 if (!t->addr) 586 return; 587 588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 590 #ifdef CONFIG_STACKTRACE 591 { 592 int i; 593 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 594 if (t->addrs[i]) 595 pr_err("\t%pS\n", (void *)t->addrs[i]); 596 else 597 break; 598 } 599 #endif 600 } 601 602 static void print_tracking(struct kmem_cache *s, void *object) 603 { 604 unsigned long pr_time = jiffies; 605 if (!(s->flags & SLAB_STORE_USER)) 606 return; 607 608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 610 } 611 612 static void print_page_info(struct page *page) 613 { 614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 615 page, page->objects, page->inuse, page->freelist, page->flags); 616 617 } 618 619 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 620 { 621 struct va_format vaf; 622 va_list args; 623 624 va_start(args, fmt); 625 vaf.fmt = fmt; 626 vaf.va = &args; 627 pr_err("=============================================================================\n"); 628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 629 pr_err("-----------------------------------------------------------------------------\n\n"); 630 631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 632 va_end(args); 633 } 634 635 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 636 { 637 struct va_format vaf; 638 va_list args; 639 640 va_start(args, fmt); 641 vaf.fmt = fmt; 642 vaf.va = &args; 643 pr_err("FIX %s: %pV\n", s->name, &vaf); 644 va_end(args); 645 } 646 647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 648 { 649 unsigned int off; /* Offset of last byte */ 650 u8 *addr = page_address(page); 651 652 print_tracking(s, p); 653 654 print_page_info(page); 655 656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 657 p, p - addr, get_freepointer(s, p)); 658 659 if (s->flags & SLAB_RED_ZONE) 660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 661 s->red_left_pad); 662 else if (p > addr + 16) 663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 664 665 print_section(KERN_ERR, "Object ", p, 666 min_t(unsigned int, s->object_size, PAGE_SIZE)); 667 if (s->flags & SLAB_RED_ZONE) 668 print_section(KERN_ERR, "Redzone ", p + s->object_size, 669 s->inuse - s->object_size); 670 671 if (s->offset) 672 off = s->offset + sizeof(void *); 673 else 674 off = s->inuse; 675 676 if (s->flags & SLAB_STORE_USER) 677 off += 2 * sizeof(struct track); 678 679 off += kasan_metadata_size(s); 680 681 if (off != size_from_object(s)) 682 /* Beginning of the filler is the free pointer */ 683 print_section(KERN_ERR, "Padding ", p + off, 684 size_from_object(s) - off); 685 686 dump_stack(); 687 } 688 689 void object_err(struct kmem_cache *s, struct page *page, 690 u8 *object, char *reason) 691 { 692 slab_bug(s, "%s", reason); 693 print_trailer(s, page, object); 694 } 695 696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 697 const char *fmt, ...) 698 { 699 va_list args; 700 char buf[100]; 701 702 va_start(args, fmt); 703 vsnprintf(buf, sizeof(buf), fmt, args); 704 va_end(args); 705 slab_bug(s, "%s", buf); 706 print_page_info(page); 707 dump_stack(); 708 } 709 710 static void init_object(struct kmem_cache *s, void *object, u8 val) 711 { 712 u8 *p = object; 713 714 if (s->flags & SLAB_RED_ZONE) 715 memset(p - s->red_left_pad, val, s->red_left_pad); 716 717 if (s->flags & __OBJECT_POISON) { 718 memset(p, POISON_FREE, s->object_size - 1); 719 p[s->object_size - 1] = POISON_END; 720 } 721 722 if (s->flags & SLAB_RED_ZONE) 723 memset(p + s->object_size, val, s->inuse - s->object_size); 724 } 725 726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 727 void *from, void *to) 728 { 729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 730 memset(from, data, to - from); 731 } 732 733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 734 u8 *object, char *what, 735 u8 *start, unsigned int value, unsigned int bytes) 736 { 737 u8 *fault; 738 u8 *end; 739 740 metadata_access_enable(); 741 fault = memchr_inv(start, value, bytes); 742 metadata_access_disable(); 743 if (!fault) 744 return 1; 745 746 end = start + bytes; 747 while (end > fault && end[-1] == value) 748 end--; 749 750 slab_bug(s, "%s overwritten", what); 751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 752 fault, end - 1, fault[0], value); 753 print_trailer(s, page, object); 754 755 restore_bytes(s, what, value, fault, end); 756 return 0; 757 } 758 759 /* 760 * Object layout: 761 * 762 * object address 763 * Bytes of the object to be managed. 764 * If the freepointer may overlay the object then the free 765 * pointer is the first word of the object. 766 * 767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 768 * 0xa5 (POISON_END) 769 * 770 * object + s->object_size 771 * Padding to reach word boundary. This is also used for Redzoning. 772 * Padding is extended by another word if Redzoning is enabled and 773 * object_size == inuse. 774 * 775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 776 * 0xcc (RED_ACTIVE) for objects in use. 777 * 778 * object + s->inuse 779 * Meta data starts here. 780 * 781 * A. Free pointer (if we cannot overwrite object on free) 782 * B. Tracking data for SLAB_STORE_USER 783 * C. Padding to reach required alignment boundary or at mininum 784 * one word if debugging is on to be able to detect writes 785 * before the word boundary. 786 * 787 * Padding is done using 0x5a (POISON_INUSE) 788 * 789 * object + s->size 790 * Nothing is used beyond s->size. 791 * 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly 793 * ignored. And therefore no slab options that rely on these boundaries 794 * may be used with merged slabcaches. 795 */ 796 797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 798 { 799 unsigned long off = s->inuse; /* The end of info */ 800 801 if (s->offset) 802 /* Freepointer is placed after the object. */ 803 off += sizeof(void *); 804 805 if (s->flags & SLAB_STORE_USER) 806 /* We also have user information there */ 807 off += 2 * sizeof(struct track); 808 809 off += kasan_metadata_size(s); 810 811 if (size_from_object(s) == off) 812 return 1; 813 814 return check_bytes_and_report(s, page, p, "Object padding", 815 p + off, POISON_INUSE, size_from_object(s) - off); 816 } 817 818 /* Check the pad bytes at the end of a slab page */ 819 static int slab_pad_check(struct kmem_cache *s, struct page *page) 820 { 821 u8 *start; 822 u8 *fault; 823 u8 *end; 824 u8 *pad; 825 int length; 826 int remainder; 827 828 if (!(s->flags & SLAB_POISON)) 829 return 1; 830 831 start = page_address(page); 832 length = page_size(page); 833 end = start + length; 834 remainder = length % s->size; 835 if (!remainder) 836 return 1; 837 838 pad = end - remainder; 839 metadata_access_enable(); 840 fault = memchr_inv(pad, POISON_INUSE, remainder); 841 metadata_access_disable(); 842 if (!fault) 843 return 1; 844 while (end > fault && end[-1] == POISON_INUSE) 845 end--; 846 847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 848 print_section(KERN_ERR, "Padding ", pad, remainder); 849 850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 851 return 0; 852 } 853 854 static int check_object(struct kmem_cache *s, struct page *page, 855 void *object, u8 val) 856 { 857 u8 *p = object; 858 u8 *endobject = object + s->object_size; 859 860 if (s->flags & SLAB_RED_ZONE) { 861 if (!check_bytes_and_report(s, page, object, "Redzone", 862 object - s->red_left_pad, val, s->red_left_pad)) 863 return 0; 864 865 if (!check_bytes_and_report(s, page, object, "Redzone", 866 endobject, val, s->inuse - s->object_size)) 867 return 0; 868 } else { 869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 870 check_bytes_and_report(s, page, p, "Alignment padding", 871 endobject, POISON_INUSE, 872 s->inuse - s->object_size); 873 } 874 } 875 876 if (s->flags & SLAB_POISON) { 877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 878 (!check_bytes_and_report(s, page, p, "Poison", p, 879 POISON_FREE, s->object_size - 1) || 880 !check_bytes_and_report(s, page, p, "Poison", 881 p + s->object_size - 1, POISON_END, 1))) 882 return 0; 883 /* 884 * check_pad_bytes cleans up on its own. 885 */ 886 check_pad_bytes(s, page, p); 887 } 888 889 if (!s->offset && val == SLUB_RED_ACTIVE) 890 /* 891 * Object and freepointer overlap. Cannot check 892 * freepointer while object is allocated. 893 */ 894 return 1; 895 896 /* Check free pointer validity */ 897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 898 object_err(s, page, p, "Freepointer corrupt"); 899 /* 900 * No choice but to zap it and thus lose the remainder 901 * of the free objects in this slab. May cause 902 * another error because the object count is now wrong. 903 */ 904 set_freepointer(s, p, NULL); 905 return 0; 906 } 907 return 1; 908 } 909 910 static int check_slab(struct kmem_cache *s, struct page *page) 911 { 912 int maxobj; 913 914 VM_BUG_ON(!irqs_disabled()); 915 916 if (!PageSlab(page)) { 917 slab_err(s, page, "Not a valid slab page"); 918 return 0; 919 } 920 921 maxobj = order_objects(compound_order(page), s->size); 922 if (page->objects > maxobj) { 923 slab_err(s, page, "objects %u > max %u", 924 page->objects, maxobj); 925 return 0; 926 } 927 if (page->inuse > page->objects) { 928 slab_err(s, page, "inuse %u > max %u", 929 page->inuse, page->objects); 930 return 0; 931 } 932 /* Slab_pad_check fixes things up after itself */ 933 slab_pad_check(s, page); 934 return 1; 935 } 936 937 /* 938 * Determine if a certain object on a page is on the freelist. Must hold the 939 * slab lock to guarantee that the chains are in a consistent state. 940 */ 941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 942 { 943 int nr = 0; 944 void *fp; 945 void *object = NULL; 946 int max_objects; 947 948 fp = page->freelist; 949 while (fp && nr <= page->objects) { 950 if (fp == search) 951 return 1; 952 if (!check_valid_pointer(s, page, fp)) { 953 if (object) { 954 object_err(s, page, object, 955 "Freechain corrupt"); 956 set_freepointer(s, object, NULL); 957 } else { 958 slab_err(s, page, "Freepointer corrupt"); 959 page->freelist = NULL; 960 page->inuse = page->objects; 961 slab_fix(s, "Freelist cleared"); 962 return 0; 963 } 964 break; 965 } 966 object = fp; 967 fp = get_freepointer(s, object); 968 nr++; 969 } 970 971 max_objects = order_objects(compound_order(page), s->size); 972 if (max_objects > MAX_OBJS_PER_PAGE) 973 max_objects = MAX_OBJS_PER_PAGE; 974 975 if (page->objects != max_objects) { 976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 977 page->objects, max_objects); 978 page->objects = max_objects; 979 slab_fix(s, "Number of objects adjusted."); 980 } 981 if (page->inuse != page->objects - nr) { 982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 983 page->inuse, page->objects - nr); 984 page->inuse = page->objects - nr; 985 slab_fix(s, "Object count adjusted."); 986 } 987 return search == NULL; 988 } 989 990 static void trace(struct kmem_cache *s, struct page *page, void *object, 991 int alloc) 992 { 993 if (s->flags & SLAB_TRACE) { 994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 995 s->name, 996 alloc ? "alloc" : "free", 997 object, page->inuse, 998 page->freelist); 999 1000 if (!alloc) 1001 print_section(KERN_INFO, "Object ", (void *)object, 1002 s->object_size); 1003 1004 dump_stack(); 1005 } 1006 } 1007 1008 /* 1009 * Tracking of fully allocated slabs for debugging purposes. 1010 */ 1011 static void add_full(struct kmem_cache *s, 1012 struct kmem_cache_node *n, struct page *page) 1013 { 1014 if (!(s->flags & SLAB_STORE_USER)) 1015 return; 1016 1017 lockdep_assert_held(&n->list_lock); 1018 list_add(&page->slab_list, &n->full); 1019 } 1020 1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1022 { 1023 if (!(s->flags & SLAB_STORE_USER)) 1024 return; 1025 1026 lockdep_assert_held(&n->list_lock); 1027 list_del(&page->slab_list); 1028 } 1029 1030 /* Tracking of the number of slabs for debugging purposes */ 1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1032 { 1033 struct kmem_cache_node *n = get_node(s, node); 1034 1035 return atomic_long_read(&n->nr_slabs); 1036 } 1037 1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1039 { 1040 return atomic_long_read(&n->nr_slabs); 1041 } 1042 1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1044 { 1045 struct kmem_cache_node *n = get_node(s, node); 1046 1047 /* 1048 * May be called early in order to allocate a slab for the 1049 * kmem_cache_node structure. Solve the chicken-egg 1050 * dilemma by deferring the increment of the count during 1051 * bootstrap (see early_kmem_cache_node_alloc). 1052 */ 1053 if (likely(n)) { 1054 atomic_long_inc(&n->nr_slabs); 1055 atomic_long_add(objects, &n->total_objects); 1056 } 1057 } 1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1059 { 1060 struct kmem_cache_node *n = get_node(s, node); 1061 1062 atomic_long_dec(&n->nr_slabs); 1063 atomic_long_sub(objects, &n->total_objects); 1064 } 1065 1066 /* Object debug checks for alloc/free paths */ 1067 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1068 void *object) 1069 { 1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1071 return; 1072 1073 init_object(s, object, SLUB_RED_INACTIVE); 1074 init_tracking(s, object); 1075 } 1076 1077 static 1078 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1079 { 1080 if (!(s->flags & SLAB_POISON)) 1081 return; 1082 1083 metadata_access_enable(); 1084 memset(addr, POISON_INUSE, page_size(page)); 1085 metadata_access_disable(); 1086 } 1087 1088 static inline int alloc_consistency_checks(struct kmem_cache *s, 1089 struct page *page, void *object) 1090 { 1091 if (!check_slab(s, page)) 1092 return 0; 1093 1094 if (!check_valid_pointer(s, page, object)) { 1095 object_err(s, page, object, "Freelist Pointer check fails"); 1096 return 0; 1097 } 1098 1099 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1100 return 0; 1101 1102 return 1; 1103 } 1104 1105 static noinline int alloc_debug_processing(struct kmem_cache *s, 1106 struct page *page, 1107 void *object, unsigned long addr) 1108 { 1109 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1110 if (!alloc_consistency_checks(s, page, object)) 1111 goto bad; 1112 } 1113 1114 /* Success perform special debug activities for allocs */ 1115 if (s->flags & SLAB_STORE_USER) 1116 set_track(s, object, TRACK_ALLOC, addr); 1117 trace(s, page, object, 1); 1118 init_object(s, object, SLUB_RED_ACTIVE); 1119 return 1; 1120 1121 bad: 1122 if (PageSlab(page)) { 1123 /* 1124 * If this is a slab page then lets do the best we can 1125 * to avoid issues in the future. Marking all objects 1126 * as used avoids touching the remaining objects. 1127 */ 1128 slab_fix(s, "Marking all objects used"); 1129 page->inuse = page->objects; 1130 page->freelist = NULL; 1131 } 1132 return 0; 1133 } 1134 1135 static inline int free_consistency_checks(struct kmem_cache *s, 1136 struct page *page, void *object, unsigned long addr) 1137 { 1138 if (!check_valid_pointer(s, page, object)) { 1139 slab_err(s, page, "Invalid object pointer 0x%p", object); 1140 return 0; 1141 } 1142 1143 if (on_freelist(s, page, object)) { 1144 object_err(s, page, object, "Object already free"); 1145 return 0; 1146 } 1147 1148 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1149 return 0; 1150 1151 if (unlikely(s != page->slab_cache)) { 1152 if (!PageSlab(page)) { 1153 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1154 object); 1155 } else if (!page->slab_cache) { 1156 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1157 object); 1158 dump_stack(); 1159 } else 1160 object_err(s, page, object, 1161 "page slab pointer corrupt."); 1162 return 0; 1163 } 1164 return 1; 1165 } 1166 1167 /* Supports checking bulk free of a constructed freelist */ 1168 static noinline int free_debug_processing( 1169 struct kmem_cache *s, struct page *page, 1170 void *head, void *tail, int bulk_cnt, 1171 unsigned long addr) 1172 { 1173 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1174 void *object = head; 1175 int cnt = 0; 1176 unsigned long uninitialized_var(flags); 1177 int ret = 0; 1178 1179 spin_lock_irqsave(&n->list_lock, flags); 1180 slab_lock(page); 1181 1182 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1183 if (!check_slab(s, page)) 1184 goto out; 1185 } 1186 1187 next_object: 1188 cnt++; 1189 1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1191 if (!free_consistency_checks(s, page, object, addr)) 1192 goto out; 1193 } 1194 1195 if (s->flags & SLAB_STORE_USER) 1196 set_track(s, object, TRACK_FREE, addr); 1197 trace(s, page, object, 0); 1198 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1199 init_object(s, object, SLUB_RED_INACTIVE); 1200 1201 /* Reached end of constructed freelist yet? */ 1202 if (object != tail) { 1203 object = get_freepointer(s, object); 1204 goto next_object; 1205 } 1206 ret = 1; 1207 1208 out: 1209 if (cnt != bulk_cnt) 1210 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1211 bulk_cnt, cnt); 1212 1213 slab_unlock(page); 1214 spin_unlock_irqrestore(&n->list_lock, flags); 1215 if (!ret) 1216 slab_fix(s, "Object at 0x%p not freed", object); 1217 return ret; 1218 } 1219 1220 static int __init setup_slub_debug(char *str) 1221 { 1222 slub_debug = DEBUG_DEFAULT_FLAGS; 1223 if (*str++ != '=' || !*str) 1224 /* 1225 * No options specified. Switch on full debugging. 1226 */ 1227 goto out; 1228 1229 if (*str == ',') 1230 /* 1231 * No options but restriction on slabs. This means full 1232 * debugging for slabs matching a pattern. 1233 */ 1234 goto check_slabs; 1235 1236 slub_debug = 0; 1237 if (*str == '-') 1238 /* 1239 * Switch off all debugging measures. 1240 */ 1241 goto out; 1242 1243 /* 1244 * Determine which debug features should be switched on 1245 */ 1246 for (; *str && *str != ','; str++) { 1247 switch (tolower(*str)) { 1248 case 'f': 1249 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1250 break; 1251 case 'z': 1252 slub_debug |= SLAB_RED_ZONE; 1253 break; 1254 case 'p': 1255 slub_debug |= SLAB_POISON; 1256 break; 1257 case 'u': 1258 slub_debug |= SLAB_STORE_USER; 1259 break; 1260 case 't': 1261 slub_debug |= SLAB_TRACE; 1262 break; 1263 case 'a': 1264 slub_debug |= SLAB_FAILSLAB; 1265 break; 1266 case 'o': 1267 /* 1268 * Avoid enabling debugging on caches if its minimum 1269 * order would increase as a result. 1270 */ 1271 disable_higher_order_debug = 1; 1272 break; 1273 default: 1274 pr_err("slub_debug option '%c' unknown. skipped\n", 1275 *str); 1276 } 1277 } 1278 1279 check_slabs: 1280 if (*str == ',') 1281 slub_debug_slabs = str + 1; 1282 out: 1283 if ((static_branch_unlikely(&init_on_alloc) || 1284 static_branch_unlikely(&init_on_free)) && 1285 (slub_debug & SLAB_POISON)) 1286 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1287 return 1; 1288 } 1289 1290 __setup("slub_debug", setup_slub_debug); 1291 1292 /* 1293 * kmem_cache_flags - apply debugging options to the cache 1294 * @object_size: the size of an object without meta data 1295 * @flags: flags to set 1296 * @name: name of the cache 1297 * @ctor: constructor function 1298 * 1299 * Debug option(s) are applied to @flags. In addition to the debug 1300 * option(s), if a slab name (or multiple) is specified i.e. 1301 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1302 * then only the select slabs will receive the debug option(s). 1303 */ 1304 slab_flags_t kmem_cache_flags(unsigned int object_size, 1305 slab_flags_t flags, const char *name, 1306 void (*ctor)(void *)) 1307 { 1308 char *iter; 1309 size_t len; 1310 1311 /* If slub_debug = 0, it folds into the if conditional. */ 1312 if (!slub_debug_slabs) 1313 return flags | slub_debug; 1314 1315 len = strlen(name); 1316 iter = slub_debug_slabs; 1317 while (*iter) { 1318 char *end, *glob; 1319 size_t cmplen; 1320 1321 end = strchrnul(iter, ','); 1322 1323 glob = strnchr(iter, end - iter, '*'); 1324 if (glob) 1325 cmplen = glob - iter; 1326 else 1327 cmplen = max_t(size_t, len, (end - iter)); 1328 1329 if (!strncmp(name, iter, cmplen)) { 1330 flags |= slub_debug; 1331 break; 1332 } 1333 1334 if (!*end) 1335 break; 1336 iter = end + 1; 1337 } 1338 1339 return flags; 1340 } 1341 #else /* !CONFIG_SLUB_DEBUG */ 1342 static inline void setup_object_debug(struct kmem_cache *s, 1343 struct page *page, void *object) {} 1344 static inline 1345 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1346 1347 static inline int alloc_debug_processing(struct kmem_cache *s, 1348 struct page *page, void *object, unsigned long addr) { return 0; } 1349 1350 static inline int free_debug_processing( 1351 struct kmem_cache *s, struct page *page, 1352 void *head, void *tail, int bulk_cnt, 1353 unsigned long addr) { return 0; } 1354 1355 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1356 { return 1; } 1357 static inline int check_object(struct kmem_cache *s, struct page *page, 1358 void *object, u8 val) { return 1; } 1359 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1360 struct page *page) {} 1361 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1362 struct page *page) {} 1363 slab_flags_t kmem_cache_flags(unsigned int object_size, 1364 slab_flags_t flags, const char *name, 1365 void (*ctor)(void *)) 1366 { 1367 return flags; 1368 } 1369 #define slub_debug 0 1370 1371 #define disable_higher_order_debug 0 1372 1373 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1374 { return 0; } 1375 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1376 { return 0; } 1377 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1378 int objects) {} 1379 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1380 int objects) {} 1381 1382 #endif /* CONFIG_SLUB_DEBUG */ 1383 1384 /* 1385 * Hooks for other subsystems that check memory allocations. In a typical 1386 * production configuration these hooks all should produce no code at all. 1387 */ 1388 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1389 { 1390 ptr = kasan_kmalloc_large(ptr, size, flags); 1391 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1392 kmemleak_alloc(ptr, size, 1, flags); 1393 return ptr; 1394 } 1395 1396 static __always_inline void kfree_hook(void *x) 1397 { 1398 kmemleak_free(x); 1399 kasan_kfree_large(x, _RET_IP_); 1400 } 1401 1402 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1403 { 1404 kmemleak_free_recursive(x, s->flags); 1405 1406 /* 1407 * Trouble is that we may no longer disable interrupts in the fast path 1408 * So in order to make the debug calls that expect irqs to be 1409 * disabled we need to disable interrupts temporarily. 1410 */ 1411 #ifdef CONFIG_LOCKDEP 1412 { 1413 unsigned long flags; 1414 1415 local_irq_save(flags); 1416 debug_check_no_locks_freed(x, s->object_size); 1417 local_irq_restore(flags); 1418 } 1419 #endif 1420 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1421 debug_check_no_obj_freed(x, s->object_size); 1422 1423 /* KASAN might put x into memory quarantine, delaying its reuse */ 1424 return kasan_slab_free(s, x, _RET_IP_); 1425 } 1426 1427 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1428 void **head, void **tail) 1429 { 1430 1431 void *object; 1432 void *next = *head; 1433 void *old_tail = *tail ? *tail : *head; 1434 int rsize; 1435 1436 /* Head and tail of the reconstructed freelist */ 1437 *head = NULL; 1438 *tail = NULL; 1439 1440 do { 1441 object = next; 1442 next = get_freepointer(s, object); 1443 1444 if (slab_want_init_on_free(s)) { 1445 /* 1446 * Clear the object and the metadata, but don't touch 1447 * the redzone. 1448 */ 1449 memset(object, 0, s->object_size); 1450 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1451 : 0; 1452 memset((char *)object + s->inuse, 0, 1453 s->size - s->inuse - rsize); 1454 1455 } 1456 /* If object's reuse doesn't have to be delayed */ 1457 if (!slab_free_hook(s, object)) { 1458 /* Move object to the new freelist */ 1459 set_freepointer(s, object, *head); 1460 *head = object; 1461 if (!*tail) 1462 *tail = object; 1463 } 1464 } while (object != old_tail); 1465 1466 if (*head == *tail) 1467 *tail = NULL; 1468 1469 return *head != NULL; 1470 } 1471 1472 static void *setup_object(struct kmem_cache *s, struct page *page, 1473 void *object) 1474 { 1475 setup_object_debug(s, page, object); 1476 object = kasan_init_slab_obj(s, object); 1477 if (unlikely(s->ctor)) { 1478 kasan_unpoison_object_data(s, object); 1479 s->ctor(object); 1480 kasan_poison_object_data(s, object); 1481 } 1482 return object; 1483 } 1484 1485 /* 1486 * Slab allocation and freeing 1487 */ 1488 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1489 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1490 { 1491 struct page *page; 1492 unsigned int order = oo_order(oo); 1493 1494 if (node == NUMA_NO_NODE) 1495 page = alloc_pages(flags, order); 1496 else 1497 page = __alloc_pages_node(node, flags, order); 1498 1499 if (page && charge_slab_page(page, flags, order, s)) { 1500 __free_pages(page, order); 1501 page = NULL; 1502 } 1503 1504 return page; 1505 } 1506 1507 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1508 /* Pre-initialize the random sequence cache */ 1509 static int init_cache_random_seq(struct kmem_cache *s) 1510 { 1511 unsigned int count = oo_objects(s->oo); 1512 int err; 1513 1514 /* Bailout if already initialised */ 1515 if (s->random_seq) 1516 return 0; 1517 1518 err = cache_random_seq_create(s, count, GFP_KERNEL); 1519 if (err) { 1520 pr_err("SLUB: Unable to initialize free list for %s\n", 1521 s->name); 1522 return err; 1523 } 1524 1525 /* Transform to an offset on the set of pages */ 1526 if (s->random_seq) { 1527 unsigned int i; 1528 1529 for (i = 0; i < count; i++) 1530 s->random_seq[i] *= s->size; 1531 } 1532 return 0; 1533 } 1534 1535 /* Initialize each random sequence freelist per cache */ 1536 static void __init init_freelist_randomization(void) 1537 { 1538 struct kmem_cache *s; 1539 1540 mutex_lock(&slab_mutex); 1541 1542 list_for_each_entry(s, &slab_caches, list) 1543 init_cache_random_seq(s); 1544 1545 mutex_unlock(&slab_mutex); 1546 } 1547 1548 /* Get the next entry on the pre-computed freelist randomized */ 1549 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1550 unsigned long *pos, void *start, 1551 unsigned long page_limit, 1552 unsigned long freelist_count) 1553 { 1554 unsigned int idx; 1555 1556 /* 1557 * If the target page allocation failed, the number of objects on the 1558 * page might be smaller than the usual size defined by the cache. 1559 */ 1560 do { 1561 idx = s->random_seq[*pos]; 1562 *pos += 1; 1563 if (*pos >= freelist_count) 1564 *pos = 0; 1565 } while (unlikely(idx >= page_limit)); 1566 1567 return (char *)start + idx; 1568 } 1569 1570 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1571 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1572 { 1573 void *start; 1574 void *cur; 1575 void *next; 1576 unsigned long idx, pos, page_limit, freelist_count; 1577 1578 if (page->objects < 2 || !s->random_seq) 1579 return false; 1580 1581 freelist_count = oo_objects(s->oo); 1582 pos = get_random_int() % freelist_count; 1583 1584 page_limit = page->objects * s->size; 1585 start = fixup_red_left(s, page_address(page)); 1586 1587 /* First entry is used as the base of the freelist */ 1588 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1589 freelist_count); 1590 cur = setup_object(s, page, cur); 1591 page->freelist = cur; 1592 1593 for (idx = 1; idx < page->objects; idx++) { 1594 next = next_freelist_entry(s, page, &pos, start, page_limit, 1595 freelist_count); 1596 next = setup_object(s, page, next); 1597 set_freepointer(s, cur, next); 1598 cur = next; 1599 } 1600 set_freepointer(s, cur, NULL); 1601 1602 return true; 1603 } 1604 #else 1605 static inline int init_cache_random_seq(struct kmem_cache *s) 1606 { 1607 return 0; 1608 } 1609 static inline void init_freelist_randomization(void) { } 1610 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1611 { 1612 return false; 1613 } 1614 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1615 1616 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1617 { 1618 struct page *page; 1619 struct kmem_cache_order_objects oo = s->oo; 1620 gfp_t alloc_gfp; 1621 void *start, *p, *next; 1622 int idx; 1623 bool shuffle; 1624 1625 flags &= gfp_allowed_mask; 1626 1627 if (gfpflags_allow_blocking(flags)) 1628 local_irq_enable(); 1629 1630 flags |= s->allocflags; 1631 1632 /* 1633 * Let the initial higher-order allocation fail under memory pressure 1634 * so we fall-back to the minimum order allocation. 1635 */ 1636 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1637 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1638 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1639 1640 page = alloc_slab_page(s, alloc_gfp, node, oo); 1641 if (unlikely(!page)) { 1642 oo = s->min; 1643 alloc_gfp = flags; 1644 /* 1645 * Allocation may have failed due to fragmentation. 1646 * Try a lower order alloc if possible 1647 */ 1648 page = alloc_slab_page(s, alloc_gfp, node, oo); 1649 if (unlikely(!page)) 1650 goto out; 1651 stat(s, ORDER_FALLBACK); 1652 } 1653 1654 page->objects = oo_objects(oo); 1655 1656 page->slab_cache = s; 1657 __SetPageSlab(page); 1658 if (page_is_pfmemalloc(page)) 1659 SetPageSlabPfmemalloc(page); 1660 1661 kasan_poison_slab(page); 1662 1663 start = page_address(page); 1664 1665 setup_page_debug(s, page, start); 1666 1667 shuffle = shuffle_freelist(s, page); 1668 1669 if (!shuffle) { 1670 start = fixup_red_left(s, start); 1671 start = setup_object(s, page, start); 1672 page->freelist = start; 1673 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1674 next = p + s->size; 1675 next = setup_object(s, page, next); 1676 set_freepointer(s, p, next); 1677 p = next; 1678 } 1679 set_freepointer(s, p, NULL); 1680 } 1681 1682 page->inuse = page->objects; 1683 page->frozen = 1; 1684 1685 out: 1686 if (gfpflags_allow_blocking(flags)) 1687 local_irq_disable(); 1688 if (!page) 1689 return NULL; 1690 1691 inc_slabs_node(s, page_to_nid(page), page->objects); 1692 1693 return page; 1694 } 1695 1696 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1697 { 1698 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1699 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1700 flags &= ~GFP_SLAB_BUG_MASK; 1701 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1702 invalid_mask, &invalid_mask, flags, &flags); 1703 dump_stack(); 1704 } 1705 1706 return allocate_slab(s, 1707 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1708 } 1709 1710 static void __free_slab(struct kmem_cache *s, struct page *page) 1711 { 1712 int order = compound_order(page); 1713 int pages = 1 << order; 1714 1715 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1716 void *p; 1717 1718 slab_pad_check(s, page); 1719 for_each_object(p, s, page_address(page), 1720 page->objects) 1721 check_object(s, page, p, SLUB_RED_INACTIVE); 1722 } 1723 1724 __ClearPageSlabPfmemalloc(page); 1725 __ClearPageSlab(page); 1726 1727 page->mapping = NULL; 1728 if (current->reclaim_state) 1729 current->reclaim_state->reclaimed_slab += pages; 1730 uncharge_slab_page(page, order, s); 1731 __free_pages(page, order); 1732 } 1733 1734 static void rcu_free_slab(struct rcu_head *h) 1735 { 1736 struct page *page = container_of(h, struct page, rcu_head); 1737 1738 __free_slab(page->slab_cache, page); 1739 } 1740 1741 static void free_slab(struct kmem_cache *s, struct page *page) 1742 { 1743 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1744 call_rcu(&page->rcu_head, rcu_free_slab); 1745 } else 1746 __free_slab(s, page); 1747 } 1748 1749 static void discard_slab(struct kmem_cache *s, struct page *page) 1750 { 1751 dec_slabs_node(s, page_to_nid(page), page->objects); 1752 free_slab(s, page); 1753 } 1754 1755 /* 1756 * Management of partially allocated slabs. 1757 */ 1758 static inline void 1759 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1760 { 1761 n->nr_partial++; 1762 if (tail == DEACTIVATE_TO_TAIL) 1763 list_add_tail(&page->slab_list, &n->partial); 1764 else 1765 list_add(&page->slab_list, &n->partial); 1766 } 1767 1768 static inline void add_partial(struct kmem_cache_node *n, 1769 struct page *page, int tail) 1770 { 1771 lockdep_assert_held(&n->list_lock); 1772 __add_partial(n, page, tail); 1773 } 1774 1775 static inline void remove_partial(struct kmem_cache_node *n, 1776 struct page *page) 1777 { 1778 lockdep_assert_held(&n->list_lock); 1779 list_del(&page->slab_list); 1780 n->nr_partial--; 1781 } 1782 1783 /* 1784 * Remove slab from the partial list, freeze it and 1785 * return the pointer to the freelist. 1786 * 1787 * Returns a list of objects or NULL if it fails. 1788 */ 1789 static inline void *acquire_slab(struct kmem_cache *s, 1790 struct kmem_cache_node *n, struct page *page, 1791 int mode, int *objects) 1792 { 1793 void *freelist; 1794 unsigned long counters; 1795 struct page new; 1796 1797 lockdep_assert_held(&n->list_lock); 1798 1799 /* 1800 * Zap the freelist and set the frozen bit. 1801 * The old freelist is the list of objects for the 1802 * per cpu allocation list. 1803 */ 1804 freelist = page->freelist; 1805 counters = page->counters; 1806 new.counters = counters; 1807 *objects = new.objects - new.inuse; 1808 if (mode) { 1809 new.inuse = page->objects; 1810 new.freelist = NULL; 1811 } else { 1812 new.freelist = freelist; 1813 } 1814 1815 VM_BUG_ON(new.frozen); 1816 new.frozen = 1; 1817 1818 if (!__cmpxchg_double_slab(s, page, 1819 freelist, counters, 1820 new.freelist, new.counters, 1821 "acquire_slab")) 1822 return NULL; 1823 1824 remove_partial(n, page); 1825 WARN_ON(!freelist); 1826 return freelist; 1827 } 1828 1829 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1830 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1831 1832 /* 1833 * Try to allocate a partial slab from a specific node. 1834 */ 1835 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1836 struct kmem_cache_cpu *c, gfp_t flags) 1837 { 1838 struct page *page, *page2; 1839 void *object = NULL; 1840 unsigned int available = 0; 1841 int objects; 1842 1843 /* 1844 * Racy check. If we mistakenly see no partial slabs then we 1845 * just allocate an empty slab. If we mistakenly try to get a 1846 * partial slab and there is none available then get_partials() 1847 * will return NULL. 1848 */ 1849 if (!n || !n->nr_partial) 1850 return NULL; 1851 1852 spin_lock(&n->list_lock); 1853 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1854 void *t; 1855 1856 if (!pfmemalloc_match(page, flags)) 1857 continue; 1858 1859 t = acquire_slab(s, n, page, object == NULL, &objects); 1860 if (!t) 1861 break; 1862 1863 available += objects; 1864 if (!object) { 1865 c->page = page; 1866 stat(s, ALLOC_FROM_PARTIAL); 1867 object = t; 1868 } else { 1869 put_cpu_partial(s, page, 0); 1870 stat(s, CPU_PARTIAL_NODE); 1871 } 1872 if (!kmem_cache_has_cpu_partial(s) 1873 || available > slub_cpu_partial(s) / 2) 1874 break; 1875 1876 } 1877 spin_unlock(&n->list_lock); 1878 return object; 1879 } 1880 1881 /* 1882 * Get a page from somewhere. Search in increasing NUMA distances. 1883 */ 1884 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1885 struct kmem_cache_cpu *c) 1886 { 1887 #ifdef CONFIG_NUMA 1888 struct zonelist *zonelist; 1889 struct zoneref *z; 1890 struct zone *zone; 1891 enum zone_type high_zoneidx = gfp_zone(flags); 1892 void *object; 1893 unsigned int cpuset_mems_cookie; 1894 1895 /* 1896 * The defrag ratio allows a configuration of the tradeoffs between 1897 * inter node defragmentation and node local allocations. A lower 1898 * defrag_ratio increases the tendency to do local allocations 1899 * instead of attempting to obtain partial slabs from other nodes. 1900 * 1901 * If the defrag_ratio is set to 0 then kmalloc() always 1902 * returns node local objects. If the ratio is higher then kmalloc() 1903 * may return off node objects because partial slabs are obtained 1904 * from other nodes and filled up. 1905 * 1906 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1907 * (which makes defrag_ratio = 1000) then every (well almost) 1908 * allocation will first attempt to defrag slab caches on other nodes. 1909 * This means scanning over all nodes to look for partial slabs which 1910 * may be expensive if we do it every time we are trying to find a slab 1911 * with available objects. 1912 */ 1913 if (!s->remote_node_defrag_ratio || 1914 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1915 return NULL; 1916 1917 do { 1918 cpuset_mems_cookie = read_mems_allowed_begin(); 1919 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1920 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1921 struct kmem_cache_node *n; 1922 1923 n = get_node(s, zone_to_nid(zone)); 1924 1925 if (n && cpuset_zone_allowed(zone, flags) && 1926 n->nr_partial > s->min_partial) { 1927 object = get_partial_node(s, n, c, flags); 1928 if (object) { 1929 /* 1930 * Don't check read_mems_allowed_retry() 1931 * here - if mems_allowed was updated in 1932 * parallel, that was a harmless race 1933 * between allocation and the cpuset 1934 * update 1935 */ 1936 return object; 1937 } 1938 } 1939 } 1940 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1941 #endif /* CONFIG_NUMA */ 1942 return NULL; 1943 } 1944 1945 /* 1946 * Get a partial page, lock it and return it. 1947 */ 1948 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1949 struct kmem_cache_cpu *c) 1950 { 1951 void *object; 1952 int searchnode = node; 1953 1954 if (node == NUMA_NO_NODE) 1955 searchnode = numa_mem_id(); 1956 else if (!node_present_pages(node)) 1957 searchnode = node_to_mem_node(node); 1958 1959 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1960 if (object || node != NUMA_NO_NODE) 1961 return object; 1962 1963 return get_any_partial(s, flags, c); 1964 } 1965 1966 #ifdef CONFIG_PREEMPT 1967 /* 1968 * Calculate the next globally unique transaction for disambiguiation 1969 * during cmpxchg. The transactions start with the cpu number and are then 1970 * incremented by CONFIG_NR_CPUS. 1971 */ 1972 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1973 #else 1974 /* 1975 * No preemption supported therefore also no need to check for 1976 * different cpus. 1977 */ 1978 #define TID_STEP 1 1979 #endif 1980 1981 static inline unsigned long next_tid(unsigned long tid) 1982 { 1983 return tid + TID_STEP; 1984 } 1985 1986 #ifdef SLUB_DEBUG_CMPXCHG 1987 static inline unsigned int tid_to_cpu(unsigned long tid) 1988 { 1989 return tid % TID_STEP; 1990 } 1991 1992 static inline unsigned long tid_to_event(unsigned long tid) 1993 { 1994 return tid / TID_STEP; 1995 } 1996 #endif 1997 1998 static inline unsigned int init_tid(int cpu) 1999 { 2000 return cpu; 2001 } 2002 2003 static inline void note_cmpxchg_failure(const char *n, 2004 const struct kmem_cache *s, unsigned long tid) 2005 { 2006 #ifdef SLUB_DEBUG_CMPXCHG 2007 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2008 2009 pr_info("%s %s: cmpxchg redo ", n, s->name); 2010 2011 #ifdef CONFIG_PREEMPT 2012 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2013 pr_warn("due to cpu change %d -> %d\n", 2014 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2015 else 2016 #endif 2017 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2018 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2019 tid_to_event(tid), tid_to_event(actual_tid)); 2020 else 2021 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2022 actual_tid, tid, next_tid(tid)); 2023 #endif 2024 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2025 } 2026 2027 static void init_kmem_cache_cpus(struct kmem_cache *s) 2028 { 2029 int cpu; 2030 2031 for_each_possible_cpu(cpu) 2032 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2033 } 2034 2035 /* 2036 * Remove the cpu slab 2037 */ 2038 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2039 void *freelist, struct kmem_cache_cpu *c) 2040 { 2041 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2042 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2043 int lock = 0; 2044 enum slab_modes l = M_NONE, m = M_NONE; 2045 void *nextfree; 2046 int tail = DEACTIVATE_TO_HEAD; 2047 struct page new; 2048 struct page old; 2049 2050 if (page->freelist) { 2051 stat(s, DEACTIVATE_REMOTE_FREES); 2052 tail = DEACTIVATE_TO_TAIL; 2053 } 2054 2055 /* 2056 * Stage one: Free all available per cpu objects back 2057 * to the page freelist while it is still frozen. Leave the 2058 * last one. 2059 * 2060 * There is no need to take the list->lock because the page 2061 * is still frozen. 2062 */ 2063 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2064 void *prior; 2065 unsigned long counters; 2066 2067 do { 2068 prior = page->freelist; 2069 counters = page->counters; 2070 set_freepointer(s, freelist, prior); 2071 new.counters = counters; 2072 new.inuse--; 2073 VM_BUG_ON(!new.frozen); 2074 2075 } while (!__cmpxchg_double_slab(s, page, 2076 prior, counters, 2077 freelist, new.counters, 2078 "drain percpu freelist")); 2079 2080 freelist = nextfree; 2081 } 2082 2083 /* 2084 * Stage two: Ensure that the page is unfrozen while the 2085 * list presence reflects the actual number of objects 2086 * during unfreeze. 2087 * 2088 * We setup the list membership and then perform a cmpxchg 2089 * with the count. If there is a mismatch then the page 2090 * is not unfrozen but the page is on the wrong list. 2091 * 2092 * Then we restart the process which may have to remove 2093 * the page from the list that we just put it on again 2094 * because the number of objects in the slab may have 2095 * changed. 2096 */ 2097 redo: 2098 2099 old.freelist = page->freelist; 2100 old.counters = page->counters; 2101 VM_BUG_ON(!old.frozen); 2102 2103 /* Determine target state of the slab */ 2104 new.counters = old.counters; 2105 if (freelist) { 2106 new.inuse--; 2107 set_freepointer(s, freelist, old.freelist); 2108 new.freelist = freelist; 2109 } else 2110 new.freelist = old.freelist; 2111 2112 new.frozen = 0; 2113 2114 if (!new.inuse && n->nr_partial >= s->min_partial) 2115 m = M_FREE; 2116 else if (new.freelist) { 2117 m = M_PARTIAL; 2118 if (!lock) { 2119 lock = 1; 2120 /* 2121 * Taking the spinlock removes the possibility 2122 * that acquire_slab() will see a slab page that 2123 * is frozen 2124 */ 2125 spin_lock(&n->list_lock); 2126 } 2127 } else { 2128 m = M_FULL; 2129 if (kmem_cache_debug(s) && !lock) { 2130 lock = 1; 2131 /* 2132 * This also ensures that the scanning of full 2133 * slabs from diagnostic functions will not see 2134 * any frozen slabs. 2135 */ 2136 spin_lock(&n->list_lock); 2137 } 2138 } 2139 2140 if (l != m) { 2141 if (l == M_PARTIAL) 2142 remove_partial(n, page); 2143 else if (l == M_FULL) 2144 remove_full(s, n, page); 2145 2146 if (m == M_PARTIAL) 2147 add_partial(n, page, tail); 2148 else if (m == M_FULL) 2149 add_full(s, n, page); 2150 } 2151 2152 l = m; 2153 if (!__cmpxchg_double_slab(s, page, 2154 old.freelist, old.counters, 2155 new.freelist, new.counters, 2156 "unfreezing slab")) 2157 goto redo; 2158 2159 if (lock) 2160 spin_unlock(&n->list_lock); 2161 2162 if (m == M_PARTIAL) 2163 stat(s, tail); 2164 else if (m == M_FULL) 2165 stat(s, DEACTIVATE_FULL); 2166 else if (m == M_FREE) { 2167 stat(s, DEACTIVATE_EMPTY); 2168 discard_slab(s, page); 2169 stat(s, FREE_SLAB); 2170 } 2171 2172 c->page = NULL; 2173 c->freelist = NULL; 2174 } 2175 2176 /* 2177 * Unfreeze all the cpu partial slabs. 2178 * 2179 * This function must be called with interrupts disabled 2180 * for the cpu using c (or some other guarantee must be there 2181 * to guarantee no concurrent accesses). 2182 */ 2183 static void unfreeze_partials(struct kmem_cache *s, 2184 struct kmem_cache_cpu *c) 2185 { 2186 #ifdef CONFIG_SLUB_CPU_PARTIAL 2187 struct kmem_cache_node *n = NULL, *n2 = NULL; 2188 struct page *page, *discard_page = NULL; 2189 2190 while ((page = c->partial)) { 2191 struct page new; 2192 struct page old; 2193 2194 c->partial = page->next; 2195 2196 n2 = get_node(s, page_to_nid(page)); 2197 if (n != n2) { 2198 if (n) 2199 spin_unlock(&n->list_lock); 2200 2201 n = n2; 2202 spin_lock(&n->list_lock); 2203 } 2204 2205 do { 2206 2207 old.freelist = page->freelist; 2208 old.counters = page->counters; 2209 VM_BUG_ON(!old.frozen); 2210 2211 new.counters = old.counters; 2212 new.freelist = old.freelist; 2213 2214 new.frozen = 0; 2215 2216 } while (!__cmpxchg_double_slab(s, page, 2217 old.freelist, old.counters, 2218 new.freelist, new.counters, 2219 "unfreezing slab")); 2220 2221 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2222 page->next = discard_page; 2223 discard_page = page; 2224 } else { 2225 add_partial(n, page, DEACTIVATE_TO_TAIL); 2226 stat(s, FREE_ADD_PARTIAL); 2227 } 2228 } 2229 2230 if (n) 2231 spin_unlock(&n->list_lock); 2232 2233 while (discard_page) { 2234 page = discard_page; 2235 discard_page = discard_page->next; 2236 2237 stat(s, DEACTIVATE_EMPTY); 2238 discard_slab(s, page); 2239 stat(s, FREE_SLAB); 2240 } 2241 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2242 } 2243 2244 /* 2245 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2246 * partial page slot if available. 2247 * 2248 * If we did not find a slot then simply move all the partials to the 2249 * per node partial list. 2250 */ 2251 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2252 { 2253 #ifdef CONFIG_SLUB_CPU_PARTIAL 2254 struct page *oldpage; 2255 int pages; 2256 int pobjects; 2257 2258 preempt_disable(); 2259 do { 2260 pages = 0; 2261 pobjects = 0; 2262 oldpage = this_cpu_read(s->cpu_slab->partial); 2263 2264 if (oldpage) { 2265 pobjects = oldpage->pobjects; 2266 pages = oldpage->pages; 2267 if (drain && pobjects > s->cpu_partial) { 2268 unsigned long flags; 2269 /* 2270 * partial array is full. Move the existing 2271 * set to the per node partial list. 2272 */ 2273 local_irq_save(flags); 2274 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2275 local_irq_restore(flags); 2276 oldpage = NULL; 2277 pobjects = 0; 2278 pages = 0; 2279 stat(s, CPU_PARTIAL_DRAIN); 2280 } 2281 } 2282 2283 pages++; 2284 pobjects += page->objects - page->inuse; 2285 2286 page->pages = pages; 2287 page->pobjects = pobjects; 2288 page->next = oldpage; 2289 2290 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2291 != oldpage); 2292 if (unlikely(!s->cpu_partial)) { 2293 unsigned long flags; 2294 2295 local_irq_save(flags); 2296 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2297 local_irq_restore(flags); 2298 } 2299 preempt_enable(); 2300 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2301 } 2302 2303 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2304 { 2305 stat(s, CPUSLAB_FLUSH); 2306 deactivate_slab(s, c->page, c->freelist, c); 2307 2308 c->tid = next_tid(c->tid); 2309 } 2310 2311 /* 2312 * Flush cpu slab. 2313 * 2314 * Called from IPI handler with interrupts disabled. 2315 */ 2316 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2317 { 2318 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2319 2320 if (c->page) 2321 flush_slab(s, c); 2322 2323 unfreeze_partials(s, c); 2324 } 2325 2326 static void flush_cpu_slab(void *d) 2327 { 2328 struct kmem_cache *s = d; 2329 2330 __flush_cpu_slab(s, smp_processor_id()); 2331 } 2332 2333 static bool has_cpu_slab(int cpu, void *info) 2334 { 2335 struct kmem_cache *s = info; 2336 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2337 2338 return c->page || slub_percpu_partial(c); 2339 } 2340 2341 static void flush_all(struct kmem_cache *s) 2342 { 2343 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2344 } 2345 2346 /* 2347 * Use the cpu notifier to insure that the cpu slabs are flushed when 2348 * necessary. 2349 */ 2350 static int slub_cpu_dead(unsigned int cpu) 2351 { 2352 struct kmem_cache *s; 2353 unsigned long flags; 2354 2355 mutex_lock(&slab_mutex); 2356 list_for_each_entry(s, &slab_caches, list) { 2357 local_irq_save(flags); 2358 __flush_cpu_slab(s, cpu); 2359 local_irq_restore(flags); 2360 } 2361 mutex_unlock(&slab_mutex); 2362 return 0; 2363 } 2364 2365 /* 2366 * Check if the objects in a per cpu structure fit numa 2367 * locality expectations. 2368 */ 2369 static inline int node_match(struct page *page, int node) 2370 { 2371 #ifdef CONFIG_NUMA 2372 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2373 return 0; 2374 #endif 2375 return 1; 2376 } 2377 2378 #ifdef CONFIG_SLUB_DEBUG 2379 static int count_free(struct page *page) 2380 { 2381 return page->objects - page->inuse; 2382 } 2383 2384 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2385 { 2386 return atomic_long_read(&n->total_objects); 2387 } 2388 #endif /* CONFIG_SLUB_DEBUG */ 2389 2390 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2391 static unsigned long count_partial(struct kmem_cache_node *n, 2392 int (*get_count)(struct page *)) 2393 { 2394 unsigned long flags; 2395 unsigned long x = 0; 2396 struct page *page; 2397 2398 spin_lock_irqsave(&n->list_lock, flags); 2399 list_for_each_entry(page, &n->partial, slab_list) 2400 x += get_count(page); 2401 spin_unlock_irqrestore(&n->list_lock, flags); 2402 return x; 2403 } 2404 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2405 2406 static noinline void 2407 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2408 { 2409 #ifdef CONFIG_SLUB_DEBUG 2410 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2411 DEFAULT_RATELIMIT_BURST); 2412 int node; 2413 struct kmem_cache_node *n; 2414 2415 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2416 return; 2417 2418 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2419 nid, gfpflags, &gfpflags); 2420 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2421 s->name, s->object_size, s->size, oo_order(s->oo), 2422 oo_order(s->min)); 2423 2424 if (oo_order(s->min) > get_order(s->object_size)) 2425 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2426 s->name); 2427 2428 for_each_kmem_cache_node(s, node, n) { 2429 unsigned long nr_slabs; 2430 unsigned long nr_objs; 2431 unsigned long nr_free; 2432 2433 nr_free = count_partial(n, count_free); 2434 nr_slabs = node_nr_slabs(n); 2435 nr_objs = node_nr_objs(n); 2436 2437 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2438 node, nr_slabs, nr_objs, nr_free); 2439 } 2440 #endif 2441 } 2442 2443 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2444 int node, struct kmem_cache_cpu **pc) 2445 { 2446 void *freelist; 2447 struct kmem_cache_cpu *c = *pc; 2448 struct page *page; 2449 2450 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2451 2452 freelist = get_partial(s, flags, node, c); 2453 2454 if (freelist) 2455 return freelist; 2456 2457 page = new_slab(s, flags, node); 2458 if (page) { 2459 c = raw_cpu_ptr(s->cpu_slab); 2460 if (c->page) 2461 flush_slab(s, c); 2462 2463 /* 2464 * No other reference to the page yet so we can 2465 * muck around with it freely without cmpxchg 2466 */ 2467 freelist = page->freelist; 2468 page->freelist = NULL; 2469 2470 stat(s, ALLOC_SLAB); 2471 c->page = page; 2472 *pc = c; 2473 } 2474 2475 return freelist; 2476 } 2477 2478 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2479 { 2480 if (unlikely(PageSlabPfmemalloc(page))) 2481 return gfp_pfmemalloc_allowed(gfpflags); 2482 2483 return true; 2484 } 2485 2486 /* 2487 * Check the page->freelist of a page and either transfer the freelist to the 2488 * per cpu freelist or deactivate the page. 2489 * 2490 * The page is still frozen if the return value is not NULL. 2491 * 2492 * If this function returns NULL then the page has been unfrozen. 2493 * 2494 * This function must be called with interrupt disabled. 2495 */ 2496 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2497 { 2498 struct page new; 2499 unsigned long counters; 2500 void *freelist; 2501 2502 do { 2503 freelist = page->freelist; 2504 counters = page->counters; 2505 2506 new.counters = counters; 2507 VM_BUG_ON(!new.frozen); 2508 2509 new.inuse = page->objects; 2510 new.frozen = freelist != NULL; 2511 2512 } while (!__cmpxchg_double_slab(s, page, 2513 freelist, counters, 2514 NULL, new.counters, 2515 "get_freelist")); 2516 2517 return freelist; 2518 } 2519 2520 /* 2521 * Slow path. The lockless freelist is empty or we need to perform 2522 * debugging duties. 2523 * 2524 * Processing is still very fast if new objects have been freed to the 2525 * regular freelist. In that case we simply take over the regular freelist 2526 * as the lockless freelist and zap the regular freelist. 2527 * 2528 * If that is not working then we fall back to the partial lists. We take the 2529 * first element of the freelist as the object to allocate now and move the 2530 * rest of the freelist to the lockless freelist. 2531 * 2532 * And if we were unable to get a new slab from the partial slab lists then 2533 * we need to allocate a new slab. This is the slowest path since it involves 2534 * a call to the page allocator and the setup of a new slab. 2535 * 2536 * Version of __slab_alloc to use when we know that interrupts are 2537 * already disabled (which is the case for bulk allocation). 2538 */ 2539 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2540 unsigned long addr, struct kmem_cache_cpu *c) 2541 { 2542 void *freelist; 2543 struct page *page; 2544 2545 page = c->page; 2546 if (!page) 2547 goto new_slab; 2548 redo: 2549 2550 if (unlikely(!node_match(page, node))) { 2551 int searchnode = node; 2552 2553 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2554 searchnode = node_to_mem_node(node); 2555 2556 if (unlikely(!node_match(page, searchnode))) { 2557 stat(s, ALLOC_NODE_MISMATCH); 2558 deactivate_slab(s, page, c->freelist, c); 2559 goto new_slab; 2560 } 2561 } 2562 2563 /* 2564 * By rights, we should be searching for a slab page that was 2565 * PFMEMALLOC but right now, we are losing the pfmemalloc 2566 * information when the page leaves the per-cpu allocator 2567 */ 2568 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2569 deactivate_slab(s, page, c->freelist, c); 2570 goto new_slab; 2571 } 2572 2573 /* must check again c->freelist in case of cpu migration or IRQ */ 2574 freelist = c->freelist; 2575 if (freelist) 2576 goto load_freelist; 2577 2578 freelist = get_freelist(s, page); 2579 2580 if (!freelist) { 2581 c->page = NULL; 2582 stat(s, DEACTIVATE_BYPASS); 2583 goto new_slab; 2584 } 2585 2586 stat(s, ALLOC_REFILL); 2587 2588 load_freelist: 2589 /* 2590 * freelist is pointing to the list of objects to be used. 2591 * page is pointing to the page from which the objects are obtained. 2592 * That page must be frozen for per cpu allocations to work. 2593 */ 2594 VM_BUG_ON(!c->page->frozen); 2595 c->freelist = get_freepointer(s, freelist); 2596 c->tid = next_tid(c->tid); 2597 return freelist; 2598 2599 new_slab: 2600 2601 if (slub_percpu_partial(c)) { 2602 page = c->page = slub_percpu_partial(c); 2603 slub_set_percpu_partial(c, page); 2604 stat(s, CPU_PARTIAL_ALLOC); 2605 goto redo; 2606 } 2607 2608 freelist = new_slab_objects(s, gfpflags, node, &c); 2609 2610 if (unlikely(!freelist)) { 2611 slab_out_of_memory(s, gfpflags, node); 2612 return NULL; 2613 } 2614 2615 page = c->page; 2616 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2617 goto load_freelist; 2618 2619 /* Only entered in the debug case */ 2620 if (kmem_cache_debug(s) && 2621 !alloc_debug_processing(s, page, freelist, addr)) 2622 goto new_slab; /* Slab failed checks. Next slab needed */ 2623 2624 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2625 return freelist; 2626 } 2627 2628 /* 2629 * Another one that disabled interrupt and compensates for possible 2630 * cpu changes by refetching the per cpu area pointer. 2631 */ 2632 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2633 unsigned long addr, struct kmem_cache_cpu *c) 2634 { 2635 void *p; 2636 unsigned long flags; 2637 2638 local_irq_save(flags); 2639 #ifdef CONFIG_PREEMPT 2640 /* 2641 * We may have been preempted and rescheduled on a different 2642 * cpu before disabling interrupts. Need to reload cpu area 2643 * pointer. 2644 */ 2645 c = this_cpu_ptr(s->cpu_slab); 2646 #endif 2647 2648 p = ___slab_alloc(s, gfpflags, node, addr, c); 2649 local_irq_restore(flags); 2650 return p; 2651 } 2652 2653 /* 2654 * If the object has been wiped upon free, make sure it's fully initialized by 2655 * zeroing out freelist pointer. 2656 */ 2657 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2658 void *obj) 2659 { 2660 if (unlikely(slab_want_init_on_free(s)) && obj) 2661 memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); 2662 } 2663 2664 /* 2665 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2666 * have the fastpath folded into their functions. So no function call 2667 * overhead for requests that can be satisfied on the fastpath. 2668 * 2669 * The fastpath works by first checking if the lockless freelist can be used. 2670 * If not then __slab_alloc is called for slow processing. 2671 * 2672 * Otherwise we can simply pick the next object from the lockless free list. 2673 */ 2674 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2675 gfp_t gfpflags, int node, unsigned long addr) 2676 { 2677 void *object; 2678 struct kmem_cache_cpu *c; 2679 struct page *page; 2680 unsigned long tid; 2681 2682 s = slab_pre_alloc_hook(s, gfpflags); 2683 if (!s) 2684 return NULL; 2685 redo: 2686 /* 2687 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2688 * enabled. We may switch back and forth between cpus while 2689 * reading from one cpu area. That does not matter as long 2690 * as we end up on the original cpu again when doing the cmpxchg. 2691 * 2692 * We should guarantee that tid and kmem_cache are retrieved on 2693 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2694 * to check if it is matched or not. 2695 */ 2696 do { 2697 tid = this_cpu_read(s->cpu_slab->tid); 2698 c = raw_cpu_ptr(s->cpu_slab); 2699 } while (IS_ENABLED(CONFIG_PREEMPT) && 2700 unlikely(tid != READ_ONCE(c->tid))); 2701 2702 /* 2703 * Irqless object alloc/free algorithm used here depends on sequence 2704 * of fetching cpu_slab's data. tid should be fetched before anything 2705 * on c to guarantee that object and page associated with previous tid 2706 * won't be used with current tid. If we fetch tid first, object and 2707 * page could be one associated with next tid and our alloc/free 2708 * request will be failed. In this case, we will retry. So, no problem. 2709 */ 2710 barrier(); 2711 2712 /* 2713 * The transaction ids are globally unique per cpu and per operation on 2714 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2715 * occurs on the right processor and that there was no operation on the 2716 * linked list in between. 2717 */ 2718 2719 object = c->freelist; 2720 page = c->page; 2721 if (unlikely(!object || !node_match(page, node))) { 2722 object = __slab_alloc(s, gfpflags, node, addr, c); 2723 stat(s, ALLOC_SLOWPATH); 2724 } else { 2725 void *next_object = get_freepointer_safe(s, object); 2726 2727 /* 2728 * The cmpxchg will only match if there was no additional 2729 * operation and if we are on the right processor. 2730 * 2731 * The cmpxchg does the following atomically (without lock 2732 * semantics!) 2733 * 1. Relocate first pointer to the current per cpu area. 2734 * 2. Verify that tid and freelist have not been changed 2735 * 3. If they were not changed replace tid and freelist 2736 * 2737 * Since this is without lock semantics the protection is only 2738 * against code executing on this cpu *not* from access by 2739 * other cpus. 2740 */ 2741 if (unlikely(!this_cpu_cmpxchg_double( 2742 s->cpu_slab->freelist, s->cpu_slab->tid, 2743 object, tid, 2744 next_object, next_tid(tid)))) { 2745 2746 note_cmpxchg_failure("slab_alloc", s, tid); 2747 goto redo; 2748 } 2749 prefetch_freepointer(s, next_object); 2750 stat(s, ALLOC_FASTPATH); 2751 } 2752 2753 maybe_wipe_obj_freeptr(s, object); 2754 2755 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2756 memset(object, 0, s->object_size); 2757 2758 slab_post_alloc_hook(s, gfpflags, 1, &object); 2759 2760 return object; 2761 } 2762 2763 static __always_inline void *slab_alloc(struct kmem_cache *s, 2764 gfp_t gfpflags, unsigned long addr) 2765 { 2766 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2767 } 2768 2769 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2770 { 2771 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2772 2773 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2774 s->size, gfpflags); 2775 2776 return ret; 2777 } 2778 EXPORT_SYMBOL(kmem_cache_alloc); 2779 2780 #ifdef CONFIG_TRACING 2781 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2782 { 2783 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2784 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2785 ret = kasan_kmalloc(s, ret, size, gfpflags); 2786 return ret; 2787 } 2788 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2789 #endif 2790 2791 #ifdef CONFIG_NUMA 2792 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2793 { 2794 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2795 2796 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2797 s->object_size, s->size, gfpflags, node); 2798 2799 return ret; 2800 } 2801 EXPORT_SYMBOL(kmem_cache_alloc_node); 2802 2803 #ifdef CONFIG_TRACING 2804 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2805 gfp_t gfpflags, 2806 int node, size_t size) 2807 { 2808 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2809 2810 trace_kmalloc_node(_RET_IP_, ret, 2811 size, s->size, gfpflags, node); 2812 2813 ret = kasan_kmalloc(s, ret, size, gfpflags); 2814 return ret; 2815 } 2816 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2817 #endif 2818 #endif /* CONFIG_NUMA */ 2819 2820 /* 2821 * Slow path handling. This may still be called frequently since objects 2822 * have a longer lifetime than the cpu slabs in most processing loads. 2823 * 2824 * So we still attempt to reduce cache line usage. Just take the slab 2825 * lock and free the item. If there is no additional partial page 2826 * handling required then we can return immediately. 2827 */ 2828 static void __slab_free(struct kmem_cache *s, struct page *page, 2829 void *head, void *tail, int cnt, 2830 unsigned long addr) 2831 2832 { 2833 void *prior; 2834 int was_frozen; 2835 struct page new; 2836 unsigned long counters; 2837 struct kmem_cache_node *n = NULL; 2838 unsigned long uninitialized_var(flags); 2839 2840 stat(s, FREE_SLOWPATH); 2841 2842 if (kmem_cache_debug(s) && 2843 !free_debug_processing(s, page, head, tail, cnt, addr)) 2844 return; 2845 2846 do { 2847 if (unlikely(n)) { 2848 spin_unlock_irqrestore(&n->list_lock, flags); 2849 n = NULL; 2850 } 2851 prior = page->freelist; 2852 counters = page->counters; 2853 set_freepointer(s, tail, prior); 2854 new.counters = counters; 2855 was_frozen = new.frozen; 2856 new.inuse -= cnt; 2857 if ((!new.inuse || !prior) && !was_frozen) { 2858 2859 if (kmem_cache_has_cpu_partial(s) && !prior) { 2860 2861 /* 2862 * Slab was on no list before and will be 2863 * partially empty 2864 * We can defer the list move and instead 2865 * freeze it. 2866 */ 2867 new.frozen = 1; 2868 2869 } else { /* Needs to be taken off a list */ 2870 2871 n = get_node(s, page_to_nid(page)); 2872 /* 2873 * Speculatively acquire the list_lock. 2874 * If the cmpxchg does not succeed then we may 2875 * drop the list_lock without any processing. 2876 * 2877 * Otherwise the list_lock will synchronize with 2878 * other processors updating the list of slabs. 2879 */ 2880 spin_lock_irqsave(&n->list_lock, flags); 2881 2882 } 2883 } 2884 2885 } while (!cmpxchg_double_slab(s, page, 2886 prior, counters, 2887 head, new.counters, 2888 "__slab_free")); 2889 2890 if (likely(!n)) { 2891 2892 /* 2893 * If we just froze the page then put it onto the 2894 * per cpu partial list. 2895 */ 2896 if (new.frozen && !was_frozen) { 2897 put_cpu_partial(s, page, 1); 2898 stat(s, CPU_PARTIAL_FREE); 2899 } 2900 /* 2901 * The list lock was not taken therefore no list 2902 * activity can be necessary. 2903 */ 2904 if (was_frozen) 2905 stat(s, FREE_FROZEN); 2906 return; 2907 } 2908 2909 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2910 goto slab_empty; 2911 2912 /* 2913 * Objects left in the slab. If it was not on the partial list before 2914 * then add it. 2915 */ 2916 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2917 remove_full(s, n, page); 2918 add_partial(n, page, DEACTIVATE_TO_TAIL); 2919 stat(s, FREE_ADD_PARTIAL); 2920 } 2921 spin_unlock_irqrestore(&n->list_lock, flags); 2922 return; 2923 2924 slab_empty: 2925 if (prior) { 2926 /* 2927 * Slab on the partial list. 2928 */ 2929 remove_partial(n, page); 2930 stat(s, FREE_REMOVE_PARTIAL); 2931 } else { 2932 /* Slab must be on the full list */ 2933 remove_full(s, n, page); 2934 } 2935 2936 spin_unlock_irqrestore(&n->list_lock, flags); 2937 stat(s, FREE_SLAB); 2938 discard_slab(s, page); 2939 } 2940 2941 /* 2942 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2943 * can perform fastpath freeing without additional function calls. 2944 * 2945 * The fastpath is only possible if we are freeing to the current cpu slab 2946 * of this processor. This typically the case if we have just allocated 2947 * the item before. 2948 * 2949 * If fastpath is not possible then fall back to __slab_free where we deal 2950 * with all sorts of special processing. 2951 * 2952 * Bulk free of a freelist with several objects (all pointing to the 2953 * same page) possible by specifying head and tail ptr, plus objects 2954 * count (cnt). Bulk free indicated by tail pointer being set. 2955 */ 2956 static __always_inline void do_slab_free(struct kmem_cache *s, 2957 struct page *page, void *head, void *tail, 2958 int cnt, unsigned long addr) 2959 { 2960 void *tail_obj = tail ? : head; 2961 struct kmem_cache_cpu *c; 2962 unsigned long tid; 2963 redo: 2964 /* 2965 * Determine the currently cpus per cpu slab. 2966 * The cpu may change afterward. However that does not matter since 2967 * data is retrieved via this pointer. If we are on the same cpu 2968 * during the cmpxchg then the free will succeed. 2969 */ 2970 do { 2971 tid = this_cpu_read(s->cpu_slab->tid); 2972 c = raw_cpu_ptr(s->cpu_slab); 2973 } while (IS_ENABLED(CONFIG_PREEMPT) && 2974 unlikely(tid != READ_ONCE(c->tid))); 2975 2976 /* Same with comment on barrier() in slab_alloc_node() */ 2977 barrier(); 2978 2979 if (likely(page == c->page)) { 2980 set_freepointer(s, tail_obj, c->freelist); 2981 2982 if (unlikely(!this_cpu_cmpxchg_double( 2983 s->cpu_slab->freelist, s->cpu_slab->tid, 2984 c->freelist, tid, 2985 head, next_tid(tid)))) { 2986 2987 note_cmpxchg_failure("slab_free", s, tid); 2988 goto redo; 2989 } 2990 stat(s, FREE_FASTPATH); 2991 } else 2992 __slab_free(s, page, head, tail_obj, cnt, addr); 2993 2994 } 2995 2996 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2997 void *head, void *tail, int cnt, 2998 unsigned long addr) 2999 { 3000 /* 3001 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3002 * to remove objects, whose reuse must be delayed. 3003 */ 3004 if (slab_free_freelist_hook(s, &head, &tail)) 3005 do_slab_free(s, page, head, tail, cnt, addr); 3006 } 3007 3008 #ifdef CONFIG_KASAN_GENERIC 3009 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3010 { 3011 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3012 } 3013 #endif 3014 3015 void kmem_cache_free(struct kmem_cache *s, void *x) 3016 { 3017 s = cache_from_obj(s, x); 3018 if (!s) 3019 return; 3020 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3021 trace_kmem_cache_free(_RET_IP_, x); 3022 } 3023 EXPORT_SYMBOL(kmem_cache_free); 3024 3025 struct detached_freelist { 3026 struct page *page; 3027 void *tail; 3028 void *freelist; 3029 int cnt; 3030 struct kmem_cache *s; 3031 }; 3032 3033 /* 3034 * This function progressively scans the array with free objects (with 3035 * a limited look ahead) and extract objects belonging to the same 3036 * page. It builds a detached freelist directly within the given 3037 * page/objects. This can happen without any need for 3038 * synchronization, because the objects are owned by running process. 3039 * The freelist is build up as a single linked list in the objects. 3040 * The idea is, that this detached freelist can then be bulk 3041 * transferred to the real freelist(s), but only requiring a single 3042 * synchronization primitive. Look ahead in the array is limited due 3043 * to performance reasons. 3044 */ 3045 static inline 3046 int build_detached_freelist(struct kmem_cache *s, size_t size, 3047 void **p, struct detached_freelist *df) 3048 { 3049 size_t first_skipped_index = 0; 3050 int lookahead = 3; 3051 void *object; 3052 struct page *page; 3053 3054 /* Always re-init detached_freelist */ 3055 df->page = NULL; 3056 3057 do { 3058 object = p[--size]; 3059 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3060 } while (!object && size); 3061 3062 if (!object) 3063 return 0; 3064 3065 page = virt_to_head_page(object); 3066 if (!s) { 3067 /* Handle kalloc'ed objects */ 3068 if (unlikely(!PageSlab(page))) { 3069 BUG_ON(!PageCompound(page)); 3070 kfree_hook(object); 3071 __free_pages(page, compound_order(page)); 3072 p[size] = NULL; /* mark object processed */ 3073 return size; 3074 } 3075 /* Derive kmem_cache from object */ 3076 df->s = page->slab_cache; 3077 } else { 3078 df->s = cache_from_obj(s, object); /* Support for memcg */ 3079 } 3080 3081 /* Start new detached freelist */ 3082 df->page = page; 3083 set_freepointer(df->s, object, NULL); 3084 df->tail = object; 3085 df->freelist = object; 3086 p[size] = NULL; /* mark object processed */ 3087 df->cnt = 1; 3088 3089 while (size) { 3090 object = p[--size]; 3091 if (!object) 3092 continue; /* Skip processed objects */ 3093 3094 /* df->page is always set at this point */ 3095 if (df->page == virt_to_head_page(object)) { 3096 /* Opportunity build freelist */ 3097 set_freepointer(df->s, object, df->freelist); 3098 df->freelist = object; 3099 df->cnt++; 3100 p[size] = NULL; /* mark object processed */ 3101 3102 continue; 3103 } 3104 3105 /* Limit look ahead search */ 3106 if (!--lookahead) 3107 break; 3108 3109 if (!first_skipped_index) 3110 first_skipped_index = size + 1; 3111 } 3112 3113 return first_skipped_index; 3114 } 3115 3116 /* Note that interrupts must be enabled when calling this function. */ 3117 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3118 { 3119 if (WARN_ON(!size)) 3120 return; 3121 3122 do { 3123 struct detached_freelist df; 3124 3125 size = build_detached_freelist(s, size, p, &df); 3126 if (!df.page) 3127 continue; 3128 3129 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3130 } while (likely(size)); 3131 } 3132 EXPORT_SYMBOL(kmem_cache_free_bulk); 3133 3134 /* Note that interrupts must be enabled when calling this function. */ 3135 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3136 void **p) 3137 { 3138 struct kmem_cache_cpu *c; 3139 int i; 3140 3141 /* memcg and kmem_cache debug support */ 3142 s = slab_pre_alloc_hook(s, flags); 3143 if (unlikely(!s)) 3144 return false; 3145 /* 3146 * Drain objects in the per cpu slab, while disabling local 3147 * IRQs, which protects against PREEMPT and interrupts 3148 * handlers invoking normal fastpath. 3149 */ 3150 local_irq_disable(); 3151 c = this_cpu_ptr(s->cpu_slab); 3152 3153 for (i = 0; i < size; i++) { 3154 void *object = c->freelist; 3155 3156 if (unlikely(!object)) { 3157 /* 3158 * Invoking slow path likely have side-effect 3159 * of re-populating per CPU c->freelist 3160 */ 3161 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3162 _RET_IP_, c); 3163 if (unlikely(!p[i])) 3164 goto error; 3165 3166 c = this_cpu_ptr(s->cpu_slab); 3167 maybe_wipe_obj_freeptr(s, p[i]); 3168 3169 continue; /* goto for-loop */ 3170 } 3171 c->freelist = get_freepointer(s, object); 3172 p[i] = object; 3173 maybe_wipe_obj_freeptr(s, p[i]); 3174 } 3175 c->tid = next_tid(c->tid); 3176 local_irq_enable(); 3177 3178 /* Clear memory outside IRQ disabled fastpath loop */ 3179 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3180 int j; 3181 3182 for (j = 0; j < i; j++) 3183 memset(p[j], 0, s->object_size); 3184 } 3185 3186 /* memcg and kmem_cache debug support */ 3187 slab_post_alloc_hook(s, flags, size, p); 3188 return i; 3189 error: 3190 local_irq_enable(); 3191 slab_post_alloc_hook(s, flags, i, p); 3192 __kmem_cache_free_bulk(s, i, p); 3193 return 0; 3194 } 3195 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3196 3197 3198 /* 3199 * Object placement in a slab is made very easy because we always start at 3200 * offset 0. If we tune the size of the object to the alignment then we can 3201 * get the required alignment by putting one properly sized object after 3202 * another. 3203 * 3204 * Notice that the allocation order determines the sizes of the per cpu 3205 * caches. Each processor has always one slab available for allocations. 3206 * Increasing the allocation order reduces the number of times that slabs 3207 * must be moved on and off the partial lists and is therefore a factor in 3208 * locking overhead. 3209 */ 3210 3211 /* 3212 * Mininum / Maximum order of slab pages. This influences locking overhead 3213 * and slab fragmentation. A higher order reduces the number of partial slabs 3214 * and increases the number of allocations possible without having to 3215 * take the list_lock. 3216 */ 3217 static unsigned int slub_min_order; 3218 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3219 static unsigned int slub_min_objects; 3220 3221 /* 3222 * Calculate the order of allocation given an slab object size. 3223 * 3224 * The order of allocation has significant impact on performance and other 3225 * system components. Generally order 0 allocations should be preferred since 3226 * order 0 does not cause fragmentation in the page allocator. Larger objects 3227 * be problematic to put into order 0 slabs because there may be too much 3228 * unused space left. We go to a higher order if more than 1/16th of the slab 3229 * would be wasted. 3230 * 3231 * In order to reach satisfactory performance we must ensure that a minimum 3232 * number of objects is in one slab. Otherwise we may generate too much 3233 * activity on the partial lists which requires taking the list_lock. This is 3234 * less a concern for large slabs though which are rarely used. 3235 * 3236 * slub_max_order specifies the order where we begin to stop considering the 3237 * number of objects in a slab as critical. If we reach slub_max_order then 3238 * we try to keep the page order as low as possible. So we accept more waste 3239 * of space in favor of a small page order. 3240 * 3241 * Higher order allocations also allow the placement of more objects in a 3242 * slab and thereby reduce object handling overhead. If the user has 3243 * requested a higher mininum order then we start with that one instead of 3244 * the smallest order which will fit the object. 3245 */ 3246 static inline unsigned int slab_order(unsigned int size, 3247 unsigned int min_objects, unsigned int max_order, 3248 unsigned int fract_leftover) 3249 { 3250 unsigned int min_order = slub_min_order; 3251 unsigned int order; 3252 3253 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3254 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3255 3256 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3257 order <= max_order; order++) { 3258 3259 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3260 unsigned int rem; 3261 3262 rem = slab_size % size; 3263 3264 if (rem <= slab_size / fract_leftover) 3265 break; 3266 } 3267 3268 return order; 3269 } 3270 3271 static inline int calculate_order(unsigned int size) 3272 { 3273 unsigned int order; 3274 unsigned int min_objects; 3275 unsigned int max_objects; 3276 3277 /* 3278 * Attempt to find best configuration for a slab. This 3279 * works by first attempting to generate a layout with 3280 * the best configuration and backing off gradually. 3281 * 3282 * First we increase the acceptable waste in a slab. Then 3283 * we reduce the minimum objects required in a slab. 3284 */ 3285 min_objects = slub_min_objects; 3286 if (!min_objects) 3287 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3288 max_objects = order_objects(slub_max_order, size); 3289 min_objects = min(min_objects, max_objects); 3290 3291 while (min_objects > 1) { 3292 unsigned int fraction; 3293 3294 fraction = 16; 3295 while (fraction >= 4) { 3296 order = slab_order(size, min_objects, 3297 slub_max_order, fraction); 3298 if (order <= slub_max_order) 3299 return order; 3300 fraction /= 2; 3301 } 3302 min_objects--; 3303 } 3304 3305 /* 3306 * We were unable to place multiple objects in a slab. Now 3307 * lets see if we can place a single object there. 3308 */ 3309 order = slab_order(size, 1, slub_max_order, 1); 3310 if (order <= slub_max_order) 3311 return order; 3312 3313 /* 3314 * Doh this slab cannot be placed using slub_max_order. 3315 */ 3316 order = slab_order(size, 1, MAX_ORDER, 1); 3317 if (order < MAX_ORDER) 3318 return order; 3319 return -ENOSYS; 3320 } 3321 3322 static void 3323 init_kmem_cache_node(struct kmem_cache_node *n) 3324 { 3325 n->nr_partial = 0; 3326 spin_lock_init(&n->list_lock); 3327 INIT_LIST_HEAD(&n->partial); 3328 #ifdef CONFIG_SLUB_DEBUG 3329 atomic_long_set(&n->nr_slabs, 0); 3330 atomic_long_set(&n->total_objects, 0); 3331 INIT_LIST_HEAD(&n->full); 3332 #endif 3333 } 3334 3335 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3336 { 3337 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3338 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3339 3340 /* 3341 * Must align to double word boundary for the double cmpxchg 3342 * instructions to work; see __pcpu_double_call_return_bool(). 3343 */ 3344 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3345 2 * sizeof(void *)); 3346 3347 if (!s->cpu_slab) 3348 return 0; 3349 3350 init_kmem_cache_cpus(s); 3351 3352 return 1; 3353 } 3354 3355 static struct kmem_cache *kmem_cache_node; 3356 3357 /* 3358 * No kmalloc_node yet so do it by hand. We know that this is the first 3359 * slab on the node for this slabcache. There are no concurrent accesses 3360 * possible. 3361 * 3362 * Note that this function only works on the kmem_cache_node 3363 * when allocating for the kmem_cache_node. This is used for bootstrapping 3364 * memory on a fresh node that has no slab structures yet. 3365 */ 3366 static void early_kmem_cache_node_alloc(int node) 3367 { 3368 struct page *page; 3369 struct kmem_cache_node *n; 3370 3371 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3372 3373 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3374 3375 BUG_ON(!page); 3376 if (page_to_nid(page) != node) { 3377 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3378 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3379 } 3380 3381 n = page->freelist; 3382 BUG_ON(!n); 3383 #ifdef CONFIG_SLUB_DEBUG 3384 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3385 init_tracking(kmem_cache_node, n); 3386 #endif 3387 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3388 GFP_KERNEL); 3389 page->freelist = get_freepointer(kmem_cache_node, n); 3390 page->inuse = 1; 3391 page->frozen = 0; 3392 kmem_cache_node->node[node] = n; 3393 init_kmem_cache_node(n); 3394 inc_slabs_node(kmem_cache_node, node, page->objects); 3395 3396 /* 3397 * No locks need to be taken here as it has just been 3398 * initialized and there is no concurrent access. 3399 */ 3400 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3401 } 3402 3403 static void free_kmem_cache_nodes(struct kmem_cache *s) 3404 { 3405 int node; 3406 struct kmem_cache_node *n; 3407 3408 for_each_kmem_cache_node(s, node, n) { 3409 s->node[node] = NULL; 3410 kmem_cache_free(kmem_cache_node, n); 3411 } 3412 } 3413 3414 void __kmem_cache_release(struct kmem_cache *s) 3415 { 3416 cache_random_seq_destroy(s); 3417 free_percpu(s->cpu_slab); 3418 free_kmem_cache_nodes(s); 3419 } 3420 3421 static int init_kmem_cache_nodes(struct kmem_cache *s) 3422 { 3423 int node; 3424 3425 for_each_node_state(node, N_NORMAL_MEMORY) { 3426 struct kmem_cache_node *n; 3427 3428 if (slab_state == DOWN) { 3429 early_kmem_cache_node_alloc(node); 3430 continue; 3431 } 3432 n = kmem_cache_alloc_node(kmem_cache_node, 3433 GFP_KERNEL, node); 3434 3435 if (!n) { 3436 free_kmem_cache_nodes(s); 3437 return 0; 3438 } 3439 3440 init_kmem_cache_node(n); 3441 s->node[node] = n; 3442 } 3443 return 1; 3444 } 3445 3446 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3447 { 3448 if (min < MIN_PARTIAL) 3449 min = MIN_PARTIAL; 3450 else if (min > MAX_PARTIAL) 3451 min = MAX_PARTIAL; 3452 s->min_partial = min; 3453 } 3454 3455 static void set_cpu_partial(struct kmem_cache *s) 3456 { 3457 #ifdef CONFIG_SLUB_CPU_PARTIAL 3458 /* 3459 * cpu_partial determined the maximum number of objects kept in the 3460 * per cpu partial lists of a processor. 3461 * 3462 * Per cpu partial lists mainly contain slabs that just have one 3463 * object freed. If they are used for allocation then they can be 3464 * filled up again with minimal effort. The slab will never hit the 3465 * per node partial lists and therefore no locking will be required. 3466 * 3467 * This setting also determines 3468 * 3469 * A) The number of objects from per cpu partial slabs dumped to the 3470 * per node list when we reach the limit. 3471 * B) The number of objects in cpu partial slabs to extract from the 3472 * per node list when we run out of per cpu objects. We only fetch 3473 * 50% to keep some capacity around for frees. 3474 */ 3475 if (!kmem_cache_has_cpu_partial(s)) 3476 s->cpu_partial = 0; 3477 else if (s->size >= PAGE_SIZE) 3478 s->cpu_partial = 2; 3479 else if (s->size >= 1024) 3480 s->cpu_partial = 6; 3481 else if (s->size >= 256) 3482 s->cpu_partial = 13; 3483 else 3484 s->cpu_partial = 30; 3485 #endif 3486 } 3487 3488 /* 3489 * calculate_sizes() determines the order and the distribution of data within 3490 * a slab object. 3491 */ 3492 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3493 { 3494 slab_flags_t flags = s->flags; 3495 unsigned int size = s->object_size; 3496 unsigned int order; 3497 3498 /* 3499 * Round up object size to the next word boundary. We can only 3500 * place the free pointer at word boundaries and this determines 3501 * the possible location of the free pointer. 3502 */ 3503 size = ALIGN(size, sizeof(void *)); 3504 3505 #ifdef CONFIG_SLUB_DEBUG 3506 /* 3507 * Determine if we can poison the object itself. If the user of 3508 * the slab may touch the object after free or before allocation 3509 * then we should never poison the object itself. 3510 */ 3511 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3512 !s->ctor) 3513 s->flags |= __OBJECT_POISON; 3514 else 3515 s->flags &= ~__OBJECT_POISON; 3516 3517 3518 /* 3519 * If we are Redzoning then check if there is some space between the 3520 * end of the object and the free pointer. If not then add an 3521 * additional word to have some bytes to store Redzone information. 3522 */ 3523 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3524 size += sizeof(void *); 3525 #endif 3526 3527 /* 3528 * With that we have determined the number of bytes in actual use 3529 * by the object. This is the potential offset to the free pointer. 3530 */ 3531 s->inuse = size; 3532 3533 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3534 s->ctor)) { 3535 /* 3536 * Relocate free pointer after the object if it is not 3537 * permitted to overwrite the first word of the object on 3538 * kmem_cache_free. 3539 * 3540 * This is the case if we do RCU, have a constructor or 3541 * destructor or are poisoning the objects. 3542 */ 3543 s->offset = size; 3544 size += sizeof(void *); 3545 } 3546 3547 #ifdef CONFIG_SLUB_DEBUG 3548 if (flags & SLAB_STORE_USER) 3549 /* 3550 * Need to store information about allocs and frees after 3551 * the object. 3552 */ 3553 size += 2 * sizeof(struct track); 3554 #endif 3555 3556 kasan_cache_create(s, &size, &s->flags); 3557 #ifdef CONFIG_SLUB_DEBUG 3558 if (flags & SLAB_RED_ZONE) { 3559 /* 3560 * Add some empty padding so that we can catch 3561 * overwrites from earlier objects rather than let 3562 * tracking information or the free pointer be 3563 * corrupted if a user writes before the start 3564 * of the object. 3565 */ 3566 size += sizeof(void *); 3567 3568 s->red_left_pad = sizeof(void *); 3569 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3570 size += s->red_left_pad; 3571 } 3572 #endif 3573 3574 /* 3575 * SLUB stores one object immediately after another beginning from 3576 * offset 0. In order to align the objects we have to simply size 3577 * each object to conform to the alignment. 3578 */ 3579 size = ALIGN(size, s->align); 3580 s->size = size; 3581 if (forced_order >= 0) 3582 order = forced_order; 3583 else 3584 order = calculate_order(size); 3585 3586 if ((int)order < 0) 3587 return 0; 3588 3589 s->allocflags = 0; 3590 if (order) 3591 s->allocflags |= __GFP_COMP; 3592 3593 if (s->flags & SLAB_CACHE_DMA) 3594 s->allocflags |= GFP_DMA; 3595 3596 if (s->flags & SLAB_CACHE_DMA32) 3597 s->allocflags |= GFP_DMA32; 3598 3599 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3600 s->allocflags |= __GFP_RECLAIMABLE; 3601 3602 /* 3603 * Determine the number of objects per slab 3604 */ 3605 s->oo = oo_make(order, size); 3606 s->min = oo_make(get_order(size), size); 3607 if (oo_objects(s->oo) > oo_objects(s->max)) 3608 s->max = s->oo; 3609 3610 return !!oo_objects(s->oo); 3611 } 3612 3613 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3614 { 3615 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3616 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3617 s->random = get_random_long(); 3618 #endif 3619 3620 if (!calculate_sizes(s, -1)) 3621 goto error; 3622 if (disable_higher_order_debug) { 3623 /* 3624 * Disable debugging flags that store metadata if the min slab 3625 * order increased. 3626 */ 3627 if (get_order(s->size) > get_order(s->object_size)) { 3628 s->flags &= ~DEBUG_METADATA_FLAGS; 3629 s->offset = 0; 3630 if (!calculate_sizes(s, -1)) 3631 goto error; 3632 } 3633 } 3634 3635 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3636 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3637 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3638 /* Enable fast mode */ 3639 s->flags |= __CMPXCHG_DOUBLE; 3640 #endif 3641 3642 /* 3643 * The larger the object size is, the more pages we want on the partial 3644 * list to avoid pounding the page allocator excessively. 3645 */ 3646 set_min_partial(s, ilog2(s->size) / 2); 3647 3648 set_cpu_partial(s); 3649 3650 #ifdef CONFIG_NUMA 3651 s->remote_node_defrag_ratio = 1000; 3652 #endif 3653 3654 /* Initialize the pre-computed randomized freelist if slab is up */ 3655 if (slab_state >= UP) { 3656 if (init_cache_random_seq(s)) 3657 goto error; 3658 } 3659 3660 if (!init_kmem_cache_nodes(s)) 3661 goto error; 3662 3663 if (alloc_kmem_cache_cpus(s)) 3664 return 0; 3665 3666 free_kmem_cache_nodes(s); 3667 error: 3668 return -EINVAL; 3669 } 3670 3671 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3672 const char *text) 3673 { 3674 #ifdef CONFIG_SLUB_DEBUG 3675 void *addr = page_address(page); 3676 void *p; 3677 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); 3678 if (!map) 3679 return; 3680 slab_err(s, page, text, s->name); 3681 slab_lock(page); 3682 3683 get_map(s, page, map); 3684 for_each_object(p, s, addr, page->objects) { 3685 3686 if (!test_bit(slab_index(p, s, addr), map)) { 3687 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3688 print_tracking(s, p); 3689 } 3690 } 3691 slab_unlock(page); 3692 bitmap_free(map); 3693 #endif 3694 } 3695 3696 /* 3697 * Attempt to free all partial slabs on a node. 3698 * This is called from __kmem_cache_shutdown(). We must take list_lock 3699 * because sysfs file might still access partial list after the shutdowning. 3700 */ 3701 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3702 { 3703 LIST_HEAD(discard); 3704 struct page *page, *h; 3705 3706 BUG_ON(irqs_disabled()); 3707 spin_lock_irq(&n->list_lock); 3708 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3709 if (!page->inuse) { 3710 remove_partial(n, page); 3711 list_add(&page->slab_list, &discard); 3712 } else { 3713 list_slab_objects(s, page, 3714 "Objects remaining in %s on __kmem_cache_shutdown()"); 3715 } 3716 } 3717 spin_unlock_irq(&n->list_lock); 3718 3719 list_for_each_entry_safe(page, h, &discard, slab_list) 3720 discard_slab(s, page); 3721 } 3722 3723 bool __kmem_cache_empty(struct kmem_cache *s) 3724 { 3725 int node; 3726 struct kmem_cache_node *n; 3727 3728 for_each_kmem_cache_node(s, node, n) 3729 if (n->nr_partial || slabs_node(s, node)) 3730 return false; 3731 return true; 3732 } 3733 3734 /* 3735 * Release all resources used by a slab cache. 3736 */ 3737 int __kmem_cache_shutdown(struct kmem_cache *s) 3738 { 3739 int node; 3740 struct kmem_cache_node *n; 3741 3742 flush_all(s); 3743 /* Attempt to free all objects */ 3744 for_each_kmem_cache_node(s, node, n) { 3745 free_partial(s, n); 3746 if (n->nr_partial || slabs_node(s, node)) 3747 return 1; 3748 } 3749 sysfs_slab_remove(s); 3750 return 0; 3751 } 3752 3753 /******************************************************************** 3754 * Kmalloc subsystem 3755 *******************************************************************/ 3756 3757 static int __init setup_slub_min_order(char *str) 3758 { 3759 get_option(&str, (int *)&slub_min_order); 3760 3761 return 1; 3762 } 3763 3764 __setup("slub_min_order=", setup_slub_min_order); 3765 3766 static int __init setup_slub_max_order(char *str) 3767 { 3768 get_option(&str, (int *)&slub_max_order); 3769 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3770 3771 return 1; 3772 } 3773 3774 __setup("slub_max_order=", setup_slub_max_order); 3775 3776 static int __init setup_slub_min_objects(char *str) 3777 { 3778 get_option(&str, (int *)&slub_min_objects); 3779 3780 return 1; 3781 } 3782 3783 __setup("slub_min_objects=", setup_slub_min_objects); 3784 3785 void *__kmalloc(size_t size, gfp_t flags) 3786 { 3787 struct kmem_cache *s; 3788 void *ret; 3789 3790 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3791 return kmalloc_large(size, flags); 3792 3793 s = kmalloc_slab(size, flags); 3794 3795 if (unlikely(ZERO_OR_NULL_PTR(s))) 3796 return s; 3797 3798 ret = slab_alloc(s, flags, _RET_IP_); 3799 3800 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3801 3802 ret = kasan_kmalloc(s, ret, size, flags); 3803 3804 return ret; 3805 } 3806 EXPORT_SYMBOL(__kmalloc); 3807 3808 #ifdef CONFIG_NUMA 3809 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3810 { 3811 struct page *page; 3812 void *ptr = NULL; 3813 unsigned int order = get_order(size); 3814 3815 flags |= __GFP_COMP; 3816 page = alloc_pages_node(node, flags, order); 3817 if (page) { 3818 ptr = page_address(page); 3819 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3820 1 << order); 3821 } 3822 3823 return kmalloc_large_node_hook(ptr, size, flags); 3824 } 3825 3826 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3827 { 3828 struct kmem_cache *s; 3829 void *ret; 3830 3831 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3832 ret = kmalloc_large_node(size, flags, node); 3833 3834 trace_kmalloc_node(_RET_IP_, ret, 3835 size, PAGE_SIZE << get_order(size), 3836 flags, node); 3837 3838 return ret; 3839 } 3840 3841 s = kmalloc_slab(size, flags); 3842 3843 if (unlikely(ZERO_OR_NULL_PTR(s))) 3844 return s; 3845 3846 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3847 3848 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3849 3850 ret = kasan_kmalloc(s, ret, size, flags); 3851 3852 return ret; 3853 } 3854 EXPORT_SYMBOL(__kmalloc_node); 3855 #endif /* CONFIG_NUMA */ 3856 3857 #ifdef CONFIG_HARDENED_USERCOPY 3858 /* 3859 * Rejects incorrectly sized objects and objects that are to be copied 3860 * to/from userspace but do not fall entirely within the containing slab 3861 * cache's usercopy region. 3862 * 3863 * Returns NULL if check passes, otherwise const char * to name of cache 3864 * to indicate an error. 3865 */ 3866 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3867 bool to_user) 3868 { 3869 struct kmem_cache *s; 3870 unsigned int offset; 3871 size_t object_size; 3872 3873 ptr = kasan_reset_tag(ptr); 3874 3875 /* Find object and usable object size. */ 3876 s = page->slab_cache; 3877 3878 /* Reject impossible pointers. */ 3879 if (ptr < page_address(page)) 3880 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3881 to_user, 0, n); 3882 3883 /* Find offset within object. */ 3884 offset = (ptr - page_address(page)) % s->size; 3885 3886 /* Adjust for redzone and reject if within the redzone. */ 3887 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3888 if (offset < s->red_left_pad) 3889 usercopy_abort("SLUB object in left red zone", 3890 s->name, to_user, offset, n); 3891 offset -= s->red_left_pad; 3892 } 3893 3894 /* Allow address range falling entirely within usercopy region. */ 3895 if (offset >= s->useroffset && 3896 offset - s->useroffset <= s->usersize && 3897 n <= s->useroffset - offset + s->usersize) 3898 return; 3899 3900 /* 3901 * If the copy is still within the allocated object, produce 3902 * a warning instead of rejecting the copy. This is intended 3903 * to be a temporary method to find any missing usercopy 3904 * whitelists. 3905 */ 3906 object_size = slab_ksize(s); 3907 if (usercopy_fallback && 3908 offset <= object_size && n <= object_size - offset) { 3909 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3910 return; 3911 } 3912 3913 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3914 } 3915 #endif /* CONFIG_HARDENED_USERCOPY */ 3916 3917 size_t __ksize(const void *object) 3918 { 3919 struct page *page; 3920 3921 if (unlikely(object == ZERO_SIZE_PTR)) 3922 return 0; 3923 3924 page = virt_to_head_page(object); 3925 3926 if (unlikely(!PageSlab(page))) { 3927 WARN_ON(!PageCompound(page)); 3928 return page_size(page); 3929 } 3930 3931 return slab_ksize(page->slab_cache); 3932 } 3933 EXPORT_SYMBOL(__ksize); 3934 3935 void kfree(const void *x) 3936 { 3937 struct page *page; 3938 void *object = (void *)x; 3939 3940 trace_kfree(_RET_IP_, x); 3941 3942 if (unlikely(ZERO_OR_NULL_PTR(x))) 3943 return; 3944 3945 page = virt_to_head_page(x); 3946 if (unlikely(!PageSlab(page))) { 3947 unsigned int order = compound_order(page); 3948 3949 BUG_ON(!PageCompound(page)); 3950 kfree_hook(object); 3951 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3952 -(1 << order)); 3953 __free_pages(page, order); 3954 return; 3955 } 3956 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3957 } 3958 EXPORT_SYMBOL(kfree); 3959 3960 #define SHRINK_PROMOTE_MAX 32 3961 3962 /* 3963 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3964 * up most to the head of the partial lists. New allocations will then 3965 * fill those up and thus they can be removed from the partial lists. 3966 * 3967 * The slabs with the least items are placed last. This results in them 3968 * being allocated from last increasing the chance that the last objects 3969 * are freed in them. 3970 */ 3971 int __kmem_cache_shrink(struct kmem_cache *s) 3972 { 3973 int node; 3974 int i; 3975 struct kmem_cache_node *n; 3976 struct page *page; 3977 struct page *t; 3978 struct list_head discard; 3979 struct list_head promote[SHRINK_PROMOTE_MAX]; 3980 unsigned long flags; 3981 int ret = 0; 3982 3983 flush_all(s); 3984 for_each_kmem_cache_node(s, node, n) { 3985 INIT_LIST_HEAD(&discard); 3986 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3987 INIT_LIST_HEAD(promote + i); 3988 3989 spin_lock_irqsave(&n->list_lock, flags); 3990 3991 /* 3992 * Build lists of slabs to discard or promote. 3993 * 3994 * Note that concurrent frees may occur while we hold the 3995 * list_lock. page->inuse here is the upper limit. 3996 */ 3997 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 3998 int free = page->objects - page->inuse; 3999 4000 /* Do not reread page->inuse */ 4001 barrier(); 4002 4003 /* We do not keep full slabs on the list */ 4004 BUG_ON(free <= 0); 4005 4006 if (free == page->objects) { 4007 list_move(&page->slab_list, &discard); 4008 n->nr_partial--; 4009 } else if (free <= SHRINK_PROMOTE_MAX) 4010 list_move(&page->slab_list, promote + free - 1); 4011 } 4012 4013 /* 4014 * Promote the slabs filled up most to the head of the 4015 * partial list. 4016 */ 4017 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4018 list_splice(promote + i, &n->partial); 4019 4020 spin_unlock_irqrestore(&n->list_lock, flags); 4021 4022 /* Release empty slabs */ 4023 list_for_each_entry_safe(page, t, &discard, slab_list) 4024 discard_slab(s, page); 4025 4026 if (slabs_node(s, node)) 4027 ret = 1; 4028 } 4029 4030 return ret; 4031 } 4032 4033 #ifdef CONFIG_MEMCG 4034 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 4035 { 4036 /* 4037 * Called with all the locks held after a sched RCU grace period. 4038 * Even if @s becomes empty after shrinking, we can't know that @s 4039 * doesn't have allocations already in-flight and thus can't 4040 * destroy @s until the associated memcg is released. 4041 * 4042 * However, let's remove the sysfs files for empty caches here. 4043 * Each cache has a lot of interface files which aren't 4044 * particularly useful for empty draining caches; otherwise, we can 4045 * easily end up with millions of unnecessary sysfs files on 4046 * systems which have a lot of memory and transient cgroups. 4047 */ 4048 if (!__kmem_cache_shrink(s)) 4049 sysfs_slab_remove(s); 4050 } 4051 4052 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4053 { 4054 /* 4055 * Disable empty slabs caching. Used to avoid pinning offline 4056 * memory cgroups by kmem pages that can be freed. 4057 */ 4058 slub_set_cpu_partial(s, 0); 4059 s->min_partial = 0; 4060 } 4061 #endif /* CONFIG_MEMCG */ 4062 4063 static int slab_mem_going_offline_callback(void *arg) 4064 { 4065 struct kmem_cache *s; 4066 4067 mutex_lock(&slab_mutex); 4068 list_for_each_entry(s, &slab_caches, list) 4069 __kmem_cache_shrink(s); 4070 mutex_unlock(&slab_mutex); 4071 4072 return 0; 4073 } 4074 4075 static void slab_mem_offline_callback(void *arg) 4076 { 4077 struct kmem_cache_node *n; 4078 struct kmem_cache *s; 4079 struct memory_notify *marg = arg; 4080 int offline_node; 4081 4082 offline_node = marg->status_change_nid_normal; 4083 4084 /* 4085 * If the node still has available memory. we need kmem_cache_node 4086 * for it yet. 4087 */ 4088 if (offline_node < 0) 4089 return; 4090 4091 mutex_lock(&slab_mutex); 4092 list_for_each_entry(s, &slab_caches, list) { 4093 n = get_node(s, offline_node); 4094 if (n) { 4095 /* 4096 * if n->nr_slabs > 0, slabs still exist on the node 4097 * that is going down. We were unable to free them, 4098 * and offline_pages() function shouldn't call this 4099 * callback. So, we must fail. 4100 */ 4101 BUG_ON(slabs_node(s, offline_node)); 4102 4103 s->node[offline_node] = NULL; 4104 kmem_cache_free(kmem_cache_node, n); 4105 } 4106 } 4107 mutex_unlock(&slab_mutex); 4108 } 4109 4110 static int slab_mem_going_online_callback(void *arg) 4111 { 4112 struct kmem_cache_node *n; 4113 struct kmem_cache *s; 4114 struct memory_notify *marg = arg; 4115 int nid = marg->status_change_nid_normal; 4116 int ret = 0; 4117 4118 /* 4119 * If the node's memory is already available, then kmem_cache_node is 4120 * already created. Nothing to do. 4121 */ 4122 if (nid < 0) 4123 return 0; 4124 4125 /* 4126 * We are bringing a node online. No memory is available yet. We must 4127 * allocate a kmem_cache_node structure in order to bring the node 4128 * online. 4129 */ 4130 mutex_lock(&slab_mutex); 4131 list_for_each_entry(s, &slab_caches, list) { 4132 /* 4133 * XXX: kmem_cache_alloc_node will fallback to other nodes 4134 * since memory is not yet available from the node that 4135 * is brought up. 4136 */ 4137 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4138 if (!n) { 4139 ret = -ENOMEM; 4140 goto out; 4141 } 4142 init_kmem_cache_node(n); 4143 s->node[nid] = n; 4144 } 4145 out: 4146 mutex_unlock(&slab_mutex); 4147 return ret; 4148 } 4149 4150 static int slab_memory_callback(struct notifier_block *self, 4151 unsigned long action, void *arg) 4152 { 4153 int ret = 0; 4154 4155 switch (action) { 4156 case MEM_GOING_ONLINE: 4157 ret = slab_mem_going_online_callback(arg); 4158 break; 4159 case MEM_GOING_OFFLINE: 4160 ret = slab_mem_going_offline_callback(arg); 4161 break; 4162 case MEM_OFFLINE: 4163 case MEM_CANCEL_ONLINE: 4164 slab_mem_offline_callback(arg); 4165 break; 4166 case MEM_ONLINE: 4167 case MEM_CANCEL_OFFLINE: 4168 break; 4169 } 4170 if (ret) 4171 ret = notifier_from_errno(ret); 4172 else 4173 ret = NOTIFY_OK; 4174 return ret; 4175 } 4176 4177 static struct notifier_block slab_memory_callback_nb = { 4178 .notifier_call = slab_memory_callback, 4179 .priority = SLAB_CALLBACK_PRI, 4180 }; 4181 4182 /******************************************************************** 4183 * Basic setup of slabs 4184 *******************************************************************/ 4185 4186 /* 4187 * Used for early kmem_cache structures that were allocated using 4188 * the page allocator. Allocate them properly then fix up the pointers 4189 * that may be pointing to the wrong kmem_cache structure. 4190 */ 4191 4192 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4193 { 4194 int node; 4195 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4196 struct kmem_cache_node *n; 4197 4198 memcpy(s, static_cache, kmem_cache->object_size); 4199 4200 /* 4201 * This runs very early, and only the boot processor is supposed to be 4202 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4203 * IPIs around. 4204 */ 4205 __flush_cpu_slab(s, smp_processor_id()); 4206 for_each_kmem_cache_node(s, node, n) { 4207 struct page *p; 4208 4209 list_for_each_entry(p, &n->partial, slab_list) 4210 p->slab_cache = s; 4211 4212 #ifdef CONFIG_SLUB_DEBUG 4213 list_for_each_entry(p, &n->full, slab_list) 4214 p->slab_cache = s; 4215 #endif 4216 } 4217 slab_init_memcg_params(s); 4218 list_add(&s->list, &slab_caches); 4219 memcg_link_cache(s, NULL); 4220 return s; 4221 } 4222 4223 void __init kmem_cache_init(void) 4224 { 4225 static __initdata struct kmem_cache boot_kmem_cache, 4226 boot_kmem_cache_node; 4227 4228 if (debug_guardpage_minorder()) 4229 slub_max_order = 0; 4230 4231 kmem_cache_node = &boot_kmem_cache_node; 4232 kmem_cache = &boot_kmem_cache; 4233 4234 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4235 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4236 4237 register_hotmemory_notifier(&slab_memory_callback_nb); 4238 4239 /* Able to allocate the per node structures */ 4240 slab_state = PARTIAL; 4241 4242 create_boot_cache(kmem_cache, "kmem_cache", 4243 offsetof(struct kmem_cache, node) + 4244 nr_node_ids * sizeof(struct kmem_cache_node *), 4245 SLAB_HWCACHE_ALIGN, 0, 0); 4246 4247 kmem_cache = bootstrap(&boot_kmem_cache); 4248 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4249 4250 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4251 setup_kmalloc_cache_index_table(); 4252 create_kmalloc_caches(0); 4253 4254 /* Setup random freelists for each cache */ 4255 init_freelist_randomization(); 4256 4257 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4258 slub_cpu_dead); 4259 4260 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4261 cache_line_size(), 4262 slub_min_order, slub_max_order, slub_min_objects, 4263 nr_cpu_ids, nr_node_ids); 4264 } 4265 4266 void __init kmem_cache_init_late(void) 4267 { 4268 } 4269 4270 struct kmem_cache * 4271 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4272 slab_flags_t flags, void (*ctor)(void *)) 4273 { 4274 struct kmem_cache *s, *c; 4275 4276 s = find_mergeable(size, align, flags, name, ctor); 4277 if (s) { 4278 s->refcount++; 4279 4280 /* 4281 * Adjust the object sizes so that we clear 4282 * the complete object on kzalloc. 4283 */ 4284 s->object_size = max(s->object_size, size); 4285 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4286 4287 for_each_memcg_cache(c, s) { 4288 c->object_size = s->object_size; 4289 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4290 } 4291 4292 if (sysfs_slab_alias(s, name)) { 4293 s->refcount--; 4294 s = NULL; 4295 } 4296 } 4297 4298 return s; 4299 } 4300 4301 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4302 { 4303 int err; 4304 4305 err = kmem_cache_open(s, flags); 4306 if (err) 4307 return err; 4308 4309 /* Mutex is not taken during early boot */ 4310 if (slab_state <= UP) 4311 return 0; 4312 4313 memcg_propagate_slab_attrs(s); 4314 err = sysfs_slab_add(s); 4315 if (err) 4316 __kmem_cache_release(s); 4317 4318 return err; 4319 } 4320 4321 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4322 { 4323 struct kmem_cache *s; 4324 void *ret; 4325 4326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4327 return kmalloc_large(size, gfpflags); 4328 4329 s = kmalloc_slab(size, gfpflags); 4330 4331 if (unlikely(ZERO_OR_NULL_PTR(s))) 4332 return s; 4333 4334 ret = slab_alloc(s, gfpflags, caller); 4335 4336 /* Honor the call site pointer we received. */ 4337 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4338 4339 return ret; 4340 } 4341 4342 #ifdef CONFIG_NUMA 4343 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4344 int node, unsigned long caller) 4345 { 4346 struct kmem_cache *s; 4347 void *ret; 4348 4349 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4350 ret = kmalloc_large_node(size, gfpflags, node); 4351 4352 trace_kmalloc_node(caller, ret, 4353 size, PAGE_SIZE << get_order(size), 4354 gfpflags, node); 4355 4356 return ret; 4357 } 4358 4359 s = kmalloc_slab(size, gfpflags); 4360 4361 if (unlikely(ZERO_OR_NULL_PTR(s))) 4362 return s; 4363 4364 ret = slab_alloc_node(s, gfpflags, node, caller); 4365 4366 /* Honor the call site pointer we received. */ 4367 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4368 4369 return ret; 4370 } 4371 #endif 4372 4373 #ifdef CONFIG_SYSFS 4374 static int count_inuse(struct page *page) 4375 { 4376 return page->inuse; 4377 } 4378 4379 static int count_total(struct page *page) 4380 { 4381 return page->objects; 4382 } 4383 #endif 4384 4385 #ifdef CONFIG_SLUB_DEBUG 4386 static int validate_slab(struct kmem_cache *s, struct page *page, 4387 unsigned long *map) 4388 { 4389 void *p; 4390 void *addr = page_address(page); 4391 4392 if (!check_slab(s, page) || 4393 !on_freelist(s, page, NULL)) 4394 return 0; 4395 4396 /* Now we know that a valid freelist exists */ 4397 bitmap_zero(map, page->objects); 4398 4399 get_map(s, page, map); 4400 for_each_object(p, s, addr, page->objects) { 4401 if (test_bit(slab_index(p, s, addr), map)) 4402 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4403 return 0; 4404 } 4405 4406 for_each_object(p, s, addr, page->objects) 4407 if (!test_bit(slab_index(p, s, addr), map)) 4408 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4409 return 0; 4410 return 1; 4411 } 4412 4413 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4414 unsigned long *map) 4415 { 4416 slab_lock(page); 4417 validate_slab(s, page, map); 4418 slab_unlock(page); 4419 } 4420 4421 static int validate_slab_node(struct kmem_cache *s, 4422 struct kmem_cache_node *n, unsigned long *map) 4423 { 4424 unsigned long count = 0; 4425 struct page *page; 4426 unsigned long flags; 4427 4428 spin_lock_irqsave(&n->list_lock, flags); 4429 4430 list_for_each_entry(page, &n->partial, slab_list) { 4431 validate_slab_slab(s, page, map); 4432 count++; 4433 } 4434 if (count != n->nr_partial) 4435 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4436 s->name, count, n->nr_partial); 4437 4438 if (!(s->flags & SLAB_STORE_USER)) 4439 goto out; 4440 4441 list_for_each_entry(page, &n->full, slab_list) { 4442 validate_slab_slab(s, page, map); 4443 count++; 4444 } 4445 if (count != atomic_long_read(&n->nr_slabs)) 4446 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4447 s->name, count, atomic_long_read(&n->nr_slabs)); 4448 4449 out: 4450 spin_unlock_irqrestore(&n->list_lock, flags); 4451 return count; 4452 } 4453 4454 static long validate_slab_cache(struct kmem_cache *s) 4455 { 4456 int node; 4457 unsigned long count = 0; 4458 struct kmem_cache_node *n; 4459 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4460 4461 if (!map) 4462 return -ENOMEM; 4463 4464 flush_all(s); 4465 for_each_kmem_cache_node(s, node, n) 4466 count += validate_slab_node(s, n, map); 4467 bitmap_free(map); 4468 return count; 4469 } 4470 /* 4471 * Generate lists of code addresses where slabcache objects are allocated 4472 * and freed. 4473 */ 4474 4475 struct location { 4476 unsigned long count; 4477 unsigned long addr; 4478 long long sum_time; 4479 long min_time; 4480 long max_time; 4481 long min_pid; 4482 long max_pid; 4483 DECLARE_BITMAP(cpus, NR_CPUS); 4484 nodemask_t nodes; 4485 }; 4486 4487 struct loc_track { 4488 unsigned long max; 4489 unsigned long count; 4490 struct location *loc; 4491 }; 4492 4493 static void free_loc_track(struct loc_track *t) 4494 { 4495 if (t->max) 4496 free_pages((unsigned long)t->loc, 4497 get_order(sizeof(struct location) * t->max)); 4498 } 4499 4500 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4501 { 4502 struct location *l; 4503 int order; 4504 4505 order = get_order(sizeof(struct location) * max); 4506 4507 l = (void *)__get_free_pages(flags, order); 4508 if (!l) 4509 return 0; 4510 4511 if (t->count) { 4512 memcpy(l, t->loc, sizeof(struct location) * t->count); 4513 free_loc_track(t); 4514 } 4515 t->max = max; 4516 t->loc = l; 4517 return 1; 4518 } 4519 4520 static int add_location(struct loc_track *t, struct kmem_cache *s, 4521 const struct track *track) 4522 { 4523 long start, end, pos; 4524 struct location *l; 4525 unsigned long caddr; 4526 unsigned long age = jiffies - track->when; 4527 4528 start = -1; 4529 end = t->count; 4530 4531 for ( ; ; ) { 4532 pos = start + (end - start + 1) / 2; 4533 4534 /* 4535 * There is nothing at "end". If we end up there 4536 * we need to add something to before end. 4537 */ 4538 if (pos == end) 4539 break; 4540 4541 caddr = t->loc[pos].addr; 4542 if (track->addr == caddr) { 4543 4544 l = &t->loc[pos]; 4545 l->count++; 4546 if (track->when) { 4547 l->sum_time += age; 4548 if (age < l->min_time) 4549 l->min_time = age; 4550 if (age > l->max_time) 4551 l->max_time = age; 4552 4553 if (track->pid < l->min_pid) 4554 l->min_pid = track->pid; 4555 if (track->pid > l->max_pid) 4556 l->max_pid = track->pid; 4557 4558 cpumask_set_cpu(track->cpu, 4559 to_cpumask(l->cpus)); 4560 } 4561 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4562 return 1; 4563 } 4564 4565 if (track->addr < caddr) 4566 end = pos; 4567 else 4568 start = pos; 4569 } 4570 4571 /* 4572 * Not found. Insert new tracking element. 4573 */ 4574 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4575 return 0; 4576 4577 l = t->loc + pos; 4578 if (pos < t->count) 4579 memmove(l + 1, l, 4580 (t->count - pos) * sizeof(struct location)); 4581 t->count++; 4582 l->count = 1; 4583 l->addr = track->addr; 4584 l->sum_time = age; 4585 l->min_time = age; 4586 l->max_time = age; 4587 l->min_pid = track->pid; 4588 l->max_pid = track->pid; 4589 cpumask_clear(to_cpumask(l->cpus)); 4590 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4591 nodes_clear(l->nodes); 4592 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4593 return 1; 4594 } 4595 4596 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4597 struct page *page, enum track_item alloc, 4598 unsigned long *map) 4599 { 4600 void *addr = page_address(page); 4601 void *p; 4602 4603 bitmap_zero(map, page->objects); 4604 get_map(s, page, map); 4605 4606 for_each_object(p, s, addr, page->objects) 4607 if (!test_bit(slab_index(p, s, addr), map)) 4608 add_location(t, s, get_track(s, p, alloc)); 4609 } 4610 4611 static int list_locations(struct kmem_cache *s, char *buf, 4612 enum track_item alloc) 4613 { 4614 int len = 0; 4615 unsigned long i; 4616 struct loc_track t = { 0, 0, NULL }; 4617 int node; 4618 struct kmem_cache_node *n; 4619 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4620 4621 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4622 GFP_KERNEL)) { 4623 bitmap_free(map); 4624 return sprintf(buf, "Out of memory\n"); 4625 } 4626 /* Push back cpu slabs */ 4627 flush_all(s); 4628 4629 for_each_kmem_cache_node(s, node, n) { 4630 unsigned long flags; 4631 struct page *page; 4632 4633 if (!atomic_long_read(&n->nr_slabs)) 4634 continue; 4635 4636 spin_lock_irqsave(&n->list_lock, flags); 4637 list_for_each_entry(page, &n->partial, slab_list) 4638 process_slab(&t, s, page, alloc, map); 4639 list_for_each_entry(page, &n->full, slab_list) 4640 process_slab(&t, s, page, alloc, map); 4641 spin_unlock_irqrestore(&n->list_lock, flags); 4642 } 4643 4644 for (i = 0; i < t.count; i++) { 4645 struct location *l = &t.loc[i]; 4646 4647 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4648 break; 4649 len += sprintf(buf + len, "%7ld ", l->count); 4650 4651 if (l->addr) 4652 len += sprintf(buf + len, "%pS", (void *)l->addr); 4653 else 4654 len += sprintf(buf + len, "<not-available>"); 4655 4656 if (l->sum_time != l->min_time) { 4657 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4658 l->min_time, 4659 (long)div_u64(l->sum_time, l->count), 4660 l->max_time); 4661 } else 4662 len += sprintf(buf + len, " age=%ld", 4663 l->min_time); 4664 4665 if (l->min_pid != l->max_pid) 4666 len += sprintf(buf + len, " pid=%ld-%ld", 4667 l->min_pid, l->max_pid); 4668 else 4669 len += sprintf(buf + len, " pid=%ld", 4670 l->min_pid); 4671 4672 if (num_online_cpus() > 1 && 4673 !cpumask_empty(to_cpumask(l->cpus)) && 4674 len < PAGE_SIZE - 60) 4675 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4676 " cpus=%*pbl", 4677 cpumask_pr_args(to_cpumask(l->cpus))); 4678 4679 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4680 len < PAGE_SIZE - 60) 4681 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4682 " nodes=%*pbl", 4683 nodemask_pr_args(&l->nodes)); 4684 4685 len += sprintf(buf + len, "\n"); 4686 } 4687 4688 free_loc_track(&t); 4689 bitmap_free(map); 4690 if (!t.count) 4691 len += sprintf(buf, "No data\n"); 4692 return len; 4693 } 4694 #endif /* CONFIG_SLUB_DEBUG */ 4695 4696 #ifdef SLUB_RESILIENCY_TEST 4697 static void __init resiliency_test(void) 4698 { 4699 u8 *p; 4700 int type = KMALLOC_NORMAL; 4701 4702 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4703 4704 pr_err("SLUB resiliency testing\n"); 4705 pr_err("-----------------------\n"); 4706 pr_err("A. Corruption after allocation\n"); 4707 4708 p = kzalloc(16, GFP_KERNEL); 4709 p[16] = 0x12; 4710 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4711 p + 16); 4712 4713 validate_slab_cache(kmalloc_caches[type][4]); 4714 4715 /* Hmmm... The next two are dangerous */ 4716 p = kzalloc(32, GFP_KERNEL); 4717 p[32 + sizeof(void *)] = 0x34; 4718 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4719 p); 4720 pr_err("If allocated object is overwritten then not detectable\n\n"); 4721 4722 validate_slab_cache(kmalloc_caches[type][5]); 4723 p = kzalloc(64, GFP_KERNEL); 4724 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4725 *p = 0x56; 4726 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4727 p); 4728 pr_err("If allocated object is overwritten then not detectable\n\n"); 4729 validate_slab_cache(kmalloc_caches[type][6]); 4730 4731 pr_err("\nB. Corruption after free\n"); 4732 p = kzalloc(128, GFP_KERNEL); 4733 kfree(p); 4734 *p = 0x78; 4735 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4736 validate_slab_cache(kmalloc_caches[type][7]); 4737 4738 p = kzalloc(256, GFP_KERNEL); 4739 kfree(p); 4740 p[50] = 0x9a; 4741 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4742 validate_slab_cache(kmalloc_caches[type][8]); 4743 4744 p = kzalloc(512, GFP_KERNEL); 4745 kfree(p); 4746 p[512] = 0xab; 4747 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4748 validate_slab_cache(kmalloc_caches[type][9]); 4749 } 4750 #else 4751 #ifdef CONFIG_SYSFS 4752 static void resiliency_test(void) {}; 4753 #endif 4754 #endif /* SLUB_RESILIENCY_TEST */ 4755 4756 #ifdef CONFIG_SYSFS 4757 enum slab_stat_type { 4758 SL_ALL, /* All slabs */ 4759 SL_PARTIAL, /* Only partially allocated slabs */ 4760 SL_CPU, /* Only slabs used for cpu caches */ 4761 SL_OBJECTS, /* Determine allocated objects not slabs */ 4762 SL_TOTAL /* Determine object capacity not slabs */ 4763 }; 4764 4765 #define SO_ALL (1 << SL_ALL) 4766 #define SO_PARTIAL (1 << SL_PARTIAL) 4767 #define SO_CPU (1 << SL_CPU) 4768 #define SO_OBJECTS (1 << SL_OBJECTS) 4769 #define SO_TOTAL (1 << SL_TOTAL) 4770 4771 #ifdef CONFIG_MEMCG 4772 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4773 4774 static int __init setup_slub_memcg_sysfs(char *str) 4775 { 4776 int v; 4777 4778 if (get_option(&str, &v) > 0) 4779 memcg_sysfs_enabled = v; 4780 4781 return 1; 4782 } 4783 4784 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4785 #endif 4786 4787 static ssize_t show_slab_objects(struct kmem_cache *s, 4788 char *buf, unsigned long flags) 4789 { 4790 unsigned long total = 0; 4791 int node; 4792 int x; 4793 unsigned long *nodes; 4794 4795 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4796 if (!nodes) 4797 return -ENOMEM; 4798 4799 if (flags & SO_CPU) { 4800 int cpu; 4801 4802 for_each_possible_cpu(cpu) { 4803 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4804 cpu); 4805 int node; 4806 struct page *page; 4807 4808 page = READ_ONCE(c->page); 4809 if (!page) 4810 continue; 4811 4812 node = page_to_nid(page); 4813 if (flags & SO_TOTAL) 4814 x = page->objects; 4815 else if (flags & SO_OBJECTS) 4816 x = page->inuse; 4817 else 4818 x = 1; 4819 4820 total += x; 4821 nodes[node] += x; 4822 4823 page = slub_percpu_partial_read_once(c); 4824 if (page) { 4825 node = page_to_nid(page); 4826 if (flags & SO_TOTAL) 4827 WARN_ON_ONCE(1); 4828 else if (flags & SO_OBJECTS) 4829 WARN_ON_ONCE(1); 4830 else 4831 x = page->pages; 4832 total += x; 4833 nodes[node] += x; 4834 } 4835 } 4836 } 4837 4838 /* 4839 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 4840 * already held which will conflict with an existing lock order: 4841 * 4842 * mem_hotplug_lock->slab_mutex->kernfs_mutex 4843 * 4844 * We don't really need mem_hotplug_lock (to hold off 4845 * slab_mem_going_offline_callback) here because slab's memory hot 4846 * unplug code doesn't destroy the kmem_cache->node[] data. 4847 */ 4848 4849 #ifdef CONFIG_SLUB_DEBUG 4850 if (flags & SO_ALL) { 4851 struct kmem_cache_node *n; 4852 4853 for_each_kmem_cache_node(s, node, n) { 4854 4855 if (flags & SO_TOTAL) 4856 x = atomic_long_read(&n->total_objects); 4857 else if (flags & SO_OBJECTS) 4858 x = atomic_long_read(&n->total_objects) - 4859 count_partial(n, count_free); 4860 else 4861 x = atomic_long_read(&n->nr_slabs); 4862 total += x; 4863 nodes[node] += x; 4864 } 4865 4866 } else 4867 #endif 4868 if (flags & SO_PARTIAL) { 4869 struct kmem_cache_node *n; 4870 4871 for_each_kmem_cache_node(s, node, n) { 4872 if (flags & SO_TOTAL) 4873 x = count_partial(n, count_total); 4874 else if (flags & SO_OBJECTS) 4875 x = count_partial(n, count_inuse); 4876 else 4877 x = n->nr_partial; 4878 total += x; 4879 nodes[node] += x; 4880 } 4881 } 4882 x = sprintf(buf, "%lu", total); 4883 #ifdef CONFIG_NUMA 4884 for (node = 0; node < nr_node_ids; node++) 4885 if (nodes[node]) 4886 x += sprintf(buf + x, " N%d=%lu", 4887 node, nodes[node]); 4888 #endif 4889 kfree(nodes); 4890 return x + sprintf(buf + x, "\n"); 4891 } 4892 4893 #ifdef CONFIG_SLUB_DEBUG 4894 static int any_slab_objects(struct kmem_cache *s) 4895 { 4896 int node; 4897 struct kmem_cache_node *n; 4898 4899 for_each_kmem_cache_node(s, node, n) 4900 if (atomic_long_read(&n->total_objects)) 4901 return 1; 4902 4903 return 0; 4904 } 4905 #endif 4906 4907 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4908 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4909 4910 struct slab_attribute { 4911 struct attribute attr; 4912 ssize_t (*show)(struct kmem_cache *s, char *buf); 4913 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4914 }; 4915 4916 #define SLAB_ATTR_RO(_name) \ 4917 static struct slab_attribute _name##_attr = \ 4918 __ATTR(_name, 0400, _name##_show, NULL) 4919 4920 #define SLAB_ATTR(_name) \ 4921 static struct slab_attribute _name##_attr = \ 4922 __ATTR(_name, 0600, _name##_show, _name##_store) 4923 4924 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4925 { 4926 return sprintf(buf, "%u\n", s->size); 4927 } 4928 SLAB_ATTR_RO(slab_size); 4929 4930 static ssize_t align_show(struct kmem_cache *s, char *buf) 4931 { 4932 return sprintf(buf, "%u\n", s->align); 4933 } 4934 SLAB_ATTR_RO(align); 4935 4936 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4937 { 4938 return sprintf(buf, "%u\n", s->object_size); 4939 } 4940 SLAB_ATTR_RO(object_size); 4941 4942 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4943 { 4944 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4945 } 4946 SLAB_ATTR_RO(objs_per_slab); 4947 4948 static ssize_t order_store(struct kmem_cache *s, 4949 const char *buf, size_t length) 4950 { 4951 unsigned int order; 4952 int err; 4953 4954 err = kstrtouint(buf, 10, &order); 4955 if (err) 4956 return err; 4957 4958 if (order > slub_max_order || order < slub_min_order) 4959 return -EINVAL; 4960 4961 calculate_sizes(s, order); 4962 return length; 4963 } 4964 4965 static ssize_t order_show(struct kmem_cache *s, char *buf) 4966 { 4967 return sprintf(buf, "%u\n", oo_order(s->oo)); 4968 } 4969 SLAB_ATTR(order); 4970 4971 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4972 { 4973 return sprintf(buf, "%lu\n", s->min_partial); 4974 } 4975 4976 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4977 size_t length) 4978 { 4979 unsigned long min; 4980 int err; 4981 4982 err = kstrtoul(buf, 10, &min); 4983 if (err) 4984 return err; 4985 4986 set_min_partial(s, min); 4987 return length; 4988 } 4989 SLAB_ATTR(min_partial); 4990 4991 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4992 { 4993 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4994 } 4995 4996 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4997 size_t length) 4998 { 4999 unsigned int objects; 5000 int err; 5001 5002 err = kstrtouint(buf, 10, &objects); 5003 if (err) 5004 return err; 5005 if (objects && !kmem_cache_has_cpu_partial(s)) 5006 return -EINVAL; 5007 5008 slub_set_cpu_partial(s, objects); 5009 flush_all(s); 5010 return length; 5011 } 5012 SLAB_ATTR(cpu_partial); 5013 5014 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5015 { 5016 if (!s->ctor) 5017 return 0; 5018 return sprintf(buf, "%pS\n", s->ctor); 5019 } 5020 SLAB_ATTR_RO(ctor); 5021 5022 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5023 { 5024 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5025 } 5026 SLAB_ATTR_RO(aliases); 5027 5028 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5029 { 5030 return show_slab_objects(s, buf, SO_PARTIAL); 5031 } 5032 SLAB_ATTR_RO(partial); 5033 5034 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5035 { 5036 return show_slab_objects(s, buf, SO_CPU); 5037 } 5038 SLAB_ATTR_RO(cpu_slabs); 5039 5040 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5041 { 5042 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5043 } 5044 SLAB_ATTR_RO(objects); 5045 5046 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5047 { 5048 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5049 } 5050 SLAB_ATTR_RO(objects_partial); 5051 5052 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5053 { 5054 int objects = 0; 5055 int pages = 0; 5056 int cpu; 5057 int len; 5058 5059 for_each_online_cpu(cpu) { 5060 struct page *page; 5061 5062 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5063 5064 if (page) { 5065 pages += page->pages; 5066 objects += page->pobjects; 5067 } 5068 } 5069 5070 len = sprintf(buf, "%d(%d)", objects, pages); 5071 5072 #ifdef CONFIG_SMP 5073 for_each_online_cpu(cpu) { 5074 struct page *page; 5075 5076 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5077 5078 if (page && len < PAGE_SIZE - 20) 5079 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5080 page->pobjects, page->pages); 5081 } 5082 #endif 5083 return len + sprintf(buf + len, "\n"); 5084 } 5085 SLAB_ATTR_RO(slabs_cpu_partial); 5086 5087 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5088 { 5089 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5090 } 5091 5092 static ssize_t reclaim_account_store(struct kmem_cache *s, 5093 const char *buf, size_t length) 5094 { 5095 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5096 if (buf[0] == '1') 5097 s->flags |= SLAB_RECLAIM_ACCOUNT; 5098 return length; 5099 } 5100 SLAB_ATTR(reclaim_account); 5101 5102 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5103 { 5104 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5105 } 5106 SLAB_ATTR_RO(hwcache_align); 5107 5108 #ifdef CONFIG_ZONE_DMA 5109 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5110 { 5111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5112 } 5113 SLAB_ATTR_RO(cache_dma); 5114 #endif 5115 5116 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5117 { 5118 return sprintf(buf, "%u\n", s->usersize); 5119 } 5120 SLAB_ATTR_RO(usersize); 5121 5122 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5123 { 5124 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5125 } 5126 SLAB_ATTR_RO(destroy_by_rcu); 5127 5128 #ifdef CONFIG_SLUB_DEBUG 5129 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5130 { 5131 return show_slab_objects(s, buf, SO_ALL); 5132 } 5133 SLAB_ATTR_RO(slabs); 5134 5135 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5136 { 5137 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5138 } 5139 SLAB_ATTR_RO(total_objects); 5140 5141 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5142 { 5143 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5144 } 5145 5146 static ssize_t sanity_checks_store(struct kmem_cache *s, 5147 const char *buf, size_t length) 5148 { 5149 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5150 if (buf[0] == '1') { 5151 s->flags &= ~__CMPXCHG_DOUBLE; 5152 s->flags |= SLAB_CONSISTENCY_CHECKS; 5153 } 5154 return length; 5155 } 5156 SLAB_ATTR(sanity_checks); 5157 5158 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5159 { 5160 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5161 } 5162 5163 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5164 size_t length) 5165 { 5166 /* 5167 * Tracing a merged cache is going to give confusing results 5168 * as well as cause other issues like converting a mergeable 5169 * cache into an umergeable one. 5170 */ 5171 if (s->refcount > 1) 5172 return -EINVAL; 5173 5174 s->flags &= ~SLAB_TRACE; 5175 if (buf[0] == '1') { 5176 s->flags &= ~__CMPXCHG_DOUBLE; 5177 s->flags |= SLAB_TRACE; 5178 } 5179 return length; 5180 } 5181 SLAB_ATTR(trace); 5182 5183 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5184 { 5185 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5186 } 5187 5188 static ssize_t red_zone_store(struct kmem_cache *s, 5189 const char *buf, size_t length) 5190 { 5191 if (any_slab_objects(s)) 5192 return -EBUSY; 5193 5194 s->flags &= ~SLAB_RED_ZONE; 5195 if (buf[0] == '1') { 5196 s->flags |= SLAB_RED_ZONE; 5197 } 5198 calculate_sizes(s, -1); 5199 return length; 5200 } 5201 SLAB_ATTR(red_zone); 5202 5203 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5204 { 5205 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5206 } 5207 5208 static ssize_t poison_store(struct kmem_cache *s, 5209 const char *buf, size_t length) 5210 { 5211 if (any_slab_objects(s)) 5212 return -EBUSY; 5213 5214 s->flags &= ~SLAB_POISON; 5215 if (buf[0] == '1') { 5216 s->flags |= SLAB_POISON; 5217 } 5218 calculate_sizes(s, -1); 5219 return length; 5220 } 5221 SLAB_ATTR(poison); 5222 5223 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5224 { 5225 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5226 } 5227 5228 static ssize_t store_user_store(struct kmem_cache *s, 5229 const char *buf, size_t length) 5230 { 5231 if (any_slab_objects(s)) 5232 return -EBUSY; 5233 5234 s->flags &= ~SLAB_STORE_USER; 5235 if (buf[0] == '1') { 5236 s->flags &= ~__CMPXCHG_DOUBLE; 5237 s->flags |= SLAB_STORE_USER; 5238 } 5239 calculate_sizes(s, -1); 5240 return length; 5241 } 5242 SLAB_ATTR(store_user); 5243 5244 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5245 { 5246 return 0; 5247 } 5248 5249 static ssize_t validate_store(struct kmem_cache *s, 5250 const char *buf, size_t length) 5251 { 5252 int ret = -EINVAL; 5253 5254 if (buf[0] == '1') { 5255 ret = validate_slab_cache(s); 5256 if (ret >= 0) 5257 ret = length; 5258 } 5259 return ret; 5260 } 5261 SLAB_ATTR(validate); 5262 5263 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5264 { 5265 if (!(s->flags & SLAB_STORE_USER)) 5266 return -ENOSYS; 5267 return list_locations(s, buf, TRACK_ALLOC); 5268 } 5269 SLAB_ATTR_RO(alloc_calls); 5270 5271 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5272 { 5273 if (!(s->flags & SLAB_STORE_USER)) 5274 return -ENOSYS; 5275 return list_locations(s, buf, TRACK_FREE); 5276 } 5277 SLAB_ATTR_RO(free_calls); 5278 #endif /* CONFIG_SLUB_DEBUG */ 5279 5280 #ifdef CONFIG_FAILSLAB 5281 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5282 { 5283 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5284 } 5285 5286 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5287 size_t length) 5288 { 5289 if (s->refcount > 1) 5290 return -EINVAL; 5291 5292 s->flags &= ~SLAB_FAILSLAB; 5293 if (buf[0] == '1') 5294 s->flags |= SLAB_FAILSLAB; 5295 return length; 5296 } 5297 SLAB_ATTR(failslab); 5298 #endif 5299 5300 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5301 { 5302 return 0; 5303 } 5304 5305 static ssize_t shrink_store(struct kmem_cache *s, 5306 const char *buf, size_t length) 5307 { 5308 if (buf[0] == '1') 5309 kmem_cache_shrink_all(s); 5310 else 5311 return -EINVAL; 5312 return length; 5313 } 5314 SLAB_ATTR(shrink); 5315 5316 #ifdef CONFIG_NUMA 5317 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5318 { 5319 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5320 } 5321 5322 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5323 const char *buf, size_t length) 5324 { 5325 unsigned int ratio; 5326 int err; 5327 5328 err = kstrtouint(buf, 10, &ratio); 5329 if (err) 5330 return err; 5331 if (ratio > 100) 5332 return -ERANGE; 5333 5334 s->remote_node_defrag_ratio = ratio * 10; 5335 5336 return length; 5337 } 5338 SLAB_ATTR(remote_node_defrag_ratio); 5339 #endif 5340 5341 #ifdef CONFIG_SLUB_STATS 5342 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5343 { 5344 unsigned long sum = 0; 5345 int cpu; 5346 int len; 5347 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5348 5349 if (!data) 5350 return -ENOMEM; 5351 5352 for_each_online_cpu(cpu) { 5353 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5354 5355 data[cpu] = x; 5356 sum += x; 5357 } 5358 5359 len = sprintf(buf, "%lu", sum); 5360 5361 #ifdef CONFIG_SMP 5362 for_each_online_cpu(cpu) { 5363 if (data[cpu] && len < PAGE_SIZE - 20) 5364 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5365 } 5366 #endif 5367 kfree(data); 5368 return len + sprintf(buf + len, "\n"); 5369 } 5370 5371 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5372 { 5373 int cpu; 5374 5375 for_each_online_cpu(cpu) 5376 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5377 } 5378 5379 #define STAT_ATTR(si, text) \ 5380 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5381 { \ 5382 return show_stat(s, buf, si); \ 5383 } \ 5384 static ssize_t text##_store(struct kmem_cache *s, \ 5385 const char *buf, size_t length) \ 5386 { \ 5387 if (buf[0] != '0') \ 5388 return -EINVAL; \ 5389 clear_stat(s, si); \ 5390 return length; \ 5391 } \ 5392 SLAB_ATTR(text); \ 5393 5394 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5395 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5396 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5397 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5398 STAT_ATTR(FREE_FROZEN, free_frozen); 5399 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5400 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5401 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5402 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5403 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5404 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5405 STAT_ATTR(FREE_SLAB, free_slab); 5406 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5407 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5408 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5409 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5410 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5411 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5412 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5413 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5414 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5415 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5416 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5417 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5418 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5419 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5420 #endif /* CONFIG_SLUB_STATS */ 5421 5422 static struct attribute *slab_attrs[] = { 5423 &slab_size_attr.attr, 5424 &object_size_attr.attr, 5425 &objs_per_slab_attr.attr, 5426 &order_attr.attr, 5427 &min_partial_attr.attr, 5428 &cpu_partial_attr.attr, 5429 &objects_attr.attr, 5430 &objects_partial_attr.attr, 5431 &partial_attr.attr, 5432 &cpu_slabs_attr.attr, 5433 &ctor_attr.attr, 5434 &aliases_attr.attr, 5435 &align_attr.attr, 5436 &hwcache_align_attr.attr, 5437 &reclaim_account_attr.attr, 5438 &destroy_by_rcu_attr.attr, 5439 &shrink_attr.attr, 5440 &slabs_cpu_partial_attr.attr, 5441 #ifdef CONFIG_SLUB_DEBUG 5442 &total_objects_attr.attr, 5443 &slabs_attr.attr, 5444 &sanity_checks_attr.attr, 5445 &trace_attr.attr, 5446 &red_zone_attr.attr, 5447 &poison_attr.attr, 5448 &store_user_attr.attr, 5449 &validate_attr.attr, 5450 &alloc_calls_attr.attr, 5451 &free_calls_attr.attr, 5452 #endif 5453 #ifdef CONFIG_ZONE_DMA 5454 &cache_dma_attr.attr, 5455 #endif 5456 #ifdef CONFIG_NUMA 5457 &remote_node_defrag_ratio_attr.attr, 5458 #endif 5459 #ifdef CONFIG_SLUB_STATS 5460 &alloc_fastpath_attr.attr, 5461 &alloc_slowpath_attr.attr, 5462 &free_fastpath_attr.attr, 5463 &free_slowpath_attr.attr, 5464 &free_frozen_attr.attr, 5465 &free_add_partial_attr.attr, 5466 &free_remove_partial_attr.attr, 5467 &alloc_from_partial_attr.attr, 5468 &alloc_slab_attr.attr, 5469 &alloc_refill_attr.attr, 5470 &alloc_node_mismatch_attr.attr, 5471 &free_slab_attr.attr, 5472 &cpuslab_flush_attr.attr, 5473 &deactivate_full_attr.attr, 5474 &deactivate_empty_attr.attr, 5475 &deactivate_to_head_attr.attr, 5476 &deactivate_to_tail_attr.attr, 5477 &deactivate_remote_frees_attr.attr, 5478 &deactivate_bypass_attr.attr, 5479 &order_fallback_attr.attr, 5480 &cmpxchg_double_fail_attr.attr, 5481 &cmpxchg_double_cpu_fail_attr.attr, 5482 &cpu_partial_alloc_attr.attr, 5483 &cpu_partial_free_attr.attr, 5484 &cpu_partial_node_attr.attr, 5485 &cpu_partial_drain_attr.attr, 5486 #endif 5487 #ifdef CONFIG_FAILSLAB 5488 &failslab_attr.attr, 5489 #endif 5490 &usersize_attr.attr, 5491 5492 NULL 5493 }; 5494 5495 static const struct attribute_group slab_attr_group = { 5496 .attrs = slab_attrs, 5497 }; 5498 5499 static ssize_t slab_attr_show(struct kobject *kobj, 5500 struct attribute *attr, 5501 char *buf) 5502 { 5503 struct slab_attribute *attribute; 5504 struct kmem_cache *s; 5505 int err; 5506 5507 attribute = to_slab_attr(attr); 5508 s = to_slab(kobj); 5509 5510 if (!attribute->show) 5511 return -EIO; 5512 5513 err = attribute->show(s, buf); 5514 5515 return err; 5516 } 5517 5518 static ssize_t slab_attr_store(struct kobject *kobj, 5519 struct attribute *attr, 5520 const char *buf, size_t len) 5521 { 5522 struct slab_attribute *attribute; 5523 struct kmem_cache *s; 5524 int err; 5525 5526 attribute = to_slab_attr(attr); 5527 s = to_slab(kobj); 5528 5529 if (!attribute->store) 5530 return -EIO; 5531 5532 err = attribute->store(s, buf, len); 5533 #ifdef CONFIG_MEMCG 5534 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5535 struct kmem_cache *c; 5536 5537 mutex_lock(&slab_mutex); 5538 if (s->max_attr_size < len) 5539 s->max_attr_size = len; 5540 5541 /* 5542 * This is a best effort propagation, so this function's return 5543 * value will be determined by the parent cache only. This is 5544 * basically because not all attributes will have a well 5545 * defined semantics for rollbacks - most of the actions will 5546 * have permanent effects. 5547 * 5548 * Returning the error value of any of the children that fail 5549 * is not 100 % defined, in the sense that users seeing the 5550 * error code won't be able to know anything about the state of 5551 * the cache. 5552 * 5553 * Only returning the error code for the parent cache at least 5554 * has well defined semantics. The cache being written to 5555 * directly either failed or succeeded, in which case we loop 5556 * through the descendants with best-effort propagation. 5557 */ 5558 for_each_memcg_cache(c, s) 5559 attribute->store(c, buf, len); 5560 mutex_unlock(&slab_mutex); 5561 } 5562 #endif 5563 return err; 5564 } 5565 5566 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5567 { 5568 #ifdef CONFIG_MEMCG 5569 int i; 5570 char *buffer = NULL; 5571 struct kmem_cache *root_cache; 5572 5573 if (is_root_cache(s)) 5574 return; 5575 5576 root_cache = s->memcg_params.root_cache; 5577 5578 /* 5579 * This mean this cache had no attribute written. Therefore, no point 5580 * in copying default values around 5581 */ 5582 if (!root_cache->max_attr_size) 5583 return; 5584 5585 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5586 char mbuf[64]; 5587 char *buf; 5588 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5589 ssize_t len; 5590 5591 if (!attr || !attr->store || !attr->show) 5592 continue; 5593 5594 /* 5595 * It is really bad that we have to allocate here, so we will 5596 * do it only as a fallback. If we actually allocate, though, 5597 * we can just use the allocated buffer until the end. 5598 * 5599 * Most of the slub attributes will tend to be very small in 5600 * size, but sysfs allows buffers up to a page, so they can 5601 * theoretically happen. 5602 */ 5603 if (buffer) 5604 buf = buffer; 5605 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5606 buf = mbuf; 5607 else { 5608 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5609 if (WARN_ON(!buffer)) 5610 continue; 5611 buf = buffer; 5612 } 5613 5614 len = attr->show(root_cache, buf); 5615 if (len > 0) 5616 attr->store(s, buf, len); 5617 } 5618 5619 if (buffer) 5620 free_page((unsigned long)buffer); 5621 #endif /* CONFIG_MEMCG */ 5622 } 5623 5624 static void kmem_cache_release(struct kobject *k) 5625 { 5626 slab_kmem_cache_release(to_slab(k)); 5627 } 5628 5629 static const struct sysfs_ops slab_sysfs_ops = { 5630 .show = slab_attr_show, 5631 .store = slab_attr_store, 5632 }; 5633 5634 static struct kobj_type slab_ktype = { 5635 .sysfs_ops = &slab_sysfs_ops, 5636 .release = kmem_cache_release, 5637 }; 5638 5639 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5640 { 5641 struct kobj_type *ktype = get_ktype(kobj); 5642 5643 if (ktype == &slab_ktype) 5644 return 1; 5645 return 0; 5646 } 5647 5648 static const struct kset_uevent_ops slab_uevent_ops = { 5649 .filter = uevent_filter, 5650 }; 5651 5652 static struct kset *slab_kset; 5653 5654 static inline struct kset *cache_kset(struct kmem_cache *s) 5655 { 5656 #ifdef CONFIG_MEMCG 5657 if (!is_root_cache(s)) 5658 return s->memcg_params.root_cache->memcg_kset; 5659 #endif 5660 return slab_kset; 5661 } 5662 5663 #define ID_STR_LENGTH 64 5664 5665 /* Create a unique string id for a slab cache: 5666 * 5667 * Format :[flags-]size 5668 */ 5669 static char *create_unique_id(struct kmem_cache *s) 5670 { 5671 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5672 char *p = name; 5673 5674 BUG_ON(!name); 5675 5676 *p++ = ':'; 5677 /* 5678 * First flags affecting slabcache operations. We will only 5679 * get here for aliasable slabs so we do not need to support 5680 * too many flags. The flags here must cover all flags that 5681 * are matched during merging to guarantee that the id is 5682 * unique. 5683 */ 5684 if (s->flags & SLAB_CACHE_DMA) 5685 *p++ = 'd'; 5686 if (s->flags & SLAB_CACHE_DMA32) 5687 *p++ = 'D'; 5688 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5689 *p++ = 'a'; 5690 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5691 *p++ = 'F'; 5692 if (s->flags & SLAB_ACCOUNT) 5693 *p++ = 'A'; 5694 if (p != name + 1) 5695 *p++ = '-'; 5696 p += sprintf(p, "%07u", s->size); 5697 5698 BUG_ON(p > name + ID_STR_LENGTH - 1); 5699 return name; 5700 } 5701 5702 static void sysfs_slab_remove_workfn(struct work_struct *work) 5703 { 5704 struct kmem_cache *s = 5705 container_of(work, struct kmem_cache, kobj_remove_work); 5706 5707 if (!s->kobj.state_in_sysfs) 5708 /* 5709 * For a memcg cache, this may be called during 5710 * deactivation and again on shutdown. Remove only once. 5711 * A cache is never shut down before deactivation is 5712 * complete, so no need to worry about synchronization. 5713 */ 5714 goto out; 5715 5716 #ifdef CONFIG_MEMCG 5717 kset_unregister(s->memcg_kset); 5718 #endif 5719 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5720 out: 5721 kobject_put(&s->kobj); 5722 } 5723 5724 static int sysfs_slab_add(struct kmem_cache *s) 5725 { 5726 int err; 5727 const char *name; 5728 struct kset *kset = cache_kset(s); 5729 int unmergeable = slab_unmergeable(s); 5730 5731 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5732 5733 if (!kset) { 5734 kobject_init(&s->kobj, &slab_ktype); 5735 return 0; 5736 } 5737 5738 if (!unmergeable && disable_higher_order_debug && 5739 (slub_debug & DEBUG_METADATA_FLAGS)) 5740 unmergeable = 1; 5741 5742 if (unmergeable) { 5743 /* 5744 * Slabcache can never be merged so we can use the name proper. 5745 * This is typically the case for debug situations. In that 5746 * case we can catch duplicate names easily. 5747 */ 5748 sysfs_remove_link(&slab_kset->kobj, s->name); 5749 name = s->name; 5750 } else { 5751 /* 5752 * Create a unique name for the slab as a target 5753 * for the symlinks. 5754 */ 5755 name = create_unique_id(s); 5756 } 5757 5758 s->kobj.kset = kset; 5759 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5760 if (err) 5761 goto out; 5762 5763 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5764 if (err) 5765 goto out_del_kobj; 5766 5767 #ifdef CONFIG_MEMCG 5768 if (is_root_cache(s) && memcg_sysfs_enabled) { 5769 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5770 if (!s->memcg_kset) { 5771 err = -ENOMEM; 5772 goto out_del_kobj; 5773 } 5774 } 5775 #endif 5776 5777 kobject_uevent(&s->kobj, KOBJ_ADD); 5778 if (!unmergeable) { 5779 /* Setup first alias */ 5780 sysfs_slab_alias(s, s->name); 5781 } 5782 out: 5783 if (!unmergeable) 5784 kfree(name); 5785 return err; 5786 out_del_kobj: 5787 kobject_del(&s->kobj); 5788 goto out; 5789 } 5790 5791 static void sysfs_slab_remove(struct kmem_cache *s) 5792 { 5793 if (slab_state < FULL) 5794 /* 5795 * Sysfs has not been setup yet so no need to remove the 5796 * cache from sysfs. 5797 */ 5798 return; 5799 5800 kobject_get(&s->kobj); 5801 schedule_work(&s->kobj_remove_work); 5802 } 5803 5804 void sysfs_slab_unlink(struct kmem_cache *s) 5805 { 5806 if (slab_state >= FULL) 5807 kobject_del(&s->kobj); 5808 } 5809 5810 void sysfs_slab_release(struct kmem_cache *s) 5811 { 5812 if (slab_state >= FULL) 5813 kobject_put(&s->kobj); 5814 } 5815 5816 /* 5817 * Need to buffer aliases during bootup until sysfs becomes 5818 * available lest we lose that information. 5819 */ 5820 struct saved_alias { 5821 struct kmem_cache *s; 5822 const char *name; 5823 struct saved_alias *next; 5824 }; 5825 5826 static struct saved_alias *alias_list; 5827 5828 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5829 { 5830 struct saved_alias *al; 5831 5832 if (slab_state == FULL) { 5833 /* 5834 * If we have a leftover link then remove it. 5835 */ 5836 sysfs_remove_link(&slab_kset->kobj, name); 5837 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5838 } 5839 5840 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5841 if (!al) 5842 return -ENOMEM; 5843 5844 al->s = s; 5845 al->name = name; 5846 al->next = alias_list; 5847 alias_list = al; 5848 return 0; 5849 } 5850 5851 static int __init slab_sysfs_init(void) 5852 { 5853 struct kmem_cache *s; 5854 int err; 5855 5856 mutex_lock(&slab_mutex); 5857 5858 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5859 if (!slab_kset) { 5860 mutex_unlock(&slab_mutex); 5861 pr_err("Cannot register slab subsystem.\n"); 5862 return -ENOSYS; 5863 } 5864 5865 slab_state = FULL; 5866 5867 list_for_each_entry(s, &slab_caches, list) { 5868 err = sysfs_slab_add(s); 5869 if (err) 5870 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5871 s->name); 5872 } 5873 5874 while (alias_list) { 5875 struct saved_alias *al = alias_list; 5876 5877 alias_list = alias_list->next; 5878 err = sysfs_slab_alias(al->s, al->name); 5879 if (err) 5880 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5881 al->name); 5882 kfree(al); 5883 } 5884 5885 mutex_unlock(&slab_mutex); 5886 resiliency_test(); 5887 return 0; 5888 } 5889 5890 __initcall(slab_sysfs_init); 5891 #endif /* CONFIG_SYSFS */ 5892 5893 /* 5894 * The /proc/slabinfo ABI 5895 */ 5896 #ifdef CONFIG_SLUB_DEBUG 5897 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5898 { 5899 unsigned long nr_slabs = 0; 5900 unsigned long nr_objs = 0; 5901 unsigned long nr_free = 0; 5902 int node; 5903 struct kmem_cache_node *n; 5904 5905 for_each_kmem_cache_node(s, node, n) { 5906 nr_slabs += node_nr_slabs(n); 5907 nr_objs += node_nr_objs(n); 5908 nr_free += count_partial(n, count_free); 5909 } 5910 5911 sinfo->active_objs = nr_objs - nr_free; 5912 sinfo->num_objs = nr_objs; 5913 sinfo->active_slabs = nr_slabs; 5914 sinfo->num_slabs = nr_slabs; 5915 sinfo->objects_per_slab = oo_objects(s->oo); 5916 sinfo->cache_order = oo_order(s->oo); 5917 } 5918 5919 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5920 { 5921 } 5922 5923 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5924 size_t count, loff_t *ppos) 5925 { 5926 return -EIO; 5927 } 5928 #endif /* CONFIG_SLUB_DEBUG */ 5929