xref: /openbmc/linux/mm/slub.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/kfence.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38 
39 #include <trace/events/kmem.h>
40 
41 #include "internal.h"
42 
43 /*
44  * Lock order:
45  *   1. slab_mutex (Global Mutex)
46  *   2. node->list_lock
47  *   3. slab_lock(page) (Only on some arches and for debugging)
48  *
49  *   slab_mutex
50  *
51  *   The role of the slab_mutex is to protect the list of all the slabs
52  *   and to synchronize major metadata changes to slab cache structures.
53  *
54  *   The slab_lock is only used for debugging and on arches that do not
55  *   have the ability to do a cmpxchg_double. It only protects:
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->inuse		-> Number of objects in use
58  *	C. page->objects	-> Number of objects in page
59  *	D. page->frozen		-> frozen state
60  *
61  *   If a slab is frozen then it is exempt from list management. It is not
62  *   on any list except per cpu partial list. The processor that froze the
63  *   slab is the one who can perform list operations on the page. Other
64  *   processors may put objects onto the freelist but the processor that
65  *   froze the slab is the only one that can retrieve the objects from the
66  *   page's freelist.
67  *
68  *   The list_lock protects the partial and full list on each node and
69  *   the partial slab counter. If taken then no new slabs may be added or
70  *   removed from the lists nor make the number of partial slabs be modified.
71  *   (Note that the total number of slabs is an atomic value that may be
72  *   modified without taking the list lock).
73  *
74  *   The list_lock is a centralized lock and thus we avoid taking it as
75  *   much as possible. As long as SLUB does not have to handle partial
76  *   slabs, operations can continue without any centralized lock. F.e.
77  *   allocating a long series of objects that fill up slabs does not require
78  *   the list lock.
79  *   Interrupts are disabled during allocation and deallocation in order to
80  *   make the slab allocator safe to use in the context of an irq. In addition
81  *   interrupts are disabled to ensure that the processor does not change
82  *   while handling per_cpu slabs, due to kernel preemption.
83  *
84  * SLUB assigns one slab for allocation to each processor.
85  * Allocations only occur from these slabs called cpu slabs.
86  *
87  * Slabs with free elements are kept on a partial list and during regular
88  * operations no list for full slabs is used. If an object in a full slab is
89  * freed then the slab will show up again on the partial lists.
90  * We track full slabs for debugging purposes though because otherwise we
91  * cannot scan all objects.
92  *
93  * Slabs are freed when they become empty. Teardown and setup is
94  * minimal so we rely on the page allocators per cpu caches for
95  * fast frees and allocs.
96  *
97  * page->frozen		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 #ifdef CONFIG_SLUB_DEBUG
119 #ifdef CONFIG_SLUB_DEBUG_ON
120 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121 #else
122 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
123 #endif
124 #endif
125 
126 static inline bool kmem_cache_debug(struct kmem_cache *s)
127 {
128 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
129 }
130 
131 void *fixup_red_left(struct kmem_cache *s, void *p)
132 {
133 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
134 		p += s->red_left_pad;
135 
136 	return p;
137 }
138 
139 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140 {
141 #ifdef CONFIG_SLUB_CPU_PARTIAL
142 	return !kmem_cache_debug(s);
143 #else
144 	return false;
145 #endif
146 }
147 
148 /*
149  * Issues still to be resolved:
150  *
151  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152  *
153  * - Variable sizing of the per node arrays
154  */
155 
156 /* Enable to test recovery from slab corruption on boot */
157 #undef SLUB_RESILIENCY_TEST
158 
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
161 
162 /*
163  * Minimum number of partial slabs. These will be left on the partial
164  * lists even if they are empty. kmem_cache_shrink may reclaim them.
165  */
166 #define MIN_PARTIAL 5
167 
168 /*
169  * Maximum number of desirable partial slabs.
170  * The existence of more partial slabs makes kmem_cache_shrink
171  * sort the partial list by the number of objects in use.
172  */
173 #define MAX_PARTIAL 10
174 
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 				SLAB_POISON | SLAB_STORE_USER)
177 
178 /*
179  * These debug flags cannot use CMPXCHG because there might be consistency
180  * issues when checking or reading debug information
181  */
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 				SLAB_TRACE)
184 
185 
186 /*
187  * Debugging flags that require metadata to be stored in the slab.  These get
188  * disabled when slub_debug=O is used and a cache's min order increases with
189  * metadata.
190  */
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192 
193 #define OO_SHIFT	16
194 #define OO_MASK		((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
196 
197 /* Internal SLUB flags */
198 /* Poison object */
199 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
202 
203 /*
204  * Tracking user of a slab.
205  */
206 #define TRACK_ADDRS_COUNT 16
207 struct track {
208 	unsigned long addr;	/* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
211 #endif
212 	int cpu;		/* Was running on cpu */
213 	int pid;		/* Pid context */
214 	unsigned long when;	/* When did the operation occur */
215 };
216 
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
218 
219 #ifdef CONFIG_SYSFS
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 #else
223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 							{ return 0; }
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	/*
232 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 	 * avoid this_cpu_add()'s irq-disable overhead.
234 	 */
235 	raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238 
239 /*
240  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
241  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
242  * differ during memory hotplug/hotremove operations.
243  * Protected by slab_mutex.
244  */
245 static nodemask_t slab_nodes;
246 
247 /********************************************************************
248  * 			Core slab cache functions
249  *******************************************************************/
250 
251 /*
252  * Returns freelist pointer (ptr). With hardening, this is obfuscated
253  * with an XOR of the address where the pointer is held and a per-cache
254  * random number.
255  */
256 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
257 				 unsigned long ptr_addr)
258 {
259 #ifdef CONFIG_SLAB_FREELIST_HARDENED
260 	/*
261 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
262 	 * Normally, this doesn't cause any issues, as both set_freepointer()
263 	 * and get_freepointer() are called with a pointer with the same tag.
264 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
265 	 * example, when __free_slub() iterates over objects in a cache, it
266 	 * passes untagged pointers to check_object(). check_object() in turns
267 	 * calls get_freepointer() with an untagged pointer, which causes the
268 	 * freepointer to be restored incorrectly.
269 	 */
270 	return (void *)((unsigned long)ptr ^ s->random ^
271 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
272 #else
273 	return ptr;
274 #endif
275 }
276 
277 /* Returns the freelist pointer recorded at location ptr_addr. */
278 static inline void *freelist_dereference(const struct kmem_cache *s,
279 					 void *ptr_addr)
280 {
281 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
282 			    (unsigned long)ptr_addr);
283 }
284 
285 static inline void *get_freepointer(struct kmem_cache *s, void *object)
286 {
287 	object = kasan_reset_tag(object);
288 	return freelist_dereference(s, object + s->offset);
289 }
290 
291 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
292 {
293 	prefetch(object + s->offset);
294 }
295 
296 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
297 {
298 	unsigned long freepointer_addr;
299 	void *p;
300 
301 	if (!debug_pagealloc_enabled_static())
302 		return get_freepointer(s, object);
303 
304 	object = kasan_reset_tag(object);
305 	freepointer_addr = (unsigned long)object + s->offset;
306 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
307 	return freelist_ptr(s, p, freepointer_addr);
308 }
309 
310 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
311 {
312 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
313 
314 #ifdef CONFIG_SLAB_FREELIST_HARDENED
315 	BUG_ON(object == fp); /* naive detection of double free or corruption */
316 #endif
317 
318 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
319 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
320 }
321 
322 /* Loop over all objects in a slab */
323 #define for_each_object(__p, __s, __addr, __objects) \
324 	for (__p = fixup_red_left(__s, __addr); \
325 		__p < (__addr) + (__objects) * (__s)->size; \
326 		__p += (__s)->size)
327 
328 static inline unsigned int order_objects(unsigned int order, unsigned int size)
329 {
330 	return ((unsigned int)PAGE_SIZE << order) / size;
331 }
332 
333 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
334 		unsigned int size)
335 {
336 	struct kmem_cache_order_objects x = {
337 		(order << OO_SHIFT) + order_objects(order, size)
338 	};
339 
340 	return x;
341 }
342 
343 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
344 {
345 	return x.x >> OO_SHIFT;
346 }
347 
348 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
349 {
350 	return x.x & OO_MASK;
351 }
352 
353 /*
354  * Per slab locking using the pagelock
355  */
356 static __always_inline void slab_lock(struct page *page)
357 {
358 	VM_BUG_ON_PAGE(PageTail(page), page);
359 	bit_spin_lock(PG_locked, &page->flags);
360 }
361 
362 static __always_inline void slab_unlock(struct page *page)
363 {
364 	VM_BUG_ON_PAGE(PageTail(page), page);
365 	__bit_spin_unlock(PG_locked, &page->flags);
366 }
367 
368 /* Interrupts must be disabled (for the fallback code to work right) */
369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 		void *freelist_old, unsigned long counters_old,
371 		void *freelist_new, unsigned long counters_new,
372 		const char *n)
373 {
374 	VM_BUG_ON(!irqs_disabled());
375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377 	if (s->flags & __CMPXCHG_DOUBLE) {
378 		if (cmpxchg_double(&page->freelist, &page->counters,
379 				   freelist_old, counters_old,
380 				   freelist_new, counters_new))
381 			return true;
382 	} else
383 #endif
384 	{
385 		slab_lock(page);
386 		if (page->freelist == freelist_old &&
387 					page->counters == counters_old) {
388 			page->freelist = freelist_new;
389 			page->counters = counters_new;
390 			slab_unlock(page);
391 			return true;
392 		}
393 		slab_unlock(page);
394 	}
395 
396 	cpu_relax();
397 	stat(s, CMPXCHG_DOUBLE_FAIL);
398 
399 #ifdef SLUB_DEBUG_CMPXCHG
400 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
401 #endif
402 
403 	return false;
404 }
405 
406 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
407 		void *freelist_old, unsigned long counters_old,
408 		void *freelist_new, unsigned long counters_new,
409 		const char *n)
410 {
411 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
412     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
413 	if (s->flags & __CMPXCHG_DOUBLE) {
414 		if (cmpxchg_double(&page->freelist, &page->counters,
415 				   freelist_old, counters_old,
416 				   freelist_new, counters_new))
417 			return true;
418 	} else
419 #endif
420 	{
421 		unsigned long flags;
422 
423 		local_irq_save(flags);
424 		slab_lock(page);
425 		if (page->freelist == freelist_old &&
426 					page->counters == counters_old) {
427 			page->freelist = freelist_new;
428 			page->counters = counters_new;
429 			slab_unlock(page);
430 			local_irq_restore(flags);
431 			return true;
432 		}
433 		slab_unlock(page);
434 		local_irq_restore(flags);
435 	}
436 
437 	cpu_relax();
438 	stat(s, CMPXCHG_DOUBLE_FAIL);
439 
440 #ifdef SLUB_DEBUG_CMPXCHG
441 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
442 #endif
443 
444 	return false;
445 }
446 
447 #ifdef CONFIG_SLUB_DEBUG
448 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
449 static DEFINE_SPINLOCK(object_map_lock);
450 
451 /*
452  * Determine a map of object in use on a page.
453  *
454  * Node listlock must be held to guarantee that the page does
455  * not vanish from under us.
456  */
457 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
458 	__acquires(&object_map_lock)
459 {
460 	void *p;
461 	void *addr = page_address(page);
462 
463 	VM_BUG_ON(!irqs_disabled());
464 
465 	spin_lock(&object_map_lock);
466 
467 	bitmap_zero(object_map, page->objects);
468 
469 	for (p = page->freelist; p; p = get_freepointer(s, p))
470 		set_bit(__obj_to_index(s, addr, p), object_map);
471 
472 	return object_map;
473 }
474 
475 static void put_map(unsigned long *map) __releases(&object_map_lock)
476 {
477 	VM_BUG_ON(map != object_map);
478 	spin_unlock(&object_map_lock);
479 }
480 
481 static inline unsigned int size_from_object(struct kmem_cache *s)
482 {
483 	if (s->flags & SLAB_RED_ZONE)
484 		return s->size - s->red_left_pad;
485 
486 	return s->size;
487 }
488 
489 static inline void *restore_red_left(struct kmem_cache *s, void *p)
490 {
491 	if (s->flags & SLAB_RED_ZONE)
492 		p -= s->red_left_pad;
493 
494 	return p;
495 }
496 
497 /*
498  * Debug settings:
499  */
500 #if defined(CONFIG_SLUB_DEBUG_ON)
501 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
502 #else
503 static slab_flags_t slub_debug;
504 #endif
505 
506 static char *slub_debug_string;
507 static int disable_higher_order_debug;
508 
509 /*
510  * slub is about to manipulate internal object metadata.  This memory lies
511  * outside the range of the allocated object, so accessing it would normally
512  * be reported by kasan as a bounds error.  metadata_access_enable() is used
513  * to tell kasan that these accesses are OK.
514  */
515 static inline void metadata_access_enable(void)
516 {
517 	kasan_disable_current();
518 }
519 
520 static inline void metadata_access_disable(void)
521 {
522 	kasan_enable_current();
523 }
524 
525 /*
526  * Object debugging
527  */
528 
529 /* Verify that a pointer has an address that is valid within a slab page */
530 static inline int check_valid_pointer(struct kmem_cache *s,
531 				struct page *page, void *object)
532 {
533 	void *base;
534 
535 	if (!object)
536 		return 1;
537 
538 	base = page_address(page);
539 	object = kasan_reset_tag(object);
540 	object = restore_red_left(s, object);
541 	if (object < base || object >= base + page->objects * s->size ||
542 		(object - base) % s->size) {
543 		return 0;
544 	}
545 
546 	return 1;
547 }
548 
549 static void print_section(char *level, char *text, u8 *addr,
550 			  unsigned int length)
551 {
552 	metadata_access_enable();
553 	print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
554 			16, 1, addr, length, 1);
555 	metadata_access_disable();
556 }
557 
558 /*
559  * See comment in calculate_sizes().
560  */
561 static inline bool freeptr_outside_object(struct kmem_cache *s)
562 {
563 	return s->offset >= s->inuse;
564 }
565 
566 /*
567  * Return offset of the end of info block which is inuse + free pointer if
568  * not overlapping with object.
569  */
570 static inline unsigned int get_info_end(struct kmem_cache *s)
571 {
572 	if (freeptr_outside_object(s))
573 		return s->inuse + sizeof(void *);
574 	else
575 		return s->inuse;
576 }
577 
578 static struct track *get_track(struct kmem_cache *s, void *object,
579 	enum track_item alloc)
580 {
581 	struct track *p;
582 
583 	p = object + get_info_end(s);
584 
585 	return kasan_reset_tag(p + alloc);
586 }
587 
588 static void set_track(struct kmem_cache *s, void *object,
589 			enum track_item alloc, unsigned long addr)
590 {
591 	struct track *p = get_track(s, object, alloc);
592 
593 	if (addr) {
594 #ifdef CONFIG_STACKTRACE
595 		unsigned int nr_entries;
596 
597 		metadata_access_enable();
598 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
599 					      TRACK_ADDRS_COUNT, 3);
600 		metadata_access_disable();
601 
602 		if (nr_entries < TRACK_ADDRS_COUNT)
603 			p->addrs[nr_entries] = 0;
604 #endif
605 		p->addr = addr;
606 		p->cpu = smp_processor_id();
607 		p->pid = current->pid;
608 		p->when = jiffies;
609 	} else {
610 		memset(p, 0, sizeof(struct track));
611 	}
612 }
613 
614 static void init_tracking(struct kmem_cache *s, void *object)
615 {
616 	if (!(s->flags & SLAB_STORE_USER))
617 		return;
618 
619 	set_track(s, object, TRACK_FREE, 0UL);
620 	set_track(s, object, TRACK_ALLOC, 0UL);
621 }
622 
623 static void print_track(const char *s, struct track *t, unsigned long pr_time)
624 {
625 	if (!t->addr)
626 		return;
627 
628 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
629 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
630 #ifdef CONFIG_STACKTRACE
631 	{
632 		int i;
633 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
634 			if (t->addrs[i])
635 				pr_err("\t%pS\n", (void *)t->addrs[i]);
636 			else
637 				break;
638 	}
639 #endif
640 }
641 
642 void print_tracking(struct kmem_cache *s, void *object)
643 {
644 	unsigned long pr_time = jiffies;
645 	if (!(s->flags & SLAB_STORE_USER))
646 		return;
647 
648 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
649 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
650 }
651 
652 static void print_page_info(struct page *page)
653 {
654 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
655 	       page, page->objects, page->inuse, page->freelist,
656 	       page->flags, &page->flags);
657 
658 }
659 
660 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
661 {
662 	struct va_format vaf;
663 	va_list args;
664 
665 	va_start(args, fmt);
666 	vaf.fmt = fmt;
667 	vaf.va = &args;
668 	pr_err("=============================================================================\n");
669 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
670 	pr_err("-----------------------------------------------------------------------------\n\n");
671 
672 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
673 	va_end(args);
674 }
675 
676 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
677 {
678 	struct va_format vaf;
679 	va_list args;
680 
681 	va_start(args, fmt);
682 	vaf.fmt = fmt;
683 	vaf.va = &args;
684 	pr_err("FIX %s: %pV\n", s->name, &vaf);
685 	va_end(args);
686 }
687 
688 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
689 			       void **freelist, void *nextfree)
690 {
691 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
692 	    !check_valid_pointer(s, page, nextfree) && freelist) {
693 		object_err(s, page, *freelist, "Freechain corrupt");
694 		*freelist = NULL;
695 		slab_fix(s, "Isolate corrupted freechain");
696 		return true;
697 	}
698 
699 	return false;
700 }
701 
702 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
703 {
704 	unsigned int off;	/* Offset of last byte */
705 	u8 *addr = page_address(page);
706 
707 	print_tracking(s, p);
708 
709 	print_page_info(page);
710 
711 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
712 	       p, p - addr, get_freepointer(s, p));
713 
714 	if (s->flags & SLAB_RED_ZONE)
715 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
716 			      s->red_left_pad);
717 	else if (p > addr + 16)
718 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
719 
720 	print_section(KERN_ERR, "Object ", p,
721 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
722 	if (s->flags & SLAB_RED_ZONE)
723 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
724 			s->inuse - s->object_size);
725 
726 	off = get_info_end(s);
727 
728 	if (s->flags & SLAB_STORE_USER)
729 		off += 2 * sizeof(struct track);
730 
731 	off += kasan_metadata_size(s);
732 
733 	if (off != size_from_object(s))
734 		/* Beginning of the filler is the free pointer */
735 		print_section(KERN_ERR, "Padding ", p + off,
736 			      size_from_object(s) - off);
737 
738 	dump_stack();
739 }
740 
741 void object_err(struct kmem_cache *s, struct page *page,
742 			u8 *object, char *reason)
743 {
744 	slab_bug(s, "%s", reason);
745 	print_trailer(s, page, object);
746 }
747 
748 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
749 			const char *fmt, ...)
750 {
751 	va_list args;
752 	char buf[100];
753 
754 	va_start(args, fmt);
755 	vsnprintf(buf, sizeof(buf), fmt, args);
756 	va_end(args);
757 	slab_bug(s, "%s", buf);
758 	print_page_info(page);
759 	dump_stack();
760 }
761 
762 static void init_object(struct kmem_cache *s, void *object, u8 val)
763 {
764 	u8 *p = kasan_reset_tag(object);
765 
766 	if (s->flags & SLAB_RED_ZONE)
767 		memset(p - s->red_left_pad, val, s->red_left_pad);
768 
769 	if (s->flags & __OBJECT_POISON) {
770 		memset(p, POISON_FREE, s->object_size - 1);
771 		p[s->object_size - 1] = POISON_END;
772 	}
773 
774 	if (s->flags & SLAB_RED_ZONE)
775 		memset(p + s->object_size, val, s->inuse - s->object_size);
776 }
777 
778 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
779 						void *from, void *to)
780 {
781 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
782 	memset(from, data, to - from);
783 }
784 
785 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
786 			u8 *object, char *what,
787 			u8 *start, unsigned int value, unsigned int bytes)
788 {
789 	u8 *fault;
790 	u8 *end;
791 	u8 *addr = page_address(page);
792 
793 	metadata_access_enable();
794 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
795 	metadata_access_disable();
796 	if (!fault)
797 		return 1;
798 
799 	end = start + bytes;
800 	while (end > fault && end[-1] == value)
801 		end--;
802 
803 	slab_bug(s, "%s overwritten", what);
804 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
805 					fault, end - 1, fault - addr,
806 					fault[0], value);
807 	print_trailer(s, page, object);
808 
809 	restore_bytes(s, what, value, fault, end);
810 	return 0;
811 }
812 
813 /*
814  * Object layout:
815  *
816  * object address
817  * 	Bytes of the object to be managed.
818  * 	If the freepointer may overlay the object then the free
819  *	pointer is at the middle of the object.
820  *
821  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
822  * 	0xa5 (POISON_END)
823  *
824  * object + s->object_size
825  * 	Padding to reach word boundary. This is also used for Redzoning.
826  * 	Padding is extended by another word if Redzoning is enabled and
827  * 	object_size == inuse.
828  *
829  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
830  * 	0xcc (RED_ACTIVE) for objects in use.
831  *
832  * object + s->inuse
833  * 	Meta data starts here.
834  *
835  * 	A. Free pointer (if we cannot overwrite object on free)
836  * 	B. Tracking data for SLAB_STORE_USER
837  *	C. Padding to reach required alignment boundary or at minimum
838  * 		one word if debugging is on to be able to detect writes
839  * 		before the word boundary.
840  *
841  *	Padding is done using 0x5a (POISON_INUSE)
842  *
843  * object + s->size
844  * 	Nothing is used beyond s->size.
845  *
846  * If slabcaches are merged then the object_size and inuse boundaries are mostly
847  * ignored. And therefore no slab options that rely on these boundaries
848  * may be used with merged slabcaches.
849  */
850 
851 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
852 {
853 	unsigned long off = get_info_end(s);	/* The end of info */
854 
855 	if (s->flags & SLAB_STORE_USER)
856 		/* We also have user information there */
857 		off += 2 * sizeof(struct track);
858 
859 	off += kasan_metadata_size(s);
860 
861 	if (size_from_object(s) == off)
862 		return 1;
863 
864 	return check_bytes_and_report(s, page, p, "Object padding",
865 			p + off, POISON_INUSE, size_from_object(s) - off);
866 }
867 
868 /* Check the pad bytes at the end of a slab page */
869 static int slab_pad_check(struct kmem_cache *s, struct page *page)
870 {
871 	u8 *start;
872 	u8 *fault;
873 	u8 *end;
874 	u8 *pad;
875 	int length;
876 	int remainder;
877 
878 	if (!(s->flags & SLAB_POISON))
879 		return 1;
880 
881 	start = page_address(page);
882 	length = page_size(page);
883 	end = start + length;
884 	remainder = length % s->size;
885 	if (!remainder)
886 		return 1;
887 
888 	pad = end - remainder;
889 	metadata_access_enable();
890 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
891 	metadata_access_disable();
892 	if (!fault)
893 		return 1;
894 	while (end > fault && end[-1] == POISON_INUSE)
895 		end--;
896 
897 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
898 			fault, end - 1, fault - start);
899 	print_section(KERN_ERR, "Padding ", pad, remainder);
900 
901 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
902 	return 0;
903 }
904 
905 static int check_object(struct kmem_cache *s, struct page *page,
906 					void *object, u8 val)
907 {
908 	u8 *p = object;
909 	u8 *endobject = object + s->object_size;
910 
911 	if (s->flags & SLAB_RED_ZONE) {
912 		if (!check_bytes_and_report(s, page, object, "Redzone",
913 			object - s->red_left_pad, val, s->red_left_pad))
914 			return 0;
915 
916 		if (!check_bytes_and_report(s, page, object, "Redzone",
917 			endobject, val, s->inuse - s->object_size))
918 			return 0;
919 	} else {
920 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
921 			check_bytes_and_report(s, page, p, "Alignment padding",
922 				endobject, POISON_INUSE,
923 				s->inuse - s->object_size);
924 		}
925 	}
926 
927 	if (s->flags & SLAB_POISON) {
928 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
929 			(!check_bytes_and_report(s, page, p, "Poison", p,
930 					POISON_FREE, s->object_size - 1) ||
931 			 !check_bytes_and_report(s, page, p, "Poison",
932 				p + s->object_size - 1, POISON_END, 1)))
933 			return 0;
934 		/*
935 		 * check_pad_bytes cleans up on its own.
936 		 */
937 		check_pad_bytes(s, page, p);
938 	}
939 
940 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
941 		/*
942 		 * Object and freepointer overlap. Cannot check
943 		 * freepointer while object is allocated.
944 		 */
945 		return 1;
946 
947 	/* Check free pointer validity */
948 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
949 		object_err(s, page, p, "Freepointer corrupt");
950 		/*
951 		 * No choice but to zap it and thus lose the remainder
952 		 * of the free objects in this slab. May cause
953 		 * another error because the object count is now wrong.
954 		 */
955 		set_freepointer(s, p, NULL);
956 		return 0;
957 	}
958 	return 1;
959 }
960 
961 static int check_slab(struct kmem_cache *s, struct page *page)
962 {
963 	int maxobj;
964 
965 	VM_BUG_ON(!irqs_disabled());
966 
967 	if (!PageSlab(page)) {
968 		slab_err(s, page, "Not a valid slab page");
969 		return 0;
970 	}
971 
972 	maxobj = order_objects(compound_order(page), s->size);
973 	if (page->objects > maxobj) {
974 		slab_err(s, page, "objects %u > max %u",
975 			page->objects, maxobj);
976 		return 0;
977 	}
978 	if (page->inuse > page->objects) {
979 		slab_err(s, page, "inuse %u > max %u",
980 			page->inuse, page->objects);
981 		return 0;
982 	}
983 	/* Slab_pad_check fixes things up after itself */
984 	slab_pad_check(s, page);
985 	return 1;
986 }
987 
988 /*
989  * Determine if a certain object on a page is on the freelist. Must hold the
990  * slab lock to guarantee that the chains are in a consistent state.
991  */
992 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
993 {
994 	int nr = 0;
995 	void *fp;
996 	void *object = NULL;
997 	int max_objects;
998 
999 	fp = page->freelist;
1000 	while (fp && nr <= page->objects) {
1001 		if (fp == search)
1002 			return 1;
1003 		if (!check_valid_pointer(s, page, fp)) {
1004 			if (object) {
1005 				object_err(s, page, object,
1006 					"Freechain corrupt");
1007 				set_freepointer(s, object, NULL);
1008 			} else {
1009 				slab_err(s, page, "Freepointer corrupt");
1010 				page->freelist = NULL;
1011 				page->inuse = page->objects;
1012 				slab_fix(s, "Freelist cleared");
1013 				return 0;
1014 			}
1015 			break;
1016 		}
1017 		object = fp;
1018 		fp = get_freepointer(s, object);
1019 		nr++;
1020 	}
1021 
1022 	max_objects = order_objects(compound_order(page), s->size);
1023 	if (max_objects > MAX_OBJS_PER_PAGE)
1024 		max_objects = MAX_OBJS_PER_PAGE;
1025 
1026 	if (page->objects != max_objects) {
1027 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1028 			 page->objects, max_objects);
1029 		page->objects = max_objects;
1030 		slab_fix(s, "Number of objects adjusted.");
1031 	}
1032 	if (page->inuse != page->objects - nr) {
1033 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1034 			 page->inuse, page->objects - nr);
1035 		page->inuse = page->objects - nr;
1036 		slab_fix(s, "Object count adjusted.");
1037 	}
1038 	return search == NULL;
1039 }
1040 
1041 static void trace(struct kmem_cache *s, struct page *page, void *object,
1042 								int alloc)
1043 {
1044 	if (s->flags & SLAB_TRACE) {
1045 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1046 			s->name,
1047 			alloc ? "alloc" : "free",
1048 			object, page->inuse,
1049 			page->freelist);
1050 
1051 		if (!alloc)
1052 			print_section(KERN_INFO, "Object ", (void *)object,
1053 					s->object_size);
1054 
1055 		dump_stack();
1056 	}
1057 }
1058 
1059 /*
1060  * Tracking of fully allocated slabs for debugging purposes.
1061  */
1062 static void add_full(struct kmem_cache *s,
1063 	struct kmem_cache_node *n, struct page *page)
1064 {
1065 	if (!(s->flags & SLAB_STORE_USER))
1066 		return;
1067 
1068 	lockdep_assert_held(&n->list_lock);
1069 	list_add(&page->slab_list, &n->full);
1070 }
1071 
1072 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1073 {
1074 	if (!(s->flags & SLAB_STORE_USER))
1075 		return;
1076 
1077 	lockdep_assert_held(&n->list_lock);
1078 	list_del(&page->slab_list);
1079 }
1080 
1081 /* Tracking of the number of slabs for debugging purposes */
1082 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1083 {
1084 	struct kmem_cache_node *n = get_node(s, node);
1085 
1086 	return atomic_long_read(&n->nr_slabs);
1087 }
1088 
1089 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1090 {
1091 	return atomic_long_read(&n->nr_slabs);
1092 }
1093 
1094 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1095 {
1096 	struct kmem_cache_node *n = get_node(s, node);
1097 
1098 	/*
1099 	 * May be called early in order to allocate a slab for the
1100 	 * kmem_cache_node structure. Solve the chicken-egg
1101 	 * dilemma by deferring the increment of the count during
1102 	 * bootstrap (see early_kmem_cache_node_alloc).
1103 	 */
1104 	if (likely(n)) {
1105 		atomic_long_inc(&n->nr_slabs);
1106 		atomic_long_add(objects, &n->total_objects);
1107 	}
1108 }
1109 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1110 {
1111 	struct kmem_cache_node *n = get_node(s, node);
1112 
1113 	atomic_long_dec(&n->nr_slabs);
1114 	atomic_long_sub(objects, &n->total_objects);
1115 }
1116 
1117 /* Object debug checks for alloc/free paths */
1118 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1119 								void *object)
1120 {
1121 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1122 		return;
1123 
1124 	init_object(s, object, SLUB_RED_INACTIVE);
1125 	init_tracking(s, object);
1126 }
1127 
1128 static
1129 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1130 {
1131 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1132 		return;
1133 
1134 	metadata_access_enable();
1135 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1136 	metadata_access_disable();
1137 }
1138 
1139 static inline int alloc_consistency_checks(struct kmem_cache *s,
1140 					struct page *page, void *object)
1141 {
1142 	if (!check_slab(s, page))
1143 		return 0;
1144 
1145 	if (!check_valid_pointer(s, page, object)) {
1146 		object_err(s, page, object, "Freelist Pointer check fails");
1147 		return 0;
1148 	}
1149 
1150 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1151 		return 0;
1152 
1153 	return 1;
1154 }
1155 
1156 static noinline int alloc_debug_processing(struct kmem_cache *s,
1157 					struct page *page,
1158 					void *object, unsigned long addr)
1159 {
1160 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1161 		if (!alloc_consistency_checks(s, page, object))
1162 			goto bad;
1163 	}
1164 
1165 	/* Success perform special debug activities for allocs */
1166 	if (s->flags & SLAB_STORE_USER)
1167 		set_track(s, object, TRACK_ALLOC, addr);
1168 	trace(s, page, object, 1);
1169 	init_object(s, object, SLUB_RED_ACTIVE);
1170 	return 1;
1171 
1172 bad:
1173 	if (PageSlab(page)) {
1174 		/*
1175 		 * If this is a slab page then lets do the best we can
1176 		 * to avoid issues in the future. Marking all objects
1177 		 * as used avoids touching the remaining objects.
1178 		 */
1179 		slab_fix(s, "Marking all objects used");
1180 		page->inuse = page->objects;
1181 		page->freelist = NULL;
1182 	}
1183 	return 0;
1184 }
1185 
1186 static inline int free_consistency_checks(struct kmem_cache *s,
1187 		struct page *page, void *object, unsigned long addr)
1188 {
1189 	if (!check_valid_pointer(s, page, object)) {
1190 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1191 		return 0;
1192 	}
1193 
1194 	if (on_freelist(s, page, object)) {
1195 		object_err(s, page, object, "Object already free");
1196 		return 0;
1197 	}
1198 
1199 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1200 		return 0;
1201 
1202 	if (unlikely(s != page->slab_cache)) {
1203 		if (!PageSlab(page)) {
1204 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1205 				 object);
1206 		} else if (!page->slab_cache) {
1207 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1208 			       object);
1209 			dump_stack();
1210 		} else
1211 			object_err(s, page, object,
1212 					"page slab pointer corrupt.");
1213 		return 0;
1214 	}
1215 	return 1;
1216 }
1217 
1218 /* Supports checking bulk free of a constructed freelist */
1219 static noinline int free_debug_processing(
1220 	struct kmem_cache *s, struct page *page,
1221 	void *head, void *tail, int bulk_cnt,
1222 	unsigned long addr)
1223 {
1224 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1225 	void *object = head;
1226 	int cnt = 0;
1227 	unsigned long flags;
1228 	int ret = 0;
1229 
1230 	spin_lock_irqsave(&n->list_lock, flags);
1231 	slab_lock(page);
1232 
1233 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1234 		if (!check_slab(s, page))
1235 			goto out;
1236 	}
1237 
1238 next_object:
1239 	cnt++;
1240 
1241 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1242 		if (!free_consistency_checks(s, page, object, addr))
1243 			goto out;
1244 	}
1245 
1246 	if (s->flags & SLAB_STORE_USER)
1247 		set_track(s, object, TRACK_FREE, addr);
1248 	trace(s, page, object, 0);
1249 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1250 	init_object(s, object, SLUB_RED_INACTIVE);
1251 
1252 	/* Reached end of constructed freelist yet? */
1253 	if (object != tail) {
1254 		object = get_freepointer(s, object);
1255 		goto next_object;
1256 	}
1257 	ret = 1;
1258 
1259 out:
1260 	if (cnt != bulk_cnt)
1261 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1262 			 bulk_cnt, cnt);
1263 
1264 	slab_unlock(page);
1265 	spin_unlock_irqrestore(&n->list_lock, flags);
1266 	if (!ret)
1267 		slab_fix(s, "Object at 0x%p not freed", object);
1268 	return ret;
1269 }
1270 
1271 /*
1272  * Parse a block of slub_debug options. Blocks are delimited by ';'
1273  *
1274  * @str:    start of block
1275  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1276  * @slabs:  return start of list of slabs, or NULL when there's no list
1277  * @init:   assume this is initial parsing and not per-kmem-create parsing
1278  *
1279  * returns the start of next block if there's any, or NULL
1280  */
1281 static char *
1282 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1283 {
1284 	bool higher_order_disable = false;
1285 
1286 	/* Skip any completely empty blocks */
1287 	while (*str && *str == ';')
1288 		str++;
1289 
1290 	if (*str == ',') {
1291 		/*
1292 		 * No options but restriction on slabs. This means full
1293 		 * debugging for slabs matching a pattern.
1294 		 */
1295 		*flags = DEBUG_DEFAULT_FLAGS;
1296 		goto check_slabs;
1297 	}
1298 	*flags = 0;
1299 
1300 	/* Determine which debug features should be switched on */
1301 	for (; *str && *str != ',' && *str != ';'; str++) {
1302 		switch (tolower(*str)) {
1303 		case '-':
1304 			*flags = 0;
1305 			break;
1306 		case 'f':
1307 			*flags |= SLAB_CONSISTENCY_CHECKS;
1308 			break;
1309 		case 'z':
1310 			*flags |= SLAB_RED_ZONE;
1311 			break;
1312 		case 'p':
1313 			*flags |= SLAB_POISON;
1314 			break;
1315 		case 'u':
1316 			*flags |= SLAB_STORE_USER;
1317 			break;
1318 		case 't':
1319 			*flags |= SLAB_TRACE;
1320 			break;
1321 		case 'a':
1322 			*flags |= SLAB_FAILSLAB;
1323 			break;
1324 		case 'o':
1325 			/*
1326 			 * Avoid enabling debugging on caches if its minimum
1327 			 * order would increase as a result.
1328 			 */
1329 			higher_order_disable = true;
1330 			break;
1331 		default:
1332 			if (init)
1333 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1334 		}
1335 	}
1336 check_slabs:
1337 	if (*str == ',')
1338 		*slabs = ++str;
1339 	else
1340 		*slabs = NULL;
1341 
1342 	/* Skip over the slab list */
1343 	while (*str && *str != ';')
1344 		str++;
1345 
1346 	/* Skip any completely empty blocks */
1347 	while (*str && *str == ';')
1348 		str++;
1349 
1350 	if (init && higher_order_disable)
1351 		disable_higher_order_debug = 1;
1352 
1353 	if (*str)
1354 		return str;
1355 	else
1356 		return NULL;
1357 }
1358 
1359 static int __init setup_slub_debug(char *str)
1360 {
1361 	slab_flags_t flags;
1362 	char *saved_str;
1363 	char *slab_list;
1364 	bool global_slub_debug_changed = false;
1365 	bool slab_list_specified = false;
1366 
1367 	slub_debug = DEBUG_DEFAULT_FLAGS;
1368 	if (*str++ != '=' || !*str)
1369 		/*
1370 		 * No options specified. Switch on full debugging.
1371 		 */
1372 		goto out;
1373 
1374 	saved_str = str;
1375 	while (str) {
1376 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1377 
1378 		if (!slab_list) {
1379 			slub_debug = flags;
1380 			global_slub_debug_changed = true;
1381 		} else {
1382 			slab_list_specified = true;
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * For backwards compatibility, a single list of flags with list of
1388 	 * slabs means debugging is only enabled for those slabs, so the global
1389 	 * slub_debug should be 0. We can extended that to multiple lists as
1390 	 * long as there is no option specifying flags without a slab list.
1391 	 */
1392 	if (slab_list_specified) {
1393 		if (!global_slub_debug_changed)
1394 			slub_debug = 0;
1395 		slub_debug_string = saved_str;
1396 	}
1397 out:
1398 	if (slub_debug != 0 || slub_debug_string)
1399 		static_branch_enable(&slub_debug_enabled);
1400 	if ((static_branch_unlikely(&init_on_alloc) ||
1401 	     static_branch_unlikely(&init_on_free)) &&
1402 	    (slub_debug & SLAB_POISON))
1403 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1404 	return 1;
1405 }
1406 
1407 __setup("slub_debug", setup_slub_debug);
1408 
1409 /*
1410  * kmem_cache_flags - apply debugging options to the cache
1411  * @object_size:	the size of an object without meta data
1412  * @flags:		flags to set
1413  * @name:		name of the cache
1414  *
1415  * Debug option(s) are applied to @flags. In addition to the debug
1416  * option(s), if a slab name (or multiple) is specified i.e.
1417  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1418  * then only the select slabs will receive the debug option(s).
1419  */
1420 slab_flags_t kmem_cache_flags(unsigned int object_size,
1421 	slab_flags_t flags, const char *name)
1422 {
1423 	char *iter;
1424 	size_t len;
1425 	char *next_block;
1426 	slab_flags_t block_flags;
1427 	slab_flags_t slub_debug_local = slub_debug;
1428 
1429 	/*
1430 	 * If the slab cache is for debugging (e.g. kmemleak) then
1431 	 * don't store user (stack trace) information by default,
1432 	 * but let the user enable it via the command line below.
1433 	 */
1434 	if (flags & SLAB_NOLEAKTRACE)
1435 		slub_debug_local &= ~SLAB_STORE_USER;
1436 
1437 	len = strlen(name);
1438 	next_block = slub_debug_string;
1439 	/* Go through all blocks of debug options, see if any matches our slab's name */
1440 	while (next_block) {
1441 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1442 		if (!iter)
1443 			continue;
1444 		/* Found a block that has a slab list, search it */
1445 		while (*iter) {
1446 			char *end, *glob;
1447 			size_t cmplen;
1448 
1449 			end = strchrnul(iter, ',');
1450 			if (next_block && next_block < end)
1451 				end = next_block - 1;
1452 
1453 			glob = strnchr(iter, end - iter, '*');
1454 			if (glob)
1455 				cmplen = glob - iter;
1456 			else
1457 				cmplen = max_t(size_t, len, (end - iter));
1458 
1459 			if (!strncmp(name, iter, cmplen)) {
1460 				flags |= block_flags;
1461 				return flags;
1462 			}
1463 
1464 			if (!*end || *end == ';')
1465 				break;
1466 			iter = end + 1;
1467 		}
1468 	}
1469 
1470 	return flags | slub_debug_local;
1471 }
1472 #else /* !CONFIG_SLUB_DEBUG */
1473 static inline void setup_object_debug(struct kmem_cache *s,
1474 			struct page *page, void *object) {}
1475 static inline
1476 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1477 
1478 static inline int alloc_debug_processing(struct kmem_cache *s,
1479 	struct page *page, void *object, unsigned long addr) { return 0; }
1480 
1481 static inline int free_debug_processing(
1482 	struct kmem_cache *s, struct page *page,
1483 	void *head, void *tail, int bulk_cnt,
1484 	unsigned long addr) { return 0; }
1485 
1486 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1487 			{ return 1; }
1488 static inline int check_object(struct kmem_cache *s, struct page *page,
1489 			void *object, u8 val) { return 1; }
1490 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1491 					struct page *page) {}
1492 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1493 					struct page *page) {}
1494 slab_flags_t kmem_cache_flags(unsigned int object_size,
1495 	slab_flags_t flags, const char *name)
1496 {
1497 	return flags;
1498 }
1499 #define slub_debug 0
1500 
1501 #define disable_higher_order_debug 0
1502 
1503 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1504 							{ return 0; }
1505 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1506 							{ return 0; }
1507 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1508 							int objects) {}
1509 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1510 							int objects) {}
1511 
1512 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1513 			       void **freelist, void *nextfree)
1514 {
1515 	return false;
1516 }
1517 #endif /* CONFIG_SLUB_DEBUG */
1518 
1519 /*
1520  * Hooks for other subsystems that check memory allocations. In a typical
1521  * production configuration these hooks all should produce no code at all.
1522  */
1523 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1524 {
1525 	ptr = kasan_kmalloc_large(ptr, size, flags);
1526 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1527 	kmemleak_alloc(ptr, size, 1, flags);
1528 	return ptr;
1529 }
1530 
1531 static __always_inline void kfree_hook(void *x)
1532 {
1533 	kmemleak_free(x);
1534 	kasan_kfree_large(x);
1535 }
1536 
1537 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1538 						void *x, bool init)
1539 {
1540 	kmemleak_free_recursive(x, s->flags);
1541 
1542 	/*
1543 	 * Trouble is that we may no longer disable interrupts in the fast path
1544 	 * So in order to make the debug calls that expect irqs to be
1545 	 * disabled we need to disable interrupts temporarily.
1546 	 */
1547 #ifdef CONFIG_LOCKDEP
1548 	{
1549 		unsigned long flags;
1550 
1551 		local_irq_save(flags);
1552 		debug_check_no_locks_freed(x, s->object_size);
1553 		local_irq_restore(flags);
1554 	}
1555 #endif
1556 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1557 		debug_check_no_obj_freed(x, s->object_size);
1558 
1559 	/* Use KCSAN to help debug racy use-after-free. */
1560 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1561 		__kcsan_check_access(x, s->object_size,
1562 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1563 
1564 	/*
1565 	 * As memory initialization might be integrated into KASAN,
1566 	 * kasan_slab_free and initialization memset's must be
1567 	 * kept together to avoid discrepancies in behavior.
1568 	 *
1569 	 * The initialization memset's clear the object and the metadata,
1570 	 * but don't touch the SLAB redzone.
1571 	 */
1572 	if (init) {
1573 		int rsize;
1574 
1575 		if (!kasan_has_integrated_init())
1576 			memset(kasan_reset_tag(x), 0, s->object_size);
1577 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1578 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1579 		       s->size - s->inuse - rsize);
1580 	}
1581 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1582 	return kasan_slab_free(s, x, init);
1583 }
1584 
1585 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1586 					   void **head, void **tail)
1587 {
1588 
1589 	void *object;
1590 	void *next = *head;
1591 	void *old_tail = *tail ? *tail : *head;
1592 
1593 	if (is_kfence_address(next)) {
1594 		slab_free_hook(s, next, false);
1595 		return true;
1596 	}
1597 
1598 	/* Head and tail of the reconstructed freelist */
1599 	*head = NULL;
1600 	*tail = NULL;
1601 
1602 	do {
1603 		object = next;
1604 		next = get_freepointer(s, object);
1605 
1606 		/* If object's reuse doesn't have to be delayed */
1607 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1608 			/* Move object to the new freelist */
1609 			set_freepointer(s, object, *head);
1610 			*head = object;
1611 			if (!*tail)
1612 				*tail = object;
1613 		}
1614 	} while (object != old_tail);
1615 
1616 	if (*head == *tail)
1617 		*tail = NULL;
1618 
1619 	return *head != NULL;
1620 }
1621 
1622 static void *setup_object(struct kmem_cache *s, struct page *page,
1623 				void *object)
1624 {
1625 	setup_object_debug(s, page, object);
1626 	object = kasan_init_slab_obj(s, object);
1627 	if (unlikely(s->ctor)) {
1628 		kasan_unpoison_object_data(s, object);
1629 		s->ctor(object);
1630 		kasan_poison_object_data(s, object);
1631 	}
1632 	return object;
1633 }
1634 
1635 /*
1636  * Slab allocation and freeing
1637  */
1638 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1639 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1640 {
1641 	struct page *page;
1642 	unsigned int order = oo_order(oo);
1643 
1644 	if (node == NUMA_NO_NODE)
1645 		page = alloc_pages(flags, order);
1646 	else
1647 		page = __alloc_pages_node(node, flags, order);
1648 
1649 	return page;
1650 }
1651 
1652 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1653 /* Pre-initialize the random sequence cache */
1654 static int init_cache_random_seq(struct kmem_cache *s)
1655 {
1656 	unsigned int count = oo_objects(s->oo);
1657 	int err;
1658 
1659 	/* Bailout if already initialised */
1660 	if (s->random_seq)
1661 		return 0;
1662 
1663 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1664 	if (err) {
1665 		pr_err("SLUB: Unable to initialize free list for %s\n",
1666 			s->name);
1667 		return err;
1668 	}
1669 
1670 	/* Transform to an offset on the set of pages */
1671 	if (s->random_seq) {
1672 		unsigned int i;
1673 
1674 		for (i = 0; i < count; i++)
1675 			s->random_seq[i] *= s->size;
1676 	}
1677 	return 0;
1678 }
1679 
1680 /* Initialize each random sequence freelist per cache */
1681 static void __init init_freelist_randomization(void)
1682 {
1683 	struct kmem_cache *s;
1684 
1685 	mutex_lock(&slab_mutex);
1686 
1687 	list_for_each_entry(s, &slab_caches, list)
1688 		init_cache_random_seq(s);
1689 
1690 	mutex_unlock(&slab_mutex);
1691 }
1692 
1693 /* Get the next entry on the pre-computed freelist randomized */
1694 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1695 				unsigned long *pos, void *start,
1696 				unsigned long page_limit,
1697 				unsigned long freelist_count)
1698 {
1699 	unsigned int idx;
1700 
1701 	/*
1702 	 * If the target page allocation failed, the number of objects on the
1703 	 * page might be smaller than the usual size defined by the cache.
1704 	 */
1705 	do {
1706 		idx = s->random_seq[*pos];
1707 		*pos += 1;
1708 		if (*pos >= freelist_count)
1709 			*pos = 0;
1710 	} while (unlikely(idx >= page_limit));
1711 
1712 	return (char *)start + idx;
1713 }
1714 
1715 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1716 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1717 {
1718 	void *start;
1719 	void *cur;
1720 	void *next;
1721 	unsigned long idx, pos, page_limit, freelist_count;
1722 
1723 	if (page->objects < 2 || !s->random_seq)
1724 		return false;
1725 
1726 	freelist_count = oo_objects(s->oo);
1727 	pos = get_random_int() % freelist_count;
1728 
1729 	page_limit = page->objects * s->size;
1730 	start = fixup_red_left(s, page_address(page));
1731 
1732 	/* First entry is used as the base of the freelist */
1733 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1734 				freelist_count);
1735 	cur = setup_object(s, page, cur);
1736 	page->freelist = cur;
1737 
1738 	for (idx = 1; idx < page->objects; idx++) {
1739 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1740 			freelist_count);
1741 		next = setup_object(s, page, next);
1742 		set_freepointer(s, cur, next);
1743 		cur = next;
1744 	}
1745 	set_freepointer(s, cur, NULL);
1746 
1747 	return true;
1748 }
1749 #else
1750 static inline int init_cache_random_seq(struct kmem_cache *s)
1751 {
1752 	return 0;
1753 }
1754 static inline void init_freelist_randomization(void) { }
1755 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1756 {
1757 	return false;
1758 }
1759 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1760 
1761 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1762 {
1763 	struct page *page;
1764 	struct kmem_cache_order_objects oo = s->oo;
1765 	gfp_t alloc_gfp;
1766 	void *start, *p, *next;
1767 	int idx;
1768 	bool shuffle;
1769 
1770 	flags &= gfp_allowed_mask;
1771 
1772 	if (gfpflags_allow_blocking(flags))
1773 		local_irq_enable();
1774 
1775 	flags |= s->allocflags;
1776 
1777 	/*
1778 	 * Let the initial higher-order allocation fail under memory pressure
1779 	 * so we fall-back to the minimum order allocation.
1780 	 */
1781 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1782 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1783 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1784 
1785 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1786 	if (unlikely(!page)) {
1787 		oo = s->min;
1788 		alloc_gfp = flags;
1789 		/*
1790 		 * Allocation may have failed due to fragmentation.
1791 		 * Try a lower order alloc if possible
1792 		 */
1793 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1794 		if (unlikely(!page))
1795 			goto out;
1796 		stat(s, ORDER_FALLBACK);
1797 	}
1798 
1799 	page->objects = oo_objects(oo);
1800 
1801 	account_slab_page(page, oo_order(oo), s, flags);
1802 
1803 	page->slab_cache = s;
1804 	__SetPageSlab(page);
1805 	if (page_is_pfmemalloc(page))
1806 		SetPageSlabPfmemalloc(page);
1807 
1808 	kasan_poison_slab(page);
1809 
1810 	start = page_address(page);
1811 
1812 	setup_page_debug(s, page, start);
1813 
1814 	shuffle = shuffle_freelist(s, page);
1815 
1816 	if (!shuffle) {
1817 		start = fixup_red_left(s, start);
1818 		start = setup_object(s, page, start);
1819 		page->freelist = start;
1820 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1821 			next = p + s->size;
1822 			next = setup_object(s, page, next);
1823 			set_freepointer(s, p, next);
1824 			p = next;
1825 		}
1826 		set_freepointer(s, p, NULL);
1827 	}
1828 
1829 	page->inuse = page->objects;
1830 	page->frozen = 1;
1831 
1832 out:
1833 	if (gfpflags_allow_blocking(flags))
1834 		local_irq_disable();
1835 	if (!page)
1836 		return NULL;
1837 
1838 	inc_slabs_node(s, page_to_nid(page), page->objects);
1839 
1840 	return page;
1841 }
1842 
1843 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1844 {
1845 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1846 		flags = kmalloc_fix_flags(flags);
1847 
1848 	return allocate_slab(s,
1849 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1850 }
1851 
1852 static void __free_slab(struct kmem_cache *s, struct page *page)
1853 {
1854 	int order = compound_order(page);
1855 	int pages = 1 << order;
1856 
1857 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1858 		void *p;
1859 
1860 		slab_pad_check(s, page);
1861 		for_each_object(p, s, page_address(page),
1862 						page->objects)
1863 			check_object(s, page, p, SLUB_RED_INACTIVE);
1864 	}
1865 
1866 	__ClearPageSlabPfmemalloc(page);
1867 	__ClearPageSlab(page);
1868 	/* In union with page->mapping where page allocator expects NULL */
1869 	page->slab_cache = NULL;
1870 	if (current->reclaim_state)
1871 		current->reclaim_state->reclaimed_slab += pages;
1872 	unaccount_slab_page(page, order, s);
1873 	__free_pages(page, order);
1874 }
1875 
1876 static void rcu_free_slab(struct rcu_head *h)
1877 {
1878 	struct page *page = container_of(h, struct page, rcu_head);
1879 
1880 	__free_slab(page->slab_cache, page);
1881 }
1882 
1883 static void free_slab(struct kmem_cache *s, struct page *page)
1884 {
1885 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1886 		call_rcu(&page->rcu_head, rcu_free_slab);
1887 	} else
1888 		__free_slab(s, page);
1889 }
1890 
1891 static void discard_slab(struct kmem_cache *s, struct page *page)
1892 {
1893 	dec_slabs_node(s, page_to_nid(page), page->objects);
1894 	free_slab(s, page);
1895 }
1896 
1897 /*
1898  * Management of partially allocated slabs.
1899  */
1900 static inline void
1901 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1902 {
1903 	n->nr_partial++;
1904 	if (tail == DEACTIVATE_TO_TAIL)
1905 		list_add_tail(&page->slab_list, &n->partial);
1906 	else
1907 		list_add(&page->slab_list, &n->partial);
1908 }
1909 
1910 static inline void add_partial(struct kmem_cache_node *n,
1911 				struct page *page, int tail)
1912 {
1913 	lockdep_assert_held(&n->list_lock);
1914 	__add_partial(n, page, tail);
1915 }
1916 
1917 static inline void remove_partial(struct kmem_cache_node *n,
1918 					struct page *page)
1919 {
1920 	lockdep_assert_held(&n->list_lock);
1921 	list_del(&page->slab_list);
1922 	n->nr_partial--;
1923 }
1924 
1925 /*
1926  * Remove slab from the partial list, freeze it and
1927  * return the pointer to the freelist.
1928  *
1929  * Returns a list of objects or NULL if it fails.
1930  */
1931 static inline void *acquire_slab(struct kmem_cache *s,
1932 		struct kmem_cache_node *n, struct page *page,
1933 		int mode, int *objects)
1934 {
1935 	void *freelist;
1936 	unsigned long counters;
1937 	struct page new;
1938 
1939 	lockdep_assert_held(&n->list_lock);
1940 
1941 	/*
1942 	 * Zap the freelist and set the frozen bit.
1943 	 * The old freelist is the list of objects for the
1944 	 * per cpu allocation list.
1945 	 */
1946 	freelist = page->freelist;
1947 	counters = page->counters;
1948 	new.counters = counters;
1949 	*objects = new.objects - new.inuse;
1950 	if (mode) {
1951 		new.inuse = page->objects;
1952 		new.freelist = NULL;
1953 	} else {
1954 		new.freelist = freelist;
1955 	}
1956 
1957 	VM_BUG_ON(new.frozen);
1958 	new.frozen = 1;
1959 
1960 	if (!__cmpxchg_double_slab(s, page,
1961 			freelist, counters,
1962 			new.freelist, new.counters,
1963 			"acquire_slab"))
1964 		return NULL;
1965 
1966 	remove_partial(n, page);
1967 	WARN_ON(!freelist);
1968 	return freelist;
1969 }
1970 
1971 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1972 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1973 
1974 /*
1975  * Try to allocate a partial slab from a specific node.
1976  */
1977 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1978 				struct kmem_cache_cpu *c, gfp_t flags)
1979 {
1980 	struct page *page, *page2;
1981 	void *object = NULL;
1982 	unsigned int available = 0;
1983 	int objects;
1984 
1985 	/*
1986 	 * Racy check. If we mistakenly see no partial slabs then we
1987 	 * just allocate an empty slab. If we mistakenly try to get a
1988 	 * partial slab and there is none available then get_partial()
1989 	 * will return NULL.
1990 	 */
1991 	if (!n || !n->nr_partial)
1992 		return NULL;
1993 
1994 	spin_lock(&n->list_lock);
1995 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1996 		void *t;
1997 
1998 		if (!pfmemalloc_match(page, flags))
1999 			continue;
2000 
2001 		t = acquire_slab(s, n, page, object == NULL, &objects);
2002 		if (!t)
2003 			break;
2004 
2005 		available += objects;
2006 		if (!object) {
2007 			c->page = page;
2008 			stat(s, ALLOC_FROM_PARTIAL);
2009 			object = t;
2010 		} else {
2011 			put_cpu_partial(s, page, 0);
2012 			stat(s, CPU_PARTIAL_NODE);
2013 		}
2014 		if (!kmem_cache_has_cpu_partial(s)
2015 			|| available > slub_cpu_partial(s) / 2)
2016 			break;
2017 
2018 	}
2019 	spin_unlock(&n->list_lock);
2020 	return object;
2021 }
2022 
2023 /*
2024  * Get a page from somewhere. Search in increasing NUMA distances.
2025  */
2026 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2027 		struct kmem_cache_cpu *c)
2028 {
2029 #ifdef CONFIG_NUMA
2030 	struct zonelist *zonelist;
2031 	struct zoneref *z;
2032 	struct zone *zone;
2033 	enum zone_type highest_zoneidx = gfp_zone(flags);
2034 	void *object;
2035 	unsigned int cpuset_mems_cookie;
2036 
2037 	/*
2038 	 * The defrag ratio allows a configuration of the tradeoffs between
2039 	 * inter node defragmentation and node local allocations. A lower
2040 	 * defrag_ratio increases the tendency to do local allocations
2041 	 * instead of attempting to obtain partial slabs from other nodes.
2042 	 *
2043 	 * If the defrag_ratio is set to 0 then kmalloc() always
2044 	 * returns node local objects. If the ratio is higher then kmalloc()
2045 	 * may return off node objects because partial slabs are obtained
2046 	 * from other nodes and filled up.
2047 	 *
2048 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2049 	 * (which makes defrag_ratio = 1000) then every (well almost)
2050 	 * allocation will first attempt to defrag slab caches on other nodes.
2051 	 * This means scanning over all nodes to look for partial slabs which
2052 	 * may be expensive if we do it every time we are trying to find a slab
2053 	 * with available objects.
2054 	 */
2055 	if (!s->remote_node_defrag_ratio ||
2056 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2057 		return NULL;
2058 
2059 	do {
2060 		cpuset_mems_cookie = read_mems_allowed_begin();
2061 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2062 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2063 			struct kmem_cache_node *n;
2064 
2065 			n = get_node(s, zone_to_nid(zone));
2066 
2067 			if (n && cpuset_zone_allowed(zone, flags) &&
2068 					n->nr_partial > s->min_partial) {
2069 				object = get_partial_node(s, n, c, flags);
2070 				if (object) {
2071 					/*
2072 					 * Don't check read_mems_allowed_retry()
2073 					 * here - if mems_allowed was updated in
2074 					 * parallel, that was a harmless race
2075 					 * between allocation and the cpuset
2076 					 * update
2077 					 */
2078 					return object;
2079 				}
2080 			}
2081 		}
2082 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2083 #endif	/* CONFIG_NUMA */
2084 	return NULL;
2085 }
2086 
2087 /*
2088  * Get a partial page, lock it and return it.
2089  */
2090 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2091 		struct kmem_cache_cpu *c)
2092 {
2093 	void *object;
2094 	int searchnode = node;
2095 
2096 	if (node == NUMA_NO_NODE)
2097 		searchnode = numa_mem_id();
2098 
2099 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2100 	if (object || node != NUMA_NO_NODE)
2101 		return object;
2102 
2103 	return get_any_partial(s, flags, c);
2104 }
2105 
2106 #ifdef CONFIG_PREEMPTION
2107 /*
2108  * Calculate the next globally unique transaction for disambiguation
2109  * during cmpxchg. The transactions start with the cpu number and are then
2110  * incremented by CONFIG_NR_CPUS.
2111  */
2112 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2113 #else
2114 /*
2115  * No preemption supported therefore also no need to check for
2116  * different cpus.
2117  */
2118 #define TID_STEP 1
2119 #endif
2120 
2121 static inline unsigned long next_tid(unsigned long tid)
2122 {
2123 	return tid + TID_STEP;
2124 }
2125 
2126 #ifdef SLUB_DEBUG_CMPXCHG
2127 static inline unsigned int tid_to_cpu(unsigned long tid)
2128 {
2129 	return tid % TID_STEP;
2130 }
2131 
2132 static inline unsigned long tid_to_event(unsigned long tid)
2133 {
2134 	return tid / TID_STEP;
2135 }
2136 #endif
2137 
2138 static inline unsigned int init_tid(int cpu)
2139 {
2140 	return cpu;
2141 }
2142 
2143 static inline void note_cmpxchg_failure(const char *n,
2144 		const struct kmem_cache *s, unsigned long tid)
2145 {
2146 #ifdef SLUB_DEBUG_CMPXCHG
2147 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2148 
2149 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2150 
2151 #ifdef CONFIG_PREEMPTION
2152 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2153 		pr_warn("due to cpu change %d -> %d\n",
2154 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2155 	else
2156 #endif
2157 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2158 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2159 			tid_to_event(tid), tid_to_event(actual_tid));
2160 	else
2161 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2162 			actual_tid, tid, next_tid(tid));
2163 #endif
2164 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2165 }
2166 
2167 static void init_kmem_cache_cpus(struct kmem_cache *s)
2168 {
2169 	int cpu;
2170 
2171 	for_each_possible_cpu(cpu)
2172 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2173 }
2174 
2175 /*
2176  * Remove the cpu slab
2177  */
2178 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2179 				void *freelist, struct kmem_cache_cpu *c)
2180 {
2181 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2182 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2183 	int lock = 0, free_delta = 0;
2184 	enum slab_modes l = M_NONE, m = M_NONE;
2185 	void *nextfree, *freelist_iter, *freelist_tail;
2186 	int tail = DEACTIVATE_TO_HEAD;
2187 	struct page new;
2188 	struct page old;
2189 
2190 	if (page->freelist) {
2191 		stat(s, DEACTIVATE_REMOTE_FREES);
2192 		tail = DEACTIVATE_TO_TAIL;
2193 	}
2194 
2195 	/*
2196 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2197 	 * remember the last object in freelist_tail for later splicing.
2198 	 */
2199 	freelist_tail = NULL;
2200 	freelist_iter = freelist;
2201 	while (freelist_iter) {
2202 		nextfree = get_freepointer(s, freelist_iter);
2203 
2204 		/*
2205 		 * If 'nextfree' is invalid, it is possible that the object at
2206 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2207 		 * starting at 'freelist_iter' by skipping them.
2208 		 */
2209 		if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2210 			break;
2211 
2212 		freelist_tail = freelist_iter;
2213 		free_delta++;
2214 
2215 		freelist_iter = nextfree;
2216 	}
2217 
2218 	/*
2219 	 * Stage two: Unfreeze the page while splicing the per-cpu
2220 	 * freelist to the head of page's freelist.
2221 	 *
2222 	 * Ensure that the page is unfrozen while the list presence
2223 	 * reflects the actual number of objects during unfreeze.
2224 	 *
2225 	 * We setup the list membership and then perform a cmpxchg
2226 	 * with the count. If there is a mismatch then the page
2227 	 * is not unfrozen but the page is on the wrong list.
2228 	 *
2229 	 * Then we restart the process which may have to remove
2230 	 * the page from the list that we just put it on again
2231 	 * because the number of objects in the slab may have
2232 	 * changed.
2233 	 */
2234 redo:
2235 
2236 	old.freelist = READ_ONCE(page->freelist);
2237 	old.counters = READ_ONCE(page->counters);
2238 	VM_BUG_ON(!old.frozen);
2239 
2240 	/* Determine target state of the slab */
2241 	new.counters = old.counters;
2242 	if (freelist_tail) {
2243 		new.inuse -= free_delta;
2244 		set_freepointer(s, freelist_tail, old.freelist);
2245 		new.freelist = freelist;
2246 	} else
2247 		new.freelist = old.freelist;
2248 
2249 	new.frozen = 0;
2250 
2251 	if (!new.inuse && n->nr_partial >= s->min_partial)
2252 		m = M_FREE;
2253 	else if (new.freelist) {
2254 		m = M_PARTIAL;
2255 		if (!lock) {
2256 			lock = 1;
2257 			/*
2258 			 * Taking the spinlock removes the possibility
2259 			 * that acquire_slab() will see a slab page that
2260 			 * is frozen
2261 			 */
2262 			spin_lock(&n->list_lock);
2263 		}
2264 	} else {
2265 		m = M_FULL;
2266 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2267 			lock = 1;
2268 			/*
2269 			 * This also ensures that the scanning of full
2270 			 * slabs from diagnostic functions will not see
2271 			 * any frozen slabs.
2272 			 */
2273 			spin_lock(&n->list_lock);
2274 		}
2275 	}
2276 
2277 	if (l != m) {
2278 		if (l == M_PARTIAL)
2279 			remove_partial(n, page);
2280 		else if (l == M_FULL)
2281 			remove_full(s, n, page);
2282 
2283 		if (m == M_PARTIAL)
2284 			add_partial(n, page, tail);
2285 		else if (m == M_FULL)
2286 			add_full(s, n, page);
2287 	}
2288 
2289 	l = m;
2290 	if (!__cmpxchg_double_slab(s, page,
2291 				old.freelist, old.counters,
2292 				new.freelist, new.counters,
2293 				"unfreezing slab"))
2294 		goto redo;
2295 
2296 	if (lock)
2297 		spin_unlock(&n->list_lock);
2298 
2299 	if (m == M_PARTIAL)
2300 		stat(s, tail);
2301 	else if (m == M_FULL)
2302 		stat(s, DEACTIVATE_FULL);
2303 	else if (m == M_FREE) {
2304 		stat(s, DEACTIVATE_EMPTY);
2305 		discard_slab(s, page);
2306 		stat(s, FREE_SLAB);
2307 	}
2308 
2309 	c->page = NULL;
2310 	c->freelist = NULL;
2311 }
2312 
2313 /*
2314  * Unfreeze all the cpu partial slabs.
2315  *
2316  * This function must be called with interrupts disabled
2317  * for the cpu using c (or some other guarantee must be there
2318  * to guarantee no concurrent accesses).
2319  */
2320 static void unfreeze_partials(struct kmem_cache *s,
2321 		struct kmem_cache_cpu *c)
2322 {
2323 #ifdef CONFIG_SLUB_CPU_PARTIAL
2324 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2325 	struct page *page, *discard_page = NULL;
2326 
2327 	while ((page = slub_percpu_partial(c))) {
2328 		struct page new;
2329 		struct page old;
2330 
2331 		slub_set_percpu_partial(c, page);
2332 
2333 		n2 = get_node(s, page_to_nid(page));
2334 		if (n != n2) {
2335 			if (n)
2336 				spin_unlock(&n->list_lock);
2337 
2338 			n = n2;
2339 			spin_lock(&n->list_lock);
2340 		}
2341 
2342 		do {
2343 
2344 			old.freelist = page->freelist;
2345 			old.counters = page->counters;
2346 			VM_BUG_ON(!old.frozen);
2347 
2348 			new.counters = old.counters;
2349 			new.freelist = old.freelist;
2350 
2351 			new.frozen = 0;
2352 
2353 		} while (!__cmpxchg_double_slab(s, page,
2354 				old.freelist, old.counters,
2355 				new.freelist, new.counters,
2356 				"unfreezing slab"));
2357 
2358 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2359 			page->next = discard_page;
2360 			discard_page = page;
2361 		} else {
2362 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2363 			stat(s, FREE_ADD_PARTIAL);
2364 		}
2365 	}
2366 
2367 	if (n)
2368 		spin_unlock(&n->list_lock);
2369 
2370 	while (discard_page) {
2371 		page = discard_page;
2372 		discard_page = discard_page->next;
2373 
2374 		stat(s, DEACTIVATE_EMPTY);
2375 		discard_slab(s, page);
2376 		stat(s, FREE_SLAB);
2377 	}
2378 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2379 }
2380 
2381 /*
2382  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2383  * partial page slot if available.
2384  *
2385  * If we did not find a slot then simply move all the partials to the
2386  * per node partial list.
2387  */
2388 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2389 {
2390 #ifdef CONFIG_SLUB_CPU_PARTIAL
2391 	struct page *oldpage;
2392 	int pages;
2393 	int pobjects;
2394 
2395 	preempt_disable();
2396 	do {
2397 		pages = 0;
2398 		pobjects = 0;
2399 		oldpage = this_cpu_read(s->cpu_slab->partial);
2400 
2401 		if (oldpage) {
2402 			pobjects = oldpage->pobjects;
2403 			pages = oldpage->pages;
2404 			if (drain && pobjects > slub_cpu_partial(s)) {
2405 				unsigned long flags;
2406 				/*
2407 				 * partial array is full. Move the existing
2408 				 * set to the per node partial list.
2409 				 */
2410 				local_irq_save(flags);
2411 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2412 				local_irq_restore(flags);
2413 				oldpage = NULL;
2414 				pobjects = 0;
2415 				pages = 0;
2416 				stat(s, CPU_PARTIAL_DRAIN);
2417 			}
2418 		}
2419 
2420 		pages++;
2421 		pobjects += page->objects - page->inuse;
2422 
2423 		page->pages = pages;
2424 		page->pobjects = pobjects;
2425 		page->next = oldpage;
2426 
2427 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2428 								!= oldpage);
2429 	if (unlikely(!slub_cpu_partial(s))) {
2430 		unsigned long flags;
2431 
2432 		local_irq_save(flags);
2433 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2434 		local_irq_restore(flags);
2435 	}
2436 	preempt_enable();
2437 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2438 }
2439 
2440 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2441 {
2442 	stat(s, CPUSLAB_FLUSH);
2443 	deactivate_slab(s, c->page, c->freelist, c);
2444 
2445 	c->tid = next_tid(c->tid);
2446 }
2447 
2448 /*
2449  * Flush cpu slab.
2450  *
2451  * Called from IPI handler with interrupts disabled.
2452  */
2453 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2454 {
2455 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2456 
2457 	if (c->page)
2458 		flush_slab(s, c);
2459 
2460 	unfreeze_partials(s, c);
2461 }
2462 
2463 static void flush_cpu_slab(void *d)
2464 {
2465 	struct kmem_cache *s = d;
2466 
2467 	__flush_cpu_slab(s, smp_processor_id());
2468 }
2469 
2470 static bool has_cpu_slab(int cpu, void *info)
2471 {
2472 	struct kmem_cache *s = info;
2473 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2474 
2475 	return c->page || slub_percpu_partial(c);
2476 }
2477 
2478 static void flush_all(struct kmem_cache *s)
2479 {
2480 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2481 }
2482 
2483 /*
2484  * Use the cpu notifier to insure that the cpu slabs are flushed when
2485  * necessary.
2486  */
2487 static int slub_cpu_dead(unsigned int cpu)
2488 {
2489 	struct kmem_cache *s;
2490 	unsigned long flags;
2491 
2492 	mutex_lock(&slab_mutex);
2493 	list_for_each_entry(s, &slab_caches, list) {
2494 		local_irq_save(flags);
2495 		__flush_cpu_slab(s, cpu);
2496 		local_irq_restore(flags);
2497 	}
2498 	mutex_unlock(&slab_mutex);
2499 	return 0;
2500 }
2501 
2502 /*
2503  * Check if the objects in a per cpu structure fit numa
2504  * locality expectations.
2505  */
2506 static inline int node_match(struct page *page, int node)
2507 {
2508 #ifdef CONFIG_NUMA
2509 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2510 		return 0;
2511 #endif
2512 	return 1;
2513 }
2514 
2515 #ifdef CONFIG_SLUB_DEBUG
2516 static int count_free(struct page *page)
2517 {
2518 	return page->objects - page->inuse;
2519 }
2520 
2521 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2522 {
2523 	return atomic_long_read(&n->total_objects);
2524 }
2525 #endif /* CONFIG_SLUB_DEBUG */
2526 
2527 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2528 static unsigned long count_partial(struct kmem_cache_node *n,
2529 					int (*get_count)(struct page *))
2530 {
2531 	unsigned long flags;
2532 	unsigned long x = 0;
2533 	struct page *page;
2534 
2535 	spin_lock_irqsave(&n->list_lock, flags);
2536 	list_for_each_entry(page, &n->partial, slab_list)
2537 		x += get_count(page);
2538 	spin_unlock_irqrestore(&n->list_lock, flags);
2539 	return x;
2540 }
2541 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2542 
2543 static noinline void
2544 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2545 {
2546 #ifdef CONFIG_SLUB_DEBUG
2547 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2548 				      DEFAULT_RATELIMIT_BURST);
2549 	int node;
2550 	struct kmem_cache_node *n;
2551 
2552 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2553 		return;
2554 
2555 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2556 		nid, gfpflags, &gfpflags);
2557 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2558 		s->name, s->object_size, s->size, oo_order(s->oo),
2559 		oo_order(s->min));
2560 
2561 	if (oo_order(s->min) > get_order(s->object_size))
2562 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2563 			s->name);
2564 
2565 	for_each_kmem_cache_node(s, node, n) {
2566 		unsigned long nr_slabs;
2567 		unsigned long nr_objs;
2568 		unsigned long nr_free;
2569 
2570 		nr_free  = count_partial(n, count_free);
2571 		nr_slabs = node_nr_slabs(n);
2572 		nr_objs  = node_nr_objs(n);
2573 
2574 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2575 			node, nr_slabs, nr_objs, nr_free);
2576 	}
2577 #endif
2578 }
2579 
2580 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2581 			int node, struct kmem_cache_cpu **pc)
2582 {
2583 	void *freelist;
2584 	struct kmem_cache_cpu *c = *pc;
2585 	struct page *page;
2586 
2587 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2588 
2589 	freelist = get_partial(s, flags, node, c);
2590 
2591 	if (freelist)
2592 		return freelist;
2593 
2594 	page = new_slab(s, flags, node);
2595 	if (page) {
2596 		c = raw_cpu_ptr(s->cpu_slab);
2597 		if (c->page)
2598 			flush_slab(s, c);
2599 
2600 		/*
2601 		 * No other reference to the page yet so we can
2602 		 * muck around with it freely without cmpxchg
2603 		 */
2604 		freelist = page->freelist;
2605 		page->freelist = NULL;
2606 
2607 		stat(s, ALLOC_SLAB);
2608 		c->page = page;
2609 		*pc = c;
2610 	}
2611 
2612 	return freelist;
2613 }
2614 
2615 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2616 {
2617 	if (unlikely(PageSlabPfmemalloc(page)))
2618 		return gfp_pfmemalloc_allowed(gfpflags);
2619 
2620 	return true;
2621 }
2622 
2623 /*
2624  * Check the page->freelist of a page and either transfer the freelist to the
2625  * per cpu freelist or deactivate the page.
2626  *
2627  * The page is still frozen if the return value is not NULL.
2628  *
2629  * If this function returns NULL then the page has been unfrozen.
2630  *
2631  * This function must be called with interrupt disabled.
2632  */
2633 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2634 {
2635 	struct page new;
2636 	unsigned long counters;
2637 	void *freelist;
2638 
2639 	do {
2640 		freelist = page->freelist;
2641 		counters = page->counters;
2642 
2643 		new.counters = counters;
2644 		VM_BUG_ON(!new.frozen);
2645 
2646 		new.inuse = page->objects;
2647 		new.frozen = freelist != NULL;
2648 
2649 	} while (!__cmpxchg_double_slab(s, page,
2650 		freelist, counters,
2651 		NULL, new.counters,
2652 		"get_freelist"));
2653 
2654 	return freelist;
2655 }
2656 
2657 /*
2658  * Slow path. The lockless freelist is empty or we need to perform
2659  * debugging duties.
2660  *
2661  * Processing is still very fast if new objects have been freed to the
2662  * regular freelist. In that case we simply take over the regular freelist
2663  * as the lockless freelist and zap the regular freelist.
2664  *
2665  * If that is not working then we fall back to the partial lists. We take the
2666  * first element of the freelist as the object to allocate now and move the
2667  * rest of the freelist to the lockless freelist.
2668  *
2669  * And if we were unable to get a new slab from the partial slab lists then
2670  * we need to allocate a new slab. This is the slowest path since it involves
2671  * a call to the page allocator and the setup of a new slab.
2672  *
2673  * Version of __slab_alloc to use when we know that interrupts are
2674  * already disabled (which is the case for bulk allocation).
2675  */
2676 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2677 			  unsigned long addr, struct kmem_cache_cpu *c)
2678 {
2679 	void *freelist;
2680 	struct page *page;
2681 
2682 	stat(s, ALLOC_SLOWPATH);
2683 
2684 	page = c->page;
2685 	if (!page) {
2686 		/*
2687 		 * if the node is not online or has no normal memory, just
2688 		 * ignore the node constraint
2689 		 */
2690 		if (unlikely(node != NUMA_NO_NODE &&
2691 			     !node_isset(node, slab_nodes)))
2692 			node = NUMA_NO_NODE;
2693 		goto new_slab;
2694 	}
2695 redo:
2696 
2697 	if (unlikely(!node_match(page, node))) {
2698 		/*
2699 		 * same as above but node_match() being false already
2700 		 * implies node != NUMA_NO_NODE
2701 		 */
2702 		if (!node_isset(node, slab_nodes)) {
2703 			node = NUMA_NO_NODE;
2704 			goto redo;
2705 		} else {
2706 			stat(s, ALLOC_NODE_MISMATCH);
2707 			deactivate_slab(s, page, c->freelist, c);
2708 			goto new_slab;
2709 		}
2710 	}
2711 
2712 	/*
2713 	 * By rights, we should be searching for a slab page that was
2714 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2715 	 * information when the page leaves the per-cpu allocator
2716 	 */
2717 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2718 		deactivate_slab(s, page, c->freelist, c);
2719 		goto new_slab;
2720 	}
2721 
2722 	/* must check again c->freelist in case of cpu migration or IRQ */
2723 	freelist = c->freelist;
2724 	if (freelist)
2725 		goto load_freelist;
2726 
2727 	freelist = get_freelist(s, page);
2728 
2729 	if (!freelist) {
2730 		c->page = NULL;
2731 		stat(s, DEACTIVATE_BYPASS);
2732 		goto new_slab;
2733 	}
2734 
2735 	stat(s, ALLOC_REFILL);
2736 
2737 load_freelist:
2738 	/*
2739 	 * freelist is pointing to the list of objects to be used.
2740 	 * page is pointing to the page from which the objects are obtained.
2741 	 * That page must be frozen for per cpu allocations to work.
2742 	 */
2743 	VM_BUG_ON(!c->page->frozen);
2744 	c->freelist = get_freepointer(s, freelist);
2745 	c->tid = next_tid(c->tid);
2746 	return freelist;
2747 
2748 new_slab:
2749 
2750 	if (slub_percpu_partial(c)) {
2751 		page = c->page = slub_percpu_partial(c);
2752 		slub_set_percpu_partial(c, page);
2753 		stat(s, CPU_PARTIAL_ALLOC);
2754 		goto redo;
2755 	}
2756 
2757 	freelist = new_slab_objects(s, gfpflags, node, &c);
2758 
2759 	if (unlikely(!freelist)) {
2760 		slab_out_of_memory(s, gfpflags, node);
2761 		return NULL;
2762 	}
2763 
2764 	page = c->page;
2765 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2766 		goto load_freelist;
2767 
2768 	/* Only entered in the debug case */
2769 	if (kmem_cache_debug(s) &&
2770 			!alloc_debug_processing(s, page, freelist, addr))
2771 		goto new_slab;	/* Slab failed checks. Next slab needed */
2772 
2773 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2774 	return freelist;
2775 }
2776 
2777 /*
2778  * Another one that disabled interrupt and compensates for possible
2779  * cpu changes by refetching the per cpu area pointer.
2780  */
2781 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2782 			  unsigned long addr, struct kmem_cache_cpu *c)
2783 {
2784 	void *p;
2785 	unsigned long flags;
2786 
2787 	local_irq_save(flags);
2788 #ifdef CONFIG_PREEMPTION
2789 	/*
2790 	 * We may have been preempted and rescheduled on a different
2791 	 * cpu before disabling interrupts. Need to reload cpu area
2792 	 * pointer.
2793 	 */
2794 	c = this_cpu_ptr(s->cpu_slab);
2795 #endif
2796 
2797 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2798 	local_irq_restore(flags);
2799 	return p;
2800 }
2801 
2802 /*
2803  * If the object has been wiped upon free, make sure it's fully initialized by
2804  * zeroing out freelist pointer.
2805  */
2806 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2807 						   void *obj)
2808 {
2809 	if (unlikely(slab_want_init_on_free(s)) && obj)
2810 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2811 			0, sizeof(void *));
2812 }
2813 
2814 /*
2815  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2816  * have the fastpath folded into their functions. So no function call
2817  * overhead for requests that can be satisfied on the fastpath.
2818  *
2819  * The fastpath works by first checking if the lockless freelist can be used.
2820  * If not then __slab_alloc is called for slow processing.
2821  *
2822  * Otherwise we can simply pick the next object from the lockless free list.
2823  */
2824 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2825 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2826 {
2827 	void *object;
2828 	struct kmem_cache_cpu *c;
2829 	struct page *page;
2830 	unsigned long tid;
2831 	struct obj_cgroup *objcg = NULL;
2832 	bool init = false;
2833 
2834 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2835 	if (!s)
2836 		return NULL;
2837 
2838 	object = kfence_alloc(s, orig_size, gfpflags);
2839 	if (unlikely(object))
2840 		goto out;
2841 
2842 redo:
2843 	/*
2844 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2845 	 * enabled. We may switch back and forth between cpus while
2846 	 * reading from one cpu area. That does not matter as long
2847 	 * as we end up on the original cpu again when doing the cmpxchg.
2848 	 *
2849 	 * We should guarantee that tid and kmem_cache are retrieved on
2850 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2851 	 * to check if it is matched or not.
2852 	 */
2853 	do {
2854 		tid = this_cpu_read(s->cpu_slab->tid);
2855 		c = raw_cpu_ptr(s->cpu_slab);
2856 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2857 		 unlikely(tid != READ_ONCE(c->tid)));
2858 
2859 	/*
2860 	 * Irqless object alloc/free algorithm used here depends on sequence
2861 	 * of fetching cpu_slab's data. tid should be fetched before anything
2862 	 * on c to guarantee that object and page associated with previous tid
2863 	 * won't be used with current tid. If we fetch tid first, object and
2864 	 * page could be one associated with next tid and our alloc/free
2865 	 * request will be failed. In this case, we will retry. So, no problem.
2866 	 */
2867 	barrier();
2868 
2869 	/*
2870 	 * The transaction ids are globally unique per cpu and per operation on
2871 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2872 	 * occurs on the right processor and that there was no operation on the
2873 	 * linked list in between.
2874 	 */
2875 
2876 	object = c->freelist;
2877 	page = c->page;
2878 	if (unlikely(!object || !page || !node_match(page, node))) {
2879 		object = __slab_alloc(s, gfpflags, node, addr, c);
2880 	} else {
2881 		void *next_object = get_freepointer_safe(s, object);
2882 
2883 		/*
2884 		 * The cmpxchg will only match if there was no additional
2885 		 * operation and if we are on the right processor.
2886 		 *
2887 		 * The cmpxchg does the following atomically (without lock
2888 		 * semantics!)
2889 		 * 1. Relocate first pointer to the current per cpu area.
2890 		 * 2. Verify that tid and freelist have not been changed
2891 		 * 3. If they were not changed replace tid and freelist
2892 		 *
2893 		 * Since this is without lock semantics the protection is only
2894 		 * against code executing on this cpu *not* from access by
2895 		 * other cpus.
2896 		 */
2897 		if (unlikely(!this_cpu_cmpxchg_double(
2898 				s->cpu_slab->freelist, s->cpu_slab->tid,
2899 				object, tid,
2900 				next_object, next_tid(tid)))) {
2901 
2902 			note_cmpxchg_failure("slab_alloc", s, tid);
2903 			goto redo;
2904 		}
2905 		prefetch_freepointer(s, next_object);
2906 		stat(s, ALLOC_FASTPATH);
2907 	}
2908 
2909 	maybe_wipe_obj_freeptr(s, object);
2910 	init = slab_want_init_on_alloc(gfpflags, s);
2911 
2912 out:
2913 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2914 
2915 	return object;
2916 }
2917 
2918 static __always_inline void *slab_alloc(struct kmem_cache *s,
2919 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
2920 {
2921 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2922 }
2923 
2924 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2925 {
2926 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2927 
2928 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2929 				s->size, gfpflags);
2930 
2931 	return ret;
2932 }
2933 EXPORT_SYMBOL(kmem_cache_alloc);
2934 
2935 #ifdef CONFIG_TRACING
2936 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2937 {
2938 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2939 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2940 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2941 	return ret;
2942 }
2943 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2944 #endif
2945 
2946 #ifdef CONFIG_NUMA
2947 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2948 {
2949 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
2950 
2951 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2952 				    s->object_size, s->size, gfpflags, node);
2953 
2954 	return ret;
2955 }
2956 EXPORT_SYMBOL(kmem_cache_alloc_node);
2957 
2958 #ifdef CONFIG_TRACING
2959 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2960 				    gfp_t gfpflags,
2961 				    int node, size_t size)
2962 {
2963 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
2964 
2965 	trace_kmalloc_node(_RET_IP_, ret,
2966 			   size, s->size, gfpflags, node);
2967 
2968 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2969 	return ret;
2970 }
2971 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2972 #endif
2973 #endif	/* CONFIG_NUMA */
2974 
2975 /*
2976  * Slow path handling. This may still be called frequently since objects
2977  * have a longer lifetime than the cpu slabs in most processing loads.
2978  *
2979  * So we still attempt to reduce cache line usage. Just take the slab
2980  * lock and free the item. If there is no additional partial page
2981  * handling required then we can return immediately.
2982  */
2983 static void __slab_free(struct kmem_cache *s, struct page *page,
2984 			void *head, void *tail, int cnt,
2985 			unsigned long addr)
2986 
2987 {
2988 	void *prior;
2989 	int was_frozen;
2990 	struct page new;
2991 	unsigned long counters;
2992 	struct kmem_cache_node *n = NULL;
2993 	unsigned long flags;
2994 
2995 	stat(s, FREE_SLOWPATH);
2996 
2997 	if (kfence_free(head))
2998 		return;
2999 
3000 	if (kmem_cache_debug(s) &&
3001 	    !free_debug_processing(s, page, head, tail, cnt, addr))
3002 		return;
3003 
3004 	do {
3005 		if (unlikely(n)) {
3006 			spin_unlock_irqrestore(&n->list_lock, flags);
3007 			n = NULL;
3008 		}
3009 		prior = page->freelist;
3010 		counters = page->counters;
3011 		set_freepointer(s, tail, prior);
3012 		new.counters = counters;
3013 		was_frozen = new.frozen;
3014 		new.inuse -= cnt;
3015 		if ((!new.inuse || !prior) && !was_frozen) {
3016 
3017 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3018 
3019 				/*
3020 				 * Slab was on no list before and will be
3021 				 * partially empty
3022 				 * We can defer the list move and instead
3023 				 * freeze it.
3024 				 */
3025 				new.frozen = 1;
3026 
3027 			} else { /* Needs to be taken off a list */
3028 
3029 				n = get_node(s, page_to_nid(page));
3030 				/*
3031 				 * Speculatively acquire the list_lock.
3032 				 * If the cmpxchg does not succeed then we may
3033 				 * drop the list_lock without any processing.
3034 				 *
3035 				 * Otherwise the list_lock will synchronize with
3036 				 * other processors updating the list of slabs.
3037 				 */
3038 				spin_lock_irqsave(&n->list_lock, flags);
3039 
3040 			}
3041 		}
3042 
3043 	} while (!cmpxchg_double_slab(s, page,
3044 		prior, counters,
3045 		head, new.counters,
3046 		"__slab_free"));
3047 
3048 	if (likely(!n)) {
3049 
3050 		if (likely(was_frozen)) {
3051 			/*
3052 			 * The list lock was not taken therefore no list
3053 			 * activity can be necessary.
3054 			 */
3055 			stat(s, FREE_FROZEN);
3056 		} else if (new.frozen) {
3057 			/*
3058 			 * If we just froze the page then put it onto the
3059 			 * per cpu partial list.
3060 			 */
3061 			put_cpu_partial(s, page, 1);
3062 			stat(s, CPU_PARTIAL_FREE);
3063 		}
3064 
3065 		return;
3066 	}
3067 
3068 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3069 		goto slab_empty;
3070 
3071 	/*
3072 	 * Objects left in the slab. If it was not on the partial list before
3073 	 * then add it.
3074 	 */
3075 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3076 		remove_full(s, n, page);
3077 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3078 		stat(s, FREE_ADD_PARTIAL);
3079 	}
3080 	spin_unlock_irqrestore(&n->list_lock, flags);
3081 	return;
3082 
3083 slab_empty:
3084 	if (prior) {
3085 		/*
3086 		 * Slab on the partial list.
3087 		 */
3088 		remove_partial(n, page);
3089 		stat(s, FREE_REMOVE_PARTIAL);
3090 	} else {
3091 		/* Slab must be on the full list */
3092 		remove_full(s, n, page);
3093 	}
3094 
3095 	spin_unlock_irqrestore(&n->list_lock, flags);
3096 	stat(s, FREE_SLAB);
3097 	discard_slab(s, page);
3098 }
3099 
3100 /*
3101  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3102  * can perform fastpath freeing without additional function calls.
3103  *
3104  * The fastpath is only possible if we are freeing to the current cpu slab
3105  * of this processor. This typically the case if we have just allocated
3106  * the item before.
3107  *
3108  * If fastpath is not possible then fall back to __slab_free where we deal
3109  * with all sorts of special processing.
3110  *
3111  * Bulk free of a freelist with several objects (all pointing to the
3112  * same page) possible by specifying head and tail ptr, plus objects
3113  * count (cnt). Bulk free indicated by tail pointer being set.
3114  */
3115 static __always_inline void do_slab_free(struct kmem_cache *s,
3116 				struct page *page, void *head, void *tail,
3117 				int cnt, unsigned long addr)
3118 {
3119 	void *tail_obj = tail ? : head;
3120 	struct kmem_cache_cpu *c;
3121 	unsigned long tid;
3122 
3123 	memcg_slab_free_hook(s, &head, 1);
3124 redo:
3125 	/*
3126 	 * Determine the currently cpus per cpu slab.
3127 	 * The cpu may change afterward. However that does not matter since
3128 	 * data is retrieved via this pointer. If we are on the same cpu
3129 	 * during the cmpxchg then the free will succeed.
3130 	 */
3131 	do {
3132 		tid = this_cpu_read(s->cpu_slab->tid);
3133 		c = raw_cpu_ptr(s->cpu_slab);
3134 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3135 		 unlikely(tid != READ_ONCE(c->tid)));
3136 
3137 	/* Same with comment on barrier() in slab_alloc_node() */
3138 	barrier();
3139 
3140 	if (likely(page == c->page)) {
3141 		void **freelist = READ_ONCE(c->freelist);
3142 
3143 		set_freepointer(s, tail_obj, freelist);
3144 
3145 		if (unlikely(!this_cpu_cmpxchg_double(
3146 				s->cpu_slab->freelist, s->cpu_slab->tid,
3147 				freelist, tid,
3148 				head, next_tid(tid)))) {
3149 
3150 			note_cmpxchg_failure("slab_free", s, tid);
3151 			goto redo;
3152 		}
3153 		stat(s, FREE_FASTPATH);
3154 	} else
3155 		__slab_free(s, page, head, tail_obj, cnt, addr);
3156 
3157 }
3158 
3159 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3160 				      void *head, void *tail, int cnt,
3161 				      unsigned long addr)
3162 {
3163 	/*
3164 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3165 	 * to remove objects, whose reuse must be delayed.
3166 	 */
3167 	if (slab_free_freelist_hook(s, &head, &tail))
3168 		do_slab_free(s, page, head, tail, cnt, addr);
3169 }
3170 
3171 #ifdef CONFIG_KASAN_GENERIC
3172 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3173 {
3174 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3175 }
3176 #endif
3177 
3178 void kmem_cache_free(struct kmem_cache *s, void *x)
3179 {
3180 	s = cache_from_obj(s, x);
3181 	if (!s)
3182 		return;
3183 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3184 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3185 }
3186 EXPORT_SYMBOL(kmem_cache_free);
3187 
3188 struct detached_freelist {
3189 	struct page *page;
3190 	void *tail;
3191 	void *freelist;
3192 	int cnt;
3193 	struct kmem_cache *s;
3194 };
3195 
3196 /*
3197  * This function progressively scans the array with free objects (with
3198  * a limited look ahead) and extract objects belonging to the same
3199  * page.  It builds a detached freelist directly within the given
3200  * page/objects.  This can happen without any need for
3201  * synchronization, because the objects are owned by running process.
3202  * The freelist is build up as a single linked list in the objects.
3203  * The idea is, that this detached freelist can then be bulk
3204  * transferred to the real freelist(s), but only requiring a single
3205  * synchronization primitive.  Look ahead in the array is limited due
3206  * to performance reasons.
3207  */
3208 static inline
3209 int build_detached_freelist(struct kmem_cache *s, size_t size,
3210 			    void **p, struct detached_freelist *df)
3211 {
3212 	size_t first_skipped_index = 0;
3213 	int lookahead = 3;
3214 	void *object;
3215 	struct page *page;
3216 
3217 	/* Always re-init detached_freelist */
3218 	df->page = NULL;
3219 
3220 	do {
3221 		object = p[--size];
3222 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3223 	} while (!object && size);
3224 
3225 	if (!object)
3226 		return 0;
3227 
3228 	page = virt_to_head_page(object);
3229 	if (!s) {
3230 		/* Handle kalloc'ed objects */
3231 		if (unlikely(!PageSlab(page))) {
3232 			BUG_ON(!PageCompound(page));
3233 			kfree_hook(object);
3234 			__free_pages(page, compound_order(page));
3235 			p[size] = NULL; /* mark object processed */
3236 			return size;
3237 		}
3238 		/* Derive kmem_cache from object */
3239 		df->s = page->slab_cache;
3240 	} else {
3241 		df->s = cache_from_obj(s, object); /* Support for memcg */
3242 	}
3243 
3244 	if (is_kfence_address(object)) {
3245 		slab_free_hook(df->s, object, false);
3246 		__kfence_free(object);
3247 		p[size] = NULL; /* mark object processed */
3248 		return size;
3249 	}
3250 
3251 	/* Start new detached freelist */
3252 	df->page = page;
3253 	set_freepointer(df->s, object, NULL);
3254 	df->tail = object;
3255 	df->freelist = object;
3256 	p[size] = NULL; /* mark object processed */
3257 	df->cnt = 1;
3258 
3259 	while (size) {
3260 		object = p[--size];
3261 		if (!object)
3262 			continue; /* Skip processed objects */
3263 
3264 		/* df->page is always set at this point */
3265 		if (df->page == virt_to_head_page(object)) {
3266 			/* Opportunity build freelist */
3267 			set_freepointer(df->s, object, df->freelist);
3268 			df->freelist = object;
3269 			df->cnt++;
3270 			p[size] = NULL; /* mark object processed */
3271 
3272 			continue;
3273 		}
3274 
3275 		/* Limit look ahead search */
3276 		if (!--lookahead)
3277 			break;
3278 
3279 		if (!first_skipped_index)
3280 			first_skipped_index = size + 1;
3281 	}
3282 
3283 	return first_skipped_index;
3284 }
3285 
3286 /* Note that interrupts must be enabled when calling this function. */
3287 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3288 {
3289 	if (WARN_ON(!size))
3290 		return;
3291 
3292 	memcg_slab_free_hook(s, p, size);
3293 	do {
3294 		struct detached_freelist df;
3295 
3296 		size = build_detached_freelist(s, size, p, &df);
3297 		if (!df.page)
3298 			continue;
3299 
3300 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3301 	} while (likely(size));
3302 }
3303 EXPORT_SYMBOL(kmem_cache_free_bulk);
3304 
3305 /* Note that interrupts must be enabled when calling this function. */
3306 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3307 			  void **p)
3308 {
3309 	struct kmem_cache_cpu *c;
3310 	int i;
3311 	struct obj_cgroup *objcg = NULL;
3312 
3313 	/* memcg and kmem_cache debug support */
3314 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3315 	if (unlikely(!s))
3316 		return false;
3317 	/*
3318 	 * Drain objects in the per cpu slab, while disabling local
3319 	 * IRQs, which protects against PREEMPT and interrupts
3320 	 * handlers invoking normal fastpath.
3321 	 */
3322 	local_irq_disable();
3323 	c = this_cpu_ptr(s->cpu_slab);
3324 
3325 	for (i = 0; i < size; i++) {
3326 		void *object = kfence_alloc(s, s->object_size, flags);
3327 
3328 		if (unlikely(object)) {
3329 			p[i] = object;
3330 			continue;
3331 		}
3332 
3333 		object = c->freelist;
3334 		if (unlikely(!object)) {
3335 			/*
3336 			 * We may have removed an object from c->freelist using
3337 			 * the fastpath in the previous iteration; in that case,
3338 			 * c->tid has not been bumped yet.
3339 			 * Since ___slab_alloc() may reenable interrupts while
3340 			 * allocating memory, we should bump c->tid now.
3341 			 */
3342 			c->tid = next_tid(c->tid);
3343 
3344 			/*
3345 			 * Invoking slow path likely have side-effect
3346 			 * of re-populating per CPU c->freelist
3347 			 */
3348 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3349 					    _RET_IP_, c);
3350 			if (unlikely(!p[i]))
3351 				goto error;
3352 
3353 			c = this_cpu_ptr(s->cpu_slab);
3354 			maybe_wipe_obj_freeptr(s, p[i]);
3355 
3356 			continue; /* goto for-loop */
3357 		}
3358 		c->freelist = get_freepointer(s, object);
3359 		p[i] = object;
3360 		maybe_wipe_obj_freeptr(s, p[i]);
3361 	}
3362 	c->tid = next_tid(c->tid);
3363 	local_irq_enable();
3364 
3365 	/*
3366 	 * memcg and kmem_cache debug support and memory initialization.
3367 	 * Done outside of the IRQ disabled fastpath loop.
3368 	 */
3369 	slab_post_alloc_hook(s, objcg, flags, size, p,
3370 				slab_want_init_on_alloc(flags, s));
3371 	return i;
3372 error:
3373 	local_irq_enable();
3374 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3375 	__kmem_cache_free_bulk(s, i, p);
3376 	return 0;
3377 }
3378 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3379 
3380 
3381 /*
3382  * Object placement in a slab is made very easy because we always start at
3383  * offset 0. If we tune the size of the object to the alignment then we can
3384  * get the required alignment by putting one properly sized object after
3385  * another.
3386  *
3387  * Notice that the allocation order determines the sizes of the per cpu
3388  * caches. Each processor has always one slab available for allocations.
3389  * Increasing the allocation order reduces the number of times that slabs
3390  * must be moved on and off the partial lists and is therefore a factor in
3391  * locking overhead.
3392  */
3393 
3394 /*
3395  * Minimum / Maximum order of slab pages. This influences locking overhead
3396  * and slab fragmentation. A higher order reduces the number of partial slabs
3397  * and increases the number of allocations possible without having to
3398  * take the list_lock.
3399  */
3400 static unsigned int slub_min_order;
3401 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3402 static unsigned int slub_min_objects;
3403 
3404 /*
3405  * Calculate the order of allocation given an slab object size.
3406  *
3407  * The order of allocation has significant impact on performance and other
3408  * system components. Generally order 0 allocations should be preferred since
3409  * order 0 does not cause fragmentation in the page allocator. Larger objects
3410  * be problematic to put into order 0 slabs because there may be too much
3411  * unused space left. We go to a higher order if more than 1/16th of the slab
3412  * would be wasted.
3413  *
3414  * In order to reach satisfactory performance we must ensure that a minimum
3415  * number of objects is in one slab. Otherwise we may generate too much
3416  * activity on the partial lists which requires taking the list_lock. This is
3417  * less a concern for large slabs though which are rarely used.
3418  *
3419  * slub_max_order specifies the order where we begin to stop considering the
3420  * number of objects in a slab as critical. If we reach slub_max_order then
3421  * we try to keep the page order as low as possible. So we accept more waste
3422  * of space in favor of a small page order.
3423  *
3424  * Higher order allocations also allow the placement of more objects in a
3425  * slab and thereby reduce object handling overhead. If the user has
3426  * requested a higher minimum order then we start with that one instead of
3427  * the smallest order which will fit the object.
3428  */
3429 static inline unsigned int slab_order(unsigned int size,
3430 		unsigned int min_objects, unsigned int max_order,
3431 		unsigned int fract_leftover)
3432 {
3433 	unsigned int min_order = slub_min_order;
3434 	unsigned int order;
3435 
3436 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3437 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3438 
3439 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3440 			order <= max_order; order++) {
3441 
3442 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3443 		unsigned int rem;
3444 
3445 		rem = slab_size % size;
3446 
3447 		if (rem <= slab_size / fract_leftover)
3448 			break;
3449 	}
3450 
3451 	return order;
3452 }
3453 
3454 static inline int calculate_order(unsigned int size)
3455 {
3456 	unsigned int order;
3457 	unsigned int min_objects;
3458 	unsigned int max_objects;
3459 	unsigned int nr_cpus;
3460 
3461 	/*
3462 	 * Attempt to find best configuration for a slab. This
3463 	 * works by first attempting to generate a layout with
3464 	 * the best configuration and backing off gradually.
3465 	 *
3466 	 * First we increase the acceptable waste in a slab. Then
3467 	 * we reduce the minimum objects required in a slab.
3468 	 */
3469 	min_objects = slub_min_objects;
3470 	if (!min_objects) {
3471 		/*
3472 		 * Some architectures will only update present cpus when
3473 		 * onlining them, so don't trust the number if it's just 1. But
3474 		 * we also don't want to use nr_cpu_ids always, as on some other
3475 		 * architectures, there can be many possible cpus, but never
3476 		 * onlined. Here we compromise between trying to avoid too high
3477 		 * order on systems that appear larger than they are, and too
3478 		 * low order on systems that appear smaller than they are.
3479 		 */
3480 		nr_cpus = num_present_cpus();
3481 		if (nr_cpus <= 1)
3482 			nr_cpus = nr_cpu_ids;
3483 		min_objects = 4 * (fls(nr_cpus) + 1);
3484 	}
3485 	max_objects = order_objects(slub_max_order, size);
3486 	min_objects = min(min_objects, max_objects);
3487 
3488 	while (min_objects > 1) {
3489 		unsigned int fraction;
3490 
3491 		fraction = 16;
3492 		while (fraction >= 4) {
3493 			order = slab_order(size, min_objects,
3494 					slub_max_order, fraction);
3495 			if (order <= slub_max_order)
3496 				return order;
3497 			fraction /= 2;
3498 		}
3499 		min_objects--;
3500 	}
3501 
3502 	/*
3503 	 * We were unable to place multiple objects in a slab. Now
3504 	 * lets see if we can place a single object there.
3505 	 */
3506 	order = slab_order(size, 1, slub_max_order, 1);
3507 	if (order <= slub_max_order)
3508 		return order;
3509 
3510 	/*
3511 	 * Doh this slab cannot be placed using slub_max_order.
3512 	 */
3513 	order = slab_order(size, 1, MAX_ORDER, 1);
3514 	if (order < MAX_ORDER)
3515 		return order;
3516 	return -ENOSYS;
3517 }
3518 
3519 static void
3520 init_kmem_cache_node(struct kmem_cache_node *n)
3521 {
3522 	n->nr_partial = 0;
3523 	spin_lock_init(&n->list_lock);
3524 	INIT_LIST_HEAD(&n->partial);
3525 #ifdef CONFIG_SLUB_DEBUG
3526 	atomic_long_set(&n->nr_slabs, 0);
3527 	atomic_long_set(&n->total_objects, 0);
3528 	INIT_LIST_HEAD(&n->full);
3529 #endif
3530 }
3531 
3532 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3533 {
3534 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3535 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3536 
3537 	/*
3538 	 * Must align to double word boundary for the double cmpxchg
3539 	 * instructions to work; see __pcpu_double_call_return_bool().
3540 	 */
3541 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3542 				     2 * sizeof(void *));
3543 
3544 	if (!s->cpu_slab)
3545 		return 0;
3546 
3547 	init_kmem_cache_cpus(s);
3548 
3549 	return 1;
3550 }
3551 
3552 static struct kmem_cache *kmem_cache_node;
3553 
3554 /*
3555  * No kmalloc_node yet so do it by hand. We know that this is the first
3556  * slab on the node for this slabcache. There are no concurrent accesses
3557  * possible.
3558  *
3559  * Note that this function only works on the kmem_cache_node
3560  * when allocating for the kmem_cache_node. This is used for bootstrapping
3561  * memory on a fresh node that has no slab structures yet.
3562  */
3563 static void early_kmem_cache_node_alloc(int node)
3564 {
3565 	struct page *page;
3566 	struct kmem_cache_node *n;
3567 
3568 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3569 
3570 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3571 
3572 	BUG_ON(!page);
3573 	if (page_to_nid(page) != node) {
3574 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3575 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3576 	}
3577 
3578 	n = page->freelist;
3579 	BUG_ON(!n);
3580 #ifdef CONFIG_SLUB_DEBUG
3581 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3582 	init_tracking(kmem_cache_node, n);
3583 #endif
3584 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3585 	page->freelist = get_freepointer(kmem_cache_node, n);
3586 	page->inuse = 1;
3587 	page->frozen = 0;
3588 	kmem_cache_node->node[node] = n;
3589 	init_kmem_cache_node(n);
3590 	inc_slabs_node(kmem_cache_node, node, page->objects);
3591 
3592 	/*
3593 	 * No locks need to be taken here as it has just been
3594 	 * initialized and there is no concurrent access.
3595 	 */
3596 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3597 }
3598 
3599 static void free_kmem_cache_nodes(struct kmem_cache *s)
3600 {
3601 	int node;
3602 	struct kmem_cache_node *n;
3603 
3604 	for_each_kmem_cache_node(s, node, n) {
3605 		s->node[node] = NULL;
3606 		kmem_cache_free(kmem_cache_node, n);
3607 	}
3608 }
3609 
3610 void __kmem_cache_release(struct kmem_cache *s)
3611 {
3612 	cache_random_seq_destroy(s);
3613 	free_percpu(s->cpu_slab);
3614 	free_kmem_cache_nodes(s);
3615 }
3616 
3617 static int init_kmem_cache_nodes(struct kmem_cache *s)
3618 {
3619 	int node;
3620 
3621 	for_each_node_mask(node, slab_nodes) {
3622 		struct kmem_cache_node *n;
3623 
3624 		if (slab_state == DOWN) {
3625 			early_kmem_cache_node_alloc(node);
3626 			continue;
3627 		}
3628 		n = kmem_cache_alloc_node(kmem_cache_node,
3629 						GFP_KERNEL, node);
3630 
3631 		if (!n) {
3632 			free_kmem_cache_nodes(s);
3633 			return 0;
3634 		}
3635 
3636 		init_kmem_cache_node(n);
3637 		s->node[node] = n;
3638 	}
3639 	return 1;
3640 }
3641 
3642 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3643 {
3644 	if (min < MIN_PARTIAL)
3645 		min = MIN_PARTIAL;
3646 	else if (min > MAX_PARTIAL)
3647 		min = MAX_PARTIAL;
3648 	s->min_partial = min;
3649 }
3650 
3651 static void set_cpu_partial(struct kmem_cache *s)
3652 {
3653 #ifdef CONFIG_SLUB_CPU_PARTIAL
3654 	/*
3655 	 * cpu_partial determined the maximum number of objects kept in the
3656 	 * per cpu partial lists of a processor.
3657 	 *
3658 	 * Per cpu partial lists mainly contain slabs that just have one
3659 	 * object freed. If they are used for allocation then they can be
3660 	 * filled up again with minimal effort. The slab will never hit the
3661 	 * per node partial lists and therefore no locking will be required.
3662 	 *
3663 	 * This setting also determines
3664 	 *
3665 	 * A) The number of objects from per cpu partial slabs dumped to the
3666 	 *    per node list when we reach the limit.
3667 	 * B) The number of objects in cpu partial slabs to extract from the
3668 	 *    per node list when we run out of per cpu objects. We only fetch
3669 	 *    50% to keep some capacity around for frees.
3670 	 */
3671 	if (!kmem_cache_has_cpu_partial(s))
3672 		slub_set_cpu_partial(s, 0);
3673 	else if (s->size >= PAGE_SIZE)
3674 		slub_set_cpu_partial(s, 2);
3675 	else if (s->size >= 1024)
3676 		slub_set_cpu_partial(s, 6);
3677 	else if (s->size >= 256)
3678 		slub_set_cpu_partial(s, 13);
3679 	else
3680 		slub_set_cpu_partial(s, 30);
3681 #endif
3682 }
3683 
3684 /*
3685  * calculate_sizes() determines the order and the distribution of data within
3686  * a slab object.
3687  */
3688 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3689 {
3690 	slab_flags_t flags = s->flags;
3691 	unsigned int size = s->object_size;
3692 	unsigned int freepointer_area;
3693 	unsigned int order;
3694 
3695 	/*
3696 	 * Round up object size to the next word boundary. We can only
3697 	 * place the free pointer at word boundaries and this determines
3698 	 * the possible location of the free pointer.
3699 	 */
3700 	size = ALIGN(size, sizeof(void *));
3701 	/*
3702 	 * This is the area of the object where a freepointer can be
3703 	 * safely written. If redzoning adds more to the inuse size, we
3704 	 * can't use that portion for writing the freepointer, so
3705 	 * s->offset must be limited within this for the general case.
3706 	 */
3707 	freepointer_area = size;
3708 
3709 #ifdef CONFIG_SLUB_DEBUG
3710 	/*
3711 	 * Determine if we can poison the object itself. If the user of
3712 	 * the slab may touch the object after free or before allocation
3713 	 * then we should never poison the object itself.
3714 	 */
3715 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3716 			!s->ctor)
3717 		s->flags |= __OBJECT_POISON;
3718 	else
3719 		s->flags &= ~__OBJECT_POISON;
3720 
3721 
3722 	/*
3723 	 * If we are Redzoning then check if there is some space between the
3724 	 * end of the object and the free pointer. If not then add an
3725 	 * additional word to have some bytes to store Redzone information.
3726 	 */
3727 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3728 		size += sizeof(void *);
3729 #endif
3730 
3731 	/*
3732 	 * With that we have determined the number of bytes in actual use
3733 	 * by the object. This is the potential offset to the free pointer.
3734 	 */
3735 	s->inuse = size;
3736 
3737 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3738 		s->ctor)) {
3739 		/*
3740 		 * Relocate free pointer after the object if it is not
3741 		 * permitted to overwrite the first word of the object on
3742 		 * kmem_cache_free.
3743 		 *
3744 		 * This is the case if we do RCU, have a constructor or
3745 		 * destructor or are poisoning the objects.
3746 		 *
3747 		 * The assumption that s->offset >= s->inuse means free
3748 		 * pointer is outside of the object is used in the
3749 		 * freeptr_outside_object() function. If that is no
3750 		 * longer true, the function needs to be modified.
3751 		 */
3752 		s->offset = size;
3753 		size += sizeof(void *);
3754 	} else if (freepointer_area > sizeof(void *)) {
3755 		/*
3756 		 * Store freelist pointer near middle of object to keep
3757 		 * it away from the edges of the object to avoid small
3758 		 * sized over/underflows from neighboring allocations.
3759 		 */
3760 		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3761 	}
3762 
3763 #ifdef CONFIG_SLUB_DEBUG
3764 	if (flags & SLAB_STORE_USER)
3765 		/*
3766 		 * Need to store information about allocs and frees after
3767 		 * the object.
3768 		 */
3769 		size += 2 * sizeof(struct track);
3770 #endif
3771 
3772 	kasan_cache_create(s, &size, &s->flags);
3773 #ifdef CONFIG_SLUB_DEBUG
3774 	if (flags & SLAB_RED_ZONE) {
3775 		/*
3776 		 * Add some empty padding so that we can catch
3777 		 * overwrites from earlier objects rather than let
3778 		 * tracking information or the free pointer be
3779 		 * corrupted if a user writes before the start
3780 		 * of the object.
3781 		 */
3782 		size += sizeof(void *);
3783 
3784 		s->red_left_pad = sizeof(void *);
3785 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3786 		size += s->red_left_pad;
3787 	}
3788 #endif
3789 
3790 	/*
3791 	 * SLUB stores one object immediately after another beginning from
3792 	 * offset 0. In order to align the objects we have to simply size
3793 	 * each object to conform to the alignment.
3794 	 */
3795 	size = ALIGN(size, s->align);
3796 	s->size = size;
3797 	s->reciprocal_size = reciprocal_value(size);
3798 	if (forced_order >= 0)
3799 		order = forced_order;
3800 	else
3801 		order = calculate_order(size);
3802 
3803 	if ((int)order < 0)
3804 		return 0;
3805 
3806 	s->allocflags = 0;
3807 	if (order)
3808 		s->allocflags |= __GFP_COMP;
3809 
3810 	if (s->flags & SLAB_CACHE_DMA)
3811 		s->allocflags |= GFP_DMA;
3812 
3813 	if (s->flags & SLAB_CACHE_DMA32)
3814 		s->allocflags |= GFP_DMA32;
3815 
3816 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3817 		s->allocflags |= __GFP_RECLAIMABLE;
3818 
3819 	/*
3820 	 * Determine the number of objects per slab
3821 	 */
3822 	s->oo = oo_make(order, size);
3823 	s->min = oo_make(get_order(size), size);
3824 	if (oo_objects(s->oo) > oo_objects(s->max))
3825 		s->max = s->oo;
3826 
3827 	return !!oo_objects(s->oo);
3828 }
3829 
3830 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3831 {
3832 	s->flags = kmem_cache_flags(s->size, flags, s->name);
3833 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3834 	s->random = get_random_long();
3835 #endif
3836 
3837 	if (!calculate_sizes(s, -1))
3838 		goto error;
3839 	if (disable_higher_order_debug) {
3840 		/*
3841 		 * Disable debugging flags that store metadata if the min slab
3842 		 * order increased.
3843 		 */
3844 		if (get_order(s->size) > get_order(s->object_size)) {
3845 			s->flags &= ~DEBUG_METADATA_FLAGS;
3846 			s->offset = 0;
3847 			if (!calculate_sizes(s, -1))
3848 				goto error;
3849 		}
3850 	}
3851 
3852 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3853     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3854 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3855 		/* Enable fast mode */
3856 		s->flags |= __CMPXCHG_DOUBLE;
3857 #endif
3858 
3859 	/*
3860 	 * The larger the object size is, the more pages we want on the partial
3861 	 * list to avoid pounding the page allocator excessively.
3862 	 */
3863 	set_min_partial(s, ilog2(s->size) / 2);
3864 
3865 	set_cpu_partial(s);
3866 
3867 #ifdef CONFIG_NUMA
3868 	s->remote_node_defrag_ratio = 1000;
3869 #endif
3870 
3871 	/* Initialize the pre-computed randomized freelist if slab is up */
3872 	if (slab_state >= UP) {
3873 		if (init_cache_random_seq(s))
3874 			goto error;
3875 	}
3876 
3877 	if (!init_kmem_cache_nodes(s))
3878 		goto error;
3879 
3880 	if (alloc_kmem_cache_cpus(s))
3881 		return 0;
3882 
3883 	free_kmem_cache_nodes(s);
3884 error:
3885 	return -EINVAL;
3886 }
3887 
3888 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3889 			      const char *text)
3890 {
3891 #ifdef CONFIG_SLUB_DEBUG
3892 	void *addr = page_address(page);
3893 	unsigned long *map;
3894 	void *p;
3895 
3896 	slab_err(s, page, text, s->name);
3897 	slab_lock(page);
3898 
3899 	map = get_map(s, page);
3900 	for_each_object(p, s, addr, page->objects) {
3901 
3902 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3903 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3904 			print_tracking(s, p);
3905 		}
3906 	}
3907 	put_map(map);
3908 	slab_unlock(page);
3909 #endif
3910 }
3911 
3912 /*
3913  * Attempt to free all partial slabs on a node.
3914  * This is called from __kmem_cache_shutdown(). We must take list_lock
3915  * because sysfs file might still access partial list after the shutdowning.
3916  */
3917 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3918 {
3919 	LIST_HEAD(discard);
3920 	struct page *page, *h;
3921 
3922 	BUG_ON(irqs_disabled());
3923 	spin_lock_irq(&n->list_lock);
3924 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3925 		if (!page->inuse) {
3926 			remove_partial(n, page);
3927 			list_add(&page->slab_list, &discard);
3928 		} else {
3929 			list_slab_objects(s, page,
3930 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3931 		}
3932 	}
3933 	spin_unlock_irq(&n->list_lock);
3934 
3935 	list_for_each_entry_safe(page, h, &discard, slab_list)
3936 		discard_slab(s, page);
3937 }
3938 
3939 bool __kmem_cache_empty(struct kmem_cache *s)
3940 {
3941 	int node;
3942 	struct kmem_cache_node *n;
3943 
3944 	for_each_kmem_cache_node(s, node, n)
3945 		if (n->nr_partial || slabs_node(s, node))
3946 			return false;
3947 	return true;
3948 }
3949 
3950 /*
3951  * Release all resources used by a slab cache.
3952  */
3953 int __kmem_cache_shutdown(struct kmem_cache *s)
3954 {
3955 	int node;
3956 	struct kmem_cache_node *n;
3957 
3958 	flush_all(s);
3959 	/* Attempt to free all objects */
3960 	for_each_kmem_cache_node(s, node, n) {
3961 		free_partial(s, n);
3962 		if (n->nr_partial || slabs_node(s, node))
3963 			return 1;
3964 	}
3965 	return 0;
3966 }
3967 
3968 #ifdef CONFIG_PRINTK
3969 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3970 {
3971 	void *base;
3972 	int __maybe_unused i;
3973 	unsigned int objnr;
3974 	void *objp;
3975 	void *objp0;
3976 	struct kmem_cache *s = page->slab_cache;
3977 	struct track __maybe_unused *trackp;
3978 
3979 	kpp->kp_ptr = object;
3980 	kpp->kp_page = page;
3981 	kpp->kp_slab_cache = s;
3982 	base = page_address(page);
3983 	objp0 = kasan_reset_tag(object);
3984 #ifdef CONFIG_SLUB_DEBUG
3985 	objp = restore_red_left(s, objp0);
3986 #else
3987 	objp = objp0;
3988 #endif
3989 	objnr = obj_to_index(s, page, objp);
3990 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3991 	objp = base + s->size * objnr;
3992 	kpp->kp_objp = objp;
3993 	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
3994 	    !(s->flags & SLAB_STORE_USER))
3995 		return;
3996 #ifdef CONFIG_SLUB_DEBUG
3997 	trackp = get_track(s, objp, TRACK_ALLOC);
3998 	kpp->kp_ret = (void *)trackp->addr;
3999 #ifdef CONFIG_STACKTRACE
4000 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4001 		kpp->kp_stack[i] = (void *)trackp->addrs[i];
4002 		if (!kpp->kp_stack[i])
4003 			break;
4004 	}
4005 #endif
4006 #endif
4007 }
4008 #endif
4009 
4010 /********************************************************************
4011  *		Kmalloc subsystem
4012  *******************************************************************/
4013 
4014 static int __init setup_slub_min_order(char *str)
4015 {
4016 	get_option(&str, (int *)&slub_min_order);
4017 
4018 	return 1;
4019 }
4020 
4021 __setup("slub_min_order=", setup_slub_min_order);
4022 
4023 static int __init setup_slub_max_order(char *str)
4024 {
4025 	get_option(&str, (int *)&slub_max_order);
4026 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4027 
4028 	return 1;
4029 }
4030 
4031 __setup("slub_max_order=", setup_slub_max_order);
4032 
4033 static int __init setup_slub_min_objects(char *str)
4034 {
4035 	get_option(&str, (int *)&slub_min_objects);
4036 
4037 	return 1;
4038 }
4039 
4040 __setup("slub_min_objects=", setup_slub_min_objects);
4041 
4042 void *__kmalloc(size_t size, gfp_t flags)
4043 {
4044 	struct kmem_cache *s;
4045 	void *ret;
4046 
4047 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4048 		return kmalloc_large(size, flags);
4049 
4050 	s = kmalloc_slab(size, flags);
4051 
4052 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4053 		return s;
4054 
4055 	ret = slab_alloc(s, flags, _RET_IP_, size);
4056 
4057 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4058 
4059 	ret = kasan_kmalloc(s, ret, size, flags);
4060 
4061 	return ret;
4062 }
4063 EXPORT_SYMBOL(__kmalloc);
4064 
4065 #ifdef CONFIG_NUMA
4066 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4067 {
4068 	struct page *page;
4069 	void *ptr = NULL;
4070 	unsigned int order = get_order(size);
4071 
4072 	flags |= __GFP_COMP;
4073 	page = alloc_pages_node(node, flags, order);
4074 	if (page) {
4075 		ptr = page_address(page);
4076 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4077 				      PAGE_SIZE << order);
4078 	}
4079 
4080 	return kmalloc_large_node_hook(ptr, size, flags);
4081 }
4082 
4083 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4084 {
4085 	struct kmem_cache *s;
4086 	void *ret;
4087 
4088 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4089 		ret = kmalloc_large_node(size, flags, node);
4090 
4091 		trace_kmalloc_node(_RET_IP_, ret,
4092 				   size, PAGE_SIZE << get_order(size),
4093 				   flags, node);
4094 
4095 		return ret;
4096 	}
4097 
4098 	s = kmalloc_slab(size, flags);
4099 
4100 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4101 		return s;
4102 
4103 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4104 
4105 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4106 
4107 	ret = kasan_kmalloc(s, ret, size, flags);
4108 
4109 	return ret;
4110 }
4111 EXPORT_SYMBOL(__kmalloc_node);
4112 #endif	/* CONFIG_NUMA */
4113 
4114 #ifdef CONFIG_HARDENED_USERCOPY
4115 /*
4116  * Rejects incorrectly sized objects and objects that are to be copied
4117  * to/from userspace but do not fall entirely within the containing slab
4118  * cache's usercopy region.
4119  *
4120  * Returns NULL if check passes, otherwise const char * to name of cache
4121  * to indicate an error.
4122  */
4123 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4124 			 bool to_user)
4125 {
4126 	struct kmem_cache *s;
4127 	unsigned int offset;
4128 	size_t object_size;
4129 	bool is_kfence = is_kfence_address(ptr);
4130 
4131 	ptr = kasan_reset_tag(ptr);
4132 
4133 	/* Find object and usable object size. */
4134 	s = page->slab_cache;
4135 
4136 	/* Reject impossible pointers. */
4137 	if (ptr < page_address(page))
4138 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4139 			       to_user, 0, n);
4140 
4141 	/* Find offset within object. */
4142 	if (is_kfence)
4143 		offset = ptr - kfence_object_start(ptr);
4144 	else
4145 		offset = (ptr - page_address(page)) % s->size;
4146 
4147 	/* Adjust for redzone and reject if within the redzone. */
4148 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4149 		if (offset < s->red_left_pad)
4150 			usercopy_abort("SLUB object in left red zone",
4151 				       s->name, to_user, offset, n);
4152 		offset -= s->red_left_pad;
4153 	}
4154 
4155 	/* Allow address range falling entirely within usercopy region. */
4156 	if (offset >= s->useroffset &&
4157 	    offset - s->useroffset <= s->usersize &&
4158 	    n <= s->useroffset - offset + s->usersize)
4159 		return;
4160 
4161 	/*
4162 	 * If the copy is still within the allocated object, produce
4163 	 * a warning instead of rejecting the copy. This is intended
4164 	 * to be a temporary method to find any missing usercopy
4165 	 * whitelists.
4166 	 */
4167 	object_size = slab_ksize(s);
4168 	if (usercopy_fallback &&
4169 	    offset <= object_size && n <= object_size - offset) {
4170 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4171 		return;
4172 	}
4173 
4174 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4175 }
4176 #endif /* CONFIG_HARDENED_USERCOPY */
4177 
4178 size_t __ksize(const void *object)
4179 {
4180 	struct page *page;
4181 
4182 	if (unlikely(object == ZERO_SIZE_PTR))
4183 		return 0;
4184 
4185 	page = virt_to_head_page(object);
4186 
4187 	if (unlikely(!PageSlab(page))) {
4188 		WARN_ON(!PageCompound(page));
4189 		return page_size(page);
4190 	}
4191 
4192 	return slab_ksize(page->slab_cache);
4193 }
4194 EXPORT_SYMBOL(__ksize);
4195 
4196 void kfree(const void *x)
4197 {
4198 	struct page *page;
4199 	void *object = (void *)x;
4200 
4201 	trace_kfree(_RET_IP_, x);
4202 
4203 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4204 		return;
4205 
4206 	page = virt_to_head_page(x);
4207 	if (unlikely(!PageSlab(page))) {
4208 		unsigned int order = compound_order(page);
4209 
4210 		BUG_ON(!PageCompound(page));
4211 		kfree_hook(object);
4212 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4213 				      -(PAGE_SIZE << order));
4214 		__free_pages(page, order);
4215 		return;
4216 	}
4217 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4218 }
4219 EXPORT_SYMBOL(kfree);
4220 
4221 #define SHRINK_PROMOTE_MAX 32
4222 
4223 /*
4224  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4225  * up most to the head of the partial lists. New allocations will then
4226  * fill those up and thus they can be removed from the partial lists.
4227  *
4228  * The slabs with the least items are placed last. This results in them
4229  * being allocated from last increasing the chance that the last objects
4230  * are freed in them.
4231  */
4232 int __kmem_cache_shrink(struct kmem_cache *s)
4233 {
4234 	int node;
4235 	int i;
4236 	struct kmem_cache_node *n;
4237 	struct page *page;
4238 	struct page *t;
4239 	struct list_head discard;
4240 	struct list_head promote[SHRINK_PROMOTE_MAX];
4241 	unsigned long flags;
4242 	int ret = 0;
4243 
4244 	flush_all(s);
4245 	for_each_kmem_cache_node(s, node, n) {
4246 		INIT_LIST_HEAD(&discard);
4247 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4248 			INIT_LIST_HEAD(promote + i);
4249 
4250 		spin_lock_irqsave(&n->list_lock, flags);
4251 
4252 		/*
4253 		 * Build lists of slabs to discard or promote.
4254 		 *
4255 		 * Note that concurrent frees may occur while we hold the
4256 		 * list_lock. page->inuse here is the upper limit.
4257 		 */
4258 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4259 			int free = page->objects - page->inuse;
4260 
4261 			/* Do not reread page->inuse */
4262 			barrier();
4263 
4264 			/* We do not keep full slabs on the list */
4265 			BUG_ON(free <= 0);
4266 
4267 			if (free == page->objects) {
4268 				list_move(&page->slab_list, &discard);
4269 				n->nr_partial--;
4270 			} else if (free <= SHRINK_PROMOTE_MAX)
4271 				list_move(&page->slab_list, promote + free - 1);
4272 		}
4273 
4274 		/*
4275 		 * Promote the slabs filled up most to the head of the
4276 		 * partial list.
4277 		 */
4278 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4279 			list_splice(promote + i, &n->partial);
4280 
4281 		spin_unlock_irqrestore(&n->list_lock, flags);
4282 
4283 		/* Release empty slabs */
4284 		list_for_each_entry_safe(page, t, &discard, slab_list)
4285 			discard_slab(s, page);
4286 
4287 		if (slabs_node(s, node))
4288 			ret = 1;
4289 	}
4290 
4291 	return ret;
4292 }
4293 
4294 static int slab_mem_going_offline_callback(void *arg)
4295 {
4296 	struct kmem_cache *s;
4297 
4298 	mutex_lock(&slab_mutex);
4299 	list_for_each_entry(s, &slab_caches, list)
4300 		__kmem_cache_shrink(s);
4301 	mutex_unlock(&slab_mutex);
4302 
4303 	return 0;
4304 }
4305 
4306 static void slab_mem_offline_callback(void *arg)
4307 {
4308 	struct memory_notify *marg = arg;
4309 	int offline_node;
4310 
4311 	offline_node = marg->status_change_nid_normal;
4312 
4313 	/*
4314 	 * If the node still has available memory. we need kmem_cache_node
4315 	 * for it yet.
4316 	 */
4317 	if (offline_node < 0)
4318 		return;
4319 
4320 	mutex_lock(&slab_mutex);
4321 	node_clear(offline_node, slab_nodes);
4322 	/*
4323 	 * We no longer free kmem_cache_node structures here, as it would be
4324 	 * racy with all get_node() users, and infeasible to protect them with
4325 	 * slab_mutex.
4326 	 */
4327 	mutex_unlock(&slab_mutex);
4328 }
4329 
4330 static int slab_mem_going_online_callback(void *arg)
4331 {
4332 	struct kmem_cache_node *n;
4333 	struct kmem_cache *s;
4334 	struct memory_notify *marg = arg;
4335 	int nid = marg->status_change_nid_normal;
4336 	int ret = 0;
4337 
4338 	/*
4339 	 * If the node's memory is already available, then kmem_cache_node is
4340 	 * already created. Nothing to do.
4341 	 */
4342 	if (nid < 0)
4343 		return 0;
4344 
4345 	/*
4346 	 * We are bringing a node online. No memory is available yet. We must
4347 	 * allocate a kmem_cache_node structure in order to bring the node
4348 	 * online.
4349 	 */
4350 	mutex_lock(&slab_mutex);
4351 	list_for_each_entry(s, &slab_caches, list) {
4352 		/*
4353 		 * The structure may already exist if the node was previously
4354 		 * onlined and offlined.
4355 		 */
4356 		if (get_node(s, nid))
4357 			continue;
4358 		/*
4359 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4360 		 *      since memory is not yet available from the node that
4361 		 *      is brought up.
4362 		 */
4363 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4364 		if (!n) {
4365 			ret = -ENOMEM;
4366 			goto out;
4367 		}
4368 		init_kmem_cache_node(n);
4369 		s->node[nid] = n;
4370 	}
4371 	/*
4372 	 * Any cache created after this point will also have kmem_cache_node
4373 	 * initialized for the new node.
4374 	 */
4375 	node_set(nid, slab_nodes);
4376 out:
4377 	mutex_unlock(&slab_mutex);
4378 	return ret;
4379 }
4380 
4381 static int slab_memory_callback(struct notifier_block *self,
4382 				unsigned long action, void *arg)
4383 {
4384 	int ret = 0;
4385 
4386 	switch (action) {
4387 	case MEM_GOING_ONLINE:
4388 		ret = slab_mem_going_online_callback(arg);
4389 		break;
4390 	case MEM_GOING_OFFLINE:
4391 		ret = slab_mem_going_offline_callback(arg);
4392 		break;
4393 	case MEM_OFFLINE:
4394 	case MEM_CANCEL_ONLINE:
4395 		slab_mem_offline_callback(arg);
4396 		break;
4397 	case MEM_ONLINE:
4398 	case MEM_CANCEL_OFFLINE:
4399 		break;
4400 	}
4401 	if (ret)
4402 		ret = notifier_from_errno(ret);
4403 	else
4404 		ret = NOTIFY_OK;
4405 	return ret;
4406 }
4407 
4408 static struct notifier_block slab_memory_callback_nb = {
4409 	.notifier_call = slab_memory_callback,
4410 	.priority = SLAB_CALLBACK_PRI,
4411 };
4412 
4413 /********************************************************************
4414  *			Basic setup of slabs
4415  *******************************************************************/
4416 
4417 /*
4418  * Used for early kmem_cache structures that were allocated using
4419  * the page allocator. Allocate them properly then fix up the pointers
4420  * that may be pointing to the wrong kmem_cache structure.
4421  */
4422 
4423 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4424 {
4425 	int node;
4426 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4427 	struct kmem_cache_node *n;
4428 
4429 	memcpy(s, static_cache, kmem_cache->object_size);
4430 
4431 	/*
4432 	 * This runs very early, and only the boot processor is supposed to be
4433 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4434 	 * IPIs around.
4435 	 */
4436 	__flush_cpu_slab(s, smp_processor_id());
4437 	for_each_kmem_cache_node(s, node, n) {
4438 		struct page *p;
4439 
4440 		list_for_each_entry(p, &n->partial, slab_list)
4441 			p->slab_cache = s;
4442 
4443 #ifdef CONFIG_SLUB_DEBUG
4444 		list_for_each_entry(p, &n->full, slab_list)
4445 			p->slab_cache = s;
4446 #endif
4447 	}
4448 	list_add(&s->list, &slab_caches);
4449 	return s;
4450 }
4451 
4452 void __init kmem_cache_init(void)
4453 {
4454 	static __initdata struct kmem_cache boot_kmem_cache,
4455 		boot_kmem_cache_node;
4456 	int node;
4457 
4458 	if (debug_guardpage_minorder())
4459 		slub_max_order = 0;
4460 
4461 	kmem_cache_node = &boot_kmem_cache_node;
4462 	kmem_cache = &boot_kmem_cache;
4463 
4464 	/*
4465 	 * Initialize the nodemask for which we will allocate per node
4466 	 * structures. Here we don't need taking slab_mutex yet.
4467 	 */
4468 	for_each_node_state(node, N_NORMAL_MEMORY)
4469 		node_set(node, slab_nodes);
4470 
4471 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4472 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4473 
4474 	register_hotmemory_notifier(&slab_memory_callback_nb);
4475 
4476 	/* Able to allocate the per node structures */
4477 	slab_state = PARTIAL;
4478 
4479 	create_boot_cache(kmem_cache, "kmem_cache",
4480 			offsetof(struct kmem_cache, node) +
4481 				nr_node_ids * sizeof(struct kmem_cache_node *),
4482 		       SLAB_HWCACHE_ALIGN, 0, 0);
4483 
4484 	kmem_cache = bootstrap(&boot_kmem_cache);
4485 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4486 
4487 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4488 	setup_kmalloc_cache_index_table();
4489 	create_kmalloc_caches(0);
4490 
4491 	/* Setup random freelists for each cache */
4492 	init_freelist_randomization();
4493 
4494 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4495 				  slub_cpu_dead);
4496 
4497 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4498 		cache_line_size(),
4499 		slub_min_order, slub_max_order, slub_min_objects,
4500 		nr_cpu_ids, nr_node_ids);
4501 }
4502 
4503 void __init kmem_cache_init_late(void)
4504 {
4505 }
4506 
4507 struct kmem_cache *
4508 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4509 		   slab_flags_t flags, void (*ctor)(void *))
4510 {
4511 	struct kmem_cache *s;
4512 
4513 	s = find_mergeable(size, align, flags, name, ctor);
4514 	if (s) {
4515 		s->refcount++;
4516 
4517 		/*
4518 		 * Adjust the object sizes so that we clear
4519 		 * the complete object on kzalloc.
4520 		 */
4521 		s->object_size = max(s->object_size, size);
4522 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4523 
4524 		if (sysfs_slab_alias(s, name)) {
4525 			s->refcount--;
4526 			s = NULL;
4527 		}
4528 	}
4529 
4530 	return s;
4531 }
4532 
4533 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4534 {
4535 	int err;
4536 
4537 	err = kmem_cache_open(s, flags);
4538 	if (err)
4539 		return err;
4540 
4541 	/* Mutex is not taken during early boot */
4542 	if (slab_state <= UP)
4543 		return 0;
4544 
4545 	err = sysfs_slab_add(s);
4546 	if (err)
4547 		__kmem_cache_release(s);
4548 
4549 	return err;
4550 }
4551 
4552 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4553 {
4554 	struct kmem_cache *s;
4555 	void *ret;
4556 
4557 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4558 		return kmalloc_large(size, gfpflags);
4559 
4560 	s = kmalloc_slab(size, gfpflags);
4561 
4562 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4563 		return s;
4564 
4565 	ret = slab_alloc(s, gfpflags, caller, size);
4566 
4567 	/* Honor the call site pointer we received. */
4568 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4569 
4570 	return ret;
4571 }
4572 EXPORT_SYMBOL(__kmalloc_track_caller);
4573 
4574 #ifdef CONFIG_NUMA
4575 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4576 					int node, unsigned long caller)
4577 {
4578 	struct kmem_cache *s;
4579 	void *ret;
4580 
4581 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4582 		ret = kmalloc_large_node(size, gfpflags, node);
4583 
4584 		trace_kmalloc_node(caller, ret,
4585 				   size, PAGE_SIZE << get_order(size),
4586 				   gfpflags, node);
4587 
4588 		return ret;
4589 	}
4590 
4591 	s = kmalloc_slab(size, gfpflags);
4592 
4593 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4594 		return s;
4595 
4596 	ret = slab_alloc_node(s, gfpflags, node, caller, size);
4597 
4598 	/* Honor the call site pointer we received. */
4599 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4600 
4601 	return ret;
4602 }
4603 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4604 #endif
4605 
4606 #ifdef CONFIG_SYSFS
4607 static int count_inuse(struct page *page)
4608 {
4609 	return page->inuse;
4610 }
4611 
4612 static int count_total(struct page *page)
4613 {
4614 	return page->objects;
4615 }
4616 #endif
4617 
4618 #ifdef CONFIG_SLUB_DEBUG
4619 static void validate_slab(struct kmem_cache *s, struct page *page)
4620 {
4621 	void *p;
4622 	void *addr = page_address(page);
4623 	unsigned long *map;
4624 
4625 	slab_lock(page);
4626 
4627 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4628 		goto unlock;
4629 
4630 	/* Now we know that a valid freelist exists */
4631 	map = get_map(s, page);
4632 	for_each_object(p, s, addr, page->objects) {
4633 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4634 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4635 
4636 		if (!check_object(s, page, p, val))
4637 			break;
4638 	}
4639 	put_map(map);
4640 unlock:
4641 	slab_unlock(page);
4642 }
4643 
4644 static int validate_slab_node(struct kmem_cache *s,
4645 		struct kmem_cache_node *n)
4646 {
4647 	unsigned long count = 0;
4648 	struct page *page;
4649 	unsigned long flags;
4650 
4651 	spin_lock_irqsave(&n->list_lock, flags);
4652 
4653 	list_for_each_entry(page, &n->partial, slab_list) {
4654 		validate_slab(s, page);
4655 		count++;
4656 	}
4657 	if (count != n->nr_partial)
4658 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4659 		       s->name, count, n->nr_partial);
4660 
4661 	if (!(s->flags & SLAB_STORE_USER))
4662 		goto out;
4663 
4664 	list_for_each_entry(page, &n->full, slab_list) {
4665 		validate_slab(s, page);
4666 		count++;
4667 	}
4668 	if (count != atomic_long_read(&n->nr_slabs))
4669 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4670 		       s->name, count, atomic_long_read(&n->nr_slabs));
4671 
4672 out:
4673 	spin_unlock_irqrestore(&n->list_lock, flags);
4674 	return count;
4675 }
4676 
4677 static long validate_slab_cache(struct kmem_cache *s)
4678 {
4679 	int node;
4680 	unsigned long count = 0;
4681 	struct kmem_cache_node *n;
4682 
4683 	flush_all(s);
4684 	for_each_kmem_cache_node(s, node, n)
4685 		count += validate_slab_node(s, n);
4686 
4687 	return count;
4688 }
4689 /*
4690  * Generate lists of code addresses where slabcache objects are allocated
4691  * and freed.
4692  */
4693 
4694 struct location {
4695 	unsigned long count;
4696 	unsigned long addr;
4697 	long long sum_time;
4698 	long min_time;
4699 	long max_time;
4700 	long min_pid;
4701 	long max_pid;
4702 	DECLARE_BITMAP(cpus, NR_CPUS);
4703 	nodemask_t nodes;
4704 };
4705 
4706 struct loc_track {
4707 	unsigned long max;
4708 	unsigned long count;
4709 	struct location *loc;
4710 };
4711 
4712 static void free_loc_track(struct loc_track *t)
4713 {
4714 	if (t->max)
4715 		free_pages((unsigned long)t->loc,
4716 			get_order(sizeof(struct location) * t->max));
4717 }
4718 
4719 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4720 {
4721 	struct location *l;
4722 	int order;
4723 
4724 	order = get_order(sizeof(struct location) * max);
4725 
4726 	l = (void *)__get_free_pages(flags, order);
4727 	if (!l)
4728 		return 0;
4729 
4730 	if (t->count) {
4731 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4732 		free_loc_track(t);
4733 	}
4734 	t->max = max;
4735 	t->loc = l;
4736 	return 1;
4737 }
4738 
4739 static int add_location(struct loc_track *t, struct kmem_cache *s,
4740 				const struct track *track)
4741 {
4742 	long start, end, pos;
4743 	struct location *l;
4744 	unsigned long caddr;
4745 	unsigned long age = jiffies - track->when;
4746 
4747 	start = -1;
4748 	end = t->count;
4749 
4750 	for ( ; ; ) {
4751 		pos = start + (end - start + 1) / 2;
4752 
4753 		/*
4754 		 * There is nothing at "end". If we end up there
4755 		 * we need to add something to before end.
4756 		 */
4757 		if (pos == end)
4758 			break;
4759 
4760 		caddr = t->loc[pos].addr;
4761 		if (track->addr == caddr) {
4762 
4763 			l = &t->loc[pos];
4764 			l->count++;
4765 			if (track->when) {
4766 				l->sum_time += age;
4767 				if (age < l->min_time)
4768 					l->min_time = age;
4769 				if (age > l->max_time)
4770 					l->max_time = age;
4771 
4772 				if (track->pid < l->min_pid)
4773 					l->min_pid = track->pid;
4774 				if (track->pid > l->max_pid)
4775 					l->max_pid = track->pid;
4776 
4777 				cpumask_set_cpu(track->cpu,
4778 						to_cpumask(l->cpus));
4779 			}
4780 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4781 			return 1;
4782 		}
4783 
4784 		if (track->addr < caddr)
4785 			end = pos;
4786 		else
4787 			start = pos;
4788 	}
4789 
4790 	/*
4791 	 * Not found. Insert new tracking element.
4792 	 */
4793 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4794 		return 0;
4795 
4796 	l = t->loc + pos;
4797 	if (pos < t->count)
4798 		memmove(l + 1, l,
4799 			(t->count - pos) * sizeof(struct location));
4800 	t->count++;
4801 	l->count = 1;
4802 	l->addr = track->addr;
4803 	l->sum_time = age;
4804 	l->min_time = age;
4805 	l->max_time = age;
4806 	l->min_pid = track->pid;
4807 	l->max_pid = track->pid;
4808 	cpumask_clear(to_cpumask(l->cpus));
4809 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4810 	nodes_clear(l->nodes);
4811 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4812 	return 1;
4813 }
4814 
4815 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4816 		struct page *page, enum track_item alloc)
4817 {
4818 	void *addr = page_address(page);
4819 	void *p;
4820 	unsigned long *map;
4821 
4822 	map = get_map(s, page);
4823 	for_each_object(p, s, addr, page->objects)
4824 		if (!test_bit(__obj_to_index(s, addr, p), map))
4825 			add_location(t, s, get_track(s, p, alloc));
4826 	put_map(map);
4827 }
4828 
4829 static int list_locations(struct kmem_cache *s, char *buf,
4830 			  enum track_item alloc)
4831 {
4832 	int len = 0;
4833 	unsigned long i;
4834 	struct loc_track t = { 0, 0, NULL };
4835 	int node;
4836 	struct kmem_cache_node *n;
4837 
4838 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4839 			     GFP_KERNEL)) {
4840 		return sysfs_emit(buf, "Out of memory\n");
4841 	}
4842 	/* Push back cpu slabs */
4843 	flush_all(s);
4844 
4845 	for_each_kmem_cache_node(s, node, n) {
4846 		unsigned long flags;
4847 		struct page *page;
4848 
4849 		if (!atomic_long_read(&n->nr_slabs))
4850 			continue;
4851 
4852 		spin_lock_irqsave(&n->list_lock, flags);
4853 		list_for_each_entry(page, &n->partial, slab_list)
4854 			process_slab(&t, s, page, alloc);
4855 		list_for_each_entry(page, &n->full, slab_list)
4856 			process_slab(&t, s, page, alloc);
4857 		spin_unlock_irqrestore(&n->list_lock, flags);
4858 	}
4859 
4860 	for (i = 0; i < t.count; i++) {
4861 		struct location *l = &t.loc[i];
4862 
4863 		len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4864 
4865 		if (l->addr)
4866 			len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4867 		else
4868 			len += sysfs_emit_at(buf, len, "<not-available>");
4869 
4870 		if (l->sum_time != l->min_time)
4871 			len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4872 					     l->min_time,
4873 					     (long)div_u64(l->sum_time,
4874 							   l->count),
4875 					     l->max_time);
4876 		else
4877 			len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4878 
4879 		if (l->min_pid != l->max_pid)
4880 			len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4881 					     l->min_pid, l->max_pid);
4882 		else
4883 			len += sysfs_emit_at(buf, len, " pid=%ld",
4884 					     l->min_pid);
4885 
4886 		if (num_online_cpus() > 1 &&
4887 		    !cpumask_empty(to_cpumask(l->cpus)))
4888 			len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4889 					     cpumask_pr_args(to_cpumask(l->cpus)));
4890 
4891 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4892 			len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4893 					     nodemask_pr_args(&l->nodes));
4894 
4895 		len += sysfs_emit_at(buf, len, "\n");
4896 	}
4897 
4898 	free_loc_track(&t);
4899 	if (!t.count)
4900 		len += sysfs_emit_at(buf, len, "No data\n");
4901 
4902 	return len;
4903 }
4904 #endif	/* CONFIG_SLUB_DEBUG */
4905 
4906 #ifdef SLUB_RESILIENCY_TEST
4907 static void __init resiliency_test(void)
4908 {
4909 	u8 *p;
4910 	int type = KMALLOC_NORMAL;
4911 
4912 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4913 
4914 	pr_err("SLUB resiliency testing\n");
4915 	pr_err("-----------------------\n");
4916 	pr_err("A. Corruption after allocation\n");
4917 
4918 	p = kzalloc(16, GFP_KERNEL);
4919 	p[16] = 0x12;
4920 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4921 	       p + 16);
4922 
4923 	validate_slab_cache(kmalloc_caches[type][4]);
4924 
4925 	/* Hmmm... The next two are dangerous */
4926 	p = kzalloc(32, GFP_KERNEL);
4927 	p[32 + sizeof(void *)] = 0x34;
4928 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4929 	       p);
4930 	pr_err("If allocated object is overwritten then not detectable\n\n");
4931 
4932 	validate_slab_cache(kmalloc_caches[type][5]);
4933 	p = kzalloc(64, GFP_KERNEL);
4934 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4935 	*p = 0x56;
4936 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4937 	       p);
4938 	pr_err("If allocated object is overwritten then not detectable\n\n");
4939 	validate_slab_cache(kmalloc_caches[type][6]);
4940 
4941 	pr_err("\nB. Corruption after free\n");
4942 	p = kzalloc(128, GFP_KERNEL);
4943 	kfree(p);
4944 	*p = 0x78;
4945 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4946 	validate_slab_cache(kmalloc_caches[type][7]);
4947 
4948 	p = kzalloc(256, GFP_KERNEL);
4949 	kfree(p);
4950 	p[50] = 0x9a;
4951 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4952 	validate_slab_cache(kmalloc_caches[type][8]);
4953 
4954 	p = kzalloc(512, GFP_KERNEL);
4955 	kfree(p);
4956 	p[512] = 0xab;
4957 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4958 	validate_slab_cache(kmalloc_caches[type][9]);
4959 }
4960 #else
4961 #ifdef CONFIG_SYSFS
4962 static void resiliency_test(void) {};
4963 #endif
4964 #endif	/* SLUB_RESILIENCY_TEST */
4965 
4966 #ifdef CONFIG_SYSFS
4967 enum slab_stat_type {
4968 	SL_ALL,			/* All slabs */
4969 	SL_PARTIAL,		/* Only partially allocated slabs */
4970 	SL_CPU,			/* Only slabs used for cpu caches */
4971 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4972 	SL_TOTAL		/* Determine object capacity not slabs */
4973 };
4974 
4975 #define SO_ALL		(1 << SL_ALL)
4976 #define SO_PARTIAL	(1 << SL_PARTIAL)
4977 #define SO_CPU		(1 << SL_CPU)
4978 #define SO_OBJECTS	(1 << SL_OBJECTS)
4979 #define SO_TOTAL	(1 << SL_TOTAL)
4980 
4981 static ssize_t show_slab_objects(struct kmem_cache *s,
4982 				 char *buf, unsigned long flags)
4983 {
4984 	unsigned long total = 0;
4985 	int node;
4986 	int x;
4987 	unsigned long *nodes;
4988 	int len = 0;
4989 
4990 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4991 	if (!nodes)
4992 		return -ENOMEM;
4993 
4994 	if (flags & SO_CPU) {
4995 		int cpu;
4996 
4997 		for_each_possible_cpu(cpu) {
4998 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4999 							       cpu);
5000 			int node;
5001 			struct page *page;
5002 
5003 			page = READ_ONCE(c->page);
5004 			if (!page)
5005 				continue;
5006 
5007 			node = page_to_nid(page);
5008 			if (flags & SO_TOTAL)
5009 				x = page->objects;
5010 			else if (flags & SO_OBJECTS)
5011 				x = page->inuse;
5012 			else
5013 				x = 1;
5014 
5015 			total += x;
5016 			nodes[node] += x;
5017 
5018 			page = slub_percpu_partial_read_once(c);
5019 			if (page) {
5020 				node = page_to_nid(page);
5021 				if (flags & SO_TOTAL)
5022 					WARN_ON_ONCE(1);
5023 				else if (flags & SO_OBJECTS)
5024 					WARN_ON_ONCE(1);
5025 				else
5026 					x = page->pages;
5027 				total += x;
5028 				nodes[node] += x;
5029 			}
5030 		}
5031 	}
5032 
5033 	/*
5034 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5035 	 * already held which will conflict with an existing lock order:
5036 	 *
5037 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5038 	 *
5039 	 * We don't really need mem_hotplug_lock (to hold off
5040 	 * slab_mem_going_offline_callback) here because slab's memory hot
5041 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5042 	 */
5043 
5044 #ifdef CONFIG_SLUB_DEBUG
5045 	if (flags & SO_ALL) {
5046 		struct kmem_cache_node *n;
5047 
5048 		for_each_kmem_cache_node(s, node, n) {
5049 
5050 			if (flags & SO_TOTAL)
5051 				x = atomic_long_read(&n->total_objects);
5052 			else if (flags & SO_OBJECTS)
5053 				x = atomic_long_read(&n->total_objects) -
5054 					count_partial(n, count_free);
5055 			else
5056 				x = atomic_long_read(&n->nr_slabs);
5057 			total += x;
5058 			nodes[node] += x;
5059 		}
5060 
5061 	} else
5062 #endif
5063 	if (flags & SO_PARTIAL) {
5064 		struct kmem_cache_node *n;
5065 
5066 		for_each_kmem_cache_node(s, node, n) {
5067 			if (flags & SO_TOTAL)
5068 				x = count_partial(n, count_total);
5069 			else if (flags & SO_OBJECTS)
5070 				x = count_partial(n, count_inuse);
5071 			else
5072 				x = n->nr_partial;
5073 			total += x;
5074 			nodes[node] += x;
5075 		}
5076 	}
5077 
5078 	len += sysfs_emit_at(buf, len, "%lu", total);
5079 #ifdef CONFIG_NUMA
5080 	for (node = 0; node < nr_node_ids; node++) {
5081 		if (nodes[node])
5082 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5083 					     node, nodes[node]);
5084 	}
5085 #endif
5086 	len += sysfs_emit_at(buf, len, "\n");
5087 	kfree(nodes);
5088 
5089 	return len;
5090 }
5091 
5092 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5093 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5094 
5095 struct slab_attribute {
5096 	struct attribute attr;
5097 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5098 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5099 };
5100 
5101 #define SLAB_ATTR_RO(_name) \
5102 	static struct slab_attribute _name##_attr = \
5103 	__ATTR(_name, 0400, _name##_show, NULL)
5104 
5105 #define SLAB_ATTR(_name) \
5106 	static struct slab_attribute _name##_attr =  \
5107 	__ATTR(_name, 0600, _name##_show, _name##_store)
5108 
5109 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5110 {
5111 	return sysfs_emit(buf, "%u\n", s->size);
5112 }
5113 SLAB_ATTR_RO(slab_size);
5114 
5115 static ssize_t align_show(struct kmem_cache *s, char *buf)
5116 {
5117 	return sysfs_emit(buf, "%u\n", s->align);
5118 }
5119 SLAB_ATTR_RO(align);
5120 
5121 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5122 {
5123 	return sysfs_emit(buf, "%u\n", s->object_size);
5124 }
5125 SLAB_ATTR_RO(object_size);
5126 
5127 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5128 {
5129 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5130 }
5131 SLAB_ATTR_RO(objs_per_slab);
5132 
5133 static ssize_t order_show(struct kmem_cache *s, char *buf)
5134 {
5135 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5136 }
5137 SLAB_ATTR_RO(order);
5138 
5139 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5140 {
5141 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5142 }
5143 
5144 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5145 				 size_t length)
5146 {
5147 	unsigned long min;
5148 	int err;
5149 
5150 	err = kstrtoul(buf, 10, &min);
5151 	if (err)
5152 		return err;
5153 
5154 	set_min_partial(s, min);
5155 	return length;
5156 }
5157 SLAB_ATTR(min_partial);
5158 
5159 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5160 {
5161 	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5162 }
5163 
5164 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5165 				 size_t length)
5166 {
5167 	unsigned int objects;
5168 	int err;
5169 
5170 	err = kstrtouint(buf, 10, &objects);
5171 	if (err)
5172 		return err;
5173 	if (objects && !kmem_cache_has_cpu_partial(s))
5174 		return -EINVAL;
5175 
5176 	slub_set_cpu_partial(s, objects);
5177 	flush_all(s);
5178 	return length;
5179 }
5180 SLAB_ATTR(cpu_partial);
5181 
5182 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5183 {
5184 	if (!s->ctor)
5185 		return 0;
5186 	return sysfs_emit(buf, "%pS\n", s->ctor);
5187 }
5188 SLAB_ATTR_RO(ctor);
5189 
5190 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5191 {
5192 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5193 }
5194 SLAB_ATTR_RO(aliases);
5195 
5196 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5197 {
5198 	return show_slab_objects(s, buf, SO_PARTIAL);
5199 }
5200 SLAB_ATTR_RO(partial);
5201 
5202 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5203 {
5204 	return show_slab_objects(s, buf, SO_CPU);
5205 }
5206 SLAB_ATTR_RO(cpu_slabs);
5207 
5208 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5209 {
5210 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5211 }
5212 SLAB_ATTR_RO(objects);
5213 
5214 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5215 {
5216 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5217 }
5218 SLAB_ATTR_RO(objects_partial);
5219 
5220 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5221 {
5222 	int objects = 0;
5223 	int pages = 0;
5224 	int cpu;
5225 	int len = 0;
5226 
5227 	for_each_online_cpu(cpu) {
5228 		struct page *page;
5229 
5230 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5231 
5232 		if (page) {
5233 			pages += page->pages;
5234 			objects += page->pobjects;
5235 		}
5236 	}
5237 
5238 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5239 
5240 #ifdef CONFIG_SMP
5241 	for_each_online_cpu(cpu) {
5242 		struct page *page;
5243 
5244 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5245 		if (page)
5246 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5247 					     cpu, page->pobjects, page->pages);
5248 	}
5249 #endif
5250 	len += sysfs_emit_at(buf, len, "\n");
5251 
5252 	return len;
5253 }
5254 SLAB_ATTR_RO(slabs_cpu_partial);
5255 
5256 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5257 {
5258 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5259 }
5260 SLAB_ATTR_RO(reclaim_account);
5261 
5262 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5263 {
5264 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5265 }
5266 SLAB_ATTR_RO(hwcache_align);
5267 
5268 #ifdef CONFIG_ZONE_DMA
5269 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5270 {
5271 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5272 }
5273 SLAB_ATTR_RO(cache_dma);
5274 #endif
5275 
5276 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5277 {
5278 	return sysfs_emit(buf, "%u\n", s->usersize);
5279 }
5280 SLAB_ATTR_RO(usersize);
5281 
5282 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5283 {
5284 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5285 }
5286 SLAB_ATTR_RO(destroy_by_rcu);
5287 
5288 #ifdef CONFIG_SLUB_DEBUG
5289 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5290 {
5291 	return show_slab_objects(s, buf, SO_ALL);
5292 }
5293 SLAB_ATTR_RO(slabs);
5294 
5295 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5296 {
5297 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5298 }
5299 SLAB_ATTR_RO(total_objects);
5300 
5301 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5302 {
5303 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5304 }
5305 SLAB_ATTR_RO(sanity_checks);
5306 
5307 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5308 {
5309 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5310 }
5311 SLAB_ATTR_RO(trace);
5312 
5313 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5314 {
5315 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5316 }
5317 
5318 SLAB_ATTR_RO(red_zone);
5319 
5320 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5321 {
5322 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5323 }
5324 
5325 SLAB_ATTR_RO(poison);
5326 
5327 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5328 {
5329 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5330 }
5331 
5332 SLAB_ATTR_RO(store_user);
5333 
5334 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5335 {
5336 	return 0;
5337 }
5338 
5339 static ssize_t validate_store(struct kmem_cache *s,
5340 			const char *buf, size_t length)
5341 {
5342 	int ret = -EINVAL;
5343 
5344 	if (buf[0] == '1') {
5345 		ret = validate_slab_cache(s);
5346 		if (ret >= 0)
5347 			ret = length;
5348 	}
5349 	return ret;
5350 }
5351 SLAB_ATTR(validate);
5352 
5353 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5354 {
5355 	if (!(s->flags & SLAB_STORE_USER))
5356 		return -ENOSYS;
5357 	return list_locations(s, buf, TRACK_ALLOC);
5358 }
5359 SLAB_ATTR_RO(alloc_calls);
5360 
5361 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5362 {
5363 	if (!(s->flags & SLAB_STORE_USER))
5364 		return -ENOSYS;
5365 	return list_locations(s, buf, TRACK_FREE);
5366 }
5367 SLAB_ATTR_RO(free_calls);
5368 #endif /* CONFIG_SLUB_DEBUG */
5369 
5370 #ifdef CONFIG_FAILSLAB
5371 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5372 {
5373 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5374 }
5375 SLAB_ATTR_RO(failslab);
5376 #endif
5377 
5378 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5379 {
5380 	return 0;
5381 }
5382 
5383 static ssize_t shrink_store(struct kmem_cache *s,
5384 			const char *buf, size_t length)
5385 {
5386 	if (buf[0] == '1')
5387 		kmem_cache_shrink(s);
5388 	else
5389 		return -EINVAL;
5390 	return length;
5391 }
5392 SLAB_ATTR(shrink);
5393 
5394 #ifdef CONFIG_NUMA
5395 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5396 {
5397 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5398 }
5399 
5400 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5401 				const char *buf, size_t length)
5402 {
5403 	unsigned int ratio;
5404 	int err;
5405 
5406 	err = kstrtouint(buf, 10, &ratio);
5407 	if (err)
5408 		return err;
5409 	if (ratio > 100)
5410 		return -ERANGE;
5411 
5412 	s->remote_node_defrag_ratio = ratio * 10;
5413 
5414 	return length;
5415 }
5416 SLAB_ATTR(remote_node_defrag_ratio);
5417 #endif
5418 
5419 #ifdef CONFIG_SLUB_STATS
5420 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5421 {
5422 	unsigned long sum  = 0;
5423 	int cpu;
5424 	int len = 0;
5425 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5426 
5427 	if (!data)
5428 		return -ENOMEM;
5429 
5430 	for_each_online_cpu(cpu) {
5431 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5432 
5433 		data[cpu] = x;
5434 		sum += x;
5435 	}
5436 
5437 	len += sysfs_emit_at(buf, len, "%lu", sum);
5438 
5439 #ifdef CONFIG_SMP
5440 	for_each_online_cpu(cpu) {
5441 		if (data[cpu])
5442 			len += sysfs_emit_at(buf, len, " C%d=%u",
5443 					     cpu, data[cpu]);
5444 	}
5445 #endif
5446 	kfree(data);
5447 	len += sysfs_emit_at(buf, len, "\n");
5448 
5449 	return len;
5450 }
5451 
5452 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5453 {
5454 	int cpu;
5455 
5456 	for_each_online_cpu(cpu)
5457 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5458 }
5459 
5460 #define STAT_ATTR(si, text) 					\
5461 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5462 {								\
5463 	return show_stat(s, buf, si);				\
5464 }								\
5465 static ssize_t text##_store(struct kmem_cache *s,		\
5466 				const char *buf, size_t length)	\
5467 {								\
5468 	if (buf[0] != '0')					\
5469 		return -EINVAL;					\
5470 	clear_stat(s, si);					\
5471 	return length;						\
5472 }								\
5473 SLAB_ATTR(text);						\
5474 
5475 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5476 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5477 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5478 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5479 STAT_ATTR(FREE_FROZEN, free_frozen);
5480 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5481 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5482 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5483 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5484 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5485 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5486 STAT_ATTR(FREE_SLAB, free_slab);
5487 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5488 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5489 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5490 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5491 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5492 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5493 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5494 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5495 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5496 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5497 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5498 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5499 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5500 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5501 #endif	/* CONFIG_SLUB_STATS */
5502 
5503 static struct attribute *slab_attrs[] = {
5504 	&slab_size_attr.attr,
5505 	&object_size_attr.attr,
5506 	&objs_per_slab_attr.attr,
5507 	&order_attr.attr,
5508 	&min_partial_attr.attr,
5509 	&cpu_partial_attr.attr,
5510 	&objects_attr.attr,
5511 	&objects_partial_attr.attr,
5512 	&partial_attr.attr,
5513 	&cpu_slabs_attr.attr,
5514 	&ctor_attr.attr,
5515 	&aliases_attr.attr,
5516 	&align_attr.attr,
5517 	&hwcache_align_attr.attr,
5518 	&reclaim_account_attr.attr,
5519 	&destroy_by_rcu_attr.attr,
5520 	&shrink_attr.attr,
5521 	&slabs_cpu_partial_attr.attr,
5522 #ifdef CONFIG_SLUB_DEBUG
5523 	&total_objects_attr.attr,
5524 	&slabs_attr.attr,
5525 	&sanity_checks_attr.attr,
5526 	&trace_attr.attr,
5527 	&red_zone_attr.attr,
5528 	&poison_attr.attr,
5529 	&store_user_attr.attr,
5530 	&validate_attr.attr,
5531 	&alloc_calls_attr.attr,
5532 	&free_calls_attr.attr,
5533 #endif
5534 #ifdef CONFIG_ZONE_DMA
5535 	&cache_dma_attr.attr,
5536 #endif
5537 #ifdef CONFIG_NUMA
5538 	&remote_node_defrag_ratio_attr.attr,
5539 #endif
5540 #ifdef CONFIG_SLUB_STATS
5541 	&alloc_fastpath_attr.attr,
5542 	&alloc_slowpath_attr.attr,
5543 	&free_fastpath_attr.attr,
5544 	&free_slowpath_attr.attr,
5545 	&free_frozen_attr.attr,
5546 	&free_add_partial_attr.attr,
5547 	&free_remove_partial_attr.attr,
5548 	&alloc_from_partial_attr.attr,
5549 	&alloc_slab_attr.attr,
5550 	&alloc_refill_attr.attr,
5551 	&alloc_node_mismatch_attr.attr,
5552 	&free_slab_attr.attr,
5553 	&cpuslab_flush_attr.attr,
5554 	&deactivate_full_attr.attr,
5555 	&deactivate_empty_attr.attr,
5556 	&deactivate_to_head_attr.attr,
5557 	&deactivate_to_tail_attr.attr,
5558 	&deactivate_remote_frees_attr.attr,
5559 	&deactivate_bypass_attr.attr,
5560 	&order_fallback_attr.attr,
5561 	&cmpxchg_double_fail_attr.attr,
5562 	&cmpxchg_double_cpu_fail_attr.attr,
5563 	&cpu_partial_alloc_attr.attr,
5564 	&cpu_partial_free_attr.attr,
5565 	&cpu_partial_node_attr.attr,
5566 	&cpu_partial_drain_attr.attr,
5567 #endif
5568 #ifdef CONFIG_FAILSLAB
5569 	&failslab_attr.attr,
5570 #endif
5571 	&usersize_attr.attr,
5572 
5573 	NULL
5574 };
5575 
5576 static const struct attribute_group slab_attr_group = {
5577 	.attrs = slab_attrs,
5578 };
5579 
5580 static ssize_t slab_attr_show(struct kobject *kobj,
5581 				struct attribute *attr,
5582 				char *buf)
5583 {
5584 	struct slab_attribute *attribute;
5585 	struct kmem_cache *s;
5586 	int err;
5587 
5588 	attribute = to_slab_attr(attr);
5589 	s = to_slab(kobj);
5590 
5591 	if (!attribute->show)
5592 		return -EIO;
5593 
5594 	err = attribute->show(s, buf);
5595 
5596 	return err;
5597 }
5598 
5599 static ssize_t slab_attr_store(struct kobject *kobj,
5600 				struct attribute *attr,
5601 				const char *buf, size_t len)
5602 {
5603 	struct slab_attribute *attribute;
5604 	struct kmem_cache *s;
5605 	int err;
5606 
5607 	attribute = to_slab_attr(attr);
5608 	s = to_slab(kobj);
5609 
5610 	if (!attribute->store)
5611 		return -EIO;
5612 
5613 	err = attribute->store(s, buf, len);
5614 	return err;
5615 }
5616 
5617 static void kmem_cache_release(struct kobject *k)
5618 {
5619 	slab_kmem_cache_release(to_slab(k));
5620 }
5621 
5622 static const struct sysfs_ops slab_sysfs_ops = {
5623 	.show = slab_attr_show,
5624 	.store = slab_attr_store,
5625 };
5626 
5627 static struct kobj_type slab_ktype = {
5628 	.sysfs_ops = &slab_sysfs_ops,
5629 	.release = kmem_cache_release,
5630 };
5631 
5632 static struct kset *slab_kset;
5633 
5634 static inline struct kset *cache_kset(struct kmem_cache *s)
5635 {
5636 	return slab_kset;
5637 }
5638 
5639 #define ID_STR_LENGTH 64
5640 
5641 /* Create a unique string id for a slab cache:
5642  *
5643  * Format	:[flags-]size
5644  */
5645 static char *create_unique_id(struct kmem_cache *s)
5646 {
5647 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5648 	char *p = name;
5649 
5650 	BUG_ON(!name);
5651 
5652 	*p++ = ':';
5653 	/*
5654 	 * First flags affecting slabcache operations. We will only
5655 	 * get here for aliasable slabs so we do not need to support
5656 	 * too many flags. The flags here must cover all flags that
5657 	 * are matched during merging to guarantee that the id is
5658 	 * unique.
5659 	 */
5660 	if (s->flags & SLAB_CACHE_DMA)
5661 		*p++ = 'd';
5662 	if (s->flags & SLAB_CACHE_DMA32)
5663 		*p++ = 'D';
5664 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5665 		*p++ = 'a';
5666 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5667 		*p++ = 'F';
5668 	if (s->flags & SLAB_ACCOUNT)
5669 		*p++ = 'A';
5670 	if (p != name + 1)
5671 		*p++ = '-';
5672 	p += sprintf(p, "%07u", s->size);
5673 
5674 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5675 	return name;
5676 }
5677 
5678 static int sysfs_slab_add(struct kmem_cache *s)
5679 {
5680 	int err;
5681 	const char *name;
5682 	struct kset *kset = cache_kset(s);
5683 	int unmergeable = slab_unmergeable(s);
5684 
5685 	if (!kset) {
5686 		kobject_init(&s->kobj, &slab_ktype);
5687 		return 0;
5688 	}
5689 
5690 	if (!unmergeable && disable_higher_order_debug &&
5691 			(slub_debug & DEBUG_METADATA_FLAGS))
5692 		unmergeable = 1;
5693 
5694 	if (unmergeable) {
5695 		/*
5696 		 * Slabcache can never be merged so we can use the name proper.
5697 		 * This is typically the case for debug situations. In that
5698 		 * case we can catch duplicate names easily.
5699 		 */
5700 		sysfs_remove_link(&slab_kset->kobj, s->name);
5701 		name = s->name;
5702 	} else {
5703 		/*
5704 		 * Create a unique name for the slab as a target
5705 		 * for the symlinks.
5706 		 */
5707 		name = create_unique_id(s);
5708 	}
5709 
5710 	s->kobj.kset = kset;
5711 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5712 	if (err)
5713 		goto out;
5714 
5715 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5716 	if (err)
5717 		goto out_del_kobj;
5718 
5719 	if (!unmergeable) {
5720 		/* Setup first alias */
5721 		sysfs_slab_alias(s, s->name);
5722 	}
5723 out:
5724 	if (!unmergeable)
5725 		kfree(name);
5726 	return err;
5727 out_del_kobj:
5728 	kobject_del(&s->kobj);
5729 	goto out;
5730 }
5731 
5732 void sysfs_slab_unlink(struct kmem_cache *s)
5733 {
5734 	if (slab_state >= FULL)
5735 		kobject_del(&s->kobj);
5736 }
5737 
5738 void sysfs_slab_release(struct kmem_cache *s)
5739 {
5740 	if (slab_state >= FULL)
5741 		kobject_put(&s->kobj);
5742 }
5743 
5744 /*
5745  * Need to buffer aliases during bootup until sysfs becomes
5746  * available lest we lose that information.
5747  */
5748 struct saved_alias {
5749 	struct kmem_cache *s;
5750 	const char *name;
5751 	struct saved_alias *next;
5752 };
5753 
5754 static struct saved_alias *alias_list;
5755 
5756 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5757 {
5758 	struct saved_alias *al;
5759 
5760 	if (slab_state == FULL) {
5761 		/*
5762 		 * If we have a leftover link then remove it.
5763 		 */
5764 		sysfs_remove_link(&slab_kset->kobj, name);
5765 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5766 	}
5767 
5768 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5769 	if (!al)
5770 		return -ENOMEM;
5771 
5772 	al->s = s;
5773 	al->name = name;
5774 	al->next = alias_list;
5775 	alias_list = al;
5776 	return 0;
5777 }
5778 
5779 static int __init slab_sysfs_init(void)
5780 {
5781 	struct kmem_cache *s;
5782 	int err;
5783 
5784 	mutex_lock(&slab_mutex);
5785 
5786 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5787 	if (!slab_kset) {
5788 		mutex_unlock(&slab_mutex);
5789 		pr_err("Cannot register slab subsystem.\n");
5790 		return -ENOSYS;
5791 	}
5792 
5793 	slab_state = FULL;
5794 
5795 	list_for_each_entry(s, &slab_caches, list) {
5796 		err = sysfs_slab_add(s);
5797 		if (err)
5798 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5799 			       s->name);
5800 	}
5801 
5802 	while (alias_list) {
5803 		struct saved_alias *al = alias_list;
5804 
5805 		alias_list = alias_list->next;
5806 		err = sysfs_slab_alias(al->s, al->name);
5807 		if (err)
5808 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5809 			       al->name);
5810 		kfree(al);
5811 	}
5812 
5813 	mutex_unlock(&slab_mutex);
5814 	resiliency_test();
5815 	return 0;
5816 }
5817 
5818 __initcall(slab_sysfs_init);
5819 #endif /* CONFIG_SYSFS */
5820 
5821 /*
5822  * The /proc/slabinfo ABI
5823  */
5824 #ifdef CONFIG_SLUB_DEBUG
5825 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5826 {
5827 	unsigned long nr_slabs = 0;
5828 	unsigned long nr_objs = 0;
5829 	unsigned long nr_free = 0;
5830 	int node;
5831 	struct kmem_cache_node *n;
5832 
5833 	for_each_kmem_cache_node(s, node, n) {
5834 		nr_slabs += node_nr_slabs(n);
5835 		nr_objs += node_nr_objs(n);
5836 		nr_free += count_partial(n, count_free);
5837 	}
5838 
5839 	sinfo->active_objs = nr_objs - nr_free;
5840 	sinfo->num_objs = nr_objs;
5841 	sinfo->active_slabs = nr_slabs;
5842 	sinfo->num_slabs = nr_slabs;
5843 	sinfo->objects_per_slab = oo_objects(s->oo);
5844 	sinfo->cache_order = oo_order(s->oo);
5845 }
5846 
5847 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5848 {
5849 }
5850 
5851 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5852 		       size_t count, loff_t *ppos)
5853 {
5854 	return -EIO;
5855 }
5856 #endif /* CONFIG_SLUB_DEBUG */
5857