xref: /openbmc/linux/mm/slub.c (revision bc000245)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 
37 #include <trace/events/kmem.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Lock order:
43  *   1. slab_mutex (Global Mutex)
44  *   2. node->list_lock
45  *   3. slab_lock(page) (Only on some arches and for debugging)
46  *
47  *   slab_mutex
48  *
49  *   The role of the slab_mutex is to protect the list of all the slabs
50  *   and to synchronize major metadata changes to slab cache structures.
51  *
52  *   The slab_lock is only used for debugging and on arches that do not
53  *   have the ability to do a cmpxchg_double. It only protects the second
54  *   double word in the page struct. Meaning
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->counters	-> Counters of objects
57  *	C. page->frozen		-> frozen state
58  *
59  *   If a slab is frozen then it is exempt from list management. It is not
60  *   on any list. The processor that froze the slab is the one who can
61  *   perform list operations on the page. Other processors may put objects
62  *   onto the freelist but the processor that froze the slab is the only
63  *   one that can retrieve the objects from the page's freelist.
64  *
65  *   The list_lock protects the partial and full list on each node and
66  *   the partial slab counter. If taken then no new slabs may be added or
67  *   removed from the lists nor make the number of partial slabs be modified.
68  *   (Note that the total number of slabs is an atomic value that may be
69  *   modified without taking the list lock).
70  *
71  *   The list_lock is a centralized lock and thus we avoid taking it as
72  *   much as possible. As long as SLUB does not have to handle partial
73  *   slabs, operations can continue without any centralized lock. F.e.
74  *   allocating a long series of objects that fill up slabs does not require
75  *   the list lock.
76  *   Interrupts are disabled during allocation and deallocation in order to
77  *   make the slab allocator safe to use in the context of an irq. In addition
78  *   interrupts are disabled to ensure that the processor does not change
79  *   while handling per_cpu slabs, due to kernel preemption.
80  *
81  * SLUB assigns one slab for allocation to each processor.
82  * Allocations only occur from these slabs called cpu slabs.
83  *
84  * Slabs with free elements are kept on a partial list and during regular
85  * operations no list for full slabs is used. If an object in a full slab is
86  * freed then the slab will show up again on the partial lists.
87  * We track full slabs for debugging purposes though because otherwise we
88  * cannot scan all objects.
89  *
90  * Slabs are freed when they become empty. Teardown and setup is
91  * minimal so we rely on the page allocators per cpu caches for
92  * fast frees and allocs.
93  *
94  * Overloading of page flags that are otherwise used for LRU management.
95  *
96  * PageActive 		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * PageError		Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 	return !kmem_cache_debug(s);
130 #else
131 	return false;
132 #endif
133 }
134 
135 /*
136  * Issues still to be resolved:
137  *
138  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139  *
140  * - Variable sizing of the per node arrays
141  */
142 
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145 
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148 
149 /*
150  * Mininum number of partial slabs. These will be left on the partial
151  * lists even if they are empty. kmem_cache_shrink may reclaim them.
152  */
153 #define MIN_PARTIAL 5
154 
155 /*
156  * Maximum number of desirable partial slabs.
157  * The existence of more partial slabs makes kmem_cache_shrink
158  * sort the partial list by the number of objects in use.
159  */
160 #define MAX_PARTIAL 10
161 
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 				SLAB_POISON | SLAB_STORE_USER)
164 
165 /*
166  * Debugging flags that require metadata to be stored in the slab.  These get
167  * disabled when slub_debug=O is used and a cache's min order increases with
168  * metadata.
169  */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171 
172 /*
173  * Set of flags that will prevent slab merging
174  */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 		SLAB_FAILSLAB)
178 
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 		SLAB_CACHE_DMA | SLAB_NOTRACK)
181 
182 #define OO_SHIFT	16
183 #define OO_MASK		((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185 
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON		0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
189 
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193 
194 /*
195  * Tracking user of a slab.
196  */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 	unsigned long addr;	/* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
202 #endif
203 	int cpu;		/* Was running on cpu */
204 	int pid;		/* Pid context */
205 	unsigned long when;	/* When did the operation occur */
206 };
207 
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209 
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 							{ return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220 
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223 
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 	__this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230 
231 /********************************************************************
232  * 			Core slab cache functions
233  *******************************************************************/
234 
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 	return s->node[node];
238 }
239 
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 				struct page *page, const void *object)
243 {
244 	void *base;
245 
246 	if (!object)
247 		return 1;
248 
249 	base = page_address(page);
250 	if (object < base || object >= base + page->objects * s->size ||
251 		(object - base) % s->size) {
252 		return 0;
253 	}
254 
255 	return 1;
256 }
257 
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 	return *(void **)(object + s->offset);
261 }
262 
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 	prefetch(object + s->offset);
266 }
267 
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 	void *p;
271 
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 	p = get_freepointer(s, object);
276 #endif
277 	return p;
278 }
279 
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 	*(void **)(object + s->offset) = fp;
283 }
284 
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 			__p += (__s)->size)
289 
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 	return (p - addr) / s->size;
294 }
295 
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 	/*
300 	 * Debugging requires use of the padding between object
301 	 * and whatever may come after it.
302 	 */
303 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 		return s->object_size;
305 
306 #endif
307 	/*
308 	 * If we have the need to store the freelist pointer
309 	 * back there or track user information then we can
310 	 * only use the space before that information.
311 	 */
312 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 		return s->inuse;
314 	/*
315 	 * Else we can use all the padding etc for the allocation
316 	 */
317 	return s->size;
318 }
319 
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 	return ((PAGE_SIZE << order) - reserved) / size;
323 }
324 
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 		unsigned long size, int reserved)
327 {
328 	struct kmem_cache_order_objects x = {
329 		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 	};
331 
332 	return x;
333 }
334 
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 	return x.x >> OO_SHIFT;
338 }
339 
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 	return x.x & OO_MASK;
343 }
344 
345 /*
346  * Per slab locking using the pagelock
347  */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 	bit_spin_lock(PG_locked, &page->flags);
351 }
352 
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 	__bit_spin_unlock(PG_locked, &page->flags);
356 }
357 
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 		void *freelist_old, unsigned long counters_old,
361 		void *freelist_new, unsigned long counters_new,
362 		const char *n)
363 {
364 	VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 	if (s->flags & __CMPXCHG_DOUBLE) {
368 		if (cmpxchg_double(&page->freelist, &page->counters,
369 			freelist_old, counters_old,
370 			freelist_new, counters_new))
371 		return 1;
372 	} else
373 #endif
374 	{
375 		slab_lock(page);
376 		if (page->freelist == freelist_old &&
377 					page->counters == counters_old) {
378 			page->freelist = freelist_new;
379 			page->counters = counters_new;
380 			slab_unlock(page);
381 			return 1;
382 		}
383 		slab_unlock(page);
384 	}
385 
386 	cpu_relax();
387 	stat(s, CMPXCHG_DOUBLE_FAIL);
388 
389 #ifdef SLUB_DEBUG_CMPXCHG
390 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
391 #endif
392 
393 	return 0;
394 }
395 
396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 		void *freelist_old, unsigned long counters_old,
398 		void *freelist_new, unsigned long counters_new,
399 		const char *n)
400 {
401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403 	if (s->flags & __CMPXCHG_DOUBLE) {
404 		if (cmpxchg_double(&page->freelist, &page->counters,
405 			freelist_old, counters_old,
406 			freelist_new, counters_new))
407 		return 1;
408 	} else
409 #endif
410 	{
411 		unsigned long flags;
412 
413 		local_irq_save(flags);
414 		slab_lock(page);
415 		if (page->freelist == freelist_old &&
416 					page->counters == counters_old) {
417 			page->freelist = freelist_new;
418 			page->counters = counters_new;
419 			slab_unlock(page);
420 			local_irq_restore(flags);
421 			return 1;
422 		}
423 		slab_unlock(page);
424 		local_irq_restore(flags);
425 	}
426 
427 	cpu_relax();
428 	stat(s, CMPXCHG_DOUBLE_FAIL);
429 
430 #ifdef SLUB_DEBUG_CMPXCHG
431 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433 
434 	return 0;
435 }
436 
437 #ifdef CONFIG_SLUB_DEBUG
438 /*
439  * Determine a map of object in use on a page.
440  *
441  * Node listlock must be held to guarantee that the page does
442  * not vanish from under us.
443  */
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445 {
446 	void *p;
447 	void *addr = page_address(page);
448 
449 	for (p = page->freelist; p; p = get_freepointer(s, p))
450 		set_bit(slab_index(p, s, addr), map);
451 }
452 
453 /*
454  * Debug settings:
455  */
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 #else
459 static int slub_debug;
460 #endif
461 
462 static char *slub_debug_slabs;
463 static int disable_higher_order_debug;
464 
465 /*
466  * Object debugging
467  */
468 static void print_section(char *text, u8 *addr, unsigned int length)
469 {
470 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 			length, 1);
472 }
473 
474 static struct track *get_track(struct kmem_cache *s, void *object,
475 	enum track_item alloc)
476 {
477 	struct track *p;
478 
479 	if (s->offset)
480 		p = object + s->offset + sizeof(void *);
481 	else
482 		p = object + s->inuse;
483 
484 	return p + alloc;
485 }
486 
487 static void set_track(struct kmem_cache *s, void *object,
488 			enum track_item alloc, unsigned long addr)
489 {
490 	struct track *p = get_track(s, object, alloc);
491 
492 	if (addr) {
493 #ifdef CONFIG_STACKTRACE
494 		struct stack_trace trace;
495 		int i;
496 
497 		trace.nr_entries = 0;
498 		trace.max_entries = TRACK_ADDRS_COUNT;
499 		trace.entries = p->addrs;
500 		trace.skip = 3;
501 		save_stack_trace(&trace);
502 
503 		/* See rant in lockdep.c */
504 		if (trace.nr_entries != 0 &&
505 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 			trace.nr_entries--;
507 
508 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 			p->addrs[i] = 0;
510 #endif
511 		p->addr = addr;
512 		p->cpu = smp_processor_id();
513 		p->pid = current->pid;
514 		p->when = jiffies;
515 	} else
516 		memset(p, 0, sizeof(struct track));
517 }
518 
519 static void init_tracking(struct kmem_cache *s, void *object)
520 {
521 	if (!(s->flags & SLAB_STORE_USER))
522 		return;
523 
524 	set_track(s, object, TRACK_FREE, 0UL);
525 	set_track(s, object, TRACK_ALLOC, 0UL);
526 }
527 
528 static void print_track(const char *s, struct track *t)
529 {
530 	if (!t->addr)
531 		return;
532 
533 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 #ifdef CONFIG_STACKTRACE
536 	{
537 		int i;
538 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 			if (t->addrs[i])
540 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 			else
542 				break;
543 	}
544 #endif
545 }
546 
547 static void print_tracking(struct kmem_cache *s, void *object)
548 {
549 	if (!(s->flags & SLAB_STORE_USER))
550 		return;
551 
552 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 	print_track("Freed", get_track(s, object, TRACK_FREE));
554 }
555 
556 static void print_page_info(struct page *page)
557 {
558 	printk(KERN_ERR
559 	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
560 	       page, page->objects, page->inuse, page->freelist, page->flags);
561 
562 }
563 
564 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
565 {
566 	va_list args;
567 	char buf[100];
568 
569 	va_start(args, fmt);
570 	vsnprintf(buf, sizeof(buf), fmt, args);
571 	va_end(args);
572 	printk(KERN_ERR "========================================"
573 			"=====================================\n");
574 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
575 	printk(KERN_ERR "----------------------------------------"
576 			"-------------------------------------\n\n");
577 
578 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
579 }
580 
581 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
582 {
583 	va_list args;
584 	char buf[100];
585 
586 	va_start(args, fmt);
587 	vsnprintf(buf, sizeof(buf), fmt, args);
588 	va_end(args);
589 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
590 }
591 
592 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
593 {
594 	unsigned int off;	/* Offset of last byte */
595 	u8 *addr = page_address(page);
596 
597 	print_tracking(s, p);
598 
599 	print_page_info(page);
600 
601 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
602 			p, p - addr, get_freepointer(s, p));
603 
604 	if (p > addr + 16)
605 		print_section("Bytes b4 ", p - 16, 16);
606 
607 	print_section("Object ", p, min_t(unsigned long, s->object_size,
608 				PAGE_SIZE));
609 	if (s->flags & SLAB_RED_ZONE)
610 		print_section("Redzone ", p + s->object_size,
611 			s->inuse - s->object_size);
612 
613 	if (s->offset)
614 		off = s->offset + sizeof(void *);
615 	else
616 		off = s->inuse;
617 
618 	if (s->flags & SLAB_STORE_USER)
619 		off += 2 * sizeof(struct track);
620 
621 	if (off != s->size)
622 		/* Beginning of the filler is the free pointer */
623 		print_section("Padding ", p + off, s->size - off);
624 
625 	dump_stack();
626 }
627 
628 static void object_err(struct kmem_cache *s, struct page *page,
629 			u8 *object, char *reason)
630 {
631 	slab_bug(s, "%s", reason);
632 	print_trailer(s, page, object);
633 }
634 
635 static void slab_err(struct kmem_cache *s, struct page *page,
636 			const char *fmt, ...)
637 {
638 	va_list args;
639 	char buf[100];
640 
641 	va_start(args, fmt);
642 	vsnprintf(buf, sizeof(buf), fmt, args);
643 	va_end(args);
644 	slab_bug(s, "%s", buf);
645 	print_page_info(page);
646 	dump_stack();
647 }
648 
649 static void init_object(struct kmem_cache *s, void *object, u8 val)
650 {
651 	u8 *p = object;
652 
653 	if (s->flags & __OBJECT_POISON) {
654 		memset(p, POISON_FREE, s->object_size - 1);
655 		p[s->object_size - 1] = POISON_END;
656 	}
657 
658 	if (s->flags & SLAB_RED_ZONE)
659 		memset(p + s->object_size, val, s->inuse - s->object_size);
660 }
661 
662 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
663 						void *from, void *to)
664 {
665 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
666 	memset(from, data, to - from);
667 }
668 
669 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
670 			u8 *object, char *what,
671 			u8 *start, unsigned int value, unsigned int bytes)
672 {
673 	u8 *fault;
674 	u8 *end;
675 
676 	fault = memchr_inv(start, value, bytes);
677 	if (!fault)
678 		return 1;
679 
680 	end = start + bytes;
681 	while (end > fault && end[-1] == value)
682 		end--;
683 
684 	slab_bug(s, "%s overwritten", what);
685 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
686 					fault, end - 1, fault[0], value);
687 	print_trailer(s, page, object);
688 
689 	restore_bytes(s, what, value, fault, end);
690 	return 0;
691 }
692 
693 /*
694  * Object layout:
695  *
696  * object address
697  * 	Bytes of the object to be managed.
698  * 	If the freepointer may overlay the object then the free
699  * 	pointer is the first word of the object.
700  *
701  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
702  * 	0xa5 (POISON_END)
703  *
704  * object + s->object_size
705  * 	Padding to reach word boundary. This is also used for Redzoning.
706  * 	Padding is extended by another word if Redzoning is enabled and
707  * 	object_size == inuse.
708  *
709  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
710  * 	0xcc (RED_ACTIVE) for objects in use.
711  *
712  * object + s->inuse
713  * 	Meta data starts here.
714  *
715  * 	A. Free pointer (if we cannot overwrite object on free)
716  * 	B. Tracking data for SLAB_STORE_USER
717  * 	C. Padding to reach required alignment boundary or at mininum
718  * 		one word if debugging is on to be able to detect writes
719  * 		before the word boundary.
720  *
721  *	Padding is done using 0x5a (POISON_INUSE)
722  *
723  * object + s->size
724  * 	Nothing is used beyond s->size.
725  *
726  * If slabcaches are merged then the object_size and inuse boundaries are mostly
727  * ignored. And therefore no slab options that rely on these boundaries
728  * may be used with merged slabcaches.
729  */
730 
731 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
732 {
733 	unsigned long off = s->inuse;	/* The end of info */
734 
735 	if (s->offset)
736 		/* Freepointer is placed after the object. */
737 		off += sizeof(void *);
738 
739 	if (s->flags & SLAB_STORE_USER)
740 		/* We also have user information there */
741 		off += 2 * sizeof(struct track);
742 
743 	if (s->size == off)
744 		return 1;
745 
746 	return check_bytes_and_report(s, page, p, "Object padding",
747 				p + off, POISON_INUSE, s->size - off);
748 }
749 
750 /* Check the pad bytes at the end of a slab page */
751 static int slab_pad_check(struct kmem_cache *s, struct page *page)
752 {
753 	u8 *start;
754 	u8 *fault;
755 	u8 *end;
756 	int length;
757 	int remainder;
758 
759 	if (!(s->flags & SLAB_POISON))
760 		return 1;
761 
762 	start = page_address(page);
763 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
764 	end = start + length;
765 	remainder = length % s->size;
766 	if (!remainder)
767 		return 1;
768 
769 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
770 	if (!fault)
771 		return 1;
772 	while (end > fault && end[-1] == POISON_INUSE)
773 		end--;
774 
775 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
776 	print_section("Padding ", end - remainder, remainder);
777 
778 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
779 	return 0;
780 }
781 
782 static int check_object(struct kmem_cache *s, struct page *page,
783 					void *object, u8 val)
784 {
785 	u8 *p = object;
786 	u8 *endobject = object + s->object_size;
787 
788 	if (s->flags & SLAB_RED_ZONE) {
789 		if (!check_bytes_and_report(s, page, object, "Redzone",
790 			endobject, val, s->inuse - s->object_size))
791 			return 0;
792 	} else {
793 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
794 			check_bytes_and_report(s, page, p, "Alignment padding",
795 				endobject, POISON_INUSE,
796 				s->inuse - s->object_size);
797 		}
798 	}
799 
800 	if (s->flags & SLAB_POISON) {
801 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
802 			(!check_bytes_and_report(s, page, p, "Poison", p,
803 					POISON_FREE, s->object_size - 1) ||
804 			 !check_bytes_and_report(s, page, p, "Poison",
805 				p + s->object_size - 1, POISON_END, 1)))
806 			return 0;
807 		/*
808 		 * check_pad_bytes cleans up on its own.
809 		 */
810 		check_pad_bytes(s, page, p);
811 	}
812 
813 	if (!s->offset && val == SLUB_RED_ACTIVE)
814 		/*
815 		 * Object and freepointer overlap. Cannot check
816 		 * freepointer while object is allocated.
817 		 */
818 		return 1;
819 
820 	/* Check free pointer validity */
821 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
822 		object_err(s, page, p, "Freepointer corrupt");
823 		/*
824 		 * No choice but to zap it and thus lose the remainder
825 		 * of the free objects in this slab. May cause
826 		 * another error because the object count is now wrong.
827 		 */
828 		set_freepointer(s, p, NULL);
829 		return 0;
830 	}
831 	return 1;
832 }
833 
834 static int check_slab(struct kmem_cache *s, struct page *page)
835 {
836 	int maxobj;
837 
838 	VM_BUG_ON(!irqs_disabled());
839 
840 	if (!PageSlab(page)) {
841 		slab_err(s, page, "Not a valid slab page");
842 		return 0;
843 	}
844 
845 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
846 	if (page->objects > maxobj) {
847 		slab_err(s, page, "objects %u > max %u",
848 			s->name, page->objects, maxobj);
849 		return 0;
850 	}
851 	if (page->inuse > page->objects) {
852 		slab_err(s, page, "inuse %u > max %u",
853 			s->name, page->inuse, page->objects);
854 		return 0;
855 	}
856 	/* Slab_pad_check fixes things up after itself */
857 	slab_pad_check(s, page);
858 	return 1;
859 }
860 
861 /*
862  * Determine if a certain object on a page is on the freelist. Must hold the
863  * slab lock to guarantee that the chains are in a consistent state.
864  */
865 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
866 {
867 	int nr = 0;
868 	void *fp;
869 	void *object = NULL;
870 	unsigned long max_objects;
871 
872 	fp = page->freelist;
873 	while (fp && nr <= page->objects) {
874 		if (fp == search)
875 			return 1;
876 		if (!check_valid_pointer(s, page, fp)) {
877 			if (object) {
878 				object_err(s, page, object,
879 					"Freechain corrupt");
880 				set_freepointer(s, object, NULL);
881 			} else {
882 				slab_err(s, page, "Freepointer corrupt");
883 				page->freelist = NULL;
884 				page->inuse = page->objects;
885 				slab_fix(s, "Freelist cleared");
886 				return 0;
887 			}
888 			break;
889 		}
890 		object = fp;
891 		fp = get_freepointer(s, object);
892 		nr++;
893 	}
894 
895 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
896 	if (max_objects > MAX_OBJS_PER_PAGE)
897 		max_objects = MAX_OBJS_PER_PAGE;
898 
899 	if (page->objects != max_objects) {
900 		slab_err(s, page, "Wrong number of objects. Found %d but "
901 			"should be %d", page->objects, max_objects);
902 		page->objects = max_objects;
903 		slab_fix(s, "Number of objects adjusted.");
904 	}
905 	if (page->inuse != page->objects - nr) {
906 		slab_err(s, page, "Wrong object count. Counter is %d but "
907 			"counted were %d", page->inuse, page->objects - nr);
908 		page->inuse = page->objects - nr;
909 		slab_fix(s, "Object count adjusted.");
910 	}
911 	return search == NULL;
912 }
913 
914 static void trace(struct kmem_cache *s, struct page *page, void *object,
915 								int alloc)
916 {
917 	if (s->flags & SLAB_TRACE) {
918 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
919 			s->name,
920 			alloc ? "alloc" : "free",
921 			object, page->inuse,
922 			page->freelist);
923 
924 		if (!alloc)
925 			print_section("Object ", (void *)object,
926 					s->object_size);
927 
928 		dump_stack();
929 	}
930 }
931 
932 /*
933  * Hooks for other subsystems that check memory allocations. In a typical
934  * production configuration these hooks all should produce no code at all.
935  */
936 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
937 {
938 	kmemleak_alloc(ptr, size, 1, flags);
939 }
940 
941 static inline void kfree_hook(const void *x)
942 {
943 	kmemleak_free(x);
944 }
945 
946 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
947 {
948 	flags &= gfp_allowed_mask;
949 	lockdep_trace_alloc(flags);
950 	might_sleep_if(flags & __GFP_WAIT);
951 
952 	return should_failslab(s->object_size, flags, s->flags);
953 }
954 
955 static inline void slab_post_alloc_hook(struct kmem_cache *s,
956 					gfp_t flags, void *object)
957 {
958 	flags &= gfp_allowed_mask;
959 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
960 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
961 }
962 
963 static inline void slab_free_hook(struct kmem_cache *s, void *x)
964 {
965 	kmemleak_free_recursive(x, s->flags);
966 
967 	/*
968 	 * Trouble is that we may no longer disable interrupts in the fast path
969 	 * So in order to make the debug calls that expect irqs to be
970 	 * disabled we need to disable interrupts temporarily.
971 	 */
972 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
973 	{
974 		unsigned long flags;
975 
976 		local_irq_save(flags);
977 		kmemcheck_slab_free(s, x, s->object_size);
978 		debug_check_no_locks_freed(x, s->object_size);
979 		local_irq_restore(flags);
980 	}
981 #endif
982 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
983 		debug_check_no_obj_freed(x, s->object_size);
984 }
985 
986 /*
987  * Tracking of fully allocated slabs for debugging purposes.
988  *
989  * list_lock must be held.
990  */
991 static void add_full(struct kmem_cache *s,
992 	struct kmem_cache_node *n, struct page *page)
993 {
994 	if (!(s->flags & SLAB_STORE_USER))
995 		return;
996 
997 	list_add(&page->lru, &n->full);
998 }
999 
1000 /*
1001  * list_lock must be held.
1002  */
1003 static void remove_full(struct kmem_cache *s, struct page *page)
1004 {
1005 	if (!(s->flags & SLAB_STORE_USER))
1006 		return;
1007 
1008 	list_del(&page->lru);
1009 }
1010 
1011 /* Tracking of the number of slabs for debugging purposes */
1012 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1013 {
1014 	struct kmem_cache_node *n = get_node(s, node);
1015 
1016 	return atomic_long_read(&n->nr_slabs);
1017 }
1018 
1019 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1020 {
1021 	return atomic_long_read(&n->nr_slabs);
1022 }
1023 
1024 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1025 {
1026 	struct kmem_cache_node *n = get_node(s, node);
1027 
1028 	/*
1029 	 * May be called early in order to allocate a slab for the
1030 	 * kmem_cache_node structure. Solve the chicken-egg
1031 	 * dilemma by deferring the increment of the count during
1032 	 * bootstrap (see early_kmem_cache_node_alloc).
1033 	 */
1034 	if (likely(n)) {
1035 		atomic_long_inc(&n->nr_slabs);
1036 		atomic_long_add(objects, &n->total_objects);
1037 	}
1038 }
1039 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1040 {
1041 	struct kmem_cache_node *n = get_node(s, node);
1042 
1043 	atomic_long_dec(&n->nr_slabs);
1044 	atomic_long_sub(objects, &n->total_objects);
1045 }
1046 
1047 /* Object debug checks for alloc/free paths */
1048 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1049 								void *object)
1050 {
1051 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1052 		return;
1053 
1054 	init_object(s, object, SLUB_RED_INACTIVE);
1055 	init_tracking(s, object);
1056 }
1057 
1058 static noinline int alloc_debug_processing(struct kmem_cache *s,
1059 					struct page *page,
1060 					void *object, unsigned long addr)
1061 {
1062 	if (!check_slab(s, page))
1063 		goto bad;
1064 
1065 	if (!check_valid_pointer(s, page, object)) {
1066 		object_err(s, page, object, "Freelist Pointer check fails");
1067 		goto bad;
1068 	}
1069 
1070 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1071 		goto bad;
1072 
1073 	/* Success perform special debug activities for allocs */
1074 	if (s->flags & SLAB_STORE_USER)
1075 		set_track(s, object, TRACK_ALLOC, addr);
1076 	trace(s, page, object, 1);
1077 	init_object(s, object, SLUB_RED_ACTIVE);
1078 	return 1;
1079 
1080 bad:
1081 	if (PageSlab(page)) {
1082 		/*
1083 		 * If this is a slab page then lets do the best we can
1084 		 * to avoid issues in the future. Marking all objects
1085 		 * as used avoids touching the remaining objects.
1086 		 */
1087 		slab_fix(s, "Marking all objects used");
1088 		page->inuse = page->objects;
1089 		page->freelist = NULL;
1090 	}
1091 	return 0;
1092 }
1093 
1094 static noinline struct kmem_cache_node *free_debug_processing(
1095 	struct kmem_cache *s, struct page *page, void *object,
1096 	unsigned long addr, unsigned long *flags)
1097 {
1098 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1099 
1100 	spin_lock_irqsave(&n->list_lock, *flags);
1101 	slab_lock(page);
1102 
1103 	if (!check_slab(s, page))
1104 		goto fail;
1105 
1106 	if (!check_valid_pointer(s, page, object)) {
1107 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1108 		goto fail;
1109 	}
1110 
1111 	if (on_freelist(s, page, object)) {
1112 		object_err(s, page, object, "Object already free");
1113 		goto fail;
1114 	}
1115 
1116 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1117 		goto out;
1118 
1119 	if (unlikely(s != page->slab_cache)) {
1120 		if (!PageSlab(page)) {
1121 			slab_err(s, page, "Attempt to free object(0x%p) "
1122 				"outside of slab", object);
1123 		} else if (!page->slab_cache) {
1124 			printk(KERN_ERR
1125 				"SLUB <none>: no slab for object 0x%p.\n",
1126 						object);
1127 			dump_stack();
1128 		} else
1129 			object_err(s, page, object,
1130 					"page slab pointer corrupt.");
1131 		goto fail;
1132 	}
1133 
1134 	if (s->flags & SLAB_STORE_USER)
1135 		set_track(s, object, TRACK_FREE, addr);
1136 	trace(s, page, object, 0);
1137 	init_object(s, object, SLUB_RED_INACTIVE);
1138 out:
1139 	slab_unlock(page);
1140 	/*
1141 	 * Keep node_lock to preserve integrity
1142 	 * until the object is actually freed
1143 	 */
1144 	return n;
1145 
1146 fail:
1147 	slab_unlock(page);
1148 	spin_unlock_irqrestore(&n->list_lock, *flags);
1149 	slab_fix(s, "Object at 0x%p not freed", object);
1150 	return NULL;
1151 }
1152 
1153 static int __init setup_slub_debug(char *str)
1154 {
1155 	slub_debug = DEBUG_DEFAULT_FLAGS;
1156 	if (*str++ != '=' || !*str)
1157 		/*
1158 		 * No options specified. Switch on full debugging.
1159 		 */
1160 		goto out;
1161 
1162 	if (*str == ',')
1163 		/*
1164 		 * No options but restriction on slabs. This means full
1165 		 * debugging for slabs matching a pattern.
1166 		 */
1167 		goto check_slabs;
1168 
1169 	if (tolower(*str) == 'o') {
1170 		/*
1171 		 * Avoid enabling debugging on caches if its minimum order
1172 		 * would increase as a result.
1173 		 */
1174 		disable_higher_order_debug = 1;
1175 		goto out;
1176 	}
1177 
1178 	slub_debug = 0;
1179 	if (*str == '-')
1180 		/*
1181 		 * Switch off all debugging measures.
1182 		 */
1183 		goto out;
1184 
1185 	/*
1186 	 * Determine which debug features should be switched on
1187 	 */
1188 	for (; *str && *str != ','; str++) {
1189 		switch (tolower(*str)) {
1190 		case 'f':
1191 			slub_debug |= SLAB_DEBUG_FREE;
1192 			break;
1193 		case 'z':
1194 			slub_debug |= SLAB_RED_ZONE;
1195 			break;
1196 		case 'p':
1197 			slub_debug |= SLAB_POISON;
1198 			break;
1199 		case 'u':
1200 			slub_debug |= SLAB_STORE_USER;
1201 			break;
1202 		case 't':
1203 			slub_debug |= SLAB_TRACE;
1204 			break;
1205 		case 'a':
1206 			slub_debug |= SLAB_FAILSLAB;
1207 			break;
1208 		default:
1209 			printk(KERN_ERR "slub_debug option '%c' "
1210 				"unknown. skipped\n", *str);
1211 		}
1212 	}
1213 
1214 check_slabs:
1215 	if (*str == ',')
1216 		slub_debug_slabs = str + 1;
1217 out:
1218 	return 1;
1219 }
1220 
1221 __setup("slub_debug", setup_slub_debug);
1222 
1223 static unsigned long kmem_cache_flags(unsigned long object_size,
1224 	unsigned long flags, const char *name,
1225 	void (*ctor)(void *))
1226 {
1227 	/*
1228 	 * Enable debugging if selected on the kernel commandline.
1229 	 */
1230 	if (slub_debug && (!slub_debug_slabs || (name &&
1231 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1232 		flags |= slub_debug;
1233 
1234 	return flags;
1235 }
1236 #else
1237 static inline void setup_object_debug(struct kmem_cache *s,
1238 			struct page *page, void *object) {}
1239 
1240 static inline int alloc_debug_processing(struct kmem_cache *s,
1241 	struct page *page, void *object, unsigned long addr) { return 0; }
1242 
1243 static inline struct kmem_cache_node *free_debug_processing(
1244 	struct kmem_cache *s, struct page *page, void *object,
1245 	unsigned long addr, unsigned long *flags) { return NULL; }
1246 
1247 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1248 			{ return 1; }
1249 static inline int check_object(struct kmem_cache *s, struct page *page,
1250 			void *object, u8 val) { return 1; }
1251 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1252 					struct page *page) {}
1253 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1254 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1255 	unsigned long flags, const char *name,
1256 	void (*ctor)(void *))
1257 {
1258 	return flags;
1259 }
1260 #define slub_debug 0
1261 
1262 #define disable_higher_order_debug 0
1263 
1264 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1265 							{ return 0; }
1266 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1267 							{ return 0; }
1268 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1269 							int objects) {}
1270 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1271 							int objects) {}
1272 
1273 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1274 {
1275 	kmemleak_alloc(ptr, size, 1, flags);
1276 }
1277 
1278 static inline void kfree_hook(const void *x)
1279 {
1280 	kmemleak_free(x);
1281 }
1282 
1283 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1284 							{ return 0; }
1285 
1286 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1287 		void *object)
1288 {
1289 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1290 		flags & gfp_allowed_mask);
1291 }
1292 
1293 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1294 {
1295 	kmemleak_free_recursive(x, s->flags);
1296 }
1297 
1298 #endif /* CONFIG_SLUB_DEBUG */
1299 
1300 /*
1301  * Slab allocation and freeing
1302  */
1303 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1304 					struct kmem_cache_order_objects oo)
1305 {
1306 	int order = oo_order(oo);
1307 
1308 	flags |= __GFP_NOTRACK;
1309 
1310 	if (node == NUMA_NO_NODE)
1311 		return alloc_pages(flags, order);
1312 	else
1313 		return alloc_pages_exact_node(node, flags, order);
1314 }
1315 
1316 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1317 {
1318 	struct page *page;
1319 	struct kmem_cache_order_objects oo = s->oo;
1320 	gfp_t alloc_gfp;
1321 
1322 	flags &= gfp_allowed_mask;
1323 
1324 	if (flags & __GFP_WAIT)
1325 		local_irq_enable();
1326 
1327 	flags |= s->allocflags;
1328 
1329 	/*
1330 	 * Let the initial higher-order allocation fail under memory pressure
1331 	 * so we fall-back to the minimum order allocation.
1332 	 */
1333 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1334 
1335 	page = alloc_slab_page(alloc_gfp, node, oo);
1336 	if (unlikely(!page)) {
1337 		oo = s->min;
1338 		/*
1339 		 * Allocation may have failed due to fragmentation.
1340 		 * Try a lower order alloc if possible
1341 		 */
1342 		page = alloc_slab_page(flags, node, oo);
1343 
1344 		if (page)
1345 			stat(s, ORDER_FALLBACK);
1346 	}
1347 
1348 	if (kmemcheck_enabled && page
1349 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1350 		int pages = 1 << oo_order(oo);
1351 
1352 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1353 
1354 		/*
1355 		 * Objects from caches that have a constructor don't get
1356 		 * cleared when they're allocated, so we need to do it here.
1357 		 */
1358 		if (s->ctor)
1359 			kmemcheck_mark_uninitialized_pages(page, pages);
1360 		else
1361 			kmemcheck_mark_unallocated_pages(page, pages);
1362 	}
1363 
1364 	if (flags & __GFP_WAIT)
1365 		local_irq_disable();
1366 	if (!page)
1367 		return NULL;
1368 
1369 	page->objects = oo_objects(oo);
1370 	mod_zone_page_state(page_zone(page),
1371 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1372 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1373 		1 << oo_order(oo));
1374 
1375 	return page;
1376 }
1377 
1378 static void setup_object(struct kmem_cache *s, struct page *page,
1379 				void *object)
1380 {
1381 	setup_object_debug(s, page, object);
1382 	if (unlikely(s->ctor))
1383 		s->ctor(object);
1384 }
1385 
1386 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1387 {
1388 	struct page *page;
1389 	void *start;
1390 	void *last;
1391 	void *p;
1392 	int order;
1393 
1394 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1395 
1396 	page = allocate_slab(s,
1397 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1398 	if (!page)
1399 		goto out;
1400 
1401 	order = compound_order(page);
1402 	inc_slabs_node(s, page_to_nid(page), page->objects);
1403 	memcg_bind_pages(s, order);
1404 	page->slab_cache = s;
1405 	__SetPageSlab(page);
1406 	if (page->pfmemalloc)
1407 		SetPageSlabPfmemalloc(page);
1408 
1409 	start = page_address(page);
1410 
1411 	if (unlikely(s->flags & SLAB_POISON))
1412 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1413 
1414 	last = start;
1415 	for_each_object(p, s, start, page->objects) {
1416 		setup_object(s, page, last);
1417 		set_freepointer(s, last, p);
1418 		last = p;
1419 	}
1420 	setup_object(s, page, last);
1421 	set_freepointer(s, last, NULL);
1422 
1423 	page->freelist = start;
1424 	page->inuse = page->objects;
1425 	page->frozen = 1;
1426 out:
1427 	return page;
1428 }
1429 
1430 static void __free_slab(struct kmem_cache *s, struct page *page)
1431 {
1432 	int order = compound_order(page);
1433 	int pages = 1 << order;
1434 
1435 	if (kmem_cache_debug(s)) {
1436 		void *p;
1437 
1438 		slab_pad_check(s, page);
1439 		for_each_object(p, s, page_address(page),
1440 						page->objects)
1441 			check_object(s, page, p, SLUB_RED_INACTIVE);
1442 	}
1443 
1444 	kmemcheck_free_shadow(page, compound_order(page));
1445 
1446 	mod_zone_page_state(page_zone(page),
1447 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1448 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1449 		-pages);
1450 
1451 	__ClearPageSlabPfmemalloc(page);
1452 	__ClearPageSlab(page);
1453 
1454 	memcg_release_pages(s, order);
1455 	page_mapcount_reset(page);
1456 	if (current->reclaim_state)
1457 		current->reclaim_state->reclaimed_slab += pages;
1458 	__free_memcg_kmem_pages(page, order);
1459 }
1460 
1461 #define need_reserve_slab_rcu						\
1462 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1463 
1464 static void rcu_free_slab(struct rcu_head *h)
1465 {
1466 	struct page *page;
1467 
1468 	if (need_reserve_slab_rcu)
1469 		page = virt_to_head_page(h);
1470 	else
1471 		page = container_of((struct list_head *)h, struct page, lru);
1472 
1473 	__free_slab(page->slab_cache, page);
1474 }
1475 
1476 static void free_slab(struct kmem_cache *s, struct page *page)
1477 {
1478 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1479 		struct rcu_head *head;
1480 
1481 		if (need_reserve_slab_rcu) {
1482 			int order = compound_order(page);
1483 			int offset = (PAGE_SIZE << order) - s->reserved;
1484 
1485 			VM_BUG_ON(s->reserved != sizeof(*head));
1486 			head = page_address(page) + offset;
1487 		} else {
1488 			/*
1489 			 * RCU free overloads the RCU head over the LRU
1490 			 */
1491 			head = (void *)&page->lru;
1492 		}
1493 
1494 		call_rcu(head, rcu_free_slab);
1495 	} else
1496 		__free_slab(s, page);
1497 }
1498 
1499 static void discard_slab(struct kmem_cache *s, struct page *page)
1500 {
1501 	dec_slabs_node(s, page_to_nid(page), page->objects);
1502 	free_slab(s, page);
1503 }
1504 
1505 /*
1506  * Management of partially allocated slabs.
1507  *
1508  * list_lock must be held.
1509  */
1510 static inline void add_partial(struct kmem_cache_node *n,
1511 				struct page *page, int tail)
1512 {
1513 	n->nr_partial++;
1514 	if (tail == DEACTIVATE_TO_TAIL)
1515 		list_add_tail(&page->lru, &n->partial);
1516 	else
1517 		list_add(&page->lru, &n->partial);
1518 }
1519 
1520 /*
1521  * list_lock must be held.
1522  */
1523 static inline void remove_partial(struct kmem_cache_node *n,
1524 					struct page *page)
1525 {
1526 	list_del(&page->lru);
1527 	n->nr_partial--;
1528 }
1529 
1530 /*
1531  * Remove slab from the partial list, freeze it and
1532  * return the pointer to the freelist.
1533  *
1534  * Returns a list of objects or NULL if it fails.
1535  *
1536  * Must hold list_lock since we modify the partial list.
1537  */
1538 static inline void *acquire_slab(struct kmem_cache *s,
1539 		struct kmem_cache_node *n, struct page *page,
1540 		int mode, int *objects)
1541 {
1542 	void *freelist;
1543 	unsigned long counters;
1544 	struct page new;
1545 
1546 	/*
1547 	 * Zap the freelist and set the frozen bit.
1548 	 * The old freelist is the list of objects for the
1549 	 * per cpu allocation list.
1550 	 */
1551 	freelist = page->freelist;
1552 	counters = page->counters;
1553 	new.counters = counters;
1554 	*objects = new.objects - new.inuse;
1555 	if (mode) {
1556 		new.inuse = page->objects;
1557 		new.freelist = NULL;
1558 	} else {
1559 		new.freelist = freelist;
1560 	}
1561 
1562 	VM_BUG_ON(new.frozen);
1563 	new.frozen = 1;
1564 
1565 	if (!__cmpxchg_double_slab(s, page,
1566 			freelist, counters,
1567 			new.freelist, new.counters,
1568 			"acquire_slab"))
1569 		return NULL;
1570 
1571 	remove_partial(n, page);
1572 	WARN_ON(!freelist);
1573 	return freelist;
1574 }
1575 
1576 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1577 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1578 
1579 /*
1580  * Try to allocate a partial slab from a specific node.
1581  */
1582 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1583 				struct kmem_cache_cpu *c, gfp_t flags)
1584 {
1585 	struct page *page, *page2;
1586 	void *object = NULL;
1587 	int available = 0;
1588 	int objects;
1589 
1590 	/*
1591 	 * Racy check. If we mistakenly see no partial slabs then we
1592 	 * just allocate an empty slab. If we mistakenly try to get a
1593 	 * partial slab and there is none available then get_partials()
1594 	 * will return NULL.
1595 	 */
1596 	if (!n || !n->nr_partial)
1597 		return NULL;
1598 
1599 	spin_lock(&n->list_lock);
1600 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1601 		void *t;
1602 
1603 		if (!pfmemalloc_match(page, flags))
1604 			continue;
1605 
1606 		t = acquire_slab(s, n, page, object == NULL, &objects);
1607 		if (!t)
1608 			break;
1609 
1610 		available += objects;
1611 		if (!object) {
1612 			c->page = page;
1613 			stat(s, ALLOC_FROM_PARTIAL);
1614 			object = t;
1615 		} else {
1616 			put_cpu_partial(s, page, 0);
1617 			stat(s, CPU_PARTIAL_NODE);
1618 		}
1619 		if (!kmem_cache_has_cpu_partial(s)
1620 			|| available > s->cpu_partial / 2)
1621 			break;
1622 
1623 	}
1624 	spin_unlock(&n->list_lock);
1625 	return object;
1626 }
1627 
1628 /*
1629  * Get a page from somewhere. Search in increasing NUMA distances.
1630  */
1631 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1632 		struct kmem_cache_cpu *c)
1633 {
1634 #ifdef CONFIG_NUMA
1635 	struct zonelist *zonelist;
1636 	struct zoneref *z;
1637 	struct zone *zone;
1638 	enum zone_type high_zoneidx = gfp_zone(flags);
1639 	void *object;
1640 	unsigned int cpuset_mems_cookie;
1641 
1642 	/*
1643 	 * The defrag ratio allows a configuration of the tradeoffs between
1644 	 * inter node defragmentation and node local allocations. A lower
1645 	 * defrag_ratio increases the tendency to do local allocations
1646 	 * instead of attempting to obtain partial slabs from other nodes.
1647 	 *
1648 	 * If the defrag_ratio is set to 0 then kmalloc() always
1649 	 * returns node local objects. If the ratio is higher then kmalloc()
1650 	 * may return off node objects because partial slabs are obtained
1651 	 * from other nodes and filled up.
1652 	 *
1653 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1654 	 * defrag_ratio = 1000) then every (well almost) allocation will
1655 	 * first attempt to defrag slab caches on other nodes. This means
1656 	 * scanning over all nodes to look for partial slabs which may be
1657 	 * expensive if we do it every time we are trying to find a slab
1658 	 * with available objects.
1659 	 */
1660 	if (!s->remote_node_defrag_ratio ||
1661 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1662 		return NULL;
1663 
1664 	do {
1665 		cpuset_mems_cookie = get_mems_allowed();
1666 		zonelist = node_zonelist(slab_node(), flags);
1667 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1668 			struct kmem_cache_node *n;
1669 
1670 			n = get_node(s, zone_to_nid(zone));
1671 
1672 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1673 					n->nr_partial > s->min_partial) {
1674 				object = get_partial_node(s, n, c, flags);
1675 				if (object) {
1676 					/*
1677 					 * Return the object even if
1678 					 * put_mems_allowed indicated that
1679 					 * the cpuset mems_allowed was
1680 					 * updated in parallel. It's a
1681 					 * harmless race between the alloc
1682 					 * and the cpuset update.
1683 					 */
1684 					put_mems_allowed(cpuset_mems_cookie);
1685 					return object;
1686 				}
1687 			}
1688 		}
1689 	} while (!put_mems_allowed(cpuset_mems_cookie));
1690 #endif
1691 	return NULL;
1692 }
1693 
1694 /*
1695  * Get a partial page, lock it and return it.
1696  */
1697 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1698 		struct kmem_cache_cpu *c)
1699 {
1700 	void *object;
1701 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1702 
1703 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1704 	if (object || node != NUMA_NO_NODE)
1705 		return object;
1706 
1707 	return get_any_partial(s, flags, c);
1708 }
1709 
1710 #ifdef CONFIG_PREEMPT
1711 /*
1712  * Calculate the next globally unique transaction for disambiguiation
1713  * during cmpxchg. The transactions start with the cpu number and are then
1714  * incremented by CONFIG_NR_CPUS.
1715  */
1716 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1717 #else
1718 /*
1719  * No preemption supported therefore also no need to check for
1720  * different cpus.
1721  */
1722 #define TID_STEP 1
1723 #endif
1724 
1725 static inline unsigned long next_tid(unsigned long tid)
1726 {
1727 	return tid + TID_STEP;
1728 }
1729 
1730 static inline unsigned int tid_to_cpu(unsigned long tid)
1731 {
1732 	return tid % TID_STEP;
1733 }
1734 
1735 static inline unsigned long tid_to_event(unsigned long tid)
1736 {
1737 	return tid / TID_STEP;
1738 }
1739 
1740 static inline unsigned int init_tid(int cpu)
1741 {
1742 	return cpu;
1743 }
1744 
1745 static inline void note_cmpxchg_failure(const char *n,
1746 		const struct kmem_cache *s, unsigned long tid)
1747 {
1748 #ifdef SLUB_DEBUG_CMPXCHG
1749 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1750 
1751 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1752 
1753 #ifdef CONFIG_PREEMPT
1754 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1755 		printk("due to cpu change %d -> %d\n",
1756 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1757 	else
1758 #endif
1759 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1760 		printk("due to cpu running other code. Event %ld->%ld\n",
1761 			tid_to_event(tid), tid_to_event(actual_tid));
1762 	else
1763 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1764 			actual_tid, tid, next_tid(tid));
1765 #endif
1766 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1767 }
1768 
1769 static void init_kmem_cache_cpus(struct kmem_cache *s)
1770 {
1771 	int cpu;
1772 
1773 	for_each_possible_cpu(cpu)
1774 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1775 }
1776 
1777 /*
1778  * Remove the cpu slab
1779  */
1780 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1781 				void *freelist)
1782 {
1783 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1784 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1785 	int lock = 0;
1786 	enum slab_modes l = M_NONE, m = M_NONE;
1787 	void *nextfree;
1788 	int tail = DEACTIVATE_TO_HEAD;
1789 	struct page new;
1790 	struct page old;
1791 
1792 	if (page->freelist) {
1793 		stat(s, DEACTIVATE_REMOTE_FREES);
1794 		tail = DEACTIVATE_TO_TAIL;
1795 	}
1796 
1797 	/*
1798 	 * Stage one: Free all available per cpu objects back
1799 	 * to the page freelist while it is still frozen. Leave the
1800 	 * last one.
1801 	 *
1802 	 * There is no need to take the list->lock because the page
1803 	 * is still frozen.
1804 	 */
1805 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1806 		void *prior;
1807 		unsigned long counters;
1808 
1809 		do {
1810 			prior = page->freelist;
1811 			counters = page->counters;
1812 			set_freepointer(s, freelist, prior);
1813 			new.counters = counters;
1814 			new.inuse--;
1815 			VM_BUG_ON(!new.frozen);
1816 
1817 		} while (!__cmpxchg_double_slab(s, page,
1818 			prior, counters,
1819 			freelist, new.counters,
1820 			"drain percpu freelist"));
1821 
1822 		freelist = nextfree;
1823 	}
1824 
1825 	/*
1826 	 * Stage two: Ensure that the page is unfrozen while the
1827 	 * list presence reflects the actual number of objects
1828 	 * during unfreeze.
1829 	 *
1830 	 * We setup the list membership and then perform a cmpxchg
1831 	 * with the count. If there is a mismatch then the page
1832 	 * is not unfrozen but the page is on the wrong list.
1833 	 *
1834 	 * Then we restart the process which may have to remove
1835 	 * the page from the list that we just put it on again
1836 	 * because the number of objects in the slab may have
1837 	 * changed.
1838 	 */
1839 redo:
1840 
1841 	old.freelist = page->freelist;
1842 	old.counters = page->counters;
1843 	VM_BUG_ON(!old.frozen);
1844 
1845 	/* Determine target state of the slab */
1846 	new.counters = old.counters;
1847 	if (freelist) {
1848 		new.inuse--;
1849 		set_freepointer(s, freelist, old.freelist);
1850 		new.freelist = freelist;
1851 	} else
1852 		new.freelist = old.freelist;
1853 
1854 	new.frozen = 0;
1855 
1856 	if (!new.inuse && n->nr_partial > s->min_partial)
1857 		m = M_FREE;
1858 	else if (new.freelist) {
1859 		m = M_PARTIAL;
1860 		if (!lock) {
1861 			lock = 1;
1862 			/*
1863 			 * Taking the spinlock removes the possiblity
1864 			 * that acquire_slab() will see a slab page that
1865 			 * is frozen
1866 			 */
1867 			spin_lock(&n->list_lock);
1868 		}
1869 	} else {
1870 		m = M_FULL;
1871 		if (kmem_cache_debug(s) && !lock) {
1872 			lock = 1;
1873 			/*
1874 			 * This also ensures that the scanning of full
1875 			 * slabs from diagnostic functions will not see
1876 			 * any frozen slabs.
1877 			 */
1878 			spin_lock(&n->list_lock);
1879 		}
1880 	}
1881 
1882 	if (l != m) {
1883 
1884 		if (l == M_PARTIAL)
1885 
1886 			remove_partial(n, page);
1887 
1888 		else if (l == M_FULL)
1889 
1890 			remove_full(s, page);
1891 
1892 		if (m == M_PARTIAL) {
1893 
1894 			add_partial(n, page, tail);
1895 			stat(s, tail);
1896 
1897 		} else if (m == M_FULL) {
1898 
1899 			stat(s, DEACTIVATE_FULL);
1900 			add_full(s, n, page);
1901 
1902 		}
1903 	}
1904 
1905 	l = m;
1906 	if (!__cmpxchg_double_slab(s, page,
1907 				old.freelist, old.counters,
1908 				new.freelist, new.counters,
1909 				"unfreezing slab"))
1910 		goto redo;
1911 
1912 	if (lock)
1913 		spin_unlock(&n->list_lock);
1914 
1915 	if (m == M_FREE) {
1916 		stat(s, DEACTIVATE_EMPTY);
1917 		discard_slab(s, page);
1918 		stat(s, FREE_SLAB);
1919 	}
1920 }
1921 
1922 /*
1923  * Unfreeze all the cpu partial slabs.
1924  *
1925  * This function must be called with interrupts disabled
1926  * for the cpu using c (or some other guarantee must be there
1927  * to guarantee no concurrent accesses).
1928  */
1929 static void unfreeze_partials(struct kmem_cache *s,
1930 		struct kmem_cache_cpu *c)
1931 {
1932 #ifdef CONFIG_SLUB_CPU_PARTIAL
1933 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1934 	struct page *page, *discard_page = NULL;
1935 
1936 	while ((page = c->partial)) {
1937 		struct page new;
1938 		struct page old;
1939 
1940 		c->partial = page->next;
1941 
1942 		n2 = get_node(s, page_to_nid(page));
1943 		if (n != n2) {
1944 			if (n)
1945 				spin_unlock(&n->list_lock);
1946 
1947 			n = n2;
1948 			spin_lock(&n->list_lock);
1949 		}
1950 
1951 		do {
1952 
1953 			old.freelist = page->freelist;
1954 			old.counters = page->counters;
1955 			VM_BUG_ON(!old.frozen);
1956 
1957 			new.counters = old.counters;
1958 			new.freelist = old.freelist;
1959 
1960 			new.frozen = 0;
1961 
1962 		} while (!__cmpxchg_double_slab(s, page,
1963 				old.freelist, old.counters,
1964 				new.freelist, new.counters,
1965 				"unfreezing slab"));
1966 
1967 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1968 			page->next = discard_page;
1969 			discard_page = page;
1970 		} else {
1971 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1972 			stat(s, FREE_ADD_PARTIAL);
1973 		}
1974 	}
1975 
1976 	if (n)
1977 		spin_unlock(&n->list_lock);
1978 
1979 	while (discard_page) {
1980 		page = discard_page;
1981 		discard_page = discard_page->next;
1982 
1983 		stat(s, DEACTIVATE_EMPTY);
1984 		discard_slab(s, page);
1985 		stat(s, FREE_SLAB);
1986 	}
1987 #endif
1988 }
1989 
1990 /*
1991  * Put a page that was just frozen (in __slab_free) into a partial page
1992  * slot if available. This is done without interrupts disabled and without
1993  * preemption disabled. The cmpxchg is racy and may put the partial page
1994  * onto a random cpus partial slot.
1995  *
1996  * If we did not find a slot then simply move all the partials to the
1997  * per node partial list.
1998  */
1999 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2000 {
2001 #ifdef CONFIG_SLUB_CPU_PARTIAL
2002 	struct page *oldpage;
2003 	int pages;
2004 	int pobjects;
2005 
2006 	do {
2007 		pages = 0;
2008 		pobjects = 0;
2009 		oldpage = this_cpu_read(s->cpu_slab->partial);
2010 
2011 		if (oldpage) {
2012 			pobjects = oldpage->pobjects;
2013 			pages = oldpage->pages;
2014 			if (drain && pobjects > s->cpu_partial) {
2015 				unsigned long flags;
2016 				/*
2017 				 * partial array is full. Move the existing
2018 				 * set to the per node partial list.
2019 				 */
2020 				local_irq_save(flags);
2021 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2022 				local_irq_restore(flags);
2023 				oldpage = NULL;
2024 				pobjects = 0;
2025 				pages = 0;
2026 				stat(s, CPU_PARTIAL_DRAIN);
2027 			}
2028 		}
2029 
2030 		pages++;
2031 		pobjects += page->objects - page->inuse;
2032 
2033 		page->pages = pages;
2034 		page->pobjects = pobjects;
2035 		page->next = oldpage;
2036 
2037 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2038 								!= oldpage);
2039 #endif
2040 }
2041 
2042 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2043 {
2044 	stat(s, CPUSLAB_FLUSH);
2045 	deactivate_slab(s, c->page, c->freelist);
2046 
2047 	c->tid = next_tid(c->tid);
2048 	c->page = NULL;
2049 	c->freelist = NULL;
2050 }
2051 
2052 /*
2053  * Flush cpu slab.
2054  *
2055  * Called from IPI handler with interrupts disabled.
2056  */
2057 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2058 {
2059 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2060 
2061 	if (likely(c)) {
2062 		if (c->page)
2063 			flush_slab(s, c);
2064 
2065 		unfreeze_partials(s, c);
2066 	}
2067 }
2068 
2069 static void flush_cpu_slab(void *d)
2070 {
2071 	struct kmem_cache *s = d;
2072 
2073 	__flush_cpu_slab(s, smp_processor_id());
2074 }
2075 
2076 static bool has_cpu_slab(int cpu, void *info)
2077 {
2078 	struct kmem_cache *s = info;
2079 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2080 
2081 	return c->page || c->partial;
2082 }
2083 
2084 static void flush_all(struct kmem_cache *s)
2085 {
2086 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2087 }
2088 
2089 /*
2090  * Check if the objects in a per cpu structure fit numa
2091  * locality expectations.
2092  */
2093 static inline int node_match(struct page *page, int node)
2094 {
2095 #ifdef CONFIG_NUMA
2096 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2097 		return 0;
2098 #endif
2099 	return 1;
2100 }
2101 
2102 static int count_free(struct page *page)
2103 {
2104 	return page->objects - page->inuse;
2105 }
2106 
2107 static unsigned long count_partial(struct kmem_cache_node *n,
2108 					int (*get_count)(struct page *))
2109 {
2110 	unsigned long flags;
2111 	unsigned long x = 0;
2112 	struct page *page;
2113 
2114 	spin_lock_irqsave(&n->list_lock, flags);
2115 	list_for_each_entry(page, &n->partial, lru)
2116 		x += get_count(page);
2117 	spin_unlock_irqrestore(&n->list_lock, flags);
2118 	return x;
2119 }
2120 
2121 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2122 {
2123 #ifdef CONFIG_SLUB_DEBUG
2124 	return atomic_long_read(&n->total_objects);
2125 #else
2126 	return 0;
2127 #endif
2128 }
2129 
2130 static noinline void
2131 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2132 {
2133 	int node;
2134 
2135 	printk(KERN_WARNING
2136 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2137 		nid, gfpflags);
2138 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2139 		"default order: %d, min order: %d\n", s->name, s->object_size,
2140 		s->size, oo_order(s->oo), oo_order(s->min));
2141 
2142 	if (oo_order(s->min) > get_order(s->object_size))
2143 		printk(KERN_WARNING "  %s debugging increased min order, use "
2144 		       "slub_debug=O to disable.\n", s->name);
2145 
2146 	for_each_online_node(node) {
2147 		struct kmem_cache_node *n = get_node(s, node);
2148 		unsigned long nr_slabs;
2149 		unsigned long nr_objs;
2150 		unsigned long nr_free;
2151 
2152 		if (!n)
2153 			continue;
2154 
2155 		nr_free  = count_partial(n, count_free);
2156 		nr_slabs = node_nr_slabs(n);
2157 		nr_objs  = node_nr_objs(n);
2158 
2159 		printk(KERN_WARNING
2160 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2161 			node, nr_slabs, nr_objs, nr_free);
2162 	}
2163 }
2164 
2165 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2166 			int node, struct kmem_cache_cpu **pc)
2167 {
2168 	void *freelist;
2169 	struct kmem_cache_cpu *c = *pc;
2170 	struct page *page;
2171 
2172 	freelist = get_partial(s, flags, node, c);
2173 
2174 	if (freelist)
2175 		return freelist;
2176 
2177 	page = new_slab(s, flags, node);
2178 	if (page) {
2179 		c = __this_cpu_ptr(s->cpu_slab);
2180 		if (c->page)
2181 			flush_slab(s, c);
2182 
2183 		/*
2184 		 * No other reference to the page yet so we can
2185 		 * muck around with it freely without cmpxchg
2186 		 */
2187 		freelist = page->freelist;
2188 		page->freelist = NULL;
2189 
2190 		stat(s, ALLOC_SLAB);
2191 		c->page = page;
2192 		*pc = c;
2193 	} else
2194 		freelist = NULL;
2195 
2196 	return freelist;
2197 }
2198 
2199 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2200 {
2201 	if (unlikely(PageSlabPfmemalloc(page)))
2202 		return gfp_pfmemalloc_allowed(gfpflags);
2203 
2204 	return true;
2205 }
2206 
2207 /*
2208  * Check the page->freelist of a page and either transfer the freelist to the
2209  * per cpu freelist or deactivate the page.
2210  *
2211  * The page is still frozen if the return value is not NULL.
2212  *
2213  * If this function returns NULL then the page has been unfrozen.
2214  *
2215  * This function must be called with interrupt disabled.
2216  */
2217 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2218 {
2219 	struct page new;
2220 	unsigned long counters;
2221 	void *freelist;
2222 
2223 	do {
2224 		freelist = page->freelist;
2225 		counters = page->counters;
2226 
2227 		new.counters = counters;
2228 		VM_BUG_ON(!new.frozen);
2229 
2230 		new.inuse = page->objects;
2231 		new.frozen = freelist != NULL;
2232 
2233 	} while (!__cmpxchg_double_slab(s, page,
2234 		freelist, counters,
2235 		NULL, new.counters,
2236 		"get_freelist"));
2237 
2238 	return freelist;
2239 }
2240 
2241 /*
2242  * Slow path. The lockless freelist is empty or we need to perform
2243  * debugging duties.
2244  *
2245  * Processing is still very fast if new objects have been freed to the
2246  * regular freelist. In that case we simply take over the regular freelist
2247  * as the lockless freelist and zap the regular freelist.
2248  *
2249  * If that is not working then we fall back to the partial lists. We take the
2250  * first element of the freelist as the object to allocate now and move the
2251  * rest of the freelist to the lockless freelist.
2252  *
2253  * And if we were unable to get a new slab from the partial slab lists then
2254  * we need to allocate a new slab. This is the slowest path since it involves
2255  * a call to the page allocator and the setup of a new slab.
2256  */
2257 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2258 			  unsigned long addr, struct kmem_cache_cpu *c)
2259 {
2260 	void *freelist;
2261 	struct page *page;
2262 	unsigned long flags;
2263 
2264 	local_irq_save(flags);
2265 #ifdef CONFIG_PREEMPT
2266 	/*
2267 	 * We may have been preempted and rescheduled on a different
2268 	 * cpu before disabling interrupts. Need to reload cpu area
2269 	 * pointer.
2270 	 */
2271 	c = this_cpu_ptr(s->cpu_slab);
2272 #endif
2273 
2274 	page = c->page;
2275 	if (!page)
2276 		goto new_slab;
2277 redo:
2278 
2279 	if (unlikely(!node_match(page, node))) {
2280 		stat(s, ALLOC_NODE_MISMATCH);
2281 		deactivate_slab(s, page, c->freelist);
2282 		c->page = NULL;
2283 		c->freelist = NULL;
2284 		goto new_slab;
2285 	}
2286 
2287 	/*
2288 	 * By rights, we should be searching for a slab page that was
2289 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2290 	 * information when the page leaves the per-cpu allocator
2291 	 */
2292 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2293 		deactivate_slab(s, page, c->freelist);
2294 		c->page = NULL;
2295 		c->freelist = NULL;
2296 		goto new_slab;
2297 	}
2298 
2299 	/* must check again c->freelist in case of cpu migration or IRQ */
2300 	freelist = c->freelist;
2301 	if (freelist)
2302 		goto load_freelist;
2303 
2304 	stat(s, ALLOC_SLOWPATH);
2305 
2306 	freelist = get_freelist(s, page);
2307 
2308 	if (!freelist) {
2309 		c->page = NULL;
2310 		stat(s, DEACTIVATE_BYPASS);
2311 		goto new_slab;
2312 	}
2313 
2314 	stat(s, ALLOC_REFILL);
2315 
2316 load_freelist:
2317 	/*
2318 	 * freelist is pointing to the list of objects to be used.
2319 	 * page is pointing to the page from which the objects are obtained.
2320 	 * That page must be frozen for per cpu allocations to work.
2321 	 */
2322 	VM_BUG_ON(!c->page->frozen);
2323 	c->freelist = get_freepointer(s, freelist);
2324 	c->tid = next_tid(c->tid);
2325 	local_irq_restore(flags);
2326 	return freelist;
2327 
2328 new_slab:
2329 
2330 	if (c->partial) {
2331 		page = c->page = c->partial;
2332 		c->partial = page->next;
2333 		stat(s, CPU_PARTIAL_ALLOC);
2334 		c->freelist = NULL;
2335 		goto redo;
2336 	}
2337 
2338 	freelist = new_slab_objects(s, gfpflags, node, &c);
2339 
2340 	if (unlikely(!freelist)) {
2341 		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2342 			slab_out_of_memory(s, gfpflags, node);
2343 
2344 		local_irq_restore(flags);
2345 		return NULL;
2346 	}
2347 
2348 	page = c->page;
2349 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2350 		goto load_freelist;
2351 
2352 	/* Only entered in the debug case */
2353 	if (kmem_cache_debug(s) &&
2354 			!alloc_debug_processing(s, page, freelist, addr))
2355 		goto new_slab;	/* Slab failed checks. Next slab needed */
2356 
2357 	deactivate_slab(s, page, get_freepointer(s, freelist));
2358 	c->page = NULL;
2359 	c->freelist = NULL;
2360 	local_irq_restore(flags);
2361 	return freelist;
2362 }
2363 
2364 /*
2365  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2366  * have the fastpath folded into their functions. So no function call
2367  * overhead for requests that can be satisfied on the fastpath.
2368  *
2369  * The fastpath works by first checking if the lockless freelist can be used.
2370  * If not then __slab_alloc is called for slow processing.
2371  *
2372  * Otherwise we can simply pick the next object from the lockless free list.
2373  */
2374 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2375 		gfp_t gfpflags, int node, unsigned long addr)
2376 {
2377 	void **object;
2378 	struct kmem_cache_cpu *c;
2379 	struct page *page;
2380 	unsigned long tid;
2381 
2382 	if (slab_pre_alloc_hook(s, gfpflags))
2383 		return NULL;
2384 
2385 	s = memcg_kmem_get_cache(s, gfpflags);
2386 redo:
2387 	/*
2388 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2389 	 * enabled. We may switch back and forth between cpus while
2390 	 * reading from one cpu area. That does not matter as long
2391 	 * as we end up on the original cpu again when doing the cmpxchg.
2392 	 *
2393 	 * Preemption is disabled for the retrieval of the tid because that
2394 	 * must occur from the current processor. We cannot allow rescheduling
2395 	 * on a different processor between the determination of the pointer
2396 	 * and the retrieval of the tid.
2397 	 */
2398 	preempt_disable();
2399 	c = __this_cpu_ptr(s->cpu_slab);
2400 
2401 	/*
2402 	 * The transaction ids are globally unique per cpu and per operation on
2403 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2404 	 * occurs on the right processor and that there was no operation on the
2405 	 * linked list in between.
2406 	 */
2407 	tid = c->tid;
2408 	preempt_enable();
2409 
2410 	object = c->freelist;
2411 	page = c->page;
2412 	if (unlikely(!object || !node_match(page, node)))
2413 		object = __slab_alloc(s, gfpflags, node, addr, c);
2414 
2415 	else {
2416 		void *next_object = get_freepointer_safe(s, object);
2417 
2418 		/*
2419 		 * The cmpxchg will only match if there was no additional
2420 		 * operation and if we are on the right processor.
2421 		 *
2422 		 * The cmpxchg does the following atomically (without lock
2423 		 * semantics!)
2424 		 * 1. Relocate first pointer to the current per cpu area.
2425 		 * 2. Verify that tid and freelist have not been changed
2426 		 * 3. If they were not changed replace tid and freelist
2427 		 *
2428 		 * Since this is without lock semantics the protection is only
2429 		 * against code executing on this cpu *not* from access by
2430 		 * other cpus.
2431 		 */
2432 		if (unlikely(!this_cpu_cmpxchg_double(
2433 				s->cpu_slab->freelist, s->cpu_slab->tid,
2434 				object, tid,
2435 				next_object, next_tid(tid)))) {
2436 
2437 			note_cmpxchg_failure("slab_alloc", s, tid);
2438 			goto redo;
2439 		}
2440 		prefetch_freepointer(s, next_object);
2441 		stat(s, ALLOC_FASTPATH);
2442 	}
2443 
2444 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2445 		memset(object, 0, s->object_size);
2446 
2447 	slab_post_alloc_hook(s, gfpflags, object);
2448 
2449 	return object;
2450 }
2451 
2452 static __always_inline void *slab_alloc(struct kmem_cache *s,
2453 		gfp_t gfpflags, unsigned long addr)
2454 {
2455 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2456 }
2457 
2458 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2459 {
2460 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2461 
2462 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2463 				s->size, gfpflags);
2464 
2465 	return ret;
2466 }
2467 EXPORT_SYMBOL(kmem_cache_alloc);
2468 
2469 #ifdef CONFIG_TRACING
2470 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2471 {
2472 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2473 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2474 	return ret;
2475 }
2476 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2477 #endif
2478 
2479 #ifdef CONFIG_NUMA
2480 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2481 {
2482 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2483 
2484 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2485 				    s->object_size, s->size, gfpflags, node);
2486 
2487 	return ret;
2488 }
2489 EXPORT_SYMBOL(kmem_cache_alloc_node);
2490 
2491 #ifdef CONFIG_TRACING
2492 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2493 				    gfp_t gfpflags,
2494 				    int node, size_t size)
2495 {
2496 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2497 
2498 	trace_kmalloc_node(_RET_IP_, ret,
2499 			   size, s->size, gfpflags, node);
2500 	return ret;
2501 }
2502 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2503 #endif
2504 #endif
2505 
2506 /*
2507  * Slow patch handling. This may still be called frequently since objects
2508  * have a longer lifetime than the cpu slabs in most processing loads.
2509  *
2510  * So we still attempt to reduce cache line usage. Just take the slab
2511  * lock and free the item. If there is no additional partial page
2512  * handling required then we can return immediately.
2513  */
2514 static void __slab_free(struct kmem_cache *s, struct page *page,
2515 			void *x, unsigned long addr)
2516 {
2517 	void *prior;
2518 	void **object = (void *)x;
2519 	int was_frozen;
2520 	struct page new;
2521 	unsigned long counters;
2522 	struct kmem_cache_node *n = NULL;
2523 	unsigned long uninitialized_var(flags);
2524 
2525 	stat(s, FREE_SLOWPATH);
2526 
2527 	if (kmem_cache_debug(s) &&
2528 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2529 		return;
2530 
2531 	do {
2532 		if (unlikely(n)) {
2533 			spin_unlock_irqrestore(&n->list_lock, flags);
2534 			n = NULL;
2535 		}
2536 		prior = page->freelist;
2537 		counters = page->counters;
2538 		set_freepointer(s, object, prior);
2539 		new.counters = counters;
2540 		was_frozen = new.frozen;
2541 		new.inuse--;
2542 		if ((!new.inuse || !prior) && !was_frozen) {
2543 
2544 			if (kmem_cache_has_cpu_partial(s) && !prior)
2545 
2546 				/*
2547 				 * Slab was on no list before and will be
2548 				 * partially empty
2549 				 * We can defer the list move and instead
2550 				 * freeze it.
2551 				 */
2552 				new.frozen = 1;
2553 
2554 			else { /* Needs to be taken off a list */
2555 
2556 	                        n = get_node(s, page_to_nid(page));
2557 				/*
2558 				 * Speculatively acquire the list_lock.
2559 				 * If the cmpxchg does not succeed then we may
2560 				 * drop the list_lock without any processing.
2561 				 *
2562 				 * Otherwise the list_lock will synchronize with
2563 				 * other processors updating the list of slabs.
2564 				 */
2565 				spin_lock_irqsave(&n->list_lock, flags);
2566 
2567 			}
2568 		}
2569 
2570 	} while (!cmpxchg_double_slab(s, page,
2571 		prior, counters,
2572 		object, new.counters,
2573 		"__slab_free"));
2574 
2575 	if (likely(!n)) {
2576 
2577 		/*
2578 		 * If we just froze the page then put it onto the
2579 		 * per cpu partial list.
2580 		 */
2581 		if (new.frozen && !was_frozen) {
2582 			put_cpu_partial(s, page, 1);
2583 			stat(s, CPU_PARTIAL_FREE);
2584 		}
2585 		/*
2586 		 * The list lock was not taken therefore no list
2587 		 * activity can be necessary.
2588 		 */
2589                 if (was_frozen)
2590                         stat(s, FREE_FROZEN);
2591                 return;
2592         }
2593 
2594 	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2595 		goto slab_empty;
2596 
2597 	/*
2598 	 * Objects left in the slab. If it was not on the partial list before
2599 	 * then add it.
2600 	 */
2601 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2602 		if (kmem_cache_debug(s))
2603 			remove_full(s, page);
2604 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2605 		stat(s, FREE_ADD_PARTIAL);
2606 	}
2607 	spin_unlock_irqrestore(&n->list_lock, flags);
2608 	return;
2609 
2610 slab_empty:
2611 	if (prior) {
2612 		/*
2613 		 * Slab on the partial list.
2614 		 */
2615 		remove_partial(n, page);
2616 		stat(s, FREE_REMOVE_PARTIAL);
2617 	} else
2618 		/* Slab must be on the full list */
2619 		remove_full(s, page);
2620 
2621 	spin_unlock_irqrestore(&n->list_lock, flags);
2622 	stat(s, FREE_SLAB);
2623 	discard_slab(s, page);
2624 }
2625 
2626 /*
2627  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2628  * can perform fastpath freeing without additional function calls.
2629  *
2630  * The fastpath is only possible if we are freeing to the current cpu slab
2631  * of this processor. This typically the case if we have just allocated
2632  * the item before.
2633  *
2634  * If fastpath is not possible then fall back to __slab_free where we deal
2635  * with all sorts of special processing.
2636  */
2637 static __always_inline void slab_free(struct kmem_cache *s,
2638 			struct page *page, void *x, unsigned long addr)
2639 {
2640 	void **object = (void *)x;
2641 	struct kmem_cache_cpu *c;
2642 	unsigned long tid;
2643 
2644 	slab_free_hook(s, x);
2645 
2646 redo:
2647 	/*
2648 	 * Determine the currently cpus per cpu slab.
2649 	 * The cpu may change afterward. However that does not matter since
2650 	 * data is retrieved via this pointer. If we are on the same cpu
2651 	 * during the cmpxchg then the free will succedd.
2652 	 */
2653 	preempt_disable();
2654 	c = __this_cpu_ptr(s->cpu_slab);
2655 
2656 	tid = c->tid;
2657 	preempt_enable();
2658 
2659 	if (likely(page == c->page)) {
2660 		set_freepointer(s, object, c->freelist);
2661 
2662 		if (unlikely(!this_cpu_cmpxchg_double(
2663 				s->cpu_slab->freelist, s->cpu_slab->tid,
2664 				c->freelist, tid,
2665 				object, next_tid(tid)))) {
2666 
2667 			note_cmpxchg_failure("slab_free", s, tid);
2668 			goto redo;
2669 		}
2670 		stat(s, FREE_FASTPATH);
2671 	} else
2672 		__slab_free(s, page, x, addr);
2673 
2674 }
2675 
2676 void kmem_cache_free(struct kmem_cache *s, void *x)
2677 {
2678 	s = cache_from_obj(s, x);
2679 	if (!s)
2680 		return;
2681 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2682 	trace_kmem_cache_free(_RET_IP_, x);
2683 }
2684 EXPORT_SYMBOL(kmem_cache_free);
2685 
2686 /*
2687  * Object placement in a slab is made very easy because we always start at
2688  * offset 0. If we tune the size of the object to the alignment then we can
2689  * get the required alignment by putting one properly sized object after
2690  * another.
2691  *
2692  * Notice that the allocation order determines the sizes of the per cpu
2693  * caches. Each processor has always one slab available for allocations.
2694  * Increasing the allocation order reduces the number of times that slabs
2695  * must be moved on and off the partial lists and is therefore a factor in
2696  * locking overhead.
2697  */
2698 
2699 /*
2700  * Mininum / Maximum order of slab pages. This influences locking overhead
2701  * and slab fragmentation. A higher order reduces the number of partial slabs
2702  * and increases the number of allocations possible without having to
2703  * take the list_lock.
2704  */
2705 static int slub_min_order;
2706 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2707 static int slub_min_objects;
2708 
2709 /*
2710  * Merge control. If this is set then no merging of slab caches will occur.
2711  * (Could be removed. This was introduced to pacify the merge skeptics.)
2712  */
2713 static int slub_nomerge;
2714 
2715 /*
2716  * Calculate the order of allocation given an slab object size.
2717  *
2718  * The order of allocation has significant impact on performance and other
2719  * system components. Generally order 0 allocations should be preferred since
2720  * order 0 does not cause fragmentation in the page allocator. Larger objects
2721  * be problematic to put into order 0 slabs because there may be too much
2722  * unused space left. We go to a higher order if more than 1/16th of the slab
2723  * would be wasted.
2724  *
2725  * In order to reach satisfactory performance we must ensure that a minimum
2726  * number of objects is in one slab. Otherwise we may generate too much
2727  * activity on the partial lists which requires taking the list_lock. This is
2728  * less a concern for large slabs though which are rarely used.
2729  *
2730  * slub_max_order specifies the order where we begin to stop considering the
2731  * number of objects in a slab as critical. If we reach slub_max_order then
2732  * we try to keep the page order as low as possible. So we accept more waste
2733  * of space in favor of a small page order.
2734  *
2735  * Higher order allocations also allow the placement of more objects in a
2736  * slab and thereby reduce object handling overhead. If the user has
2737  * requested a higher mininum order then we start with that one instead of
2738  * the smallest order which will fit the object.
2739  */
2740 static inline int slab_order(int size, int min_objects,
2741 				int max_order, int fract_leftover, int reserved)
2742 {
2743 	int order;
2744 	int rem;
2745 	int min_order = slub_min_order;
2746 
2747 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2748 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2749 
2750 	for (order = max(min_order,
2751 				fls(min_objects * size - 1) - PAGE_SHIFT);
2752 			order <= max_order; order++) {
2753 
2754 		unsigned long slab_size = PAGE_SIZE << order;
2755 
2756 		if (slab_size < min_objects * size + reserved)
2757 			continue;
2758 
2759 		rem = (slab_size - reserved) % size;
2760 
2761 		if (rem <= slab_size / fract_leftover)
2762 			break;
2763 
2764 	}
2765 
2766 	return order;
2767 }
2768 
2769 static inline int calculate_order(int size, int reserved)
2770 {
2771 	int order;
2772 	int min_objects;
2773 	int fraction;
2774 	int max_objects;
2775 
2776 	/*
2777 	 * Attempt to find best configuration for a slab. This
2778 	 * works by first attempting to generate a layout with
2779 	 * the best configuration and backing off gradually.
2780 	 *
2781 	 * First we reduce the acceptable waste in a slab. Then
2782 	 * we reduce the minimum objects required in a slab.
2783 	 */
2784 	min_objects = slub_min_objects;
2785 	if (!min_objects)
2786 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2787 	max_objects = order_objects(slub_max_order, size, reserved);
2788 	min_objects = min(min_objects, max_objects);
2789 
2790 	while (min_objects > 1) {
2791 		fraction = 16;
2792 		while (fraction >= 4) {
2793 			order = slab_order(size, min_objects,
2794 					slub_max_order, fraction, reserved);
2795 			if (order <= slub_max_order)
2796 				return order;
2797 			fraction /= 2;
2798 		}
2799 		min_objects--;
2800 	}
2801 
2802 	/*
2803 	 * We were unable to place multiple objects in a slab. Now
2804 	 * lets see if we can place a single object there.
2805 	 */
2806 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2807 	if (order <= slub_max_order)
2808 		return order;
2809 
2810 	/*
2811 	 * Doh this slab cannot be placed using slub_max_order.
2812 	 */
2813 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2814 	if (order < MAX_ORDER)
2815 		return order;
2816 	return -ENOSYS;
2817 }
2818 
2819 static void
2820 init_kmem_cache_node(struct kmem_cache_node *n)
2821 {
2822 	n->nr_partial = 0;
2823 	spin_lock_init(&n->list_lock);
2824 	INIT_LIST_HEAD(&n->partial);
2825 #ifdef CONFIG_SLUB_DEBUG
2826 	atomic_long_set(&n->nr_slabs, 0);
2827 	atomic_long_set(&n->total_objects, 0);
2828 	INIT_LIST_HEAD(&n->full);
2829 #endif
2830 }
2831 
2832 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2833 {
2834 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2835 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2836 
2837 	/*
2838 	 * Must align to double word boundary for the double cmpxchg
2839 	 * instructions to work; see __pcpu_double_call_return_bool().
2840 	 */
2841 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2842 				     2 * sizeof(void *));
2843 
2844 	if (!s->cpu_slab)
2845 		return 0;
2846 
2847 	init_kmem_cache_cpus(s);
2848 
2849 	return 1;
2850 }
2851 
2852 static struct kmem_cache *kmem_cache_node;
2853 
2854 /*
2855  * No kmalloc_node yet so do it by hand. We know that this is the first
2856  * slab on the node for this slabcache. There are no concurrent accesses
2857  * possible.
2858  *
2859  * Note that this function only works on the kmem_cache_node
2860  * when allocating for the kmem_cache_node. This is used for bootstrapping
2861  * memory on a fresh node that has no slab structures yet.
2862  */
2863 static void early_kmem_cache_node_alloc(int node)
2864 {
2865 	struct page *page;
2866 	struct kmem_cache_node *n;
2867 
2868 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2869 
2870 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2871 
2872 	BUG_ON(!page);
2873 	if (page_to_nid(page) != node) {
2874 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2875 				"node %d\n", node);
2876 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2877 				"in order to be able to continue\n");
2878 	}
2879 
2880 	n = page->freelist;
2881 	BUG_ON(!n);
2882 	page->freelist = get_freepointer(kmem_cache_node, n);
2883 	page->inuse = 1;
2884 	page->frozen = 0;
2885 	kmem_cache_node->node[node] = n;
2886 #ifdef CONFIG_SLUB_DEBUG
2887 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2888 	init_tracking(kmem_cache_node, n);
2889 #endif
2890 	init_kmem_cache_node(n);
2891 	inc_slabs_node(kmem_cache_node, node, page->objects);
2892 
2893 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2894 }
2895 
2896 static void free_kmem_cache_nodes(struct kmem_cache *s)
2897 {
2898 	int node;
2899 
2900 	for_each_node_state(node, N_NORMAL_MEMORY) {
2901 		struct kmem_cache_node *n = s->node[node];
2902 
2903 		if (n)
2904 			kmem_cache_free(kmem_cache_node, n);
2905 
2906 		s->node[node] = NULL;
2907 	}
2908 }
2909 
2910 static int init_kmem_cache_nodes(struct kmem_cache *s)
2911 {
2912 	int node;
2913 
2914 	for_each_node_state(node, N_NORMAL_MEMORY) {
2915 		struct kmem_cache_node *n;
2916 
2917 		if (slab_state == DOWN) {
2918 			early_kmem_cache_node_alloc(node);
2919 			continue;
2920 		}
2921 		n = kmem_cache_alloc_node(kmem_cache_node,
2922 						GFP_KERNEL, node);
2923 
2924 		if (!n) {
2925 			free_kmem_cache_nodes(s);
2926 			return 0;
2927 		}
2928 
2929 		s->node[node] = n;
2930 		init_kmem_cache_node(n);
2931 	}
2932 	return 1;
2933 }
2934 
2935 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2936 {
2937 	if (min < MIN_PARTIAL)
2938 		min = MIN_PARTIAL;
2939 	else if (min > MAX_PARTIAL)
2940 		min = MAX_PARTIAL;
2941 	s->min_partial = min;
2942 }
2943 
2944 /*
2945  * calculate_sizes() determines the order and the distribution of data within
2946  * a slab object.
2947  */
2948 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2949 {
2950 	unsigned long flags = s->flags;
2951 	unsigned long size = s->object_size;
2952 	int order;
2953 
2954 	/*
2955 	 * Round up object size to the next word boundary. We can only
2956 	 * place the free pointer at word boundaries and this determines
2957 	 * the possible location of the free pointer.
2958 	 */
2959 	size = ALIGN(size, sizeof(void *));
2960 
2961 #ifdef CONFIG_SLUB_DEBUG
2962 	/*
2963 	 * Determine if we can poison the object itself. If the user of
2964 	 * the slab may touch the object after free or before allocation
2965 	 * then we should never poison the object itself.
2966 	 */
2967 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2968 			!s->ctor)
2969 		s->flags |= __OBJECT_POISON;
2970 	else
2971 		s->flags &= ~__OBJECT_POISON;
2972 
2973 
2974 	/*
2975 	 * If we are Redzoning then check if there is some space between the
2976 	 * end of the object and the free pointer. If not then add an
2977 	 * additional word to have some bytes to store Redzone information.
2978 	 */
2979 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2980 		size += sizeof(void *);
2981 #endif
2982 
2983 	/*
2984 	 * With that we have determined the number of bytes in actual use
2985 	 * by the object. This is the potential offset to the free pointer.
2986 	 */
2987 	s->inuse = size;
2988 
2989 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2990 		s->ctor)) {
2991 		/*
2992 		 * Relocate free pointer after the object if it is not
2993 		 * permitted to overwrite the first word of the object on
2994 		 * kmem_cache_free.
2995 		 *
2996 		 * This is the case if we do RCU, have a constructor or
2997 		 * destructor or are poisoning the objects.
2998 		 */
2999 		s->offset = size;
3000 		size += sizeof(void *);
3001 	}
3002 
3003 #ifdef CONFIG_SLUB_DEBUG
3004 	if (flags & SLAB_STORE_USER)
3005 		/*
3006 		 * Need to store information about allocs and frees after
3007 		 * the object.
3008 		 */
3009 		size += 2 * sizeof(struct track);
3010 
3011 	if (flags & SLAB_RED_ZONE)
3012 		/*
3013 		 * Add some empty padding so that we can catch
3014 		 * overwrites from earlier objects rather than let
3015 		 * tracking information or the free pointer be
3016 		 * corrupted if a user writes before the start
3017 		 * of the object.
3018 		 */
3019 		size += sizeof(void *);
3020 #endif
3021 
3022 	/*
3023 	 * SLUB stores one object immediately after another beginning from
3024 	 * offset 0. In order to align the objects we have to simply size
3025 	 * each object to conform to the alignment.
3026 	 */
3027 	size = ALIGN(size, s->align);
3028 	s->size = size;
3029 	if (forced_order >= 0)
3030 		order = forced_order;
3031 	else
3032 		order = calculate_order(size, s->reserved);
3033 
3034 	if (order < 0)
3035 		return 0;
3036 
3037 	s->allocflags = 0;
3038 	if (order)
3039 		s->allocflags |= __GFP_COMP;
3040 
3041 	if (s->flags & SLAB_CACHE_DMA)
3042 		s->allocflags |= GFP_DMA;
3043 
3044 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3045 		s->allocflags |= __GFP_RECLAIMABLE;
3046 
3047 	/*
3048 	 * Determine the number of objects per slab
3049 	 */
3050 	s->oo = oo_make(order, size, s->reserved);
3051 	s->min = oo_make(get_order(size), size, s->reserved);
3052 	if (oo_objects(s->oo) > oo_objects(s->max))
3053 		s->max = s->oo;
3054 
3055 	return !!oo_objects(s->oo);
3056 }
3057 
3058 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3059 {
3060 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3061 	s->reserved = 0;
3062 
3063 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3064 		s->reserved = sizeof(struct rcu_head);
3065 
3066 	if (!calculate_sizes(s, -1))
3067 		goto error;
3068 	if (disable_higher_order_debug) {
3069 		/*
3070 		 * Disable debugging flags that store metadata if the min slab
3071 		 * order increased.
3072 		 */
3073 		if (get_order(s->size) > get_order(s->object_size)) {
3074 			s->flags &= ~DEBUG_METADATA_FLAGS;
3075 			s->offset = 0;
3076 			if (!calculate_sizes(s, -1))
3077 				goto error;
3078 		}
3079 	}
3080 
3081 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3082     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3083 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3084 		/* Enable fast mode */
3085 		s->flags |= __CMPXCHG_DOUBLE;
3086 #endif
3087 
3088 	/*
3089 	 * The larger the object size is, the more pages we want on the partial
3090 	 * list to avoid pounding the page allocator excessively.
3091 	 */
3092 	set_min_partial(s, ilog2(s->size) / 2);
3093 
3094 	/*
3095 	 * cpu_partial determined the maximum number of objects kept in the
3096 	 * per cpu partial lists of a processor.
3097 	 *
3098 	 * Per cpu partial lists mainly contain slabs that just have one
3099 	 * object freed. If they are used for allocation then they can be
3100 	 * filled up again with minimal effort. The slab will never hit the
3101 	 * per node partial lists and therefore no locking will be required.
3102 	 *
3103 	 * This setting also determines
3104 	 *
3105 	 * A) The number of objects from per cpu partial slabs dumped to the
3106 	 *    per node list when we reach the limit.
3107 	 * B) The number of objects in cpu partial slabs to extract from the
3108 	 *    per node list when we run out of per cpu objects. We only fetch
3109 	 *    50% to keep some capacity around for frees.
3110 	 */
3111 	if (!kmem_cache_has_cpu_partial(s))
3112 		s->cpu_partial = 0;
3113 	else if (s->size >= PAGE_SIZE)
3114 		s->cpu_partial = 2;
3115 	else if (s->size >= 1024)
3116 		s->cpu_partial = 6;
3117 	else if (s->size >= 256)
3118 		s->cpu_partial = 13;
3119 	else
3120 		s->cpu_partial = 30;
3121 
3122 #ifdef CONFIG_NUMA
3123 	s->remote_node_defrag_ratio = 1000;
3124 #endif
3125 	if (!init_kmem_cache_nodes(s))
3126 		goto error;
3127 
3128 	if (alloc_kmem_cache_cpus(s))
3129 		return 0;
3130 
3131 	free_kmem_cache_nodes(s);
3132 error:
3133 	if (flags & SLAB_PANIC)
3134 		panic("Cannot create slab %s size=%lu realsize=%u "
3135 			"order=%u offset=%u flags=%lx\n",
3136 			s->name, (unsigned long)s->size, s->size,
3137 			oo_order(s->oo), s->offset, flags);
3138 	return -EINVAL;
3139 }
3140 
3141 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3142 							const char *text)
3143 {
3144 #ifdef CONFIG_SLUB_DEBUG
3145 	void *addr = page_address(page);
3146 	void *p;
3147 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3148 				     sizeof(long), GFP_ATOMIC);
3149 	if (!map)
3150 		return;
3151 	slab_err(s, page, text, s->name);
3152 	slab_lock(page);
3153 
3154 	get_map(s, page, map);
3155 	for_each_object(p, s, addr, page->objects) {
3156 
3157 		if (!test_bit(slab_index(p, s, addr), map)) {
3158 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3159 							p, p - addr);
3160 			print_tracking(s, p);
3161 		}
3162 	}
3163 	slab_unlock(page);
3164 	kfree(map);
3165 #endif
3166 }
3167 
3168 /*
3169  * Attempt to free all partial slabs on a node.
3170  * This is called from kmem_cache_close(). We must be the last thread
3171  * using the cache and therefore we do not need to lock anymore.
3172  */
3173 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3174 {
3175 	struct page *page, *h;
3176 
3177 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3178 		if (!page->inuse) {
3179 			remove_partial(n, page);
3180 			discard_slab(s, page);
3181 		} else {
3182 			list_slab_objects(s, page,
3183 			"Objects remaining in %s on kmem_cache_close()");
3184 		}
3185 	}
3186 }
3187 
3188 /*
3189  * Release all resources used by a slab cache.
3190  */
3191 static inline int kmem_cache_close(struct kmem_cache *s)
3192 {
3193 	int node;
3194 
3195 	flush_all(s);
3196 	/* Attempt to free all objects */
3197 	for_each_node_state(node, N_NORMAL_MEMORY) {
3198 		struct kmem_cache_node *n = get_node(s, node);
3199 
3200 		free_partial(s, n);
3201 		if (n->nr_partial || slabs_node(s, node))
3202 			return 1;
3203 	}
3204 	free_percpu(s->cpu_slab);
3205 	free_kmem_cache_nodes(s);
3206 	return 0;
3207 }
3208 
3209 int __kmem_cache_shutdown(struct kmem_cache *s)
3210 {
3211 	int rc = kmem_cache_close(s);
3212 
3213 	if (!rc) {
3214 		/*
3215 		 * We do the same lock strategy around sysfs_slab_add, see
3216 		 * __kmem_cache_create. Because this is pretty much the last
3217 		 * operation we do and the lock will be released shortly after
3218 		 * that in slab_common.c, we could just move sysfs_slab_remove
3219 		 * to a later point in common code. We should do that when we
3220 		 * have a common sysfs framework for all allocators.
3221 		 */
3222 		mutex_unlock(&slab_mutex);
3223 		sysfs_slab_remove(s);
3224 		mutex_lock(&slab_mutex);
3225 	}
3226 
3227 	return rc;
3228 }
3229 
3230 /********************************************************************
3231  *		Kmalloc subsystem
3232  *******************************************************************/
3233 
3234 static int __init setup_slub_min_order(char *str)
3235 {
3236 	get_option(&str, &slub_min_order);
3237 
3238 	return 1;
3239 }
3240 
3241 __setup("slub_min_order=", setup_slub_min_order);
3242 
3243 static int __init setup_slub_max_order(char *str)
3244 {
3245 	get_option(&str, &slub_max_order);
3246 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3247 
3248 	return 1;
3249 }
3250 
3251 __setup("slub_max_order=", setup_slub_max_order);
3252 
3253 static int __init setup_slub_min_objects(char *str)
3254 {
3255 	get_option(&str, &slub_min_objects);
3256 
3257 	return 1;
3258 }
3259 
3260 __setup("slub_min_objects=", setup_slub_min_objects);
3261 
3262 static int __init setup_slub_nomerge(char *str)
3263 {
3264 	slub_nomerge = 1;
3265 	return 1;
3266 }
3267 
3268 __setup("slub_nomerge", setup_slub_nomerge);
3269 
3270 void *__kmalloc(size_t size, gfp_t flags)
3271 {
3272 	struct kmem_cache *s;
3273 	void *ret;
3274 
3275 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3276 		return kmalloc_large(size, flags);
3277 
3278 	s = kmalloc_slab(size, flags);
3279 
3280 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3281 		return s;
3282 
3283 	ret = slab_alloc(s, flags, _RET_IP_);
3284 
3285 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3286 
3287 	return ret;
3288 }
3289 EXPORT_SYMBOL(__kmalloc);
3290 
3291 #ifdef CONFIG_NUMA
3292 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3293 {
3294 	struct page *page;
3295 	void *ptr = NULL;
3296 
3297 	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3298 	page = alloc_pages_node(node, flags, get_order(size));
3299 	if (page)
3300 		ptr = page_address(page);
3301 
3302 	kmalloc_large_node_hook(ptr, size, flags);
3303 	return ptr;
3304 }
3305 
3306 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3307 {
3308 	struct kmem_cache *s;
3309 	void *ret;
3310 
3311 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3312 		ret = kmalloc_large_node(size, flags, node);
3313 
3314 		trace_kmalloc_node(_RET_IP_, ret,
3315 				   size, PAGE_SIZE << get_order(size),
3316 				   flags, node);
3317 
3318 		return ret;
3319 	}
3320 
3321 	s = kmalloc_slab(size, flags);
3322 
3323 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3324 		return s;
3325 
3326 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3327 
3328 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3329 
3330 	return ret;
3331 }
3332 EXPORT_SYMBOL(__kmalloc_node);
3333 #endif
3334 
3335 size_t ksize(const void *object)
3336 {
3337 	struct page *page;
3338 
3339 	if (unlikely(object == ZERO_SIZE_PTR))
3340 		return 0;
3341 
3342 	page = virt_to_head_page(object);
3343 
3344 	if (unlikely(!PageSlab(page))) {
3345 		WARN_ON(!PageCompound(page));
3346 		return PAGE_SIZE << compound_order(page);
3347 	}
3348 
3349 	return slab_ksize(page->slab_cache);
3350 }
3351 EXPORT_SYMBOL(ksize);
3352 
3353 void kfree(const void *x)
3354 {
3355 	struct page *page;
3356 	void *object = (void *)x;
3357 
3358 	trace_kfree(_RET_IP_, x);
3359 
3360 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3361 		return;
3362 
3363 	page = virt_to_head_page(x);
3364 	if (unlikely(!PageSlab(page))) {
3365 		BUG_ON(!PageCompound(page));
3366 		kfree_hook(x);
3367 		__free_memcg_kmem_pages(page, compound_order(page));
3368 		return;
3369 	}
3370 	slab_free(page->slab_cache, page, object, _RET_IP_);
3371 }
3372 EXPORT_SYMBOL(kfree);
3373 
3374 /*
3375  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3376  * the remaining slabs by the number of items in use. The slabs with the
3377  * most items in use come first. New allocations will then fill those up
3378  * and thus they can be removed from the partial lists.
3379  *
3380  * The slabs with the least items are placed last. This results in them
3381  * being allocated from last increasing the chance that the last objects
3382  * are freed in them.
3383  */
3384 int kmem_cache_shrink(struct kmem_cache *s)
3385 {
3386 	int node;
3387 	int i;
3388 	struct kmem_cache_node *n;
3389 	struct page *page;
3390 	struct page *t;
3391 	int objects = oo_objects(s->max);
3392 	struct list_head *slabs_by_inuse =
3393 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3394 	unsigned long flags;
3395 
3396 	if (!slabs_by_inuse)
3397 		return -ENOMEM;
3398 
3399 	flush_all(s);
3400 	for_each_node_state(node, N_NORMAL_MEMORY) {
3401 		n = get_node(s, node);
3402 
3403 		if (!n->nr_partial)
3404 			continue;
3405 
3406 		for (i = 0; i < objects; i++)
3407 			INIT_LIST_HEAD(slabs_by_inuse + i);
3408 
3409 		spin_lock_irqsave(&n->list_lock, flags);
3410 
3411 		/*
3412 		 * Build lists indexed by the items in use in each slab.
3413 		 *
3414 		 * Note that concurrent frees may occur while we hold the
3415 		 * list_lock. page->inuse here is the upper limit.
3416 		 */
3417 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3418 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3419 			if (!page->inuse)
3420 				n->nr_partial--;
3421 		}
3422 
3423 		/*
3424 		 * Rebuild the partial list with the slabs filled up most
3425 		 * first and the least used slabs at the end.
3426 		 */
3427 		for (i = objects - 1; i > 0; i--)
3428 			list_splice(slabs_by_inuse + i, n->partial.prev);
3429 
3430 		spin_unlock_irqrestore(&n->list_lock, flags);
3431 
3432 		/* Release empty slabs */
3433 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3434 			discard_slab(s, page);
3435 	}
3436 
3437 	kfree(slabs_by_inuse);
3438 	return 0;
3439 }
3440 EXPORT_SYMBOL(kmem_cache_shrink);
3441 
3442 static int slab_mem_going_offline_callback(void *arg)
3443 {
3444 	struct kmem_cache *s;
3445 
3446 	mutex_lock(&slab_mutex);
3447 	list_for_each_entry(s, &slab_caches, list)
3448 		kmem_cache_shrink(s);
3449 	mutex_unlock(&slab_mutex);
3450 
3451 	return 0;
3452 }
3453 
3454 static void slab_mem_offline_callback(void *arg)
3455 {
3456 	struct kmem_cache_node *n;
3457 	struct kmem_cache *s;
3458 	struct memory_notify *marg = arg;
3459 	int offline_node;
3460 
3461 	offline_node = marg->status_change_nid_normal;
3462 
3463 	/*
3464 	 * If the node still has available memory. we need kmem_cache_node
3465 	 * for it yet.
3466 	 */
3467 	if (offline_node < 0)
3468 		return;
3469 
3470 	mutex_lock(&slab_mutex);
3471 	list_for_each_entry(s, &slab_caches, list) {
3472 		n = get_node(s, offline_node);
3473 		if (n) {
3474 			/*
3475 			 * if n->nr_slabs > 0, slabs still exist on the node
3476 			 * that is going down. We were unable to free them,
3477 			 * and offline_pages() function shouldn't call this
3478 			 * callback. So, we must fail.
3479 			 */
3480 			BUG_ON(slabs_node(s, offline_node));
3481 
3482 			s->node[offline_node] = NULL;
3483 			kmem_cache_free(kmem_cache_node, n);
3484 		}
3485 	}
3486 	mutex_unlock(&slab_mutex);
3487 }
3488 
3489 static int slab_mem_going_online_callback(void *arg)
3490 {
3491 	struct kmem_cache_node *n;
3492 	struct kmem_cache *s;
3493 	struct memory_notify *marg = arg;
3494 	int nid = marg->status_change_nid_normal;
3495 	int ret = 0;
3496 
3497 	/*
3498 	 * If the node's memory is already available, then kmem_cache_node is
3499 	 * already created. Nothing to do.
3500 	 */
3501 	if (nid < 0)
3502 		return 0;
3503 
3504 	/*
3505 	 * We are bringing a node online. No memory is available yet. We must
3506 	 * allocate a kmem_cache_node structure in order to bring the node
3507 	 * online.
3508 	 */
3509 	mutex_lock(&slab_mutex);
3510 	list_for_each_entry(s, &slab_caches, list) {
3511 		/*
3512 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3513 		 *      since memory is not yet available from the node that
3514 		 *      is brought up.
3515 		 */
3516 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3517 		if (!n) {
3518 			ret = -ENOMEM;
3519 			goto out;
3520 		}
3521 		init_kmem_cache_node(n);
3522 		s->node[nid] = n;
3523 	}
3524 out:
3525 	mutex_unlock(&slab_mutex);
3526 	return ret;
3527 }
3528 
3529 static int slab_memory_callback(struct notifier_block *self,
3530 				unsigned long action, void *arg)
3531 {
3532 	int ret = 0;
3533 
3534 	switch (action) {
3535 	case MEM_GOING_ONLINE:
3536 		ret = slab_mem_going_online_callback(arg);
3537 		break;
3538 	case MEM_GOING_OFFLINE:
3539 		ret = slab_mem_going_offline_callback(arg);
3540 		break;
3541 	case MEM_OFFLINE:
3542 	case MEM_CANCEL_ONLINE:
3543 		slab_mem_offline_callback(arg);
3544 		break;
3545 	case MEM_ONLINE:
3546 	case MEM_CANCEL_OFFLINE:
3547 		break;
3548 	}
3549 	if (ret)
3550 		ret = notifier_from_errno(ret);
3551 	else
3552 		ret = NOTIFY_OK;
3553 	return ret;
3554 }
3555 
3556 static struct notifier_block slab_memory_callback_nb = {
3557 	.notifier_call = slab_memory_callback,
3558 	.priority = SLAB_CALLBACK_PRI,
3559 };
3560 
3561 /********************************************************************
3562  *			Basic setup of slabs
3563  *******************************************************************/
3564 
3565 /*
3566  * Used for early kmem_cache structures that were allocated using
3567  * the page allocator. Allocate them properly then fix up the pointers
3568  * that may be pointing to the wrong kmem_cache structure.
3569  */
3570 
3571 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3572 {
3573 	int node;
3574 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3575 
3576 	memcpy(s, static_cache, kmem_cache->object_size);
3577 
3578 	/*
3579 	 * This runs very early, and only the boot processor is supposed to be
3580 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3581 	 * IPIs around.
3582 	 */
3583 	__flush_cpu_slab(s, smp_processor_id());
3584 	for_each_node_state(node, N_NORMAL_MEMORY) {
3585 		struct kmem_cache_node *n = get_node(s, node);
3586 		struct page *p;
3587 
3588 		if (n) {
3589 			list_for_each_entry(p, &n->partial, lru)
3590 				p->slab_cache = s;
3591 
3592 #ifdef CONFIG_SLUB_DEBUG
3593 			list_for_each_entry(p, &n->full, lru)
3594 				p->slab_cache = s;
3595 #endif
3596 		}
3597 	}
3598 	list_add(&s->list, &slab_caches);
3599 	return s;
3600 }
3601 
3602 void __init kmem_cache_init(void)
3603 {
3604 	static __initdata struct kmem_cache boot_kmem_cache,
3605 		boot_kmem_cache_node;
3606 
3607 	if (debug_guardpage_minorder())
3608 		slub_max_order = 0;
3609 
3610 	kmem_cache_node = &boot_kmem_cache_node;
3611 	kmem_cache = &boot_kmem_cache;
3612 
3613 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3614 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3615 
3616 	register_hotmemory_notifier(&slab_memory_callback_nb);
3617 
3618 	/* Able to allocate the per node structures */
3619 	slab_state = PARTIAL;
3620 
3621 	create_boot_cache(kmem_cache, "kmem_cache",
3622 			offsetof(struct kmem_cache, node) +
3623 				nr_node_ids * sizeof(struct kmem_cache_node *),
3624 		       SLAB_HWCACHE_ALIGN);
3625 
3626 	kmem_cache = bootstrap(&boot_kmem_cache);
3627 
3628 	/*
3629 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3630 	 * kmem_cache_node is separately allocated so no need to
3631 	 * update any list pointers.
3632 	 */
3633 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3634 
3635 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3636 	create_kmalloc_caches(0);
3637 
3638 #ifdef CONFIG_SMP
3639 	register_cpu_notifier(&slab_notifier);
3640 #endif
3641 
3642 	printk(KERN_INFO
3643 		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3644 		" CPUs=%d, Nodes=%d\n",
3645 		cache_line_size(),
3646 		slub_min_order, slub_max_order, slub_min_objects,
3647 		nr_cpu_ids, nr_node_ids);
3648 }
3649 
3650 void __init kmem_cache_init_late(void)
3651 {
3652 }
3653 
3654 /*
3655  * Find a mergeable slab cache
3656  */
3657 static int slab_unmergeable(struct kmem_cache *s)
3658 {
3659 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3660 		return 1;
3661 
3662 	if (s->ctor)
3663 		return 1;
3664 
3665 	/*
3666 	 * We may have set a slab to be unmergeable during bootstrap.
3667 	 */
3668 	if (s->refcount < 0)
3669 		return 1;
3670 
3671 	return 0;
3672 }
3673 
3674 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3675 		size_t align, unsigned long flags, const char *name,
3676 		void (*ctor)(void *))
3677 {
3678 	struct kmem_cache *s;
3679 
3680 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3681 		return NULL;
3682 
3683 	if (ctor)
3684 		return NULL;
3685 
3686 	size = ALIGN(size, sizeof(void *));
3687 	align = calculate_alignment(flags, align, size);
3688 	size = ALIGN(size, align);
3689 	flags = kmem_cache_flags(size, flags, name, NULL);
3690 
3691 	list_for_each_entry(s, &slab_caches, list) {
3692 		if (slab_unmergeable(s))
3693 			continue;
3694 
3695 		if (size > s->size)
3696 			continue;
3697 
3698 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3699 				continue;
3700 		/*
3701 		 * Check if alignment is compatible.
3702 		 * Courtesy of Adrian Drzewiecki
3703 		 */
3704 		if ((s->size & ~(align - 1)) != s->size)
3705 			continue;
3706 
3707 		if (s->size - size >= sizeof(void *))
3708 			continue;
3709 
3710 		if (!cache_match_memcg(s, memcg))
3711 			continue;
3712 
3713 		return s;
3714 	}
3715 	return NULL;
3716 }
3717 
3718 struct kmem_cache *
3719 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3720 		   size_t align, unsigned long flags, void (*ctor)(void *))
3721 {
3722 	struct kmem_cache *s;
3723 
3724 	s = find_mergeable(memcg, size, align, flags, name, ctor);
3725 	if (s) {
3726 		s->refcount++;
3727 		/*
3728 		 * Adjust the object sizes so that we clear
3729 		 * the complete object on kzalloc.
3730 		 */
3731 		s->object_size = max(s->object_size, (int)size);
3732 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3733 
3734 		if (sysfs_slab_alias(s, name)) {
3735 			s->refcount--;
3736 			s = NULL;
3737 		}
3738 	}
3739 
3740 	return s;
3741 }
3742 
3743 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3744 {
3745 	int err;
3746 
3747 	err = kmem_cache_open(s, flags);
3748 	if (err)
3749 		return err;
3750 
3751 	/* Mutex is not taken during early boot */
3752 	if (slab_state <= UP)
3753 		return 0;
3754 
3755 	memcg_propagate_slab_attrs(s);
3756 	mutex_unlock(&slab_mutex);
3757 	err = sysfs_slab_add(s);
3758 	mutex_lock(&slab_mutex);
3759 
3760 	if (err)
3761 		kmem_cache_close(s);
3762 
3763 	return err;
3764 }
3765 
3766 #ifdef CONFIG_SMP
3767 /*
3768  * Use the cpu notifier to insure that the cpu slabs are flushed when
3769  * necessary.
3770  */
3771 static int slab_cpuup_callback(struct notifier_block *nfb,
3772 		unsigned long action, void *hcpu)
3773 {
3774 	long cpu = (long)hcpu;
3775 	struct kmem_cache *s;
3776 	unsigned long flags;
3777 
3778 	switch (action) {
3779 	case CPU_UP_CANCELED:
3780 	case CPU_UP_CANCELED_FROZEN:
3781 	case CPU_DEAD:
3782 	case CPU_DEAD_FROZEN:
3783 		mutex_lock(&slab_mutex);
3784 		list_for_each_entry(s, &slab_caches, list) {
3785 			local_irq_save(flags);
3786 			__flush_cpu_slab(s, cpu);
3787 			local_irq_restore(flags);
3788 		}
3789 		mutex_unlock(&slab_mutex);
3790 		break;
3791 	default:
3792 		break;
3793 	}
3794 	return NOTIFY_OK;
3795 }
3796 
3797 static struct notifier_block slab_notifier = {
3798 	.notifier_call = slab_cpuup_callback
3799 };
3800 
3801 #endif
3802 
3803 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3804 {
3805 	struct kmem_cache *s;
3806 	void *ret;
3807 
3808 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3809 		return kmalloc_large(size, gfpflags);
3810 
3811 	s = kmalloc_slab(size, gfpflags);
3812 
3813 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3814 		return s;
3815 
3816 	ret = slab_alloc(s, gfpflags, caller);
3817 
3818 	/* Honor the call site pointer we received. */
3819 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3820 
3821 	return ret;
3822 }
3823 
3824 #ifdef CONFIG_NUMA
3825 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3826 					int node, unsigned long caller)
3827 {
3828 	struct kmem_cache *s;
3829 	void *ret;
3830 
3831 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3832 		ret = kmalloc_large_node(size, gfpflags, node);
3833 
3834 		trace_kmalloc_node(caller, ret,
3835 				   size, PAGE_SIZE << get_order(size),
3836 				   gfpflags, node);
3837 
3838 		return ret;
3839 	}
3840 
3841 	s = kmalloc_slab(size, gfpflags);
3842 
3843 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3844 		return s;
3845 
3846 	ret = slab_alloc_node(s, gfpflags, node, caller);
3847 
3848 	/* Honor the call site pointer we received. */
3849 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3850 
3851 	return ret;
3852 }
3853 #endif
3854 
3855 #ifdef CONFIG_SYSFS
3856 static int count_inuse(struct page *page)
3857 {
3858 	return page->inuse;
3859 }
3860 
3861 static int count_total(struct page *page)
3862 {
3863 	return page->objects;
3864 }
3865 #endif
3866 
3867 #ifdef CONFIG_SLUB_DEBUG
3868 static int validate_slab(struct kmem_cache *s, struct page *page,
3869 						unsigned long *map)
3870 {
3871 	void *p;
3872 	void *addr = page_address(page);
3873 
3874 	if (!check_slab(s, page) ||
3875 			!on_freelist(s, page, NULL))
3876 		return 0;
3877 
3878 	/* Now we know that a valid freelist exists */
3879 	bitmap_zero(map, page->objects);
3880 
3881 	get_map(s, page, map);
3882 	for_each_object(p, s, addr, page->objects) {
3883 		if (test_bit(slab_index(p, s, addr), map))
3884 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3885 				return 0;
3886 	}
3887 
3888 	for_each_object(p, s, addr, page->objects)
3889 		if (!test_bit(slab_index(p, s, addr), map))
3890 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3891 				return 0;
3892 	return 1;
3893 }
3894 
3895 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3896 						unsigned long *map)
3897 {
3898 	slab_lock(page);
3899 	validate_slab(s, page, map);
3900 	slab_unlock(page);
3901 }
3902 
3903 static int validate_slab_node(struct kmem_cache *s,
3904 		struct kmem_cache_node *n, unsigned long *map)
3905 {
3906 	unsigned long count = 0;
3907 	struct page *page;
3908 	unsigned long flags;
3909 
3910 	spin_lock_irqsave(&n->list_lock, flags);
3911 
3912 	list_for_each_entry(page, &n->partial, lru) {
3913 		validate_slab_slab(s, page, map);
3914 		count++;
3915 	}
3916 	if (count != n->nr_partial)
3917 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3918 			"counter=%ld\n", s->name, count, n->nr_partial);
3919 
3920 	if (!(s->flags & SLAB_STORE_USER))
3921 		goto out;
3922 
3923 	list_for_each_entry(page, &n->full, lru) {
3924 		validate_slab_slab(s, page, map);
3925 		count++;
3926 	}
3927 	if (count != atomic_long_read(&n->nr_slabs))
3928 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3929 			"counter=%ld\n", s->name, count,
3930 			atomic_long_read(&n->nr_slabs));
3931 
3932 out:
3933 	spin_unlock_irqrestore(&n->list_lock, flags);
3934 	return count;
3935 }
3936 
3937 static long validate_slab_cache(struct kmem_cache *s)
3938 {
3939 	int node;
3940 	unsigned long count = 0;
3941 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3942 				sizeof(unsigned long), GFP_KERNEL);
3943 
3944 	if (!map)
3945 		return -ENOMEM;
3946 
3947 	flush_all(s);
3948 	for_each_node_state(node, N_NORMAL_MEMORY) {
3949 		struct kmem_cache_node *n = get_node(s, node);
3950 
3951 		count += validate_slab_node(s, n, map);
3952 	}
3953 	kfree(map);
3954 	return count;
3955 }
3956 /*
3957  * Generate lists of code addresses where slabcache objects are allocated
3958  * and freed.
3959  */
3960 
3961 struct location {
3962 	unsigned long count;
3963 	unsigned long addr;
3964 	long long sum_time;
3965 	long min_time;
3966 	long max_time;
3967 	long min_pid;
3968 	long max_pid;
3969 	DECLARE_BITMAP(cpus, NR_CPUS);
3970 	nodemask_t nodes;
3971 };
3972 
3973 struct loc_track {
3974 	unsigned long max;
3975 	unsigned long count;
3976 	struct location *loc;
3977 };
3978 
3979 static void free_loc_track(struct loc_track *t)
3980 {
3981 	if (t->max)
3982 		free_pages((unsigned long)t->loc,
3983 			get_order(sizeof(struct location) * t->max));
3984 }
3985 
3986 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3987 {
3988 	struct location *l;
3989 	int order;
3990 
3991 	order = get_order(sizeof(struct location) * max);
3992 
3993 	l = (void *)__get_free_pages(flags, order);
3994 	if (!l)
3995 		return 0;
3996 
3997 	if (t->count) {
3998 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3999 		free_loc_track(t);
4000 	}
4001 	t->max = max;
4002 	t->loc = l;
4003 	return 1;
4004 }
4005 
4006 static int add_location(struct loc_track *t, struct kmem_cache *s,
4007 				const struct track *track)
4008 {
4009 	long start, end, pos;
4010 	struct location *l;
4011 	unsigned long caddr;
4012 	unsigned long age = jiffies - track->when;
4013 
4014 	start = -1;
4015 	end = t->count;
4016 
4017 	for ( ; ; ) {
4018 		pos = start + (end - start + 1) / 2;
4019 
4020 		/*
4021 		 * There is nothing at "end". If we end up there
4022 		 * we need to add something to before end.
4023 		 */
4024 		if (pos == end)
4025 			break;
4026 
4027 		caddr = t->loc[pos].addr;
4028 		if (track->addr == caddr) {
4029 
4030 			l = &t->loc[pos];
4031 			l->count++;
4032 			if (track->when) {
4033 				l->sum_time += age;
4034 				if (age < l->min_time)
4035 					l->min_time = age;
4036 				if (age > l->max_time)
4037 					l->max_time = age;
4038 
4039 				if (track->pid < l->min_pid)
4040 					l->min_pid = track->pid;
4041 				if (track->pid > l->max_pid)
4042 					l->max_pid = track->pid;
4043 
4044 				cpumask_set_cpu(track->cpu,
4045 						to_cpumask(l->cpus));
4046 			}
4047 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4048 			return 1;
4049 		}
4050 
4051 		if (track->addr < caddr)
4052 			end = pos;
4053 		else
4054 			start = pos;
4055 	}
4056 
4057 	/*
4058 	 * Not found. Insert new tracking element.
4059 	 */
4060 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4061 		return 0;
4062 
4063 	l = t->loc + pos;
4064 	if (pos < t->count)
4065 		memmove(l + 1, l,
4066 			(t->count - pos) * sizeof(struct location));
4067 	t->count++;
4068 	l->count = 1;
4069 	l->addr = track->addr;
4070 	l->sum_time = age;
4071 	l->min_time = age;
4072 	l->max_time = age;
4073 	l->min_pid = track->pid;
4074 	l->max_pid = track->pid;
4075 	cpumask_clear(to_cpumask(l->cpus));
4076 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4077 	nodes_clear(l->nodes);
4078 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4079 	return 1;
4080 }
4081 
4082 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4083 		struct page *page, enum track_item alloc,
4084 		unsigned long *map)
4085 {
4086 	void *addr = page_address(page);
4087 	void *p;
4088 
4089 	bitmap_zero(map, page->objects);
4090 	get_map(s, page, map);
4091 
4092 	for_each_object(p, s, addr, page->objects)
4093 		if (!test_bit(slab_index(p, s, addr), map))
4094 			add_location(t, s, get_track(s, p, alloc));
4095 }
4096 
4097 static int list_locations(struct kmem_cache *s, char *buf,
4098 					enum track_item alloc)
4099 {
4100 	int len = 0;
4101 	unsigned long i;
4102 	struct loc_track t = { 0, 0, NULL };
4103 	int node;
4104 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4105 				     sizeof(unsigned long), GFP_KERNEL);
4106 
4107 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4108 				     GFP_TEMPORARY)) {
4109 		kfree(map);
4110 		return sprintf(buf, "Out of memory\n");
4111 	}
4112 	/* Push back cpu slabs */
4113 	flush_all(s);
4114 
4115 	for_each_node_state(node, N_NORMAL_MEMORY) {
4116 		struct kmem_cache_node *n = get_node(s, node);
4117 		unsigned long flags;
4118 		struct page *page;
4119 
4120 		if (!atomic_long_read(&n->nr_slabs))
4121 			continue;
4122 
4123 		spin_lock_irqsave(&n->list_lock, flags);
4124 		list_for_each_entry(page, &n->partial, lru)
4125 			process_slab(&t, s, page, alloc, map);
4126 		list_for_each_entry(page, &n->full, lru)
4127 			process_slab(&t, s, page, alloc, map);
4128 		spin_unlock_irqrestore(&n->list_lock, flags);
4129 	}
4130 
4131 	for (i = 0; i < t.count; i++) {
4132 		struct location *l = &t.loc[i];
4133 
4134 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4135 			break;
4136 		len += sprintf(buf + len, "%7ld ", l->count);
4137 
4138 		if (l->addr)
4139 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4140 		else
4141 			len += sprintf(buf + len, "<not-available>");
4142 
4143 		if (l->sum_time != l->min_time) {
4144 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4145 				l->min_time,
4146 				(long)div_u64(l->sum_time, l->count),
4147 				l->max_time);
4148 		} else
4149 			len += sprintf(buf + len, " age=%ld",
4150 				l->min_time);
4151 
4152 		if (l->min_pid != l->max_pid)
4153 			len += sprintf(buf + len, " pid=%ld-%ld",
4154 				l->min_pid, l->max_pid);
4155 		else
4156 			len += sprintf(buf + len, " pid=%ld",
4157 				l->min_pid);
4158 
4159 		if (num_online_cpus() > 1 &&
4160 				!cpumask_empty(to_cpumask(l->cpus)) &&
4161 				len < PAGE_SIZE - 60) {
4162 			len += sprintf(buf + len, " cpus=");
4163 			len += cpulist_scnprintf(buf + len,
4164 						 PAGE_SIZE - len - 50,
4165 						 to_cpumask(l->cpus));
4166 		}
4167 
4168 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4169 				len < PAGE_SIZE - 60) {
4170 			len += sprintf(buf + len, " nodes=");
4171 			len += nodelist_scnprintf(buf + len,
4172 						  PAGE_SIZE - len - 50,
4173 						  l->nodes);
4174 		}
4175 
4176 		len += sprintf(buf + len, "\n");
4177 	}
4178 
4179 	free_loc_track(&t);
4180 	kfree(map);
4181 	if (!t.count)
4182 		len += sprintf(buf, "No data\n");
4183 	return len;
4184 }
4185 #endif
4186 
4187 #ifdef SLUB_RESILIENCY_TEST
4188 static void resiliency_test(void)
4189 {
4190 	u8 *p;
4191 
4192 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4193 
4194 	printk(KERN_ERR "SLUB resiliency testing\n");
4195 	printk(KERN_ERR "-----------------------\n");
4196 	printk(KERN_ERR "A. Corruption after allocation\n");
4197 
4198 	p = kzalloc(16, GFP_KERNEL);
4199 	p[16] = 0x12;
4200 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4201 			" 0x12->0x%p\n\n", p + 16);
4202 
4203 	validate_slab_cache(kmalloc_caches[4]);
4204 
4205 	/* Hmmm... The next two are dangerous */
4206 	p = kzalloc(32, GFP_KERNEL);
4207 	p[32 + sizeof(void *)] = 0x34;
4208 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4209 			" 0x34 -> -0x%p\n", p);
4210 	printk(KERN_ERR
4211 		"If allocated object is overwritten then not detectable\n\n");
4212 
4213 	validate_slab_cache(kmalloc_caches[5]);
4214 	p = kzalloc(64, GFP_KERNEL);
4215 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4216 	*p = 0x56;
4217 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4218 									p);
4219 	printk(KERN_ERR
4220 		"If allocated object is overwritten then not detectable\n\n");
4221 	validate_slab_cache(kmalloc_caches[6]);
4222 
4223 	printk(KERN_ERR "\nB. Corruption after free\n");
4224 	p = kzalloc(128, GFP_KERNEL);
4225 	kfree(p);
4226 	*p = 0x78;
4227 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4228 	validate_slab_cache(kmalloc_caches[7]);
4229 
4230 	p = kzalloc(256, GFP_KERNEL);
4231 	kfree(p);
4232 	p[50] = 0x9a;
4233 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4234 			p);
4235 	validate_slab_cache(kmalloc_caches[8]);
4236 
4237 	p = kzalloc(512, GFP_KERNEL);
4238 	kfree(p);
4239 	p[512] = 0xab;
4240 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4241 	validate_slab_cache(kmalloc_caches[9]);
4242 }
4243 #else
4244 #ifdef CONFIG_SYSFS
4245 static void resiliency_test(void) {};
4246 #endif
4247 #endif
4248 
4249 #ifdef CONFIG_SYSFS
4250 enum slab_stat_type {
4251 	SL_ALL,			/* All slabs */
4252 	SL_PARTIAL,		/* Only partially allocated slabs */
4253 	SL_CPU,			/* Only slabs used for cpu caches */
4254 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4255 	SL_TOTAL		/* Determine object capacity not slabs */
4256 };
4257 
4258 #define SO_ALL		(1 << SL_ALL)
4259 #define SO_PARTIAL	(1 << SL_PARTIAL)
4260 #define SO_CPU		(1 << SL_CPU)
4261 #define SO_OBJECTS	(1 << SL_OBJECTS)
4262 #define SO_TOTAL	(1 << SL_TOTAL)
4263 
4264 static ssize_t show_slab_objects(struct kmem_cache *s,
4265 			    char *buf, unsigned long flags)
4266 {
4267 	unsigned long total = 0;
4268 	int node;
4269 	int x;
4270 	unsigned long *nodes;
4271 
4272 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4273 	if (!nodes)
4274 		return -ENOMEM;
4275 
4276 	if (flags & SO_CPU) {
4277 		int cpu;
4278 
4279 		for_each_possible_cpu(cpu) {
4280 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4281 							       cpu);
4282 			int node;
4283 			struct page *page;
4284 
4285 			page = ACCESS_ONCE(c->page);
4286 			if (!page)
4287 				continue;
4288 
4289 			node = page_to_nid(page);
4290 			if (flags & SO_TOTAL)
4291 				x = page->objects;
4292 			else if (flags & SO_OBJECTS)
4293 				x = page->inuse;
4294 			else
4295 				x = 1;
4296 
4297 			total += x;
4298 			nodes[node] += x;
4299 
4300 			page = ACCESS_ONCE(c->partial);
4301 			if (page) {
4302 				x = page->pobjects;
4303 				total += x;
4304 				nodes[node] += x;
4305 			}
4306 		}
4307 	}
4308 
4309 	lock_memory_hotplug();
4310 #ifdef CONFIG_SLUB_DEBUG
4311 	if (flags & SO_ALL) {
4312 		for_each_node_state(node, N_NORMAL_MEMORY) {
4313 			struct kmem_cache_node *n = get_node(s, node);
4314 
4315 			if (flags & SO_TOTAL)
4316 				x = atomic_long_read(&n->total_objects);
4317 			else if (flags & SO_OBJECTS)
4318 				x = atomic_long_read(&n->total_objects) -
4319 					count_partial(n, count_free);
4320 			else
4321 				x = atomic_long_read(&n->nr_slabs);
4322 			total += x;
4323 			nodes[node] += x;
4324 		}
4325 
4326 	} else
4327 #endif
4328 	if (flags & SO_PARTIAL) {
4329 		for_each_node_state(node, N_NORMAL_MEMORY) {
4330 			struct kmem_cache_node *n = get_node(s, node);
4331 
4332 			if (flags & SO_TOTAL)
4333 				x = count_partial(n, count_total);
4334 			else if (flags & SO_OBJECTS)
4335 				x = count_partial(n, count_inuse);
4336 			else
4337 				x = n->nr_partial;
4338 			total += x;
4339 			nodes[node] += x;
4340 		}
4341 	}
4342 	x = sprintf(buf, "%lu", total);
4343 #ifdef CONFIG_NUMA
4344 	for_each_node_state(node, N_NORMAL_MEMORY)
4345 		if (nodes[node])
4346 			x += sprintf(buf + x, " N%d=%lu",
4347 					node, nodes[node]);
4348 #endif
4349 	unlock_memory_hotplug();
4350 	kfree(nodes);
4351 	return x + sprintf(buf + x, "\n");
4352 }
4353 
4354 #ifdef CONFIG_SLUB_DEBUG
4355 static int any_slab_objects(struct kmem_cache *s)
4356 {
4357 	int node;
4358 
4359 	for_each_online_node(node) {
4360 		struct kmem_cache_node *n = get_node(s, node);
4361 
4362 		if (!n)
4363 			continue;
4364 
4365 		if (atomic_long_read(&n->total_objects))
4366 			return 1;
4367 	}
4368 	return 0;
4369 }
4370 #endif
4371 
4372 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4373 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4374 
4375 struct slab_attribute {
4376 	struct attribute attr;
4377 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4378 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4379 };
4380 
4381 #define SLAB_ATTR_RO(_name) \
4382 	static struct slab_attribute _name##_attr = \
4383 	__ATTR(_name, 0400, _name##_show, NULL)
4384 
4385 #define SLAB_ATTR(_name) \
4386 	static struct slab_attribute _name##_attr =  \
4387 	__ATTR(_name, 0600, _name##_show, _name##_store)
4388 
4389 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4390 {
4391 	return sprintf(buf, "%d\n", s->size);
4392 }
4393 SLAB_ATTR_RO(slab_size);
4394 
4395 static ssize_t align_show(struct kmem_cache *s, char *buf)
4396 {
4397 	return sprintf(buf, "%d\n", s->align);
4398 }
4399 SLAB_ATTR_RO(align);
4400 
4401 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4402 {
4403 	return sprintf(buf, "%d\n", s->object_size);
4404 }
4405 SLAB_ATTR_RO(object_size);
4406 
4407 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4408 {
4409 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4410 }
4411 SLAB_ATTR_RO(objs_per_slab);
4412 
4413 static ssize_t order_store(struct kmem_cache *s,
4414 				const char *buf, size_t length)
4415 {
4416 	unsigned long order;
4417 	int err;
4418 
4419 	err = kstrtoul(buf, 10, &order);
4420 	if (err)
4421 		return err;
4422 
4423 	if (order > slub_max_order || order < slub_min_order)
4424 		return -EINVAL;
4425 
4426 	calculate_sizes(s, order);
4427 	return length;
4428 }
4429 
4430 static ssize_t order_show(struct kmem_cache *s, char *buf)
4431 {
4432 	return sprintf(buf, "%d\n", oo_order(s->oo));
4433 }
4434 SLAB_ATTR(order);
4435 
4436 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4437 {
4438 	return sprintf(buf, "%lu\n", s->min_partial);
4439 }
4440 
4441 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4442 				 size_t length)
4443 {
4444 	unsigned long min;
4445 	int err;
4446 
4447 	err = kstrtoul(buf, 10, &min);
4448 	if (err)
4449 		return err;
4450 
4451 	set_min_partial(s, min);
4452 	return length;
4453 }
4454 SLAB_ATTR(min_partial);
4455 
4456 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4457 {
4458 	return sprintf(buf, "%u\n", s->cpu_partial);
4459 }
4460 
4461 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4462 				 size_t length)
4463 {
4464 	unsigned long objects;
4465 	int err;
4466 
4467 	err = kstrtoul(buf, 10, &objects);
4468 	if (err)
4469 		return err;
4470 	if (objects && !kmem_cache_has_cpu_partial(s))
4471 		return -EINVAL;
4472 
4473 	s->cpu_partial = objects;
4474 	flush_all(s);
4475 	return length;
4476 }
4477 SLAB_ATTR(cpu_partial);
4478 
4479 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4480 {
4481 	if (!s->ctor)
4482 		return 0;
4483 	return sprintf(buf, "%pS\n", s->ctor);
4484 }
4485 SLAB_ATTR_RO(ctor);
4486 
4487 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4488 {
4489 	return sprintf(buf, "%d\n", s->refcount - 1);
4490 }
4491 SLAB_ATTR_RO(aliases);
4492 
4493 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4494 {
4495 	return show_slab_objects(s, buf, SO_PARTIAL);
4496 }
4497 SLAB_ATTR_RO(partial);
4498 
4499 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4500 {
4501 	return show_slab_objects(s, buf, SO_CPU);
4502 }
4503 SLAB_ATTR_RO(cpu_slabs);
4504 
4505 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4506 {
4507 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4508 }
4509 SLAB_ATTR_RO(objects);
4510 
4511 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4512 {
4513 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4514 }
4515 SLAB_ATTR_RO(objects_partial);
4516 
4517 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4518 {
4519 	int objects = 0;
4520 	int pages = 0;
4521 	int cpu;
4522 	int len;
4523 
4524 	for_each_online_cpu(cpu) {
4525 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4526 
4527 		if (page) {
4528 			pages += page->pages;
4529 			objects += page->pobjects;
4530 		}
4531 	}
4532 
4533 	len = sprintf(buf, "%d(%d)", objects, pages);
4534 
4535 #ifdef CONFIG_SMP
4536 	for_each_online_cpu(cpu) {
4537 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4538 
4539 		if (page && len < PAGE_SIZE - 20)
4540 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4541 				page->pobjects, page->pages);
4542 	}
4543 #endif
4544 	return len + sprintf(buf + len, "\n");
4545 }
4546 SLAB_ATTR_RO(slabs_cpu_partial);
4547 
4548 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4549 {
4550 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4551 }
4552 
4553 static ssize_t reclaim_account_store(struct kmem_cache *s,
4554 				const char *buf, size_t length)
4555 {
4556 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4557 	if (buf[0] == '1')
4558 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4559 	return length;
4560 }
4561 SLAB_ATTR(reclaim_account);
4562 
4563 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4564 {
4565 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4566 }
4567 SLAB_ATTR_RO(hwcache_align);
4568 
4569 #ifdef CONFIG_ZONE_DMA
4570 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4571 {
4572 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4573 }
4574 SLAB_ATTR_RO(cache_dma);
4575 #endif
4576 
4577 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4578 {
4579 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4580 }
4581 SLAB_ATTR_RO(destroy_by_rcu);
4582 
4583 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4584 {
4585 	return sprintf(buf, "%d\n", s->reserved);
4586 }
4587 SLAB_ATTR_RO(reserved);
4588 
4589 #ifdef CONFIG_SLUB_DEBUG
4590 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4591 {
4592 	return show_slab_objects(s, buf, SO_ALL);
4593 }
4594 SLAB_ATTR_RO(slabs);
4595 
4596 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4597 {
4598 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4599 }
4600 SLAB_ATTR_RO(total_objects);
4601 
4602 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4603 {
4604 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4605 }
4606 
4607 static ssize_t sanity_checks_store(struct kmem_cache *s,
4608 				const char *buf, size_t length)
4609 {
4610 	s->flags &= ~SLAB_DEBUG_FREE;
4611 	if (buf[0] == '1') {
4612 		s->flags &= ~__CMPXCHG_DOUBLE;
4613 		s->flags |= SLAB_DEBUG_FREE;
4614 	}
4615 	return length;
4616 }
4617 SLAB_ATTR(sanity_checks);
4618 
4619 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4620 {
4621 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4622 }
4623 
4624 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4625 							size_t length)
4626 {
4627 	s->flags &= ~SLAB_TRACE;
4628 	if (buf[0] == '1') {
4629 		s->flags &= ~__CMPXCHG_DOUBLE;
4630 		s->flags |= SLAB_TRACE;
4631 	}
4632 	return length;
4633 }
4634 SLAB_ATTR(trace);
4635 
4636 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4637 {
4638 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4639 }
4640 
4641 static ssize_t red_zone_store(struct kmem_cache *s,
4642 				const char *buf, size_t length)
4643 {
4644 	if (any_slab_objects(s))
4645 		return -EBUSY;
4646 
4647 	s->flags &= ~SLAB_RED_ZONE;
4648 	if (buf[0] == '1') {
4649 		s->flags &= ~__CMPXCHG_DOUBLE;
4650 		s->flags |= SLAB_RED_ZONE;
4651 	}
4652 	calculate_sizes(s, -1);
4653 	return length;
4654 }
4655 SLAB_ATTR(red_zone);
4656 
4657 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4658 {
4659 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4660 }
4661 
4662 static ssize_t poison_store(struct kmem_cache *s,
4663 				const char *buf, size_t length)
4664 {
4665 	if (any_slab_objects(s))
4666 		return -EBUSY;
4667 
4668 	s->flags &= ~SLAB_POISON;
4669 	if (buf[0] == '1') {
4670 		s->flags &= ~__CMPXCHG_DOUBLE;
4671 		s->flags |= SLAB_POISON;
4672 	}
4673 	calculate_sizes(s, -1);
4674 	return length;
4675 }
4676 SLAB_ATTR(poison);
4677 
4678 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4679 {
4680 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4681 }
4682 
4683 static ssize_t store_user_store(struct kmem_cache *s,
4684 				const char *buf, size_t length)
4685 {
4686 	if (any_slab_objects(s))
4687 		return -EBUSY;
4688 
4689 	s->flags &= ~SLAB_STORE_USER;
4690 	if (buf[0] == '1') {
4691 		s->flags &= ~__CMPXCHG_DOUBLE;
4692 		s->flags |= SLAB_STORE_USER;
4693 	}
4694 	calculate_sizes(s, -1);
4695 	return length;
4696 }
4697 SLAB_ATTR(store_user);
4698 
4699 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4700 {
4701 	return 0;
4702 }
4703 
4704 static ssize_t validate_store(struct kmem_cache *s,
4705 			const char *buf, size_t length)
4706 {
4707 	int ret = -EINVAL;
4708 
4709 	if (buf[0] == '1') {
4710 		ret = validate_slab_cache(s);
4711 		if (ret >= 0)
4712 			ret = length;
4713 	}
4714 	return ret;
4715 }
4716 SLAB_ATTR(validate);
4717 
4718 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4719 {
4720 	if (!(s->flags & SLAB_STORE_USER))
4721 		return -ENOSYS;
4722 	return list_locations(s, buf, TRACK_ALLOC);
4723 }
4724 SLAB_ATTR_RO(alloc_calls);
4725 
4726 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4727 {
4728 	if (!(s->flags & SLAB_STORE_USER))
4729 		return -ENOSYS;
4730 	return list_locations(s, buf, TRACK_FREE);
4731 }
4732 SLAB_ATTR_RO(free_calls);
4733 #endif /* CONFIG_SLUB_DEBUG */
4734 
4735 #ifdef CONFIG_FAILSLAB
4736 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4737 {
4738 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4739 }
4740 
4741 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4742 							size_t length)
4743 {
4744 	s->flags &= ~SLAB_FAILSLAB;
4745 	if (buf[0] == '1')
4746 		s->flags |= SLAB_FAILSLAB;
4747 	return length;
4748 }
4749 SLAB_ATTR(failslab);
4750 #endif
4751 
4752 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4753 {
4754 	return 0;
4755 }
4756 
4757 static ssize_t shrink_store(struct kmem_cache *s,
4758 			const char *buf, size_t length)
4759 {
4760 	if (buf[0] == '1') {
4761 		int rc = kmem_cache_shrink(s);
4762 
4763 		if (rc)
4764 			return rc;
4765 	} else
4766 		return -EINVAL;
4767 	return length;
4768 }
4769 SLAB_ATTR(shrink);
4770 
4771 #ifdef CONFIG_NUMA
4772 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4773 {
4774 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4775 }
4776 
4777 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4778 				const char *buf, size_t length)
4779 {
4780 	unsigned long ratio;
4781 	int err;
4782 
4783 	err = kstrtoul(buf, 10, &ratio);
4784 	if (err)
4785 		return err;
4786 
4787 	if (ratio <= 100)
4788 		s->remote_node_defrag_ratio = ratio * 10;
4789 
4790 	return length;
4791 }
4792 SLAB_ATTR(remote_node_defrag_ratio);
4793 #endif
4794 
4795 #ifdef CONFIG_SLUB_STATS
4796 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4797 {
4798 	unsigned long sum  = 0;
4799 	int cpu;
4800 	int len;
4801 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4802 
4803 	if (!data)
4804 		return -ENOMEM;
4805 
4806 	for_each_online_cpu(cpu) {
4807 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4808 
4809 		data[cpu] = x;
4810 		sum += x;
4811 	}
4812 
4813 	len = sprintf(buf, "%lu", sum);
4814 
4815 #ifdef CONFIG_SMP
4816 	for_each_online_cpu(cpu) {
4817 		if (data[cpu] && len < PAGE_SIZE - 20)
4818 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4819 	}
4820 #endif
4821 	kfree(data);
4822 	return len + sprintf(buf + len, "\n");
4823 }
4824 
4825 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4826 {
4827 	int cpu;
4828 
4829 	for_each_online_cpu(cpu)
4830 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4831 }
4832 
4833 #define STAT_ATTR(si, text) 					\
4834 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4835 {								\
4836 	return show_stat(s, buf, si);				\
4837 }								\
4838 static ssize_t text##_store(struct kmem_cache *s,		\
4839 				const char *buf, size_t length)	\
4840 {								\
4841 	if (buf[0] != '0')					\
4842 		return -EINVAL;					\
4843 	clear_stat(s, si);					\
4844 	return length;						\
4845 }								\
4846 SLAB_ATTR(text);						\
4847 
4848 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4849 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4850 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4851 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4852 STAT_ATTR(FREE_FROZEN, free_frozen);
4853 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4854 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4855 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4856 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4857 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4858 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4859 STAT_ATTR(FREE_SLAB, free_slab);
4860 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4861 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4862 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4863 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4864 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4865 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4866 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4867 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4868 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4869 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4870 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4871 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4872 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4873 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4874 #endif
4875 
4876 static struct attribute *slab_attrs[] = {
4877 	&slab_size_attr.attr,
4878 	&object_size_attr.attr,
4879 	&objs_per_slab_attr.attr,
4880 	&order_attr.attr,
4881 	&min_partial_attr.attr,
4882 	&cpu_partial_attr.attr,
4883 	&objects_attr.attr,
4884 	&objects_partial_attr.attr,
4885 	&partial_attr.attr,
4886 	&cpu_slabs_attr.attr,
4887 	&ctor_attr.attr,
4888 	&aliases_attr.attr,
4889 	&align_attr.attr,
4890 	&hwcache_align_attr.attr,
4891 	&reclaim_account_attr.attr,
4892 	&destroy_by_rcu_attr.attr,
4893 	&shrink_attr.attr,
4894 	&reserved_attr.attr,
4895 	&slabs_cpu_partial_attr.attr,
4896 #ifdef CONFIG_SLUB_DEBUG
4897 	&total_objects_attr.attr,
4898 	&slabs_attr.attr,
4899 	&sanity_checks_attr.attr,
4900 	&trace_attr.attr,
4901 	&red_zone_attr.attr,
4902 	&poison_attr.attr,
4903 	&store_user_attr.attr,
4904 	&validate_attr.attr,
4905 	&alloc_calls_attr.attr,
4906 	&free_calls_attr.attr,
4907 #endif
4908 #ifdef CONFIG_ZONE_DMA
4909 	&cache_dma_attr.attr,
4910 #endif
4911 #ifdef CONFIG_NUMA
4912 	&remote_node_defrag_ratio_attr.attr,
4913 #endif
4914 #ifdef CONFIG_SLUB_STATS
4915 	&alloc_fastpath_attr.attr,
4916 	&alloc_slowpath_attr.attr,
4917 	&free_fastpath_attr.attr,
4918 	&free_slowpath_attr.attr,
4919 	&free_frozen_attr.attr,
4920 	&free_add_partial_attr.attr,
4921 	&free_remove_partial_attr.attr,
4922 	&alloc_from_partial_attr.attr,
4923 	&alloc_slab_attr.attr,
4924 	&alloc_refill_attr.attr,
4925 	&alloc_node_mismatch_attr.attr,
4926 	&free_slab_attr.attr,
4927 	&cpuslab_flush_attr.attr,
4928 	&deactivate_full_attr.attr,
4929 	&deactivate_empty_attr.attr,
4930 	&deactivate_to_head_attr.attr,
4931 	&deactivate_to_tail_attr.attr,
4932 	&deactivate_remote_frees_attr.attr,
4933 	&deactivate_bypass_attr.attr,
4934 	&order_fallback_attr.attr,
4935 	&cmpxchg_double_fail_attr.attr,
4936 	&cmpxchg_double_cpu_fail_attr.attr,
4937 	&cpu_partial_alloc_attr.attr,
4938 	&cpu_partial_free_attr.attr,
4939 	&cpu_partial_node_attr.attr,
4940 	&cpu_partial_drain_attr.attr,
4941 #endif
4942 #ifdef CONFIG_FAILSLAB
4943 	&failslab_attr.attr,
4944 #endif
4945 
4946 	NULL
4947 };
4948 
4949 static struct attribute_group slab_attr_group = {
4950 	.attrs = slab_attrs,
4951 };
4952 
4953 static ssize_t slab_attr_show(struct kobject *kobj,
4954 				struct attribute *attr,
4955 				char *buf)
4956 {
4957 	struct slab_attribute *attribute;
4958 	struct kmem_cache *s;
4959 	int err;
4960 
4961 	attribute = to_slab_attr(attr);
4962 	s = to_slab(kobj);
4963 
4964 	if (!attribute->show)
4965 		return -EIO;
4966 
4967 	err = attribute->show(s, buf);
4968 
4969 	return err;
4970 }
4971 
4972 static ssize_t slab_attr_store(struct kobject *kobj,
4973 				struct attribute *attr,
4974 				const char *buf, size_t len)
4975 {
4976 	struct slab_attribute *attribute;
4977 	struct kmem_cache *s;
4978 	int err;
4979 
4980 	attribute = to_slab_attr(attr);
4981 	s = to_slab(kobj);
4982 
4983 	if (!attribute->store)
4984 		return -EIO;
4985 
4986 	err = attribute->store(s, buf, len);
4987 #ifdef CONFIG_MEMCG_KMEM
4988 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4989 		int i;
4990 
4991 		mutex_lock(&slab_mutex);
4992 		if (s->max_attr_size < len)
4993 			s->max_attr_size = len;
4994 
4995 		/*
4996 		 * This is a best effort propagation, so this function's return
4997 		 * value will be determined by the parent cache only. This is
4998 		 * basically because not all attributes will have a well
4999 		 * defined semantics for rollbacks - most of the actions will
5000 		 * have permanent effects.
5001 		 *
5002 		 * Returning the error value of any of the children that fail
5003 		 * is not 100 % defined, in the sense that users seeing the
5004 		 * error code won't be able to know anything about the state of
5005 		 * the cache.
5006 		 *
5007 		 * Only returning the error code for the parent cache at least
5008 		 * has well defined semantics. The cache being written to
5009 		 * directly either failed or succeeded, in which case we loop
5010 		 * through the descendants with best-effort propagation.
5011 		 */
5012 		for_each_memcg_cache_index(i) {
5013 			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5014 			if (c)
5015 				attribute->store(c, buf, len);
5016 		}
5017 		mutex_unlock(&slab_mutex);
5018 	}
5019 #endif
5020 	return err;
5021 }
5022 
5023 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5024 {
5025 #ifdef CONFIG_MEMCG_KMEM
5026 	int i;
5027 	char *buffer = NULL;
5028 
5029 	if (!is_root_cache(s))
5030 		return;
5031 
5032 	/*
5033 	 * This mean this cache had no attribute written. Therefore, no point
5034 	 * in copying default values around
5035 	 */
5036 	if (!s->max_attr_size)
5037 		return;
5038 
5039 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5040 		char mbuf[64];
5041 		char *buf;
5042 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5043 
5044 		if (!attr || !attr->store || !attr->show)
5045 			continue;
5046 
5047 		/*
5048 		 * It is really bad that we have to allocate here, so we will
5049 		 * do it only as a fallback. If we actually allocate, though,
5050 		 * we can just use the allocated buffer until the end.
5051 		 *
5052 		 * Most of the slub attributes will tend to be very small in
5053 		 * size, but sysfs allows buffers up to a page, so they can
5054 		 * theoretically happen.
5055 		 */
5056 		if (buffer)
5057 			buf = buffer;
5058 		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5059 			buf = mbuf;
5060 		else {
5061 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5062 			if (WARN_ON(!buffer))
5063 				continue;
5064 			buf = buffer;
5065 		}
5066 
5067 		attr->show(s->memcg_params->root_cache, buf);
5068 		attr->store(s, buf, strlen(buf));
5069 	}
5070 
5071 	if (buffer)
5072 		free_page((unsigned long)buffer);
5073 #endif
5074 }
5075 
5076 static const struct sysfs_ops slab_sysfs_ops = {
5077 	.show = slab_attr_show,
5078 	.store = slab_attr_store,
5079 };
5080 
5081 static struct kobj_type slab_ktype = {
5082 	.sysfs_ops = &slab_sysfs_ops,
5083 };
5084 
5085 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5086 {
5087 	struct kobj_type *ktype = get_ktype(kobj);
5088 
5089 	if (ktype == &slab_ktype)
5090 		return 1;
5091 	return 0;
5092 }
5093 
5094 static const struct kset_uevent_ops slab_uevent_ops = {
5095 	.filter = uevent_filter,
5096 };
5097 
5098 static struct kset *slab_kset;
5099 
5100 #define ID_STR_LENGTH 64
5101 
5102 /* Create a unique string id for a slab cache:
5103  *
5104  * Format	:[flags-]size
5105  */
5106 static char *create_unique_id(struct kmem_cache *s)
5107 {
5108 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5109 	char *p = name;
5110 
5111 	BUG_ON(!name);
5112 
5113 	*p++ = ':';
5114 	/*
5115 	 * First flags affecting slabcache operations. We will only
5116 	 * get here for aliasable slabs so we do not need to support
5117 	 * too many flags. The flags here must cover all flags that
5118 	 * are matched during merging to guarantee that the id is
5119 	 * unique.
5120 	 */
5121 	if (s->flags & SLAB_CACHE_DMA)
5122 		*p++ = 'd';
5123 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5124 		*p++ = 'a';
5125 	if (s->flags & SLAB_DEBUG_FREE)
5126 		*p++ = 'F';
5127 	if (!(s->flags & SLAB_NOTRACK))
5128 		*p++ = 't';
5129 	if (p != name + 1)
5130 		*p++ = '-';
5131 	p += sprintf(p, "%07d", s->size);
5132 
5133 #ifdef CONFIG_MEMCG_KMEM
5134 	if (!is_root_cache(s))
5135 		p += sprintf(p, "-%08d",
5136 				memcg_cache_id(s->memcg_params->memcg));
5137 #endif
5138 
5139 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5140 	return name;
5141 }
5142 
5143 static int sysfs_slab_add(struct kmem_cache *s)
5144 {
5145 	int err;
5146 	const char *name;
5147 	int unmergeable = slab_unmergeable(s);
5148 
5149 	if (unmergeable) {
5150 		/*
5151 		 * Slabcache can never be merged so we can use the name proper.
5152 		 * This is typically the case for debug situations. In that
5153 		 * case we can catch duplicate names easily.
5154 		 */
5155 		sysfs_remove_link(&slab_kset->kobj, s->name);
5156 		name = s->name;
5157 	} else {
5158 		/*
5159 		 * Create a unique name for the slab as a target
5160 		 * for the symlinks.
5161 		 */
5162 		name = create_unique_id(s);
5163 	}
5164 
5165 	s->kobj.kset = slab_kset;
5166 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5167 	if (err) {
5168 		kobject_put(&s->kobj);
5169 		return err;
5170 	}
5171 
5172 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5173 	if (err) {
5174 		kobject_del(&s->kobj);
5175 		kobject_put(&s->kobj);
5176 		return err;
5177 	}
5178 	kobject_uevent(&s->kobj, KOBJ_ADD);
5179 	if (!unmergeable) {
5180 		/* Setup first alias */
5181 		sysfs_slab_alias(s, s->name);
5182 		kfree(name);
5183 	}
5184 	return 0;
5185 }
5186 
5187 static void sysfs_slab_remove(struct kmem_cache *s)
5188 {
5189 	if (slab_state < FULL)
5190 		/*
5191 		 * Sysfs has not been setup yet so no need to remove the
5192 		 * cache from sysfs.
5193 		 */
5194 		return;
5195 
5196 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5197 	kobject_del(&s->kobj);
5198 	kobject_put(&s->kobj);
5199 }
5200 
5201 /*
5202  * Need to buffer aliases during bootup until sysfs becomes
5203  * available lest we lose that information.
5204  */
5205 struct saved_alias {
5206 	struct kmem_cache *s;
5207 	const char *name;
5208 	struct saved_alias *next;
5209 };
5210 
5211 static struct saved_alias *alias_list;
5212 
5213 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5214 {
5215 	struct saved_alias *al;
5216 
5217 	if (slab_state == FULL) {
5218 		/*
5219 		 * If we have a leftover link then remove it.
5220 		 */
5221 		sysfs_remove_link(&slab_kset->kobj, name);
5222 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5223 	}
5224 
5225 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5226 	if (!al)
5227 		return -ENOMEM;
5228 
5229 	al->s = s;
5230 	al->name = name;
5231 	al->next = alias_list;
5232 	alias_list = al;
5233 	return 0;
5234 }
5235 
5236 static int __init slab_sysfs_init(void)
5237 {
5238 	struct kmem_cache *s;
5239 	int err;
5240 
5241 	mutex_lock(&slab_mutex);
5242 
5243 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5244 	if (!slab_kset) {
5245 		mutex_unlock(&slab_mutex);
5246 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5247 		return -ENOSYS;
5248 	}
5249 
5250 	slab_state = FULL;
5251 
5252 	list_for_each_entry(s, &slab_caches, list) {
5253 		err = sysfs_slab_add(s);
5254 		if (err)
5255 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5256 						" to sysfs\n", s->name);
5257 	}
5258 
5259 	while (alias_list) {
5260 		struct saved_alias *al = alias_list;
5261 
5262 		alias_list = alias_list->next;
5263 		err = sysfs_slab_alias(al->s, al->name);
5264 		if (err)
5265 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5266 					" %s to sysfs\n", al->name);
5267 		kfree(al);
5268 	}
5269 
5270 	mutex_unlock(&slab_mutex);
5271 	resiliency_test();
5272 	return 0;
5273 }
5274 
5275 __initcall(slab_sysfs_init);
5276 #endif /* CONFIG_SYSFS */
5277 
5278 /*
5279  * The /proc/slabinfo ABI
5280  */
5281 #ifdef CONFIG_SLABINFO
5282 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5283 {
5284 	unsigned long nr_slabs = 0;
5285 	unsigned long nr_objs = 0;
5286 	unsigned long nr_free = 0;
5287 	int node;
5288 
5289 	for_each_online_node(node) {
5290 		struct kmem_cache_node *n = get_node(s, node);
5291 
5292 		if (!n)
5293 			continue;
5294 
5295 		nr_slabs += node_nr_slabs(n);
5296 		nr_objs += node_nr_objs(n);
5297 		nr_free += count_partial(n, count_free);
5298 	}
5299 
5300 	sinfo->active_objs = nr_objs - nr_free;
5301 	sinfo->num_objs = nr_objs;
5302 	sinfo->active_slabs = nr_slabs;
5303 	sinfo->num_slabs = nr_slabs;
5304 	sinfo->objects_per_slab = oo_objects(s->oo);
5305 	sinfo->cache_order = oo_order(s->oo);
5306 }
5307 
5308 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5309 {
5310 }
5311 
5312 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5313 		       size_t count, loff_t *ppos)
5314 {
5315 	return -EIO;
5316 }
5317 #endif /* CONFIG_SLABINFO */
5318