xref: /openbmc/linux/mm/slub.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30 
31 /*
32  * Lock order:
33  *   1. slab_lock(page)
34  *   2. slab->list_lock
35  *
36  *   The slab_lock protects operations on the object of a particular
37  *   slab and its metadata in the page struct. If the slab lock
38  *   has been taken then no allocations nor frees can be performed
39  *   on the objects in the slab nor can the slab be added or removed
40  *   from the partial or full lists since this would mean modifying
41  *   the page_struct of the slab.
42  *
43  *   The list_lock protects the partial and full list on each node and
44  *   the partial slab counter. If taken then no new slabs may be added or
45  *   removed from the lists nor make the number of partial slabs be modified.
46  *   (Note that the total number of slabs is an atomic value that may be
47  *   modified without taking the list lock).
48  *
49  *   The list_lock is a centralized lock and thus we avoid taking it as
50  *   much as possible. As long as SLUB does not have to handle partial
51  *   slabs, operations can continue without any centralized lock. F.e.
52  *   allocating a long series of objects that fill up slabs does not require
53  *   the list lock.
54  *
55  *   The lock order is sometimes inverted when we are trying to get a slab
56  *   off a list. We take the list_lock and then look for a page on the list
57  *   to use. While we do that objects in the slabs may be freed. We can
58  *   only operate on the slab if we have also taken the slab_lock. So we use
59  *   a slab_trylock() on the slab. If trylock was successful then no frees
60  *   can occur anymore and we can use the slab for allocations etc. If the
61  *   slab_trylock() does not succeed then frees are in progress in the slab and
62  *   we must stay away from it for a while since we may cause a bouncing
63  *   cacheline if we try to acquire the lock. So go onto the next slab.
64  *   If all pages are busy then we may allocate a new slab instead of reusing
65  *   a partial slab. A new slab has noone operating on it and thus there is
66  *   no danger of cacheline contention.
67  *
68  *   Interrupts are disabled during allocation and deallocation in order to
69  *   make the slab allocator safe to use in the context of an irq. In addition
70  *   interrupts are disabled to ensure that the processor does not change
71  *   while handling per_cpu slabs, due to kernel preemption.
72  *
73  * SLUB assigns one slab for allocation to each processor.
74  * Allocations only occur from these slabs called cpu slabs.
75  *
76  * Slabs with free elements are kept on a partial list and during regular
77  * operations no list for full slabs is used. If an object in a full slab is
78  * freed then the slab will show up again on the partial lists.
79  * We track full slabs for debugging purposes though because otherwise we
80  * cannot scan all objects.
81  *
82  * Slabs are freed when they become empty. Teardown and setup is
83  * minimal so we rely on the page allocators per cpu caches for
84  * fast frees and allocs.
85  *
86  * Overloading of page flags that are otherwise used for LRU management.
87  *
88  * PageActive 		The slab is frozen and exempt from list processing.
89  * 			This means that the slab is dedicated to a purpose
90  * 			such as satisfying allocations for a specific
91  * 			processor. Objects may be freed in the slab while
92  * 			it is frozen but slab_free will then skip the usual
93  * 			list operations. It is up to the processor holding
94  * 			the slab to integrate the slab into the slab lists
95  * 			when the slab is no longer needed.
96  *
97  * 			One use of this flag is to mark slabs that are
98  * 			used for allocations. Then such a slab becomes a cpu
99  * 			slab. The cpu slab may be equipped with an additional
100  * 			freelist that allows lockless access to
101  * 			free objects in addition to the regular freelist
102  * 			that requires the slab lock.
103  *
104  * PageError		Slab requires special handling due to debug
105  * 			options set. This moves	slab handling out of
106  * 			the fast path and disables lockless freelists.
107  */
108 
109 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 		SLAB_TRACE | SLAB_DEBUG_FREE)
111 
112 static inline int kmem_cache_debug(struct kmem_cache *s)
113 {
114 #ifdef CONFIG_SLUB_DEBUG
115 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
116 #else
117 	return 0;
118 #endif
119 }
120 
121 /*
122  * Issues still to be resolved:
123  *
124  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125  *
126  * - Variable sizing of the per node arrays
127  */
128 
129 /* Enable to test recovery from slab corruption on boot */
130 #undef SLUB_RESILIENCY_TEST
131 
132 /*
133  * Mininum number of partial slabs. These will be left on the partial
134  * lists even if they are empty. kmem_cache_shrink may reclaim them.
135  */
136 #define MIN_PARTIAL 5
137 
138 /*
139  * Maximum number of desirable partial slabs.
140  * The existence of more partial slabs makes kmem_cache_shrink
141  * sort the partial list by the number of objects in the.
142  */
143 #define MAX_PARTIAL 10
144 
145 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 				SLAB_POISON | SLAB_STORE_USER)
147 
148 /*
149  * Debugging flags that require metadata to be stored in the slab.  These get
150  * disabled when slub_debug=O is used and a cache's min order increases with
151  * metadata.
152  */
153 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
154 
155 /*
156  * Set of flags that will prevent slab merging
157  */
158 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 		SLAB_FAILSLAB)
161 
162 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163 		SLAB_CACHE_DMA | SLAB_NOTRACK)
164 
165 #define OO_SHIFT	16
166 #define OO_MASK		((1 << OO_SHIFT) - 1)
167 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
168 
169 /* Internal SLUB flags */
170 #define __OBJECT_POISON		0x80000000UL /* Poison object */
171 
172 static int kmem_size = sizeof(struct kmem_cache);
173 
174 #ifdef CONFIG_SMP
175 static struct notifier_block slab_notifier;
176 #endif
177 
178 static enum {
179 	DOWN,		/* No slab functionality available */
180 	PARTIAL,	/* Kmem_cache_node works */
181 	UP,		/* Everything works but does not show up in sysfs */
182 	SYSFS		/* Sysfs up */
183 } slab_state = DOWN;
184 
185 /* A list of all slab caches on the system */
186 static DECLARE_RWSEM(slub_lock);
187 static LIST_HEAD(slab_caches);
188 
189 /*
190  * Tracking user of a slab.
191  */
192 struct track {
193 	unsigned long addr;	/* Called from address */
194 	int cpu;		/* Was running on cpu */
195 	int pid;		/* Pid context */
196 	unsigned long when;	/* When did the operation occur */
197 };
198 
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200 
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void sysfs_slab_remove(struct kmem_cache *);
205 
206 #else
207 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 							{ return 0; }
210 static inline void sysfs_slab_remove(struct kmem_cache *s)
211 {
212 	kfree(s->name);
213 	kfree(s);
214 }
215 
216 #endif
217 
218 static inline void stat(struct kmem_cache *s, enum stat_item si)
219 {
220 #ifdef CONFIG_SLUB_STATS
221 	__this_cpu_inc(s->cpu_slab->stat[si]);
222 #endif
223 }
224 
225 /********************************************************************
226  * 			Core slab cache functions
227  *******************************************************************/
228 
229 int slab_is_available(void)
230 {
231 	return slab_state >= UP;
232 }
233 
234 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235 {
236 	return s->node[node];
237 }
238 
239 /* Verify that a pointer has an address that is valid within a slab page */
240 static inline int check_valid_pointer(struct kmem_cache *s,
241 				struct page *page, const void *object)
242 {
243 	void *base;
244 
245 	if (!object)
246 		return 1;
247 
248 	base = page_address(page);
249 	if (object < base || object >= base + page->objects * s->size ||
250 		(object - base) % s->size) {
251 		return 0;
252 	}
253 
254 	return 1;
255 }
256 
257 static inline void *get_freepointer(struct kmem_cache *s, void *object)
258 {
259 	return *(void **)(object + s->offset);
260 }
261 
262 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263 {
264 	*(void **)(object + s->offset) = fp;
265 }
266 
267 /* Loop over all objects in a slab */
268 #define for_each_object(__p, __s, __addr, __objects) \
269 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
270 			__p += (__s)->size)
271 
272 /* Scan freelist */
273 #define for_each_free_object(__p, __s, __free) \
274 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
275 
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278 {
279 	return (p - addr) / s->size;
280 }
281 
282 static inline struct kmem_cache_order_objects oo_make(int order,
283 						unsigned long size)
284 {
285 	struct kmem_cache_order_objects x = {
286 		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
287 	};
288 
289 	return x;
290 }
291 
292 static inline int oo_order(struct kmem_cache_order_objects x)
293 {
294 	return x.x >> OO_SHIFT;
295 }
296 
297 static inline int oo_objects(struct kmem_cache_order_objects x)
298 {
299 	return x.x & OO_MASK;
300 }
301 
302 #ifdef CONFIG_SLUB_DEBUG
303 /*
304  * Debug settings:
305  */
306 #ifdef CONFIG_SLUB_DEBUG_ON
307 static int slub_debug = DEBUG_DEFAULT_FLAGS;
308 #else
309 static int slub_debug;
310 #endif
311 
312 static char *slub_debug_slabs;
313 static int disable_higher_order_debug;
314 
315 /*
316  * Object debugging
317  */
318 static void print_section(char *text, u8 *addr, unsigned int length)
319 {
320 	int i, offset;
321 	int newline = 1;
322 	char ascii[17];
323 
324 	ascii[16] = 0;
325 
326 	for (i = 0; i < length; i++) {
327 		if (newline) {
328 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
329 			newline = 0;
330 		}
331 		printk(KERN_CONT " %02x", addr[i]);
332 		offset = i % 16;
333 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334 		if (offset == 15) {
335 			printk(KERN_CONT " %s\n", ascii);
336 			newline = 1;
337 		}
338 	}
339 	if (!newline) {
340 		i %= 16;
341 		while (i < 16) {
342 			printk(KERN_CONT "   ");
343 			ascii[i] = ' ';
344 			i++;
345 		}
346 		printk(KERN_CONT " %s\n", ascii);
347 	}
348 }
349 
350 static struct track *get_track(struct kmem_cache *s, void *object,
351 	enum track_item alloc)
352 {
353 	struct track *p;
354 
355 	if (s->offset)
356 		p = object + s->offset + sizeof(void *);
357 	else
358 		p = object + s->inuse;
359 
360 	return p + alloc;
361 }
362 
363 static void set_track(struct kmem_cache *s, void *object,
364 			enum track_item alloc, unsigned long addr)
365 {
366 	struct track *p = get_track(s, object, alloc);
367 
368 	if (addr) {
369 		p->addr = addr;
370 		p->cpu = smp_processor_id();
371 		p->pid = current->pid;
372 		p->when = jiffies;
373 	} else
374 		memset(p, 0, sizeof(struct track));
375 }
376 
377 static void init_tracking(struct kmem_cache *s, void *object)
378 {
379 	if (!(s->flags & SLAB_STORE_USER))
380 		return;
381 
382 	set_track(s, object, TRACK_FREE, 0UL);
383 	set_track(s, object, TRACK_ALLOC, 0UL);
384 }
385 
386 static void print_track(const char *s, struct track *t)
387 {
388 	if (!t->addr)
389 		return;
390 
391 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
392 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
393 }
394 
395 static void print_tracking(struct kmem_cache *s, void *object)
396 {
397 	if (!(s->flags & SLAB_STORE_USER))
398 		return;
399 
400 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
401 	print_track("Freed", get_track(s, object, TRACK_FREE));
402 }
403 
404 static void print_page_info(struct page *page)
405 {
406 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
407 		page, page->objects, page->inuse, page->freelist, page->flags);
408 
409 }
410 
411 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
412 {
413 	va_list args;
414 	char buf[100];
415 
416 	va_start(args, fmt);
417 	vsnprintf(buf, sizeof(buf), fmt, args);
418 	va_end(args);
419 	printk(KERN_ERR "========================================"
420 			"=====================================\n");
421 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
422 	printk(KERN_ERR "----------------------------------------"
423 			"-------------------------------------\n\n");
424 }
425 
426 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
427 {
428 	va_list args;
429 	char buf[100];
430 
431 	va_start(args, fmt);
432 	vsnprintf(buf, sizeof(buf), fmt, args);
433 	va_end(args);
434 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
435 }
436 
437 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
438 {
439 	unsigned int off;	/* Offset of last byte */
440 	u8 *addr = page_address(page);
441 
442 	print_tracking(s, p);
443 
444 	print_page_info(page);
445 
446 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
447 			p, p - addr, get_freepointer(s, p));
448 
449 	if (p > addr + 16)
450 		print_section("Bytes b4", p - 16, 16);
451 
452 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
453 
454 	if (s->flags & SLAB_RED_ZONE)
455 		print_section("Redzone", p + s->objsize,
456 			s->inuse - s->objsize);
457 
458 	if (s->offset)
459 		off = s->offset + sizeof(void *);
460 	else
461 		off = s->inuse;
462 
463 	if (s->flags & SLAB_STORE_USER)
464 		off += 2 * sizeof(struct track);
465 
466 	if (off != s->size)
467 		/* Beginning of the filler is the free pointer */
468 		print_section("Padding", p + off, s->size - off);
469 
470 	dump_stack();
471 }
472 
473 static void object_err(struct kmem_cache *s, struct page *page,
474 			u8 *object, char *reason)
475 {
476 	slab_bug(s, "%s", reason);
477 	print_trailer(s, page, object);
478 }
479 
480 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
481 {
482 	va_list args;
483 	char buf[100];
484 
485 	va_start(args, fmt);
486 	vsnprintf(buf, sizeof(buf), fmt, args);
487 	va_end(args);
488 	slab_bug(s, "%s", buf);
489 	print_page_info(page);
490 	dump_stack();
491 }
492 
493 static void init_object(struct kmem_cache *s, void *object, u8 val)
494 {
495 	u8 *p = object;
496 
497 	if (s->flags & __OBJECT_POISON) {
498 		memset(p, POISON_FREE, s->objsize - 1);
499 		p[s->objsize - 1] = POISON_END;
500 	}
501 
502 	if (s->flags & SLAB_RED_ZONE)
503 		memset(p + s->objsize, val, s->inuse - s->objsize);
504 }
505 
506 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
507 {
508 	while (bytes) {
509 		if (*start != (u8)value)
510 			return start;
511 		start++;
512 		bytes--;
513 	}
514 	return NULL;
515 }
516 
517 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
518 						void *from, void *to)
519 {
520 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
521 	memset(from, data, to - from);
522 }
523 
524 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
525 			u8 *object, char *what,
526 			u8 *start, unsigned int value, unsigned int bytes)
527 {
528 	u8 *fault;
529 	u8 *end;
530 
531 	fault = check_bytes(start, value, bytes);
532 	if (!fault)
533 		return 1;
534 
535 	end = start + bytes;
536 	while (end > fault && end[-1] == value)
537 		end--;
538 
539 	slab_bug(s, "%s overwritten", what);
540 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
541 					fault, end - 1, fault[0], value);
542 	print_trailer(s, page, object);
543 
544 	restore_bytes(s, what, value, fault, end);
545 	return 0;
546 }
547 
548 /*
549  * Object layout:
550  *
551  * object address
552  * 	Bytes of the object to be managed.
553  * 	If the freepointer may overlay the object then the free
554  * 	pointer is the first word of the object.
555  *
556  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
557  * 	0xa5 (POISON_END)
558  *
559  * object + s->objsize
560  * 	Padding to reach word boundary. This is also used for Redzoning.
561  * 	Padding is extended by another word if Redzoning is enabled and
562  * 	objsize == inuse.
563  *
564  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
565  * 	0xcc (RED_ACTIVE) for objects in use.
566  *
567  * object + s->inuse
568  * 	Meta data starts here.
569  *
570  * 	A. Free pointer (if we cannot overwrite object on free)
571  * 	B. Tracking data for SLAB_STORE_USER
572  * 	C. Padding to reach required alignment boundary or at mininum
573  * 		one word if debugging is on to be able to detect writes
574  * 		before the word boundary.
575  *
576  *	Padding is done using 0x5a (POISON_INUSE)
577  *
578  * object + s->size
579  * 	Nothing is used beyond s->size.
580  *
581  * If slabcaches are merged then the objsize and inuse boundaries are mostly
582  * ignored. And therefore no slab options that rely on these boundaries
583  * may be used with merged slabcaches.
584  */
585 
586 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
587 {
588 	unsigned long off = s->inuse;	/* The end of info */
589 
590 	if (s->offset)
591 		/* Freepointer is placed after the object. */
592 		off += sizeof(void *);
593 
594 	if (s->flags & SLAB_STORE_USER)
595 		/* We also have user information there */
596 		off += 2 * sizeof(struct track);
597 
598 	if (s->size == off)
599 		return 1;
600 
601 	return check_bytes_and_report(s, page, p, "Object padding",
602 				p + off, POISON_INUSE, s->size - off);
603 }
604 
605 /* Check the pad bytes at the end of a slab page */
606 static int slab_pad_check(struct kmem_cache *s, struct page *page)
607 {
608 	u8 *start;
609 	u8 *fault;
610 	u8 *end;
611 	int length;
612 	int remainder;
613 
614 	if (!(s->flags & SLAB_POISON))
615 		return 1;
616 
617 	start = page_address(page);
618 	length = (PAGE_SIZE << compound_order(page));
619 	end = start + length;
620 	remainder = length % s->size;
621 	if (!remainder)
622 		return 1;
623 
624 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
625 	if (!fault)
626 		return 1;
627 	while (end > fault && end[-1] == POISON_INUSE)
628 		end--;
629 
630 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
631 	print_section("Padding", end - remainder, remainder);
632 
633 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
634 	return 0;
635 }
636 
637 static int check_object(struct kmem_cache *s, struct page *page,
638 					void *object, u8 val)
639 {
640 	u8 *p = object;
641 	u8 *endobject = object + s->objsize;
642 
643 	if (s->flags & SLAB_RED_ZONE) {
644 		if (!check_bytes_and_report(s, page, object, "Redzone",
645 			endobject, val, s->inuse - s->objsize))
646 			return 0;
647 	} else {
648 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
649 			check_bytes_and_report(s, page, p, "Alignment padding",
650 				endobject, POISON_INUSE, s->inuse - s->objsize);
651 		}
652 	}
653 
654 	if (s->flags & SLAB_POISON) {
655 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
656 			(!check_bytes_and_report(s, page, p, "Poison", p,
657 					POISON_FREE, s->objsize - 1) ||
658 			 !check_bytes_and_report(s, page, p, "Poison",
659 				p + s->objsize - 1, POISON_END, 1)))
660 			return 0;
661 		/*
662 		 * check_pad_bytes cleans up on its own.
663 		 */
664 		check_pad_bytes(s, page, p);
665 	}
666 
667 	if (!s->offset && val == SLUB_RED_ACTIVE)
668 		/*
669 		 * Object and freepointer overlap. Cannot check
670 		 * freepointer while object is allocated.
671 		 */
672 		return 1;
673 
674 	/* Check free pointer validity */
675 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
676 		object_err(s, page, p, "Freepointer corrupt");
677 		/*
678 		 * No choice but to zap it and thus lose the remainder
679 		 * of the free objects in this slab. May cause
680 		 * another error because the object count is now wrong.
681 		 */
682 		set_freepointer(s, p, NULL);
683 		return 0;
684 	}
685 	return 1;
686 }
687 
688 static int check_slab(struct kmem_cache *s, struct page *page)
689 {
690 	int maxobj;
691 
692 	VM_BUG_ON(!irqs_disabled());
693 
694 	if (!PageSlab(page)) {
695 		slab_err(s, page, "Not a valid slab page");
696 		return 0;
697 	}
698 
699 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
700 	if (page->objects > maxobj) {
701 		slab_err(s, page, "objects %u > max %u",
702 			s->name, page->objects, maxobj);
703 		return 0;
704 	}
705 	if (page->inuse > page->objects) {
706 		slab_err(s, page, "inuse %u > max %u",
707 			s->name, page->inuse, page->objects);
708 		return 0;
709 	}
710 	/* Slab_pad_check fixes things up after itself */
711 	slab_pad_check(s, page);
712 	return 1;
713 }
714 
715 /*
716  * Determine if a certain object on a page is on the freelist. Must hold the
717  * slab lock to guarantee that the chains are in a consistent state.
718  */
719 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
720 {
721 	int nr = 0;
722 	void *fp = page->freelist;
723 	void *object = NULL;
724 	unsigned long max_objects;
725 
726 	while (fp && nr <= page->objects) {
727 		if (fp == search)
728 			return 1;
729 		if (!check_valid_pointer(s, page, fp)) {
730 			if (object) {
731 				object_err(s, page, object,
732 					"Freechain corrupt");
733 				set_freepointer(s, object, NULL);
734 				break;
735 			} else {
736 				slab_err(s, page, "Freepointer corrupt");
737 				page->freelist = NULL;
738 				page->inuse = page->objects;
739 				slab_fix(s, "Freelist cleared");
740 				return 0;
741 			}
742 			break;
743 		}
744 		object = fp;
745 		fp = get_freepointer(s, object);
746 		nr++;
747 	}
748 
749 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
750 	if (max_objects > MAX_OBJS_PER_PAGE)
751 		max_objects = MAX_OBJS_PER_PAGE;
752 
753 	if (page->objects != max_objects) {
754 		slab_err(s, page, "Wrong number of objects. Found %d but "
755 			"should be %d", page->objects, max_objects);
756 		page->objects = max_objects;
757 		slab_fix(s, "Number of objects adjusted.");
758 	}
759 	if (page->inuse != page->objects - nr) {
760 		slab_err(s, page, "Wrong object count. Counter is %d but "
761 			"counted were %d", page->inuse, page->objects - nr);
762 		page->inuse = page->objects - nr;
763 		slab_fix(s, "Object count adjusted.");
764 	}
765 	return search == NULL;
766 }
767 
768 static void trace(struct kmem_cache *s, struct page *page, void *object,
769 								int alloc)
770 {
771 	if (s->flags & SLAB_TRACE) {
772 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
773 			s->name,
774 			alloc ? "alloc" : "free",
775 			object, page->inuse,
776 			page->freelist);
777 
778 		if (!alloc)
779 			print_section("Object", (void *)object, s->objsize);
780 
781 		dump_stack();
782 	}
783 }
784 
785 /*
786  * Hooks for other subsystems that check memory allocations. In a typical
787  * production configuration these hooks all should produce no code at all.
788  */
789 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
790 {
791 	flags &= gfp_allowed_mask;
792 	lockdep_trace_alloc(flags);
793 	might_sleep_if(flags & __GFP_WAIT);
794 
795 	return should_failslab(s->objsize, flags, s->flags);
796 }
797 
798 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
799 {
800 	flags &= gfp_allowed_mask;
801 	kmemcheck_slab_alloc(s, flags, object, s->objsize);
802 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
803 }
804 
805 static inline void slab_free_hook(struct kmem_cache *s, void *x)
806 {
807 	kmemleak_free_recursive(x, s->flags);
808 }
809 
810 static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
811 {
812 	kmemcheck_slab_free(s, object, s->objsize);
813 	debug_check_no_locks_freed(object, s->objsize);
814 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
815 		debug_check_no_obj_freed(object, s->objsize);
816 }
817 
818 /*
819  * Tracking of fully allocated slabs for debugging purposes.
820  */
821 static void add_full(struct kmem_cache_node *n, struct page *page)
822 {
823 	spin_lock(&n->list_lock);
824 	list_add(&page->lru, &n->full);
825 	spin_unlock(&n->list_lock);
826 }
827 
828 static void remove_full(struct kmem_cache *s, struct page *page)
829 {
830 	struct kmem_cache_node *n;
831 
832 	if (!(s->flags & SLAB_STORE_USER))
833 		return;
834 
835 	n = get_node(s, page_to_nid(page));
836 
837 	spin_lock(&n->list_lock);
838 	list_del(&page->lru);
839 	spin_unlock(&n->list_lock);
840 }
841 
842 /* Tracking of the number of slabs for debugging purposes */
843 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
844 {
845 	struct kmem_cache_node *n = get_node(s, node);
846 
847 	return atomic_long_read(&n->nr_slabs);
848 }
849 
850 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
851 {
852 	return atomic_long_read(&n->nr_slabs);
853 }
854 
855 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
856 {
857 	struct kmem_cache_node *n = get_node(s, node);
858 
859 	/*
860 	 * May be called early in order to allocate a slab for the
861 	 * kmem_cache_node structure. Solve the chicken-egg
862 	 * dilemma by deferring the increment of the count during
863 	 * bootstrap (see early_kmem_cache_node_alloc).
864 	 */
865 	if (n) {
866 		atomic_long_inc(&n->nr_slabs);
867 		atomic_long_add(objects, &n->total_objects);
868 	}
869 }
870 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
871 {
872 	struct kmem_cache_node *n = get_node(s, node);
873 
874 	atomic_long_dec(&n->nr_slabs);
875 	atomic_long_sub(objects, &n->total_objects);
876 }
877 
878 /* Object debug checks for alloc/free paths */
879 static void setup_object_debug(struct kmem_cache *s, struct page *page,
880 								void *object)
881 {
882 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
883 		return;
884 
885 	init_object(s, object, SLUB_RED_INACTIVE);
886 	init_tracking(s, object);
887 }
888 
889 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
890 					void *object, unsigned long addr)
891 {
892 	if (!check_slab(s, page))
893 		goto bad;
894 
895 	if (!on_freelist(s, page, object)) {
896 		object_err(s, page, object, "Object already allocated");
897 		goto bad;
898 	}
899 
900 	if (!check_valid_pointer(s, page, object)) {
901 		object_err(s, page, object, "Freelist Pointer check fails");
902 		goto bad;
903 	}
904 
905 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
906 		goto bad;
907 
908 	/* Success perform special debug activities for allocs */
909 	if (s->flags & SLAB_STORE_USER)
910 		set_track(s, object, TRACK_ALLOC, addr);
911 	trace(s, page, object, 1);
912 	init_object(s, object, SLUB_RED_ACTIVE);
913 	return 1;
914 
915 bad:
916 	if (PageSlab(page)) {
917 		/*
918 		 * If this is a slab page then lets do the best we can
919 		 * to avoid issues in the future. Marking all objects
920 		 * as used avoids touching the remaining objects.
921 		 */
922 		slab_fix(s, "Marking all objects used");
923 		page->inuse = page->objects;
924 		page->freelist = NULL;
925 	}
926 	return 0;
927 }
928 
929 static noinline int free_debug_processing(struct kmem_cache *s,
930 		 struct page *page, void *object, unsigned long addr)
931 {
932 	if (!check_slab(s, page))
933 		goto fail;
934 
935 	if (!check_valid_pointer(s, page, object)) {
936 		slab_err(s, page, "Invalid object pointer 0x%p", object);
937 		goto fail;
938 	}
939 
940 	if (on_freelist(s, page, object)) {
941 		object_err(s, page, object, "Object already free");
942 		goto fail;
943 	}
944 
945 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
946 		return 0;
947 
948 	if (unlikely(s != page->slab)) {
949 		if (!PageSlab(page)) {
950 			slab_err(s, page, "Attempt to free object(0x%p) "
951 				"outside of slab", object);
952 		} else if (!page->slab) {
953 			printk(KERN_ERR
954 				"SLUB <none>: no slab for object 0x%p.\n",
955 						object);
956 			dump_stack();
957 		} else
958 			object_err(s, page, object,
959 					"page slab pointer corrupt.");
960 		goto fail;
961 	}
962 
963 	/* Special debug activities for freeing objects */
964 	if (!PageSlubFrozen(page) && !page->freelist)
965 		remove_full(s, page);
966 	if (s->flags & SLAB_STORE_USER)
967 		set_track(s, object, TRACK_FREE, addr);
968 	trace(s, page, object, 0);
969 	init_object(s, object, SLUB_RED_INACTIVE);
970 	return 1;
971 
972 fail:
973 	slab_fix(s, "Object at 0x%p not freed", object);
974 	return 0;
975 }
976 
977 static int __init setup_slub_debug(char *str)
978 {
979 	slub_debug = DEBUG_DEFAULT_FLAGS;
980 	if (*str++ != '=' || !*str)
981 		/*
982 		 * No options specified. Switch on full debugging.
983 		 */
984 		goto out;
985 
986 	if (*str == ',')
987 		/*
988 		 * No options but restriction on slabs. This means full
989 		 * debugging for slabs matching a pattern.
990 		 */
991 		goto check_slabs;
992 
993 	if (tolower(*str) == 'o') {
994 		/*
995 		 * Avoid enabling debugging on caches if its minimum order
996 		 * would increase as a result.
997 		 */
998 		disable_higher_order_debug = 1;
999 		goto out;
1000 	}
1001 
1002 	slub_debug = 0;
1003 	if (*str == '-')
1004 		/*
1005 		 * Switch off all debugging measures.
1006 		 */
1007 		goto out;
1008 
1009 	/*
1010 	 * Determine which debug features should be switched on
1011 	 */
1012 	for (; *str && *str != ','; str++) {
1013 		switch (tolower(*str)) {
1014 		case 'f':
1015 			slub_debug |= SLAB_DEBUG_FREE;
1016 			break;
1017 		case 'z':
1018 			slub_debug |= SLAB_RED_ZONE;
1019 			break;
1020 		case 'p':
1021 			slub_debug |= SLAB_POISON;
1022 			break;
1023 		case 'u':
1024 			slub_debug |= SLAB_STORE_USER;
1025 			break;
1026 		case 't':
1027 			slub_debug |= SLAB_TRACE;
1028 			break;
1029 		case 'a':
1030 			slub_debug |= SLAB_FAILSLAB;
1031 			break;
1032 		default:
1033 			printk(KERN_ERR "slub_debug option '%c' "
1034 				"unknown. skipped\n", *str);
1035 		}
1036 	}
1037 
1038 check_slabs:
1039 	if (*str == ',')
1040 		slub_debug_slabs = str + 1;
1041 out:
1042 	return 1;
1043 }
1044 
1045 __setup("slub_debug", setup_slub_debug);
1046 
1047 static unsigned long kmem_cache_flags(unsigned long objsize,
1048 	unsigned long flags, const char *name,
1049 	void (*ctor)(void *))
1050 {
1051 	/*
1052 	 * Enable debugging if selected on the kernel commandline.
1053 	 */
1054 	if (slub_debug && (!slub_debug_slabs ||
1055 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1056 		flags |= slub_debug;
1057 
1058 	return flags;
1059 }
1060 #else
1061 static inline void setup_object_debug(struct kmem_cache *s,
1062 			struct page *page, void *object) {}
1063 
1064 static inline int alloc_debug_processing(struct kmem_cache *s,
1065 	struct page *page, void *object, unsigned long addr) { return 0; }
1066 
1067 static inline int free_debug_processing(struct kmem_cache *s,
1068 	struct page *page, void *object, unsigned long addr) { return 0; }
1069 
1070 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1071 			{ return 1; }
1072 static inline int check_object(struct kmem_cache *s, struct page *page,
1073 			void *object, u8 val) { return 1; }
1074 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1075 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1076 	unsigned long flags, const char *name,
1077 	void (*ctor)(void *))
1078 {
1079 	return flags;
1080 }
1081 #define slub_debug 0
1082 
1083 #define disable_higher_order_debug 0
1084 
1085 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1086 							{ return 0; }
1087 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1088 							{ return 0; }
1089 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1090 							int objects) {}
1091 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1092 							int objects) {}
1093 
1094 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1095 							{ return 0; }
1096 
1097 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1098 		void *object) {}
1099 
1100 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1101 
1102 static inline void slab_free_hook_irq(struct kmem_cache *s,
1103 		void *object) {}
1104 
1105 #endif /* CONFIG_SLUB_DEBUG */
1106 
1107 /*
1108  * Slab allocation and freeing
1109  */
1110 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1111 					struct kmem_cache_order_objects oo)
1112 {
1113 	int order = oo_order(oo);
1114 
1115 	flags |= __GFP_NOTRACK;
1116 
1117 	if (node == NUMA_NO_NODE)
1118 		return alloc_pages(flags, order);
1119 	else
1120 		return alloc_pages_exact_node(node, flags, order);
1121 }
1122 
1123 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1124 {
1125 	struct page *page;
1126 	struct kmem_cache_order_objects oo = s->oo;
1127 	gfp_t alloc_gfp;
1128 
1129 	flags |= s->allocflags;
1130 
1131 	/*
1132 	 * Let the initial higher-order allocation fail under memory pressure
1133 	 * so we fall-back to the minimum order allocation.
1134 	 */
1135 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1136 
1137 	page = alloc_slab_page(alloc_gfp, node, oo);
1138 	if (unlikely(!page)) {
1139 		oo = s->min;
1140 		/*
1141 		 * Allocation may have failed due to fragmentation.
1142 		 * Try a lower order alloc if possible
1143 		 */
1144 		page = alloc_slab_page(flags, node, oo);
1145 		if (!page)
1146 			return NULL;
1147 
1148 		stat(s, ORDER_FALLBACK);
1149 	}
1150 
1151 	if (kmemcheck_enabled
1152 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1153 		int pages = 1 << oo_order(oo);
1154 
1155 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1156 
1157 		/*
1158 		 * Objects from caches that have a constructor don't get
1159 		 * cleared when they're allocated, so we need to do it here.
1160 		 */
1161 		if (s->ctor)
1162 			kmemcheck_mark_uninitialized_pages(page, pages);
1163 		else
1164 			kmemcheck_mark_unallocated_pages(page, pages);
1165 	}
1166 
1167 	page->objects = oo_objects(oo);
1168 	mod_zone_page_state(page_zone(page),
1169 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1170 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1171 		1 << oo_order(oo));
1172 
1173 	return page;
1174 }
1175 
1176 static void setup_object(struct kmem_cache *s, struct page *page,
1177 				void *object)
1178 {
1179 	setup_object_debug(s, page, object);
1180 	if (unlikely(s->ctor))
1181 		s->ctor(object);
1182 }
1183 
1184 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1185 {
1186 	struct page *page;
1187 	void *start;
1188 	void *last;
1189 	void *p;
1190 
1191 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1192 
1193 	page = allocate_slab(s,
1194 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1195 	if (!page)
1196 		goto out;
1197 
1198 	inc_slabs_node(s, page_to_nid(page), page->objects);
1199 	page->slab = s;
1200 	page->flags |= 1 << PG_slab;
1201 
1202 	start = page_address(page);
1203 
1204 	if (unlikely(s->flags & SLAB_POISON))
1205 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1206 
1207 	last = start;
1208 	for_each_object(p, s, start, page->objects) {
1209 		setup_object(s, page, last);
1210 		set_freepointer(s, last, p);
1211 		last = p;
1212 	}
1213 	setup_object(s, page, last);
1214 	set_freepointer(s, last, NULL);
1215 
1216 	page->freelist = start;
1217 	page->inuse = 0;
1218 out:
1219 	return page;
1220 }
1221 
1222 static void __free_slab(struct kmem_cache *s, struct page *page)
1223 {
1224 	int order = compound_order(page);
1225 	int pages = 1 << order;
1226 
1227 	if (kmem_cache_debug(s)) {
1228 		void *p;
1229 
1230 		slab_pad_check(s, page);
1231 		for_each_object(p, s, page_address(page),
1232 						page->objects)
1233 			check_object(s, page, p, SLUB_RED_INACTIVE);
1234 	}
1235 
1236 	kmemcheck_free_shadow(page, compound_order(page));
1237 
1238 	mod_zone_page_state(page_zone(page),
1239 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1240 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1241 		-pages);
1242 
1243 	__ClearPageSlab(page);
1244 	reset_page_mapcount(page);
1245 	if (current->reclaim_state)
1246 		current->reclaim_state->reclaimed_slab += pages;
1247 	__free_pages(page, order);
1248 }
1249 
1250 static void rcu_free_slab(struct rcu_head *h)
1251 {
1252 	struct page *page;
1253 
1254 	page = container_of((struct list_head *)h, struct page, lru);
1255 	__free_slab(page->slab, page);
1256 }
1257 
1258 static void free_slab(struct kmem_cache *s, struct page *page)
1259 {
1260 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1261 		/*
1262 		 * RCU free overloads the RCU head over the LRU
1263 		 */
1264 		struct rcu_head *head = (void *)&page->lru;
1265 
1266 		call_rcu(head, rcu_free_slab);
1267 	} else
1268 		__free_slab(s, page);
1269 }
1270 
1271 static void discard_slab(struct kmem_cache *s, struct page *page)
1272 {
1273 	dec_slabs_node(s, page_to_nid(page), page->objects);
1274 	free_slab(s, page);
1275 }
1276 
1277 /*
1278  * Per slab locking using the pagelock
1279  */
1280 static __always_inline void slab_lock(struct page *page)
1281 {
1282 	bit_spin_lock(PG_locked, &page->flags);
1283 }
1284 
1285 static __always_inline void slab_unlock(struct page *page)
1286 {
1287 	__bit_spin_unlock(PG_locked, &page->flags);
1288 }
1289 
1290 static __always_inline int slab_trylock(struct page *page)
1291 {
1292 	int rc = 1;
1293 
1294 	rc = bit_spin_trylock(PG_locked, &page->flags);
1295 	return rc;
1296 }
1297 
1298 /*
1299  * Management of partially allocated slabs
1300  */
1301 static void add_partial(struct kmem_cache_node *n,
1302 				struct page *page, int tail)
1303 {
1304 	spin_lock(&n->list_lock);
1305 	n->nr_partial++;
1306 	if (tail)
1307 		list_add_tail(&page->lru, &n->partial);
1308 	else
1309 		list_add(&page->lru, &n->partial);
1310 	spin_unlock(&n->list_lock);
1311 }
1312 
1313 static inline void __remove_partial(struct kmem_cache_node *n,
1314 					struct page *page)
1315 {
1316 	list_del(&page->lru);
1317 	n->nr_partial--;
1318 }
1319 
1320 static void remove_partial(struct kmem_cache *s, struct page *page)
1321 {
1322 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1323 
1324 	spin_lock(&n->list_lock);
1325 	__remove_partial(n, page);
1326 	spin_unlock(&n->list_lock);
1327 }
1328 
1329 /*
1330  * Lock slab and remove from the partial list.
1331  *
1332  * Must hold list_lock.
1333  */
1334 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1335 							struct page *page)
1336 {
1337 	if (slab_trylock(page)) {
1338 		__remove_partial(n, page);
1339 		__SetPageSlubFrozen(page);
1340 		return 1;
1341 	}
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Try to allocate a partial slab from a specific node.
1347  */
1348 static struct page *get_partial_node(struct kmem_cache_node *n)
1349 {
1350 	struct page *page;
1351 
1352 	/*
1353 	 * Racy check. If we mistakenly see no partial slabs then we
1354 	 * just allocate an empty slab. If we mistakenly try to get a
1355 	 * partial slab and there is none available then get_partials()
1356 	 * will return NULL.
1357 	 */
1358 	if (!n || !n->nr_partial)
1359 		return NULL;
1360 
1361 	spin_lock(&n->list_lock);
1362 	list_for_each_entry(page, &n->partial, lru)
1363 		if (lock_and_freeze_slab(n, page))
1364 			goto out;
1365 	page = NULL;
1366 out:
1367 	spin_unlock(&n->list_lock);
1368 	return page;
1369 }
1370 
1371 /*
1372  * Get a page from somewhere. Search in increasing NUMA distances.
1373  */
1374 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1375 {
1376 #ifdef CONFIG_NUMA
1377 	struct zonelist *zonelist;
1378 	struct zoneref *z;
1379 	struct zone *zone;
1380 	enum zone_type high_zoneidx = gfp_zone(flags);
1381 	struct page *page;
1382 
1383 	/*
1384 	 * The defrag ratio allows a configuration of the tradeoffs between
1385 	 * inter node defragmentation and node local allocations. A lower
1386 	 * defrag_ratio increases the tendency to do local allocations
1387 	 * instead of attempting to obtain partial slabs from other nodes.
1388 	 *
1389 	 * If the defrag_ratio is set to 0 then kmalloc() always
1390 	 * returns node local objects. If the ratio is higher then kmalloc()
1391 	 * may return off node objects because partial slabs are obtained
1392 	 * from other nodes and filled up.
1393 	 *
1394 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1395 	 * defrag_ratio = 1000) then every (well almost) allocation will
1396 	 * first attempt to defrag slab caches on other nodes. This means
1397 	 * scanning over all nodes to look for partial slabs which may be
1398 	 * expensive if we do it every time we are trying to find a slab
1399 	 * with available objects.
1400 	 */
1401 	if (!s->remote_node_defrag_ratio ||
1402 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1403 		return NULL;
1404 
1405 	get_mems_allowed();
1406 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1407 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1408 		struct kmem_cache_node *n;
1409 
1410 		n = get_node(s, zone_to_nid(zone));
1411 
1412 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1413 				n->nr_partial > s->min_partial) {
1414 			page = get_partial_node(n);
1415 			if (page) {
1416 				put_mems_allowed();
1417 				return page;
1418 			}
1419 		}
1420 	}
1421 	put_mems_allowed();
1422 #endif
1423 	return NULL;
1424 }
1425 
1426 /*
1427  * Get a partial page, lock it and return it.
1428  */
1429 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1430 {
1431 	struct page *page;
1432 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1433 
1434 	page = get_partial_node(get_node(s, searchnode));
1435 	if (page || node != -1)
1436 		return page;
1437 
1438 	return get_any_partial(s, flags);
1439 }
1440 
1441 /*
1442  * Move a page back to the lists.
1443  *
1444  * Must be called with the slab lock held.
1445  *
1446  * On exit the slab lock will have been dropped.
1447  */
1448 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1449 	__releases(bitlock)
1450 {
1451 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1452 
1453 	__ClearPageSlubFrozen(page);
1454 	if (page->inuse) {
1455 
1456 		if (page->freelist) {
1457 			add_partial(n, page, tail);
1458 			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1459 		} else {
1460 			stat(s, DEACTIVATE_FULL);
1461 			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1462 				add_full(n, page);
1463 		}
1464 		slab_unlock(page);
1465 	} else {
1466 		stat(s, DEACTIVATE_EMPTY);
1467 		if (n->nr_partial < s->min_partial) {
1468 			/*
1469 			 * Adding an empty slab to the partial slabs in order
1470 			 * to avoid page allocator overhead. This slab needs
1471 			 * to come after the other slabs with objects in
1472 			 * so that the others get filled first. That way the
1473 			 * size of the partial list stays small.
1474 			 *
1475 			 * kmem_cache_shrink can reclaim any empty slabs from
1476 			 * the partial list.
1477 			 */
1478 			add_partial(n, page, 1);
1479 			slab_unlock(page);
1480 		} else {
1481 			slab_unlock(page);
1482 			stat(s, FREE_SLAB);
1483 			discard_slab(s, page);
1484 		}
1485 	}
1486 }
1487 
1488 /*
1489  * Remove the cpu slab
1490  */
1491 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1492 	__releases(bitlock)
1493 {
1494 	struct page *page = c->page;
1495 	int tail = 1;
1496 
1497 	if (page->freelist)
1498 		stat(s, DEACTIVATE_REMOTE_FREES);
1499 	/*
1500 	 * Merge cpu freelist into slab freelist. Typically we get here
1501 	 * because both freelists are empty. So this is unlikely
1502 	 * to occur.
1503 	 */
1504 	while (unlikely(c->freelist)) {
1505 		void **object;
1506 
1507 		tail = 0;	/* Hot objects. Put the slab first */
1508 
1509 		/* Retrieve object from cpu_freelist */
1510 		object = c->freelist;
1511 		c->freelist = get_freepointer(s, c->freelist);
1512 
1513 		/* And put onto the regular freelist */
1514 		set_freepointer(s, object, page->freelist);
1515 		page->freelist = object;
1516 		page->inuse--;
1517 	}
1518 	c->page = NULL;
1519 	unfreeze_slab(s, page, tail);
1520 }
1521 
1522 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1523 {
1524 	stat(s, CPUSLAB_FLUSH);
1525 	slab_lock(c->page);
1526 	deactivate_slab(s, c);
1527 }
1528 
1529 /*
1530  * Flush cpu slab.
1531  *
1532  * Called from IPI handler with interrupts disabled.
1533  */
1534 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1535 {
1536 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1537 
1538 	if (likely(c && c->page))
1539 		flush_slab(s, c);
1540 }
1541 
1542 static void flush_cpu_slab(void *d)
1543 {
1544 	struct kmem_cache *s = d;
1545 
1546 	__flush_cpu_slab(s, smp_processor_id());
1547 }
1548 
1549 static void flush_all(struct kmem_cache *s)
1550 {
1551 	on_each_cpu(flush_cpu_slab, s, 1);
1552 }
1553 
1554 /*
1555  * Check if the objects in a per cpu structure fit numa
1556  * locality expectations.
1557  */
1558 static inline int node_match(struct kmem_cache_cpu *c, int node)
1559 {
1560 #ifdef CONFIG_NUMA
1561 	if (node != NUMA_NO_NODE && c->node != node)
1562 		return 0;
1563 #endif
1564 	return 1;
1565 }
1566 
1567 static int count_free(struct page *page)
1568 {
1569 	return page->objects - page->inuse;
1570 }
1571 
1572 static unsigned long count_partial(struct kmem_cache_node *n,
1573 					int (*get_count)(struct page *))
1574 {
1575 	unsigned long flags;
1576 	unsigned long x = 0;
1577 	struct page *page;
1578 
1579 	spin_lock_irqsave(&n->list_lock, flags);
1580 	list_for_each_entry(page, &n->partial, lru)
1581 		x += get_count(page);
1582 	spin_unlock_irqrestore(&n->list_lock, flags);
1583 	return x;
1584 }
1585 
1586 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1587 {
1588 #ifdef CONFIG_SLUB_DEBUG
1589 	return atomic_long_read(&n->total_objects);
1590 #else
1591 	return 0;
1592 #endif
1593 }
1594 
1595 static noinline void
1596 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1597 {
1598 	int node;
1599 
1600 	printk(KERN_WARNING
1601 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1602 		nid, gfpflags);
1603 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1604 		"default order: %d, min order: %d\n", s->name, s->objsize,
1605 		s->size, oo_order(s->oo), oo_order(s->min));
1606 
1607 	if (oo_order(s->min) > get_order(s->objsize))
1608 		printk(KERN_WARNING "  %s debugging increased min order, use "
1609 		       "slub_debug=O to disable.\n", s->name);
1610 
1611 	for_each_online_node(node) {
1612 		struct kmem_cache_node *n = get_node(s, node);
1613 		unsigned long nr_slabs;
1614 		unsigned long nr_objs;
1615 		unsigned long nr_free;
1616 
1617 		if (!n)
1618 			continue;
1619 
1620 		nr_free  = count_partial(n, count_free);
1621 		nr_slabs = node_nr_slabs(n);
1622 		nr_objs  = node_nr_objs(n);
1623 
1624 		printk(KERN_WARNING
1625 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1626 			node, nr_slabs, nr_objs, nr_free);
1627 	}
1628 }
1629 
1630 /*
1631  * Slow path. The lockless freelist is empty or we need to perform
1632  * debugging duties.
1633  *
1634  * Interrupts are disabled.
1635  *
1636  * Processing is still very fast if new objects have been freed to the
1637  * regular freelist. In that case we simply take over the regular freelist
1638  * as the lockless freelist and zap the regular freelist.
1639  *
1640  * If that is not working then we fall back to the partial lists. We take the
1641  * first element of the freelist as the object to allocate now and move the
1642  * rest of the freelist to the lockless freelist.
1643  *
1644  * And if we were unable to get a new slab from the partial slab lists then
1645  * we need to allocate a new slab. This is the slowest path since it involves
1646  * a call to the page allocator and the setup of a new slab.
1647  */
1648 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1649 			  unsigned long addr, struct kmem_cache_cpu *c)
1650 {
1651 	void **object;
1652 	struct page *new;
1653 
1654 	/* We handle __GFP_ZERO in the caller */
1655 	gfpflags &= ~__GFP_ZERO;
1656 
1657 	if (!c->page)
1658 		goto new_slab;
1659 
1660 	slab_lock(c->page);
1661 	if (unlikely(!node_match(c, node)))
1662 		goto another_slab;
1663 
1664 	stat(s, ALLOC_REFILL);
1665 
1666 load_freelist:
1667 	object = c->page->freelist;
1668 	if (unlikely(!object))
1669 		goto another_slab;
1670 	if (kmem_cache_debug(s))
1671 		goto debug;
1672 
1673 	c->freelist = get_freepointer(s, object);
1674 	c->page->inuse = c->page->objects;
1675 	c->page->freelist = NULL;
1676 	c->node = page_to_nid(c->page);
1677 unlock_out:
1678 	slab_unlock(c->page);
1679 	stat(s, ALLOC_SLOWPATH);
1680 	return object;
1681 
1682 another_slab:
1683 	deactivate_slab(s, c);
1684 
1685 new_slab:
1686 	new = get_partial(s, gfpflags, node);
1687 	if (new) {
1688 		c->page = new;
1689 		stat(s, ALLOC_FROM_PARTIAL);
1690 		goto load_freelist;
1691 	}
1692 
1693 	gfpflags &= gfp_allowed_mask;
1694 	if (gfpflags & __GFP_WAIT)
1695 		local_irq_enable();
1696 
1697 	new = new_slab(s, gfpflags, node);
1698 
1699 	if (gfpflags & __GFP_WAIT)
1700 		local_irq_disable();
1701 
1702 	if (new) {
1703 		c = __this_cpu_ptr(s->cpu_slab);
1704 		stat(s, ALLOC_SLAB);
1705 		if (c->page)
1706 			flush_slab(s, c);
1707 		slab_lock(new);
1708 		__SetPageSlubFrozen(new);
1709 		c->page = new;
1710 		goto load_freelist;
1711 	}
1712 	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1713 		slab_out_of_memory(s, gfpflags, node);
1714 	return NULL;
1715 debug:
1716 	if (!alloc_debug_processing(s, c->page, object, addr))
1717 		goto another_slab;
1718 
1719 	c->page->inuse++;
1720 	c->page->freelist = get_freepointer(s, object);
1721 	c->node = NUMA_NO_NODE;
1722 	goto unlock_out;
1723 }
1724 
1725 /*
1726  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1727  * have the fastpath folded into their functions. So no function call
1728  * overhead for requests that can be satisfied on the fastpath.
1729  *
1730  * The fastpath works by first checking if the lockless freelist can be used.
1731  * If not then __slab_alloc is called for slow processing.
1732  *
1733  * Otherwise we can simply pick the next object from the lockless free list.
1734  */
1735 static __always_inline void *slab_alloc(struct kmem_cache *s,
1736 		gfp_t gfpflags, int node, unsigned long addr)
1737 {
1738 	void **object;
1739 	struct kmem_cache_cpu *c;
1740 	unsigned long flags;
1741 
1742 	if (slab_pre_alloc_hook(s, gfpflags))
1743 		return NULL;
1744 
1745 	local_irq_save(flags);
1746 	c = __this_cpu_ptr(s->cpu_slab);
1747 	object = c->freelist;
1748 	if (unlikely(!object || !node_match(c, node)))
1749 
1750 		object = __slab_alloc(s, gfpflags, node, addr, c);
1751 
1752 	else {
1753 		c->freelist = get_freepointer(s, object);
1754 		stat(s, ALLOC_FASTPATH);
1755 	}
1756 	local_irq_restore(flags);
1757 
1758 	if (unlikely(gfpflags & __GFP_ZERO) && object)
1759 		memset(object, 0, s->objsize);
1760 
1761 	slab_post_alloc_hook(s, gfpflags, object);
1762 
1763 	return object;
1764 }
1765 
1766 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1767 {
1768 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1769 
1770 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1771 
1772 	return ret;
1773 }
1774 EXPORT_SYMBOL(kmem_cache_alloc);
1775 
1776 #ifdef CONFIG_TRACING
1777 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1778 {
1779 	return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1780 }
1781 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1782 #endif
1783 
1784 #ifdef CONFIG_NUMA
1785 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1786 {
1787 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1788 
1789 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1790 				    s->objsize, s->size, gfpflags, node);
1791 
1792 	return ret;
1793 }
1794 EXPORT_SYMBOL(kmem_cache_alloc_node);
1795 
1796 #ifdef CONFIG_TRACING
1797 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1798 				    gfp_t gfpflags,
1799 				    int node)
1800 {
1801 	return slab_alloc(s, gfpflags, node, _RET_IP_);
1802 }
1803 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1804 #endif
1805 #endif
1806 
1807 /*
1808  * Slow patch handling. This may still be called frequently since objects
1809  * have a longer lifetime than the cpu slabs in most processing loads.
1810  *
1811  * So we still attempt to reduce cache line usage. Just take the slab
1812  * lock and free the item. If there is no additional partial page
1813  * handling required then we can return immediately.
1814  */
1815 static void __slab_free(struct kmem_cache *s, struct page *page,
1816 			void *x, unsigned long addr)
1817 {
1818 	void *prior;
1819 	void **object = (void *)x;
1820 
1821 	stat(s, FREE_SLOWPATH);
1822 	slab_lock(page);
1823 
1824 	if (kmem_cache_debug(s))
1825 		goto debug;
1826 
1827 checks_ok:
1828 	prior = page->freelist;
1829 	set_freepointer(s, object, prior);
1830 	page->freelist = object;
1831 	page->inuse--;
1832 
1833 	if (unlikely(PageSlubFrozen(page))) {
1834 		stat(s, FREE_FROZEN);
1835 		goto out_unlock;
1836 	}
1837 
1838 	if (unlikely(!page->inuse))
1839 		goto slab_empty;
1840 
1841 	/*
1842 	 * Objects left in the slab. If it was not on the partial list before
1843 	 * then add it.
1844 	 */
1845 	if (unlikely(!prior)) {
1846 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1847 		stat(s, FREE_ADD_PARTIAL);
1848 	}
1849 
1850 out_unlock:
1851 	slab_unlock(page);
1852 	return;
1853 
1854 slab_empty:
1855 	if (prior) {
1856 		/*
1857 		 * Slab still on the partial list.
1858 		 */
1859 		remove_partial(s, page);
1860 		stat(s, FREE_REMOVE_PARTIAL);
1861 	}
1862 	slab_unlock(page);
1863 	stat(s, FREE_SLAB);
1864 	discard_slab(s, page);
1865 	return;
1866 
1867 debug:
1868 	if (!free_debug_processing(s, page, x, addr))
1869 		goto out_unlock;
1870 	goto checks_ok;
1871 }
1872 
1873 /*
1874  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1875  * can perform fastpath freeing without additional function calls.
1876  *
1877  * The fastpath is only possible if we are freeing to the current cpu slab
1878  * of this processor. This typically the case if we have just allocated
1879  * the item before.
1880  *
1881  * If fastpath is not possible then fall back to __slab_free where we deal
1882  * with all sorts of special processing.
1883  */
1884 static __always_inline void slab_free(struct kmem_cache *s,
1885 			struct page *page, void *x, unsigned long addr)
1886 {
1887 	void **object = (void *)x;
1888 	struct kmem_cache_cpu *c;
1889 	unsigned long flags;
1890 
1891 	slab_free_hook(s, x);
1892 
1893 	local_irq_save(flags);
1894 	c = __this_cpu_ptr(s->cpu_slab);
1895 
1896 	slab_free_hook_irq(s, x);
1897 
1898 	if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
1899 		set_freepointer(s, object, c->freelist);
1900 		c->freelist = object;
1901 		stat(s, FREE_FASTPATH);
1902 	} else
1903 		__slab_free(s, page, x, addr);
1904 
1905 	local_irq_restore(flags);
1906 }
1907 
1908 void kmem_cache_free(struct kmem_cache *s, void *x)
1909 {
1910 	struct page *page;
1911 
1912 	page = virt_to_head_page(x);
1913 
1914 	slab_free(s, page, x, _RET_IP_);
1915 
1916 	trace_kmem_cache_free(_RET_IP_, x);
1917 }
1918 EXPORT_SYMBOL(kmem_cache_free);
1919 
1920 /* Figure out on which slab page the object resides */
1921 static struct page *get_object_page(const void *x)
1922 {
1923 	struct page *page = virt_to_head_page(x);
1924 
1925 	if (!PageSlab(page))
1926 		return NULL;
1927 
1928 	return page;
1929 }
1930 
1931 /*
1932  * Object placement in a slab is made very easy because we always start at
1933  * offset 0. If we tune the size of the object to the alignment then we can
1934  * get the required alignment by putting one properly sized object after
1935  * another.
1936  *
1937  * Notice that the allocation order determines the sizes of the per cpu
1938  * caches. Each processor has always one slab available for allocations.
1939  * Increasing the allocation order reduces the number of times that slabs
1940  * must be moved on and off the partial lists and is therefore a factor in
1941  * locking overhead.
1942  */
1943 
1944 /*
1945  * Mininum / Maximum order of slab pages. This influences locking overhead
1946  * and slab fragmentation. A higher order reduces the number of partial slabs
1947  * and increases the number of allocations possible without having to
1948  * take the list_lock.
1949  */
1950 static int slub_min_order;
1951 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1952 static int slub_min_objects;
1953 
1954 /*
1955  * Merge control. If this is set then no merging of slab caches will occur.
1956  * (Could be removed. This was introduced to pacify the merge skeptics.)
1957  */
1958 static int slub_nomerge;
1959 
1960 /*
1961  * Calculate the order of allocation given an slab object size.
1962  *
1963  * The order of allocation has significant impact on performance and other
1964  * system components. Generally order 0 allocations should be preferred since
1965  * order 0 does not cause fragmentation in the page allocator. Larger objects
1966  * be problematic to put into order 0 slabs because there may be too much
1967  * unused space left. We go to a higher order if more than 1/16th of the slab
1968  * would be wasted.
1969  *
1970  * In order to reach satisfactory performance we must ensure that a minimum
1971  * number of objects is in one slab. Otherwise we may generate too much
1972  * activity on the partial lists which requires taking the list_lock. This is
1973  * less a concern for large slabs though which are rarely used.
1974  *
1975  * slub_max_order specifies the order where we begin to stop considering the
1976  * number of objects in a slab as critical. If we reach slub_max_order then
1977  * we try to keep the page order as low as possible. So we accept more waste
1978  * of space in favor of a small page order.
1979  *
1980  * Higher order allocations also allow the placement of more objects in a
1981  * slab and thereby reduce object handling overhead. If the user has
1982  * requested a higher mininum order then we start with that one instead of
1983  * the smallest order which will fit the object.
1984  */
1985 static inline int slab_order(int size, int min_objects,
1986 				int max_order, int fract_leftover)
1987 {
1988 	int order;
1989 	int rem;
1990 	int min_order = slub_min_order;
1991 
1992 	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1993 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1994 
1995 	for (order = max(min_order,
1996 				fls(min_objects * size - 1) - PAGE_SHIFT);
1997 			order <= max_order; order++) {
1998 
1999 		unsigned long slab_size = PAGE_SIZE << order;
2000 
2001 		if (slab_size < min_objects * size)
2002 			continue;
2003 
2004 		rem = slab_size % size;
2005 
2006 		if (rem <= slab_size / fract_leftover)
2007 			break;
2008 
2009 	}
2010 
2011 	return order;
2012 }
2013 
2014 static inline int calculate_order(int size)
2015 {
2016 	int order;
2017 	int min_objects;
2018 	int fraction;
2019 	int max_objects;
2020 
2021 	/*
2022 	 * Attempt to find best configuration for a slab. This
2023 	 * works by first attempting to generate a layout with
2024 	 * the best configuration and backing off gradually.
2025 	 *
2026 	 * First we reduce the acceptable waste in a slab. Then
2027 	 * we reduce the minimum objects required in a slab.
2028 	 */
2029 	min_objects = slub_min_objects;
2030 	if (!min_objects)
2031 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2032 	max_objects = (PAGE_SIZE << slub_max_order)/size;
2033 	min_objects = min(min_objects, max_objects);
2034 
2035 	while (min_objects > 1) {
2036 		fraction = 16;
2037 		while (fraction >= 4) {
2038 			order = slab_order(size, min_objects,
2039 						slub_max_order, fraction);
2040 			if (order <= slub_max_order)
2041 				return order;
2042 			fraction /= 2;
2043 		}
2044 		min_objects--;
2045 	}
2046 
2047 	/*
2048 	 * We were unable to place multiple objects in a slab. Now
2049 	 * lets see if we can place a single object there.
2050 	 */
2051 	order = slab_order(size, 1, slub_max_order, 1);
2052 	if (order <= slub_max_order)
2053 		return order;
2054 
2055 	/*
2056 	 * Doh this slab cannot be placed using slub_max_order.
2057 	 */
2058 	order = slab_order(size, 1, MAX_ORDER, 1);
2059 	if (order < MAX_ORDER)
2060 		return order;
2061 	return -ENOSYS;
2062 }
2063 
2064 /*
2065  * Figure out what the alignment of the objects will be.
2066  */
2067 static unsigned long calculate_alignment(unsigned long flags,
2068 		unsigned long align, unsigned long size)
2069 {
2070 	/*
2071 	 * If the user wants hardware cache aligned objects then follow that
2072 	 * suggestion if the object is sufficiently large.
2073 	 *
2074 	 * The hardware cache alignment cannot override the specified
2075 	 * alignment though. If that is greater then use it.
2076 	 */
2077 	if (flags & SLAB_HWCACHE_ALIGN) {
2078 		unsigned long ralign = cache_line_size();
2079 		while (size <= ralign / 2)
2080 			ralign /= 2;
2081 		align = max(align, ralign);
2082 	}
2083 
2084 	if (align < ARCH_SLAB_MINALIGN)
2085 		align = ARCH_SLAB_MINALIGN;
2086 
2087 	return ALIGN(align, sizeof(void *));
2088 }
2089 
2090 static void
2091 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2092 {
2093 	n->nr_partial = 0;
2094 	spin_lock_init(&n->list_lock);
2095 	INIT_LIST_HEAD(&n->partial);
2096 #ifdef CONFIG_SLUB_DEBUG
2097 	atomic_long_set(&n->nr_slabs, 0);
2098 	atomic_long_set(&n->total_objects, 0);
2099 	INIT_LIST_HEAD(&n->full);
2100 #endif
2101 }
2102 
2103 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2104 {
2105 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2106 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2107 
2108 	s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2109 
2110 	return s->cpu_slab != NULL;
2111 }
2112 
2113 static struct kmem_cache *kmem_cache_node;
2114 
2115 /*
2116  * No kmalloc_node yet so do it by hand. We know that this is the first
2117  * slab on the node for this slabcache. There are no concurrent accesses
2118  * possible.
2119  *
2120  * Note that this function only works on the kmalloc_node_cache
2121  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2122  * memory on a fresh node that has no slab structures yet.
2123  */
2124 static void early_kmem_cache_node_alloc(int node)
2125 {
2126 	struct page *page;
2127 	struct kmem_cache_node *n;
2128 	unsigned long flags;
2129 
2130 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2131 
2132 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2133 
2134 	BUG_ON(!page);
2135 	if (page_to_nid(page) != node) {
2136 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2137 				"node %d\n", node);
2138 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2139 				"in order to be able to continue\n");
2140 	}
2141 
2142 	n = page->freelist;
2143 	BUG_ON(!n);
2144 	page->freelist = get_freepointer(kmem_cache_node, n);
2145 	page->inuse++;
2146 	kmem_cache_node->node[node] = n;
2147 #ifdef CONFIG_SLUB_DEBUG
2148 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2149 	init_tracking(kmem_cache_node, n);
2150 #endif
2151 	init_kmem_cache_node(n, kmem_cache_node);
2152 	inc_slabs_node(kmem_cache_node, node, page->objects);
2153 
2154 	/*
2155 	 * lockdep requires consistent irq usage for each lock
2156 	 * so even though there cannot be a race this early in
2157 	 * the boot sequence, we still disable irqs.
2158 	 */
2159 	local_irq_save(flags);
2160 	add_partial(n, page, 0);
2161 	local_irq_restore(flags);
2162 }
2163 
2164 static void free_kmem_cache_nodes(struct kmem_cache *s)
2165 {
2166 	int node;
2167 
2168 	for_each_node_state(node, N_NORMAL_MEMORY) {
2169 		struct kmem_cache_node *n = s->node[node];
2170 
2171 		if (n)
2172 			kmem_cache_free(kmem_cache_node, n);
2173 
2174 		s->node[node] = NULL;
2175 	}
2176 }
2177 
2178 static int init_kmem_cache_nodes(struct kmem_cache *s)
2179 {
2180 	int node;
2181 
2182 	for_each_node_state(node, N_NORMAL_MEMORY) {
2183 		struct kmem_cache_node *n;
2184 
2185 		if (slab_state == DOWN) {
2186 			early_kmem_cache_node_alloc(node);
2187 			continue;
2188 		}
2189 		n = kmem_cache_alloc_node(kmem_cache_node,
2190 						GFP_KERNEL, node);
2191 
2192 		if (!n) {
2193 			free_kmem_cache_nodes(s);
2194 			return 0;
2195 		}
2196 
2197 		s->node[node] = n;
2198 		init_kmem_cache_node(n, s);
2199 	}
2200 	return 1;
2201 }
2202 
2203 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2204 {
2205 	if (min < MIN_PARTIAL)
2206 		min = MIN_PARTIAL;
2207 	else if (min > MAX_PARTIAL)
2208 		min = MAX_PARTIAL;
2209 	s->min_partial = min;
2210 }
2211 
2212 /*
2213  * calculate_sizes() determines the order and the distribution of data within
2214  * a slab object.
2215  */
2216 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2217 {
2218 	unsigned long flags = s->flags;
2219 	unsigned long size = s->objsize;
2220 	unsigned long align = s->align;
2221 	int order;
2222 
2223 	/*
2224 	 * Round up object size to the next word boundary. We can only
2225 	 * place the free pointer at word boundaries and this determines
2226 	 * the possible location of the free pointer.
2227 	 */
2228 	size = ALIGN(size, sizeof(void *));
2229 
2230 #ifdef CONFIG_SLUB_DEBUG
2231 	/*
2232 	 * Determine if we can poison the object itself. If the user of
2233 	 * the slab may touch the object after free or before allocation
2234 	 * then we should never poison the object itself.
2235 	 */
2236 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2237 			!s->ctor)
2238 		s->flags |= __OBJECT_POISON;
2239 	else
2240 		s->flags &= ~__OBJECT_POISON;
2241 
2242 
2243 	/*
2244 	 * If we are Redzoning then check if there is some space between the
2245 	 * end of the object and the free pointer. If not then add an
2246 	 * additional word to have some bytes to store Redzone information.
2247 	 */
2248 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2249 		size += sizeof(void *);
2250 #endif
2251 
2252 	/*
2253 	 * With that we have determined the number of bytes in actual use
2254 	 * by the object. This is the potential offset to the free pointer.
2255 	 */
2256 	s->inuse = size;
2257 
2258 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2259 		s->ctor)) {
2260 		/*
2261 		 * Relocate free pointer after the object if it is not
2262 		 * permitted to overwrite the first word of the object on
2263 		 * kmem_cache_free.
2264 		 *
2265 		 * This is the case if we do RCU, have a constructor or
2266 		 * destructor or are poisoning the objects.
2267 		 */
2268 		s->offset = size;
2269 		size += sizeof(void *);
2270 	}
2271 
2272 #ifdef CONFIG_SLUB_DEBUG
2273 	if (flags & SLAB_STORE_USER)
2274 		/*
2275 		 * Need to store information about allocs and frees after
2276 		 * the object.
2277 		 */
2278 		size += 2 * sizeof(struct track);
2279 
2280 	if (flags & SLAB_RED_ZONE)
2281 		/*
2282 		 * Add some empty padding so that we can catch
2283 		 * overwrites from earlier objects rather than let
2284 		 * tracking information or the free pointer be
2285 		 * corrupted if a user writes before the start
2286 		 * of the object.
2287 		 */
2288 		size += sizeof(void *);
2289 #endif
2290 
2291 	/*
2292 	 * Determine the alignment based on various parameters that the
2293 	 * user specified and the dynamic determination of cache line size
2294 	 * on bootup.
2295 	 */
2296 	align = calculate_alignment(flags, align, s->objsize);
2297 	s->align = align;
2298 
2299 	/*
2300 	 * SLUB stores one object immediately after another beginning from
2301 	 * offset 0. In order to align the objects we have to simply size
2302 	 * each object to conform to the alignment.
2303 	 */
2304 	size = ALIGN(size, align);
2305 	s->size = size;
2306 	if (forced_order >= 0)
2307 		order = forced_order;
2308 	else
2309 		order = calculate_order(size);
2310 
2311 	if (order < 0)
2312 		return 0;
2313 
2314 	s->allocflags = 0;
2315 	if (order)
2316 		s->allocflags |= __GFP_COMP;
2317 
2318 	if (s->flags & SLAB_CACHE_DMA)
2319 		s->allocflags |= SLUB_DMA;
2320 
2321 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2322 		s->allocflags |= __GFP_RECLAIMABLE;
2323 
2324 	/*
2325 	 * Determine the number of objects per slab
2326 	 */
2327 	s->oo = oo_make(order, size);
2328 	s->min = oo_make(get_order(size), size);
2329 	if (oo_objects(s->oo) > oo_objects(s->max))
2330 		s->max = s->oo;
2331 
2332 	return !!oo_objects(s->oo);
2333 
2334 }
2335 
2336 static int kmem_cache_open(struct kmem_cache *s,
2337 		const char *name, size_t size,
2338 		size_t align, unsigned long flags,
2339 		void (*ctor)(void *))
2340 {
2341 	memset(s, 0, kmem_size);
2342 	s->name = name;
2343 	s->ctor = ctor;
2344 	s->objsize = size;
2345 	s->align = align;
2346 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2347 
2348 	if (!calculate_sizes(s, -1))
2349 		goto error;
2350 	if (disable_higher_order_debug) {
2351 		/*
2352 		 * Disable debugging flags that store metadata if the min slab
2353 		 * order increased.
2354 		 */
2355 		if (get_order(s->size) > get_order(s->objsize)) {
2356 			s->flags &= ~DEBUG_METADATA_FLAGS;
2357 			s->offset = 0;
2358 			if (!calculate_sizes(s, -1))
2359 				goto error;
2360 		}
2361 	}
2362 
2363 	/*
2364 	 * The larger the object size is, the more pages we want on the partial
2365 	 * list to avoid pounding the page allocator excessively.
2366 	 */
2367 	set_min_partial(s, ilog2(s->size));
2368 	s->refcount = 1;
2369 #ifdef CONFIG_NUMA
2370 	s->remote_node_defrag_ratio = 1000;
2371 #endif
2372 	if (!init_kmem_cache_nodes(s))
2373 		goto error;
2374 
2375 	if (alloc_kmem_cache_cpus(s))
2376 		return 1;
2377 
2378 	free_kmem_cache_nodes(s);
2379 error:
2380 	if (flags & SLAB_PANIC)
2381 		panic("Cannot create slab %s size=%lu realsize=%u "
2382 			"order=%u offset=%u flags=%lx\n",
2383 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2384 			s->offset, flags);
2385 	return 0;
2386 }
2387 
2388 /*
2389  * Check if a given pointer is valid
2390  */
2391 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2392 {
2393 	struct page *page;
2394 
2395 	if (!kern_ptr_validate(object, s->size))
2396 		return 0;
2397 
2398 	page = get_object_page(object);
2399 
2400 	if (!page || s != page->slab)
2401 		/* No slab or wrong slab */
2402 		return 0;
2403 
2404 	if (!check_valid_pointer(s, page, object))
2405 		return 0;
2406 
2407 	/*
2408 	 * We could also check if the object is on the slabs freelist.
2409 	 * But this would be too expensive and it seems that the main
2410 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2411 	 * to a certain slab.
2412 	 */
2413 	return 1;
2414 }
2415 EXPORT_SYMBOL(kmem_ptr_validate);
2416 
2417 /*
2418  * Determine the size of a slab object
2419  */
2420 unsigned int kmem_cache_size(struct kmem_cache *s)
2421 {
2422 	return s->objsize;
2423 }
2424 EXPORT_SYMBOL(kmem_cache_size);
2425 
2426 const char *kmem_cache_name(struct kmem_cache *s)
2427 {
2428 	return s->name;
2429 }
2430 EXPORT_SYMBOL(kmem_cache_name);
2431 
2432 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2433 							const char *text)
2434 {
2435 #ifdef CONFIG_SLUB_DEBUG
2436 	void *addr = page_address(page);
2437 	void *p;
2438 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2439 				     sizeof(long), GFP_ATOMIC);
2440 	if (!map)
2441 		return;
2442 	slab_err(s, page, "%s", text);
2443 	slab_lock(page);
2444 	for_each_free_object(p, s, page->freelist)
2445 		set_bit(slab_index(p, s, addr), map);
2446 
2447 	for_each_object(p, s, addr, page->objects) {
2448 
2449 		if (!test_bit(slab_index(p, s, addr), map)) {
2450 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2451 							p, p - addr);
2452 			print_tracking(s, p);
2453 		}
2454 	}
2455 	slab_unlock(page);
2456 	kfree(map);
2457 #endif
2458 }
2459 
2460 /*
2461  * Attempt to free all partial slabs on a node.
2462  */
2463 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2464 {
2465 	unsigned long flags;
2466 	struct page *page, *h;
2467 
2468 	spin_lock_irqsave(&n->list_lock, flags);
2469 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2470 		if (!page->inuse) {
2471 			__remove_partial(n, page);
2472 			discard_slab(s, page);
2473 		} else {
2474 			list_slab_objects(s, page,
2475 				"Objects remaining on kmem_cache_close()");
2476 		}
2477 	}
2478 	spin_unlock_irqrestore(&n->list_lock, flags);
2479 }
2480 
2481 /*
2482  * Release all resources used by a slab cache.
2483  */
2484 static inline int kmem_cache_close(struct kmem_cache *s)
2485 {
2486 	int node;
2487 
2488 	flush_all(s);
2489 	free_percpu(s->cpu_slab);
2490 	/* Attempt to free all objects */
2491 	for_each_node_state(node, N_NORMAL_MEMORY) {
2492 		struct kmem_cache_node *n = get_node(s, node);
2493 
2494 		free_partial(s, n);
2495 		if (n->nr_partial || slabs_node(s, node))
2496 			return 1;
2497 	}
2498 	free_kmem_cache_nodes(s);
2499 	return 0;
2500 }
2501 
2502 /*
2503  * Close a cache and release the kmem_cache structure
2504  * (must be used for caches created using kmem_cache_create)
2505  */
2506 void kmem_cache_destroy(struct kmem_cache *s)
2507 {
2508 	down_write(&slub_lock);
2509 	s->refcount--;
2510 	if (!s->refcount) {
2511 		list_del(&s->list);
2512 		if (kmem_cache_close(s)) {
2513 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2514 				"still has objects.\n", s->name, __func__);
2515 			dump_stack();
2516 		}
2517 		if (s->flags & SLAB_DESTROY_BY_RCU)
2518 			rcu_barrier();
2519 		sysfs_slab_remove(s);
2520 	}
2521 	up_write(&slub_lock);
2522 }
2523 EXPORT_SYMBOL(kmem_cache_destroy);
2524 
2525 /********************************************************************
2526  *		Kmalloc subsystem
2527  *******************************************************************/
2528 
2529 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2530 EXPORT_SYMBOL(kmalloc_caches);
2531 
2532 static struct kmem_cache *kmem_cache;
2533 
2534 #ifdef CONFIG_ZONE_DMA
2535 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2536 #endif
2537 
2538 static int __init setup_slub_min_order(char *str)
2539 {
2540 	get_option(&str, &slub_min_order);
2541 
2542 	return 1;
2543 }
2544 
2545 __setup("slub_min_order=", setup_slub_min_order);
2546 
2547 static int __init setup_slub_max_order(char *str)
2548 {
2549 	get_option(&str, &slub_max_order);
2550 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2551 
2552 	return 1;
2553 }
2554 
2555 __setup("slub_max_order=", setup_slub_max_order);
2556 
2557 static int __init setup_slub_min_objects(char *str)
2558 {
2559 	get_option(&str, &slub_min_objects);
2560 
2561 	return 1;
2562 }
2563 
2564 __setup("slub_min_objects=", setup_slub_min_objects);
2565 
2566 static int __init setup_slub_nomerge(char *str)
2567 {
2568 	slub_nomerge = 1;
2569 	return 1;
2570 }
2571 
2572 __setup("slub_nomerge", setup_slub_nomerge);
2573 
2574 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2575 						int size, unsigned int flags)
2576 {
2577 	struct kmem_cache *s;
2578 
2579 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2580 
2581 	/*
2582 	 * This function is called with IRQs disabled during early-boot on
2583 	 * single CPU so there's no need to take slub_lock here.
2584 	 */
2585 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2586 								flags, NULL))
2587 		goto panic;
2588 
2589 	list_add(&s->list, &slab_caches);
2590 	return s;
2591 
2592 panic:
2593 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2594 	return NULL;
2595 }
2596 
2597 /*
2598  * Conversion table for small slabs sizes / 8 to the index in the
2599  * kmalloc array. This is necessary for slabs < 192 since we have non power
2600  * of two cache sizes there. The size of larger slabs can be determined using
2601  * fls.
2602  */
2603 static s8 size_index[24] = {
2604 	3,	/* 8 */
2605 	4,	/* 16 */
2606 	5,	/* 24 */
2607 	5,	/* 32 */
2608 	6,	/* 40 */
2609 	6,	/* 48 */
2610 	6,	/* 56 */
2611 	6,	/* 64 */
2612 	1,	/* 72 */
2613 	1,	/* 80 */
2614 	1,	/* 88 */
2615 	1,	/* 96 */
2616 	7,	/* 104 */
2617 	7,	/* 112 */
2618 	7,	/* 120 */
2619 	7,	/* 128 */
2620 	2,	/* 136 */
2621 	2,	/* 144 */
2622 	2,	/* 152 */
2623 	2,	/* 160 */
2624 	2,	/* 168 */
2625 	2,	/* 176 */
2626 	2,	/* 184 */
2627 	2	/* 192 */
2628 };
2629 
2630 static inline int size_index_elem(size_t bytes)
2631 {
2632 	return (bytes - 1) / 8;
2633 }
2634 
2635 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2636 {
2637 	int index;
2638 
2639 	if (size <= 192) {
2640 		if (!size)
2641 			return ZERO_SIZE_PTR;
2642 
2643 		index = size_index[size_index_elem(size)];
2644 	} else
2645 		index = fls(size - 1);
2646 
2647 #ifdef CONFIG_ZONE_DMA
2648 	if (unlikely((flags & SLUB_DMA)))
2649 		return kmalloc_dma_caches[index];
2650 
2651 #endif
2652 	return kmalloc_caches[index];
2653 }
2654 
2655 void *__kmalloc(size_t size, gfp_t flags)
2656 {
2657 	struct kmem_cache *s;
2658 	void *ret;
2659 
2660 	if (unlikely(size > SLUB_MAX_SIZE))
2661 		return kmalloc_large(size, flags);
2662 
2663 	s = get_slab(size, flags);
2664 
2665 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2666 		return s;
2667 
2668 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2669 
2670 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2671 
2672 	return ret;
2673 }
2674 EXPORT_SYMBOL(__kmalloc);
2675 
2676 #ifdef CONFIG_NUMA
2677 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2678 {
2679 	struct page *page;
2680 	void *ptr = NULL;
2681 
2682 	flags |= __GFP_COMP | __GFP_NOTRACK;
2683 	page = alloc_pages_node(node, flags, get_order(size));
2684 	if (page)
2685 		ptr = page_address(page);
2686 
2687 	kmemleak_alloc(ptr, size, 1, flags);
2688 	return ptr;
2689 }
2690 
2691 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2692 {
2693 	struct kmem_cache *s;
2694 	void *ret;
2695 
2696 	if (unlikely(size > SLUB_MAX_SIZE)) {
2697 		ret = kmalloc_large_node(size, flags, node);
2698 
2699 		trace_kmalloc_node(_RET_IP_, ret,
2700 				   size, PAGE_SIZE << get_order(size),
2701 				   flags, node);
2702 
2703 		return ret;
2704 	}
2705 
2706 	s = get_slab(size, flags);
2707 
2708 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2709 		return s;
2710 
2711 	ret = slab_alloc(s, flags, node, _RET_IP_);
2712 
2713 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2714 
2715 	return ret;
2716 }
2717 EXPORT_SYMBOL(__kmalloc_node);
2718 #endif
2719 
2720 size_t ksize(const void *object)
2721 {
2722 	struct page *page;
2723 	struct kmem_cache *s;
2724 
2725 	if (unlikely(object == ZERO_SIZE_PTR))
2726 		return 0;
2727 
2728 	page = virt_to_head_page(object);
2729 
2730 	if (unlikely(!PageSlab(page))) {
2731 		WARN_ON(!PageCompound(page));
2732 		return PAGE_SIZE << compound_order(page);
2733 	}
2734 	s = page->slab;
2735 
2736 #ifdef CONFIG_SLUB_DEBUG
2737 	/*
2738 	 * Debugging requires use of the padding between object
2739 	 * and whatever may come after it.
2740 	 */
2741 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2742 		return s->objsize;
2743 
2744 #endif
2745 	/*
2746 	 * If we have the need to store the freelist pointer
2747 	 * back there or track user information then we can
2748 	 * only use the space before that information.
2749 	 */
2750 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2751 		return s->inuse;
2752 	/*
2753 	 * Else we can use all the padding etc for the allocation
2754 	 */
2755 	return s->size;
2756 }
2757 EXPORT_SYMBOL(ksize);
2758 
2759 void kfree(const void *x)
2760 {
2761 	struct page *page;
2762 	void *object = (void *)x;
2763 
2764 	trace_kfree(_RET_IP_, x);
2765 
2766 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2767 		return;
2768 
2769 	page = virt_to_head_page(x);
2770 	if (unlikely(!PageSlab(page))) {
2771 		BUG_ON(!PageCompound(page));
2772 		kmemleak_free(x);
2773 		put_page(page);
2774 		return;
2775 	}
2776 	slab_free(page->slab, page, object, _RET_IP_);
2777 }
2778 EXPORT_SYMBOL(kfree);
2779 
2780 /*
2781  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2782  * the remaining slabs by the number of items in use. The slabs with the
2783  * most items in use come first. New allocations will then fill those up
2784  * and thus they can be removed from the partial lists.
2785  *
2786  * The slabs with the least items are placed last. This results in them
2787  * being allocated from last increasing the chance that the last objects
2788  * are freed in them.
2789  */
2790 int kmem_cache_shrink(struct kmem_cache *s)
2791 {
2792 	int node;
2793 	int i;
2794 	struct kmem_cache_node *n;
2795 	struct page *page;
2796 	struct page *t;
2797 	int objects = oo_objects(s->max);
2798 	struct list_head *slabs_by_inuse =
2799 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2800 	unsigned long flags;
2801 
2802 	if (!slabs_by_inuse)
2803 		return -ENOMEM;
2804 
2805 	flush_all(s);
2806 	for_each_node_state(node, N_NORMAL_MEMORY) {
2807 		n = get_node(s, node);
2808 
2809 		if (!n->nr_partial)
2810 			continue;
2811 
2812 		for (i = 0; i < objects; i++)
2813 			INIT_LIST_HEAD(slabs_by_inuse + i);
2814 
2815 		spin_lock_irqsave(&n->list_lock, flags);
2816 
2817 		/*
2818 		 * Build lists indexed by the items in use in each slab.
2819 		 *
2820 		 * Note that concurrent frees may occur while we hold the
2821 		 * list_lock. page->inuse here is the upper limit.
2822 		 */
2823 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2824 			if (!page->inuse && slab_trylock(page)) {
2825 				/*
2826 				 * Must hold slab lock here because slab_free
2827 				 * may have freed the last object and be
2828 				 * waiting to release the slab.
2829 				 */
2830 				__remove_partial(n, page);
2831 				slab_unlock(page);
2832 				discard_slab(s, page);
2833 			} else {
2834 				list_move(&page->lru,
2835 				slabs_by_inuse + page->inuse);
2836 			}
2837 		}
2838 
2839 		/*
2840 		 * Rebuild the partial list with the slabs filled up most
2841 		 * first and the least used slabs at the end.
2842 		 */
2843 		for (i = objects - 1; i >= 0; i--)
2844 			list_splice(slabs_by_inuse + i, n->partial.prev);
2845 
2846 		spin_unlock_irqrestore(&n->list_lock, flags);
2847 	}
2848 
2849 	kfree(slabs_by_inuse);
2850 	return 0;
2851 }
2852 EXPORT_SYMBOL(kmem_cache_shrink);
2853 
2854 #if defined(CONFIG_MEMORY_HOTPLUG)
2855 static int slab_mem_going_offline_callback(void *arg)
2856 {
2857 	struct kmem_cache *s;
2858 
2859 	down_read(&slub_lock);
2860 	list_for_each_entry(s, &slab_caches, list)
2861 		kmem_cache_shrink(s);
2862 	up_read(&slub_lock);
2863 
2864 	return 0;
2865 }
2866 
2867 static void slab_mem_offline_callback(void *arg)
2868 {
2869 	struct kmem_cache_node *n;
2870 	struct kmem_cache *s;
2871 	struct memory_notify *marg = arg;
2872 	int offline_node;
2873 
2874 	offline_node = marg->status_change_nid;
2875 
2876 	/*
2877 	 * If the node still has available memory. we need kmem_cache_node
2878 	 * for it yet.
2879 	 */
2880 	if (offline_node < 0)
2881 		return;
2882 
2883 	down_read(&slub_lock);
2884 	list_for_each_entry(s, &slab_caches, list) {
2885 		n = get_node(s, offline_node);
2886 		if (n) {
2887 			/*
2888 			 * if n->nr_slabs > 0, slabs still exist on the node
2889 			 * that is going down. We were unable to free them,
2890 			 * and offline_pages() function shouldn't call this
2891 			 * callback. So, we must fail.
2892 			 */
2893 			BUG_ON(slabs_node(s, offline_node));
2894 
2895 			s->node[offline_node] = NULL;
2896 			kmem_cache_free(kmem_cache_node, n);
2897 		}
2898 	}
2899 	up_read(&slub_lock);
2900 }
2901 
2902 static int slab_mem_going_online_callback(void *arg)
2903 {
2904 	struct kmem_cache_node *n;
2905 	struct kmem_cache *s;
2906 	struct memory_notify *marg = arg;
2907 	int nid = marg->status_change_nid;
2908 	int ret = 0;
2909 
2910 	/*
2911 	 * If the node's memory is already available, then kmem_cache_node is
2912 	 * already created. Nothing to do.
2913 	 */
2914 	if (nid < 0)
2915 		return 0;
2916 
2917 	/*
2918 	 * We are bringing a node online. No memory is available yet. We must
2919 	 * allocate a kmem_cache_node structure in order to bring the node
2920 	 * online.
2921 	 */
2922 	down_read(&slub_lock);
2923 	list_for_each_entry(s, &slab_caches, list) {
2924 		/*
2925 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2926 		 *      since memory is not yet available from the node that
2927 		 *      is brought up.
2928 		 */
2929 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
2930 		if (!n) {
2931 			ret = -ENOMEM;
2932 			goto out;
2933 		}
2934 		init_kmem_cache_node(n, s);
2935 		s->node[nid] = n;
2936 	}
2937 out:
2938 	up_read(&slub_lock);
2939 	return ret;
2940 }
2941 
2942 static int slab_memory_callback(struct notifier_block *self,
2943 				unsigned long action, void *arg)
2944 {
2945 	int ret = 0;
2946 
2947 	switch (action) {
2948 	case MEM_GOING_ONLINE:
2949 		ret = slab_mem_going_online_callback(arg);
2950 		break;
2951 	case MEM_GOING_OFFLINE:
2952 		ret = slab_mem_going_offline_callback(arg);
2953 		break;
2954 	case MEM_OFFLINE:
2955 	case MEM_CANCEL_ONLINE:
2956 		slab_mem_offline_callback(arg);
2957 		break;
2958 	case MEM_ONLINE:
2959 	case MEM_CANCEL_OFFLINE:
2960 		break;
2961 	}
2962 	if (ret)
2963 		ret = notifier_from_errno(ret);
2964 	else
2965 		ret = NOTIFY_OK;
2966 	return ret;
2967 }
2968 
2969 #endif /* CONFIG_MEMORY_HOTPLUG */
2970 
2971 /********************************************************************
2972  *			Basic setup of slabs
2973  *******************************************************************/
2974 
2975 /*
2976  * Used for early kmem_cache structures that were allocated using
2977  * the page allocator
2978  */
2979 
2980 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2981 {
2982 	int node;
2983 
2984 	list_add(&s->list, &slab_caches);
2985 	s->refcount = -1;
2986 
2987 	for_each_node_state(node, N_NORMAL_MEMORY) {
2988 		struct kmem_cache_node *n = get_node(s, node);
2989 		struct page *p;
2990 
2991 		if (n) {
2992 			list_for_each_entry(p, &n->partial, lru)
2993 				p->slab = s;
2994 
2995 #ifdef CONFIG_SLAB_DEBUG
2996 			list_for_each_entry(p, &n->full, lru)
2997 				p->slab = s;
2998 #endif
2999 		}
3000 	}
3001 }
3002 
3003 void __init kmem_cache_init(void)
3004 {
3005 	int i;
3006 	int caches = 0;
3007 	struct kmem_cache *temp_kmem_cache;
3008 	int order;
3009 	struct kmem_cache *temp_kmem_cache_node;
3010 	unsigned long kmalloc_size;
3011 
3012 	kmem_size = offsetof(struct kmem_cache, node) +
3013 				nr_node_ids * sizeof(struct kmem_cache_node *);
3014 
3015 	/* Allocate two kmem_caches from the page allocator */
3016 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3017 	order = get_order(2 * kmalloc_size);
3018 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3019 
3020 	/*
3021 	 * Must first have the slab cache available for the allocations of the
3022 	 * struct kmem_cache_node's. There is special bootstrap code in
3023 	 * kmem_cache_open for slab_state == DOWN.
3024 	 */
3025 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3026 
3027 	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3028 		sizeof(struct kmem_cache_node),
3029 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3030 
3031 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3032 
3033 	/* Able to allocate the per node structures */
3034 	slab_state = PARTIAL;
3035 
3036 	temp_kmem_cache = kmem_cache;
3037 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3038 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3039 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3040 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3041 
3042 	/*
3043 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3044 	 * kmem_cache_node is separately allocated so no need to
3045 	 * update any list pointers.
3046 	 */
3047 	temp_kmem_cache_node = kmem_cache_node;
3048 
3049 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3050 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3051 
3052 	kmem_cache_bootstrap_fixup(kmem_cache_node);
3053 
3054 	caches++;
3055 	kmem_cache_bootstrap_fixup(kmem_cache);
3056 	caches++;
3057 	/* Free temporary boot structure */
3058 	free_pages((unsigned long)temp_kmem_cache, order);
3059 
3060 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3061 
3062 	/*
3063 	 * Patch up the size_index table if we have strange large alignment
3064 	 * requirements for the kmalloc array. This is only the case for
3065 	 * MIPS it seems. The standard arches will not generate any code here.
3066 	 *
3067 	 * Largest permitted alignment is 256 bytes due to the way we
3068 	 * handle the index determination for the smaller caches.
3069 	 *
3070 	 * Make sure that nothing crazy happens if someone starts tinkering
3071 	 * around with ARCH_KMALLOC_MINALIGN
3072 	 */
3073 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3074 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3075 
3076 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3077 		int elem = size_index_elem(i);
3078 		if (elem >= ARRAY_SIZE(size_index))
3079 			break;
3080 		size_index[elem] = KMALLOC_SHIFT_LOW;
3081 	}
3082 
3083 	if (KMALLOC_MIN_SIZE == 64) {
3084 		/*
3085 		 * The 96 byte size cache is not used if the alignment
3086 		 * is 64 byte.
3087 		 */
3088 		for (i = 64 + 8; i <= 96; i += 8)
3089 			size_index[size_index_elem(i)] = 7;
3090 	} else if (KMALLOC_MIN_SIZE == 128) {
3091 		/*
3092 		 * The 192 byte sized cache is not used if the alignment
3093 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3094 		 * instead.
3095 		 */
3096 		for (i = 128 + 8; i <= 192; i += 8)
3097 			size_index[size_index_elem(i)] = 8;
3098 	}
3099 
3100 	/* Caches that are not of the two-to-the-power-of size */
3101 	if (KMALLOC_MIN_SIZE <= 32) {
3102 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3103 		caches++;
3104 	}
3105 
3106 	if (KMALLOC_MIN_SIZE <= 64) {
3107 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3108 		caches++;
3109 	}
3110 
3111 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3112 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3113 		caches++;
3114 	}
3115 
3116 	slab_state = UP;
3117 
3118 	/* Provide the correct kmalloc names now that the caches are up */
3119 	if (KMALLOC_MIN_SIZE <= 32) {
3120 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3121 		BUG_ON(!kmalloc_caches[1]->name);
3122 	}
3123 
3124 	if (KMALLOC_MIN_SIZE <= 64) {
3125 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3126 		BUG_ON(!kmalloc_caches[2]->name);
3127 	}
3128 
3129 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3130 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3131 
3132 		BUG_ON(!s);
3133 		kmalloc_caches[i]->name = s;
3134 	}
3135 
3136 #ifdef CONFIG_SMP
3137 	register_cpu_notifier(&slab_notifier);
3138 #endif
3139 
3140 #ifdef CONFIG_ZONE_DMA
3141 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3142 		struct kmem_cache *s = kmalloc_caches[i];
3143 
3144 		if (s && s->size) {
3145 			char *name = kasprintf(GFP_NOWAIT,
3146 				 "dma-kmalloc-%d", s->objsize);
3147 
3148 			BUG_ON(!name);
3149 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3150 				s->objsize, SLAB_CACHE_DMA);
3151 		}
3152 	}
3153 #endif
3154 	printk(KERN_INFO
3155 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3156 		" CPUs=%d, Nodes=%d\n",
3157 		caches, cache_line_size(),
3158 		slub_min_order, slub_max_order, slub_min_objects,
3159 		nr_cpu_ids, nr_node_ids);
3160 }
3161 
3162 void __init kmem_cache_init_late(void)
3163 {
3164 }
3165 
3166 /*
3167  * Find a mergeable slab cache
3168  */
3169 static int slab_unmergeable(struct kmem_cache *s)
3170 {
3171 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3172 		return 1;
3173 
3174 	if (s->ctor)
3175 		return 1;
3176 
3177 	/*
3178 	 * We may have set a slab to be unmergeable during bootstrap.
3179 	 */
3180 	if (s->refcount < 0)
3181 		return 1;
3182 
3183 	return 0;
3184 }
3185 
3186 static struct kmem_cache *find_mergeable(size_t size,
3187 		size_t align, unsigned long flags, const char *name,
3188 		void (*ctor)(void *))
3189 {
3190 	struct kmem_cache *s;
3191 
3192 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3193 		return NULL;
3194 
3195 	if (ctor)
3196 		return NULL;
3197 
3198 	size = ALIGN(size, sizeof(void *));
3199 	align = calculate_alignment(flags, align, size);
3200 	size = ALIGN(size, align);
3201 	flags = kmem_cache_flags(size, flags, name, NULL);
3202 
3203 	list_for_each_entry(s, &slab_caches, list) {
3204 		if (slab_unmergeable(s))
3205 			continue;
3206 
3207 		if (size > s->size)
3208 			continue;
3209 
3210 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3211 				continue;
3212 		/*
3213 		 * Check if alignment is compatible.
3214 		 * Courtesy of Adrian Drzewiecki
3215 		 */
3216 		if ((s->size & ~(align - 1)) != s->size)
3217 			continue;
3218 
3219 		if (s->size - size >= sizeof(void *))
3220 			continue;
3221 
3222 		return s;
3223 	}
3224 	return NULL;
3225 }
3226 
3227 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3228 		size_t align, unsigned long flags, void (*ctor)(void *))
3229 {
3230 	struct kmem_cache *s;
3231 	char *n;
3232 
3233 	if (WARN_ON(!name))
3234 		return NULL;
3235 
3236 	down_write(&slub_lock);
3237 	s = find_mergeable(size, align, flags, name, ctor);
3238 	if (s) {
3239 		s->refcount++;
3240 		/*
3241 		 * Adjust the object sizes so that we clear
3242 		 * the complete object on kzalloc.
3243 		 */
3244 		s->objsize = max(s->objsize, (int)size);
3245 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3246 
3247 		if (sysfs_slab_alias(s, name)) {
3248 			s->refcount--;
3249 			goto err;
3250 		}
3251 		up_write(&slub_lock);
3252 		return s;
3253 	}
3254 
3255 	n = kstrdup(name, GFP_KERNEL);
3256 	if (!n)
3257 		goto err;
3258 
3259 	s = kmalloc(kmem_size, GFP_KERNEL);
3260 	if (s) {
3261 		if (kmem_cache_open(s, n,
3262 				size, align, flags, ctor)) {
3263 			list_add(&s->list, &slab_caches);
3264 			if (sysfs_slab_add(s)) {
3265 				list_del(&s->list);
3266 				kfree(n);
3267 				kfree(s);
3268 				goto err;
3269 			}
3270 			up_write(&slub_lock);
3271 			return s;
3272 		}
3273 		kfree(n);
3274 		kfree(s);
3275 	}
3276 err:
3277 	up_write(&slub_lock);
3278 
3279 	if (flags & SLAB_PANIC)
3280 		panic("Cannot create slabcache %s\n", name);
3281 	else
3282 		s = NULL;
3283 	return s;
3284 }
3285 EXPORT_SYMBOL(kmem_cache_create);
3286 
3287 #ifdef CONFIG_SMP
3288 /*
3289  * Use the cpu notifier to insure that the cpu slabs are flushed when
3290  * necessary.
3291  */
3292 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3293 		unsigned long action, void *hcpu)
3294 {
3295 	long cpu = (long)hcpu;
3296 	struct kmem_cache *s;
3297 	unsigned long flags;
3298 
3299 	switch (action) {
3300 	case CPU_UP_CANCELED:
3301 	case CPU_UP_CANCELED_FROZEN:
3302 	case CPU_DEAD:
3303 	case CPU_DEAD_FROZEN:
3304 		down_read(&slub_lock);
3305 		list_for_each_entry(s, &slab_caches, list) {
3306 			local_irq_save(flags);
3307 			__flush_cpu_slab(s, cpu);
3308 			local_irq_restore(flags);
3309 		}
3310 		up_read(&slub_lock);
3311 		break;
3312 	default:
3313 		break;
3314 	}
3315 	return NOTIFY_OK;
3316 }
3317 
3318 static struct notifier_block __cpuinitdata slab_notifier = {
3319 	.notifier_call = slab_cpuup_callback
3320 };
3321 
3322 #endif
3323 
3324 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3325 {
3326 	struct kmem_cache *s;
3327 	void *ret;
3328 
3329 	if (unlikely(size > SLUB_MAX_SIZE))
3330 		return kmalloc_large(size, gfpflags);
3331 
3332 	s = get_slab(size, gfpflags);
3333 
3334 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3335 		return s;
3336 
3337 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3338 
3339 	/* Honor the call site pointer we recieved. */
3340 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3341 
3342 	return ret;
3343 }
3344 
3345 #ifdef CONFIG_NUMA
3346 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3347 					int node, unsigned long caller)
3348 {
3349 	struct kmem_cache *s;
3350 	void *ret;
3351 
3352 	if (unlikely(size > SLUB_MAX_SIZE)) {
3353 		ret = kmalloc_large_node(size, gfpflags, node);
3354 
3355 		trace_kmalloc_node(caller, ret,
3356 				   size, PAGE_SIZE << get_order(size),
3357 				   gfpflags, node);
3358 
3359 		return ret;
3360 	}
3361 
3362 	s = get_slab(size, gfpflags);
3363 
3364 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3365 		return s;
3366 
3367 	ret = slab_alloc(s, gfpflags, node, caller);
3368 
3369 	/* Honor the call site pointer we recieved. */
3370 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3371 
3372 	return ret;
3373 }
3374 #endif
3375 
3376 #ifdef CONFIG_SYSFS
3377 static int count_inuse(struct page *page)
3378 {
3379 	return page->inuse;
3380 }
3381 
3382 static int count_total(struct page *page)
3383 {
3384 	return page->objects;
3385 }
3386 #endif
3387 
3388 #ifdef CONFIG_SLUB_DEBUG
3389 static int validate_slab(struct kmem_cache *s, struct page *page,
3390 						unsigned long *map)
3391 {
3392 	void *p;
3393 	void *addr = page_address(page);
3394 
3395 	if (!check_slab(s, page) ||
3396 			!on_freelist(s, page, NULL))
3397 		return 0;
3398 
3399 	/* Now we know that a valid freelist exists */
3400 	bitmap_zero(map, page->objects);
3401 
3402 	for_each_free_object(p, s, page->freelist) {
3403 		set_bit(slab_index(p, s, addr), map);
3404 		if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3405 			return 0;
3406 	}
3407 
3408 	for_each_object(p, s, addr, page->objects)
3409 		if (!test_bit(slab_index(p, s, addr), map))
3410 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3411 				return 0;
3412 	return 1;
3413 }
3414 
3415 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3416 						unsigned long *map)
3417 {
3418 	if (slab_trylock(page)) {
3419 		validate_slab(s, page, map);
3420 		slab_unlock(page);
3421 	} else
3422 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3423 			s->name, page);
3424 }
3425 
3426 static int validate_slab_node(struct kmem_cache *s,
3427 		struct kmem_cache_node *n, unsigned long *map)
3428 {
3429 	unsigned long count = 0;
3430 	struct page *page;
3431 	unsigned long flags;
3432 
3433 	spin_lock_irqsave(&n->list_lock, flags);
3434 
3435 	list_for_each_entry(page, &n->partial, lru) {
3436 		validate_slab_slab(s, page, map);
3437 		count++;
3438 	}
3439 	if (count != n->nr_partial)
3440 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3441 			"counter=%ld\n", s->name, count, n->nr_partial);
3442 
3443 	if (!(s->flags & SLAB_STORE_USER))
3444 		goto out;
3445 
3446 	list_for_each_entry(page, &n->full, lru) {
3447 		validate_slab_slab(s, page, map);
3448 		count++;
3449 	}
3450 	if (count != atomic_long_read(&n->nr_slabs))
3451 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3452 			"counter=%ld\n", s->name, count,
3453 			atomic_long_read(&n->nr_slabs));
3454 
3455 out:
3456 	spin_unlock_irqrestore(&n->list_lock, flags);
3457 	return count;
3458 }
3459 
3460 static long validate_slab_cache(struct kmem_cache *s)
3461 {
3462 	int node;
3463 	unsigned long count = 0;
3464 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3465 				sizeof(unsigned long), GFP_KERNEL);
3466 
3467 	if (!map)
3468 		return -ENOMEM;
3469 
3470 	flush_all(s);
3471 	for_each_node_state(node, N_NORMAL_MEMORY) {
3472 		struct kmem_cache_node *n = get_node(s, node);
3473 
3474 		count += validate_slab_node(s, n, map);
3475 	}
3476 	kfree(map);
3477 	return count;
3478 }
3479 /*
3480  * Generate lists of code addresses where slabcache objects are allocated
3481  * and freed.
3482  */
3483 
3484 struct location {
3485 	unsigned long count;
3486 	unsigned long addr;
3487 	long long sum_time;
3488 	long min_time;
3489 	long max_time;
3490 	long min_pid;
3491 	long max_pid;
3492 	DECLARE_BITMAP(cpus, NR_CPUS);
3493 	nodemask_t nodes;
3494 };
3495 
3496 struct loc_track {
3497 	unsigned long max;
3498 	unsigned long count;
3499 	struct location *loc;
3500 };
3501 
3502 static void free_loc_track(struct loc_track *t)
3503 {
3504 	if (t->max)
3505 		free_pages((unsigned long)t->loc,
3506 			get_order(sizeof(struct location) * t->max));
3507 }
3508 
3509 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3510 {
3511 	struct location *l;
3512 	int order;
3513 
3514 	order = get_order(sizeof(struct location) * max);
3515 
3516 	l = (void *)__get_free_pages(flags, order);
3517 	if (!l)
3518 		return 0;
3519 
3520 	if (t->count) {
3521 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3522 		free_loc_track(t);
3523 	}
3524 	t->max = max;
3525 	t->loc = l;
3526 	return 1;
3527 }
3528 
3529 static int add_location(struct loc_track *t, struct kmem_cache *s,
3530 				const struct track *track)
3531 {
3532 	long start, end, pos;
3533 	struct location *l;
3534 	unsigned long caddr;
3535 	unsigned long age = jiffies - track->when;
3536 
3537 	start = -1;
3538 	end = t->count;
3539 
3540 	for ( ; ; ) {
3541 		pos = start + (end - start + 1) / 2;
3542 
3543 		/*
3544 		 * There is nothing at "end". If we end up there
3545 		 * we need to add something to before end.
3546 		 */
3547 		if (pos == end)
3548 			break;
3549 
3550 		caddr = t->loc[pos].addr;
3551 		if (track->addr == caddr) {
3552 
3553 			l = &t->loc[pos];
3554 			l->count++;
3555 			if (track->when) {
3556 				l->sum_time += age;
3557 				if (age < l->min_time)
3558 					l->min_time = age;
3559 				if (age > l->max_time)
3560 					l->max_time = age;
3561 
3562 				if (track->pid < l->min_pid)
3563 					l->min_pid = track->pid;
3564 				if (track->pid > l->max_pid)
3565 					l->max_pid = track->pid;
3566 
3567 				cpumask_set_cpu(track->cpu,
3568 						to_cpumask(l->cpus));
3569 			}
3570 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3571 			return 1;
3572 		}
3573 
3574 		if (track->addr < caddr)
3575 			end = pos;
3576 		else
3577 			start = pos;
3578 	}
3579 
3580 	/*
3581 	 * Not found. Insert new tracking element.
3582 	 */
3583 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3584 		return 0;
3585 
3586 	l = t->loc + pos;
3587 	if (pos < t->count)
3588 		memmove(l + 1, l,
3589 			(t->count - pos) * sizeof(struct location));
3590 	t->count++;
3591 	l->count = 1;
3592 	l->addr = track->addr;
3593 	l->sum_time = age;
3594 	l->min_time = age;
3595 	l->max_time = age;
3596 	l->min_pid = track->pid;
3597 	l->max_pid = track->pid;
3598 	cpumask_clear(to_cpumask(l->cpus));
3599 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3600 	nodes_clear(l->nodes);
3601 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3602 	return 1;
3603 }
3604 
3605 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3606 		struct page *page, enum track_item alloc,
3607 		unsigned long *map)
3608 {
3609 	void *addr = page_address(page);
3610 	void *p;
3611 
3612 	bitmap_zero(map, page->objects);
3613 	for_each_free_object(p, s, page->freelist)
3614 		set_bit(slab_index(p, s, addr), map);
3615 
3616 	for_each_object(p, s, addr, page->objects)
3617 		if (!test_bit(slab_index(p, s, addr), map))
3618 			add_location(t, s, get_track(s, p, alloc));
3619 }
3620 
3621 static int list_locations(struct kmem_cache *s, char *buf,
3622 					enum track_item alloc)
3623 {
3624 	int len = 0;
3625 	unsigned long i;
3626 	struct loc_track t = { 0, 0, NULL };
3627 	int node;
3628 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3629 				     sizeof(unsigned long), GFP_KERNEL);
3630 
3631 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3632 				     GFP_TEMPORARY)) {
3633 		kfree(map);
3634 		return sprintf(buf, "Out of memory\n");
3635 	}
3636 	/* Push back cpu slabs */
3637 	flush_all(s);
3638 
3639 	for_each_node_state(node, N_NORMAL_MEMORY) {
3640 		struct kmem_cache_node *n = get_node(s, node);
3641 		unsigned long flags;
3642 		struct page *page;
3643 
3644 		if (!atomic_long_read(&n->nr_slabs))
3645 			continue;
3646 
3647 		spin_lock_irqsave(&n->list_lock, flags);
3648 		list_for_each_entry(page, &n->partial, lru)
3649 			process_slab(&t, s, page, alloc, map);
3650 		list_for_each_entry(page, &n->full, lru)
3651 			process_slab(&t, s, page, alloc, map);
3652 		spin_unlock_irqrestore(&n->list_lock, flags);
3653 	}
3654 
3655 	for (i = 0; i < t.count; i++) {
3656 		struct location *l = &t.loc[i];
3657 
3658 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3659 			break;
3660 		len += sprintf(buf + len, "%7ld ", l->count);
3661 
3662 		if (l->addr)
3663 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3664 		else
3665 			len += sprintf(buf + len, "<not-available>");
3666 
3667 		if (l->sum_time != l->min_time) {
3668 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3669 				l->min_time,
3670 				(long)div_u64(l->sum_time, l->count),
3671 				l->max_time);
3672 		} else
3673 			len += sprintf(buf + len, " age=%ld",
3674 				l->min_time);
3675 
3676 		if (l->min_pid != l->max_pid)
3677 			len += sprintf(buf + len, " pid=%ld-%ld",
3678 				l->min_pid, l->max_pid);
3679 		else
3680 			len += sprintf(buf + len, " pid=%ld",
3681 				l->min_pid);
3682 
3683 		if (num_online_cpus() > 1 &&
3684 				!cpumask_empty(to_cpumask(l->cpus)) &&
3685 				len < PAGE_SIZE - 60) {
3686 			len += sprintf(buf + len, " cpus=");
3687 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3688 						 to_cpumask(l->cpus));
3689 		}
3690 
3691 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3692 				len < PAGE_SIZE - 60) {
3693 			len += sprintf(buf + len, " nodes=");
3694 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3695 					l->nodes);
3696 		}
3697 
3698 		len += sprintf(buf + len, "\n");
3699 	}
3700 
3701 	free_loc_track(&t);
3702 	kfree(map);
3703 	if (!t.count)
3704 		len += sprintf(buf, "No data\n");
3705 	return len;
3706 }
3707 #endif
3708 
3709 #ifdef SLUB_RESILIENCY_TEST
3710 static void resiliency_test(void)
3711 {
3712 	u8 *p;
3713 
3714 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3715 
3716 	printk(KERN_ERR "SLUB resiliency testing\n");
3717 	printk(KERN_ERR "-----------------------\n");
3718 	printk(KERN_ERR "A. Corruption after allocation\n");
3719 
3720 	p = kzalloc(16, GFP_KERNEL);
3721 	p[16] = 0x12;
3722 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3723 			" 0x12->0x%p\n\n", p + 16);
3724 
3725 	validate_slab_cache(kmalloc_caches[4]);
3726 
3727 	/* Hmmm... The next two are dangerous */
3728 	p = kzalloc(32, GFP_KERNEL);
3729 	p[32 + sizeof(void *)] = 0x34;
3730 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3731 			" 0x34 -> -0x%p\n", p);
3732 	printk(KERN_ERR
3733 		"If allocated object is overwritten then not detectable\n\n");
3734 
3735 	validate_slab_cache(kmalloc_caches[5]);
3736 	p = kzalloc(64, GFP_KERNEL);
3737 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3738 	*p = 0x56;
3739 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3740 									p);
3741 	printk(KERN_ERR
3742 		"If allocated object is overwritten then not detectable\n\n");
3743 	validate_slab_cache(kmalloc_caches[6]);
3744 
3745 	printk(KERN_ERR "\nB. Corruption after free\n");
3746 	p = kzalloc(128, GFP_KERNEL);
3747 	kfree(p);
3748 	*p = 0x78;
3749 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3750 	validate_slab_cache(kmalloc_caches[7]);
3751 
3752 	p = kzalloc(256, GFP_KERNEL);
3753 	kfree(p);
3754 	p[50] = 0x9a;
3755 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3756 			p);
3757 	validate_slab_cache(kmalloc_caches[8]);
3758 
3759 	p = kzalloc(512, GFP_KERNEL);
3760 	kfree(p);
3761 	p[512] = 0xab;
3762 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3763 	validate_slab_cache(kmalloc_caches[9]);
3764 }
3765 #else
3766 #ifdef CONFIG_SYSFS
3767 static void resiliency_test(void) {};
3768 #endif
3769 #endif
3770 
3771 #ifdef CONFIG_SYSFS
3772 enum slab_stat_type {
3773 	SL_ALL,			/* All slabs */
3774 	SL_PARTIAL,		/* Only partially allocated slabs */
3775 	SL_CPU,			/* Only slabs used for cpu caches */
3776 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3777 	SL_TOTAL		/* Determine object capacity not slabs */
3778 };
3779 
3780 #define SO_ALL		(1 << SL_ALL)
3781 #define SO_PARTIAL	(1 << SL_PARTIAL)
3782 #define SO_CPU		(1 << SL_CPU)
3783 #define SO_OBJECTS	(1 << SL_OBJECTS)
3784 #define SO_TOTAL	(1 << SL_TOTAL)
3785 
3786 static ssize_t show_slab_objects(struct kmem_cache *s,
3787 			    char *buf, unsigned long flags)
3788 {
3789 	unsigned long total = 0;
3790 	int node;
3791 	int x;
3792 	unsigned long *nodes;
3793 	unsigned long *per_cpu;
3794 
3795 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3796 	if (!nodes)
3797 		return -ENOMEM;
3798 	per_cpu = nodes + nr_node_ids;
3799 
3800 	if (flags & SO_CPU) {
3801 		int cpu;
3802 
3803 		for_each_possible_cpu(cpu) {
3804 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3805 
3806 			if (!c || c->node < 0)
3807 				continue;
3808 
3809 			if (c->page) {
3810 					if (flags & SO_TOTAL)
3811 						x = c->page->objects;
3812 				else if (flags & SO_OBJECTS)
3813 					x = c->page->inuse;
3814 				else
3815 					x = 1;
3816 
3817 				total += x;
3818 				nodes[c->node] += x;
3819 			}
3820 			per_cpu[c->node]++;
3821 		}
3822 	}
3823 
3824 	down_read(&slub_lock);
3825 #ifdef CONFIG_SLUB_DEBUG
3826 	if (flags & SO_ALL) {
3827 		for_each_node_state(node, N_NORMAL_MEMORY) {
3828 			struct kmem_cache_node *n = get_node(s, node);
3829 
3830 		if (flags & SO_TOTAL)
3831 			x = atomic_long_read(&n->total_objects);
3832 		else if (flags & SO_OBJECTS)
3833 			x = atomic_long_read(&n->total_objects) -
3834 				count_partial(n, count_free);
3835 
3836 			else
3837 				x = atomic_long_read(&n->nr_slabs);
3838 			total += x;
3839 			nodes[node] += x;
3840 		}
3841 
3842 	} else
3843 #endif
3844 	if (flags & SO_PARTIAL) {
3845 		for_each_node_state(node, N_NORMAL_MEMORY) {
3846 			struct kmem_cache_node *n = get_node(s, node);
3847 
3848 			if (flags & SO_TOTAL)
3849 				x = count_partial(n, count_total);
3850 			else if (flags & SO_OBJECTS)
3851 				x = count_partial(n, count_inuse);
3852 			else
3853 				x = n->nr_partial;
3854 			total += x;
3855 			nodes[node] += x;
3856 		}
3857 	}
3858 	x = sprintf(buf, "%lu", total);
3859 #ifdef CONFIG_NUMA
3860 	for_each_node_state(node, N_NORMAL_MEMORY)
3861 		if (nodes[node])
3862 			x += sprintf(buf + x, " N%d=%lu",
3863 					node, nodes[node]);
3864 #endif
3865 	up_read(&slub_lock);
3866 	kfree(nodes);
3867 	return x + sprintf(buf + x, "\n");
3868 }
3869 
3870 #ifdef CONFIG_SLUB_DEBUG
3871 static int any_slab_objects(struct kmem_cache *s)
3872 {
3873 	int node;
3874 
3875 	for_each_online_node(node) {
3876 		struct kmem_cache_node *n = get_node(s, node);
3877 
3878 		if (!n)
3879 			continue;
3880 
3881 		if (atomic_long_read(&n->total_objects))
3882 			return 1;
3883 	}
3884 	return 0;
3885 }
3886 #endif
3887 
3888 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3889 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3890 
3891 struct slab_attribute {
3892 	struct attribute attr;
3893 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3894 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3895 };
3896 
3897 #define SLAB_ATTR_RO(_name) \
3898 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3899 
3900 #define SLAB_ATTR(_name) \
3901 	static struct slab_attribute _name##_attr =  \
3902 	__ATTR(_name, 0644, _name##_show, _name##_store)
3903 
3904 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3905 {
3906 	return sprintf(buf, "%d\n", s->size);
3907 }
3908 SLAB_ATTR_RO(slab_size);
3909 
3910 static ssize_t align_show(struct kmem_cache *s, char *buf)
3911 {
3912 	return sprintf(buf, "%d\n", s->align);
3913 }
3914 SLAB_ATTR_RO(align);
3915 
3916 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3917 {
3918 	return sprintf(buf, "%d\n", s->objsize);
3919 }
3920 SLAB_ATTR_RO(object_size);
3921 
3922 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3923 {
3924 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3925 }
3926 SLAB_ATTR_RO(objs_per_slab);
3927 
3928 static ssize_t order_store(struct kmem_cache *s,
3929 				const char *buf, size_t length)
3930 {
3931 	unsigned long order;
3932 	int err;
3933 
3934 	err = strict_strtoul(buf, 10, &order);
3935 	if (err)
3936 		return err;
3937 
3938 	if (order > slub_max_order || order < slub_min_order)
3939 		return -EINVAL;
3940 
3941 	calculate_sizes(s, order);
3942 	return length;
3943 }
3944 
3945 static ssize_t order_show(struct kmem_cache *s, char *buf)
3946 {
3947 	return sprintf(buf, "%d\n", oo_order(s->oo));
3948 }
3949 SLAB_ATTR(order);
3950 
3951 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3952 {
3953 	return sprintf(buf, "%lu\n", s->min_partial);
3954 }
3955 
3956 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3957 				 size_t length)
3958 {
3959 	unsigned long min;
3960 	int err;
3961 
3962 	err = strict_strtoul(buf, 10, &min);
3963 	if (err)
3964 		return err;
3965 
3966 	set_min_partial(s, min);
3967 	return length;
3968 }
3969 SLAB_ATTR(min_partial);
3970 
3971 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3972 {
3973 	if (s->ctor) {
3974 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3975 
3976 		return n + sprintf(buf + n, "\n");
3977 	}
3978 	return 0;
3979 }
3980 SLAB_ATTR_RO(ctor);
3981 
3982 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3983 {
3984 	return sprintf(buf, "%d\n", s->refcount - 1);
3985 }
3986 SLAB_ATTR_RO(aliases);
3987 
3988 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3989 {
3990 	return show_slab_objects(s, buf, SO_PARTIAL);
3991 }
3992 SLAB_ATTR_RO(partial);
3993 
3994 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3995 {
3996 	return show_slab_objects(s, buf, SO_CPU);
3997 }
3998 SLAB_ATTR_RO(cpu_slabs);
3999 
4000 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4001 {
4002 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4003 }
4004 SLAB_ATTR_RO(objects);
4005 
4006 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4007 {
4008 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4009 }
4010 SLAB_ATTR_RO(objects_partial);
4011 
4012 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4013 {
4014 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4015 }
4016 
4017 static ssize_t reclaim_account_store(struct kmem_cache *s,
4018 				const char *buf, size_t length)
4019 {
4020 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4021 	if (buf[0] == '1')
4022 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4023 	return length;
4024 }
4025 SLAB_ATTR(reclaim_account);
4026 
4027 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4028 {
4029 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4030 }
4031 SLAB_ATTR_RO(hwcache_align);
4032 
4033 #ifdef CONFIG_ZONE_DMA
4034 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4035 {
4036 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4037 }
4038 SLAB_ATTR_RO(cache_dma);
4039 #endif
4040 
4041 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4042 {
4043 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4044 }
4045 SLAB_ATTR_RO(destroy_by_rcu);
4046 
4047 #ifdef CONFIG_SLUB_DEBUG
4048 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4049 {
4050 	return show_slab_objects(s, buf, SO_ALL);
4051 }
4052 SLAB_ATTR_RO(slabs);
4053 
4054 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4055 {
4056 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4057 }
4058 SLAB_ATTR_RO(total_objects);
4059 
4060 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4061 {
4062 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4063 }
4064 
4065 static ssize_t sanity_checks_store(struct kmem_cache *s,
4066 				const char *buf, size_t length)
4067 {
4068 	s->flags &= ~SLAB_DEBUG_FREE;
4069 	if (buf[0] == '1')
4070 		s->flags |= SLAB_DEBUG_FREE;
4071 	return length;
4072 }
4073 SLAB_ATTR(sanity_checks);
4074 
4075 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4076 {
4077 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4078 }
4079 
4080 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4081 							size_t length)
4082 {
4083 	s->flags &= ~SLAB_TRACE;
4084 	if (buf[0] == '1')
4085 		s->flags |= SLAB_TRACE;
4086 	return length;
4087 }
4088 SLAB_ATTR(trace);
4089 
4090 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4091 {
4092 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4093 }
4094 
4095 static ssize_t red_zone_store(struct kmem_cache *s,
4096 				const char *buf, size_t length)
4097 {
4098 	if (any_slab_objects(s))
4099 		return -EBUSY;
4100 
4101 	s->flags &= ~SLAB_RED_ZONE;
4102 	if (buf[0] == '1')
4103 		s->flags |= SLAB_RED_ZONE;
4104 	calculate_sizes(s, -1);
4105 	return length;
4106 }
4107 SLAB_ATTR(red_zone);
4108 
4109 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4110 {
4111 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4112 }
4113 
4114 static ssize_t poison_store(struct kmem_cache *s,
4115 				const char *buf, size_t length)
4116 {
4117 	if (any_slab_objects(s))
4118 		return -EBUSY;
4119 
4120 	s->flags &= ~SLAB_POISON;
4121 	if (buf[0] == '1')
4122 		s->flags |= SLAB_POISON;
4123 	calculate_sizes(s, -1);
4124 	return length;
4125 }
4126 SLAB_ATTR(poison);
4127 
4128 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4129 {
4130 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4131 }
4132 
4133 static ssize_t store_user_store(struct kmem_cache *s,
4134 				const char *buf, size_t length)
4135 {
4136 	if (any_slab_objects(s))
4137 		return -EBUSY;
4138 
4139 	s->flags &= ~SLAB_STORE_USER;
4140 	if (buf[0] == '1')
4141 		s->flags |= SLAB_STORE_USER;
4142 	calculate_sizes(s, -1);
4143 	return length;
4144 }
4145 SLAB_ATTR(store_user);
4146 
4147 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4148 {
4149 	return 0;
4150 }
4151 
4152 static ssize_t validate_store(struct kmem_cache *s,
4153 			const char *buf, size_t length)
4154 {
4155 	int ret = -EINVAL;
4156 
4157 	if (buf[0] == '1') {
4158 		ret = validate_slab_cache(s);
4159 		if (ret >= 0)
4160 			ret = length;
4161 	}
4162 	return ret;
4163 }
4164 SLAB_ATTR(validate);
4165 
4166 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4167 {
4168 	if (!(s->flags & SLAB_STORE_USER))
4169 		return -ENOSYS;
4170 	return list_locations(s, buf, TRACK_ALLOC);
4171 }
4172 SLAB_ATTR_RO(alloc_calls);
4173 
4174 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4175 {
4176 	if (!(s->flags & SLAB_STORE_USER))
4177 		return -ENOSYS;
4178 	return list_locations(s, buf, TRACK_FREE);
4179 }
4180 SLAB_ATTR_RO(free_calls);
4181 #endif /* CONFIG_SLUB_DEBUG */
4182 
4183 #ifdef CONFIG_FAILSLAB
4184 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4185 {
4186 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4187 }
4188 
4189 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4190 							size_t length)
4191 {
4192 	s->flags &= ~SLAB_FAILSLAB;
4193 	if (buf[0] == '1')
4194 		s->flags |= SLAB_FAILSLAB;
4195 	return length;
4196 }
4197 SLAB_ATTR(failslab);
4198 #endif
4199 
4200 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4201 {
4202 	return 0;
4203 }
4204 
4205 static ssize_t shrink_store(struct kmem_cache *s,
4206 			const char *buf, size_t length)
4207 {
4208 	if (buf[0] == '1') {
4209 		int rc = kmem_cache_shrink(s);
4210 
4211 		if (rc)
4212 			return rc;
4213 	} else
4214 		return -EINVAL;
4215 	return length;
4216 }
4217 SLAB_ATTR(shrink);
4218 
4219 #ifdef CONFIG_NUMA
4220 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4221 {
4222 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4223 }
4224 
4225 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4226 				const char *buf, size_t length)
4227 {
4228 	unsigned long ratio;
4229 	int err;
4230 
4231 	err = strict_strtoul(buf, 10, &ratio);
4232 	if (err)
4233 		return err;
4234 
4235 	if (ratio <= 100)
4236 		s->remote_node_defrag_ratio = ratio * 10;
4237 
4238 	return length;
4239 }
4240 SLAB_ATTR(remote_node_defrag_ratio);
4241 #endif
4242 
4243 #ifdef CONFIG_SLUB_STATS
4244 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4245 {
4246 	unsigned long sum  = 0;
4247 	int cpu;
4248 	int len;
4249 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4250 
4251 	if (!data)
4252 		return -ENOMEM;
4253 
4254 	for_each_online_cpu(cpu) {
4255 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4256 
4257 		data[cpu] = x;
4258 		sum += x;
4259 	}
4260 
4261 	len = sprintf(buf, "%lu", sum);
4262 
4263 #ifdef CONFIG_SMP
4264 	for_each_online_cpu(cpu) {
4265 		if (data[cpu] && len < PAGE_SIZE - 20)
4266 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4267 	}
4268 #endif
4269 	kfree(data);
4270 	return len + sprintf(buf + len, "\n");
4271 }
4272 
4273 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4274 {
4275 	int cpu;
4276 
4277 	for_each_online_cpu(cpu)
4278 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4279 }
4280 
4281 #define STAT_ATTR(si, text) 					\
4282 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4283 {								\
4284 	return show_stat(s, buf, si);				\
4285 }								\
4286 static ssize_t text##_store(struct kmem_cache *s,		\
4287 				const char *buf, size_t length)	\
4288 {								\
4289 	if (buf[0] != '0')					\
4290 		return -EINVAL;					\
4291 	clear_stat(s, si);					\
4292 	return length;						\
4293 }								\
4294 SLAB_ATTR(text);						\
4295 
4296 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4297 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4298 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4299 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4300 STAT_ATTR(FREE_FROZEN, free_frozen);
4301 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4302 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4303 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4304 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4305 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4306 STAT_ATTR(FREE_SLAB, free_slab);
4307 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4308 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4309 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4310 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4311 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4312 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4313 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4314 #endif
4315 
4316 static struct attribute *slab_attrs[] = {
4317 	&slab_size_attr.attr,
4318 	&object_size_attr.attr,
4319 	&objs_per_slab_attr.attr,
4320 	&order_attr.attr,
4321 	&min_partial_attr.attr,
4322 	&objects_attr.attr,
4323 	&objects_partial_attr.attr,
4324 	&partial_attr.attr,
4325 	&cpu_slabs_attr.attr,
4326 	&ctor_attr.attr,
4327 	&aliases_attr.attr,
4328 	&align_attr.attr,
4329 	&hwcache_align_attr.attr,
4330 	&reclaim_account_attr.attr,
4331 	&destroy_by_rcu_attr.attr,
4332 	&shrink_attr.attr,
4333 #ifdef CONFIG_SLUB_DEBUG
4334 	&total_objects_attr.attr,
4335 	&slabs_attr.attr,
4336 	&sanity_checks_attr.attr,
4337 	&trace_attr.attr,
4338 	&red_zone_attr.attr,
4339 	&poison_attr.attr,
4340 	&store_user_attr.attr,
4341 	&validate_attr.attr,
4342 	&alloc_calls_attr.attr,
4343 	&free_calls_attr.attr,
4344 #endif
4345 #ifdef CONFIG_ZONE_DMA
4346 	&cache_dma_attr.attr,
4347 #endif
4348 #ifdef CONFIG_NUMA
4349 	&remote_node_defrag_ratio_attr.attr,
4350 #endif
4351 #ifdef CONFIG_SLUB_STATS
4352 	&alloc_fastpath_attr.attr,
4353 	&alloc_slowpath_attr.attr,
4354 	&free_fastpath_attr.attr,
4355 	&free_slowpath_attr.attr,
4356 	&free_frozen_attr.attr,
4357 	&free_add_partial_attr.attr,
4358 	&free_remove_partial_attr.attr,
4359 	&alloc_from_partial_attr.attr,
4360 	&alloc_slab_attr.attr,
4361 	&alloc_refill_attr.attr,
4362 	&free_slab_attr.attr,
4363 	&cpuslab_flush_attr.attr,
4364 	&deactivate_full_attr.attr,
4365 	&deactivate_empty_attr.attr,
4366 	&deactivate_to_head_attr.attr,
4367 	&deactivate_to_tail_attr.attr,
4368 	&deactivate_remote_frees_attr.attr,
4369 	&order_fallback_attr.attr,
4370 #endif
4371 #ifdef CONFIG_FAILSLAB
4372 	&failslab_attr.attr,
4373 #endif
4374 
4375 	NULL
4376 };
4377 
4378 static struct attribute_group slab_attr_group = {
4379 	.attrs = slab_attrs,
4380 };
4381 
4382 static ssize_t slab_attr_show(struct kobject *kobj,
4383 				struct attribute *attr,
4384 				char *buf)
4385 {
4386 	struct slab_attribute *attribute;
4387 	struct kmem_cache *s;
4388 	int err;
4389 
4390 	attribute = to_slab_attr(attr);
4391 	s = to_slab(kobj);
4392 
4393 	if (!attribute->show)
4394 		return -EIO;
4395 
4396 	err = attribute->show(s, buf);
4397 
4398 	return err;
4399 }
4400 
4401 static ssize_t slab_attr_store(struct kobject *kobj,
4402 				struct attribute *attr,
4403 				const char *buf, size_t len)
4404 {
4405 	struct slab_attribute *attribute;
4406 	struct kmem_cache *s;
4407 	int err;
4408 
4409 	attribute = to_slab_attr(attr);
4410 	s = to_slab(kobj);
4411 
4412 	if (!attribute->store)
4413 		return -EIO;
4414 
4415 	err = attribute->store(s, buf, len);
4416 
4417 	return err;
4418 }
4419 
4420 static void kmem_cache_release(struct kobject *kobj)
4421 {
4422 	struct kmem_cache *s = to_slab(kobj);
4423 
4424 	kfree(s->name);
4425 	kfree(s);
4426 }
4427 
4428 static const struct sysfs_ops slab_sysfs_ops = {
4429 	.show = slab_attr_show,
4430 	.store = slab_attr_store,
4431 };
4432 
4433 static struct kobj_type slab_ktype = {
4434 	.sysfs_ops = &slab_sysfs_ops,
4435 	.release = kmem_cache_release
4436 };
4437 
4438 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4439 {
4440 	struct kobj_type *ktype = get_ktype(kobj);
4441 
4442 	if (ktype == &slab_ktype)
4443 		return 1;
4444 	return 0;
4445 }
4446 
4447 static const struct kset_uevent_ops slab_uevent_ops = {
4448 	.filter = uevent_filter,
4449 };
4450 
4451 static struct kset *slab_kset;
4452 
4453 #define ID_STR_LENGTH 64
4454 
4455 /* Create a unique string id for a slab cache:
4456  *
4457  * Format	:[flags-]size
4458  */
4459 static char *create_unique_id(struct kmem_cache *s)
4460 {
4461 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4462 	char *p = name;
4463 
4464 	BUG_ON(!name);
4465 
4466 	*p++ = ':';
4467 	/*
4468 	 * First flags affecting slabcache operations. We will only
4469 	 * get here for aliasable slabs so we do not need to support
4470 	 * too many flags. The flags here must cover all flags that
4471 	 * are matched during merging to guarantee that the id is
4472 	 * unique.
4473 	 */
4474 	if (s->flags & SLAB_CACHE_DMA)
4475 		*p++ = 'd';
4476 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4477 		*p++ = 'a';
4478 	if (s->flags & SLAB_DEBUG_FREE)
4479 		*p++ = 'F';
4480 	if (!(s->flags & SLAB_NOTRACK))
4481 		*p++ = 't';
4482 	if (p != name + 1)
4483 		*p++ = '-';
4484 	p += sprintf(p, "%07d", s->size);
4485 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4486 	return name;
4487 }
4488 
4489 static int sysfs_slab_add(struct kmem_cache *s)
4490 {
4491 	int err;
4492 	const char *name;
4493 	int unmergeable;
4494 
4495 	if (slab_state < SYSFS)
4496 		/* Defer until later */
4497 		return 0;
4498 
4499 	unmergeable = slab_unmergeable(s);
4500 	if (unmergeable) {
4501 		/*
4502 		 * Slabcache can never be merged so we can use the name proper.
4503 		 * This is typically the case for debug situations. In that
4504 		 * case we can catch duplicate names easily.
4505 		 */
4506 		sysfs_remove_link(&slab_kset->kobj, s->name);
4507 		name = s->name;
4508 	} else {
4509 		/*
4510 		 * Create a unique name for the slab as a target
4511 		 * for the symlinks.
4512 		 */
4513 		name = create_unique_id(s);
4514 	}
4515 
4516 	s->kobj.kset = slab_kset;
4517 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4518 	if (err) {
4519 		kobject_put(&s->kobj);
4520 		return err;
4521 	}
4522 
4523 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4524 	if (err) {
4525 		kobject_del(&s->kobj);
4526 		kobject_put(&s->kobj);
4527 		return err;
4528 	}
4529 	kobject_uevent(&s->kobj, KOBJ_ADD);
4530 	if (!unmergeable) {
4531 		/* Setup first alias */
4532 		sysfs_slab_alias(s, s->name);
4533 		kfree(name);
4534 	}
4535 	return 0;
4536 }
4537 
4538 static void sysfs_slab_remove(struct kmem_cache *s)
4539 {
4540 	if (slab_state < SYSFS)
4541 		/*
4542 		 * Sysfs has not been setup yet so no need to remove the
4543 		 * cache from sysfs.
4544 		 */
4545 		return;
4546 
4547 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4548 	kobject_del(&s->kobj);
4549 	kobject_put(&s->kobj);
4550 }
4551 
4552 /*
4553  * Need to buffer aliases during bootup until sysfs becomes
4554  * available lest we lose that information.
4555  */
4556 struct saved_alias {
4557 	struct kmem_cache *s;
4558 	const char *name;
4559 	struct saved_alias *next;
4560 };
4561 
4562 static struct saved_alias *alias_list;
4563 
4564 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4565 {
4566 	struct saved_alias *al;
4567 
4568 	if (slab_state == SYSFS) {
4569 		/*
4570 		 * If we have a leftover link then remove it.
4571 		 */
4572 		sysfs_remove_link(&slab_kset->kobj, name);
4573 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4574 	}
4575 
4576 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4577 	if (!al)
4578 		return -ENOMEM;
4579 
4580 	al->s = s;
4581 	al->name = name;
4582 	al->next = alias_list;
4583 	alias_list = al;
4584 	return 0;
4585 }
4586 
4587 static int __init slab_sysfs_init(void)
4588 {
4589 	struct kmem_cache *s;
4590 	int err;
4591 
4592 	down_write(&slub_lock);
4593 
4594 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4595 	if (!slab_kset) {
4596 		up_write(&slub_lock);
4597 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4598 		return -ENOSYS;
4599 	}
4600 
4601 	slab_state = SYSFS;
4602 
4603 	list_for_each_entry(s, &slab_caches, list) {
4604 		err = sysfs_slab_add(s);
4605 		if (err)
4606 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4607 						" to sysfs\n", s->name);
4608 	}
4609 
4610 	while (alias_list) {
4611 		struct saved_alias *al = alias_list;
4612 
4613 		alias_list = alias_list->next;
4614 		err = sysfs_slab_alias(al->s, al->name);
4615 		if (err)
4616 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4617 					" %s to sysfs\n", s->name);
4618 		kfree(al);
4619 	}
4620 
4621 	up_write(&slub_lock);
4622 	resiliency_test();
4623 	return 0;
4624 }
4625 
4626 __initcall(slab_sysfs_init);
4627 #endif /* CONFIG_SYSFS */
4628 
4629 /*
4630  * The /proc/slabinfo ABI
4631  */
4632 #ifdef CONFIG_SLABINFO
4633 static void print_slabinfo_header(struct seq_file *m)
4634 {
4635 	seq_puts(m, "slabinfo - version: 2.1\n");
4636 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4637 		 "<objperslab> <pagesperslab>");
4638 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4639 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4640 	seq_putc(m, '\n');
4641 }
4642 
4643 static void *s_start(struct seq_file *m, loff_t *pos)
4644 {
4645 	loff_t n = *pos;
4646 
4647 	down_read(&slub_lock);
4648 	if (!n)
4649 		print_slabinfo_header(m);
4650 
4651 	return seq_list_start(&slab_caches, *pos);
4652 }
4653 
4654 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4655 {
4656 	return seq_list_next(p, &slab_caches, pos);
4657 }
4658 
4659 static void s_stop(struct seq_file *m, void *p)
4660 {
4661 	up_read(&slub_lock);
4662 }
4663 
4664 static int s_show(struct seq_file *m, void *p)
4665 {
4666 	unsigned long nr_partials = 0;
4667 	unsigned long nr_slabs = 0;
4668 	unsigned long nr_inuse = 0;
4669 	unsigned long nr_objs = 0;
4670 	unsigned long nr_free = 0;
4671 	struct kmem_cache *s;
4672 	int node;
4673 
4674 	s = list_entry(p, struct kmem_cache, list);
4675 
4676 	for_each_online_node(node) {
4677 		struct kmem_cache_node *n = get_node(s, node);
4678 
4679 		if (!n)
4680 			continue;
4681 
4682 		nr_partials += n->nr_partial;
4683 		nr_slabs += atomic_long_read(&n->nr_slabs);
4684 		nr_objs += atomic_long_read(&n->total_objects);
4685 		nr_free += count_partial(n, count_free);
4686 	}
4687 
4688 	nr_inuse = nr_objs - nr_free;
4689 
4690 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4691 		   nr_objs, s->size, oo_objects(s->oo),
4692 		   (1 << oo_order(s->oo)));
4693 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4694 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4695 		   0UL);
4696 	seq_putc(m, '\n');
4697 	return 0;
4698 }
4699 
4700 static const struct seq_operations slabinfo_op = {
4701 	.start = s_start,
4702 	.next = s_next,
4703 	.stop = s_stop,
4704 	.show = s_show,
4705 };
4706 
4707 static int slabinfo_open(struct inode *inode, struct file *file)
4708 {
4709 	return seq_open(file, &slabinfo_op);
4710 }
4711 
4712 static const struct file_operations proc_slabinfo_operations = {
4713 	.open		= slabinfo_open,
4714 	.read		= seq_read,
4715 	.llseek		= seq_lseek,
4716 	.release	= seq_release,
4717 };
4718 
4719 static int __init slab_proc_init(void)
4720 {
4721 	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4722 	return 0;
4723 }
4724 module_init(slab_proc_init);
4725 #endif /* CONFIG_SLABINFO */
4726