1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/notifier.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 #include <linux/random.h> 38 39 #include <trace/events/kmem.h> 40 41 #include "internal.h" 42 43 /* 44 * Lock order: 45 * 1. slab_mutex (Global Mutex) 46 * 2. node->list_lock 47 * 3. slab_lock(page) (Only on some arches and for debugging) 48 * 49 * slab_mutex 50 * 51 * The role of the slab_mutex is to protect the list of all the slabs 52 * and to synchronize major metadata changes to slab cache structures. 53 * 54 * The slab_lock is only used for debugging and on arches that do not 55 * have the ability to do a cmpxchg_double. It only protects: 56 * A. page->freelist -> List of object free in a page 57 * B. page->inuse -> Number of objects in use 58 * C. page->objects -> Number of objects in page 59 * D. page->frozen -> frozen state 60 * 61 * If a slab is frozen then it is exempt from list management. It is not 62 * on any list. The processor that froze the slab is the one who can 63 * perform list operations on the page. Other processors may put objects 64 * onto the freelist but the processor that froze the slab is the only 65 * one that can retrieve the objects from the page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * Overloading of page flags that are otherwise used for LRU management. 97 * 98 * PageActive The slab is frozen and exempt from list processing. 99 * This means that the slab is dedicated to a purpose 100 * such as satisfying allocations for a specific 101 * processor. Objects may be freed in the slab while 102 * it is frozen but slab_free will then skip the usual 103 * list operations. It is up to the processor holding 104 * the slab to integrate the slab into the slab lists 105 * when the slab is no longer needed. 106 * 107 * One use of this flag is to mark slabs that are 108 * used for allocations. Then such a slab becomes a cpu 109 * slab. The cpu slab may be equipped with an additional 110 * freelist that allows lockless access to 111 * free objects in addition to the regular freelist 112 * that requires the slab lock. 113 * 114 * PageError Slab requires special handling due to debug 115 * options set. This moves slab handling out of 116 * the fast path and disables lockless freelists. 117 */ 118 119 static inline int kmem_cache_debug(struct kmem_cache *s) 120 { 121 #ifdef CONFIG_SLUB_DEBUG 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 123 #else 124 return 0; 125 #endif 126 } 127 128 void *fixup_red_left(struct kmem_cache *s, void *p) 129 { 130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 131 p += s->red_left_pad; 132 133 return p; 134 } 135 136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 137 { 138 #ifdef CONFIG_SLUB_CPU_PARTIAL 139 return !kmem_cache_debug(s); 140 #else 141 return false; 142 #endif 143 } 144 145 /* 146 * Issues still to be resolved: 147 * 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 149 * 150 * - Variable sizing of the per node arrays 151 */ 152 153 /* Enable to test recovery from slab corruption on boot */ 154 #undef SLUB_RESILIENCY_TEST 155 156 /* Enable to log cmpxchg failures */ 157 #undef SLUB_DEBUG_CMPXCHG 158 159 /* 160 * Mininum number of partial slabs. These will be left on the partial 161 * lists even if they are empty. kmem_cache_shrink may reclaim them. 162 */ 163 #define MIN_PARTIAL 5 164 165 /* 166 * Maximum number of desirable partial slabs. 167 * The existence of more partial slabs makes kmem_cache_shrink 168 * sort the partial list by the number of objects in use. 169 */ 170 #define MAX_PARTIAL 10 171 172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 173 SLAB_POISON | SLAB_STORE_USER) 174 175 /* 176 * These debug flags cannot use CMPXCHG because there might be consistency 177 * issues when checking or reading debug information 178 */ 179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 180 SLAB_TRACE) 181 182 183 /* 184 * Debugging flags that require metadata to be stored in the slab. These get 185 * disabled when slub_debug=O is used and a cache's min order increases with 186 * metadata. 187 */ 188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 189 190 #define OO_SHIFT 16 191 #define OO_MASK ((1 << OO_SHIFT) - 1) 192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 193 194 /* Internal SLUB flags */ 195 /* Poison object */ 196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 197 /* Use cmpxchg_double */ 198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 199 200 /* 201 * Tracking user of a slab. 202 */ 203 #define TRACK_ADDRS_COUNT 16 204 struct track { 205 unsigned long addr; /* Called from address */ 206 #ifdef CONFIG_STACKTRACE 207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 208 #endif 209 int cpu; /* Was running on cpu */ 210 int pid; /* Pid context */ 211 unsigned long when; /* When did the operation occur */ 212 }; 213 214 enum track_item { TRACK_ALLOC, TRACK_FREE }; 215 216 #ifdef CONFIG_SYSFS 217 static int sysfs_slab_add(struct kmem_cache *); 218 static int sysfs_slab_alias(struct kmem_cache *, const char *); 219 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 220 static void sysfs_slab_remove(struct kmem_cache *s); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 226 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 227 #endif 228 229 static inline void stat(const struct kmem_cache *s, enum stat_item si) 230 { 231 #ifdef CONFIG_SLUB_STATS 232 /* 233 * The rmw is racy on a preemptible kernel but this is acceptable, so 234 * avoid this_cpu_add()'s irq-disable overhead. 235 */ 236 raw_cpu_inc(s->cpu_slab->stat[si]); 237 #endif 238 } 239 240 /******************************************************************** 241 * Core slab cache functions 242 *******************************************************************/ 243 244 /* 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated 246 * with an XOR of the address where the pointer is held and a per-cache 247 * random number. 248 */ 249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 250 unsigned long ptr_addr) 251 { 252 #ifdef CONFIG_SLAB_FREELIST_HARDENED 253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); 254 #else 255 return ptr; 256 #endif 257 } 258 259 /* Returns the freelist pointer recorded at location ptr_addr. */ 260 static inline void *freelist_dereference(const struct kmem_cache *s, 261 void *ptr_addr) 262 { 263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 264 (unsigned long)ptr_addr); 265 } 266 267 static inline void *get_freepointer(struct kmem_cache *s, void *object) 268 { 269 return freelist_dereference(s, object + s->offset); 270 } 271 272 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 273 { 274 if (object) 275 prefetch(freelist_dereference(s, object + s->offset)); 276 } 277 278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 279 { 280 unsigned long freepointer_addr; 281 void *p; 282 283 if (!debug_pagealloc_enabled()) 284 return get_freepointer(s, object); 285 286 freepointer_addr = (unsigned long)object + s->offset; 287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 288 return freelist_ptr(s, p, freepointer_addr); 289 } 290 291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 292 { 293 unsigned long freeptr_addr = (unsigned long)object + s->offset; 294 295 #ifdef CONFIG_SLAB_FREELIST_HARDENED 296 BUG_ON(object == fp); /* naive detection of double free or corruption */ 297 #endif 298 299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 300 } 301 302 /* Loop over all objects in a slab */ 303 #define for_each_object(__p, __s, __addr, __objects) \ 304 for (__p = fixup_red_left(__s, __addr); \ 305 __p < (__addr) + (__objects) * (__s)->size; \ 306 __p += (__s)->size) 307 308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 310 __idx <= __objects; \ 311 __p += (__s)->size, __idx++) 312 313 /* Determine object index from a given position */ 314 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 315 { 316 return (p - addr) / s->size; 317 } 318 319 static inline unsigned int order_objects(unsigned int order, unsigned int size) 320 { 321 return ((unsigned int)PAGE_SIZE << order) / size; 322 } 323 324 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 325 unsigned int size) 326 { 327 struct kmem_cache_order_objects x = { 328 (order << OO_SHIFT) + order_objects(order, size) 329 }; 330 331 return x; 332 } 333 334 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 335 { 336 return x.x >> OO_SHIFT; 337 } 338 339 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 340 { 341 return x.x & OO_MASK; 342 } 343 344 /* 345 * Per slab locking using the pagelock 346 */ 347 static __always_inline void slab_lock(struct page *page) 348 { 349 VM_BUG_ON_PAGE(PageTail(page), page); 350 bit_spin_lock(PG_locked, &page->flags); 351 } 352 353 static __always_inline void slab_unlock(struct page *page) 354 { 355 VM_BUG_ON_PAGE(PageTail(page), page); 356 __bit_spin_unlock(PG_locked, &page->flags); 357 } 358 359 /* Interrupts must be disabled (for the fallback code to work right) */ 360 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 361 void *freelist_old, unsigned long counters_old, 362 void *freelist_new, unsigned long counters_new, 363 const char *n) 364 { 365 VM_BUG_ON(!irqs_disabled()); 366 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 367 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 368 if (s->flags & __CMPXCHG_DOUBLE) { 369 if (cmpxchg_double(&page->freelist, &page->counters, 370 freelist_old, counters_old, 371 freelist_new, counters_new)) 372 return true; 373 } else 374 #endif 375 { 376 slab_lock(page); 377 if (page->freelist == freelist_old && 378 page->counters == counters_old) { 379 page->freelist = freelist_new; 380 page->counters = counters_new; 381 slab_unlock(page); 382 return true; 383 } 384 slab_unlock(page); 385 } 386 387 cpu_relax(); 388 stat(s, CMPXCHG_DOUBLE_FAIL); 389 390 #ifdef SLUB_DEBUG_CMPXCHG 391 pr_info("%s %s: cmpxchg double redo ", n, s->name); 392 #endif 393 394 return false; 395 } 396 397 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 398 void *freelist_old, unsigned long counters_old, 399 void *freelist_new, unsigned long counters_new, 400 const char *n) 401 { 402 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 403 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 404 if (s->flags & __CMPXCHG_DOUBLE) { 405 if (cmpxchg_double(&page->freelist, &page->counters, 406 freelist_old, counters_old, 407 freelist_new, counters_new)) 408 return true; 409 } else 410 #endif 411 { 412 unsigned long flags; 413 414 local_irq_save(flags); 415 slab_lock(page); 416 if (page->freelist == freelist_old && 417 page->counters == counters_old) { 418 page->freelist = freelist_new; 419 page->counters = counters_new; 420 slab_unlock(page); 421 local_irq_restore(flags); 422 return true; 423 } 424 slab_unlock(page); 425 local_irq_restore(flags); 426 } 427 428 cpu_relax(); 429 stat(s, CMPXCHG_DOUBLE_FAIL); 430 431 #ifdef SLUB_DEBUG_CMPXCHG 432 pr_info("%s %s: cmpxchg double redo ", n, s->name); 433 #endif 434 435 return false; 436 } 437 438 #ifdef CONFIG_SLUB_DEBUG 439 /* 440 * Determine a map of object in use on a page. 441 * 442 * Node listlock must be held to guarantee that the page does 443 * not vanish from under us. 444 */ 445 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 446 { 447 void *p; 448 void *addr = page_address(page); 449 450 for (p = page->freelist; p; p = get_freepointer(s, p)) 451 set_bit(slab_index(p, s, addr), map); 452 } 453 454 static inline unsigned int size_from_object(struct kmem_cache *s) 455 { 456 if (s->flags & SLAB_RED_ZONE) 457 return s->size - s->red_left_pad; 458 459 return s->size; 460 } 461 462 static inline void *restore_red_left(struct kmem_cache *s, void *p) 463 { 464 if (s->flags & SLAB_RED_ZONE) 465 p -= s->red_left_pad; 466 467 return p; 468 } 469 470 /* 471 * Debug settings: 472 */ 473 #if defined(CONFIG_SLUB_DEBUG_ON) 474 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 475 #else 476 static slab_flags_t slub_debug; 477 #endif 478 479 static char *slub_debug_slabs; 480 static int disable_higher_order_debug; 481 482 /* 483 * slub is about to manipulate internal object metadata. This memory lies 484 * outside the range of the allocated object, so accessing it would normally 485 * be reported by kasan as a bounds error. metadata_access_enable() is used 486 * to tell kasan that these accesses are OK. 487 */ 488 static inline void metadata_access_enable(void) 489 { 490 kasan_disable_current(); 491 } 492 493 static inline void metadata_access_disable(void) 494 { 495 kasan_enable_current(); 496 } 497 498 /* 499 * Object debugging 500 */ 501 502 /* Verify that a pointer has an address that is valid within a slab page */ 503 static inline int check_valid_pointer(struct kmem_cache *s, 504 struct page *page, void *object) 505 { 506 void *base; 507 508 if (!object) 509 return 1; 510 511 base = page_address(page); 512 object = restore_red_left(s, object); 513 if (object < base || object >= base + page->objects * s->size || 514 (object - base) % s->size) { 515 return 0; 516 } 517 518 return 1; 519 } 520 521 static void print_section(char *level, char *text, u8 *addr, 522 unsigned int length) 523 { 524 metadata_access_enable(); 525 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 526 length, 1); 527 metadata_access_disable(); 528 } 529 530 static struct track *get_track(struct kmem_cache *s, void *object, 531 enum track_item alloc) 532 { 533 struct track *p; 534 535 if (s->offset) 536 p = object + s->offset + sizeof(void *); 537 else 538 p = object + s->inuse; 539 540 return p + alloc; 541 } 542 543 static void set_track(struct kmem_cache *s, void *object, 544 enum track_item alloc, unsigned long addr) 545 { 546 struct track *p = get_track(s, object, alloc); 547 548 if (addr) { 549 #ifdef CONFIG_STACKTRACE 550 struct stack_trace trace; 551 int i; 552 553 trace.nr_entries = 0; 554 trace.max_entries = TRACK_ADDRS_COUNT; 555 trace.entries = p->addrs; 556 trace.skip = 3; 557 metadata_access_enable(); 558 save_stack_trace(&trace); 559 metadata_access_disable(); 560 561 /* See rant in lockdep.c */ 562 if (trace.nr_entries != 0 && 563 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 564 trace.nr_entries--; 565 566 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 567 p->addrs[i] = 0; 568 #endif 569 p->addr = addr; 570 p->cpu = smp_processor_id(); 571 p->pid = current->pid; 572 p->when = jiffies; 573 } else 574 memset(p, 0, sizeof(struct track)); 575 } 576 577 static void init_tracking(struct kmem_cache *s, void *object) 578 { 579 if (!(s->flags & SLAB_STORE_USER)) 580 return; 581 582 set_track(s, object, TRACK_FREE, 0UL); 583 set_track(s, object, TRACK_ALLOC, 0UL); 584 } 585 586 static void print_track(const char *s, struct track *t, unsigned long pr_time) 587 { 588 if (!t->addr) 589 return; 590 591 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 592 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 593 #ifdef CONFIG_STACKTRACE 594 { 595 int i; 596 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 597 if (t->addrs[i]) 598 pr_err("\t%pS\n", (void *)t->addrs[i]); 599 else 600 break; 601 } 602 #endif 603 } 604 605 static void print_tracking(struct kmem_cache *s, void *object) 606 { 607 unsigned long pr_time = jiffies; 608 if (!(s->flags & SLAB_STORE_USER)) 609 return; 610 611 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 612 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 613 } 614 615 static void print_page_info(struct page *page) 616 { 617 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 618 page, page->objects, page->inuse, page->freelist, page->flags); 619 620 } 621 622 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 623 { 624 struct va_format vaf; 625 va_list args; 626 627 va_start(args, fmt); 628 vaf.fmt = fmt; 629 vaf.va = &args; 630 pr_err("=============================================================================\n"); 631 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 632 pr_err("-----------------------------------------------------------------------------\n\n"); 633 634 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 635 va_end(args); 636 } 637 638 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 639 { 640 struct va_format vaf; 641 va_list args; 642 643 va_start(args, fmt); 644 vaf.fmt = fmt; 645 vaf.va = &args; 646 pr_err("FIX %s: %pV\n", s->name, &vaf); 647 va_end(args); 648 } 649 650 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 651 { 652 unsigned int off; /* Offset of last byte */ 653 u8 *addr = page_address(page); 654 655 print_tracking(s, p); 656 657 print_page_info(page); 658 659 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 660 p, p - addr, get_freepointer(s, p)); 661 662 if (s->flags & SLAB_RED_ZONE) 663 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 664 s->red_left_pad); 665 else if (p > addr + 16) 666 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 667 668 print_section(KERN_ERR, "Object ", p, 669 min_t(unsigned int, s->object_size, PAGE_SIZE)); 670 if (s->flags & SLAB_RED_ZONE) 671 print_section(KERN_ERR, "Redzone ", p + s->object_size, 672 s->inuse - s->object_size); 673 674 if (s->offset) 675 off = s->offset + sizeof(void *); 676 else 677 off = s->inuse; 678 679 if (s->flags & SLAB_STORE_USER) 680 off += 2 * sizeof(struct track); 681 682 off += kasan_metadata_size(s); 683 684 if (off != size_from_object(s)) 685 /* Beginning of the filler is the free pointer */ 686 print_section(KERN_ERR, "Padding ", p + off, 687 size_from_object(s) - off); 688 689 dump_stack(); 690 } 691 692 void object_err(struct kmem_cache *s, struct page *page, 693 u8 *object, char *reason) 694 { 695 slab_bug(s, "%s", reason); 696 print_trailer(s, page, object); 697 } 698 699 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 700 const char *fmt, ...) 701 { 702 va_list args; 703 char buf[100]; 704 705 va_start(args, fmt); 706 vsnprintf(buf, sizeof(buf), fmt, args); 707 va_end(args); 708 slab_bug(s, "%s", buf); 709 print_page_info(page); 710 dump_stack(); 711 } 712 713 static void init_object(struct kmem_cache *s, void *object, u8 val) 714 { 715 u8 *p = object; 716 717 if (s->flags & SLAB_RED_ZONE) 718 memset(p - s->red_left_pad, val, s->red_left_pad); 719 720 if (s->flags & __OBJECT_POISON) { 721 memset(p, POISON_FREE, s->object_size - 1); 722 p[s->object_size - 1] = POISON_END; 723 } 724 725 if (s->flags & SLAB_RED_ZONE) 726 memset(p + s->object_size, val, s->inuse - s->object_size); 727 } 728 729 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 730 void *from, void *to) 731 { 732 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 733 memset(from, data, to - from); 734 } 735 736 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 737 u8 *object, char *what, 738 u8 *start, unsigned int value, unsigned int bytes) 739 { 740 u8 *fault; 741 u8 *end; 742 743 metadata_access_enable(); 744 fault = memchr_inv(start, value, bytes); 745 metadata_access_disable(); 746 if (!fault) 747 return 1; 748 749 end = start + bytes; 750 while (end > fault && end[-1] == value) 751 end--; 752 753 slab_bug(s, "%s overwritten", what); 754 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 755 fault, end - 1, fault[0], value); 756 print_trailer(s, page, object); 757 758 restore_bytes(s, what, value, fault, end); 759 return 0; 760 } 761 762 /* 763 * Object layout: 764 * 765 * object address 766 * Bytes of the object to be managed. 767 * If the freepointer may overlay the object then the free 768 * pointer is the first word of the object. 769 * 770 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 771 * 0xa5 (POISON_END) 772 * 773 * object + s->object_size 774 * Padding to reach word boundary. This is also used for Redzoning. 775 * Padding is extended by another word if Redzoning is enabled and 776 * object_size == inuse. 777 * 778 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 779 * 0xcc (RED_ACTIVE) for objects in use. 780 * 781 * object + s->inuse 782 * Meta data starts here. 783 * 784 * A. Free pointer (if we cannot overwrite object on free) 785 * B. Tracking data for SLAB_STORE_USER 786 * C. Padding to reach required alignment boundary or at mininum 787 * one word if debugging is on to be able to detect writes 788 * before the word boundary. 789 * 790 * Padding is done using 0x5a (POISON_INUSE) 791 * 792 * object + s->size 793 * Nothing is used beyond s->size. 794 * 795 * If slabcaches are merged then the object_size and inuse boundaries are mostly 796 * ignored. And therefore no slab options that rely on these boundaries 797 * may be used with merged slabcaches. 798 */ 799 800 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 801 { 802 unsigned long off = s->inuse; /* The end of info */ 803 804 if (s->offset) 805 /* Freepointer is placed after the object. */ 806 off += sizeof(void *); 807 808 if (s->flags & SLAB_STORE_USER) 809 /* We also have user information there */ 810 off += 2 * sizeof(struct track); 811 812 off += kasan_metadata_size(s); 813 814 if (size_from_object(s) == off) 815 return 1; 816 817 return check_bytes_and_report(s, page, p, "Object padding", 818 p + off, POISON_INUSE, size_from_object(s) - off); 819 } 820 821 /* Check the pad bytes at the end of a slab page */ 822 static int slab_pad_check(struct kmem_cache *s, struct page *page) 823 { 824 u8 *start; 825 u8 *fault; 826 u8 *end; 827 u8 *pad; 828 int length; 829 int remainder; 830 831 if (!(s->flags & SLAB_POISON)) 832 return 1; 833 834 start = page_address(page); 835 length = PAGE_SIZE << compound_order(page); 836 end = start + length; 837 remainder = length % s->size; 838 if (!remainder) 839 return 1; 840 841 pad = end - remainder; 842 metadata_access_enable(); 843 fault = memchr_inv(pad, POISON_INUSE, remainder); 844 metadata_access_disable(); 845 if (!fault) 846 return 1; 847 while (end > fault && end[-1] == POISON_INUSE) 848 end--; 849 850 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 851 print_section(KERN_ERR, "Padding ", pad, remainder); 852 853 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 854 return 0; 855 } 856 857 static int check_object(struct kmem_cache *s, struct page *page, 858 void *object, u8 val) 859 { 860 u8 *p = object; 861 u8 *endobject = object + s->object_size; 862 863 if (s->flags & SLAB_RED_ZONE) { 864 if (!check_bytes_and_report(s, page, object, "Redzone", 865 object - s->red_left_pad, val, s->red_left_pad)) 866 return 0; 867 868 if (!check_bytes_and_report(s, page, object, "Redzone", 869 endobject, val, s->inuse - s->object_size)) 870 return 0; 871 } else { 872 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 873 check_bytes_and_report(s, page, p, "Alignment padding", 874 endobject, POISON_INUSE, 875 s->inuse - s->object_size); 876 } 877 } 878 879 if (s->flags & SLAB_POISON) { 880 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 881 (!check_bytes_and_report(s, page, p, "Poison", p, 882 POISON_FREE, s->object_size - 1) || 883 !check_bytes_and_report(s, page, p, "Poison", 884 p + s->object_size - 1, POISON_END, 1))) 885 return 0; 886 /* 887 * check_pad_bytes cleans up on its own. 888 */ 889 check_pad_bytes(s, page, p); 890 } 891 892 if (!s->offset && val == SLUB_RED_ACTIVE) 893 /* 894 * Object and freepointer overlap. Cannot check 895 * freepointer while object is allocated. 896 */ 897 return 1; 898 899 /* Check free pointer validity */ 900 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 901 object_err(s, page, p, "Freepointer corrupt"); 902 /* 903 * No choice but to zap it and thus lose the remainder 904 * of the free objects in this slab. May cause 905 * another error because the object count is now wrong. 906 */ 907 set_freepointer(s, p, NULL); 908 return 0; 909 } 910 return 1; 911 } 912 913 static int check_slab(struct kmem_cache *s, struct page *page) 914 { 915 int maxobj; 916 917 VM_BUG_ON(!irqs_disabled()); 918 919 if (!PageSlab(page)) { 920 slab_err(s, page, "Not a valid slab page"); 921 return 0; 922 } 923 924 maxobj = order_objects(compound_order(page), s->size); 925 if (page->objects > maxobj) { 926 slab_err(s, page, "objects %u > max %u", 927 page->objects, maxobj); 928 return 0; 929 } 930 if (page->inuse > page->objects) { 931 slab_err(s, page, "inuse %u > max %u", 932 page->inuse, page->objects); 933 return 0; 934 } 935 /* Slab_pad_check fixes things up after itself */ 936 slab_pad_check(s, page); 937 return 1; 938 } 939 940 /* 941 * Determine if a certain object on a page is on the freelist. Must hold the 942 * slab lock to guarantee that the chains are in a consistent state. 943 */ 944 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 945 { 946 int nr = 0; 947 void *fp; 948 void *object = NULL; 949 int max_objects; 950 951 fp = page->freelist; 952 while (fp && nr <= page->objects) { 953 if (fp == search) 954 return 1; 955 if (!check_valid_pointer(s, page, fp)) { 956 if (object) { 957 object_err(s, page, object, 958 "Freechain corrupt"); 959 set_freepointer(s, object, NULL); 960 } else { 961 slab_err(s, page, "Freepointer corrupt"); 962 page->freelist = NULL; 963 page->inuse = page->objects; 964 slab_fix(s, "Freelist cleared"); 965 return 0; 966 } 967 break; 968 } 969 object = fp; 970 fp = get_freepointer(s, object); 971 nr++; 972 } 973 974 max_objects = order_objects(compound_order(page), s->size); 975 if (max_objects > MAX_OBJS_PER_PAGE) 976 max_objects = MAX_OBJS_PER_PAGE; 977 978 if (page->objects != max_objects) { 979 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 980 page->objects, max_objects); 981 page->objects = max_objects; 982 slab_fix(s, "Number of objects adjusted."); 983 } 984 if (page->inuse != page->objects - nr) { 985 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 986 page->inuse, page->objects - nr); 987 page->inuse = page->objects - nr; 988 slab_fix(s, "Object count adjusted."); 989 } 990 return search == NULL; 991 } 992 993 static void trace(struct kmem_cache *s, struct page *page, void *object, 994 int alloc) 995 { 996 if (s->flags & SLAB_TRACE) { 997 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 998 s->name, 999 alloc ? "alloc" : "free", 1000 object, page->inuse, 1001 page->freelist); 1002 1003 if (!alloc) 1004 print_section(KERN_INFO, "Object ", (void *)object, 1005 s->object_size); 1006 1007 dump_stack(); 1008 } 1009 } 1010 1011 /* 1012 * Tracking of fully allocated slabs for debugging purposes. 1013 */ 1014 static void add_full(struct kmem_cache *s, 1015 struct kmem_cache_node *n, struct page *page) 1016 { 1017 if (!(s->flags & SLAB_STORE_USER)) 1018 return; 1019 1020 lockdep_assert_held(&n->list_lock); 1021 list_add(&page->lru, &n->full); 1022 } 1023 1024 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1025 { 1026 if (!(s->flags & SLAB_STORE_USER)) 1027 return; 1028 1029 lockdep_assert_held(&n->list_lock); 1030 list_del(&page->lru); 1031 } 1032 1033 /* Tracking of the number of slabs for debugging purposes */ 1034 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1035 { 1036 struct kmem_cache_node *n = get_node(s, node); 1037 1038 return atomic_long_read(&n->nr_slabs); 1039 } 1040 1041 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1042 { 1043 return atomic_long_read(&n->nr_slabs); 1044 } 1045 1046 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1047 { 1048 struct kmem_cache_node *n = get_node(s, node); 1049 1050 /* 1051 * May be called early in order to allocate a slab for the 1052 * kmem_cache_node structure. Solve the chicken-egg 1053 * dilemma by deferring the increment of the count during 1054 * bootstrap (see early_kmem_cache_node_alloc). 1055 */ 1056 if (likely(n)) { 1057 atomic_long_inc(&n->nr_slabs); 1058 atomic_long_add(objects, &n->total_objects); 1059 } 1060 } 1061 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1062 { 1063 struct kmem_cache_node *n = get_node(s, node); 1064 1065 atomic_long_dec(&n->nr_slabs); 1066 atomic_long_sub(objects, &n->total_objects); 1067 } 1068 1069 /* Object debug checks for alloc/free paths */ 1070 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1071 void *object) 1072 { 1073 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1074 return; 1075 1076 init_object(s, object, SLUB_RED_INACTIVE); 1077 init_tracking(s, object); 1078 } 1079 1080 static inline int alloc_consistency_checks(struct kmem_cache *s, 1081 struct page *page, 1082 void *object, unsigned long addr) 1083 { 1084 if (!check_slab(s, page)) 1085 return 0; 1086 1087 if (!check_valid_pointer(s, page, object)) { 1088 object_err(s, page, object, "Freelist Pointer check fails"); 1089 return 0; 1090 } 1091 1092 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1093 return 0; 1094 1095 return 1; 1096 } 1097 1098 static noinline int alloc_debug_processing(struct kmem_cache *s, 1099 struct page *page, 1100 void *object, unsigned long addr) 1101 { 1102 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1103 if (!alloc_consistency_checks(s, page, object, addr)) 1104 goto bad; 1105 } 1106 1107 /* Success perform special debug activities for allocs */ 1108 if (s->flags & SLAB_STORE_USER) 1109 set_track(s, object, TRACK_ALLOC, addr); 1110 trace(s, page, object, 1); 1111 init_object(s, object, SLUB_RED_ACTIVE); 1112 return 1; 1113 1114 bad: 1115 if (PageSlab(page)) { 1116 /* 1117 * If this is a slab page then lets do the best we can 1118 * to avoid issues in the future. Marking all objects 1119 * as used avoids touching the remaining objects. 1120 */ 1121 slab_fix(s, "Marking all objects used"); 1122 page->inuse = page->objects; 1123 page->freelist = NULL; 1124 } 1125 return 0; 1126 } 1127 1128 static inline int free_consistency_checks(struct kmem_cache *s, 1129 struct page *page, void *object, unsigned long addr) 1130 { 1131 if (!check_valid_pointer(s, page, object)) { 1132 slab_err(s, page, "Invalid object pointer 0x%p", object); 1133 return 0; 1134 } 1135 1136 if (on_freelist(s, page, object)) { 1137 object_err(s, page, object, "Object already free"); 1138 return 0; 1139 } 1140 1141 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1142 return 0; 1143 1144 if (unlikely(s != page->slab_cache)) { 1145 if (!PageSlab(page)) { 1146 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1147 object); 1148 } else if (!page->slab_cache) { 1149 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1150 object); 1151 dump_stack(); 1152 } else 1153 object_err(s, page, object, 1154 "page slab pointer corrupt."); 1155 return 0; 1156 } 1157 return 1; 1158 } 1159 1160 /* Supports checking bulk free of a constructed freelist */ 1161 static noinline int free_debug_processing( 1162 struct kmem_cache *s, struct page *page, 1163 void *head, void *tail, int bulk_cnt, 1164 unsigned long addr) 1165 { 1166 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1167 void *object = head; 1168 int cnt = 0; 1169 unsigned long uninitialized_var(flags); 1170 int ret = 0; 1171 1172 spin_lock_irqsave(&n->list_lock, flags); 1173 slab_lock(page); 1174 1175 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1176 if (!check_slab(s, page)) 1177 goto out; 1178 } 1179 1180 next_object: 1181 cnt++; 1182 1183 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1184 if (!free_consistency_checks(s, page, object, addr)) 1185 goto out; 1186 } 1187 1188 if (s->flags & SLAB_STORE_USER) 1189 set_track(s, object, TRACK_FREE, addr); 1190 trace(s, page, object, 0); 1191 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1192 init_object(s, object, SLUB_RED_INACTIVE); 1193 1194 /* Reached end of constructed freelist yet? */ 1195 if (object != tail) { 1196 object = get_freepointer(s, object); 1197 goto next_object; 1198 } 1199 ret = 1; 1200 1201 out: 1202 if (cnt != bulk_cnt) 1203 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1204 bulk_cnt, cnt); 1205 1206 slab_unlock(page); 1207 spin_unlock_irqrestore(&n->list_lock, flags); 1208 if (!ret) 1209 slab_fix(s, "Object at 0x%p not freed", object); 1210 return ret; 1211 } 1212 1213 static int __init setup_slub_debug(char *str) 1214 { 1215 slub_debug = DEBUG_DEFAULT_FLAGS; 1216 if (*str++ != '=' || !*str) 1217 /* 1218 * No options specified. Switch on full debugging. 1219 */ 1220 goto out; 1221 1222 if (*str == ',') 1223 /* 1224 * No options but restriction on slabs. This means full 1225 * debugging for slabs matching a pattern. 1226 */ 1227 goto check_slabs; 1228 1229 slub_debug = 0; 1230 if (*str == '-') 1231 /* 1232 * Switch off all debugging measures. 1233 */ 1234 goto out; 1235 1236 /* 1237 * Determine which debug features should be switched on 1238 */ 1239 for (; *str && *str != ','; str++) { 1240 switch (tolower(*str)) { 1241 case 'f': 1242 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1243 break; 1244 case 'z': 1245 slub_debug |= SLAB_RED_ZONE; 1246 break; 1247 case 'p': 1248 slub_debug |= SLAB_POISON; 1249 break; 1250 case 'u': 1251 slub_debug |= SLAB_STORE_USER; 1252 break; 1253 case 't': 1254 slub_debug |= SLAB_TRACE; 1255 break; 1256 case 'a': 1257 slub_debug |= SLAB_FAILSLAB; 1258 break; 1259 case 'o': 1260 /* 1261 * Avoid enabling debugging on caches if its minimum 1262 * order would increase as a result. 1263 */ 1264 disable_higher_order_debug = 1; 1265 break; 1266 default: 1267 pr_err("slub_debug option '%c' unknown. skipped\n", 1268 *str); 1269 } 1270 } 1271 1272 check_slabs: 1273 if (*str == ',') 1274 slub_debug_slabs = str + 1; 1275 out: 1276 return 1; 1277 } 1278 1279 __setup("slub_debug", setup_slub_debug); 1280 1281 slab_flags_t kmem_cache_flags(unsigned int object_size, 1282 slab_flags_t flags, const char *name, 1283 void (*ctor)(void *)) 1284 { 1285 /* 1286 * Enable debugging if selected on the kernel commandline. 1287 */ 1288 if (slub_debug && (!slub_debug_slabs || (name && 1289 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1290 flags |= slub_debug; 1291 1292 return flags; 1293 } 1294 #else /* !CONFIG_SLUB_DEBUG */ 1295 static inline void setup_object_debug(struct kmem_cache *s, 1296 struct page *page, void *object) {} 1297 1298 static inline int alloc_debug_processing(struct kmem_cache *s, 1299 struct page *page, void *object, unsigned long addr) { return 0; } 1300 1301 static inline int free_debug_processing( 1302 struct kmem_cache *s, struct page *page, 1303 void *head, void *tail, int bulk_cnt, 1304 unsigned long addr) { return 0; } 1305 1306 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1307 { return 1; } 1308 static inline int check_object(struct kmem_cache *s, struct page *page, 1309 void *object, u8 val) { return 1; } 1310 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1311 struct page *page) {} 1312 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1313 struct page *page) {} 1314 slab_flags_t kmem_cache_flags(unsigned int object_size, 1315 slab_flags_t flags, const char *name, 1316 void (*ctor)(void *)) 1317 { 1318 return flags; 1319 } 1320 #define slub_debug 0 1321 1322 #define disable_higher_order_debug 0 1323 1324 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1325 { return 0; } 1326 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1327 { return 0; } 1328 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1329 int objects) {} 1330 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1331 int objects) {} 1332 1333 #endif /* CONFIG_SLUB_DEBUG */ 1334 1335 /* 1336 * Hooks for other subsystems that check memory allocations. In a typical 1337 * production configuration these hooks all should produce no code at all. 1338 */ 1339 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1340 { 1341 kmemleak_alloc(ptr, size, 1, flags); 1342 kasan_kmalloc_large(ptr, size, flags); 1343 } 1344 1345 static __always_inline void kfree_hook(void *x) 1346 { 1347 kmemleak_free(x); 1348 kasan_kfree_large(x, _RET_IP_); 1349 } 1350 1351 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1352 { 1353 kmemleak_free_recursive(x, s->flags); 1354 1355 /* 1356 * Trouble is that we may no longer disable interrupts in the fast path 1357 * So in order to make the debug calls that expect irqs to be 1358 * disabled we need to disable interrupts temporarily. 1359 */ 1360 #ifdef CONFIG_LOCKDEP 1361 { 1362 unsigned long flags; 1363 1364 local_irq_save(flags); 1365 debug_check_no_locks_freed(x, s->object_size); 1366 local_irq_restore(flags); 1367 } 1368 #endif 1369 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1370 debug_check_no_obj_freed(x, s->object_size); 1371 1372 /* KASAN might put x into memory quarantine, delaying its reuse */ 1373 return kasan_slab_free(s, x, _RET_IP_); 1374 } 1375 1376 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1377 void **head, void **tail) 1378 { 1379 /* 1380 * Compiler cannot detect this function can be removed if slab_free_hook() 1381 * evaluates to nothing. Thus, catch all relevant config debug options here. 1382 */ 1383 #if defined(CONFIG_LOCKDEP) || \ 1384 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1385 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1386 defined(CONFIG_KASAN) 1387 1388 void *object; 1389 void *next = *head; 1390 void *old_tail = *tail ? *tail : *head; 1391 1392 /* Head and tail of the reconstructed freelist */ 1393 *head = NULL; 1394 *tail = NULL; 1395 1396 do { 1397 object = next; 1398 next = get_freepointer(s, object); 1399 /* If object's reuse doesn't have to be delayed */ 1400 if (!slab_free_hook(s, object)) { 1401 /* Move object to the new freelist */ 1402 set_freepointer(s, object, *head); 1403 *head = object; 1404 if (!*tail) 1405 *tail = object; 1406 } 1407 } while (object != old_tail); 1408 1409 if (*head == *tail) 1410 *tail = NULL; 1411 1412 return *head != NULL; 1413 #else 1414 return true; 1415 #endif 1416 } 1417 1418 static void setup_object(struct kmem_cache *s, struct page *page, 1419 void *object) 1420 { 1421 setup_object_debug(s, page, object); 1422 kasan_init_slab_obj(s, object); 1423 if (unlikely(s->ctor)) { 1424 kasan_unpoison_object_data(s, object); 1425 s->ctor(object); 1426 kasan_poison_object_data(s, object); 1427 } 1428 } 1429 1430 /* 1431 * Slab allocation and freeing 1432 */ 1433 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1434 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1435 { 1436 struct page *page; 1437 unsigned int order = oo_order(oo); 1438 1439 if (node == NUMA_NO_NODE) 1440 page = alloc_pages(flags, order); 1441 else 1442 page = __alloc_pages_node(node, flags, order); 1443 1444 if (page && memcg_charge_slab(page, flags, order, s)) { 1445 __free_pages(page, order); 1446 page = NULL; 1447 } 1448 1449 return page; 1450 } 1451 1452 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1453 /* Pre-initialize the random sequence cache */ 1454 static int init_cache_random_seq(struct kmem_cache *s) 1455 { 1456 unsigned int count = oo_objects(s->oo); 1457 int err; 1458 1459 /* Bailout if already initialised */ 1460 if (s->random_seq) 1461 return 0; 1462 1463 err = cache_random_seq_create(s, count, GFP_KERNEL); 1464 if (err) { 1465 pr_err("SLUB: Unable to initialize free list for %s\n", 1466 s->name); 1467 return err; 1468 } 1469 1470 /* Transform to an offset on the set of pages */ 1471 if (s->random_seq) { 1472 unsigned int i; 1473 1474 for (i = 0; i < count; i++) 1475 s->random_seq[i] *= s->size; 1476 } 1477 return 0; 1478 } 1479 1480 /* Initialize each random sequence freelist per cache */ 1481 static void __init init_freelist_randomization(void) 1482 { 1483 struct kmem_cache *s; 1484 1485 mutex_lock(&slab_mutex); 1486 1487 list_for_each_entry(s, &slab_caches, list) 1488 init_cache_random_seq(s); 1489 1490 mutex_unlock(&slab_mutex); 1491 } 1492 1493 /* Get the next entry on the pre-computed freelist randomized */ 1494 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1495 unsigned long *pos, void *start, 1496 unsigned long page_limit, 1497 unsigned long freelist_count) 1498 { 1499 unsigned int idx; 1500 1501 /* 1502 * If the target page allocation failed, the number of objects on the 1503 * page might be smaller than the usual size defined by the cache. 1504 */ 1505 do { 1506 idx = s->random_seq[*pos]; 1507 *pos += 1; 1508 if (*pos >= freelist_count) 1509 *pos = 0; 1510 } while (unlikely(idx >= page_limit)); 1511 1512 return (char *)start + idx; 1513 } 1514 1515 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1516 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1517 { 1518 void *start; 1519 void *cur; 1520 void *next; 1521 unsigned long idx, pos, page_limit, freelist_count; 1522 1523 if (page->objects < 2 || !s->random_seq) 1524 return false; 1525 1526 freelist_count = oo_objects(s->oo); 1527 pos = get_random_int() % freelist_count; 1528 1529 page_limit = page->objects * s->size; 1530 start = fixup_red_left(s, page_address(page)); 1531 1532 /* First entry is used as the base of the freelist */ 1533 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1534 freelist_count); 1535 page->freelist = cur; 1536 1537 for (idx = 1; idx < page->objects; idx++) { 1538 setup_object(s, page, cur); 1539 next = next_freelist_entry(s, page, &pos, start, page_limit, 1540 freelist_count); 1541 set_freepointer(s, cur, next); 1542 cur = next; 1543 } 1544 setup_object(s, page, cur); 1545 set_freepointer(s, cur, NULL); 1546 1547 return true; 1548 } 1549 #else 1550 static inline int init_cache_random_seq(struct kmem_cache *s) 1551 { 1552 return 0; 1553 } 1554 static inline void init_freelist_randomization(void) { } 1555 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1556 { 1557 return false; 1558 } 1559 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1560 1561 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1562 { 1563 struct page *page; 1564 struct kmem_cache_order_objects oo = s->oo; 1565 gfp_t alloc_gfp; 1566 void *start, *p; 1567 int idx, order; 1568 bool shuffle; 1569 1570 flags &= gfp_allowed_mask; 1571 1572 if (gfpflags_allow_blocking(flags)) 1573 local_irq_enable(); 1574 1575 flags |= s->allocflags; 1576 1577 /* 1578 * Let the initial higher-order allocation fail under memory pressure 1579 * so we fall-back to the minimum order allocation. 1580 */ 1581 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1582 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1583 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1584 1585 page = alloc_slab_page(s, alloc_gfp, node, oo); 1586 if (unlikely(!page)) { 1587 oo = s->min; 1588 alloc_gfp = flags; 1589 /* 1590 * Allocation may have failed due to fragmentation. 1591 * Try a lower order alloc if possible 1592 */ 1593 page = alloc_slab_page(s, alloc_gfp, node, oo); 1594 if (unlikely(!page)) 1595 goto out; 1596 stat(s, ORDER_FALLBACK); 1597 } 1598 1599 page->objects = oo_objects(oo); 1600 1601 order = compound_order(page); 1602 page->slab_cache = s; 1603 __SetPageSlab(page); 1604 if (page_is_pfmemalloc(page)) 1605 SetPageSlabPfmemalloc(page); 1606 1607 start = page_address(page); 1608 1609 if (unlikely(s->flags & SLAB_POISON)) 1610 memset(start, POISON_INUSE, PAGE_SIZE << order); 1611 1612 kasan_poison_slab(page); 1613 1614 shuffle = shuffle_freelist(s, page); 1615 1616 if (!shuffle) { 1617 for_each_object_idx(p, idx, s, start, page->objects) { 1618 setup_object(s, page, p); 1619 if (likely(idx < page->objects)) 1620 set_freepointer(s, p, p + s->size); 1621 else 1622 set_freepointer(s, p, NULL); 1623 } 1624 page->freelist = fixup_red_left(s, start); 1625 } 1626 1627 page->inuse = page->objects; 1628 page->frozen = 1; 1629 1630 out: 1631 if (gfpflags_allow_blocking(flags)) 1632 local_irq_disable(); 1633 if (!page) 1634 return NULL; 1635 1636 mod_lruvec_page_state(page, 1637 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1638 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1639 1 << oo_order(oo)); 1640 1641 inc_slabs_node(s, page_to_nid(page), page->objects); 1642 1643 return page; 1644 } 1645 1646 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1647 { 1648 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1649 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1650 flags &= ~GFP_SLAB_BUG_MASK; 1651 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1652 invalid_mask, &invalid_mask, flags, &flags); 1653 dump_stack(); 1654 } 1655 1656 return allocate_slab(s, 1657 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1658 } 1659 1660 static void __free_slab(struct kmem_cache *s, struct page *page) 1661 { 1662 int order = compound_order(page); 1663 int pages = 1 << order; 1664 1665 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1666 void *p; 1667 1668 slab_pad_check(s, page); 1669 for_each_object(p, s, page_address(page), 1670 page->objects) 1671 check_object(s, page, p, SLUB_RED_INACTIVE); 1672 } 1673 1674 mod_lruvec_page_state(page, 1675 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1676 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1677 -pages); 1678 1679 __ClearPageSlabPfmemalloc(page); 1680 __ClearPageSlab(page); 1681 1682 page->mapping = NULL; 1683 if (current->reclaim_state) 1684 current->reclaim_state->reclaimed_slab += pages; 1685 memcg_uncharge_slab(page, order, s); 1686 __free_pages(page, order); 1687 } 1688 1689 static void rcu_free_slab(struct rcu_head *h) 1690 { 1691 struct page *page = container_of(h, struct page, rcu_head); 1692 1693 __free_slab(page->slab_cache, page); 1694 } 1695 1696 static void free_slab(struct kmem_cache *s, struct page *page) 1697 { 1698 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1699 call_rcu(&page->rcu_head, rcu_free_slab); 1700 } else 1701 __free_slab(s, page); 1702 } 1703 1704 static void discard_slab(struct kmem_cache *s, struct page *page) 1705 { 1706 dec_slabs_node(s, page_to_nid(page), page->objects); 1707 free_slab(s, page); 1708 } 1709 1710 /* 1711 * Management of partially allocated slabs. 1712 */ 1713 static inline void 1714 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1715 { 1716 n->nr_partial++; 1717 if (tail == DEACTIVATE_TO_TAIL) 1718 list_add_tail(&page->lru, &n->partial); 1719 else 1720 list_add(&page->lru, &n->partial); 1721 } 1722 1723 static inline void add_partial(struct kmem_cache_node *n, 1724 struct page *page, int tail) 1725 { 1726 lockdep_assert_held(&n->list_lock); 1727 __add_partial(n, page, tail); 1728 } 1729 1730 static inline void remove_partial(struct kmem_cache_node *n, 1731 struct page *page) 1732 { 1733 lockdep_assert_held(&n->list_lock); 1734 list_del(&page->lru); 1735 n->nr_partial--; 1736 } 1737 1738 /* 1739 * Remove slab from the partial list, freeze it and 1740 * return the pointer to the freelist. 1741 * 1742 * Returns a list of objects or NULL if it fails. 1743 */ 1744 static inline void *acquire_slab(struct kmem_cache *s, 1745 struct kmem_cache_node *n, struct page *page, 1746 int mode, int *objects) 1747 { 1748 void *freelist; 1749 unsigned long counters; 1750 struct page new; 1751 1752 lockdep_assert_held(&n->list_lock); 1753 1754 /* 1755 * Zap the freelist and set the frozen bit. 1756 * The old freelist is the list of objects for the 1757 * per cpu allocation list. 1758 */ 1759 freelist = page->freelist; 1760 counters = page->counters; 1761 new.counters = counters; 1762 *objects = new.objects - new.inuse; 1763 if (mode) { 1764 new.inuse = page->objects; 1765 new.freelist = NULL; 1766 } else { 1767 new.freelist = freelist; 1768 } 1769 1770 VM_BUG_ON(new.frozen); 1771 new.frozen = 1; 1772 1773 if (!__cmpxchg_double_slab(s, page, 1774 freelist, counters, 1775 new.freelist, new.counters, 1776 "acquire_slab")) 1777 return NULL; 1778 1779 remove_partial(n, page); 1780 WARN_ON(!freelist); 1781 return freelist; 1782 } 1783 1784 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1785 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1786 1787 /* 1788 * Try to allocate a partial slab from a specific node. 1789 */ 1790 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1791 struct kmem_cache_cpu *c, gfp_t flags) 1792 { 1793 struct page *page, *page2; 1794 void *object = NULL; 1795 unsigned int available = 0; 1796 int objects; 1797 1798 /* 1799 * Racy check. If we mistakenly see no partial slabs then we 1800 * just allocate an empty slab. If we mistakenly try to get a 1801 * partial slab and there is none available then get_partials() 1802 * will return NULL. 1803 */ 1804 if (!n || !n->nr_partial) 1805 return NULL; 1806 1807 spin_lock(&n->list_lock); 1808 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1809 void *t; 1810 1811 if (!pfmemalloc_match(page, flags)) 1812 continue; 1813 1814 t = acquire_slab(s, n, page, object == NULL, &objects); 1815 if (!t) 1816 break; 1817 1818 available += objects; 1819 if (!object) { 1820 c->page = page; 1821 stat(s, ALLOC_FROM_PARTIAL); 1822 object = t; 1823 } else { 1824 put_cpu_partial(s, page, 0); 1825 stat(s, CPU_PARTIAL_NODE); 1826 } 1827 if (!kmem_cache_has_cpu_partial(s) 1828 || available > slub_cpu_partial(s) / 2) 1829 break; 1830 1831 } 1832 spin_unlock(&n->list_lock); 1833 return object; 1834 } 1835 1836 /* 1837 * Get a page from somewhere. Search in increasing NUMA distances. 1838 */ 1839 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1840 struct kmem_cache_cpu *c) 1841 { 1842 #ifdef CONFIG_NUMA 1843 struct zonelist *zonelist; 1844 struct zoneref *z; 1845 struct zone *zone; 1846 enum zone_type high_zoneidx = gfp_zone(flags); 1847 void *object; 1848 unsigned int cpuset_mems_cookie; 1849 1850 /* 1851 * The defrag ratio allows a configuration of the tradeoffs between 1852 * inter node defragmentation and node local allocations. A lower 1853 * defrag_ratio increases the tendency to do local allocations 1854 * instead of attempting to obtain partial slabs from other nodes. 1855 * 1856 * If the defrag_ratio is set to 0 then kmalloc() always 1857 * returns node local objects. If the ratio is higher then kmalloc() 1858 * may return off node objects because partial slabs are obtained 1859 * from other nodes and filled up. 1860 * 1861 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1862 * (which makes defrag_ratio = 1000) then every (well almost) 1863 * allocation will first attempt to defrag slab caches on other nodes. 1864 * This means scanning over all nodes to look for partial slabs which 1865 * may be expensive if we do it every time we are trying to find a slab 1866 * with available objects. 1867 */ 1868 if (!s->remote_node_defrag_ratio || 1869 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1870 return NULL; 1871 1872 do { 1873 cpuset_mems_cookie = read_mems_allowed_begin(); 1874 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1875 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1876 struct kmem_cache_node *n; 1877 1878 n = get_node(s, zone_to_nid(zone)); 1879 1880 if (n && cpuset_zone_allowed(zone, flags) && 1881 n->nr_partial > s->min_partial) { 1882 object = get_partial_node(s, n, c, flags); 1883 if (object) { 1884 /* 1885 * Don't check read_mems_allowed_retry() 1886 * here - if mems_allowed was updated in 1887 * parallel, that was a harmless race 1888 * between allocation and the cpuset 1889 * update 1890 */ 1891 return object; 1892 } 1893 } 1894 } 1895 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1896 #endif 1897 return NULL; 1898 } 1899 1900 /* 1901 * Get a partial page, lock it and return it. 1902 */ 1903 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1904 struct kmem_cache_cpu *c) 1905 { 1906 void *object; 1907 int searchnode = node; 1908 1909 if (node == NUMA_NO_NODE) 1910 searchnode = numa_mem_id(); 1911 else if (!node_present_pages(node)) 1912 searchnode = node_to_mem_node(node); 1913 1914 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1915 if (object || node != NUMA_NO_NODE) 1916 return object; 1917 1918 return get_any_partial(s, flags, c); 1919 } 1920 1921 #ifdef CONFIG_PREEMPT 1922 /* 1923 * Calculate the next globally unique transaction for disambiguiation 1924 * during cmpxchg. The transactions start with the cpu number and are then 1925 * incremented by CONFIG_NR_CPUS. 1926 */ 1927 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1928 #else 1929 /* 1930 * No preemption supported therefore also no need to check for 1931 * different cpus. 1932 */ 1933 #define TID_STEP 1 1934 #endif 1935 1936 static inline unsigned long next_tid(unsigned long tid) 1937 { 1938 return tid + TID_STEP; 1939 } 1940 1941 static inline unsigned int tid_to_cpu(unsigned long tid) 1942 { 1943 return tid % TID_STEP; 1944 } 1945 1946 static inline unsigned long tid_to_event(unsigned long tid) 1947 { 1948 return tid / TID_STEP; 1949 } 1950 1951 static inline unsigned int init_tid(int cpu) 1952 { 1953 return cpu; 1954 } 1955 1956 static inline void note_cmpxchg_failure(const char *n, 1957 const struct kmem_cache *s, unsigned long tid) 1958 { 1959 #ifdef SLUB_DEBUG_CMPXCHG 1960 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1961 1962 pr_info("%s %s: cmpxchg redo ", n, s->name); 1963 1964 #ifdef CONFIG_PREEMPT 1965 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1966 pr_warn("due to cpu change %d -> %d\n", 1967 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1968 else 1969 #endif 1970 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1971 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1972 tid_to_event(tid), tid_to_event(actual_tid)); 1973 else 1974 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1975 actual_tid, tid, next_tid(tid)); 1976 #endif 1977 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1978 } 1979 1980 static void init_kmem_cache_cpus(struct kmem_cache *s) 1981 { 1982 int cpu; 1983 1984 for_each_possible_cpu(cpu) 1985 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1986 } 1987 1988 /* 1989 * Remove the cpu slab 1990 */ 1991 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1992 void *freelist, struct kmem_cache_cpu *c) 1993 { 1994 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1995 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1996 int lock = 0; 1997 enum slab_modes l = M_NONE, m = M_NONE; 1998 void *nextfree; 1999 int tail = DEACTIVATE_TO_HEAD; 2000 struct page new; 2001 struct page old; 2002 2003 if (page->freelist) { 2004 stat(s, DEACTIVATE_REMOTE_FREES); 2005 tail = DEACTIVATE_TO_TAIL; 2006 } 2007 2008 /* 2009 * Stage one: Free all available per cpu objects back 2010 * to the page freelist while it is still frozen. Leave the 2011 * last one. 2012 * 2013 * There is no need to take the list->lock because the page 2014 * is still frozen. 2015 */ 2016 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2017 void *prior; 2018 unsigned long counters; 2019 2020 do { 2021 prior = page->freelist; 2022 counters = page->counters; 2023 set_freepointer(s, freelist, prior); 2024 new.counters = counters; 2025 new.inuse--; 2026 VM_BUG_ON(!new.frozen); 2027 2028 } while (!__cmpxchg_double_slab(s, page, 2029 prior, counters, 2030 freelist, new.counters, 2031 "drain percpu freelist")); 2032 2033 freelist = nextfree; 2034 } 2035 2036 /* 2037 * Stage two: Ensure that the page is unfrozen while the 2038 * list presence reflects the actual number of objects 2039 * during unfreeze. 2040 * 2041 * We setup the list membership and then perform a cmpxchg 2042 * with the count. If there is a mismatch then the page 2043 * is not unfrozen but the page is on the wrong list. 2044 * 2045 * Then we restart the process which may have to remove 2046 * the page from the list that we just put it on again 2047 * because the number of objects in the slab may have 2048 * changed. 2049 */ 2050 redo: 2051 2052 old.freelist = page->freelist; 2053 old.counters = page->counters; 2054 VM_BUG_ON(!old.frozen); 2055 2056 /* Determine target state of the slab */ 2057 new.counters = old.counters; 2058 if (freelist) { 2059 new.inuse--; 2060 set_freepointer(s, freelist, old.freelist); 2061 new.freelist = freelist; 2062 } else 2063 new.freelist = old.freelist; 2064 2065 new.frozen = 0; 2066 2067 if (!new.inuse && n->nr_partial >= s->min_partial) 2068 m = M_FREE; 2069 else if (new.freelist) { 2070 m = M_PARTIAL; 2071 if (!lock) { 2072 lock = 1; 2073 /* 2074 * Taking the spinlock removes the possiblity 2075 * that acquire_slab() will see a slab page that 2076 * is frozen 2077 */ 2078 spin_lock(&n->list_lock); 2079 } 2080 } else { 2081 m = M_FULL; 2082 if (kmem_cache_debug(s) && !lock) { 2083 lock = 1; 2084 /* 2085 * This also ensures that the scanning of full 2086 * slabs from diagnostic functions will not see 2087 * any frozen slabs. 2088 */ 2089 spin_lock(&n->list_lock); 2090 } 2091 } 2092 2093 if (l != m) { 2094 2095 if (l == M_PARTIAL) 2096 2097 remove_partial(n, page); 2098 2099 else if (l == M_FULL) 2100 2101 remove_full(s, n, page); 2102 2103 if (m == M_PARTIAL) { 2104 2105 add_partial(n, page, tail); 2106 stat(s, tail); 2107 2108 } else if (m == M_FULL) { 2109 2110 stat(s, DEACTIVATE_FULL); 2111 add_full(s, n, page); 2112 2113 } 2114 } 2115 2116 l = m; 2117 if (!__cmpxchg_double_slab(s, page, 2118 old.freelist, old.counters, 2119 new.freelist, new.counters, 2120 "unfreezing slab")) 2121 goto redo; 2122 2123 if (lock) 2124 spin_unlock(&n->list_lock); 2125 2126 if (m == M_FREE) { 2127 stat(s, DEACTIVATE_EMPTY); 2128 discard_slab(s, page); 2129 stat(s, FREE_SLAB); 2130 } 2131 2132 c->page = NULL; 2133 c->freelist = NULL; 2134 } 2135 2136 /* 2137 * Unfreeze all the cpu partial slabs. 2138 * 2139 * This function must be called with interrupts disabled 2140 * for the cpu using c (or some other guarantee must be there 2141 * to guarantee no concurrent accesses). 2142 */ 2143 static void unfreeze_partials(struct kmem_cache *s, 2144 struct kmem_cache_cpu *c) 2145 { 2146 #ifdef CONFIG_SLUB_CPU_PARTIAL 2147 struct kmem_cache_node *n = NULL, *n2 = NULL; 2148 struct page *page, *discard_page = NULL; 2149 2150 while ((page = c->partial)) { 2151 struct page new; 2152 struct page old; 2153 2154 c->partial = page->next; 2155 2156 n2 = get_node(s, page_to_nid(page)); 2157 if (n != n2) { 2158 if (n) 2159 spin_unlock(&n->list_lock); 2160 2161 n = n2; 2162 spin_lock(&n->list_lock); 2163 } 2164 2165 do { 2166 2167 old.freelist = page->freelist; 2168 old.counters = page->counters; 2169 VM_BUG_ON(!old.frozen); 2170 2171 new.counters = old.counters; 2172 new.freelist = old.freelist; 2173 2174 new.frozen = 0; 2175 2176 } while (!__cmpxchg_double_slab(s, page, 2177 old.freelist, old.counters, 2178 new.freelist, new.counters, 2179 "unfreezing slab")); 2180 2181 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2182 page->next = discard_page; 2183 discard_page = page; 2184 } else { 2185 add_partial(n, page, DEACTIVATE_TO_TAIL); 2186 stat(s, FREE_ADD_PARTIAL); 2187 } 2188 } 2189 2190 if (n) 2191 spin_unlock(&n->list_lock); 2192 2193 while (discard_page) { 2194 page = discard_page; 2195 discard_page = discard_page->next; 2196 2197 stat(s, DEACTIVATE_EMPTY); 2198 discard_slab(s, page); 2199 stat(s, FREE_SLAB); 2200 } 2201 #endif 2202 } 2203 2204 /* 2205 * Put a page that was just frozen (in __slab_free) into a partial page 2206 * slot if available. 2207 * 2208 * If we did not find a slot then simply move all the partials to the 2209 * per node partial list. 2210 */ 2211 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2212 { 2213 #ifdef CONFIG_SLUB_CPU_PARTIAL 2214 struct page *oldpage; 2215 int pages; 2216 int pobjects; 2217 2218 preempt_disable(); 2219 do { 2220 pages = 0; 2221 pobjects = 0; 2222 oldpage = this_cpu_read(s->cpu_slab->partial); 2223 2224 if (oldpage) { 2225 pobjects = oldpage->pobjects; 2226 pages = oldpage->pages; 2227 if (drain && pobjects > s->cpu_partial) { 2228 unsigned long flags; 2229 /* 2230 * partial array is full. Move the existing 2231 * set to the per node partial list. 2232 */ 2233 local_irq_save(flags); 2234 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2235 local_irq_restore(flags); 2236 oldpage = NULL; 2237 pobjects = 0; 2238 pages = 0; 2239 stat(s, CPU_PARTIAL_DRAIN); 2240 } 2241 } 2242 2243 pages++; 2244 pobjects += page->objects - page->inuse; 2245 2246 page->pages = pages; 2247 page->pobjects = pobjects; 2248 page->next = oldpage; 2249 2250 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2251 != oldpage); 2252 if (unlikely(!s->cpu_partial)) { 2253 unsigned long flags; 2254 2255 local_irq_save(flags); 2256 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2257 local_irq_restore(flags); 2258 } 2259 preempt_enable(); 2260 #endif 2261 } 2262 2263 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2264 { 2265 stat(s, CPUSLAB_FLUSH); 2266 deactivate_slab(s, c->page, c->freelist, c); 2267 2268 c->tid = next_tid(c->tid); 2269 } 2270 2271 /* 2272 * Flush cpu slab. 2273 * 2274 * Called from IPI handler with interrupts disabled. 2275 */ 2276 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2277 { 2278 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2279 2280 if (likely(c)) { 2281 if (c->page) 2282 flush_slab(s, c); 2283 2284 unfreeze_partials(s, c); 2285 } 2286 } 2287 2288 static void flush_cpu_slab(void *d) 2289 { 2290 struct kmem_cache *s = d; 2291 2292 __flush_cpu_slab(s, smp_processor_id()); 2293 } 2294 2295 static bool has_cpu_slab(int cpu, void *info) 2296 { 2297 struct kmem_cache *s = info; 2298 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2299 2300 return c->page || slub_percpu_partial(c); 2301 } 2302 2303 static void flush_all(struct kmem_cache *s) 2304 { 2305 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2306 } 2307 2308 /* 2309 * Use the cpu notifier to insure that the cpu slabs are flushed when 2310 * necessary. 2311 */ 2312 static int slub_cpu_dead(unsigned int cpu) 2313 { 2314 struct kmem_cache *s; 2315 unsigned long flags; 2316 2317 mutex_lock(&slab_mutex); 2318 list_for_each_entry(s, &slab_caches, list) { 2319 local_irq_save(flags); 2320 __flush_cpu_slab(s, cpu); 2321 local_irq_restore(flags); 2322 } 2323 mutex_unlock(&slab_mutex); 2324 return 0; 2325 } 2326 2327 /* 2328 * Check if the objects in a per cpu structure fit numa 2329 * locality expectations. 2330 */ 2331 static inline int node_match(struct page *page, int node) 2332 { 2333 #ifdef CONFIG_NUMA 2334 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2335 return 0; 2336 #endif 2337 return 1; 2338 } 2339 2340 #ifdef CONFIG_SLUB_DEBUG 2341 static int count_free(struct page *page) 2342 { 2343 return page->objects - page->inuse; 2344 } 2345 2346 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2347 { 2348 return atomic_long_read(&n->total_objects); 2349 } 2350 #endif /* CONFIG_SLUB_DEBUG */ 2351 2352 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2353 static unsigned long count_partial(struct kmem_cache_node *n, 2354 int (*get_count)(struct page *)) 2355 { 2356 unsigned long flags; 2357 unsigned long x = 0; 2358 struct page *page; 2359 2360 spin_lock_irqsave(&n->list_lock, flags); 2361 list_for_each_entry(page, &n->partial, lru) 2362 x += get_count(page); 2363 spin_unlock_irqrestore(&n->list_lock, flags); 2364 return x; 2365 } 2366 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2367 2368 static noinline void 2369 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2370 { 2371 #ifdef CONFIG_SLUB_DEBUG 2372 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2373 DEFAULT_RATELIMIT_BURST); 2374 int node; 2375 struct kmem_cache_node *n; 2376 2377 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2378 return; 2379 2380 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2381 nid, gfpflags, &gfpflags); 2382 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2383 s->name, s->object_size, s->size, oo_order(s->oo), 2384 oo_order(s->min)); 2385 2386 if (oo_order(s->min) > get_order(s->object_size)) 2387 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2388 s->name); 2389 2390 for_each_kmem_cache_node(s, node, n) { 2391 unsigned long nr_slabs; 2392 unsigned long nr_objs; 2393 unsigned long nr_free; 2394 2395 nr_free = count_partial(n, count_free); 2396 nr_slabs = node_nr_slabs(n); 2397 nr_objs = node_nr_objs(n); 2398 2399 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2400 node, nr_slabs, nr_objs, nr_free); 2401 } 2402 #endif 2403 } 2404 2405 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2406 int node, struct kmem_cache_cpu **pc) 2407 { 2408 void *freelist; 2409 struct kmem_cache_cpu *c = *pc; 2410 struct page *page; 2411 2412 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2413 2414 freelist = get_partial(s, flags, node, c); 2415 2416 if (freelist) 2417 return freelist; 2418 2419 page = new_slab(s, flags, node); 2420 if (page) { 2421 c = raw_cpu_ptr(s->cpu_slab); 2422 if (c->page) 2423 flush_slab(s, c); 2424 2425 /* 2426 * No other reference to the page yet so we can 2427 * muck around with it freely without cmpxchg 2428 */ 2429 freelist = page->freelist; 2430 page->freelist = NULL; 2431 2432 stat(s, ALLOC_SLAB); 2433 c->page = page; 2434 *pc = c; 2435 } else 2436 freelist = NULL; 2437 2438 return freelist; 2439 } 2440 2441 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2442 { 2443 if (unlikely(PageSlabPfmemalloc(page))) 2444 return gfp_pfmemalloc_allowed(gfpflags); 2445 2446 return true; 2447 } 2448 2449 /* 2450 * Check the page->freelist of a page and either transfer the freelist to the 2451 * per cpu freelist or deactivate the page. 2452 * 2453 * The page is still frozen if the return value is not NULL. 2454 * 2455 * If this function returns NULL then the page has been unfrozen. 2456 * 2457 * This function must be called with interrupt disabled. 2458 */ 2459 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2460 { 2461 struct page new; 2462 unsigned long counters; 2463 void *freelist; 2464 2465 do { 2466 freelist = page->freelist; 2467 counters = page->counters; 2468 2469 new.counters = counters; 2470 VM_BUG_ON(!new.frozen); 2471 2472 new.inuse = page->objects; 2473 new.frozen = freelist != NULL; 2474 2475 } while (!__cmpxchg_double_slab(s, page, 2476 freelist, counters, 2477 NULL, new.counters, 2478 "get_freelist")); 2479 2480 return freelist; 2481 } 2482 2483 /* 2484 * Slow path. The lockless freelist is empty or we need to perform 2485 * debugging duties. 2486 * 2487 * Processing is still very fast if new objects have been freed to the 2488 * regular freelist. In that case we simply take over the regular freelist 2489 * as the lockless freelist and zap the regular freelist. 2490 * 2491 * If that is not working then we fall back to the partial lists. We take the 2492 * first element of the freelist as the object to allocate now and move the 2493 * rest of the freelist to the lockless freelist. 2494 * 2495 * And if we were unable to get a new slab from the partial slab lists then 2496 * we need to allocate a new slab. This is the slowest path since it involves 2497 * a call to the page allocator and the setup of a new slab. 2498 * 2499 * Version of __slab_alloc to use when we know that interrupts are 2500 * already disabled (which is the case for bulk allocation). 2501 */ 2502 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2503 unsigned long addr, struct kmem_cache_cpu *c) 2504 { 2505 void *freelist; 2506 struct page *page; 2507 2508 page = c->page; 2509 if (!page) 2510 goto new_slab; 2511 redo: 2512 2513 if (unlikely(!node_match(page, node))) { 2514 int searchnode = node; 2515 2516 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2517 searchnode = node_to_mem_node(node); 2518 2519 if (unlikely(!node_match(page, searchnode))) { 2520 stat(s, ALLOC_NODE_MISMATCH); 2521 deactivate_slab(s, page, c->freelist, c); 2522 goto new_slab; 2523 } 2524 } 2525 2526 /* 2527 * By rights, we should be searching for a slab page that was 2528 * PFMEMALLOC but right now, we are losing the pfmemalloc 2529 * information when the page leaves the per-cpu allocator 2530 */ 2531 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2532 deactivate_slab(s, page, c->freelist, c); 2533 goto new_slab; 2534 } 2535 2536 /* must check again c->freelist in case of cpu migration or IRQ */ 2537 freelist = c->freelist; 2538 if (freelist) 2539 goto load_freelist; 2540 2541 freelist = get_freelist(s, page); 2542 2543 if (!freelist) { 2544 c->page = NULL; 2545 stat(s, DEACTIVATE_BYPASS); 2546 goto new_slab; 2547 } 2548 2549 stat(s, ALLOC_REFILL); 2550 2551 load_freelist: 2552 /* 2553 * freelist is pointing to the list of objects to be used. 2554 * page is pointing to the page from which the objects are obtained. 2555 * That page must be frozen for per cpu allocations to work. 2556 */ 2557 VM_BUG_ON(!c->page->frozen); 2558 c->freelist = get_freepointer(s, freelist); 2559 c->tid = next_tid(c->tid); 2560 return freelist; 2561 2562 new_slab: 2563 2564 if (slub_percpu_partial(c)) { 2565 page = c->page = slub_percpu_partial(c); 2566 slub_set_percpu_partial(c, page); 2567 stat(s, CPU_PARTIAL_ALLOC); 2568 goto redo; 2569 } 2570 2571 freelist = new_slab_objects(s, gfpflags, node, &c); 2572 2573 if (unlikely(!freelist)) { 2574 slab_out_of_memory(s, gfpflags, node); 2575 return NULL; 2576 } 2577 2578 page = c->page; 2579 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2580 goto load_freelist; 2581 2582 /* Only entered in the debug case */ 2583 if (kmem_cache_debug(s) && 2584 !alloc_debug_processing(s, page, freelist, addr)) 2585 goto new_slab; /* Slab failed checks. Next slab needed */ 2586 2587 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2588 return freelist; 2589 } 2590 2591 /* 2592 * Another one that disabled interrupt and compensates for possible 2593 * cpu changes by refetching the per cpu area pointer. 2594 */ 2595 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2596 unsigned long addr, struct kmem_cache_cpu *c) 2597 { 2598 void *p; 2599 unsigned long flags; 2600 2601 local_irq_save(flags); 2602 #ifdef CONFIG_PREEMPT 2603 /* 2604 * We may have been preempted and rescheduled on a different 2605 * cpu before disabling interrupts. Need to reload cpu area 2606 * pointer. 2607 */ 2608 c = this_cpu_ptr(s->cpu_slab); 2609 #endif 2610 2611 p = ___slab_alloc(s, gfpflags, node, addr, c); 2612 local_irq_restore(flags); 2613 return p; 2614 } 2615 2616 /* 2617 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2618 * have the fastpath folded into their functions. So no function call 2619 * overhead for requests that can be satisfied on the fastpath. 2620 * 2621 * The fastpath works by first checking if the lockless freelist can be used. 2622 * If not then __slab_alloc is called for slow processing. 2623 * 2624 * Otherwise we can simply pick the next object from the lockless free list. 2625 */ 2626 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2627 gfp_t gfpflags, int node, unsigned long addr) 2628 { 2629 void *object; 2630 struct kmem_cache_cpu *c; 2631 struct page *page; 2632 unsigned long tid; 2633 2634 s = slab_pre_alloc_hook(s, gfpflags); 2635 if (!s) 2636 return NULL; 2637 redo: 2638 /* 2639 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2640 * enabled. We may switch back and forth between cpus while 2641 * reading from one cpu area. That does not matter as long 2642 * as we end up on the original cpu again when doing the cmpxchg. 2643 * 2644 * We should guarantee that tid and kmem_cache are retrieved on 2645 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2646 * to check if it is matched or not. 2647 */ 2648 do { 2649 tid = this_cpu_read(s->cpu_slab->tid); 2650 c = raw_cpu_ptr(s->cpu_slab); 2651 } while (IS_ENABLED(CONFIG_PREEMPT) && 2652 unlikely(tid != READ_ONCE(c->tid))); 2653 2654 /* 2655 * Irqless object alloc/free algorithm used here depends on sequence 2656 * of fetching cpu_slab's data. tid should be fetched before anything 2657 * on c to guarantee that object and page associated with previous tid 2658 * won't be used with current tid. If we fetch tid first, object and 2659 * page could be one associated with next tid and our alloc/free 2660 * request will be failed. In this case, we will retry. So, no problem. 2661 */ 2662 barrier(); 2663 2664 /* 2665 * The transaction ids are globally unique per cpu and per operation on 2666 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2667 * occurs on the right processor and that there was no operation on the 2668 * linked list in between. 2669 */ 2670 2671 object = c->freelist; 2672 page = c->page; 2673 if (unlikely(!object || !node_match(page, node))) { 2674 object = __slab_alloc(s, gfpflags, node, addr, c); 2675 stat(s, ALLOC_SLOWPATH); 2676 } else { 2677 void *next_object = get_freepointer_safe(s, object); 2678 2679 /* 2680 * The cmpxchg will only match if there was no additional 2681 * operation and if we are on the right processor. 2682 * 2683 * The cmpxchg does the following atomically (without lock 2684 * semantics!) 2685 * 1. Relocate first pointer to the current per cpu area. 2686 * 2. Verify that tid and freelist have not been changed 2687 * 3. If they were not changed replace tid and freelist 2688 * 2689 * Since this is without lock semantics the protection is only 2690 * against code executing on this cpu *not* from access by 2691 * other cpus. 2692 */ 2693 if (unlikely(!this_cpu_cmpxchg_double( 2694 s->cpu_slab->freelist, s->cpu_slab->tid, 2695 object, tid, 2696 next_object, next_tid(tid)))) { 2697 2698 note_cmpxchg_failure("slab_alloc", s, tid); 2699 goto redo; 2700 } 2701 prefetch_freepointer(s, next_object); 2702 stat(s, ALLOC_FASTPATH); 2703 } 2704 2705 if (unlikely(gfpflags & __GFP_ZERO) && object) 2706 memset(object, 0, s->object_size); 2707 2708 slab_post_alloc_hook(s, gfpflags, 1, &object); 2709 2710 return object; 2711 } 2712 2713 static __always_inline void *slab_alloc(struct kmem_cache *s, 2714 gfp_t gfpflags, unsigned long addr) 2715 { 2716 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2717 } 2718 2719 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2720 { 2721 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2722 2723 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2724 s->size, gfpflags); 2725 2726 return ret; 2727 } 2728 EXPORT_SYMBOL(kmem_cache_alloc); 2729 2730 #ifdef CONFIG_TRACING 2731 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2732 { 2733 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2734 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2735 kasan_kmalloc(s, ret, size, gfpflags); 2736 return ret; 2737 } 2738 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2739 #endif 2740 2741 #ifdef CONFIG_NUMA 2742 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2743 { 2744 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2745 2746 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2747 s->object_size, s->size, gfpflags, node); 2748 2749 return ret; 2750 } 2751 EXPORT_SYMBOL(kmem_cache_alloc_node); 2752 2753 #ifdef CONFIG_TRACING 2754 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2755 gfp_t gfpflags, 2756 int node, size_t size) 2757 { 2758 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2759 2760 trace_kmalloc_node(_RET_IP_, ret, 2761 size, s->size, gfpflags, node); 2762 2763 kasan_kmalloc(s, ret, size, gfpflags); 2764 return ret; 2765 } 2766 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2767 #endif 2768 #endif 2769 2770 /* 2771 * Slow path handling. This may still be called frequently since objects 2772 * have a longer lifetime than the cpu slabs in most processing loads. 2773 * 2774 * So we still attempt to reduce cache line usage. Just take the slab 2775 * lock and free the item. If there is no additional partial page 2776 * handling required then we can return immediately. 2777 */ 2778 static void __slab_free(struct kmem_cache *s, struct page *page, 2779 void *head, void *tail, int cnt, 2780 unsigned long addr) 2781 2782 { 2783 void *prior; 2784 int was_frozen; 2785 struct page new; 2786 unsigned long counters; 2787 struct kmem_cache_node *n = NULL; 2788 unsigned long uninitialized_var(flags); 2789 2790 stat(s, FREE_SLOWPATH); 2791 2792 if (kmem_cache_debug(s) && 2793 !free_debug_processing(s, page, head, tail, cnt, addr)) 2794 return; 2795 2796 do { 2797 if (unlikely(n)) { 2798 spin_unlock_irqrestore(&n->list_lock, flags); 2799 n = NULL; 2800 } 2801 prior = page->freelist; 2802 counters = page->counters; 2803 set_freepointer(s, tail, prior); 2804 new.counters = counters; 2805 was_frozen = new.frozen; 2806 new.inuse -= cnt; 2807 if ((!new.inuse || !prior) && !was_frozen) { 2808 2809 if (kmem_cache_has_cpu_partial(s) && !prior) { 2810 2811 /* 2812 * Slab was on no list before and will be 2813 * partially empty 2814 * We can defer the list move and instead 2815 * freeze it. 2816 */ 2817 new.frozen = 1; 2818 2819 } else { /* Needs to be taken off a list */ 2820 2821 n = get_node(s, page_to_nid(page)); 2822 /* 2823 * Speculatively acquire the list_lock. 2824 * If the cmpxchg does not succeed then we may 2825 * drop the list_lock without any processing. 2826 * 2827 * Otherwise the list_lock will synchronize with 2828 * other processors updating the list of slabs. 2829 */ 2830 spin_lock_irqsave(&n->list_lock, flags); 2831 2832 } 2833 } 2834 2835 } while (!cmpxchg_double_slab(s, page, 2836 prior, counters, 2837 head, new.counters, 2838 "__slab_free")); 2839 2840 if (likely(!n)) { 2841 2842 /* 2843 * If we just froze the page then put it onto the 2844 * per cpu partial list. 2845 */ 2846 if (new.frozen && !was_frozen) { 2847 put_cpu_partial(s, page, 1); 2848 stat(s, CPU_PARTIAL_FREE); 2849 } 2850 /* 2851 * The list lock was not taken therefore no list 2852 * activity can be necessary. 2853 */ 2854 if (was_frozen) 2855 stat(s, FREE_FROZEN); 2856 return; 2857 } 2858 2859 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2860 goto slab_empty; 2861 2862 /* 2863 * Objects left in the slab. If it was not on the partial list before 2864 * then add it. 2865 */ 2866 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2867 if (kmem_cache_debug(s)) 2868 remove_full(s, n, page); 2869 add_partial(n, page, DEACTIVATE_TO_TAIL); 2870 stat(s, FREE_ADD_PARTIAL); 2871 } 2872 spin_unlock_irqrestore(&n->list_lock, flags); 2873 return; 2874 2875 slab_empty: 2876 if (prior) { 2877 /* 2878 * Slab on the partial list. 2879 */ 2880 remove_partial(n, page); 2881 stat(s, FREE_REMOVE_PARTIAL); 2882 } else { 2883 /* Slab must be on the full list */ 2884 remove_full(s, n, page); 2885 } 2886 2887 spin_unlock_irqrestore(&n->list_lock, flags); 2888 stat(s, FREE_SLAB); 2889 discard_slab(s, page); 2890 } 2891 2892 /* 2893 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2894 * can perform fastpath freeing without additional function calls. 2895 * 2896 * The fastpath is only possible if we are freeing to the current cpu slab 2897 * of this processor. This typically the case if we have just allocated 2898 * the item before. 2899 * 2900 * If fastpath is not possible then fall back to __slab_free where we deal 2901 * with all sorts of special processing. 2902 * 2903 * Bulk free of a freelist with several objects (all pointing to the 2904 * same page) possible by specifying head and tail ptr, plus objects 2905 * count (cnt). Bulk free indicated by tail pointer being set. 2906 */ 2907 static __always_inline void do_slab_free(struct kmem_cache *s, 2908 struct page *page, void *head, void *tail, 2909 int cnt, unsigned long addr) 2910 { 2911 void *tail_obj = tail ? : head; 2912 struct kmem_cache_cpu *c; 2913 unsigned long tid; 2914 redo: 2915 /* 2916 * Determine the currently cpus per cpu slab. 2917 * The cpu may change afterward. However that does not matter since 2918 * data is retrieved via this pointer. If we are on the same cpu 2919 * during the cmpxchg then the free will succeed. 2920 */ 2921 do { 2922 tid = this_cpu_read(s->cpu_slab->tid); 2923 c = raw_cpu_ptr(s->cpu_slab); 2924 } while (IS_ENABLED(CONFIG_PREEMPT) && 2925 unlikely(tid != READ_ONCE(c->tid))); 2926 2927 /* Same with comment on barrier() in slab_alloc_node() */ 2928 barrier(); 2929 2930 if (likely(page == c->page)) { 2931 set_freepointer(s, tail_obj, c->freelist); 2932 2933 if (unlikely(!this_cpu_cmpxchg_double( 2934 s->cpu_slab->freelist, s->cpu_slab->tid, 2935 c->freelist, tid, 2936 head, next_tid(tid)))) { 2937 2938 note_cmpxchg_failure("slab_free", s, tid); 2939 goto redo; 2940 } 2941 stat(s, FREE_FASTPATH); 2942 } else 2943 __slab_free(s, page, head, tail_obj, cnt, addr); 2944 2945 } 2946 2947 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2948 void *head, void *tail, int cnt, 2949 unsigned long addr) 2950 { 2951 /* 2952 * With KASAN enabled slab_free_freelist_hook modifies the freelist 2953 * to remove objects, whose reuse must be delayed. 2954 */ 2955 if (slab_free_freelist_hook(s, &head, &tail)) 2956 do_slab_free(s, page, head, tail, cnt, addr); 2957 } 2958 2959 #ifdef CONFIG_KASAN 2960 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2961 { 2962 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2963 } 2964 #endif 2965 2966 void kmem_cache_free(struct kmem_cache *s, void *x) 2967 { 2968 s = cache_from_obj(s, x); 2969 if (!s) 2970 return; 2971 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2972 trace_kmem_cache_free(_RET_IP_, x); 2973 } 2974 EXPORT_SYMBOL(kmem_cache_free); 2975 2976 struct detached_freelist { 2977 struct page *page; 2978 void *tail; 2979 void *freelist; 2980 int cnt; 2981 struct kmem_cache *s; 2982 }; 2983 2984 /* 2985 * This function progressively scans the array with free objects (with 2986 * a limited look ahead) and extract objects belonging to the same 2987 * page. It builds a detached freelist directly within the given 2988 * page/objects. This can happen without any need for 2989 * synchronization, because the objects are owned by running process. 2990 * The freelist is build up as a single linked list in the objects. 2991 * The idea is, that this detached freelist can then be bulk 2992 * transferred to the real freelist(s), but only requiring a single 2993 * synchronization primitive. Look ahead in the array is limited due 2994 * to performance reasons. 2995 */ 2996 static inline 2997 int build_detached_freelist(struct kmem_cache *s, size_t size, 2998 void **p, struct detached_freelist *df) 2999 { 3000 size_t first_skipped_index = 0; 3001 int lookahead = 3; 3002 void *object; 3003 struct page *page; 3004 3005 /* Always re-init detached_freelist */ 3006 df->page = NULL; 3007 3008 do { 3009 object = p[--size]; 3010 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3011 } while (!object && size); 3012 3013 if (!object) 3014 return 0; 3015 3016 page = virt_to_head_page(object); 3017 if (!s) { 3018 /* Handle kalloc'ed objects */ 3019 if (unlikely(!PageSlab(page))) { 3020 BUG_ON(!PageCompound(page)); 3021 kfree_hook(object); 3022 __free_pages(page, compound_order(page)); 3023 p[size] = NULL; /* mark object processed */ 3024 return size; 3025 } 3026 /* Derive kmem_cache from object */ 3027 df->s = page->slab_cache; 3028 } else { 3029 df->s = cache_from_obj(s, object); /* Support for memcg */ 3030 } 3031 3032 /* Start new detached freelist */ 3033 df->page = page; 3034 set_freepointer(df->s, object, NULL); 3035 df->tail = object; 3036 df->freelist = object; 3037 p[size] = NULL; /* mark object processed */ 3038 df->cnt = 1; 3039 3040 while (size) { 3041 object = p[--size]; 3042 if (!object) 3043 continue; /* Skip processed objects */ 3044 3045 /* df->page is always set at this point */ 3046 if (df->page == virt_to_head_page(object)) { 3047 /* Opportunity build freelist */ 3048 set_freepointer(df->s, object, df->freelist); 3049 df->freelist = object; 3050 df->cnt++; 3051 p[size] = NULL; /* mark object processed */ 3052 3053 continue; 3054 } 3055 3056 /* Limit look ahead search */ 3057 if (!--lookahead) 3058 break; 3059 3060 if (!first_skipped_index) 3061 first_skipped_index = size + 1; 3062 } 3063 3064 return first_skipped_index; 3065 } 3066 3067 /* Note that interrupts must be enabled when calling this function. */ 3068 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3069 { 3070 if (WARN_ON(!size)) 3071 return; 3072 3073 do { 3074 struct detached_freelist df; 3075 3076 size = build_detached_freelist(s, size, p, &df); 3077 if (!df.page) 3078 continue; 3079 3080 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3081 } while (likely(size)); 3082 } 3083 EXPORT_SYMBOL(kmem_cache_free_bulk); 3084 3085 /* Note that interrupts must be enabled when calling this function. */ 3086 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3087 void **p) 3088 { 3089 struct kmem_cache_cpu *c; 3090 int i; 3091 3092 /* memcg and kmem_cache debug support */ 3093 s = slab_pre_alloc_hook(s, flags); 3094 if (unlikely(!s)) 3095 return false; 3096 /* 3097 * Drain objects in the per cpu slab, while disabling local 3098 * IRQs, which protects against PREEMPT and interrupts 3099 * handlers invoking normal fastpath. 3100 */ 3101 local_irq_disable(); 3102 c = this_cpu_ptr(s->cpu_slab); 3103 3104 for (i = 0; i < size; i++) { 3105 void *object = c->freelist; 3106 3107 if (unlikely(!object)) { 3108 /* 3109 * Invoking slow path likely have side-effect 3110 * of re-populating per CPU c->freelist 3111 */ 3112 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3113 _RET_IP_, c); 3114 if (unlikely(!p[i])) 3115 goto error; 3116 3117 c = this_cpu_ptr(s->cpu_slab); 3118 continue; /* goto for-loop */ 3119 } 3120 c->freelist = get_freepointer(s, object); 3121 p[i] = object; 3122 } 3123 c->tid = next_tid(c->tid); 3124 local_irq_enable(); 3125 3126 /* Clear memory outside IRQ disabled fastpath loop */ 3127 if (unlikely(flags & __GFP_ZERO)) { 3128 int j; 3129 3130 for (j = 0; j < i; j++) 3131 memset(p[j], 0, s->object_size); 3132 } 3133 3134 /* memcg and kmem_cache debug support */ 3135 slab_post_alloc_hook(s, flags, size, p); 3136 return i; 3137 error: 3138 local_irq_enable(); 3139 slab_post_alloc_hook(s, flags, i, p); 3140 __kmem_cache_free_bulk(s, i, p); 3141 return 0; 3142 } 3143 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3144 3145 3146 /* 3147 * Object placement in a slab is made very easy because we always start at 3148 * offset 0. If we tune the size of the object to the alignment then we can 3149 * get the required alignment by putting one properly sized object after 3150 * another. 3151 * 3152 * Notice that the allocation order determines the sizes of the per cpu 3153 * caches. Each processor has always one slab available for allocations. 3154 * Increasing the allocation order reduces the number of times that slabs 3155 * must be moved on and off the partial lists and is therefore a factor in 3156 * locking overhead. 3157 */ 3158 3159 /* 3160 * Mininum / Maximum order of slab pages. This influences locking overhead 3161 * and slab fragmentation. A higher order reduces the number of partial slabs 3162 * and increases the number of allocations possible without having to 3163 * take the list_lock. 3164 */ 3165 static unsigned int slub_min_order; 3166 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3167 static unsigned int slub_min_objects; 3168 3169 /* 3170 * Calculate the order of allocation given an slab object size. 3171 * 3172 * The order of allocation has significant impact on performance and other 3173 * system components. Generally order 0 allocations should be preferred since 3174 * order 0 does not cause fragmentation in the page allocator. Larger objects 3175 * be problematic to put into order 0 slabs because there may be too much 3176 * unused space left. We go to a higher order if more than 1/16th of the slab 3177 * would be wasted. 3178 * 3179 * In order to reach satisfactory performance we must ensure that a minimum 3180 * number of objects is in one slab. Otherwise we may generate too much 3181 * activity on the partial lists which requires taking the list_lock. This is 3182 * less a concern for large slabs though which are rarely used. 3183 * 3184 * slub_max_order specifies the order where we begin to stop considering the 3185 * number of objects in a slab as critical. If we reach slub_max_order then 3186 * we try to keep the page order as low as possible. So we accept more waste 3187 * of space in favor of a small page order. 3188 * 3189 * Higher order allocations also allow the placement of more objects in a 3190 * slab and thereby reduce object handling overhead. If the user has 3191 * requested a higher mininum order then we start with that one instead of 3192 * the smallest order which will fit the object. 3193 */ 3194 static inline unsigned int slab_order(unsigned int size, 3195 unsigned int min_objects, unsigned int max_order, 3196 unsigned int fract_leftover) 3197 { 3198 unsigned int min_order = slub_min_order; 3199 unsigned int order; 3200 3201 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3202 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3203 3204 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3205 order <= max_order; order++) { 3206 3207 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3208 unsigned int rem; 3209 3210 rem = slab_size % size; 3211 3212 if (rem <= slab_size / fract_leftover) 3213 break; 3214 } 3215 3216 return order; 3217 } 3218 3219 static inline int calculate_order(unsigned int size) 3220 { 3221 unsigned int order; 3222 unsigned int min_objects; 3223 unsigned int max_objects; 3224 3225 /* 3226 * Attempt to find best configuration for a slab. This 3227 * works by first attempting to generate a layout with 3228 * the best configuration and backing off gradually. 3229 * 3230 * First we increase the acceptable waste in a slab. Then 3231 * we reduce the minimum objects required in a slab. 3232 */ 3233 min_objects = slub_min_objects; 3234 if (!min_objects) 3235 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3236 max_objects = order_objects(slub_max_order, size); 3237 min_objects = min(min_objects, max_objects); 3238 3239 while (min_objects > 1) { 3240 unsigned int fraction; 3241 3242 fraction = 16; 3243 while (fraction >= 4) { 3244 order = slab_order(size, min_objects, 3245 slub_max_order, fraction); 3246 if (order <= slub_max_order) 3247 return order; 3248 fraction /= 2; 3249 } 3250 min_objects--; 3251 } 3252 3253 /* 3254 * We were unable to place multiple objects in a slab. Now 3255 * lets see if we can place a single object there. 3256 */ 3257 order = slab_order(size, 1, slub_max_order, 1); 3258 if (order <= slub_max_order) 3259 return order; 3260 3261 /* 3262 * Doh this slab cannot be placed using slub_max_order. 3263 */ 3264 order = slab_order(size, 1, MAX_ORDER, 1); 3265 if (order < MAX_ORDER) 3266 return order; 3267 return -ENOSYS; 3268 } 3269 3270 static void 3271 init_kmem_cache_node(struct kmem_cache_node *n) 3272 { 3273 n->nr_partial = 0; 3274 spin_lock_init(&n->list_lock); 3275 INIT_LIST_HEAD(&n->partial); 3276 #ifdef CONFIG_SLUB_DEBUG 3277 atomic_long_set(&n->nr_slabs, 0); 3278 atomic_long_set(&n->total_objects, 0); 3279 INIT_LIST_HEAD(&n->full); 3280 #endif 3281 } 3282 3283 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3284 { 3285 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3286 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3287 3288 /* 3289 * Must align to double word boundary for the double cmpxchg 3290 * instructions to work; see __pcpu_double_call_return_bool(). 3291 */ 3292 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3293 2 * sizeof(void *)); 3294 3295 if (!s->cpu_slab) 3296 return 0; 3297 3298 init_kmem_cache_cpus(s); 3299 3300 return 1; 3301 } 3302 3303 static struct kmem_cache *kmem_cache_node; 3304 3305 /* 3306 * No kmalloc_node yet so do it by hand. We know that this is the first 3307 * slab on the node for this slabcache. There are no concurrent accesses 3308 * possible. 3309 * 3310 * Note that this function only works on the kmem_cache_node 3311 * when allocating for the kmem_cache_node. This is used for bootstrapping 3312 * memory on a fresh node that has no slab structures yet. 3313 */ 3314 static void early_kmem_cache_node_alloc(int node) 3315 { 3316 struct page *page; 3317 struct kmem_cache_node *n; 3318 3319 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3320 3321 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3322 3323 BUG_ON(!page); 3324 if (page_to_nid(page) != node) { 3325 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3326 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3327 } 3328 3329 n = page->freelist; 3330 BUG_ON(!n); 3331 page->freelist = get_freepointer(kmem_cache_node, n); 3332 page->inuse = 1; 3333 page->frozen = 0; 3334 kmem_cache_node->node[node] = n; 3335 #ifdef CONFIG_SLUB_DEBUG 3336 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3337 init_tracking(kmem_cache_node, n); 3338 #endif 3339 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3340 GFP_KERNEL); 3341 init_kmem_cache_node(n); 3342 inc_slabs_node(kmem_cache_node, node, page->objects); 3343 3344 /* 3345 * No locks need to be taken here as it has just been 3346 * initialized and there is no concurrent access. 3347 */ 3348 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3349 } 3350 3351 static void free_kmem_cache_nodes(struct kmem_cache *s) 3352 { 3353 int node; 3354 struct kmem_cache_node *n; 3355 3356 for_each_kmem_cache_node(s, node, n) { 3357 s->node[node] = NULL; 3358 kmem_cache_free(kmem_cache_node, n); 3359 } 3360 } 3361 3362 void __kmem_cache_release(struct kmem_cache *s) 3363 { 3364 cache_random_seq_destroy(s); 3365 free_percpu(s->cpu_slab); 3366 free_kmem_cache_nodes(s); 3367 } 3368 3369 static int init_kmem_cache_nodes(struct kmem_cache *s) 3370 { 3371 int node; 3372 3373 for_each_node_state(node, N_NORMAL_MEMORY) { 3374 struct kmem_cache_node *n; 3375 3376 if (slab_state == DOWN) { 3377 early_kmem_cache_node_alloc(node); 3378 continue; 3379 } 3380 n = kmem_cache_alloc_node(kmem_cache_node, 3381 GFP_KERNEL, node); 3382 3383 if (!n) { 3384 free_kmem_cache_nodes(s); 3385 return 0; 3386 } 3387 3388 init_kmem_cache_node(n); 3389 s->node[node] = n; 3390 } 3391 return 1; 3392 } 3393 3394 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3395 { 3396 if (min < MIN_PARTIAL) 3397 min = MIN_PARTIAL; 3398 else if (min > MAX_PARTIAL) 3399 min = MAX_PARTIAL; 3400 s->min_partial = min; 3401 } 3402 3403 static void set_cpu_partial(struct kmem_cache *s) 3404 { 3405 #ifdef CONFIG_SLUB_CPU_PARTIAL 3406 /* 3407 * cpu_partial determined the maximum number of objects kept in the 3408 * per cpu partial lists of a processor. 3409 * 3410 * Per cpu partial lists mainly contain slabs that just have one 3411 * object freed. If they are used for allocation then they can be 3412 * filled up again with minimal effort. The slab will never hit the 3413 * per node partial lists and therefore no locking will be required. 3414 * 3415 * This setting also determines 3416 * 3417 * A) The number of objects from per cpu partial slabs dumped to the 3418 * per node list when we reach the limit. 3419 * B) The number of objects in cpu partial slabs to extract from the 3420 * per node list when we run out of per cpu objects. We only fetch 3421 * 50% to keep some capacity around for frees. 3422 */ 3423 if (!kmem_cache_has_cpu_partial(s)) 3424 s->cpu_partial = 0; 3425 else if (s->size >= PAGE_SIZE) 3426 s->cpu_partial = 2; 3427 else if (s->size >= 1024) 3428 s->cpu_partial = 6; 3429 else if (s->size >= 256) 3430 s->cpu_partial = 13; 3431 else 3432 s->cpu_partial = 30; 3433 #endif 3434 } 3435 3436 /* 3437 * calculate_sizes() determines the order and the distribution of data within 3438 * a slab object. 3439 */ 3440 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3441 { 3442 slab_flags_t flags = s->flags; 3443 unsigned int size = s->object_size; 3444 unsigned int order; 3445 3446 /* 3447 * Round up object size to the next word boundary. We can only 3448 * place the free pointer at word boundaries and this determines 3449 * the possible location of the free pointer. 3450 */ 3451 size = ALIGN(size, sizeof(void *)); 3452 3453 #ifdef CONFIG_SLUB_DEBUG 3454 /* 3455 * Determine if we can poison the object itself. If the user of 3456 * the slab may touch the object after free or before allocation 3457 * then we should never poison the object itself. 3458 */ 3459 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3460 !s->ctor) 3461 s->flags |= __OBJECT_POISON; 3462 else 3463 s->flags &= ~__OBJECT_POISON; 3464 3465 3466 /* 3467 * If we are Redzoning then check if there is some space between the 3468 * end of the object and the free pointer. If not then add an 3469 * additional word to have some bytes to store Redzone information. 3470 */ 3471 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3472 size += sizeof(void *); 3473 #endif 3474 3475 /* 3476 * With that we have determined the number of bytes in actual use 3477 * by the object. This is the potential offset to the free pointer. 3478 */ 3479 s->inuse = size; 3480 3481 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3482 s->ctor)) { 3483 /* 3484 * Relocate free pointer after the object if it is not 3485 * permitted to overwrite the first word of the object on 3486 * kmem_cache_free. 3487 * 3488 * This is the case if we do RCU, have a constructor or 3489 * destructor or are poisoning the objects. 3490 */ 3491 s->offset = size; 3492 size += sizeof(void *); 3493 } 3494 3495 #ifdef CONFIG_SLUB_DEBUG 3496 if (flags & SLAB_STORE_USER) 3497 /* 3498 * Need to store information about allocs and frees after 3499 * the object. 3500 */ 3501 size += 2 * sizeof(struct track); 3502 #endif 3503 3504 kasan_cache_create(s, &size, &s->flags); 3505 #ifdef CONFIG_SLUB_DEBUG 3506 if (flags & SLAB_RED_ZONE) { 3507 /* 3508 * Add some empty padding so that we can catch 3509 * overwrites from earlier objects rather than let 3510 * tracking information or the free pointer be 3511 * corrupted if a user writes before the start 3512 * of the object. 3513 */ 3514 size += sizeof(void *); 3515 3516 s->red_left_pad = sizeof(void *); 3517 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3518 size += s->red_left_pad; 3519 } 3520 #endif 3521 3522 /* 3523 * SLUB stores one object immediately after another beginning from 3524 * offset 0. In order to align the objects we have to simply size 3525 * each object to conform to the alignment. 3526 */ 3527 size = ALIGN(size, s->align); 3528 s->size = size; 3529 if (forced_order >= 0) 3530 order = forced_order; 3531 else 3532 order = calculate_order(size); 3533 3534 if ((int)order < 0) 3535 return 0; 3536 3537 s->allocflags = 0; 3538 if (order) 3539 s->allocflags |= __GFP_COMP; 3540 3541 if (s->flags & SLAB_CACHE_DMA) 3542 s->allocflags |= GFP_DMA; 3543 3544 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3545 s->allocflags |= __GFP_RECLAIMABLE; 3546 3547 /* 3548 * Determine the number of objects per slab 3549 */ 3550 s->oo = oo_make(order, size); 3551 s->min = oo_make(get_order(size), size); 3552 if (oo_objects(s->oo) > oo_objects(s->max)) 3553 s->max = s->oo; 3554 3555 return !!oo_objects(s->oo); 3556 } 3557 3558 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3559 { 3560 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3561 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3562 s->random = get_random_long(); 3563 #endif 3564 3565 if (!calculate_sizes(s, -1)) 3566 goto error; 3567 if (disable_higher_order_debug) { 3568 /* 3569 * Disable debugging flags that store metadata if the min slab 3570 * order increased. 3571 */ 3572 if (get_order(s->size) > get_order(s->object_size)) { 3573 s->flags &= ~DEBUG_METADATA_FLAGS; 3574 s->offset = 0; 3575 if (!calculate_sizes(s, -1)) 3576 goto error; 3577 } 3578 } 3579 3580 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3581 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3582 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3583 /* Enable fast mode */ 3584 s->flags |= __CMPXCHG_DOUBLE; 3585 #endif 3586 3587 /* 3588 * The larger the object size is, the more pages we want on the partial 3589 * list to avoid pounding the page allocator excessively. 3590 */ 3591 set_min_partial(s, ilog2(s->size) / 2); 3592 3593 set_cpu_partial(s); 3594 3595 #ifdef CONFIG_NUMA 3596 s->remote_node_defrag_ratio = 1000; 3597 #endif 3598 3599 /* Initialize the pre-computed randomized freelist if slab is up */ 3600 if (slab_state >= UP) { 3601 if (init_cache_random_seq(s)) 3602 goto error; 3603 } 3604 3605 if (!init_kmem_cache_nodes(s)) 3606 goto error; 3607 3608 if (alloc_kmem_cache_cpus(s)) 3609 return 0; 3610 3611 free_kmem_cache_nodes(s); 3612 error: 3613 if (flags & SLAB_PANIC) 3614 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", 3615 s->name, s->size, s->size, 3616 oo_order(s->oo), s->offset, (unsigned long)flags); 3617 return -EINVAL; 3618 } 3619 3620 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3621 const char *text) 3622 { 3623 #ifdef CONFIG_SLUB_DEBUG 3624 void *addr = page_address(page); 3625 void *p; 3626 unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects), 3627 sizeof(long), 3628 GFP_ATOMIC); 3629 if (!map) 3630 return; 3631 slab_err(s, page, text, s->name); 3632 slab_lock(page); 3633 3634 get_map(s, page, map); 3635 for_each_object(p, s, addr, page->objects) { 3636 3637 if (!test_bit(slab_index(p, s, addr), map)) { 3638 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3639 print_tracking(s, p); 3640 } 3641 } 3642 slab_unlock(page); 3643 kfree(map); 3644 #endif 3645 } 3646 3647 /* 3648 * Attempt to free all partial slabs on a node. 3649 * This is called from __kmem_cache_shutdown(). We must take list_lock 3650 * because sysfs file might still access partial list after the shutdowning. 3651 */ 3652 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3653 { 3654 LIST_HEAD(discard); 3655 struct page *page, *h; 3656 3657 BUG_ON(irqs_disabled()); 3658 spin_lock_irq(&n->list_lock); 3659 list_for_each_entry_safe(page, h, &n->partial, lru) { 3660 if (!page->inuse) { 3661 remove_partial(n, page); 3662 list_add(&page->lru, &discard); 3663 } else { 3664 list_slab_objects(s, page, 3665 "Objects remaining in %s on __kmem_cache_shutdown()"); 3666 } 3667 } 3668 spin_unlock_irq(&n->list_lock); 3669 3670 list_for_each_entry_safe(page, h, &discard, lru) 3671 discard_slab(s, page); 3672 } 3673 3674 bool __kmem_cache_empty(struct kmem_cache *s) 3675 { 3676 int node; 3677 struct kmem_cache_node *n; 3678 3679 for_each_kmem_cache_node(s, node, n) 3680 if (n->nr_partial || slabs_node(s, node)) 3681 return false; 3682 return true; 3683 } 3684 3685 /* 3686 * Release all resources used by a slab cache. 3687 */ 3688 int __kmem_cache_shutdown(struct kmem_cache *s) 3689 { 3690 int node; 3691 struct kmem_cache_node *n; 3692 3693 flush_all(s); 3694 /* Attempt to free all objects */ 3695 for_each_kmem_cache_node(s, node, n) { 3696 free_partial(s, n); 3697 if (n->nr_partial || slabs_node(s, node)) 3698 return 1; 3699 } 3700 sysfs_slab_remove(s); 3701 return 0; 3702 } 3703 3704 /******************************************************************** 3705 * Kmalloc subsystem 3706 *******************************************************************/ 3707 3708 static int __init setup_slub_min_order(char *str) 3709 { 3710 get_option(&str, (int *)&slub_min_order); 3711 3712 return 1; 3713 } 3714 3715 __setup("slub_min_order=", setup_slub_min_order); 3716 3717 static int __init setup_slub_max_order(char *str) 3718 { 3719 get_option(&str, (int *)&slub_max_order); 3720 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3721 3722 return 1; 3723 } 3724 3725 __setup("slub_max_order=", setup_slub_max_order); 3726 3727 static int __init setup_slub_min_objects(char *str) 3728 { 3729 get_option(&str, (int *)&slub_min_objects); 3730 3731 return 1; 3732 } 3733 3734 __setup("slub_min_objects=", setup_slub_min_objects); 3735 3736 void *__kmalloc(size_t size, gfp_t flags) 3737 { 3738 struct kmem_cache *s; 3739 void *ret; 3740 3741 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3742 return kmalloc_large(size, flags); 3743 3744 s = kmalloc_slab(size, flags); 3745 3746 if (unlikely(ZERO_OR_NULL_PTR(s))) 3747 return s; 3748 3749 ret = slab_alloc(s, flags, _RET_IP_); 3750 3751 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3752 3753 kasan_kmalloc(s, ret, size, flags); 3754 3755 return ret; 3756 } 3757 EXPORT_SYMBOL(__kmalloc); 3758 3759 #ifdef CONFIG_NUMA 3760 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3761 { 3762 struct page *page; 3763 void *ptr = NULL; 3764 3765 flags |= __GFP_COMP; 3766 page = alloc_pages_node(node, flags, get_order(size)); 3767 if (page) 3768 ptr = page_address(page); 3769 3770 kmalloc_large_node_hook(ptr, size, flags); 3771 return ptr; 3772 } 3773 3774 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3775 { 3776 struct kmem_cache *s; 3777 void *ret; 3778 3779 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3780 ret = kmalloc_large_node(size, flags, node); 3781 3782 trace_kmalloc_node(_RET_IP_, ret, 3783 size, PAGE_SIZE << get_order(size), 3784 flags, node); 3785 3786 return ret; 3787 } 3788 3789 s = kmalloc_slab(size, flags); 3790 3791 if (unlikely(ZERO_OR_NULL_PTR(s))) 3792 return s; 3793 3794 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3795 3796 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3797 3798 kasan_kmalloc(s, ret, size, flags); 3799 3800 return ret; 3801 } 3802 EXPORT_SYMBOL(__kmalloc_node); 3803 #endif 3804 3805 #ifdef CONFIG_HARDENED_USERCOPY 3806 /* 3807 * Rejects incorrectly sized objects and objects that are to be copied 3808 * to/from userspace but do not fall entirely within the containing slab 3809 * cache's usercopy region. 3810 * 3811 * Returns NULL if check passes, otherwise const char * to name of cache 3812 * to indicate an error. 3813 */ 3814 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3815 bool to_user) 3816 { 3817 struct kmem_cache *s; 3818 unsigned int offset; 3819 size_t object_size; 3820 3821 /* Find object and usable object size. */ 3822 s = page->slab_cache; 3823 3824 /* Reject impossible pointers. */ 3825 if (ptr < page_address(page)) 3826 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3827 to_user, 0, n); 3828 3829 /* Find offset within object. */ 3830 offset = (ptr - page_address(page)) % s->size; 3831 3832 /* Adjust for redzone and reject if within the redzone. */ 3833 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3834 if (offset < s->red_left_pad) 3835 usercopy_abort("SLUB object in left red zone", 3836 s->name, to_user, offset, n); 3837 offset -= s->red_left_pad; 3838 } 3839 3840 /* Allow address range falling entirely within usercopy region. */ 3841 if (offset >= s->useroffset && 3842 offset - s->useroffset <= s->usersize && 3843 n <= s->useroffset - offset + s->usersize) 3844 return; 3845 3846 /* 3847 * If the copy is still within the allocated object, produce 3848 * a warning instead of rejecting the copy. This is intended 3849 * to be a temporary method to find any missing usercopy 3850 * whitelists. 3851 */ 3852 object_size = slab_ksize(s); 3853 if (usercopy_fallback && 3854 offset <= object_size && n <= object_size - offset) { 3855 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3856 return; 3857 } 3858 3859 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3860 } 3861 #endif /* CONFIG_HARDENED_USERCOPY */ 3862 3863 static size_t __ksize(const void *object) 3864 { 3865 struct page *page; 3866 3867 if (unlikely(object == ZERO_SIZE_PTR)) 3868 return 0; 3869 3870 page = virt_to_head_page(object); 3871 3872 if (unlikely(!PageSlab(page))) { 3873 WARN_ON(!PageCompound(page)); 3874 return PAGE_SIZE << compound_order(page); 3875 } 3876 3877 return slab_ksize(page->slab_cache); 3878 } 3879 3880 size_t ksize(const void *object) 3881 { 3882 size_t size = __ksize(object); 3883 /* We assume that ksize callers could use whole allocated area, 3884 * so we need to unpoison this area. 3885 */ 3886 kasan_unpoison_shadow(object, size); 3887 return size; 3888 } 3889 EXPORT_SYMBOL(ksize); 3890 3891 void kfree(const void *x) 3892 { 3893 struct page *page; 3894 void *object = (void *)x; 3895 3896 trace_kfree(_RET_IP_, x); 3897 3898 if (unlikely(ZERO_OR_NULL_PTR(x))) 3899 return; 3900 3901 page = virt_to_head_page(x); 3902 if (unlikely(!PageSlab(page))) { 3903 BUG_ON(!PageCompound(page)); 3904 kfree_hook(object); 3905 __free_pages(page, compound_order(page)); 3906 return; 3907 } 3908 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3909 } 3910 EXPORT_SYMBOL(kfree); 3911 3912 #define SHRINK_PROMOTE_MAX 32 3913 3914 /* 3915 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3916 * up most to the head of the partial lists. New allocations will then 3917 * fill those up and thus they can be removed from the partial lists. 3918 * 3919 * The slabs with the least items are placed last. This results in them 3920 * being allocated from last increasing the chance that the last objects 3921 * are freed in them. 3922 */ 3923 int __kmem_cache_shrink(struct kmem_cache *s) 3924 { 3925 int node; 3926 int i; 3927 struct kmem_cache_node *n; 3928 struct page *page; 3929 struct page *t; 3930 struct list_head discard; 3931 struct list_head promote[SHRINK_PROMOTE_MAX]; 3932 unsigned long flags; 3933 int ret = 0; 3934 3935 flush_all(s); 3936 for_each_kmem_cache_node(s, node, n) { 3937 INIT_LIST_HEAD(&discard); 3938 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3939 INIT_LIST_HEAD(promote + i); 3940 3941 spin_lock_irqsave(&n->list_lock, flags); 3942 3943 /* 3944 * Build lists of slabs to discard or promote. 3945 * 3946 * Note that concurrent frees may occur while we hold the 3947 * list_lock. page->inuse here is the upper limit. 3948 */ 3949 list_for_each_entry_safe(page, t, &n->partial, lru) { 3950 int free = page->objects - page->inuse; 3951 3952 /* Do not reread page->inuse */ 3953 barrier(); 3954 3955 /* We do not keep full slabs on the list */ 3956 BUG_ON(free <= 0); 3957 3958 if (free == page->objects) { 3959 list_move(&page->lru, &discard); 3960 n->nr_partial--; 3961 } else if (free <= SHRINK_PROMOTE_MAX) 3962 list_move(&page->lru, promote + free - 1); 3963 } 3964 3965 /* 3966 * Promote the slabs filled up most to the head of the 3967 * partial list. 3968 */ 3969 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3970 list_splice(promote + i, &n->partial); 3971 3972 spin_unlock_irqrestore(&n->list_lock, flags); 3973 3974 /* Release empty slabs */ 3975 list_for_each_entry_safe(page, t, &discard, lru) 3976 discard_slab(s, page); 3977 3978 if (slabs_node(s, node)) 3979 ret = 1; 3980 } 3981 3982 return ret; 3983 } 3984 3985 #ifdef CONFIG_MEMCG 3986 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 3987 { 3988 /* 3989 * Called with all the locks held after a sched RCU grace period. 3990 * Even if @s becomes empty after shrinking, we can't know that @s 3991 * doesn't have allocations already in-flight and thus can't 3992 * destroy @s until the associated memcg is released. 3993 * 3994 * However, let's remove the sysfs files for empty caches here. 3995 * Each cache has a lot of interface files which aren't 3996 * particularly useful for empty draining caches; otherwise, we can 3997 * easily end up with millions of unnecessary sysfs files on 3998 * systems which have a lot of memory and transient cgroups. 3999 */ 4000 if (!__kmem_cache_shrink(s)) 4001 sysfs_slab_remove(s); 4002 } 4003 4004 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4005 { 4006 /* 4007 * Disable empty slabs caching. Used to avoid pinning offline 4008 * memory cgroups by kmem pages that can be freed. 4009 */ 4010 slub_set_cpu_partial(s, 0); 4011 s->min_partial = 0; 4012 4013 /* 4014 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 4015 * we have to make sure the change is visible before shrinking. 4016 */ 4017 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 4018 } 4019 #endif 4020 4021 static int slab_mem_going_offline_callback(void *arg) 4022 { 4023 struct kmem_cache *s; 4024 4025 mutex_lock(&slab_mutex); 4026 list_for_each_entry(s, &slab_caches, list) 4027 __kmem_cache_shrink(s); 4028 mutex_unlock(&slab_mutex); 4029 4030 return 0; 4031 } 4032 4033 static void slab_mem_offline_callback(void *arg) 4034 { 4035 struct kmem_cache_node *n; 4036 struct kmem_cache *s; 4037 struct memory_notify *marg = arg; 4038 int offline_node; 4039 4040 offline_node = marg->status_change_nid_normal; 4041 4042 /* 4043 * If the node still has available memory. we need kmem_cache_node 4044 * for it yet. 4045 */ 4046 if (offline_node < 0) 4047 return; 4048 4049 mutex_lock(&slab_mutex); 4050 list_for_each_entry(s, &slab_caches, list) { 4051 n = get_node(s, offline_node); 4052 if (n) { 4053 /* 4054 * if n->nr_slabs > 0, slabs still exist on the node 4055 * that is going down. We were unable to free them, 4056 * and offline_pages() function shouldn't call this 4057 * callback. So, we must fail. 4058 */ 4059 BUG_ON(slabs_node(s, offline_node)); 4060 4061 s->node[offline_node] = NULL; 4062 kmem_cache_free(kmem_cache_node, n); 4063 } 4064 } 4065 mutex_unlock(&slab_mutex); 4066 } 4067 4068 static int slab_mem_going_online_callback(void *arg) 4069 { 4070 struct kmem_cache_node *n; 4071 struct kmem_cache *s; 4072 struct memory_notify *marg = arg; 4073 int nid = marg->status_change_nid_normal; 4074 int ret = 0; 4075 4076 /* 4077 * If the node's memory is already available, then kmem_cache_node is 4078 * already created. Nothing to do. 4079 */ 4080 if (nid < 0) 4081 return 0; 4082 4083 /* 4084 * We are bringing a node online. No memory is available yet. We must 4085 * allocate a kmem_cache_node structure in order to bring the node 4086 * online. 4087 */ 4088 mutex_lock(&slab_mutex); 4089 list_for_each_entry(s, &slab_caches, list) { 4090 /* 4091 * XXX: kmem_cache_alloc_node will fallback to other nodes 4092 * since memory is not yet available from the node that 4093 * is brought up. 4094 */ 4095 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4096 if (!n) { 4097 ret = -ENOMEM; 4098 goto out; 4099 } 4100 init_kmem_cache_node(n); 4101 s->node[nid] = n; 4102 } 4103 out: 4104 mutex_unlock(&slab_mutex); 4105 return ret; 4106 } 4107 4108 static int slab_memory_callback(struct notifier_block *self, 4109 unsigned long action, void *arg) 4110 { 4111 int ret = 0; 4112 4113 switch (action) { 4114 case MEM_GOING_ONLINE: 4115 ret = slab_mem_going_online_callback(arg); 4116 break; 4117 case MEM_GOING_OFFLINE: 4118 ret = slab_mem_going_offline_callback(arg); 4119 break; 4120 case MEM_OFFLINE: 4121 case MEM_CANCEL_ONLINE: 4122 slab_mem_offline_callback(arg); 4123 break; 4124 case MEM_ONLINE: 4125 case MEM_CANCEL_OFFLINE: 4126 break; 4127 } 4128 if (ret) 4129 ret = notifier_from_errno(ret); 4130 else 4131 ret = NOTIFY_OK; 4132 return ret; 4133 } 4134 4135 static struct notifier_block slab_memory_callback_nb = { 4136 .notifier_call = slab_memory_callback, 4137 .priority = SLAB_CALLBACK_PRI, 4138 }; 4139 4140 /******************************************************************** 4141 * Basic setup of slabs 4142 *******************************************************************/ 4143 4144 /* 4145 * Used for early kmem_cache structures that were allocated using 4146 * the page allocator. Allocate them properly then fix up the pointers 4147 * that may be pointing to the wrong kmem_cache structure. 4148 */ 4149 4150 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4151 { 4152 int node; 4153 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4154 struct kmem_cache_node *n; 4155 4156 memcpy(s, static_cache, kmem_cache->object_size); 4157 4158 /* 4159 * This runs very early, and only the boot processor is supposed to be 4160 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4161 * IPIs around. 4162 */ 4163 __flush_cpu_slab(s, smp_processor_id()); 4164 for_each_kmem_cache_node(s, node, n) { 4165 struct page *p; 4166 4167 list_for_each_entry(p, &n->partial, lru) 4168 p->slab_cache = s; 4169 4170 #ifdef CONFIG_SLUB_DEBUG 4171 list_for_each_entry(p, &n->full, lru) 4172 p->slab_cache = s; 4173 #endif 4174 } 4175 slab_init_memcg_params(s); 4176 list_add(&s->list, &slab_caches); 4177 memcg_link_cache(s); 4178 return s; 4179 } 4180 4181 void __init kmem_cache_init(void) 4182 { 4183 static __initdata struct kmem_cache boot_kmem_cache, 4184 boot_kmem_cache_node; 4185 4186 if (debug_guardpage_minorder()) 4187 slub_max_order = 0; 4188 4189 kmem_cache_node = &boot_kmem_cache_node; 4190 kmem_cache = &boot_kmem_cache; 4191 4192 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4193 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4194 4195 register_hotmemory_notifier(&slab_memory_callback_nb); 4196 4197 /* Able to allocate the per node structures */ 4198 slab_state = PARTIAL; 4199 4200 create_boot_cache(kmem_cache, "kmem_cache", 4201 offsetof(struct kmem_cache, node) + 4202 nr_node_ids * sizeof(struct kmem_cache_node *), 4203 SLAB_HWCACHE_ALIGN, 0, 0); 4204 4205 kmem_cache = bootstrap(&boot_kmem_cache); 4206 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4207 4208 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4209 setup_kmalloc_cache_index_table(); 4210 create_kmalloc_caches(0); 4211 4212 /* Setup random freelists for each cache */ 4213 init_freelist_randomization(); 4214 4215 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4216 slub_cpu_dead); 4217 4218 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n", 4219 cache_line_size(), 4220 slub_min_order, slub_max_order, slub_min_objects, 4221 nr_cpu_ids, nr_node_ids); 4222 } 4223 4224 void __init kmem_cache_init_late(void) 4225 { 4226 } 4227 4228 struct kmem_cache * 4229 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4230 slab_flags_t flags, void (*ctor)(void *)) 4231 { 4232 struct kmem_cache *s, *c; 4233 4234 s = find_mergeable(size, align, flags, name, ctor); 4235 if (s) { 4236 s->refcount++; 4237 4238 /* 4239 * Adjust the object sizes so that we clear 4240 * the complete object on kzalloc. 4241 */ 4242 s->object_size = max(s->object_size, size); 4243 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4244 4245 for_each_memcg_cache(c, s) { 4246 c->object_size = s->object_size; 4247 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4248 } 4249 4250 if (sysfs_slab_alias(s, name)) { 4251 s->refcount--; 4252 s = NULL; 4253 } 4254 } 4255 4256 return s; 4257 } 4258 4259 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4260 { 4261 int err; 4262 4263 err = kmem_cache_open(s, flags); 4264 if (err) 4265 return err; 4266 4267 /* Mutex is not taken during early boot */ 4268 if (slab_state <= UP) 4269 return 0; 4270 4271 memcg_propagate_slab_attrs(s); 4272 err = sysfs_slab_add(s); 4273 if (err) 4274 __kmem_cache_release(s); 4275 4276 return err; 4277 } 4278 4279 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4280 { 4281 struct kmem_cache *s; 4282 void *ret; 4283 4284 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4285 return kmalloc_large(size, gfpflags); 4286 4287 s = kmalloc_slab(size, gfpflags); 4288 4289 if (unlikely(ZERO_OR_NULL_PTR(s))) 4290 return s; 4291 4292 ret = slab_alloc(s, gfpflags, caller); 4293 4294 /* Honor the call site pointer we received. */ 4295 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4296 4297 return ret; 4298 } 4299 4300 #ifdef CONFIG_NUMA 4301 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4302 int node, unsigned long caller) 4303 { 4304 struct kmem_cache *s; 4305 void *ret; 4306 4307 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4308 ret = kmalloc_large_node(size, gfpflags, node); 4309 4310 trace_kmalloc_node(caller, ret, 4311 size, PAGE_SIZE << get_order(size), 4312 gfpflags, node); 4313 4314 return ret; 4315 } 4316 4317 s = kmalloc_slab(size, gfpflags); 4318 4319 if (unlikely(ZERO_OR_NULL_PTR(s))) 4320 return s; 4321 4322 ret = slab_alloc_node(s, gfpflags, node, caller); 4323 4324 /* Honor the call site pointer we received. */ 4325 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4326 4327 return ret; 4328 } 4329 #endif 4330 4331 #ifdef CONFIG_SYSFS 4332 static int count_inuse(struct page *page) 4333 { 4334 return page->inuse; 4335 } 4336 4337 static int count_total(struct page *page) 4338 { 4339 return page->objects; 4340 } 4341 #endif 4342 4343 #ifdef CONFIG_SLUB_DEBUG 4344 static int validate_slab(struct kmem_cache *s, struct page *page, 4345 unsigned long *map) 4346 { 4347 void *p; 4348 void *addr = page_address(page); 4349 4350 if (!check_slab(s, page) || 4351 !on_freelist(s, page, NULL)) 4352 return 0; 4353 4354 /* Now we know that a valid freelist exists */ 4355 bitmap_zero(map, page->objects); 4356 4357 get_map(s, page, map); 4358 for_each_object(p, s, addr, page->objects) { 4359 if (test_bit(slab_index(p, s, addr), map)) 4360 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4361 return 0; 4362 } 4363 4364 for_each_object(p, s, addr, page->objects) 4365 if (!test_bit(slab_index(p, s, addr), map)) 4366 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4367 return 0; 4368 return 1; 4369 } 4370 4371 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4372 unsigned long *map) 4373 { 4374 slab_lock(page); 4375 validate_slab(s, page, map); 4376 slab_unlock(page); 4377 } 4378 4379 static int validate_slab_node(struct kmem_cache *s, 4380 struct kmem_cache_node *n, unsigned long *map) 4381 { 4382 unsigned long count = 0; 4383 struct page *page; 4384 unsigned long flags; 4385 4386 spin_lock_irqsave(&n->list_lock, flags); 4387 4388 list_for_each_entry(page, &n->partial, lru) { 4389 validate_slab_slab(s, page, map); 4390 count++; 4391 } 4392 if (count != n->nr_partial) 4393 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4394 s->name, count, n->nr_partial); 4395 4396 if (!(s->flags & SLAB_STORE_USER)) 4397 goto out; 4398 4399 list_for_each_entry(page, &n->full, lru) { 4400 validate_slab_slab(s, page, map); 4401 count++; 4402 } 4403 if (count != atomic_long_read(&n->nr_slabs)) 4404 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4405 s->name, count, atomic_long_read(&n->nr_slabs)); 4406 4407 out: 4408 spin_unlock_irqrestore(&n->list_lock, flags); 4409 return count; 4410 } 4411 4412 static long validate_slab_cache(struct kmem_cache *s) 4413 { 4414 int node; 4415 unsigned long count = 0; 4416 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), 4417 sizeof(unsigned long), 4418 GFP_KERNEL); 4419 struct kmem_cache_node *n; 4420 4421 if (!map) 4422 return -ENOMEM; 4423 4424 flush_all(s); 4425 for_each_kmem_cache_node(s, node, n) 4426 count += validate_slab_node(s, n, map); 4427 kfree(map); 4428 return count; 4429 } 4430 /* 4431 * Generate lists of code addresses where slabcache objects are allocated 4432 * and freed. 4433 */ 4434 4435 struct location { 4436 unsigned long count; 4437 unsigned long addr; 4438 long long sum_time; 4439 long min_time; 4440 long max_time; 4441 long min_pid; 4442 long max_pid; 4443 DECLARE_BITMAP(cpus, NR_CPUS); 4444 nodemask_t nodes; 4445 }; 4446 4447 struct loc_track { 4448 unsigned long max; 4449 unsigned long count; 4450 struct location *loc; 4451 }; 4452 4453 static void free_loc_track(struct loc_track *t) 4454 { 4455 if (t->max) 4456 free_pages((unsigned long)t->loc, 4457 get_order(sizeof(struct location) * t->max)); 4458 } 4459 4460 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4461 { 4462 struct location *l; 4463 int order; 4464 4465 order = get_order(sizeof(struct location) * max); 4466 4467 l = (void *)__get_free_pages(flags, order); 4468 if (!l) 4469 return 0; 4470 4471 if (t->count) { 4472 memcpy(l, t->loc, sizeof(struct location) * t->count); 4473 free_loc_track(t); 4474 } 4475 t->max = max; 4476 t->loc = l; 4477 return 1; 4478 } 4479 4480 static int add_location(struct loc_track *t, struct kmem_cache *s, 4481 const struct track *track) 4482 { 4483 long start, end, pos; 4484 struct location *l; 4485 unsigned long caddr; 4486 unsigned long age = jiffies - track->when; 4487 4488 start = -1; 4489 end = t->count; 4490 4491 for ( ; ; ) { 4492 pos = start + (end - start + 1) / 2; 4493 4494 /* 4495 * There is nothing at "end". If we end up there 4496 * we need to add something to before end. 4497 */ 4498 if (pos == end) 4499 break; 4500 4501 caddr = t->loc[pos].addr; 4502 if (track->addr == caddr) { 4503 4504 l = &t->loc[pos]; 4505 l->count++; 4506 if (track->when) { 4507 l->sum_time += age; 4508 if (age < l->min_time) 4509 l->min_time = age; 4510 if (age > l->max_time) 4511 l->max_time = age; 4512 4513 if (track->pid < l->min_pid) 4514 l->min_pid = track->pid; 4515 if (track->pid > l->max_pid) 4516 l->max_pid = track->pid; 4517 4518 cpumask_set_cpu(track->cpu, 4519 to_cpumask(l->cpus)); 4520 } 4521 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4522 return 1; 4523 } 4524 4525 if (track->addr < caddr) 4526 end = pos; 4527 else 4528 start = pos; 4529 } 4530 4531 /* 4532 * Not found. Insert new tracking element. 4533 */ 4534 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4535 return 0; 4536 4537 l = t->loc + pos; 4538 if (pos < t->count) 4539 memmove(l + 1, l, 4540 (t->count - pos) * sizeof(struct location)); 4541 t->count++; 4542 l->count = 1; 4543 l->addr = track->addr; 4544 l->sum_time = age; 4545 l->min_time = age; 4546 l->max_time = age; 4547 l->min_pid = track->pid; 4548 l->max_pid = track->pid; 4549 cpumask_clear(to_cpumask(l->cpus)); 4550 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4551 nodes_clear(l->nodes); 4552 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4553 return 1; 4554 } 4555 4556 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4557 struct page *page, enum track_item alloc, 4558 unsigned long *map) 4559 { 4560 void *addr = page_address(page); 4561 void *p; 4562 4563 bitmap_zero(map, page->objects); 4564 get_map(s, page, map); 4565 4566 for_each_object(p, s, addr, page->objects) 4567 if (!test_bit(slab_index(p, s, addr), map)) 4568 add_location(t, s, get_track(s, p, alloc)); 4569 } 4570 4571 static int list_locations(struct kmem_cache *s, char *buf, 4572 enum track_item alloc) 4573 { 4574 int len = 0; 4575 unsigned long i; 4576 struct loc_track t = { 0, 0, NULL }; 4577 int node; 4578 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), 4579 sizeof(unsigned long), 4580 GFP_KERNEL); 4581 struct kmem_cache_node *n; 4582 4583 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4584 GFP_KERNEL)) { 4585 kfree(map); 4586 return sprintf(buf, "Out of memory\n"); 4587 } 4588 /* Push back cpu slabs */ 4589 flush_all(s); 4590 4591 for_each_kmem_cache_node(s, node, n) { 4592 unsigned long flags; 4593 struct page *page; 4594 4595 if (!atomic_long_read(&n->nr_slabs)) 4596 continue; 4597 4598 spin_lock_irqsave(&n->list_lock, flags); 4599 list_for_each_entry(page, &n->partial, lru) 4600 process_slab(&t, s, page, alloc, map); 4601 list_for_each_entry(page, &n->full, lru) 4602 process_slab(&t, s, page, alloc, map); 4603 spin_unlock_irqrestore(&n->list_lock, flags); 4604 } 4605 4606 for (i = 0; i < t.count; i++) { 4607 struct location *l = &t.loc[i]; 4608 4609 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4610 break; 4611 len += sprintf(buf + len, "%7ld ", l->count); 4612 4613 if (l->addr) 4614 len += sprintf(buf + len, "%pS", (void *)l->addr); 4615 else 4616 len += sprintf(buf + len, "<not-available>"); 4617 4618 if (l->sum_time != l->min_time) { 4619 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4620 l->min_time, 4621 (long)div_u64(l->sum_time, l->count), 4622 l->max_time); 4623 } else 4624 len += sprintf(buf + len, " age=%ld", 4625 l->min_time); 4626 4627 if (l->min_pid != l->max_pid) 4628 len += sprintf(buf + len, " pid=%ld-%ld", 4629 l->min_pid, l->max_pid); 4630 else 4631 len += sprintf(buf + len, " pid=%ld", 4632 l->min_pid); 4633 4634 if (num_online_cpus() > 1 && 4635 !cpumask_empty(to_cpumask(l->cpus)) && 4636 len < PAGE_SIZE - 60) 4637 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4638 " cpus=%*pbl", 4639 cpumask_pr_args(to_cpumask(l->cpus))); 4640 4641 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4642 len < PAGE_SIZE - 60) 4643 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4644 " nodes=%*pbl", 4645 nodemask_pr_args(&l->nodes)); 4646 4647 len += sprintf(buf + len, "\n"); 4648 } 4649 4650 free_loc_track(&t); 4651 kfree(map); 4652 if (!t.count) 4653 len += sprintf(buf, "No data\n"); 4654 return len; 4655 } 4656 #endif 4657 4658 #ifdef SLUB_RESILIENCY_TEST 4659 static void __init resiliency_test(void) 4660 { 4661 u8 *p; 4662 4663 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4664 4665 pr_err("SLUB resiliency testing\n"); 4666 pr_err("-----------------------\n"); 4667 pr_err("A. Corruption after allocation\n"); 4668 4669 p = kzalloc(16, GFP_KERNEL); 4670 p[16] = 0x12; 4671 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4672 p + 16); 4673 4674 validate_slab_cache(kmalloc_caches[4]); 4675 4676 /* Hmmm... The next two are dangerous */ 4677 p = kzalloc(32, GFP_KERNEL); 4678 p[32 + sizeof(void *)] = 0x34; 4679 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4680 p); 4681 pr_err("If allocated object is overwritten then not detectable\n\n"); 4682 4683 validate_slab_cache(kmalloc_caches[5]); 4684 p = kzalloc(64, GFP_KERNEL); 4685 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4686 *p = 0x56; 4687 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4688 p); 4689 pr_err("If allocated object is overwritten then not detectable\n\n"); 4690 validate_slab_cache(kmalloc_caches[6]); 4691 4692 pr_err("\nB. Corruption after free\n"); 4693 p = kzalloc(128, GFP_KERNEL); 4694 kfree(p); 4695 *p = 0x78; 4696 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4697 validate_slab_cache(kmalloc_caches[7]); 4698 4699 p = kzalloc(256, GFP_KERNEL); 4700 kfree(p); 4701 p[50] = 0x9a; 4702 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4703 validate_slab_cache(kmalloc_caches[8]); 4704 4705 p = kzalloc(512, GFP_KERNEL); 4706 kfree(p); 4707 p[512] = 0xab; 4708 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4709 validate_slab_cache(kmalloc_caches[9]); 4710 } 4711 #else 4712 #ifdef CONFIG_SYSFS 4713 static void resiliency_test(void) {}; 4714 #endif 4715 #endif 4716 4717 #ifdef CONFIG_SYSFS 4718 enum slab_stat_type { 4719 SL_ALL, /* All slabs */ 4720 SL_PARTIAL, /* Only partially allocated slabs */ 4721 SL_CPU, /* Only slabs used for cpu caches */ 4722 SL_OBJECTS, /* Determine allocated objects not slabs */ 4723 SL_TOTAL /* Determine object capacity not slabs */ 4724 }; 4725 4726 #define SO_ALL (1 << SL_ALL) 4727 #define SO_PARTIAL (1 << SL_PARTIAL) 4728 #define SO_CPU (1 << SL_CPU) 4729 #define SO_OBJECTS (1 << SL_OBJECTS) 4730 #define SO_TOTAL (1 << SL_TOTAL) 4731 4732 #ifdef CONFIG_MEMCG 4733 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4734 4735 static int __init setup_slub_memcg_sysfs(char *str) 4736 { 4737 int v; 4738 4739 if (get_option(&str, &v) > 0) 4740 memcg_sysfs_enabled = v; 4741 4742 return 1; 4743 } 4744 4745 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4746 #endif 4747 4748 static ssize_t show_slab_objects(struct kmem_cache *s, 4749 char *buf, unsigned long flags) 4750 { 4751 unsigned long total = 0; 4752 int node; 4753 int x; 4754 unsigned long *nodes; 4755 4756 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4757 if (!nodes) 4758 return -ENOMEM; 4759 4760 if (flags & SO_CPU) { 4761 int cpu; 4762 4763 for_each_possible_cpu(cpu) { 4764 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4765 cpu); 4766 int node; 4767 struct page *page; 4768 4769 page = READ_ONCE(c->page); 4770 if (!page) 4771 continue; 4772 4773 node = page_to_nid(page); 4774 if (flags & SO_TOTAL) 4775 x = page->objects; 4776 else if (flags & SO_OBJECTS) 4777 x = page->inuse; 4778 else 4779 x = 1; 4780 4781 total += x; 4782 nodes[node] += x; 4783 4784 page = slub_percpu_partial_read_once(c); 4785 if (page) { 4786 node = page_to_nid(page); 4787 if (flags & SO_TOTAL) 4788 WARN_ON_ONCE(1); 4789 else if (flags & SO_OBJECTS) 4790 WARN_ON_ONCE(1); 4791 else 4792 x = page->pages; 4793 total += x; 4794 nodes[node] += x; 4795 } 4796 } 4797 } 4798 4799 get_online_mems(); 4800 #ifdef CONFIG_SLUB_DEBUG 4801 if (flags & SO_ALL) { 4802 struct kmem_cache_node *n; 4803 4804 for_each_kmem_cache_node(s, node, n) { 4805 4806 if (flags & SO_TOTAL) 4807 x = atomic_long_read(&n->total_objects); 4808 else if (flags & SO_OBJECTS) 4809 x = atomic_long_read(&n->total_objects) - 4810 count_partial(n, count_free); 4811 else 4812 x = atomic_long_read(&n->nr_slabs); 4813 total += x; 4814 nodes[node] += x; 4815 } 4816 4817 } else 4818 #endif 4819 if (flags & SO_PARTIAL) { 4820 struct kmem_cache_node *n; 4821 4822 for_each_kmem_cache_node(s, node, n) { 4823 if (flags & SO_TOTAL) 4824 x = count_partial(n, count_total); 4825 else if (flags & SO_OBJECTS) 4826 x = count_partial(n, count_inuse); 4827 else 4828 x = n->nr_partial; 4829 total += x; 4830 nodes[node] += x; 4831 } 4832 } 4833 x = sprintf(buf, "%lu", total); 4834 #ifdef CONFIG_NUMA 4835 for (node = 0; node < nr_node_ids; node++) 4836 if (nodes[node]) 4837 x += sprintf(buf + x, " N%d=%lu", 4838 node, nodes[node]); 4839 #endif 4840 put_online_mems(); 4841 kfree(nodes); 4842 return x + sprintf(buf + x, "\n"); 4843 } 4844 4845 #ifdef CONFIG_SLUB_DEBUG 4846 static int any_slab_objects(struct kmem_cache *s) 4847 { 4848 int node; 4849 struct kmem_cache_node *n; 4850 4851 for_each_kmem_cache_node(s, node, n) 4852 if (atomic_long_read(&n->total_objects)) 4853 return 1; 4854 4855 return 0; 4856 } 4857 #endif 4858 4859 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4860 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4861 4862 struct slab_attribute { 4863 struct attribute attr; 4864 ssize_t (*show)(struct kmem_cache *s, char *buf); 4865 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4866 }; 4867 4868 #define SLAB_ATTR_RO(_name) \ 4869 static struct slab_attribute _name##_attr = \ 4870 __ATTR(_name, 0400, _name##_show, NULL) 4871 4872 #define SLAB_ATTR(_name) \ 4873 static struct slab_attribute _name##_attr = \ 4874 __ATTR(_name, 0600, _name##_show, _name##_store) 4875 4876 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4877 { 4878 return sprintf(buf, "%u\n", s->size); 4879 } 4880 SLAB_ATTR_RO(slab_size); 4881 4882 static ssize_t align_show(struct kmem_cache *s, char *buf) 4883 { 4884 return sprintf(buf, "%u\n", s->align); 4885 } 4886 SLAB_ATTR_RO(align); 4887 4888 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4889 { 4890 return sprintf(buf, "%u\n", s->object_size); 4891 } 4892 SLAB_ATTR_RO(object_size); 4893 4894 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4895 { 4896 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4897 } 4898 SLAB_ATTR_RO(objs_per_slab); 4899 4900 static ssize_t order_store(struct kmem_cache *s, 4901 const char *buf, size_t length) 4902 { 4903 unsigned int order; 4904 int err; 4905 4906 err = kstrtouint(buf, 10, &order); 4907 if (err) 4908 return err; 4909 4910 if (order > slub_max_order || order < slub_min_order) 4911 return -EINVAL; 4912 4913 calculate_sizes(s, order); 4914 return length; 4915 } 4916 4917 static ssize_t order_show(struct kmem_cache *s, char *buf) 4918 { 4919 return sprintf(buf, "%u\n", oo_order(s->oo)); 4920 } 4921 SLAB_ATTR(order); 4922 4923 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4924 { 4925 return sprintf(buf, "%lu\n", s->min_partial); 4926 } 4927 4928 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4929 size_t length) 4930 { 4931 unsigned long min; 4932 int err; 4933 4934 err = kstrtoul(buf, 10, &min); 4935 if (err) 4936 return err; 4937 4938 set_min_partial(s, min); 4939 return length; 4940 } 4941 SLAB_ATTR(min_partial); 4942 4943 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4944 { 4945 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4946 } 4947 4948 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4949 size_t length) 4950 { 4951 unsigned int objects; 4952 int err; 4953 4954 err = kstrtouint(buf, 10, &objects); 4955 if (err) 4956 return err; 4957 if (objects && !kmem_cache_has_cpu_partial(s)) 4958 return -EINVAL; 4959 4960 slub_set_cpu_partial(s, objects); 4961 flush_all(s); 4962 return length; 4963 } 4964 SLAB_ATTR(cpu_partial); 4965 4966 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4967 { 4968 if (!s->ctor) 4969 return 0; 4970 return sprintf(buf, "%pS\n", s->ctor); 4971 } 4972 SLAB_ATTR_RO(ctor); 4973 4974 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4975 { 4976 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4977 } 4978 SLAB_ATTR_RO(aliases); 4979 4980 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4981 { 4982 return show_slab_objects(s, buf, SO_PARTIAL); 4983 } 4984 SLAB_ATTR_RO(partial); 4985 4986 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4987 { 4988 return show_slab_objects(s, buf, SO_CPU); 4989 } 4990 SLAB_ATTR_RO(cpu_slabs); 4991 4992 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4993 { 4994 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4995 } 4996 SLAB_ATTR_RO(objects); 4997 4998 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4999 { 5000 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5001 } 5002 SLAB_ATTR_RO(objects_partial); 5003 5004 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5005 { 5006 int objects = 0; 5007 int pages = 0; 5008 int cpu; 5009 int len; 5010 5011 for_each_online_cpu(cpu) { 5012 struct page *page; 5013 5014 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5015 5016 if (page) { 5017 pages += page->pages; 5018 objects += page->pobjects; 5019 } 5020 } 5021 5022 len = sprintf(buf, "%d(%d)", objects, pages); 5023 5024 #ifdef CONFIG_SMP 5025 for_each_online_cpu(cpu) { 5026 struct page *page; 5027 5028 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5029 5030 if (page && len < PAGE_SIZE - 20) 5031 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5032 page->pobjects, page->pages); 5033 } 5034 #endif 5035 return len + sprintf(buf + len, "\n"); 5036 } 5037 SLAB_ATTR_RO(slabs_cpu_partial); 5038 5039 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5040 { 5041 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5042 } 5043 5044 static ssize_t reclaim_account_store(struct kmem_cache *s, 5045 const char *buf, size_t length) 5046 { 5047 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5048 if (buf[0] == '1') 5049 s->flags |= SLAB_RECLAIM_ACCOUNT; 5050 return length; 5051 } 5052 SLAB_ATTR(reclaim_account); 5053 5054 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5055 { 5056 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5057 } 5058 SLAB_ATTR_RO(hwcache_align); 5059 5060 #ifdef CONFIG_ZONE_DMA 5061 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5062 { 5063 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5064 } 5065 SLAB_ATTR_RO(cache_dma); 5066 #endif 5067 5068 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5069 { 5070 return sprintf(buf, "%u\n", s->usersize); 5071 } 5072 SLAB_ATTR_RO(usersize); 5073 5074 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5075 { 5076 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5077 } 5078 SLAB_ATTR_RO(destroy_by_rcu); 5079 5080 #ifdef CONFIG_SLUB_DEBUG 5081 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5082 { 5083 return show_slab_objects(s, buf, SO_ALL); 5084 } 5085 SLAB_ATTR_RO(slabs); 5086 5087 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5088 { 5089 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5090 } 5091 SLAB_ATTR_RO(total_objects); 5092 5093 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5094 { 5095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5096 } 5097 5098 static ssize_t sanity_checks_store(struct kmem_cache *s, 5099 const char *buf, size_t length) 5100 { 5101 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5102 if (buf[0] == '1') { 5103 s->flags &= ~__CMPXCHG_DOUBLE; 5104 s->flags |= SLAB_CONSISTENCY_CHECKS; 5105 } 5106 return length; 5107 } 5108 SLAB_ATTR(sanity_checks); 5109 5110 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5111 { 5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5113 } 5114 5115 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5116 size_t length) 5117 { 5118 /* 5119 * Tracing a merged cache is going to give confusing results 5120 * as well as cause other issues like converting a mergeable 5121 * cache into an umergeable one. 5122 */ 5123 if (s->refcount > 1) 5124 return -EINVAL; 5125 5126 s->flags &= ~SLAB_TRACE; 5127 if (buf[0] == '1') { 5128 s->flags &= ~__CMPXCHG_DOUBLE; 5129 s->flags |= SLAB_TRACE; 5130 } 5131 return length; 5132 } 5133 SLAB_ATTR(trace); 5134 5135 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5136 { 5137 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5138 } 5139 5140 static ssize_t red_zone_store(struct kmem_cache *s, 5141 const char *buf, size_t length) 5142 { 5143 if (any_slab_objects(s)) 5144 return -EBUSY; 5145 5146 s->flags &= ~SLAB_RED_ZONE; 5147 if (buf[0] == '1') { 5148 s->flags |= SLAB_RED_ZONE; 5149 } 5150 calculate_sizes(s, -1); 5151 return length; 5152 } 5153 SLAB_ATTR(red_zone); 5154 5155 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5156 { 5157 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5158 } 5159 5160 static ssize_t poison_store(struct kmem_cache *s, 5161 const char *buf, size_t length) 5162 { 5163 if (any_slab_objects(s)) 5164 return -EBUSY; 5165 5166 s->flags &= ~SLAB_POISON; 5167 if (buf[0] == '1') { 5168 s->flags |= SLAB_POISON; 5169 } 5170 calculate_sizes(s, -1); 5171 return length; 5172 } 5173 SLAB_ATTR(poison); 5174 5175 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5176 { 5177 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5178 } 5179 5180 static ssize_t store_user_store(struct kmem_cache *s, 5181 const char *buf, size_t length) 5182 { 5183 if (any_slab_objects(s)) 5184 return -EBUSY; 5185 5186 s->flags &= ~SLAB_STORE_USER; 5187 if (buf[0] == '1') { 5188 s->flags &= ~__CMPXCHG_DOUBLE; 5189 s->flags |= SLAB_STORE_USER; 5190 } 5191 calculate_sizes(s, -1); 5192 return length; 5193 } 5194 SLAB_ATTR(store_user); 5195 5196 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5197 { 5198 return 0; 5199 } 5200 5201 static ssize_t validate_store(struct kmem_cache *s, 5202 const char *buf, size_t length) 5203 { 5204 int ret = -EINVAL; 5205 5206 if (buf[0] == '1') { 5207 ret = validate_slab_cache(s); 5208 if (ret >= 0) 5209 ret = length; 5210 } 5211 return ret; 5212 } 5213 SLAB_ATTR(validate); 5214 5215 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5216 { 5217 if (!(s->flags & SLAB_STORE_USER)) 5218 return -ENOSYS; 5219 return list_locations(s, buf, TRACK_ALLOC); 5220 } 5221 SLAB_ATTR_RO(alloc_calls); 5222 5223 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5224 { 5225 if (!(s->flags & SLAB_STORE_USER)) 5226 return -ENOSYS; 5227 return list_locations(s, buf, TRACK_FREE); 5228 } 5229 SLAB_ATTR_RO(free_calls); 5230 #endif /* CONFIG_SLUB_DEBUG */ 5231 5232 #ifdef CONFIG_FAILSLAB 5233 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5234 { 5235 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5236 } 5237 5238 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5239 size_t length) 5240 { 5241 if (s->refcount > 1) 5242 return -EINVAL; 5243 5244 s->flags &= ~SLAB_FAILSLAB; 5245 if (buf[0] == '1') 5246 s->flags |= SLAB_FAILSLAB; 5247 return length; 5248 } 5249 SLAB_ATTR(failslab); 5250 #endif 5251 5252 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5253 { 5254 return 0; 5255 } 5256 5257 static ssize_t shrink_store(struct kmem_cache *s, 5258 const char *buf, size_t length) 5259 { 5260 if (buf[0] == '1') 5261 kmem_cache_shrink(s); 5262 else 5263 return -EINVAL; 5264 return length; 5265 } 5266 SLAB_ATTR(shrink); 5267 5268 #ifdef CONFIG_NUMA 5269 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5270 { 5271 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5272 } 5273 5274 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5275 const char *buf, size_t length) 5276 { 5277 unsigned int ratio; 5278 int err; 5279 5280 err = kstrtouint(buf, 10, &ratio); 5281 if (err) 5282 return err; 5283 if (ratio > 100) 5284 return -ERANGE; 5285 5286 s->remote_node_defrag_ratio = ratio * 10; 5287 5288 return length; 5289 } 5290 SLAB_ATTR(remote_node_defrag_ratio); 5291 #endif 5292 5293 #ifdef CONFIG_SLUB_STATS 5294 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5295 { 5296 unsigned long sum = 0; 5297 int cpu; 5298 int len; 5299 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5300 5301 if (!data) 5302 return -ENOMEM; 5303 5304 for_each_online_cpu(cpu) { 5305 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5306 5307 data[cpu] = x; 5308 sum += x; 5309 } 5310 5311 len = sprintf(buf, "%lu", sum); 5312 5313 #ifdef CONFIG_SMP 5314 for_each_online_cpu(cpu) { 5315 if (data[cpu] && len < PAGE_SIZE - 20) 5316 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5317 } 5318 #endif 5319 kfree(data); 5320 return len + sprintf(buf + len, "\n"); 5321 } 5322 5323 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5324 { 5325 int cpu; 5326 5327 for_each_online_cpu(cpu) 5328 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5329 } 5330 5331 #define STAT_ATTR(si, text) \ 5332 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5333 { \ 5334 return show_stat(s, buf, si); \ 5335 } \ 5336 static ssize_t text##_store(struct kmem_cache *s, \ 5337 const char *buf, size_t length) \ 5338 { \ 5339 if (buf[0] != '0') \ 5340 return -EINVAL; \ 5341 clear_stat(s, si); \ 5342 return length; \ 5343 } \ 5344 SLAB_ATTR(text); \ 5345 5346 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5347 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5348 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5349 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5350 STAT_ATTR(FREE_FROZEN, free_frozen); 5351 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5352 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5353 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5354 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5355 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5356 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5357 STAT_ATTR(FREE_SLAB, free_slab); 5358 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5359 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5360 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5361 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5362 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5363 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5364 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5365 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5366 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5367 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5368 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5369 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5370 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5371 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5372 #endif 5373 5374 static struct attribute *slab_attrs[] = { 5375 &slab_size_attr.attr, 5376 &object_size_attr.attr, 5377 &objs_per_slab_attr.attr, 5378 &order_attr.attr, 5379 &min_partial_attr.attr, 5380 &cpu_partial_attr.attr, 5381 &objects_attr.attr, 5382 &objects_partial_attr.attr, 5383 &partial_attr.attr, 5384 &cpu_slabs_attr.attr, 5385 &ctor_attr.attr, 5386 &aliases_attr.attr, 5387 &align_attr.attr, 5388 &hwcache_align_attr.attr, 5389 &reclaim_account_attr.attr, 5390 &destroy_by_rcu_attr.attr, 5391 &shrink_attr.attr, 5392 &slabs_cpu_partial_attr.attr, 5393 #ifdef CONFIG_SLUB_DEBUG 5394 &total_objects_attr.attr, 5395 &slabs_attr.attr, 5396 &sanity_checks_attr.attr, 5397 &trace_attr.attr, 5398 &red_zone_attr.attr, 5399 &poison_attr.attr, 5400 &store_user_attr.attr, 5401 &validate_attr.attr, 5402 &alloc_calls_attr.attr, 5403 &free_calls_attr.attr, 5404 #endif 5405 #ifdef CONFIG_ZONE_DMA 5406 &cache_dma_attr.attr, 5407 #endif 5408 #ifdef CONFIG_NUMA 5409 &remote_node_defrag_ratio_attr.attr, 5410 #endif 5411 #ifdef CONFIG_SLUB_STATS 5412 &alloc_fastpath_attr.attr, 5413 &alloc_slowpath_attr.attr, 5414 &free_fastpath_attr.attr, 5415 &free_slowpath_attr.attr, 5416 &free_frozen_attr.attr, 5417 &free_add_partial_attr.attr, 5418 &free_remove_partial_attr.attr, 5419 &alloc_from_partial_attr.attr, 5420 &alloc_slab_attr.attr, 5421 &alloc_refill_attr.attr, 5422 &alloc_node_mismatch_attr.attr, 5423 &free_slab_attr.attr, 5424 &cpuslab_flush_attr.attr, 5425 &deactivate_full_attr.attr, 5426 &deactivate_empty_attr.attr, 5427 &deactivate_to_head_attr.attr, 5428 &deactivate_to_tail_attr.attr, 5429 &deactivate_remote_frees_attr.attr, 5430 &deactivate_bypass_attr.attr, 5431 &order_fallback_attr.attr, 5432 &cmpxchg_double_fail_attr.attr, 5433 &cmpxchg_double_cpu_fail_attr.attr, 5434 &cpu_partial_alloc_attr.attr, 5435 &cpu_partial_free_attr.attr, 5436 &cpu_partial_node_attr.attr, 5437 &cpu_partial_drain_attr.attr, 5438 #endif 5439 #ifdef CONFIG_FAILSLAB 5440 &failslab_attr.attr, 5441 #endif 5442 &usersize_attr.attr, 5443 5444 NULL 5445 }; 5446 5447 static const struct attribute_group slab_attr_group = { 5448 .attrs = slab_attrs, 5449 }; 5450 5451 static ssize_t slab_attr_show(struct kobject *kobj, 5452 struct attribute *attr, 5453 char *buf) 5454 { 5455 struct slab_attribute *attribute; 5456 struct kmem_cache *s; 5457 int err; 5458 5459 attribute = to_slab_attr(attr); 5460 s = to_slab(kobj); 5461 5462 if (!attribute->show) 5463 return -EIO; 5464 5465 err = attribute->show(s, buf); 5466 5467 return err; 5468 } 5469 5470 static ssize_t slab_attr_store(struct kobject *kobj, 5471 struct attribute *attr, 5472 const char *buf, size_t len) 5473 { 5474 struct slab_attribute *attribute; 5475 struct kmem_cache *s; 5476 int err; 5477 5478 attribute = to_slab_attr(attr); 5479 s = to_slab(kobj); 5480 5481 if (!attribute->store) 5482 return -EIO; 5483 5484 err = attribute->store(s, buf, len); 5485 #ifdef CONFIG_MEMCG 5486 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5487 struct kmem_cache *c; 5488 5489 mutex_lock(&slab_mutex); 5490 if (s->max_attr_size < len) 5491 s->max_attr_size = len; 5492 5493 /* 5494 * This is a best effort propagation, so this function's return 5495 * value will be determined by the parent cache only. This is 5496 * basically because not all attributes will have a well 5497 * defined semantics for rollbacks - most of the actions will 5498 * have permanent effects. 5499 * 5500 * Returning the error value of any of the children that fail 5501 * is not 100 % defined, in the sense that users seeing the 5502 * error code won't be able to know anything about the state of 5503 * the cache. 5504 * 5505 * Only returning the error code for the parent cache at least 5506 * has well defined semantics. The cache being written to 5507 * directly either failed or succeeded, in which case we loop 5508 * through the descendants with best-effort propagation. 5509 */ 5510 for_each_memcg_cache(c, s) 5511 attribute->store(c, buf, len); 5512 mutex_unlock(&slab_mutex); 5513 } 5514 #endif 5515 return err; 5516 } 5517 5518 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5519 { 5520 #ifdef CONFIG_MEMCG 5521 int i; 5522 char *buffer = NULL; 5523 struct kmem_cache *root_cache; 5524 5525 if (is_root_cache(s)) 5526 return; 5527 5528 root_cache = s->memcg_params.root_cache; 5529 5530 /* 5531 * This mean this cache had no attribute written. Therefore, no point 5532 * in copying default values around 5533 */ 5534 if (!root_cache->max_attr_size) 5535 return; 5536 5537 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5538 char mbuf[64]; 5539 char *buf; 5540 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5541 ssize_t len; 5542 5543 if (!attr || !attr->store || !attr->show) 5544 continue; 5545 5546 /* 5547 * It is really bad that we have to allocate here, so we will 5548 * do it only as a fallback. If we actually allocate, though, 5549 * we can just use the allocated buffer until the end. 5550 * 5551 * Most of the slub attributes will tend to be very small in 5552 * size, but sysfs allows buffers up to a page, so they can 5553 * theoretically happen. 5554 */ 5555 if (buffer) 5556 buf = buffer; 5557 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5558 buf = mbuf; 5559 else { 5560 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5561 if (WARN_ON(!buffer)) 5562 continue; 5563 buf = buffer; 5564 } 5565 5566 len = attr->show(root_cache, buf); 5567 if (len > 0) 5568 attr->store(s, buf, len); 5569 } 5570 5571 if (buffer) 5572 free_page((unsigned long)buffer); 5573 #endif 5574 } 5575 5576 static void kmem_cache_release(struct kobject *k) 5577 { 5578 slab_kmem_cache_release(to_slab(k)); 5579 } 5580 5581 static const struct sysfs_ops slab_sysfs_ops = { 5582 .show = slab_attr_show, 5583 .store = slab_attr_store, 5584 }; 5585 5586 static struct kobj_type slab_ktype = { 5587 .sysfs_ops = &slab_sysfs_ops, 5588 .release = kmem_cache_release, 5589 }; 5590 5591 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5592 { 5593 struct kobj_type *ktype = get_ktype(kobj); 5594 5595 if (ktype == &slab_ktype) 5596 return 1; 5597 return 0; 5598 } 5599 5600 static const struct kset_uevent_ops slab_uevent_ops = { 5601 .filter = uevent_filter, 5602 }; 5603 5604 static struct kset *slab_kset; 5605 5606 static inline struct kset *cache_kset(struct kmem_cache *s) 5607 { 5608 #ifdef CONFIG_MEMCG 5609 if (!is_root_cache(s)) 5610 return s->memcg_params.root_cache->memcg_kset; 5611 #endif 5612 return slab_kset; 5613 } 5614 5615 #define ID_STR_LENGTH 64 5616 5617 /* Create a unique string id for a slab cache: 5618 * 5619 * Format :[flags-]size 5620 */ 5621 static char *create_unique_id(struct kmem_cache *s) 5622 { 5623 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5624 char *p = name; 5625 5626 BUG_ON(!name); 5627 5628 *p++ = ':'; 5629 /* 5630 * First flags affecting slabcache operations. We will only 5631 * get here for aliasable slabs so we do not need to support 5632 * too many flags. The flags here must cover all flags that 5633 * are matched during merging to guarantee that the id is 5634 * unique. 5635 */ 5636 if (s->flags & SLAB_CACHE_DMA) 5637 *p++ = 'd'; 5638 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5639 *p++ = 'a'; 5640 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5641 *p++ = 'F'; 5642 if (s->flags & SLAB_ACCOUNT) 5643 *p++ = 'A'; 5644 if (p != name + 1) 5645 *p++ = '-'; 5646 p += sprintf(p, "%07u", s->size); 5647 5648 BUG_ON(p > name + ID_STR_LENGTH - 1); 5649 return name; 5650 } 5651 5652 static void sysfs_slab_remove_workfn(struct work_struct *work) 5653 { 5654 struct kmem_cache *s = 5655 container_of(work, struct kmem_cache, kobj_remove_work); 5656 5657 if (!s->kobj.state_in_sysfs) 5658 /* 5659 * For a memcg cache, this may be called during 5660 * deactivation and again on shutdown. Remove only once. 5661 * A cache is never shut down before deactivation is 5662 * complete, so no need to worry about synchronization. 5663 */ 5664 goto out; 5665 5666 #ifdef CONFIG_MEMCG 5667 kset_unregister(s->memcg_kset); 5668 #endif 5669 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5670 out: 5671 kobject_put(&s->kobj); 5672 } 5673 5674 static int sysfs_slab_add(struct kmem_cache *s) 5675 { 5676 int err; 5677 const char *name; 5678 struct kset *kset = cache_kset(s); 5679 int unmergeable = slab_unmergeable(s); 5680 5681 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5682 5683 if (!kset) { 5684 kobject_init(&s->kobj, &slab_ktype); 5685 return 0; 5686 } 5687 5688 if (!unmergeable && disable_higher_order_debug && 5689 (slub_debug & DEBUG_METADATA_FLAGS)) 5690 unmergeable = 1; 5691 5692 if (unmergeable) { 5693 /* 5694 * Slabcache can never be merged so we can use the name proper. 5695 * This is typically the case for debug situations. In that 5696 * case we can catch duplicate names easily. 5697 */ 5698 sysfs_remove_link(&slab_kset->kobj, s->name); 5699 name = s->name; 5700 } else { 5701 /* 5702 * Create a unique name for the slab as a target 5703 * for the symlinks. 5704 */ 5705 name = create_unique_id(s); 5706 } 5707 5708 s->kobj.kset = kset; 5709 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5710 if (err) 5711 goto out; 5712 5713 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5714 if (err) 5715 goto out_del_kobj; 5716 5717 #ifdef CONFIG_MEMCG 5718 if (is_root_cache(s) && memcg_sysfs_enabled) { 5719 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5720 if (!s->memcg_kset) { 5721 err = -ENOMEM; 5722 goto out_del_kobj; 5723 } 5724 } 5725 #endif 5726 5727 kobject_uevent(&s->kobj, KOBJ_ADD); 5728 if (!unmergeable) { 5729 /* Setup first alias */ 5730 sysfs_slab_alias(s, s->name); 5731 } 5732 out: 5733 if (!unmergeable) 5734 kfree(name); 5735 return err; 5736 out_del_kobj: 5737 kobject_del(&s->kobj); 5738 goto out; 5739 } 5740 5741 static void sysfs_slab_remove(struct kmem_cache *s) 5742 { 5743 if (slab_state < FULL) 5744 /* 5745 * Sysfs has not been setup yet so no need to remove the 5746 * cache from sysfs. 5747 */ 5748 return; 5749 5750 kobject_get(&s->kobj); 5751 schedule_work(&s->kobj_remove_work); 5752 } 5753 5754 void sysfs_slab_unlink(struct kmem_cache *s) 5755 { 5756 if (slab_state >= FULL) 5757 kobject_del(&s->kobj); 5758 } 5759 5760 void sysfs_slab_release(struct kmem_cache *s) 5761 { 5762 if (slab_state >= FULL) 5763 kobject_put(&s->kobj); 5764 } 5765 5766 /* 5767 * Need to buffer aliases during bootup until sysfs becomes 5768 * available lest we lose that information. 5769 */ 5770 struct saved_alias { 5771 struct kmem_cache *s; 5772 const char *name; 5773 struct saved_alias *next; 5774 }; 5775 5776 static struct saved_alias *alias_list; 5777 5778 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5779 { 5780 struct saved_alias *al; 5781 5782 if (slab_state == FULL) { 5783 /* 5784 * If we have a leftover link then remove it. 5785 */ 5786 sysfs_remove_link(&slab_kset->kobj, name); 5787 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5788 } 5789 5790 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5791 if (!al) 5792 return -ENOMEM; 5793 5794 al->s = s; 5795 al->name = name; 5796 al->next = alias_list; 5797 alias_list = al; 5798 return 0; 5799 } 5800 5801 static int __init slab_sysfs_init(void) 5802 { 5803 struct kmem_cache *s; 5804 int err; 5805 5806 mutex_lock(&slab_mutex); 5807 5808 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5809 if (!slab_kset) { 5810 mutex_unlock(&slab_mutex); 5811 pr_err("Cannot register slab subsystem.\n"); 5812 return -ENOSYS; 5813 } 5814 5815 slab_state = FULL; 5816 5817 list_for_each_entry(s, &slab_caches, list) { 5818 err = sysfs_slab_add(s); 5819 if (err) 5820 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5821 s->name); 5822 } 5823 5824 while (alias_list) { 5825 struct saved_alias *al = alias_list; 5826 5827 alias_list = alias_list->next; 5828 err = sysfs_slab_alias(al->s, al->name); 5829 if (err) 5830 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5831 al->name); 5832 kfree(al); 5833 } 5834 5835 mutex_unlock(&slab_mutex); 5836 resiliency_test(); 5837 return 0; 5838 } 5839 5840 __initcall(slab_sysfs_init); 5841 #endif /* CONFIG_SYSFS */ 5842 5843 /* 5844 * The /proc/slabinfo ABI 5845 */ 5846 #ifdef CONFIG_SLUB_DEBUG 5847 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5848 { 5849 unsigned long nr_slabs = 0; 5850 unsigned long nr_objs = 0; 5851 unsigned long nr_free = 0; 5852 int node; 5853 struct kmem_cache_node *n; 5854 5855 for_each_kmem_cache_node(s, node, n) { 5856 nr_slabs += node_nr_slabs(n); 5857 nr_objs += node_nr_objs(n); 5858 nr_free += count_partial(n, count_free); 5859 } 5860 5861 sinfo->active_objs = nr_objs - nr_free; 5862 sinfo->num_objs = nr_objs; 5863 sinfo->active_slabs = nr_slabs; 5864 sinfo->num_slabs = nr_slabs; 5865 sinfo->objects_per_slab = oo_objects(s->oo); 5866 sinfo->cache_order = oo_order(s->oo); 5867 } 5868 5869 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5870 { 5871 } 5872 5873 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5874 size_t count, loff_t *ppos) 5875 { 5876 return -EIO; 5877 } 5878 #endif /* CONFIG_SLUB_DEBUG */ 5879