xref: /openbmc/linux/mm/slub.c (revision b8c5a806)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * page->frozen		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 void *fixup_red_left(struct kmem_cache *s, void *p)
127 {
128 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 		p += s->red_left_pad;
130 
131 	return p;
132 }
133 
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135 {
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 	return !kmem_cache_debug(s);
138 #else
139 	return false;
140 #endif
141 }
142 
143 /*
144  * Issues still to be resolved:
145  *
146  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147  *
148  * - Variable sizing of the per node arrays
149  */
150 
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153 
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
156 
157 /*
158  * Mininum number of partial slabs. These will be left on the partial
159  * lists even if they are empty. kmem_cache_shrink may reclaim them.
160  */
161 #define MIN_PARTIAL 5
162 
163 /*
164  * Maximum number of desirable partial slabs.
165  * The existence of more partial slabs makes kmem_cache_shrink
166  * sort the partial list by the number of objects in use.
167  */
168 #define MAX_PARTIAL 10
169 
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 				SLAB_POISON | SLAB_STORE_USER)
172 
173 /*
174  * These debug flags cannot use CMPXCHG because there might be consistency
175  * issues when checking or reading debug information
176  */
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 				SLAB_TRACE)
179 
180 
181 /*
182  * Debugging flags that require metadata to be stored in the slab.  These get
183  * disabled when slub_debug=O is used and a cache's min order increases with
184  * metadata.
185  */
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
187 
188 #define OO_SHIFT	16
189 #define OO_MASK		((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
191 
192 /* Internal SLUB flags */
193 /* Poison object */
194 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
197 
198 /*
199  * Tracking user of a slab.
200  */
201 #define TRACK_ADDRS_COUNT 16
202 struct track {
203 	unsigned long addr;	/* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
206 #endif
207 	int cpu;		/* Was running on cpu */
208 	int pid;		/* Pid context */
209 	unsigned long when;	/* When did the operation occur */
210 };
211 
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
213 
214 #ifdef CONFIG_SYSFS
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
219 #else
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 							{ return 0; }
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225 #endif
226 
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 	/*
231 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 	 * avoid this_cpu_add()'s irq-disable overhead.
233 	 */
234 	raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237 
238 /********************************************************************
239  * 			Core slab cache functions
240  *******************************************************************/
241 
242 /*
243  * Returns freelist pointer (ptr). With hardening, this is obfuscated
244  * with an XOR of the address where the pointer is held and a per-cache
245  * random number.
246  */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 				 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 	/*
252 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 	 * Normally, this doesn't cause any issues, as both set_freepointer()
254 	 * and get_freepointer() are called with a pointer with the same tag.
255 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 	 * example, when __free_slub() iterates over objects in a cache, it
257 	 * passes untagged pointers to check_object(). check_object() in turns
258 	 * calls get_freepointer() with an untagged pointer, which causes the
259 	 * freepointer to be restored incorrectly.
260 	 */
261 	return (void *)((unsigned long)ptr ^ s->random ^
262 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 #else
264 	return ptr;
265 #endif
266 }
267 
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 					 void *ptr_addr)
271 {
272 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 			    (unsigned long)ptr_addr);
274 }
275 
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 	return freelist_dereference(s, object + s->offset);
279 }
280 
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 	prefetch(object + s->offset);
284 }
285 
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 	unsigned long freepointer_addr;
289 	void *p;
290 
291 	if (!debug_pagealloc_enabled_static())
292 		return get_freepointer(s, object);
293 
294 	freepointer_addr = (unsigned long)object + s->offset;
295 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 	return freelist_ptr(s, p, freepointer_addr);
297 }
298 
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
302 
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 	BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306 
307 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309 
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 	for (__p = fixup_red_left(__s, __addr); \
313 		__p < (__addr) + (__objects) * (__s)->size; \
314 		__p += (__s)->size)
315 
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
318 {
319 	return (kasan_reset_tag(p) - addr) / s->size;
320 }
321 
322 static inline unsigned int order_objects(unsigned int order, unsigned int size)
323 {
324 	return ((unsigned int)PAGE_SIZE << order) / size;
325 }
326 
327 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328 		unsigned int size)
329 {
330 	struct kmem_cache_order_objects x = {
331 		(order << OO_SHIFT) + order_objects(order, size)
332 	};
333 
334 	return x;
335 }
336 
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
338 {
339 	return x.x >> OO_SHIFT;
340 }
341 
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
343 {
344 	return x.x & OO_MASK;
345 }
346 
347 /*
348  * Per slab locking using the pagelock
349  */
350 static __always_inline void slab_lock(struct page *page)
351 {
352 	VM_BUG_ON_PAGE(PageTail(page), page);
353 	bit_spin_lock(PG_locked, &page->flags);
354 }
355 
356 static __always_inline void slab_unlock(struct page *page)
357 {
358 	VM_BUG_ON_PAGE(PageTail(page), page);
359 	__bit_spin_unlock(PG_locked, &page->flags);
360 }
361 
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 		void *freelist_old, unsigned long counters_old,
365 		void *freelist_new, unsigned long counters_new,
366 		const char *n)
367 {
368 	VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 	if (s->flags & __CMPXCHG_DOUBLE) {
372 		if (cmpxchg_double(&page->freelist, &page->counters,
373 				   freelist_old, counters_old,
374 				   freelist_new, counters_new))
375 			return true;
376 	} else
377 #endif
378 	{
379 		slab_lock(page);
380 		if (page->freelist == freelist_old &&
381 					page->counters == counters_old) {
382 			page->freelist = freelist_new;
383 			page->counters = counters_new;
384 			slab_unlock(page);
385 			return true;
386 		}
387 		slab_unlock(page);
388 	}
389 
390 	cpu_relax();
391 	stat(s, CMPXCHG_DOUBLE_FAIL);
392 
393 #ifdef SLUB_DEBUG_CMPXCHG
394 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
395 #endif
396 
397 	return false;
398 }
399 
400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 		void *freelist_old, unsigned long counters_old,
402 		void *freelist_new, unsigned long counters_new,
403 		const char *n)
404 {
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 	if (s->flags & __CMPXCHG_DOUBLE) {
408 		if (cmpxchg_double(&page->freelist, &page->counters,
409 				   freelist_old, counters_old,
410 				   freelist_new, counters_new))
411 			return true;
412 	} else
413 #endif
414 	{
415 		unsigned long flags;
416 
417 		local_irq_save(flags);
418 		slab_lock(page);
419 		if (page->freelist == freelist_old &&
420 					page->counters == counters_old) {
421 			page->freelist = freelist_new;
422 			page->counters = counters_new;
423 			slab_unlock(page);
424 			local_irq_restore(flags);
425 			return true;
426 		}
427 		slab_unlock(page);
428 		local_irq_restore(flags);
429 	}
430 
431 	cpu_relax();
432 	stat(s, CMPXCHG_DOUBLE_FAIL);
433 
434 #ifdef SLUB_DEBUG_CMPXCHG
435 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
436 #endif
437 
438 	return false;
439 }
440 
441 #ifdef CONFIG_SLUB_DEBUG
442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443 static DEFINE_SPINLOCK(object_map_lock);
444 
445 /*
446  * Determine a map of object in use on a page.
447  *
448  * Node listlock must be held to guarantee that the page does
449  * not vanish from under us.
450  */
451 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
452 	__acquires(&object_map_lock)
453 {
454 	void *p;
455 	void *addr = page_address(page);
456 
457 	VM_BUG_ON(!irqs_disabled());
458 
459 	spin_lock(&object_map_lock);
460 
461 	bitmap_zero(object_map, page->objects);
462 
463 	for (p = page->freelist; p; p = get_freepointer(s, p))
464 		set_bit(slab_index(p, s, addr), object_map);
465 
466 	return object_map;
467 }
468 
469 static void put_map(unsigned long *map) __releases(&object_map_lock)
470 {
471 	VM_BUG_ON(map != object_map);
472 	lockdep_assert_held(&object_map_lock);
473 
474 	spin_unlock(&object_map_lock);
475 }
476 
477 static inline unsigned int size_from_object(struct kmem_cache *s)
478 {
479 	if (s->flags & SLAB_RED_ZONE)
480 		return s->size - s->red_left_pad;
481 
482 	return s->size;
483 }
484 
485 static inline void *restore_red_left(struct kmem_cache *s, void *p)
486 {
487 	if (s->flags & SLAB_RED_ZONE)
488 		p -= s->red_left_pad;
489 
490 	return p;
491 }
492 
493 /*
494  * Debug settings:
495  */
496 #if defined(CONFIG_SLUB_DEBUG_ON)
497 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
498 #else
499 static slab_flags_t slub_debug;
500 #endif
501 
502 static char *slub_debug_slabs;
503 static int disable_higher_order_debug;
504 
505 /*
506  * slub is about to manipulate internal object metadata.  This memory lies
507  * outside the range of the allocated object, so accessing it would normally
508  * be reported by kasan as a bounds error.  metadata_access_enable() is used
509  * to tell kasan that these accesses are OK.
510  */
511 static inline void metadata_access_enable(void)
512 {
513 	kasan_disable_current();
514 }
515 
516 static inline void metadata_access_disable(void)
517 {
518 	kasan_enable_current();
519 }
520 
521 /*
522  * Object debugging
523  */
524 
525 /* Verify that a pointer has an address that is valid within a slab page */
526 static inline int check_valid_pointer(struct kmem_cache *s,
527 				struct page *page, void *object)
528 {
529 	void *base;
530 
531 	if (!object)
532 		return 1;
533 
534 	base = page_address(page);
535 	object = kasan_reset_tag(object);
536 	object = restore_red_left(s, object);
537 	if (object < base || object >= base + page->objects * s->size ||
538 		(object - base) % s->size) {
539 		return 0;
540 	}
541 
542 	return 1;
543 }
544 
545 static void print_section(char *level, char *text, u8 *addr,
546 			  unsigned int length)
547 {
548 	metadata_access_enable();
549 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
550 			length, 1);
551 	metadata_access_disable();
552 }
553 
554 static struct track *get_track(struct kmem_cache *s, void *object,
555 	enum track_item alloc)
556 {
557 	struct track *p;
558 
559 	if (s->offset)
560 		p = object + s->offset + sizeof(void *);
561 	else
562 		p = object + s->inuse;
563 
564 	return p + alloc;
565 }
566 
567 static void set_track(struct kmem_cache *s, void *object,
568 			enum track_item alloc, unsigned long addr)
569 {
570 	struct track *p = get_track(s, object, alloc);
571 
572 	if (addr) {
573 #ifdef CONFIG_STACKTRACE
574 		unsigned int nr_entries;
575 
576 		metadata_access_enable();
577 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
578 		metadata_access_disable();
579 
580 		if (nr_entries < TRACK_ADDRS_COUNT)
581 			p->addrs[nr_entries] = 0;
582 #endif
583 		p->addr = addr;
584 		p->cpu = smp_processor_id();
585 		p->pid = current->pid;
586 		p->when = jiffies;
587 	} else {
588 		memset(p, 0, sizeof(struct track));
589 	}
590 }
591 
592 static void init_tracking(struct kmem_cache *s, void *object)
593 {
594 	if (!(s->flags & SLAB_STORE_USER))
595 		return;
596 
597 	set_track(s, object, TRACK_FREE, 0UL);
598 	set_track(s, object, TRACK_ALLOC, 0UL);
599 }
600 
601 static void print_track(const char *s, struct track *t, unsigned long pr_time)
602 {
603 	if (!t->addr)
604 		return;
605 
606 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
608 #ifdef CONFIG_STACKTRACE
609 	{
610 		int i;
611 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 			if (t->addrs[i])
613 				pr_err("\t%pS\n", (void *)t->addrs[i]);
614 			else
615 				break;
616 	}
617 #endif
618 }
619 
620 static void print_tracking(struct kmem_cache *s, void *object)
621 {
622 	unsigned long pr_time = jiffies;
623 	if (!(s->flags & SLAB_STORE_USER))
624 		return;
625 
626 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
627 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
628 }
629 
630 static void print_page_info(struct page *page)
631 {
632 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
633 	       page, page->objects, page->inuse, page->freelist, page->flags);
634 
635 }
636 
637 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
638 {
639 	struct va_format vaf;
640 	va_list args;
641 
642 	va_start(args, fmt);
643 	vaf.fmt = fmt;
644 	vaf.va = &args;
645 	pr_err("=============================================================================\n");
646 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
647 	pr_err("-----------------------------------------------------------------------------\n\n");
648 
649 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
650 	va_end(args);
651 }
652 
653 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
654 {
655 	struct va_format vaf;
656 	va_list args;
657 
658 	va_start(args, fmt);
659 	vaf.fmt = fmt;
660 	vaf.va = &args;
661 	pr_err("FIX %s: %pV\n", s->name, &vaf);
662 	va_end(args);
663 }
664 
665 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
666 {
667 	unsigned int off;	/* Offset of last byte */
668 	u8 *addr = page_address(page);
669 
670 	print_tracking(s, p);
671 
672 	print_page_info(page);
673 
674 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 	       p, p - addr, get_freepointer(s, p));
676 
677 	if (s->flags & SLAB_RED_ZONE)
678 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
679 			      s->red_left_pad);
680 	else if (p > addr + 16)
681 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
682 
683 	print_section(KERN_ERR, "Object ", p,
684 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
685 	if (s->flags & SLAB_RED_ZONE)
686 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
687 			s->inuse - s->object_size);
688 
689 	if (s->offset)
690 		off = s->offset + sizeof(void *);
691 	else
692 		off = s->inuse;
693 
694 	if (s->flags & SLAB_STORE_USER)
695 		off += 2 * sizeof(struct track);
696 
697 	off += kasan_metadata_size(s);
698 
699 	if (off != size_from_object(s))
700 		/* Beginning of the filler is the free pointer */
701 		print_section(KERN_ERR, "Padding ", p + off,
702 			      size_from_object(s) - off);
703 
704 	dump_stack();
705 }
706 
707 void object_err(struct kmem_cache *s, struct page *page,
708 			u8 *object, char *reason)
709 {
710 	slab_bug(s, "%s", reason);
711 	print_trailer(s, page, object);
712 }
713 
714 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
715 			const char *fmt, ...)
716 {
717 	va_list args;
718 	char buf[100];
719 
720 	va_start(args, fmt);
721 	vsnprintf(buf, sizeof(buf), fmt, args);
722 	va_end(args);
723 	slab_bug(s, "%s", buf);
724 	print_page_info(page);
725 	dump_stack();
726 }
727 
728 static void init_object(struct kmem_cache *s, void *object, u8 val)
729 {
730 	u8 *p = object;
731 
732 	if (s->flags & SLAB_RED_ZONE)
733 		memset(p - s->red_left_pad, val, s->red_left_pad);
734 
735 	if (s->flags & __OBJECT_POISON) {
736 		memset(p, POISON_FREE, s->object_size - 1);
737 		p[s->object_size - 1] = POISON_END;
738 	}
739 
740 	if (s->flags & SLAB_RED_ZONE)
741 		memset(p + s->object_size, val, s->inuse - s->object_size);
742 }
743 
744 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
745 						void *from, void *to)
746 {
747 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
748 	memset(from, data, to - from);
749 }
750 
751 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
752 			u8 *object, char *what,
753 			u8 *start, unsigned int value, unsigned int bytes)
754 {
755 	u8 *fault;
756 	u8 *end;
757 	u8 *addr = page_address(page);
758 
759 	metadata_access_enable();
760 	fault = memchr_inv(start, value, bytes);
761 	metadata_access_disable();
762 	if (!fault)
763 		return 1;
764 
765 	end = start + bytes;
766 	while (end > fault && end[-1] == value)
767 		end--;
768 
769 	slab_bug(s, "%s overwritten", what);
770 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
771 					fault, end - 1, fault - addr,
772 					fault[0], value);
773 	print_trailer(s, page, object);
774 
775 	restore_bytes(s, what, value, fault, end);
776 	return 0;
777 }
778 
779 /*
780  * Object layout:
781  *
782  * object address
783  * 	Bytes of the object to be managed.
784  * 	If the freepointer may overlay the object then the free
785  * 	pointer is the first word of the object.
786  *
787  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
788  * 	0xa5 (POISON_END)
789  *
790  * object + s->object_size
791  * 	Padding to reach word boundary. This is also used for Redzoning.
792  * 	Padding is extended by another word if Redzoning is enabled and
793  * 	object_size == inuse.
794  *
795  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
796  * 	0xcc (RED_ACTIVE) for objects in use.
797  *
798  * object + s->inuse
799  * 	Meta data starts here.
800  *
801  * 	A. Free pointer (if we cannot overwrite object on free)
802  * 	B. Tracking data for SLAB_STORE_USER
803  * 	C. Padding to reach required alignment boundary or at mininum
804  * 		one word if debugging is on to be able to detect writes
805  * 		before the word boundary.
806  *
807  *	Padding is done using 0x5a (POISON_INUSE)
808  *
809  * object + s->size
810  * 	Nothing is used beyond s->size.
811  *
812  * If slabcaches are merged then the object_size and inuse boundaries are mostly
813  * ignored. And therefore no slab options that rely on these boundaries
814  * may be used with merged slabcaches.
815  */
816 
817 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
818 {
819 	unsigned long off = s->inuse;	/* The end of info */
820 
821 	if (s->offset)
822 		/* Freepointer is placed after the object. */
823 		off += sizeof(void *);
824 
825 	if (s->flags & SLAB_STORE_USER)
826 		/* We also have user information there */
827 		off += 2 * sizeof(struct track);
828 
829 	off += kasan_metadata_size(s);
830 
831 	if (size_from_object(s) == off)
832 		return 1;
833 
834 	return check_bytes_and_report(s, page, p, "Object padding",
835 			p + off, POISON_INUSE, size_from_object(s) - off);
836 }
837 
838 /* Check the pad bytes at the end of a slab page */
839 static int slab_pad_check(struct kmem_cache *s, struct page *page)
840 {
841 	u8 *start;
842 	u8 *fault;
843 	u8 *end;
844 	u8 *pad;
845 	int length;
846 	int remainder;
847 
848 	if (!(s->flags & SLAB_POISON))
849 		return 1;
850 
851 	start = page_address(page);
852 	length = page_size(page);
853 	end = start + length;
854 	remainder = length % s->size;
855 	if (!remainder)
856 		return 1;
857 
858 	pad = end - remainder;
859 	metadata_access_enable();
860 	fault = memchr_inv(pad, POISON_INUSE, remainder);
861 	metadata_access_disable();
862 	if (!fault)
863 		return 1;
864 	while (end > fault && end[-1] == POISON_INUSE)
865 		end--;
866 
867 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
868 			fault, end - 1, fault - start);
869 	print_section(KERN_ERR, "Padding ", pad, remainder);
870 
871 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
872 	return 0;
873 }
874 
875 static int check_object(struct kmem_cache *s, struct page *page,
876 					void *object, u8 val)
877 {
878 	u8 *p = object;
879 	u8 *endobject = object + s->object_size;
880 
881 	if (s->flags & SLAB_RED_ZONE) {
882 		if (!check_bytes_and_report(s, page, object, "Redzone",
883 			object - s->red_left_pad, val, s->red_left_pad))
884 			return 0;
885 
886 		if (!check_bytes_and_report(s, page, object, "Redzone",
887 			endobject, val, s->inuse - s->object_size))
888 			return 0;
889 	} else {
890 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
891 			check_bytes_and_report(s, page, p, "Alignment padding",
892 				endobject, POISON_INUSE,
893 				s->inuse - s->object_size);
894 		}
895 	}
896 
897 	if (s->flags & SLAB_POISON) {
898 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
899 			(!check_bytes_and_report(s, page, p, "Poison", p,
900 					POISON_FREE, s->object_size - 1) ||
901 			 !check_bytes_and_report(s, page, p, "Poison",
902 				p + s->object_size - 1, POISON_END, 1)))
903 			return 0;
904 		/*
905 		 * check_pad_bytes cleans up on its own.
906 		 */
907 		check_pad_bytes(s, page, p);
908 	}
909 
910 	if (!s->offset && val == SLUB_RED_ACTIVE)
911 		/*
912 		 * Object and freepointer overlap. Cannot check
913 		 * freepointer while object is allocated.
914 		 */
915 		return 1;
916 
917 	/* Check free pointer validity */
918 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
919 		object_err(s, page, p, "Freepointer corrupt");
920 		/*
921 		 * No choice but to zap it and thus lose the remainder
922 		 * of the free objects in this slab. May cause
923 		 * another error because the object count is now wrong.
924 		 */
925 		set_freepointer(s, p, NULL);
926 		return 0;
927 	}
928 	return 1;
929 }
930 
931 static int check_slab(struct kmem_cache *s, struct page *page)
932 {
933 	int maxobj;
934 
935 	VM_BUG_ON(!irqs_disabled());
936 
937 	if (!PageSlab(page)) {
938 		slab_err(s, page, "Not a valid slab page");
939 		return 0;
940 	}
941 
942 	maxobj = order_objects(compound_order(page), s->size);
943 	if (page->objects > maxobj) {
944 		slab_err(s, page, "objects %u > max %u",
945 			page->objects, maxobj);
946 		return 0;
947 	}
948 	if (page->inuse > page->objects) {
949 		slab_err(s, page, "inuse %u > max %u",
950 			page->inuse, page->objects);
951 		return 0;
952 	}
953 	/* Slab_pad_check fixes things up after itself */
954 	slab_pad_check(s, page);
955 	return 1;
956 }
957 
958 /*
959  * Determine if a certain object on a page is on the freelist. Must hold the
960  * slab lock to guarantee that the chains are in a consistent state.
961  */
962 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
963 {
964 	int nr = 0;
965 	void *fp;
966 	void *object = NULL;
967 	int max_objects;
968 
969 	fp = page->freelist;
970 	while (fp && nr <= page->objects) {
971 		if (fp == search)
972 			return 1;
973 		if (!check_valid_pointer(s, page, fp)) {
974 			if (object) {
975 				object_err(s, page, object,
976 					"Freechain corrupt");
977 				set_freepointer(s, object, NULL);
978 			} else {
979 				slab_err(s, page, "Freepointer corrupt");
980 				page->freelist = NULL;
981 				page->inuse = page->objects;
982 				slab_fix(s, "Freelist cleared");
983 				return 0;
984 			}
985 			break;
986 		}
987 		object = fp;
988 		fp = get_freepointer(s, object);
989 		nr++;
990 	}
991 
992 	max_objects = order_objects(compound_order(page), s->size);
993 	if (max_objects > MAX_OBJS_PER_PAGE)
994 		max_objects = MAX_OBJS_PER_PAGE;
995 
996 	if (page->objects != max_objects) {
997 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
998 			 page->objects, max_objects);
999 		page->objects = max_objects;
1000 		slab_fix(s, "Number of objects adjusted.");
1001 	}
1002 	if (page->inuse != page->objects - nr) {
1003 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1004 			 page->inuse, page->objects - nr);
1005 		page->inuse = page->objects - nr;
1006 		slab_fix(s, "Object count adjusted.");
1007 	}
1008 	return search == NULL;
1009 }
1010 
1011 static void trace(struct kmem_cache *s, struct page *page, void *object,
1012 								int alloc)
1013 {
1014 	if (s->flags & SLAB_TRACE) {
1015 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1016 			s->name,
1017 			alloc ? "alloc" : "free",
1018 			object, page->inuse,
1019 			page->freelist);
1020 
1021 		if (!alloc)
1022 			print_section(KERN_INFO, "Object ", (void *)object,
1023 					s->object_size);
1024 
1025 		dump_stack();
1026 	}
1027 }
1028 
1029 /*
1030  * Tracking of fully allocated slabs for debugging purposes.
1031  */
1032 static void add_full(struct kmem_cache *s,
1033 	struct kmem_cache_node *n, struct page *page)
1034 {
1035 	if (!(s->flags & SLAB_STORE_USER))
1036 		return;
1037 
1038 	lockdep_assert_held(&n->list_lock);
1039 	list_add(&page->slab_list, &n->full);
1040 }
1041 
1042 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1043 {
1044 	if (!(s->flags & SLAB_STORE_USER))
1045 		return;
1046 
1047 	lockdep_assert_held(&n->list_lock);
1048 	list_del(&page->slab_list);
1049 }
1050 
1051 /* Tracking of the number of slabs for debugging purposes */
1052 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1053 {
1054 	struct kmem_cache_node *n = get_node(s, node);
1055 
1056 	return atomic_long_read(&n->nr_slabs);
1057 }
1058 
1059 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1060 {
1061 	return atomic_long_read(&n->nr_slabs);
1062 }
1063 
1064 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1065 {
1066 	struct kmem_cache_node *n = get_node(s, node);
1067 
1068 	/*
1069 	 * May be called early in order to allocate a slab for the
1070 	 * kmem_cache_node structure. Solve the chicken-egg
1071 	 * dilemma by deferring the increment of the count during
1072 	 * bootstrap (see early_kmem_cache_node_alloc).
1073 	 */
1074 	if (likely(n)) {
1075 		atomic_long_inc(&n->nr_slabs);
1076 		atomic_long_add(objects, &n->total_objects);
1077 	}
1078 }
1079 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1080 {
1081 	struct kmem_cache_node *n = get_node(s, node);
1082 
1083 	atomic_long_dec(&n->nr_slabs);
1084 	atomic_long_sub(objects, &n->total_objects);
1085 }
1086 
1087 /* Object debug checks for alloc/free paths */
1088 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1089 								void *object)
1090 {
1091 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1092 		return;
1093 
1094 	init_object(s, object, SLUB_RED_INACTIVE);
1095 	init_tracking(s, object);
1096 }
1097 
1098 static
1099 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1100 {
1101 	if (!(s->flags & SLAB_POISON))
1102 		return;
1103 
1104 	metadata_access_enable();
1105 	memset(addr, POISON_INUSE, page_size(page));
1106 	metadata_access_disable();
1107 }
1108 
1109 static inline int alloc_consistency_checks(struct kmem_cache *s,
1110 					struct page *page, void *object)
1111 {
1112 	if (!check_slab(s, page))
1113 		return 0;
1114 
1115 	if (!check_valid_pointer(s, page, object)) {
1116 		object_err(s, page, object, "Freelist Pointer check fails");
1117 		return 0;
1118 	}
1119 
1120 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1121 		return 0;
1122 
1123 	return 1;
1124 }
1125 
1126 static noinline int alloc_debug_processing(struct kmem_cache *s,
1127 					struct page *page,
1128 					void *object, unsigned long addr)
1129 {
1130 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1131 		if (!alloc_consistency_checks(s, page, object))
1132 			goto bad;
1133 	}
1134 
1135 	/* Success perform special debug activities for allocs */
1136 	if (s->flags & SLAB_STORE_USER)
1137 		set_track(s, object, TRACK_ALLOC, addr);
1138 	trace(s, page, object, 1);
1139 	init_object(s, object, SLUB_RED_ACTIVE);
1140 	return 1;
1141 
1142 bad:
1143 	if (PageSlab(page)) {
1144 		/*
1145 		 * If this is a slab page then lets do the best we can
1146 		 * to avoid issues in the future. Marking all objects
1147 		 * as used avoids touching the remaining objects.
1148 		 */
1149 		slab_fix(s, "Marking all objects used");
1150 		page->inuse = page->objects;
1151 		page->freelist = NULL;
1152 	}
1153 	return 0;
1154 }
1155 
1156 static inline int free_consistency_checks(struct kmem_cache *s,
1157 		struct page *page, void *object, unsigned long addr)
1158 {
1159 	if (!check_valid_pointer(s, page, object)) {
1160 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1161 		return 0;
1162 	}
1163 
1164 	if (on_freelist(s, page, object)) {
1165 		object_err(s, page, object, "Object already free");
1166 		return 0;
1167 	}
1168 
1169 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1170 		return 0;
1171 
1172 	if (unlikely(s != page->slab_cache)) {
1173 		if (!PageSlab(page)) {
1174 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1175 				 object);
1176 		} else if (!page->slab_cache) {
1177 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1178 			       object);
1179 			dump_stack();
1180 		} else
1181 			object_err(s, page, object,
1182 					"page slab pointer corrupt.");
1183 		return 0;
1184 	}
1185 	return 1;
1186 }
1187 
1188 /* Supports checking bulk free of a constructed freelist */
1189 static noinline int free_debug_processing(
1190 	struct kmem_cache *s, struct page *page,
1191 	void *head, void *tail, int bulk_cnt,
1192 	unsigned long addr)
1193 {
1194 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1195 	void *object = head;
1196 	int cnt = 0;
1197 	unsigned long uninitialized_var(flags);
1198 	int ret = 0;
1199 
1200 	spin_lock_irqsave(&n->list_lock, flags);
1201 	slab_lock(page);
1202 
1203 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1204 		if (!check_slab(s, page))
1205 			goto out;
1206 	}
1207 
1208 next_object:
1209 	cnt++;
1210 
1211 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1212 		if (!free_consistency_checks(s, page, object, addr))
1213 			goto out;
1214 	}
1215 
1216 	if (s->flags & SLAB_STORE_USER)
1217 		set_track(s, object, TRACK_FREE, addr);
1218 	trace(s, page, object, 0);
1219 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1220 	init_object(s, object, SLUB_RED_INACTIVE);
1221 
1222 	/* Reached end of constructed freelist yet? */
1223 	if (object != tail) {
1224 		object = get_freepointer(s, object);
1225 		goto next_object;
1226 	}
1227 	ret = 1;
1228 
1229 out:
1230 	if (cnt != bulk_cnt)
1231 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1232 			 bulk_cnt, cnt);
1233 
1234 	slab_unlock(page);
1235 	spin_unlock_irqrestore(&n->list_lock, flags);
1236 	if (!ret)
1237 		slab_fix(s, "Object at 0x%p not freed", object);
1238 	return ret;
1239 }
1240 
1241 static int __init setup_slub_debug(char *str)
1242 {
1243 	slub_debug = DEBUG_DEFAULT_FLAGS;
1244 	if (*str++ != '=' || !*str)
1245 		/*
1246 		 * No options specified. Switch on full debugging.
1247 		 */
1248 		goto out;
1249 
1250 	if (*str == ',')
1251 		/*
1252 		 * No options but restriction on slabs. This means full
1253 		 * debugging for slabs matching a pattern.
1254 		 */
1255 		goto check_slabs;
1256 
1257 	slub_debug = 0;
1258 	if (*str == '-')
1259 		/*
1260 		 * Switch off all debugging measures.
1261 		 */
1262 		goto out;
1263 
1264 	/*
1265 	 * Determine which debug features should be switched on
1266 	 */
1267 	for (; *str && *str != ','; str++) {
1268 		switch (tolower(*str)) {
1269 		case 'f':
1270 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1271 			break;
1272 		case 'z':
1273 			slub_debug |= SLAB_RED_ZONE;
1274 			break;
1275 		case 'p':
1276 			slub_debug |= SLAB_POISON;
1277 			break;
1278 		case 'u':
1279 			slub_debug |= SLAB_STORE_USER;
1280 			break;
1281 		case 't':
1282 			slub_debug |= SLAB_TRACE;
1283 			break;
1284 		case 'a':
1285 			slub_debug |= SLAB_FAILSLAB;
1286 			break;
1287 		case 'o':
1288 			/*
1289 			 * Avoid enabling debugging on caches if its minimum
1290 			 * order would increase as a result.
1291 			 */
1292 			disable_higher_order_debug = 1;
1293 			break;
1294 		default:
1295 			pr_err("slub_debug option '%c' unknown. skipped\n",
1296 			       *str);
1297 		}
1298 	}
1299 
1300 check_slabs:
1301 	if (*str == ',')
1302 		slub_debug_slabs = str + 1;
1303 out:
1304 	if ((static_branch_unlikely(&init_on_alloc) ||
1305 	     static_branch_unlikely(&init_on_free)) &&
1306 	    (slub_debug & SLAB_POISON))
1307 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1308 	return 1;
1309 }
1310 
1311 __setup("slub_debug", setup_slub_debug);
1312 
1313 /*
1314  * kmem_cache_flags - apply debugging options to the cache
1315  * @object_size:	the size of an object without meta data
1316  * @flags:		flags to set
1317  * @name:		name of the cache
1318  * @ctor:		constructor function
1319  *
1320  * Debug option(s) are applied to @flags. In addition to the debug
1321  * option(s), if a slab name (or multiple) is specified i.e.
1322  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1323  * then only the select slabs will receive the debug option(s).
1324  */
1325 slab_flags_t kmem_cache_flags(unsigned int object_size,
1326 	slab_flags_t flags, const char *name,
1327 	void (*ctor)(void *))
1328 {
1329 	char *iter;
1330 	size_t len;
1331 
1332 	/* If slub_debug = 0, it folds into the if conditional. */
1333 	if (!slub_debug_slabs)
1334 		return flags | slub_debug;
1335 
1336 	len = strlen(name);
1337 	iter = slub_debug_slabs;
1338 	while (*iter) {
1339 		char *end, *glob;
1340 		size_t cmplen;
1341 
1342 		end = strchrnul(iter, ',');
1343 
1344 		glob = strnchr(iter, end - iter, '*');
1345 		if (glob)
1346 			cmplen = glob - iter;
1347 		else
1348 			cmplen = max_t(size_t, len, (end - iter));
1349 
1350 		if (!strncmp(name, iter, cmplen)) {
1351 			flags |= slub_debug;
1352 			break;
1353 		}
1354 
1355 		if (!*end)
1356 			break;
1357 		iter = end + 1;
1358 	}
1359 
1360 	return flags;
1361 }
1362 #else /* !CONFIG_SLUB_DEBUG */
1363 static inline void setup_object_debug(struct kmem_cache *s,
1364 			struct page *page, void *object) {}
1365 static inline
1366 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1367 
1368 static inline int alloc_debug_processing(struct kmem_cache *s,
1369 	struct page *page, void *object, unsigned long addr) { return 0; }
1370 
1371 static inline int free_debug_processing(
1372 	struct kmem_cache *s, struct page *page,
1373 	void *head, void *tail, int bulk_cnt,
1374 	unsigned long addr) { return 0; }
1375 
1376 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1377 			{ return 1; }
1378 static inline int check_object(struct kmem_cache *s, struct page *page,
1379 			void *object, u8 val) { return 1; }
1380 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1381 					struct page *page) {}
1382 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1383 					struct page *page) {}
1384 slab_flags_t kmem_cache_flags(unsigned int object_size,
1385 	slab_flags_t flags, const char *name,
1386 	void (*ctor)(void *))
1387 {
1388 	return flags;
1389 }
1390 #define slub_debug 0
1391 
1392 #define disable_higher_order_debug 0
1393 
1394 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1395 							{ return 0; }
1396 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1397 							{ return 0; }
1398 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1399 							int objects) {}
1400 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1401 							int objects) {}
1402 
1403 #endif /* CONFIG_SLUB_DEBUG */
1404 
1405 /*
1406  * Hooks for other subsystems that check memory allocations. In a typical
1407  * production configuration these hooks all should produce no code at all.
1408  */
1409 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1410 {
1411 	ptr = kasan_kmalloc_large(ptr, size, flags);
1412 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1413 	kmemleak_alloc(ptr, size, 1, flags);
1414 	return ptr;
1415 }
1416 
1417 static __always_inline void kfree_hook(void *x)
1418 {
1419 	kmemleak_free(x);
1420 	kasan_kfree_large(x, _RET_IP_);
1421 }
1422 
1423 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1424 {
1425 	kmemleak_free_recursive(x, s->flags);
1426 
1427 	/*
1428 	 * Trouble is that we may no longer disable interrupts in the fast path
1429 	 * So in order to make the debug calls that expect irqs to be
1430 	 * disabled we need to disable interrupts temporarily.
1431 	 */
1432 #ifdef CONFIG_LOCKDEP
1433 	{
1434 		unsigned long flags;
1435 
1436 		local_irq_save(flags);
1437 		debug_check_no_locks_freed(x, s->object_size);
1438 		local_irq_restore(flags);
1439 	}
1440 #endif
1441 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1442 		debug_check_no_obj_freed(x, s->object_size);
1443 
1444 	/* KASAN might put x into memory quarantine, delaying its reuse */
1445 	return kasan_slab_free(s, x, _RET_IP_);
1446 }
1447 
1448 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1449 					   void **head, void **tail)
1450 {
1451 
1452 	void *object;
1453 	void *next = *head;
1454 	void *old_tail = *tail ? *tail : *head;
1455 	int rsize;
1456 
1457 	/* Head and tail of the reconstructed freelist */
1458 	*head = NULL;
1459 	*tail = NULL;
1460 
1461 	do {
1462 		object = next;
1463 		next = get_freepointer(s, object);
1464 
1465 		if (slab_want_init_on_free(s)) {
1466 			/*
1467 			 * Clear the object and the metadata, but don't touch
1468 			 * the redzone.
1469 			 */
1470 			memset(object, 0, s->object_size);
1471 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1472 							   : 0;
1473 			memset((char *)object + s->inuse, 0,
1474 			       s->size - s->inuse - rsize);
1475 
1476 		}
1477 		/* If object's reuse doesn't have to be delayed */
1478 		if (!slab_free_hook(s, object)) {
1479 			/* Move object to the new freelist */
1480 			set_freepointer(s, object, *head);
1481 			*head = object;
1482 			if (!*tail)
1483 				*tail = object;
1484 		}
1485 	} while (object != old_tail);
1486 
1487 	if (*head == *tail)
1488 		*tail = NULL;
1489 
1490 	return *head != NULL;
1491 }
1492 
1493 static void *setup_object(struct kmem_cache *s, struct page *page,
1494 				void *object)
1495 {
1496 	setup_object_debug(s, page, object);
1497 	object = kasan_init_slab_obj(s, object);
1498 	if (unlikely(s->ctor)) {
1499 		kasan_unpoison_object_data(s, object);
1500 		s->ctor(object);
1501 		kasan_poison_object_data(s, object);
1502 	}
1503 	return object;
1504 }
1505 
1506 /*
1507  * Slab allocation and freeing
1508  */
1509 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1510 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1511 {
1512 	struct page *page;
1513 	unsigned int order = oo_order(oo);
1514 
1515 	if (node == NUMA_NO_NODE)
1516 		page = alloc_pages(flags, order);
1517 	else
1518 		page = __alloc_pages_node(node, flags, order);
1519 
1520 	if (page && charge_slab_page(page, flags, order, s)) {
1521 		__free_pages(page, order);
1522 		page = NULL;
1523 	}
1524 
1525 	return page;
1526 }
1527 
1528 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1529 /* Pre-initialize the random sequence cache */
1530 static int init_cache_random_seq(struct kmem_cache *s)
1531 {
1532 	unsigned int count = oo_objects(s->oo);
1533 	int err;
1534 
1535 	/* Bailout if already initialised */
1536 	if (s->random_seq)
1537 		return 0;
1538 
1539 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1540 	if (err) {
1541 		pr_err("SLUB: Unable to initialize free list for %s\n",
1542 			s->name);
1543 		return err;
1544 	}
1545 
1546 	/* Transform to an offset on the set of pages */
1547 	if (s->random_seq) {
1548 		unsigned int i;
1549 
1550 		for (i = 0; i < count; i++)
1551 			s->random_seq[i] *= s->size;
1552 	}
1553 	return 0;
1554 }
1555 
1556 /* Initialize each random sequence freelist per cache */
1557 static void __init init_freelist_randomization(void)
1558 {
1559 	struct kmem_cache *s;
1560 
1561 	mutex_lock(&slab_mutex);
1562 
1563 	list_for_each_entry(s, &slab_caches, list)
1564 		init_cache_random_seq(s);
1565 
1566 	mutex_unlock(&slab_mutex);
1567 }
1568 
1569 /* Get the next entry on the pre-computed freelist randomized */
1570 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1571 				unsigned long *pos, void *start,
1572 				unsigned long page_limit,
1573 				unsigned long freelist_count)
1574 {
1575 	unsigned int idx;
1576 
1577 	/*
1578 	 * If the target page allocation failed, the number of objects on the
1579 	 * page might be smaller than the usual size defined by the cache.
1580 	 */
1581 	do {
1582 		idx = s->random_seq[*pos];
1583 		*pos += 1;
1584 		if (*pos >= freelist_count)
1585 			*pos = 0;
1586 	} while (unlikely(idx >= page_limit));
1587 
1588 	return (char *)start + idx;
1589 }
1590 
1591 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1592 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1593 {
1594 	void *start;
1595 	void *cur;
1596 	void *next;
1597 	unsigned long idx, pos, page_limit, freelist_count;
1598 
1599 	if (page->objects < 2 || !s->random_seq)
1600 		return false;
1601 
1602 	freelist_count = oo_objects(s->oo);
1603 	pos = get_random_int() % freelist_count;
1604 
1605 	page_limit = page->objects * s->size;
1606 	start = fixup_red_left(s, page_address(page));
1607 
1608 	/* First entry is used as the base of the freelist */
1609 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1610 				freelist_count);
1611 	cur = setup_object(s, page, cur);
1612 	page->freelist = cur;
1613 
1614 	for (idx = 1; idx < page->objects; idx++) {
1615 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1616 			freelist_count);
1617 		next = setup_object(s, page, next);
1618 		set_freepointer(s, cur, next);
1619 		cur = next;
1620 	}
1621 	set_freepointer(s, cur, NULL);
1622 
1623 	return true;
1624 }
1625 #else
1626 static inline int init_cache_random_seq(struct kmem_cache *s)
1627 {
1628 	return 0;
1629 }
1630 static inline void init_freelist_randomization(void) { }
1631 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1632 {
1633 	return false;
1634 }
1635 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1636 
1637 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1638 {
1639 	struct page *page;
1640 	struct kmem_cache_order_objects oo = s->oo;
1641 	gfp_t alloc_gfp;
1642 	void *start, *p, *next;
1643 	int idx;
1644 	bool shuffle;
1645 
1646 	flags &= gfp_allowed_mask;
1647 
1648 	if (gfpflags_allow_blocking(flags))
1649 		local_irq_enable();
1650 
1651 	flags |= s->allocflags;
1652 
1653 	/*
1654 	 * Let the initial higher-order allocation fail under memory pressure
1655 	 * so we fall-back to the minimum order allocation.
1656 	 */
1657 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1658 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1659 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1660 
1661 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1662 	if (unlikely(!page)) {
1663 		oo = s->min;
1664 		alloc_gfp = flags;
1665 		/*
1666 		 * Allocation may have failed due to fragmentation.
1667 		 * Try a lower order alloc if possible
1668 		 */
1669 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1670 		if (unlikely(!page))
1671 			goto out;
1672 		stat(s, ORDER_FALLBACK);
1673 	}
1674 
1675 	page->objects = oo_objects(oo);
1676 
1677 	page->slab_cache = s;
1678 	__SetPageSlab(page);
1679 	if (page_is_pfmemalloc(page))
1680 		SetPageSlabPfmemalloc(page);
1681 
1682 	kasan_poison_slab(page);
1683 
1684 	start = page_address(page);
1685 
1686 	setup_page_debug(s, page, start);
1687 
1688 	shuffle = shuffle_freelist(s, page);
1689 
1690 	if (!shuffle) {
1691 		start = fixup_red_left(s, start);
1692 		start = setup_object(s, page, start);
1693 		page->freelist = start;
1694 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1695 			next = p + s->size;
1696 			next = setup_object(s, page, next);
1697 			set_freepointer(s, p, next);
1698 			p = next;
1699 		}
1700 		set_freepointer(s, p, NULL);
1701 	}
1702 
1703 	page->inuse = page->objects;
1704 	page->frozen = 1;
1705 
1706 out:
1707 	if (gfpflags_allow_blocking(flags))
1708 		local_irq_disable();
1709 	if (!page)
1710 		return NULL;
1711 
1712 	inc_slabs_node(s, page_to_nid(page), page->objects);
1713 
1714 	return page;
1715 }
1716 
1717 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1718 {
1719 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1720 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1721 		flags &= ~GFP_SLAB_BUG_MASK;
1722 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1723 				invalid_mask, &invalid_mask, flags, &flags);
1724 		dump_stack();
1725 	}
1726 
1727 	return allocate_slab(s,
1728 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1729 }
1730 
1731 static void __free_slab(struct kmem_cache *s, struct page *page)
1732 {
1733 	int order = compound_order(page);
1734 	int pages = 1 << order;
1735 
1736 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1737 		void *p;
1738 
1739 		slab_pad_check(s, page);
1740 		for_each_object(p, s, page_address(page),
1741 						page->objects)
1742 			check_object(s, page, p, SLUB_RED_INACTIVE);
1743 	}
1744 
1745 	__ClearPageSlabPfmemalloc(page);
1746 	__ClearPageSlab(page);
1747 
1748 	page->mapping = NULL;
1749 	if (current->reclaim_state)
1750 		current->reclaim_state->reclaimed_slab += pages;
1751 	uncharge_slab_page(page, order, s);
1752 	__free_pages(page, order);
1753 }
1754 
1755 static void rcu_free_slab(struct rcu_head *h)
1756 {
1757 	struct page *page = container_of(h, struct page, rcu_head);
1758 
1759 	__free_slab(page->slab_cache, page);
1760 }
1761 
1762 static void free_slab(struct kmem_cache *s, struct page *page)
1763 {
1764 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1765 		call_rcu(&page->rcu_head, rcu_free_slab);
1766 	} else
1767 		__free_slab(s, page);
1768 }
1769 
1770 static void discard_slab(struct kmem_cache *s, struct page *page)
1771 {
1772 	dec_slabs_node(s, page_to_nid(page), page->objects);
1773 	free_slab(s, page);
1774 }
1775 
1776 /*
1777  * Management of partially allocated slabs.
1778  */
1779 static inline void
1780 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1781 {
1782 	n->nr_partial++;
1783 	if (tail == DEACTIVATE_TO_TAIL)
1784 		list_add_tail(&page->slab_list, &n->partial);
1785 	else
1786 		list_add(&page->slab_list, &n->partial);
1787 }
1788 
1789 static inline void add_partial(struct kmem_cache_node *n,
1790 				struct page *page, int tail)
1791 {
1792 	lockdep_assert_held(&n->list_lock);
1793 	__add_partial(n, page, tail);
1794 }
1795 
1796 static inline void remove_partial(struct kmem_cache_node *n,
1797 					struct page *page)
1798 {
1799 	lockdep_assert_held(&n->list_lock);
1800 	list_del(&page->slab_list);
1801 	n->nr_partial--;
1802 }
1803 
1804 /*
1805  * Remove slab from the partial list, freeze it and
1806  * return the pointer to the freelist.
1807  *
1808  * Returns a list of objects or NULL if it fails.
1809  */
1810 static inline void *acquire_slab(struct kmem_cache *s,
1811 		struct kmem_cache_node *n, struct page *page,
1812 		int mode, int *objects)
1813 {
1814 	void *freelist;
1815 	unsigned long counters;
1816 	struct page new;
1817 
1818 	lockdep_assert_held(&n->list_lock);
1819 
1820 	/*
1821 	 * Zap the freelist and set the frozen bit.
1822 	 * The old freelist is the list of objects for the
1823 	 * per cpu allocation list.
1824 	 */
1825 	freelist = page->freelist;
1826 	counters = page->counters;
1827 	new.counters = counters;
1828 	*objects = new.objects - new.inuse;
1829 	if (mode) {
1830 		new.inuse = page->objects;
1831 		new.freelist = NULL;
1832 	} else {
1833 		new.freelist = freelist;
1834 	}
1835 
1836 	VM_BUG_ON(new.frozen);
1837 	new.frozen = 1;
1838 
1839 	if (!__cmpxchg_double_slab(s, page,
1840 			freelist, counters,
1841 			new.freelist, new.counters,
1842 			"acquire_slab"))
1843 		return NULL;
1844 
1845 	remove_partial(n, page);
1846 	WARN_ON(!freelist);
1847 	return freelist;
1848 }
1849 
1850 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1851 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1852 
1853 /*
1854  * Try to allocate a partial slab from a specific node.
1855  */
1856 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1857 				struct kmem_cache_cpu *c, gfp_t flags)
1858 {
1859 	struct page *page, *page2;
1860 	void *object = NULL;
1861 	unsigned int available = 0;
1862 	int objects;
1863 
1864 	/*
1865 	 * Racy check. If we mistakenly see no partial slabs then we
1866 	 * just allocate an empty slab. If we mistakenly try to get a
1867 	 * partial slab and there is none available then get_partials()
1868 	 * will return NULL.
1869 	 */
1870 	if (!n || !n->nr_partial)
1871 		return NULL;
1872 
1873 	spin_lock(&n->list_lock);
1874 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1875 		void *t;
1876 
1877 		if (!pfmemalloc_match(page, flags))
1878 			continue;
1879 
1880 		t = acquire_slab(s, n, page, object == NULL, &objects);
1881 		if (!t)
1882 			break;
1883 
1884 		available += objects;
1885 		if (!object) {
1886 			c->page = page;
1887 			stat(s, ALLOC_FROM_PARTIAL);
1888 			object = t;
1889 		} else {
1890 			put_cpu_partial(s, page, 0);
1891 			stat(s, CPU_PARTIAL_NODE);
1892 		}
1893 		if (!kmem_cache_has_cpu_partial(s)
1894 			|| available > slub_cpu_partial(s) / 2)
1895 			break;
1896 
1897 	}
1898 	spin_unlock(&n->list_lock);
1899 	return object;
1900 }
1901 
1902 /*
1903  * Get a page from somewhere. Search in increasing NUMA distances.
1904  */
1905 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1906 		struct kmem_cache_cpu *c)
1907 {
1908 #ifdef CONFIG_NUMA
1909 	struct zonelist *zonelist;
1910 	struct zoneref *z;
1911 	struct zone *zone;
1912 	enum zone_type high_zoneidx = gfp_zone(flags);
1913 	void *object;
1914 	unsigned int cpuset_mems_cookie;
1915 
1916 	/*
1917 	 * The defrag ratio allows a configuration of the tradeoffs between
1918 	 * inter node defragmentation and node local allocations. A lower
1919 	 * defrag_ratio increases the tendency to do local allocations
1920 	 * instead of attempting to obtain partial slabs from other nodes.
1921 	 *
1922 	 * If the defrag_ratio is set to 0 then kmalloc() always
1923 	 * returns node local objects. If the ratio is higher then kmalloc()
1924 	 * may return off node objects because partial slabs are obtained
1925 	 * from other nodes and filled up.
1926 	 *
1927 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1928 	 * (which makes defrag_ratio = 1000) then every (well almost)
1929 	 * allocation will first attempt to defrag slab caches on other nodes.
1930 	 * This means scanning over all nodes to look for partial slabs which
1931 	 * may be expensive if we do it every time we are trying to find a slab
1932 	 * with available objects.
1933 	 */
1934 	if (!s->remote_node_defrag_ratio ||
1935 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1936 		return NULL;
1937 
1938 	do {
1939 		cpuset_mems_cookie = read_mems_allowed_begin();
1940 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1941 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1942 			struct kmem_cache_node *n;
1943 
1944 			n = get_node(s, zone_to_nid(zone));
1945 
1946 			if (n && cpuset_zone_allowed(zone, flags) &&
1947 					n->nr_partial > s->min_partial) {
1948 				object = get_partial_node(s, n, c, flags);
1949 				if (object) {
1950 					/*
1951 					 * Don't check read_mems_allowed_retry()
1952 					 * here - if mems_allowed was updated in
1953 					 * parallel, that was a harmless race
1954 					 * between allocation and the cpuset
1955 					 * update
1956 					 */
1957 					return object;
1958 				}
1959 			}
1960 		}
1961 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1962 #endif	/* CONFIG_NUMA */
1963 	return NULL;
1964 }
1965 
1966 /*
1967  * Get a partial page, lock it and return it.
1968  */
1969 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1970 		struct kmem_cache_cpu *c)
1971 {
1972 	void *object;
1973 	int searchnode = node;
1974 
1975 	if (node == NUMA_NO_NODE)
1976 		searchnode = numa_mem_id();
1977 
1978 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1979 	if (object || node != NUMA_NO_NODE)
1980 		return object;
1981 
1982 	return get_any_partial(s, flags, c);
1983 }
1984 
1985 #ifdef CONFIG_PREEMPTION
1986 /*
1987  * Calculate the next globally unique transaction for disambiguiation
1988  * during cmpxchg. The transactions start with the cpu number and are then
1989  * incremented by CONFIG_NR_CPUS.
1990  */
1991 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1992 #else
1993 /*
1994  * No preemption supported therefore also no need to check for
1995  * different cpus.
1996  */
1997 #define TID_STEP 1
1998 #endif
1999 
2000 static inline unsigned long next_tid(unsigned long tid)
2001 {
2002 	return tid + TID_STEP;
2003 }
2004 
2005 #ifdef SLUB_DEBUG_CMPXCHG
2006 static inline unsigned int tid_to_cpu(unsigned long tid)
2007 {
2008 	return tid % TID_STEP;
2009 }
2010 
2011 static inline unsigned long tid_to_event(unsigned long tid)
2012 {
2013 	return tid / TID_STEP;
2014 }
2015 #endif
2016 
2017 static inline unsigned int init_tid(int cpu)
2018 {
2019 	return cpu;
2020 }
2021 
2022 static inline void note_cmpxchg_failure(const char *n,
2023 		const struct kmem_cache *s, unsigned long tid)
2024 {
2025 #ifdef SLUB_DEBUG_CMPXCHG
2026 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2027 
2028 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2029 
2030 #ifdef CONFIG_PREEMPTION
2031 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2032 		pr_warn("due to cpu change %d -> %d\n",
2033 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2034 	else
2035 #endif
2036 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2037 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2038 			tid_to_event(tid), tid_to_event(actual_tid));
2039 	else
2040 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2041 			actual_tid, tid, next_tid(tid));
2042 #endif
2043 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2044 }
2045 
2046 static void init_kmem_cache_cpus(struct kmem_cache *s)
2047 {
2048 	int cpu;
2049 
2050 	for_each_possible_cpu(cpu)
2051 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2052 }
2053 
2054 /*
2055  * Remove the cpu slab
2056  */
2057 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2058 				void *freelist, struct kmem_cache_cpu *c)
2059 {
2060 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2061 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2062 	int lock = 0;
2063 	enum slab_modes l = M_NONE, m = M_NONE;
2064 	void *nextfree;
2065 	int tail = DEACTIVATE_TO_HEAD;
2066 	struct page new;
2067 	struct page old;
2068 
2069 	if (page->freelist) {
2070 		stat(s, DEACTIVATE_REMOTE_FREES);
2071 		tail = DEACTIVATE_TO_TAIL;
2072 	}
2073 
2074 	/*
2075 	 * Stage one: Free all available per cpu objects back
2076 	 * to the page freelist while it is still frozen. Leave the
2077 	 * last one.
2078 	 *
2079 	 * There is no need to take the list->lock because the page
2080 	 * is still frozen.
2081 	 */
2082 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2083 		void *prior;
2084 		unsigned long counters;
2085 
2086 		do {
2087 			prior = page->freelist;
2088 			counters = page->counters;
2089 			set_freepointer(s, freelist, prior);
2090 			new.counters = counters;
2091 			new.inuse--;
2092 			VM_BUG_ON(!new.frozen);
2093 
2094 		} while (!__cmpxchg_double_slab(s, page,
2095 			prior, counters,
2096 			freelist, new.counters,
2097 			"drain percpu freelist"));
2098 
2099 		freelist = nextfree;
2100 	}
2101 
2102 	/*
2103 	 * Stage two: Ensure that the page is unfrozen while the
2104 	 * list presence reflects the actual number of objects
2105 	 * during unfreeze.
2106 	 *
2107 	 * We setup the list membership and then perform a cmpxchg
2108 	 * with the count. If there is a mismatch then the page
2109 	 * is not unfrozen but the page is on the wrong list.
2110 	 *
2111 	 * Then we restart the process which may have to remove
2112 	 * the page from the list that we just put it on again
2113 	 * because the number of objects in the slab may have
2114 	 * changed.
2115 	 */
2116 redo:
2117 
2118 	old.freelist = page->freelist;
2119 	old.counters = page->counters;
2120 	VM_BUG_ON(!old.frozen);
2121 
2122 	/* Determine target state of the slab */
2123 	new.counters = old.counters;
2124 	if (freelist) {
2125 		new.inuse--;
2126 		set_freepointer(s, freelist, old.freelist);
2127 		new.freelist = freelist;
2128 	} else
2129 		new.freelist = old.freelist;
2130 
2131 	new.frozen = 0;
2132 
2133 	if (!new.inuse && n->nr_partial >= s->min_partial)
2134 		m = M_FREE;
2135 	else if (new.freelist) {
2136 		m = M_PARTIAL;
2137 		if (!lock) {
2138 			lock = 1;
2139 			/*
2140 			 * Taking the spinlock removes the possibility
2141 			 * that acquire_slab() will see a slab page that
2142 			 * is frozen
2143 			 */
2144 			spin_lock(&n->list_lock);
2145 		}
2146 	} else {
2147 		m = M_FULL;
2148 		if (kmem_cache_debug(s) && !lock) {
2149 			lock = 1;
2150 			/*
2151 			 * This also ensures that the scanning of full
2152 			 * slabs from diagnostic functions will not see
2153 			 * any frozen slabs.
2154 			 */
2155 			spin_lock(&n->list_lock);
2156 		}
2157 	}
2158 
2159 	if (l != m) {
2160 		if (l == M_PARTIAL)
2161 			remove_partial(n, page);
2162 		else if (l == M_FULL)
2163 			remove_full(s, n, page);
2164 
2165 		if (m == M_PARTIAL)
2166 			add_partial(n, page, tail);
2167 		else if (m == M_FULL)
2168 			add_full(s, n, page);
2169 	}
2170 
2171 	l = m;
2172 	if (!__cmpxchg_double_slab(s, page,
2173 				old.freelist, old.counters,
2174 				new.freelist, new.counters,
2175 				"unfreezing slab"))
2176 		goto redo;
2177 
2178 	if (lock)
2179 		spin_unlock(&n->list_lock);
2180 
2181 	if (m == M_PARTIAL)
2182 		stat(s, tail);
2183 	else if (m == M_FULL)
2184 		stat(s, DEACTIVATE_FULL);
2185 	else if (m == M_FREE) {
2186 		stat(s, DEACTIVATE_EMPTY);
2187 		discard_slab(s, page);
2188 		stat(s, FREE_SLAB);
2189 	}
2190 
2191 	c->page = NULL;
2192 	c->freelist = NULL;
2193 }
2194 
2195 /*
2196  * Unfreeze all the cpu partial slabs.
2197  *
2198  * This function must be called with interrupts disabled
2199  * for the cpu using c (or some other guarantee must be there
2200  * to guarantee no concurrent accesses).
2201  */
2202 static void unfreeze_partials(struct kmem_cache *s,
2203 		struct kmem_cache_cpu *c)
2204 {
2205 #ifdef CONFIG_SLUB_CPU_PARTIAL
2206 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2207 	struct page *page, *discard_page = NULL;
2208 
2209 	while ((page = slub_percpu_partial(c))) {
2210 		struct page new;
2211 		struct page old;
2212 
2213 		slub_set_percpu_partial(c, page);
2214 
2215 		n2 = get_node(s, page_to_nid(page));
2216 		if (n != n2) {
2217 			if (n)
2218 				spin_unlock(&n->list_lock);
2219 
2220 			n = n2;
2221 			spin_lock(&n->list_lock);
2222 		}
2223 
2224 		do {
2225 
2226 			old.freelist = page->freelist;
2227 			old.counters = page->counters;
2228 			VM_BUG_ON(!old.frozen);
2229 
2230 			new.counters = old.counters;
2231 			new.freelist = old.freelist;
2232 
2233 			new.frozen = 0;
2234 
2235 		} while (!__cmpxchg_double_slab(s, page,
2236 				old.freelist, old.counters,
2237 				new.freelist, new.counters,
2238 				"unfreezing slab"));
2239 
2240 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2241 			page->next = discard_page;
2242 			discard_page = page;
2243 		} else {
2244 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2245 			stat(s, FREE_ADD_PARTIAL);
2246 		}
2247 	}
2248 
2249 	if (n)
2250 		spin_unlock(&n->list_lock);
2251 
2252 	while (discard_page) {
2253 		page = discard_page;
2254 		discard_page = discard_page->next;
2255 
2256 		stat(s, DEACTIVATE_EMPTY);
2257 		discard_slab(s, page);
2258 		stat(s, FREE_SLAB);
2259 	}
2260 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2261 }
2262 
2263 /*
2264  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2265  * partial page slot if available.
2266  *
2267  * If we did not find a slot then simply move all the partials to the
2268  * per node partial list.
2269  */
2270 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2271 {
2272 #ifdef CONFIG_SLUB_CPU_PARTIAL
2273 	struct page *oldpage;
2274 	int pages;
2275 	int pobjects;
2276 
2277 	preempt_disable();
2278 	do {
2279 		pages = 0;
2280 		pobjects = 0;
2281 		oldpage = this_cpu_read(s->cpu_slab->partial);
2282 
2283 		if (oldpage) {
2284 			pobjects = oldpage->pobjects;
2285 			pages = oldpage->pages;
2286 			if (drain && pobjects > slub_cpu_partial(s)) {
2287 				unsigned long flags;
2288 				/*
2289 				 * partial array is full. Move the existing
2290 				 * set to the per node partial list.
2291 				 */
2292 				local_irq_save(flags);
2293 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2294 				local_irq_restore(flags);
2295 				oldpage = NULL;
2296 				pobjects = 0;
2297 				pages = 0;
2298 				stat(s, CPU_PARTIAL_DRAIN);
2299 			}
2300 		}
2301 
2302 		pages++;
2303 		pobjects += page->objects - page->inuse;
2304 
2305 		page->pages = pages;
2306 		page->pobjects = pobjects;
2307 		page->next = oldpage;
2308 
2309 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2310 								!= oldpage);
2311 	if (unlikely(!slub_cpu_partial(s))) {
2312 		unsigned long flags;
2313 
2314 		local_irq_save(flags);
2315 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2316 		local_irq_restore(flags);
2317 	}
2318 	preempt_enable();
2319 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2320 }
2321 
2322 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2323 {
2324 	stat(s, CPUSLAB_FLUSH);
2325 	deactivate_slab(s, c->page, c->freelist, c);
2326 
2327 	c->tid = next_tid(c->tid);
2328 }
2329 
2330 /*
2331  * Flush cpu slab.
2332  *
2333  * Called from IPI handler with interrupts disabled.
2334  */
2335 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2336 {
2337 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2338 
2339 	if (c->page)
2340 		flush_slab(s, c);
2341 
2342 	unfreeze_partials(s, c);
2343 }
2344 
2345 static void flush_cpu_slab(void *d)
2346 {
2347 	struct kmem_cache *s = d;
2348 
2349 	__flush_cpu_slab(s, smp_processor_id());
2350 }
2351 
2352 static bool has_cpu_slab(int cpu, void *info)
2353 {
2354 	struct kmem_cache *s = info;
2355 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2356 
2357 	return c->page || slub_percpu_partial(c);
2358 }
2359 
2360 static void flush_all(struct kmem_cache *s)
2361 {
2362 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2363 }
2364 
2365 /*
2366  * Use the cpu notifier to insure that the cpu slabs are flushed when
2367  * necessary.
2368  */
2369 static int slub_cpu_dead(unsigned int cpu)
2370 {
2371 	struct kmem_cache *s;
2372 	unsigned long flags;
2373 
2374 	mutex_lock(&slab_mutex);
2375 	list_for_each_entry(s, &slab_caches, list) {
2376 		local_irq_save(flags);
2377 		__flush_cpu_slab(s, cpu);
2378 		local_irq_restore(flags);
2379 	}
2380 	mutex_unlock(&slab_mutex);
2381 	return 0;
2382 }
2383 
2384 /*
2385  * Check if the objects in a per cpu structure fit numa
2386  * locality expectations.
2387  */
2388 static inline int node_match(struct page *page, int node)
2389 {
2390 #ifdef CONFIG_NUMA
2391 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2392 		return 0;
2393 #endif
2394 	return 1;
2395 }
2396 
2397 #ifdef CONFIG_SLUB_DEBUG
2398 static int count_free(struct page *page)
2399 {
2400 	return page->objects - page->inuse;
2401 }
2402 
2403 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2404 {
2405 	return atomic_long_read(&n->total_objects);
2406 }
2407 #endif /* CONFIG_SLUB_DEBUG */
2408 
2409 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2410 static unsigned long count_partial(struct kmem_cache_node *n,
2411 					int (*get_count)(struct page *))
2412 {
2413 	unsigned long flags;
2414 	unsigned long x = 0;
2415 	struct page *page;
2416 
2417 	spin_lock_irqsave(&n->list_lock, flags);
2418 	list_for_each_entry(page, &n->partial, slab_list)
2419 		x += get_count(page);
2420 	spin_unlock_irqrestore(&n->list_lock, flags);
2421 	return x;
2422 }
2423 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2424 
2425 static noinline void
2426 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2427 {
2428 #ifdef CONFIG_SLUB_DEBUG
2429 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2430 				      DEFAULT_RATELIMIT_BURST);
2431 	int node;
2432 	struct kmem_cache_node *n;
2433 
2434 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2435 		return;
2436 
2437 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2438 		nid, gfpflags, &gfpflags);
2439 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2440 		s->name, s->object_size, s->size, oo_order(s->oo),
2441 		oo_order(s->min));
2442 
2443 	if (oo_order(s->min) > get_order(s->object_size))
2444 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2445 			s->name);
2446 
2447 	for_each_kmem_cache_node(s, node, n) {
2448 		unsigned long nr_slabs;
2449 		unsigned long nr_objs;
2450 		unsigned long nr_free;
2451 
2452 		nr_free  = count_partial(n, count_free);
2453 		nr_slabs = node_nr_slabs(n);
2454 		nr_objs  = node_nr_objs(n);
2455 
2456 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2457 			node, nr_slabs, nr_objs, nr_free);
2458 	}
2459 #endif
2460 }
2461 
2462 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2463 			int node, struct kmem_cache_cpu **pc)
2464 {
2465 	void *freelist;
2466 	struct kmem_cache_cpu *c = *pc;
2467 	struct page *page;
2468 
2469 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2470 
2471 	freelist = get_partial(s, flags, node, c);
2472 
2473 	if (freelist)
2474 		return freelist;
2475 
2476 	page = new_slab(s, flags, node);
2477 	if (page) {
2478 		c = raw_cpu_ptr(s->cpu_slab);
2479 		if (c->page)
2480 			flush_slab(s, c);
2481 
2482 		/*
2483 		 * No other reference to the page yet so we can
2484 		 * muck around with it freely without cmpxchg
2485 		 */
2486 		freelist = page->freelist;
2487 		page->freelist = NULL;
2488 
2489 		stat(s, ALLOC_SLAB);
2490 		c->page = page;
2491 		*pc = c;
2492 	}
2493 
2494 	return freelist;
2495 }
2496 
2497 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2498 {
2499 	if (unlikely(PageSlabPfmemalloc(page)))
2500 		return gfp_pfmemalloc_allowed(gfpflags);
2501 
2502 	return true;
2503 }
2504 
2505 /*
2506  * Check the page->freelist of a page and either transfer the freelist to the
2507  * per cpu freelist or deactivate the page.
2508  *
2509  * The page is still frozen if the return value is not NULL.
2510  *
2511  * If this function returns NULL then the page has been unfrozen.
2512  *
2513  * This function must be called with interrupt disabled.
2514  */
2515 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2516 {
2517 	struct page new;
2518 	unsigned long counters;
2519 	void *freelist;
2520 
2521 	do {
2522 		freelist = page->freelist;
2523 		counters = page->counters;
2524 
2525 		new.counters = counters;
2526 		VM_BUG_ON(!new.frozen);
2527 
2528 		new.inuse = page->objects;
2529 		new.frozen = freelist != NULL;
2530 
2531 	} while (!__cmpxchg_double_slab(s, page,
2532 		freelist, counters,
2533 		NULL, new.counters,
2534 		"get_freelist"));
2535 
2536 	return freelist;
2537 }
2538 
2539 /*
2540  * Slow path. The lockless freelist is empty or we need to perform
2541  * debugging duties.
2542  *
2543  * Processing is still very fast if new objects have been freed to the
2544  * regular freelist. In that case we simply take over the regular freelist
2545  * as the lockless freelist and zap the regular freelist.
2546  *
2547  * If that is not working then we fall back to the partial lists. We take the
2548  * first element of the freelist as the object to allocate now and move the
2549  * rest of the freelist to the lockless freelist.
2550  *
2551  * And if we were unable to get a new slab from the partial slab lists then
2552  * we need to allocate a new slab. This is the slowest path since it involves
2553  * a call to the page allocator and the setup of a new slab.
2554  *
2555  * Version of __slab_alloc to use when we know that interrupts are
2556  * already disabled (which is the case for bulk allocation).
2557  */
2558 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2559 			  unsigned long addr, struct kmem_cache_cpu *c)
2560 {
2561 	void *freelist;
2562 	struct page *page;
2563 
2564 	page = c->page;
2565 	if (!page) {
2566 		/*
2567 		 * if the node is not online or has no normal memory, just
2568 		 * ignore the node constraint
2569 		 */
2570 		if (unlikely(node != NUMA_NO_NODE &&
2571 			     !node_state(node, N_NORMAL_MEMORY)))
2572 			node = NUMA_NO_NODE;
2573 		goto new_slab;
2574 	}
2575 redo:
2576 
2577 	if (unlikely(!node_match(page, node))) {
2578 		/*
2579 		 * same as above but node_match() being false already
2580 		 * implies node != NUMA_NO_NODE
2581 		 */
2582 		if (!node_state(node, N_NORMAL_MEMORY)) {
2583 			node = NUMA_NO_NODE;
2584 			goto redo;
2585 		} else {
2586 			stat(s, ALLOC_NODE_MISMATCH);
2587 			deactivate_slab(s, page, c->freelist, c);
2588 			goto new_slab;
2589 		}
2590 	}
2591 
2592 	/*
2593 	 * By rights, we should be searching for a slab page that was
2594 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2595 	 * information when the page leaves the per-cpu allocator
2596 	 */
2597 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2598 		deactivate_slab(s, page, c->freelist, c);
2599 		goto new_slab;
2600 	}
2601 
2602 	/* must check again c->freelist in case of cpu migration or IRQ */
2603 	freelist = c->freelist;
2604 	if (freelist)
2605 		goto load_freelist;
2606 
2607 	freelist = get_freelist(s, page);
2608 
2609 	if (!freelist) {
2610 		c->page = NULL;
2611 		stat(s, DEACTIVATE_BYPASS);
2612 		goto new_slab;
2613 	}
2614 
2615 	stat(s, ALLOC_REFILL);
2616 
2617 load_freelist:
2618 	/*
2619 	 * freelist is pointing to the list of objects to be used.
2620 	 * page is pointing to the page from which the objects are obtained.
2621 	 * That page must be frozen for per cpu allocations to work.
2622 	 */
2623 	VM_BUG_ON(!c->page->frozen);
2624 	c->freelist = get_freepointer(s, freelist);
2625 	c->tid = next_tid(c->tid);
2626 	return freelist;
2627 
2628 new_slab:
2629 
2630 	if (slub_percpu_partial(c)) {
2631 		page = c->page = slub_percpu_partial(c);
2632 		slub_set_percpu_partial(c, page);
2633 		stat(s, CPU_PARTIAL_ALLOC);
2634 		goto redo;
2635 	}
2636 
2637 	freelist = new_slab_objects(s, gfpflags, node, &c);
2638 
2639 	if (unlikely(!freelist)) {
2640 		slab_out_of_memory(s, gfpflags, node);
2641 		return NULL;
2642 	}
2643 
2644 	page = c->page;
2645 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2646 		goto load_freelist;
2647 
2648 	/* Only entered in the debug case */
2649 	if (kmem_cache_debug(s) &&
2650 			!alloc_debug_processing(s, page, freelist, addr))
2651 		goto new_slab;	/* Slab failed checks. Next slab needed */
2652 
2653 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2654 	return freelist;
2655 }
2656 
2657 /*
2658  * Another one that disabled interrupt and compensates for possible
2659  * cpu changes by refetching the per cpu area pointer.
2660  */
2661 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2662 			  unsigned long addr, struct kmem_cache_cpu *c)
2663 {
2664 	void *p;
2665 	unsigned long flags;
2666 
2667 	local_irq_save(flags);
2668 #ifdef CONFIG_PREEMPTION
2669 	/*
2670 	 * We may have been preempted and rescheduled on a different
2671 	 * cpu before disabling interrupts. Need to reload cpu area
2672 	 * pointer.
2673 	 */
2674 	c = this_cpu_ptr(s->cpu_slab);
2675 #endif
2676 
2677 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2678 	local_irq_restore(flags);
2679 	return p;
2680 }
2681 
2682 /*
2683  * If the object has been wiped upon free, make sure it's fully initialized by
2684  * zeroing out freelist pointer.
2685  */
2686 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2687 						   void *obj)
2688 {
2689 	if (unlikely(slab_want_init_on_free(s)) && obj)
2690 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2691 }
2692 
2693 /*
2694  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2695  * have the fastpath folded into their functions. So no function call
2696  * overhead for requests that can be satisfied on the fastpath.
2697  *
2698  * The fastpath works by first checking if the lockless freelist can be used.
2699  * If not then __slab_alloc is called for slow processing.
2700  *
2701  * Otherwise we can simply pick the next object from the lockless free list.
2702  */
2703 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2704 		gfp_t gfpflags, int node, unsigned long addr)
2705 {
2706 	void *object;
2707 	struct kmem_cache_cpu *c;
2708 	struct page *page;
2709 	unsigned long tid;
2710 
2711 	s = slab_pre_alloc_hook(s, gfpflags);
2712 	if (!s)
2713 		return NULL;
2714 redo:
2715 	/*
2716 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2717 	 * enabled. We may switch back and forth between cpus while
2718 	 * reading from one cpu area. That does not matter as long
2719 	 * as we end up on the original cpu again when doing the cmpxchg.
2720 	 *
2721 	 * We should guarantee that tid and kmem_cache are retrieved on
2722 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2723 	 * to check if it is matched or not.
2724 	 */
2725 	do {
2726 		tid = this_cpu_read(s->cpu_slab->tid);
2727 		c = raw_cpu_ptr(s->cpu_slab);
2728 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2729 		 unlikely(tid != READ_ONCE(c->tid)));
2730 
2731 	/*
2732 	 * Irqless object alloc/free algorithm used here depends on sequence
2733 	 * of fetching cpu_slab's data. tid should be fetched before anything
2734 	 * on c to guarantee that object and page associated with previous tid
2735 	 * won't be used with current tid. If we fetch tid first, object and
2736 	 * page could be one associated with next tid and our alloc/free
2737 	 * request will be failed. In this case, we will retry. So, no problem.
2738 	 */
2739 	barrier();
2740 
2741 	/*
2742 	 * The transaction ids are globally unique per cpu and per operation on
2743 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2744 	 * occurs on the right processor and that there was no operation on the
2745 	 * linked list in between.
2746 	 */
2747 
2748 	object = c->freelist;
2749 	page = c->page;
2750 	if (unlikely(!object || !node_match(page, node))) {
2751 		object = __slab_alloc(s, gfpflags, node, addr, c);
2752 		stat(s, ALLOC_SLOWPATH);
2753 	} else {
2754 		void *next_object = get_freepointer_safe(s, object);
2755 
2756 		/*
2757 		 * The cmpxchg will only match if there was no additional
2758 		 * operation and if we are on the right processor.
2759 		 *
2760 		 * The cmpxchg does the following atomically (without lock
2761 		 * semantics!)
2762 		 * 1. Relocate first pointer to the current per cpu area.
2763 		 * 2. Verify that tid and freelist have not been changed
2764 		 * 3. If they were not changed replace tid and freelist
2765 		 *
2766 		 * Since this is without lock semantics the protection is only
2767 		 * against code executing on this cpu *not* from access by
2768 		 * other cpus.
2769 		 */
2770 		if (unlikely(!this_cpu_cmpxchg_double(
2771 				s->cpu_slab->freelist, s->cpu_slab->tid,
2772 				object, tid,
2773 				next_object, next_tid(tid)))) {
2774 
2775 			note_cmpxchg_failure("slab_alloc", s, tid);
2776 			goto redo;
2777 		}
2778 		prefetch_freepointer(s, next_object);
2779 		stat(s, ALLOC_FASTPATH);
2780 	}
2781 
2782 	maybe_wipe_obj_freeptr(s, object);
2783 
2784 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2785 		memset(object, 0, s->object_size);
2786 
2787 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2788 
2789 	return object;
2790 }
2791 
2792 static __always_inline void *slab_alloc(struct kmem_cache *s,
2793 		gfp_t gfpflags, unsigned long addr)
2794 {
2795 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2796 }
2797 
2798 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2799 {
2800 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2801 
2802 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2803 				s->size, gfpflags);
2804 
2805 	return ret;
2806 }
2807 EXPORT_SYMBOL(kmem_cache_alloc);
2808 
2809 #ifdef CONFIG_TRACING
2810 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2811 {
2812 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2813 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2814 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2815 	return ret;
2816 }
2817 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2818 #endif
2819 
2820 #ifdef CONFIG_NUMA
2821 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2822 {
2823 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2824 
2825 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2826 				    s->object_size, s->size, gfpflags, node);
2827 
2828 	return ret;
2829 }
2830 EXPORT_SYMBOL(kmem_cache_alloc_node);
2831 
2832 #ifdef CONFIG_TRACING
2833 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2834 				    gfp_t gfpflags,
2835 				    int node, size_t size)
2836 {
2837 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2838 
2839 	trace_kmalloc_node(_RET_IP_, ret,
2840 			   size, s->size, gfpflags, node);
2841 
2842 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2843 	return ret;
2844 }
2845 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2846 #endif
2847 #endif	/* CONFIG_NUMA */
2848 
2849 /*
2850  * Slow path handling. This may still be called frequently since objects
2851  * have a longer lifetime than the cpu slabs in most processing loads.
2852  *
2853  * So we still attempt to reduce cache line usage. Just take the slab
2854  * lock and free the item. If there is no additional partial page
2855  * handling required then we can return immediately.
2856  */
2857 static void __slab_free(struct kmem_cache *s, struct page *page,
2858 			void *head, void *tail, int cnt,
2859 			unsigned long addr)
2860 
2861 {
2862 	void *prior;
2863 	int was_frozen;
2864 	struct page new;
2865 	unsigned long counters;
2866 	struct kmem_cache_node *n = NULL;
2867 	unsigned long uninitialized_var(flags);
2868 
2869 	stat(s, FREE_SLOWPATH);
2870 
2871 	if (kmem_cache_debug(s) &&
2872 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2873 		return;
2874 
2875 	do {
2876 		if (unlikely(n)) {
2877 			spin_unlock_irqrestore(&n->list_lock, flags);
2878 			n = NULL;
2879 		}
2880 		prior = page->freelist;
2881 		counters = page->counters;
2882 		set_freepointer(s, tail, prior);
2883 		new.counters = counters;
2884 		was_frozen = new.frozen;
2885 		new.inuse -= cnt;
2886 		if ((!new.inuse || !prior) && !was_frozen) {
2887 
2888 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2889 
2890 				/*
2891 				 * Slab was on no list before and will be
2892 				 * partially empty
2893 				 * We can defer the list move and instead
2894 				 * freeze it.
2895 				 */
2896 				new.frozen = 1;
2897 
2898 			} else { /* Needs to be taken off a list */
2899 
2900 				n = get_node(s, page_to_nid(page));
2901 				/*
2902 				 * Speculatively acquire the list_lock.
2903 				 * If the cmpxchg does not succeed then we may
2904 				 * drop the list_lock without any processing.
2905 				 *
2906 				 * Otherwise the list_lock will synchronize with
2907 				 * other processors updating the list of slabs.
2908 				 */
2909 				spin_lock_irqsave(&n->list_lock, flags);
2910 
2911 			}
2912 		}
2913 
2914 	} while (!cmpxchg_double_slab(s, page,
2915 		prior, counters,
2916 		head, new.counters,
2917 		"__slab_free"));
2918 
2919 	if (likely(!n)) {
2920 
2921 		/*
2922 		 * If we just froze the page then put it onto the
2923 		 * per cpu partial list.
2924 		 */
2925 		if (new.frozen && !was_frozen) {
2926 			put_cpu_partial(s, page, 1);
2927 			stat(s, CPU_PARTIAL_FREE);
2928 		}
2929 		/*
2930 		 * The list lock was not taken therefore no list
2931 		 * activity can be necessary.
2932 		 */
2933 		if (was_frozen)
2934 			stat(s, FREE_FROZEN);
2935 		return;
2936 	}
2937 
2938 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2939 		goto slab_empty;
2940 
2941 	/*
2942 	 * Objects left in the slab. If it was not on the partial list before
2943 	 * then add it.
2944 	 */
2945 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2946 		remove_full(s, n, page);
2947 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2948 		stat(s, FREE_ADD_PARTIAL);
2949 	}
2950 	spin_unlock_irqrestore(&n->list_lock, flags);
2951 	return;
2952 
2953 slab_empty:
2954 	if (prior) {
2955 		/*
2956 		 * Slab on the partial list.
2957 		 */
2958 		remove_partial(n, page);
2959 		stat(s, FREE_REMOVE_PARTIAL);
2960 	} else {
2961 		/* Slab must be on the full list */
2962 		remove_full(s, n, page);
2963 	}
2964 
2965 	spin_unlock_irqrestore(&n->list_lock, flags);
2966 	stat(s, FREE_SLAB);
2967 	discard_slab(s, page);
2968 }
2969 
2970 /*
2971  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2972  * can perform fastpath freeing without additional function calls.
2973  *
2974  * The fastpath is only possible if we are freeing to the current cpu slab
2975  * of this processor. This typically the case if we have just allocated
2976  * the item before.
2977  *
2978  * If fastpath is not possible then fall back to __slab_free where we deal
2979  * with all sorts of special processing.
2980  *
2981  * Bulk free of a freelist with several objects (all pointing to the
2982  * same page) possible by specifying head and tail ptr, plus objects
2983  * count (cnt). Bulk free indicated by tail pointer being set.
2984  */
2985 static __always_inline void do_slab_free(struct kmem_cache *s,
2986 				struct page *page, void *head, void *tail,
2987 				int cnt, unsigned long addr)
2988 {
2989 	void *tail_obj = tail ? : head;
2990 	struct kmem_cache_cpu *c;
2991 	unsigned long tid;
2992 redo:
2993 	/*
2994 	 * Determine the currently cpus per cpu slab.
2995 	 * The cpu may change afterward. However that does not matter since
2996 	 * data is retrieved via this pointer. If we are on the same cpu
2997 	 * during the cmpxchg then the free will succeed.
2998 	 */
2999 	do {
3000 		tid = this_cpu_read(s->cpu_slab->tid);
3001 		c = raw_cpu_ptr(s->cpu_slab);
3002 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3003 		 unlikely(tid != READ_ONCE(c->tid)));
3004 
3005 	/* Same with comment on barrier() in slab_alloc_node() */
3006 	barrier();
3007 
3008 	if (likely(page == c->page)) {
3009 		void **freelist = READ_ONCE(c->freelist);
3010 
3011 		set_freepointer(s, tail_obj, freelist);
3012 
3013 		if (unlikely(!this_cpu_cmpxchg_double(
3014 				s->cpu_slab->freelist, s->cpu_slab->tid,
3015 				freelist, tid,
3016 				head, next_tid(tid)))) {
3017 
3018 			note_cmpxchg_failure("slab_free", s, tid);
3019 			goto redo;
3020 		}
3021 		stat(s, FREE_FASTPATH);
3022 	} else
3023 		__slab_free(s, page, head, tail_obj, cnt, addr);
3024 
3025 }
3026 
3027 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3028 				      void *head, void *tail, int cnt,
3029 				      unsigned long addr)
3030 {
3031 	/*
3032 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3033 	 * to remove objects, whose reuse must be delayed.
3034 	 */
3035 	if (slab_free_freelist_hook(s, &head, &tail))
3036 		do_slab_free(s, page, head, tail, cnt, addr);
3037 }
3038 
3039 #ifdef CONFIG_KASAN_GENERIC
3040 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3041 {
3042 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3043 }
3044 #endif
3045 
3046 void kmem_cache_free(struct kmem_cache *s, void *x)
3047 {
3048 	s = cache_from_obj(s, x);
3049 	if (!s)
3050 		return;
3051 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3052 	trace_kmem_cache_free(_RET_IP_, x);
3053 }
3054 EXPORT_SYMBOL(kmem_cache_free);
3055 
3056 struct detached_freelist {
3057 	struct page *page;
3058 	void *tail;
3059 	void *freelist;
3060 	int cnt;
3061 	struct kmem_cache *s;
3062 };
3063 
3064 /*
3065  * This function progressively scans the array with free objects (with
3066  * a limited look ahead) and extract objects belonging to the same
3067  * page.  It builds a detached freelist directly within the given
3068  * page/objects.  This can happen without any need for
3069  * synchronization, because the objects are owned by running process.
3070  * The freelist is build up as a single linked list in the objects.
3071  * The idea is, that this detached freelist can then be bulk
3072  * transferred to the real freelist(s), but only requiring a single
3073  * synchronization primitive.  Look ahead in the array is limited due
3074  * to performance reasons.
3075  */
3076 static inline
3077 int build_detached_freelist(struct kmem_cache *s, size_t size,
3078 			    void **p, struct detached_freelist *df)
3079 {
3080 	size_t first_skipped_index = 0;
3081 	int lookahead = 3;
3082 	void *object;
3083 	struct page *page;
3084 
3085 	/* Always re-init detached_freelist */
3086 	df->page = NULL;
3087 
3088 	do {
3089 		object = p[--size];
3090 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3091 	} while (!object && size);
3092 
3093 	if (!object)
3094 		return 0;
3095 
3096 	page = virt_to_head_page(object);
3097 	if (!s) {
3098 		/* Handle kalloc'ed objects */
3099 		if (unlikely(!PageSlab(page))) {
3100 			BUG_ON(!PageCompound(page));
3101 			kfree_hook(object);
3102 			__free_pages(page, compound_order(page));
3103 			p[size] = NULL; /* mark object processed */
3104 			return size;
3105 		}
3106 		/* Derive kmem_cache from object */
3107 		df->s = page->slab_cache;
3108 	} else {
3109 		df->s = cache_from_obj(s, object); /* Support for memcg */
3110 	}
3111 
3112 	/* Start new detached freelist */
3113 	df->page = page;
3114 	set_freepointer(df->s, object, NULL);
3115 	df->tail = object;
3116 	df->freelist = object;
3117 	p[size] = NULL; /* mark object processed */
3118 	df->cnt = 1;
3119 
3120 	while (size) {
3121 		object = p[--size];
3122 		if (!object)
3123 			continue; /* Skip processed objects */
3124 
3125 		/* df->page is always set at this point */
3126 		if (df->page == virt_to_head_page(object)) {
3127 			/* Opportunity build freelist */
3128 			set_freepointer(df->s, object, df->freelist);
3129 			df->freelist = object;
3130 			df->cnt++;
3131 			p[size] = NULL; /* mark object processed */
3132 
3133 			continue;
3134 		}
3135 
3136 		/* Limit look ahead search */
3137 		if (!--lookahead)
3138 			break;
3139 
3140 		if (!first_skipped_index)
3141 			first_skipped_index = size + 1;
3142 	}
3143 
3144 	return first_skipped_index;
3145 }
3146 
3147 /* Note that interrupts must be enabled when calling this function. */
3148 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3149 {
3150 	if (WARN_ON(!size))
3151 		return;
3152 
3153 	do {
3154 		struct detached_freelist df;
3155 
3156 		size = build_detached_freelist(s, size, p, &df);
3157 		if (!df.page)
3158 			continue;
3159 
3160 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3161 	} while (likely(size));
3162 }
3163 EXPORT_SYMBOL(kmem_cache_free_bulk);
3164 
3165 /* Note that interrupts must be enabled when calling this function. */
3166 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3167 			  void **p)
3168 {
3169 	struct kmem_cache_cpu *c;
3170 	int i;
3171 
3172 	/* memcg and kmem_cache debug support */
3173 	s = slab_pre_alloc_hook(s, flags);
3174 	if (unlikely(!s))
3175 		return false;
3176 	/*
3177 	 * Drain objects in the per cpu slab, while disabling local
3178 	 * IRQs, which protects against PREEMPT and interrupts
3179 	 * handlers invoking normal fastpath.
3180 	 */
3181 	local_irq_disable();
3182 	c = this_cpu_ptr(s->cpu_slab);
3183 
3184 	for (i = 0; i < size; i++) {
3185 		void *object = c->freelist;
3186 
3187 		if (unlikely(!object)) {
3188 			/*
3189 			 * We may have removed an object from c->freelist using
3190 			 * the fastpath in the previous iteration; in that case,
3191 			 * c->tid has not been bumped yet.
3192 			 * Since ___slab_alloc() may reenable interrupts while
3193 			 * allocating memory, we should bump c->tid now.
3194 			 */
3195 			c->tid = next_tid(c->tid);
3196 
3197 			/*
3198 			 * Invoking slow path likely have side-effect
3199 			 * of re-populating per CPU c->freelist
3200 			 */
3201 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3202 					    _RET_IP_, c);
3203 			if (unlikely(!p[i]))
3204 				goto error;
3205 
3206 			c = this_cpu_ptr(s->cpu_slab);
3207 			maybe_wipe_obj_freeptr(s, p[i]);
3208 
3209 			continue; /* goto for-loop */
3210 		}
3211 		c->freelist = get_freepointer(s, object);
3212 		p[i] = object;
3213 		maybe_wipe_obj_freeptr(s, p[i]);
3214 	}
3215 	c->tid = next_tid(c->tid);
3216 	local_irq_enable();
3217 
3218 	/* Clear memory outside IRQ disabled fastpath loop */
3219 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3220 		int j;
3221 
3222 		for (j = 0; j < i; j++)
3223 			memset(p[j], 0, s->object_size);
3224 	}
3225 
3226 	/* memcg and kmem_cache debug support */
3227 	slab_post_alloc_hook(s, flags, size, p);
3228 	return i;
3229 error:
3230 	local_irq_enable();
3231 	slab_post_alloc_hook(s, flags, i, p);
3232 	__kmem_cache_free_bulk(s, i, p);
3233 	return 0;
3234 }
3235 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3236 
3237 
3238 /*
3239  * Object placement in a slab is made very easy because we always start at
3240  * offset 0. If we tune the size of the object to the alignment then we can
3241  * get the required alignment by putting one properly sized object after
3242  * another.
3243  *
3244  * Notice that the allocation order determines the sizes of the per cpu
3245  * caches. Each processor has always one slab available for allocations.
3246  * Increasing the allocation order reduces the number of times that slabs
3247  * must be moved on and off the partial lists and is therefore a factor in
3248  * locking overhead.
3249  */
3250 
3251 /*
3252  * Mininum / Maximum order of slab pages. This influences locking overhead
3253  * and slab fragmentation. A higher order reduces the number of partial slabs
3254  * and increases the number of allocations possible without having to
3255  * take the list_lock.
3256  */
3257 static unsigned int slub_min_order;
3258 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3259 static unsigned int slub_min_objects;
3260 
3261 /*
3262  * Calculate the order of allocation given an slab object size.
3263  *
3264  * The order of allocation has significant impact on performance and other
3265  * system components. Generally order 0 allocations should be preferred since
3266  * order 0 does not cause fragmentation in the page allocator. Larger objects
3267  * be problematic to put into order 0 slabs because there may be too much
3268  * unused space left. We go to a higher order if more than 1/16th of the slab
3269  * would be wasted.
3270  *
3271  * In order to reach satisfactory performance we must ensure that a minimum
3272  * number of objects is in one slab. Otherwise we may generate too much
3273  * activity on the partial lists which requires taking the list_lock. This is
3274  * less a concern for large slabs though which are rarely used.
3275  *
3276  * slub_max_order specifies the order where we begin to stop considering the
3277  * number of objects in a slab as critical. If we reach slub_max_order then
3278  * we try to keep the page order as low as possible. So we accept more waste
3279  * of space in favor of a small page order.
3280  *
3281  * Higher order allocations also allow the placement of more objects in a
3282  * slab and thereby reduce object handling overhead. If the user has
3283  * requested a higher mininum order then we start with that one instead of
3284  * the smallest order which will fit the object.
3285  */
3286 static inline unsigned int slab_order(unsigned int size,
3287 		unsigned int min_objects, unsigned int max_order,
3288 		unsigned int fract_leftover)
3289 {
3290 	unsigned int min_order = slub_min_order;
3291 	unsigned int order;
3292 
3293 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3294 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3295 
3296 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3297 			order <= max_order; order++) {
3298 
3299 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3300 		unsigned int rem;
3301 
3302 		rem = slab_size % size;
3303 
3304 		if (rem <= slab_size / fract_leftover)
3305 			break;
3306 	}
3307 
3308 	return order;
3309 }
3310 
3311 static inline int calculate_order(unsigned int size)
3312 {
3313 	unsigned int order;
3314 	unsigned int min_objects;
3315 	unsigned int max_objects;
3316 
3317 	/*
3318 	 * Attempt to find best configuration for a slab. This
3319 	 * works by first attempting to generate a layout with
3320 	 * the best configuration and backing off gradually.
3321 	 *
3322 	 * First we increase the acceptable waste in a slab. Then
3323 	 * we reduce the minimum objects required in a slab.
3324 	 */
3325 	min_objects = slub_min_objects;
3326 	if (!min_objects)
3327 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3328 	max_objects = order_objects(slub_max_order, size);
3329 	min_objects = min(min_objects, max_objects);
3330 
3331 	while (min_objects > 1) {
3332 		unsigned int fraction;
3333 
3334 		fraction = 16;
3335 		while (fraction >= 4) {
3336 			order = slab_order(size, min_objects,
3337 					slub_max_order, fraction);
3338 			if (order <= slub_max_order)
3339 				return order;
3340 			fraction /= 2;
3341 		}
3342 		min_objects--;
3343 	}
3344 
3345 	/*
3346 	 * We were unable to place multiple objects in a slab. Now
3347 	 * lets see if we can place a single object there.
3348 	 */
3349 	order = slab_order(size, 1, slub_max_order, 1);
3350 	if (order <= slub_max_order)
3351 		return order;
3352 
3353 	/*
3354 	 * Doh this slab cannot be placed using slub_max_order.
3355 	 */
3356 	order = slab_order(size, 1, MAX_ORDER, 1);
3357 	if (order < MAX_ORDER)
3358 		return order;
3359 	return -ENOSYS;
3360 }
3361 
3362 static void
3363 init_kmem_cache_node(struct kmem_cache_node *n)
3364 {
3365 	n->nr_partial = 0;
3366 	spin_lock_init(&n->list_lock);
3367 	INIT_LIST_HEAD(&n->partial);
3368 #ifdef CONFIG_SLUB_DEBUG
3369 	atomic_long_set(&n->nr_slabs, 0);
3370 	atomic_long_set(&n->total_objects, 0);
3371 	INIT_LIST_HEAD(&n->full);
3372 #endif
3373 }
3374 
3375 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3376 {
3377 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3378 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3379 
3380 	/*
3381 	 * Must align to double word boundary for the double cmpxchg
3382 	 * instructions to work; see __pcpu_double_call_return_bool().
3383 	 */
3384 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3385 				     2 * sizeof(void *));
3386 
3387 	if (!s->cpu_slab)
3388 		return 0;
3389 
3390 	init_kmem_cache_cpus(s);
3391 
3392 	return 1;
3393 }
3394 
3395 static struct kmem_cache *kmem_cache_node;
3396 
3397 /*
3398  * No kmalloc_node yet so do it by hand. We know that this is the first
3399  * slab on the node for this slabcache. There are no concurrent accesses
3400  * possible.
3401  *
3402  * Note that this function only works on the kmem_cache_node
3403  * when allocating for the kmem_cache_node. This is used for bootstrapping
3404  * memory on a fresh node that has no slab structures yet.
3405  */
3406 static void early_kmem_cache_node_alloc(int node)
3407 {
3408 	struct page *page;
3409 	struct kmem_cache_node *n;
3410 
3411 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3412 
3413 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3414 
3415 	BUG_ON(!page);
3416 	if (page_to_nid(page) != node) {
3417 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3418 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3419 	}
3420 
3421 	n = page->freelist;
3422 	BUG_ON(!n);
3423 #ifdef CONFIG_SLUB_DEBUG
3424 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3425 	init_tracking(kmem_cache_node, n);
3426 #endif
3427 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3428 		      GFP_KERNEL);
3429 	page->freelist = get_freepointer(kmem_cache_node, n);
3430 	page->inuse = 1;
3431 	page->frozen = 0;
3432 	kmem_cache_node->node[node] = n;
3433 	init_kmem_cache_node(n);
3434 	inc_slabs_node(kmem_cache_node, node, page->objects);
3435 
3436 	/*
3437 	 * No locks need to be taken here as it has just been
3438 	 * initialized and there is no concurrent access.
3439 	 */
3440 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3441 }
3442 
3443 static void free_kmem_cache_nodes(struct kmem_cache *s)
3444 {
3445 	int node;
3446 	struct kmem_cache_node *n;
3447 
3448 	for_each_kmem_cache_node(s, node, n) {
3449 		s->node[node] = NULL;
3450 		kmem_cache_free(kmem_cache_node, n);
3451 	}
3452 }
3453 
3454 void __kmem_cache_release(struct kmem_cache *s)
3455 {
3456 	cache_random_seq_destroy(s);
3457 	free_percpu(s->cpu_slab);
3458 	free_kmem_cache_nodes(s);
3459 }
3460 
3461 static int init_kmem_cache_nodes(struct kmem_cache *s)
3462 {
3463 	int node;
3464 
3465 	for_each_node_state(node, N_NORMAL_MEMORY) {
3466 		struct kmem_cache_node *n;
3467 
3468 		if (slab_state == DOWN) {
3469 			early_kmem_cache_node_alloc(node);
3470 			continue;
3471 		}
3472 		n = kmem_cache_alloc_node(kmem_cache_node,
3473 						GFP_KERNEL, node);
3474 
3475 		if (!n) {
3476 			free_kmem_cache_nodes(s);
3477 			return 0;
3478 		}
3479 
3480 		init_kmem_cache_node(n);
3481 		s->node[node] = n;
3482 	}
3483 	return 1;
3484 }
3485 
3486 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3487 {
3488 	if (min < MIN_PARTIAL)
3489 		min = MIN_PARTIAL;
3490 	else if (min > MAX_PARTIAL)
3491 		min = MAX_PARTIAL;
3492 	s->min_partial = min;
3493 }
3494 
3495 static void set_cpu_partial(struct kmem_cache *s)
3496 {
3497 #ifdef CONFIG_SLUB_CPU_PARTIAL
3498 	/*
3499 	 * cpu_partial determined the maximum number of objects kept in the
3500 	 * per cpu partial lists of a processor.
3501 	 *
3502 	 * Per cpu partial lists mainly contain slabs that just have one
3503 	 * object freed. If they are used for allocation then they can be
3504 	 * filled up again with minimal effort. The slab will never hit the
3505 	 * per node partial lists and therefore no locking will be required.
3506 	 *
3507 	 * This setting also determines
3508 	 *
3509 	 * A) The number of objects from per cpu partial slabs dumped to the
3510 	 *    per node list when we reach the limit.
3511 	 * B) The number of objects in cpu partial slabs to extract from the
3512 	 *    per node list when we run out of per cpu objects. We only fetch
3513 	 *    50% to keep some capacity around for frees.
3514 	 */
3515 	if (!kmem_cache_has_cpu_partial(s))
3516 		slub_set_cpu_partial(s, 0);
3517 	else if (s->size >= PAGE_SIZE)
3518 		slub_set_cpu_partial(s, 2);
3519 	else if (s->size >= 1024)
3520 		slub_set_cpu_partial(s, 6);
3521 	else if (s->size >= 256)
3522 		slub_set_cpu_partial(s, 13);
3523 	else
3524 		slub_set_cpu_partial(s, 30);
3525 #endif
3526 }
3527 
3528 /*
3529  * calculate_sizes() determines the order and the distribution of data within
3530  * a slab object.
3531  */
3532 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3533 {
3534 	slab_flags_t flags = s->flags;
3535 	unsigned int size = s->object_size;
3536 	unsigned int freepointer_area;
3537 	unsigned int order;
3538 
3539 	/*
3540 	 * Round up object size to the next word boundary. We can only
3541 	 * place the free pointer at word boundaries and this determines
3542 	 * the possible location of the free pointer.
3543 	 */
3544 	size = ALIGN(size, sizeof(void *));
3545 	/*
3546 	 * This is the area of the object where a freepointer can be
3547 	 * safely written. If redzoning adds more to the inuse size, we
3548 	 * can't use that portion for writing the freepointer, so
3549 	 * s->offset must be limited within this for the general case.
3550 	 */
3551 	freepointer_area = size;
3552 
3553 #ifdef CONFIG_SLUB_DEBUG
3554 	/*
3555 	 * Determine if we can poison the object itself. If the user of
3556 	 * the slab may touch the object after free or before allocation
3557 	 * then we should never poison the object itself.
3558 	 */
3559 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3560 			!s->ctor)
3561 		s->flags |= __OBJECT_POISON;
3562 	else
3563 		s->flags &= ~__OBJECT_POISON;
3564 
3565 
3566 	/*
3567 	 * If we are Redzoning then check if there is some space between the
3568 	 * end of the object and the free pointer. If not then add an
3569 	 * additional word to have some bytes to store Redzone information.
3570 	 */
3571 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3572 		size += sizeof(void *);
3573 #endif
3574 
3575 	/*
3576 	 * With that we have determined the number of bytes in actual use
3577 	 * by the object. This is the potential offset to the free pointer.
3578 	 */
3579 	s->inuse = size;
3580 
3581 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3582 		s->ctor)) {
3583 		/*
3584 		 * Relocate free pointer after the object if it is not
3585 		 * permitted to overwrite the first word of the object on
3586 		 * kmem_cache_free.
3587 		 *
3588 		 * This is the case if we do RCU, have a constructor or
3589 		 * destructor or are poisoning the objects.
3590 		 */
3591 		s->offset = size;
3592 		size += sizeof(void *);
3593 	} else if (freepointer_area > sizeof(void *)) {
3594 		/*
3595 		 * Store freelist pointer near middle of object to keep
3596 		 * it away from the edges of the object to avoid small
3597 		 * sized over/underflows from neighboring allocations.
3598 		 */
3599 		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3600 	}
3601 
3602 #ifdef CONFIG_SLUB_DEBUG
3603 	if (flags & SLAB_STORE_USER)
3604 		/*
3605 		 * Need to store information about allocs and frees after
3606 		 * the object.
3607 		 */
3608 		size += 2 * sizeof(struct track);
3609 #endif
3610 
3611 	kasan_cache_create(s, &size, &s->flags);
3612 #ifdef CONFIG_SLUB_DEBUG
3613 	if (flags & SLAB_RED_ZONE) {
3614 		/*
3615 		 * Add some empty padding so that we can catch
3616 		 * overwrites from earlier objects rather than let
3617 		 * tracking information or the free pointer be
3618 		 * corrupted if a user writes before the start
3619 		 * of the object.
3620 		 */
3621 		size += sizeof(void *);
3622 
3623 		s->red_left_pad = sizeof(void *);
3624 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3625 		size += s->red_left_pad;
3626 	}
3627 #endif
3628 
3629 	/*
3630 	 * SLUB stores one object immediately after another beginning from
3631 	 * offset 0. In order to align the objects we have to simply size
3632 	 * each object to conform to the alignment.
3633 	 */
3634 	size = ALIGN(size, s->align);
3635 	s->size = size;
3636 	if (forced_order >= 0)
3637 		order = forced_order;
3638 	else
3639 		order = calculate_order(size);
3640 
3641 	if ((int)order < 0)
3642 		return 0;
3643 
3644 	s->allocflags = 0;
3645 	if (order)
3646 		s->allocflags |= __GFP_COMP;
3647 
3648 	if (s->flags & SLAB_CACHE_DMA)
3649 		s->allocflags |= GFP_DMA;
3650 
3651 	if (s->flags & SLAB_CACHE_DMA32)
3652 		s->allocflags |= GFP_DMA32;
3653 
3654 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3655 		s->allocflags |= __GFP_RECLAIMABLE;
3656 
3657 	/*
3658 	 * Determine the number of objects per slab
3659 	 */
3660 	s->oo = oo_make(order, size);
3661 	s->min = oo_make(get_order(size), size);
3662 	if (oo_objects(s->oo) > oo_objects(s->max))
3663 		s->max = s->oo;
3664 
3665 	return !!oo_objects(s->oo);
3666 }
3667 
3668 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3669 {
3670 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3671 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3672 	s->random = get_random_long();
3673 #endif
3674 
3675 	if (!calculate_sizes(s, -1))
3676 		goto error;
3677 	if (disable_higher_order_debug) {
3678 		/*
3679 		 * Disable debugging flags that store metadata if the min slab
3680 		 * order increased.
3681 		 */
3682 		if (get_order(s->size) > get_order(s->object_size)) {
3683 			s->flags &= ~DEBUG_METADATA_FLAGS;
3684 			s->offset = 0;
3685 			if (!calculate_sizes(s, -1))
3686 				goto error;
3687 		}
3688 	}
3689 
3690 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3691     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3692 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3693 		/* Enable fast mode */
3694 		s->flags |= __CMPXCHG_DOUBLE;
3695 #endif
3696 
3697 	/*
3698 	 * The larger the object size is, the more pages we want on the partial
3699 	 * list to avoid pounding the page allocator excessively.
3700 	 */
3701 	set_min_partial(s, ilog2(s->size) / 2);
3702 
3703 	set_cpu_partial(s);
3704 
3705 #ifdef CONFIG_NUMA
3706 	s->remote_node_defrag_ratio = 1000;
3707 #endif
3708 
3709 	/* Initialize the pre-computed randomized freelist if slab is up */
3710 	if (slab_state >= UP) {
3711 		if (init_cache_random_seq(s))
3712 			goto error;
3713 	}
3714 
3715 	if (!init_kmem_cache_nodes(s))
3716 		goto error;
3717 
3718 	if (alloc_kmem_cache_cpus(s))
3719 		return 0;
3720 
3721 	free_kmem_cache_nodes(s);
3722 error:
3723 	return -EINVAL;
3724 }
3725 
3726 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3727 							const char *text)
3728 {
3729 #ifdef CONFIG_SLUB_DEBUG
3730 	void *addr = page_address(page);
3731 	void *p;
3732 	unsigned long *map;
3733 
3734 	slab_err(s, page, text, s->name);
3735 	slab_lock(page);
3736 
3737 	map = get_map(s, page);
3738 	for_each_object(p, s, addr, page->objects) {
3739 
3740 		if (!test_bit(slab_index(p, s, addr), map)) {
3741 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3742 			print_tracking(s, p);
3743 		}
3744 	}
3745 	put_map(map);
3746 
3747 	slab_unlock(page);
3748 #endif
3749 }
3750 
3751 /*
3752  * Attempt to free all partial slabs on a node.
3753  * This is called from __kmem_cache_shutdown(). We must take list_lock
3754  * because sysfs file might still access partial list after the shutdowning.
3755  */
3756 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3757 {
3758 	LIST_HEAD(discard);
3759 	struct page *page, *h;
3760 
3761 	BUG_ON(irqs_disabled());
3762 	spin_lock_irq(&n->list_lock);
3763 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3764 		if (!page->inuse) {
3765 			remove_partial(n, page);
3766 			list_add(&page->slab_list, &discard);
3767 		} else {
3768 			list_slab_objects(s, page,
3769 			"Objects remaining in %s on __kmem_cache_shutdown()");
3770 		}
3771 	}
3772 	spin_unlock_irq(&n->list_lock);
3773 
3774 	list_for_each_entry_safe(page, h, &discard, slab_list)
3775 		discard_slab(s, page);
3776 }
3777 
3778 bool __kmem_cache_empty(struct kmem_cache *s)
3779 {
3780 	int node;
3781 	struct kmem_cache_node *n;
3782 
3783 	for_each_kmem_cache_node(s, node, n)
3784 		if (n->nr_partial || slabs_node(s, node))
3785 			return false;
3786 	return true;
3787 }
3788 
3789 /*
3790  * Release all resources used by a slab cache.
3791  */
3792 int __kmem_cache_shutdown(struct kmem_cache *s)
3793 {
3794 	int node;
3795 	struct kmem_cache_node *n;
3796 
3797 	flush_all(s);
3798 	/* Attempt to free all objects */
3799 	for_each_kmem_cache_node(s, node, n) {
3800 		free_partial(s, n);
3801 		if (n->nr_partial || slabs_node(s, node))
3802 			return 1;
3803 	}
3804 	sysfs_slab_remove(s);
3805 	return 0;
3806 }
3807 
3808 /********************************************************************
3809  *		Kmalloc subsystem
3810  *******************************************************************/
3811 
3812 static int __init setup_slub_min_order(char *str)
3813 {
3814 	get_option(&str, (int *)&slub_min_order);
3815 
3816 	return 1;
3817 }
3818 
3819 __setup("slub_min_order=", setup_slub_min_order);
3820 
3821 static int __init setup_slub_max_order(char *str)
3822 {
3823 	get_option(&str, (int *)&slub_max_order);
3824 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3825 
3826 	return 1;
3827 }
3828 
3829 __setup("slub_max_order=", setup_slub_max_order);
3830 
3831 static int __init setup_slub_min_objects(char *str)
3832 {
3833 	get_option(&str, (int *)&slub_min_objects);
3834 
3835 	return 1;
3836 }
3837 
3838 __setup("slub_min_objects=", setup_slub_min_objects);
3839 
3840 void *__kmalloc(size_t size, gfp_t flags)
3841 {
3842 	struct kmem_cache *s;
3843 	void *ret;
3844 
3845 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3846 		return kmalloc_large(size, flags);
3847 
3848 	s = kmalloc_slab(size, flags);
3849 
3850 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3851 		return s;
3852 
3853 	ret = slab_alloc(s, flags, _RET_IP_);
3854 
3855 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3856 
3857 	ret = kasan_kmalloc(s, ret, size, flags);
3858 
3859 	return ret;
3860 }
3861 EXPORT_SYMBOL(__kmalloc);
3862 
3863 #ifdef CONFIG_NUMA
3864 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3865 {
3866 	struct page *page;
3867 	void *ptr = NULL;
3868 	unsigned int order = get_order(size);
3869 
3870 	flags |= __GFP_COMP;
3871 	page = alloc_pages_node(node, flags, order);
3872 	if (page) {
3873 		ptr = page_address(page);
3874 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3875 				    1 << order);
3876 	}
3877 
3878 	return kmalloc_large_node_hook(ptr, size, flags);
3879 }
3880 
3881 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3882 {
3883 	struct kmem_cache *s;
3884 	void *ret;
3885 
3886 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3887 		ret = kmalloc_large_node(size, flags, node);
3888 
3889 		trace_kmalloc_node(_RET_IP_, ret,
3890 				   size, PAGE_SIZE << get_order(size),
3891 				   flags, node);
3892 
3893 		return ret;
3894 	}
3895 
3896 	s = kmalloc_slab(size, flags);
3897 
3898 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3899 		return s;
3900 
3901 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3902 
3903 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3904 
3905 	ret = kasan_kmalloc(s, ret, size, flags);
3906 
3907 	return ret;
3908 }
3909 EXPORT_SYMBOL(__kmalloc_node);
3910 #endif	/* CONFIG_NUMA */
3911 
3912 #ifdef CONFIG_HARDENED_USERCOPY
3913 /*
3914  * Rejects incorrectly sized objects and objects that are to be copied
3915  * to/from userspace but do not fall entirely within the containing slab
3916  * cache's usercopy region.
3917  *
3918  * Returns NULL if check passes, otherwise const char * to name of cache
3919  * to indicate an error.
3920  */
3921 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3922 			 bool to_user)
3923 {
3924 	struct kmem_cache *s;
3925 	unsigned int offset;
3926 	size_t object_size;
3927 
3928 	ptr = kasan_reset_tag(ptr);
3929 
3930 	/* Find object and usable object size. */
3931 	s = page->slab_cache;
3932 
3933 	/* Reject impossible pointers. */
3934 	if (ptr < page_address(page))
3935 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3936 			       to_user, 0, n);
3937 
3938 	/* Find offset within object. */
3939 	offset = (ptr - page_address(page)) % s->size;
3940 
3941 	/* Adjust for redzone and reject if within the redzone. */
3942 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3943 		if (offset < s->red_left_pad)
3944 			usercopy_abort("SLUB object in left red zone",
3945 				       s->name, to_user, offset, n);
3946 		offset -= s->red_left_pad;
3947 	}
3948 
3949 	/* Allow address range falling entirely within usercopy region. */
3950 	if (offset >= s->useroffset &&
3951 	    offset - s->useroffset <= s->usersize &&
3952 	    n <= s->useroffset - offset + s->usersize)
3953 		return;
3954 
3955 	/*
3956 	 * If the copy is still within the allocated object, produce
3957 	 * a warning instead of rejecting the copy. This is intended
3958 	 * to be a temporary method to find any missing usercopy
3959 	 * whitelists.
3960 	 */
3961 	object_size = slab_ksize(s);
3962 	if (usercopy_fallback &&
3963 	    offset <= object_size && n <= object_size - offset) {
3964 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3965 		return;
3966 	}
3967 
3968 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3969 }
3970 #endif /* CONFIG_HARDENED_USERCOPY */
3971 
3972 size_t __ksize(const void *object)
3973 {
3974 	struct page *page;
3975 
3976 	if (unlikely(object == ZERO_SIZE_PTR))
3977 		return 0;
3978 
3979 	page = virt_to_head_page(object);
3980 
3981 	if (unlikely(!PageSlab(page))) {
3982 		WARN_ON(!PageCompound(page));
3983 		return page_size(page);
3984 	}
3985 
3986 	return slab_ksize(page->slab_cache);
3987 }
3988 EXPORT_SYMBOL(__ksize);
3989 
3990 void kfree(const void *x)
3991 {
3992 	struct page *page;
3993 	void *object = (void *)x;
3994 
3995 	trace_kfree(_RET_IP_, x);
3996 
3997 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3998 		return;
3999 
4000 	page = virt_to_head_page(x);
4001 	if (unlikely(!PageSlab(page))) {
4002 		unsigned int order = compound_order(page);
4003 
4004 		BUG_ON(!PageCompound(page));
4005 		kfree_hook(object);
4006 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
4007 				    -(1 << order));
4008 		__free_pages(page, order);
4009 		return;
4010 	}
4011 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4012 }
4013 EXPORT_SYMBOL(kfree);
4014 
4015 #define SHRINK_PROMOTE_MAX 32
4016 
4017 /*
4018  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4019  * up most to the head of the partial lists. New allocations will then
4020  * fill those up and thus they can be removed from the partial lists.
4021  *
4022  * The slabs with the least items are placed last. This results in them
4023  * being allocated from last increasing the chance that the last objects
4024  * are freed in them.
4025  */
4026 int __kmem_cache_shrink(struct kmem_cache *s)
4027 {
4028 	int node;
4029 	int i;
4030 	struct kmem_cache_node *n;
4031 	struct page *page;
4032 	struct page *t;
4033 	struct list_head discard;
4034 	struct list_head promote[SHRINK_PROMOTE_MAX];
4035 	unsigned long flags;
4036 	int ret = 0;
4037 
4038 	flush_all(s);
4039 	for_each_kmem_cache_node(s, node, n) {
4040 		INIT_LIST_HEAD(&discard);
4041 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4042 			INIT_LIST_HEAD(promote + i);
4043 
4044 		spin_lock_irqsave(&n->list_lock, flags);
4045 
4046 		/*
4047 		 * Build lists of slabs to discard or promote.
4048 		 *
4049 		 * Note that concurrent frees may occur while we hold the
4050 		 * list_lock. page->inuse here is the upper limit.
4051 		 */
4052 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4053 			int free = page->objects - page->inuse;
4054 
4055 			/* Do not reread page->inuse */
4056 			barrier();
4057 
4058 			/* We do not keep full slabs on the list */
4059 			BUG_ON(free <= 0);
4060 
4061 			if (free == page->objects) {
4062 				list_move(&page->slab_list, &discard);
4063 				n->nr_partial--;
4064 			} else if (free <= SHRINK_PROMOTE_MAX)
4065 				list_move(&page->slab_list, promote + free - 1);
4066 		}
4067 
4068 		/*
4069 		 * Promote the slabs filled up most to the head of the
4070 		 * partial list.
4071 		 */
4072 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4073 			list_splice(promote + i, &n->partial);
4074 
4075 		spin_unlock_irqrestore(&n->list_lock, flags);
4076 
4077 		/* Release empty slabs */
4078 		list_for_each_entry_safe(page, t, &discard, slab_list)
4079 			discard_slab(s, page);
4080 
4081 		if (slabs_node(s, node))
4082 			ret = 1;
4083 	}
4084 
4085 	return ret;
4086 }
4087 
4088 #ifdef CONFIG_MEMCG
4089 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4090 {
4091 	/*
4092 	 * Called with all the locks held after a sched RCU grace period.
4093 	 * Even if @s becomes empty after shrinking, we can't know that @s
4094 	 * doesn't have allocations already in-flight and thus can't
4095 	 * destroy @s until the associated memcg is released.
4096 	 *
4097 	 * However, let's remove the sysfs files for empty caches here.
4098 	 * Each cache has a lot of interface files which aren't
4099 	 * particularly useful for empty draining caches; otherwise, we can
4100 	 * easily end up with millions of unnecessary sysfs files on
4101 	 * systems which have a lot of memory and transient cgroups.
4102 	 */
4103 	if (!__kmem_cache_shrink(s))
4104 		sysfs_slab_remove(s);
4105 }
4106 
4107 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4108 {
4109 	/*
4110 	 * Disable empty slabs caching. Used to avoid pinning offline
4111 	 * memory cgroups by kmem pages that can be freed.
4112 	 */
4113 	slub_set_cpu_partial(s, 0);
4114 	s->min_partial = 0;
4115 }
4116 #endif	/* CONFIG_MEMCG */
4117 
4118 static int slab_mem_going_offline_callback(void *arg)
4119 {
4120 	struct kmem_cache *s;
4121 
4122 	mutex_lock(&slab_mutex);
4123 	list_for_each_entry(s, &slab_caches, list)
4124 		__kmem_cache_shrink(s);
4125 	mutex_unlock(&slab_mutex);
4126 
4127 	return 0;
4128 }
4129 
4130 static void slab_mem_offline_callback(void *arg)
4131 {
4132 	struct kmem_cache_node *n;
4133 	struct kmem_cache *s;
4134 	struct memory_notify *marg = arg;
4135 	int offline_node;
4136 
4137 	offline_node = marg->status_change_nid_normal;
4138 
4139 	/*
4140 	 * If the node still has available memory. we need kmem_cache_node
4141 	 * for it yet.
4142 	 */
4143 	if (offline_node < 0)
4144 		return;
4145 
4146 	mutex_lock(&slab_mutex);
4147 	list_for_each_entry(s, &slab_caches, list) {
4148 		n = get_node(s, offline_node);
4149 		if (n) {
4150 			/*
4151 			 * if n->nr_slabs > 0, slabs still exist on the node
4152 			 * that is going down. We were unable to free them,
4153 			 * and offline_pages() function shouldn't call this
4154 			 * callback. So, we must fail.
4155 			 */
4156 			BUG_ON(slabs_node(s, offline_node));
4157 
4158 			s->node[offline_node] = NULL;
4159 			kmem_cache_free(kmem_cache_node, n);
4160 		}
4161 	}
4162 	mutex_unlock(&slab_mutex);
4163 }
4164 
4165 static int slab_mem_going_online_callback(void *arg)
4166 {
4167 	struct kmem_cache_node *n;
4168 	struct kmem_cache *s;
4169 	struct memory_notify *marg = arg;
4170 	int nid = marg->status_change_nid_normal;
4171 	int ret = 0;
4172 
4173 	/*
4174 	 * If the node's memory is already available, then kmem_cache_node is
4175 	 * already created. Nothing to do.
4176 	 */
4177 	if (nid < 0)
4178 		return 0;
4179 
4180 	/*
4181 	 * We are bringing a node online. No memory is available yet. We must
4182 	 * allocate a kmem_cache_node structure in order to bring the node
4183 	 * online.
4184 	 */
4185 	mutex_lock(&slab_mutex);
4186 	list_for_each_entry(s, &slab_caches, list) {
4187 		/*
4188 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4189 		 *      since memory is not yet available from the node that
4190 		 *      is brought up.
4191 		 */
4192 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4193 		if (!n) {
4194 			ret = -ENOMEM;
4195 			goto out;
4196 		}
4197 		init_kmem_cache_node(n);
4198 		s->node[nid] = n;
4199 	}
4200 out:
4201 	mutex_unlock(&slab_mutex);
4202 	return ret;
4203 }
4204 
4205 static int slab_memory_callback(struct notifier_block *self,
4206 				unsigned long action, void *arg)
4207 {
4208 	int ret = 0;
4209 
4210 	switch (action) {
4211 	case MEM_GOING_ONLINE:
4212 		ret = slab_mem_going_online_callback(arg);
4213 		break;
4214 	case MEM_GOING_OFFLINE:
4215 		ret = slab_mem_going_offline_callback(arg);
4216 		break;
4217 	case MEM_OFFLINE:
4218 	case MEM_CANCEL_ONLINE:
4219 		slab_mem_offline_callback(arg);
4220 		break;
4221 	case MEM_ONLINE:
4222 	case MEM_CANCEL_OFFLINE:
4223 		break;
4224 	}
4225 	if (ret)
4226 		ret = notifier_from_errno(ret);
4227 	else
4228 		ret = NOTIFY_OK;
4229 	return ret;
4230 }
4231 
4232 static struct notifier_block slab_memory_callback_nb = {
4233 	.notifier_call = slab_memory_callback,
4234 	.priority = SLAB_CALLBACK_PRI,
4235 };
4236 
4237 /********************************************************************
4238  *			Basic setup of slabs
4239  *******************************************************************/
4240 
4241 /*
4242  * Used for early kmem_cache structures that were allocated using
4243  * the page allocator. Allocate them properly then fix up the pointers
4244  * that may be pointing to the wrong kmem_cache structure.
4245  */
4246 
4247 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4248 {
4249 	int node;
4250 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4251 	struct kmem_cache_node *n;
4252 
4253 	memcpy(s, static_cache, kmem_cache->object_size);
4254 
4255 	/*
4256 	 * This runs very early, and only the boot processor is supposed to be
4257 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4258 	 * IPIs around.
4259 	 */
4260 	__flush_cpu_slab(s, smp_processor_id());
4261 	for_each_kmem_cache_node(s, node, n) {
4262 		struct page *p;
4263 
4264 		list_for_each_entry(p, &n->partial, slab_list)
4265 			p->slab_cache = s;
4266 
4267 #ifdef CONFIG_SLUB_DEBUG
4268 		list_for_each_entry(p, &n->full, slab_list)
4269 			p->slab_cache = s;
4270 #endif
4271 	}
4272 	slab_init_memcg_params(s);
4273 	list_add(&s->list, &slab_caches);
4274 	memcg_link_cache(s, NULL);
4275 	return s;
4276 }
4277 
4278 void __init kmem_cache_init(void)
4279 {
4280 	static __initdata struct kmem_cache boot_kmem_cache,
4281 		boot_kmem_cache_node;
4282 
4283 	if (debug_guardpage_minorder())
4284 		slub_max_order = 0;
4285 
4286 	kmem_cache_node = &boot_kmem_cache_node;
4287 	kmem_cache = &boot_kmem_cache;
4288 
4289 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4290 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4291 
4292 	register_hotmemory_notifier(&slab_memory_callback_nb);
4293 
4294 	/* Able to allocate the per node structures */
4295 	slab_state = PARTIAL;
4296 
4297 	create_boot_cache(kmem_cache, "kmem_cache",
4298 			offsetof(struct kmem_cache, node) +
4299 				nr_node_ids * sizeof(struct kmem_cache_node *),
4300 		       SLAB_HWCACHE_ALIGN, 0, 0);
4301 
4302 	kmem_cache = bootstrap(&boot_kmem_cache);
4303 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4304 
4305 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4306 	setup_kmalloc_cache_index_table();
4307 	create_kmalloc_caches(0);
4308 
4309 	/* Setup random freelists for each cache */
4310 	init_freelist_randomization();
4311 
4312 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4313 				  slub_cpu_dead);
4314 
4315 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4316 		cache_line_size(),
4317 		slub_min_order, slub_max_order, slub_min_objects,
4318 		nr_cpu_ids, nr_node_ids);
4319 }
4320 
4321 void __init kmem_cache_init_late(void)
4322 {
4323 }
4324 
4325 struct kmem_cache *
4326 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4327 		   slab_flags_t flags, void (*ctor)(void *))
4328 {
4329 	struct kmem_cache *s, *c;
4330 
4331 	s = find_mergeable(size, align, flags, name, ctor);
4332 	if (s) {
4333 		s->refcount++;
4334 
4335 		/*
4336 		 * Adjust the object sizes so that we clear
4337 		 * the complete object on kzalloc.
4338 		 */
4339 		s->object_size = max(s->object_size, size);
4340 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4341 
4342 		for_each_memcg_cache(c, s) {
4343 			c->object_size = s->object_size;
4344 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4345 		}
4346 
4347 		if (sysfs_slab_alias(s, name)) {
4348 			s->refcount--;
4349 			s = NULL;
4350 		}
4351 	}
4352 
4353 	return s;
4354 }
4355 
4356 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4357 {
4358 	int err;
4359 
4360 	err = kmem_cache_open(s, flags);
4361 	if (err)
4362 		return err;
4363 
4364 	/* Mutex is not taken during early boot */
4365 	if (slab_state <= UP)
4366 		return 0;
4367 
4368 	memcg_propagate_slab_attrs(s);
4369 	err = sysfs_slab_add(s);
4370 	if (err)
4371 		__kmem_cache_release(s);
4372 
4373 	return err;
4374 }
4375 
4376 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4377 {
4378 	struct kmem_cache *s;
4379 	void *ret;
4380 
4381 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4382 		return kmalloc_large(size, gfpflags);
4383 
4384 	s = kmalloc_slab(size, gfpflags);
4385 
4386 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4387 		return s;
4388 
4389 	ret = slab_alloc(s, gfpflags, caller);
4390 
4391 	/* Honor the call site pointer we received. */
4392 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4393 
4394 	return ret;
4395 }
4396 
4397 #ifdef CONFIG_NUMA
4398 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4399 					int node, unsigned long caller)
4400 {
4401 	struct kmem_cache *s;
4402 	void *ret;
4403 
4404 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4405 		ret = kmalloc_large_node(size, gfpflags, node);
4406 
4407 		trace_kmalloc_node(caller, ret,
4408 				   size, PAGE_SIZE << get_order(size),
4409 				   gfpflags, node);
4410 
4411 		return ret;
4412 	}
4413 
4414 	s = kmalloc_slab(size, gfpflags);
4415 
4416 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4417 		return s;
4418 
4419 	ret = slab_alloc_node(s, gfpflags, node, caller);
4420 
4421 	/* Honor the call site pointer we received. */
4422 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4423 
4424 	return ret;
4425 }
4426 #endif
4427 
4428 #ifdef CONFIG_SYSFS
4429 static int count_inuse(struct page *page)
4430 {
4431 	return page->inuse;
4432 }
4433 
4434 static int count_total(struct page *page)
4435 {
4436 	return page->objects;
4437 }
4438 #endif
4439 
4440 #ifdef CONFIG_SLUB_DEBUG
4441 static void validate_slab(struct kmem_cache *s, struct page *page)
4442 {
4443 	void *p;
4444 	void *addr = page_address(page);
4445 	unsigned long *map;
4446 
4447 	slab_lock(page);
4448 
4449 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4450 		goto unlock;
4451 
4452 	/* Now we know that a valid freelist exists */
4453 	map = get_map(s, page);
4454 	for_each_object(p, s, addr, page->objects) {
4455 		u8 val = test_bit(slab_index(p, s, addr), map) ?
4456 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4457 
4458 		if (!check_object(s, page, p, val))
4459 			break;
4460 	}
4461 	put_map(map);
4462 unlock:
4463 	slab_unlock(page);
4464 }
4465 
4466 static int validate_slab_node(struct kmem_cache *s,
4467 		struct kmem_cache_node *n)
4468 {
4469 	unsigned long count = 0;
4470 	struct page *page;
4471 	unsigned long flags;
4472 
4473 	spin_lock_irqsave(&n->list_lock, flags);
4474 
4475 	list_for_each_entry(page, &n->partial, slab_list) {
4476 		validate_slab(s, page);
4477 		count++;
4478 	}
4479 	if (count != n->nr_partial)
4480 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4481 		       s->name, count, n->nr_partial);
4482 
4483 	if (!(s->flags & SLAB_STORE_USER))
4484 		goto out;
4485 
4486 	list_for_each_entry(page, &n->full, slab_list) {
4487 		validate_slab(s, page);
4488 		count++;
4489 	}
4490 	if (count != atomic_long_read(&n->nr_slabs))
4491 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4492 		       s->name, count, atomic_long_read(&n->nr_slabs));
4493 
4494 out:
4495 	spin_unlock_irqrestore(&n->list_lock, flags);
4496 	return count;
4497 }
4498 
4499 static long validate_slab_cache(struct kmem_cache *s)
4500 {
4501 	int node;
4502 	unsigned long count = 0;
4503 	struct kmem_cache_node *n;
4504 
4505 	flush_all(s);
4506 	for_each_kmem_cache_node(s, node, n)
4507 		count += validate_slab_node(s, n);
4508 
4509 	return count;
4510 }
4511 /*
4512  * Generate lists of code addresses where slabcache objects are allocated
4513  * and freed.
4514  */
4515 
4516 struct location {
4517 	unsigned long count;
4518 	unsigned long addr;
4519 	long long sum_time;
4520 	long min_time;
4521 	long max_time;
4522 	long min_pid;
4523 	long max_pid;
4524 	DECLARE_BITMAP(cpus, NR_CPUS);
4525 	nodemask_t nodes;
4526 };
4527 
4528 struct loc_track {
4529 	unsigned long max;
4530 	unsigned long count;
4531 	struct location *loc;
4532 };
4533 
4534 static void free_loc_track(struct loc_track *t)
4535 {
4536 	if (t->max)
4537 		free_pages((unsigned long)t->loc,
4538 			get_order(sizeof(struct location) * t->max));
4539 }
4540 
4541 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4542 {
4543 	struct location *l;
4544 	int order;
4545 
4546 	order = get_order(sizeof(struct location) * max);
4547 
4548 	l = (void *)__get_free_pages(flags, order);
4549 	if (!l)
4550 		return 0;
4551 
4552 	if (t->count) {
4553 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4554 		free_loc_track(t);
4555 	}
4556 	t->max = max;
4557 	t->loc = l;
4558 	return 1;
4559 }
4560 
4561 static int add_location(struct loc_track *t, struct kmem_cache *s,
4562 				const struct track *track)
4563 {
4564 	long start, end, pos;
4565 	struct location *l;
4566 	unsigned long caddr;
4567 	unsigned long age = jiffies - track->when;
4568 
4569 	start = -1;
4570 	end = t->count;
4571 
4572 	for ( ; ; ) {
4573 		pos = start + (end - start + 1) / 2;
4574 
4575 		/*
4576 		 * There is nothing at "end". If we end up there
4577 		 * we need to add something to before end.
4578 		 */
4579 		if (pos == end)
4580 			break;
4581 
4582 		caddr = t->loc[pos].addr;
4583 		if (track->addr == caddr) {
4584 
4585 			l = &t->loc[pos];
4586 			l->count++;
4587 			if (track->when) {
4588 				l->sum_time += age;
4589 				if (age < l->min_time)
4590 					l->min_time = age;
4591 				if (age > l->max_time)
4592 					l->max_time = age;
4593 
4594 				if (track->pid < l->min_pid)
4595 					l->min_pid = track->pid;
4596 				if (track->pid > l->max_pid)
4597 					l->max_pid = track->pid;
4598 
4599 				cpumask_set_cpu(track->cpu,
4600 						to_cpumask(l->cpus));
4601 			}
4602 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4603 			return 1;
4604 		}
4605 
4606 		if (track->addr < caddr)
4607 			end = pos;
4608 		else
4609 			start = pos;
4610 	}
4611 
4612 	/*
4613 	 * Not found. Insert new tracking element.
4614 	 */
4615 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4616 		return 0;
4617 
4618 	l = t->loc + pos;
4619 	if (pos < t->count)
4620 		memmove(l + 1, l,
4621 			(t->count - pos) * sizeof(struct location));
4622 	t->count++;
4623 	l->count = 1;
4624 	l->addr = track->addr;
4625 	l->sum_time = age;
4626 	l->min_time = age;
4627 	l->max_time = age;
4628 	l->min_pid = track->pid;
4629 	l->max_pid = track->pid;
4630 	cpumask_clear(to_cpumask(l->cpus));
4631 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4632 	nodes_clear(l->nodes);
4633 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4634 	return 1;
4635 }
4636 
4637 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4638 		struct page *page, enum track_item alloc)
4639 {
4640 	void *addr = page_address(page);
4641 	void *p;
4642 	unsigned long *map;
4643 
4644 	map = get_map(s, page);
4645 	for_each_object(p, s, addr, page->objects)
4646 		if (!test_bit(slab_index(p, s, addr), map))
4647 			add_location(t, s, get_track(s, p, alloc));
4648 	put_map(map);
4649 }
4650 
4651 static int list_locations(struct kmem_cache *s, char *buf,
4652 					enum track_item alloc)
4653 {
4654 	int len = 0;
4655 	unsigned long i;
4656 	struct loc_track t = { 0, 0, NULL };
4657 	int node;
4658 	struct kmem_cache_node *n;
4659 
4660 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4661 			     GFP_KERNEL)) {
4662 		return sprintf(buf, "Out of memory\n");
4663 	}
4664 	/* Push back cpu slabs */
4665 	flush_all(s);
4666 
4667 	for_each_kmem_cache_node(s, node, n) {
4668 		unsigned long flags;
4669 		struct page *page;
4670 
4671 		if (!atomic_long_read(&n->nr_slabs))
4672 			continue;
4673 
4674 		spin_lock_irqsave(&n->list_lock, flags);
4675 		list_for_each_entry(page, &n->partial, slab_list)
4676 			process_slab(&t, s, page, alloc);
4677 		list_for_each_entry(page, &n->full, slab_list)
4678 			process_slab(&t, s, page, alloc);
4679 		spin_unlock_irqrestore(&n->list_lock, flags);
4680 	}
4681 
4682 	for (i = 0; i < t.count; i++) {
4683 		struct location *l = &t.loc[i];
4684 
4685 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4686 			break;
4687 		len += sprintf(buf + len, "%7ld ", l->count);
4688 
4689 		if (l->addr)
4690 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4691 		else
4692 			len += sprintf(buf + len, "<not-available>");
4693 
4694 		if (l->sum_time != l->min_time) {
4695 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4696 				l->min_time,
4697 				(long)div_u64(l->sum_time, l->count),
4698 				l->max_time);
4699 		} else
4700 			len += sprintf(buf + len, " age=%ld",
4701 				l->min_time);
4702 
4703 		if (l->min_pid != l->max_pid)
4704 			len += sprintf(buf + len, " pid=%ld-%ld",
4705 				l->min_pid, l->max_pid);
4706 		else
4707 			len += sprintf(buf + len, " pid=%ld",
4708 				l->min_pid);
4709 
4710 		if (num_online_cpus() > 1 &&
4711 				!cpumask_empty(to_cpumask(l->cpus)) &&
4712 				len < PAGE_SIZE - 60)
4713 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4714 					 " cpus=%*pbl",
4715 					 cpumask_pr_args(to_cpumask(l->cpus)));
4716 
4717 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4718 				len < PAGE_SIZE - 60)
4719 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4720 					 " nodes=%*pbl",
4721 					 nodemask_pr_args(&l->nodes));
4722 
4723 		len += sprintf(buf + len, "\n");
4724 	}
4725 
4726 	free_loc_track(&t);
4727 	if (!t.count)
4728 		len += sprintf(buf, "No data\n");
4729 	return len;
4730 }
4731 #endif	/* CONFIG_SLUB_DEBUG */
4732 
4733 #ifdef SLUB_RESILIENCY_TEST
4734 static void __init resiliency_test(void)
4735 {
4736 	u8 *p;
4737 	int type = KMALLOC_NORMAL;
4738 
4739 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4740 
4741 	pr_err("SLUB resiliency testing\n");
4742 	pr_err("-----------------------\n");
4743 	pr_err("A. Corruption after allocation\n");
4744 
4745 	p = kzalloc(16, GFP_KERNEL);
4746 	p[16] = 0x12;
4747 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4748 	       p + 16);
4749 
4750 	validate_slab_cache(kmalloc_caches[type][4]);
4751 
4752 	/* Hmmm... The next two are dangerous */
4753 	p = kzalloc(32, GFP_KERNEL);
4754 	p[32 + sizeof(void *)] = 0x34;
4755 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4756 	       p);
4757 	pr_err("If allocated object is overwritten then not detectable\n\n");
4758 
4759 	validate_slab_cache(kmalloc_caches[type][5]);
4760 	p = kzalloc(64, GFP_KERNEL);
4761 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4762 	*p = 0x56;
4763 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4764 	       p);
4765 	pr_err("If allocated object is overwritten then not detectable\n\n");
4766 	validate_slab_cache(kmalloc_caches[type][6]);
4767 
4768 	pr_err("\nB. Corruption after free\n");
4769 	p = kzalloc(128, GFP_KERNEL);
4770 	kfree(p);
4771 	*p = 0x78;
4772 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4773 	validate_slab_cache(kmalloc_caches[type][7]);
4774 
4775 	p = kzalloc(256, GFP_KERNEL);
4776 	kfree(p);
4777 	p[50] = 0x9a;
4778 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4779 	validate_slab_cache(kmalloc_caches[type][8]);
4780 
4781 	p = kzalloc(512, GFP_KERNEL);
4782 	kfree(p);
4783 	p[512] = 0xab;
4784 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4785 	validate_slab_cache(kmalloc_caches[type][9]);
4786 }
4787 #else
4788 #ifdef CONFIG_SYSFS
4789 static void resiliency_test(void) {};
4790 #endif
4791 #endif	/* SLUB_RESILIENCY_TEST */
4792 
4793 #ifdef CONFIG_SYSFS
4794 enum slab_stat_type {
4795 	SL_ALL,			/* All slabs */
4796 	SL_PARTIAL,		/* Only partially allocated slabs */
4797 	SL_CPU,			/* Only slabs used for cpu caches */
4798 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4799 	SL_TOTAL		/* Determine object capacity not slabs */
4800 };
4801 
4802 #define SO_ALL		(1 << SL_ALL)
4803 #define SO_PARTIAL	(1 << SL_PARTIAL)
4804 #define SO_CPU		(1 << SL_CPU)
4805 #define SO_OBJECTS	(1 << SL_OBJECTS)
4806 #define SO_TOTAL	(1 << SL_TOTAL)
4807 
4808 #ifdef CONFIG_MEMCG
4809 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4810 
4811 static int __init setup_slub_memcg_sysfs(char *str)
4812 {
4813 	int v;
4814 
4815 	if (get_option(&str, &v) > 0)
4816 		memcg_sysfs_enabled = v;
4817 
4818 	return 1;
4819 }
4820 
4821 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4822 #endif
4823 
4824 static ssize_t show_slab_objects(struct kmem_cache *s,
4825 			    char *buf, unsigned long flags)
4826 {
4827 	unsigned long total = 0;
4828 	int node;
4829 	int x;
4830 	unsigned long *nodes;
4831 
4832 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4833 	if (!nodes)
4834 		return -ENOMEM;
4835 
4836 	if (flags & SO_CPU) {
4837 		int cpu;
4838 
4839 		for_each_possible_cpu(cpu) {
4840 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4841 							       cpu);
4842 			int node;
4843 			struct page *page;
4844 
4845 			page = READ_ONCE(c->page);
4846 			if (!page)
4847 				continue;
4848 
4849 			node = page_to_nid(page);
4850 			if (flags & SO_TOTAL)
4851 				x = page->objects;
4852 			else if (flags & SO_OBJECTS)
4853 				x = page->inuse;
4854 			else
4855 				x = 1;
4856 
4857 			total += x;
4858 			nodes[node] += x;
4859 
4860 			page = slub_percpu_partial_read_once(c);
4861 			if (page) {
4862 				node = page_to_nid(page);
4863 				if (flags & SO_TOTAL)
4864 					WARN_ON_ONCE(1);
4865 				else if (flags & SO_OBJECTS)
4866 					WARN_ON_ONCE(1);
4867 				else
4868 					x = page->pages;
4869 				total += x;
4870 				nodes[node] += x;
4871 			}
4872 		}
4873 	}
4874 
4875 	/*
4876 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4877 	 * already held which will conflict with an existing lock order:
4878 	 *
4879 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4880 	 *
4881 	 * We don't really need mem_hotplug_lock (to hold off
4882 	 * slab_mem_going_offline_callback) here because slab's memory hot
4883 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4884 	 */
4885 
4886 #ifdef CONFIG_SLUB_DEBUG
4887 	if (flags & SO_ALL) {
4888 		struct kmem_cache_node *n;
4889 
4890 		for_each_kmem_cache_node(s, node, n) {
4891 
4892 			if (flags & SO_TOTAL)
4893 				x = atomic_long_read(&n->total_objects);
4894 			else if (flags & SO_OBJECTS)
4895 				x = atomic_long_read(&n->total_objects) -
4896 					count_partial(n, count_free);
4897 			else
4898 				x = atomic_long_read(&n->nr_slabs);
4899 			total += x;
4900 			nodes[node] += x;
4901 		}
4902 
4903 	} else
4904 #endif
4905 	if (flags & SO_PARTIAL) {
4906 		struct kmem_cache_node *n;
4907 
4908 		for_each_kmem_cache_node(s, node, n) {
4909 			if (flags & SO_TOTAL)
4910 				x = count_partial(n, count_total);
4911 			else if (flags & SO_OBJECTS)
4912 				x = count_partial(n, count_inuse);
4913 			else
4914 				x = n->nr_partial;
4915 			total += x;
4916 			nodes[node] += x;
4917 		}
4918 	}
4919 	x = sprintf(buf, "%lu", total);
4920 #ifdef CONFIG_NUMA
4921 	for (node = 0; node < nr_node_ids; node++)
4922 		if (nodes[node])
4923 			x += sprintf(buf + x, " N%d=%lu",
4924 					node, nodes[node]);
4925 #endif
4926 	kfree(nodes);
4927 	return x + sprintf(buf + x, "\n");
4928 }
4929 
4930 #ifdef CONFIG_SLUB_DEBUG
4931 static int any_slab_objects(struct kmem_cache *s)
4932 {
4933 	int node;
4934 	struct kmem_cache_node *n;
4935 
4936 	for_each_kmem_cache_node(s, node, n)
4937 		if (atomic_long_read(&n->total_objects))
4938 			return 1;
4939 
4940 	return 0;
4941 }
4942 #endif
4943 
4944 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4945 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4946 
4947 struct slab_attribute {
4948 	struct attribute attr;
4949 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4950 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4951 };
4952 
4953 #define SLAB_ATTR_RO(_name) \
4954 	static struct slab_attribute _name##_attr = \
4955 	__ATTR(_name, 0400, _name##_show, NULL)
4956 
4957 #define SLAB_ATTR(_name) \
4958 	static struct slab_attribute _name##_attr =  \
4959 	__ATTR(_name, 0600, _name##_show, _name##_store)
4960 
4961 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4962 {
4963 	return sprintf(buf, "%u\n", s->size);
4964 }
4965 SLAB_ATTR_RO(slab_size);
4966 
4967 static ssize_t align_show(struct kmem_cache *s, char *buf)
4968 {
4969 	return sprintf(buf, "%u\n", s->align);
4970 }
4971 SLAB_ATTR_RO(align);
4972 
4973 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4974 {
4975 	return sprintf(buf, "%u\n", s->object_size);
4976 }
4977 SLAB_ATTR_RO(object_size);
4978 
4979 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4980 {
4981 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4982 }
4983 SLAB_ATTR_RO(objs_per_slab);
4984 
4985 static ssize_t order_store(struct kmem_cache *s,
4986 				const char *buf, size_t length)
4987 {
4988 	unsigned int order;
4989 	int err;
4990 
4991 	err = kstrtouint(buf, 10, &order);
4992 	if (err)
4993 		return err;
4994 
4995 	if (order > slub_max_order || order < slub_min_order)
4996 		return -EINVAL;
4997 
4998 	calculate_sizes(s, order);
4999 	return length;
5000 }
5001 
5002 static ssize_t order_show(struct kmem_cache *s, char *buf)
5003 {
5004 	return sprintf(buf, "%u\n", oo_order(s->oo));
5005 }
5006 SLAB_ATTR(order);
5007 
5008 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5009 {
5010 	return sprintf(buf, "%lu\n", s->min_partial);
5011 }
5012 
5013 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5014 				 size_t length)
5015 {
5016 	unsigned long min;
5017 	int err;
5018 
5019 	err = kstrtoul(buf, 10, &min);
5020 	if (err)
5021 		return err;
5022 
5023 	set_min_partial(s, min);
5024 	return length;
5025 }
5026 SLAB_ATTR(min_partial);
5027 
5028 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5029 {
5030 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5031 }
5032 
5033 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5034 				 size_t length)
5035 {
5036 	unsigned int objects;
5037 	int err;
5038 
5039 	err = kstrtouint(buf, 10, &objects);
5040 	if (err)
5041 		return err;
5042 	if (objects && !kmem_cache_has_cpu_partial(s))
5043 		return -EINVAL;
5044 
5045 	slub_set_cpu_partial(s, objects);
5046 	flush_all(s);
5047 	return length;
5048 }
5049 SLAB_ATTR(cpu_partial);
5050 
5051 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5052 {
5053 	if (!s->ctor)
5054 		return 0;
5055 	return sprintf(buf, "%pS\n", s->ctor);
5056 }
5057 SLAB_ATTR_RO(ctor);
5058 
5059 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5060 {
5061 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5062 }
5063 SLAB_ATTR_RO(aliases);
5064 
5065 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5066 {
5067 	return show_slab_objects(s, buf, SO_PARTIAL);
5068 }
5069 SLAB_ATTR_RO(partial);
5070 
5071 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5072 {
5073 	return show_slab_objects(s, buf, SO_CPU);
5074 }
5075 SLAB_ATTR_RO(cpu_slabs);
5076 
5077 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5078 {
5079 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5080 }
5081 SLAB_ATTR_RO(objects);
5082 
5083 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5084 {
5085 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5086 }
5087 SLAB_ATTR_RO(objects_partial);
5088 
5089 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5090 {
5091 	int objects = 0;
5092 	int pages = 0;
5093 	int cpu;
5094 	int len;
5095 
5096 	for_each_online_cpu(cpu) {
5097 		struct page *page;
5098 
5099 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5100 
5101 		if (page) {
5102 			pages += page->pages;
5103 			objects += page->pobjects;
5104 		}
5105 	}
5106 
5107 	len = sprintf(buf, "%d(%d)", objects, pages);
5108 
5109 #ifdef CONFIG_SMP
5110 	for_each_online_cpu(cpu) {
5111 		struct page *page;
5112 
5113 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5114 
5115 		if (page && len < PAGE_SIZE - 20)
5116 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5117 				page->pobjects, page->pages);
5118 	}
5119 #endif
5120 	return len + sprintf(buf + len, "\n");
5121 }
5122 SLAB_ATTR_RO(slabs_cpu_partial);
5123 
5124 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5125 {
5126 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5127 }
5128 
5129 static ssize_t reclaim_account_store(struct kmem_cache *s,
5130 				const char *buf, size_t length)
5131 {
5132 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5133 	if (buf[0] == '1')
5134 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5135 	return length;
5136 }
5137 SLAB_ATTR(reclaim_account);
5138 
5139 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5140 {
5141 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5142 }
5143 SLAB_ATTR_RO(hwcache_align);
5144 
5145 #ifdef CONFIG_ZONE_DMA
5146 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5147 {
5148 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5149 }
5150 SLAB_ATTR_RO(cache_dma);
5151 #endif
5152 
5153 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5154 {
5155 	return sprintf(buf, "%u\n", s->usersize);
5156 }
5157 SLAB_ATTR_RO(usersize);
5158 
5159 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5160 {
5161 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5162 }
5163 SLAB_ATTR_RO(destroy_by_rcu);
5164 
5165 #ifdef CONFIG_SLUB_DEBUG
5166 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5167 {
5168 	return show_slab_objects(s, buf, SO_ALL);
5169 }
5170 SLAB_ATTR_RO(slabs);
5171 
5172 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5173 {
5174 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5175 }
5176 SLAB_ATTR_RO(total_objects);
5177 
5178 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5179 {
5180 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5181 }
5182 
5183 static ssize_t sanity_checks_store(struct kmem_cache *s,
5184 				const char *buf, size_t length)
5185 {
5186 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5187 	if (buf[0] == '1') {
5188 		s->flags &= ~__CMPXCHG_DOUBLE;
5189 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5190 	}
5191 	return length;
5192 }
5193 SLAB_ATTR(sanity_checks);
5194 
5195 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5196 {
5197 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5198 }
5199 
5200 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5201 							size_t length)
5202 {
5203 	/*
5204 	 * Tracing a merged cache is going to give confusing results
5205 	 * as well as cause other issues like converting a mergeable
5206 	 * cache into an umergeable one.
5207 	 */
5208 	if (s->refcount > 1)
5209 		return -EINVAL;
5210 
5211 	s->flags &= ~SLAB_TRACE;
5212 	if (buf[0] == '1') {
5213 		s->flags &= ~__CMPXCHG_DOUBLE;
5214 		s->flags |= SLAB_TRACE;
5215 	}
5216 	return length;
5217 }
5218 SLAB_ATTR(trace);
5219 
5220 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5221 {
5222 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5223 }
5224 
5225 static ssize_t red_zone_store(struct kmem_cache *s,
5226 				const char *buf, size_t length)
5227 {
5228 	if (any_slab_objects(s))
5229 		return -EBUSY;
5230 
5231 	s->flags &= ~SLAB_RED_ZONE;
5232 	if (buf[0] == '1') {
5233 		s->flags |= SLAB_RED_ZONE;
5234 	}
5235 	calculate_sizes(s, -1);
5236 	return length;
5237 }
5238 SLAB_ATTR(red_zone);
5239 
5240 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5241 {
5242 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5243 }
5244 
5245 static ssize_t poison_store(struct kmem_cache *s,
5246 				const char *buf, size_t length)
5247 {
5248 	if (any_slab_objects(s))
5249 		return -EBUSY;
5250 
5251 	s->flags &= ~SLAB_POISON;
5252 	if (buf[0] == '1') {
5253 		s->flags |= SLAB_POISON;
5254 	}
5255 	calculate_sizes(s, -1);
5256 	return length;
5257 }
5258 SLAB_ATTR(poison);
5259 
5260 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5261 {
5262 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5263 }
5264 
5265 static ssize_t store_user_store(struct kmem_cache *s,
5266 				const char *buf, size_t length)
5267 {
5268 	if (any_slab_objects(s))
5269 		return -EBUSY;
5270 
5271 	s->flags &= ~SLAB_STORE_USER;
5272 	if (buf[0] == '1') {
5273 		s->flags &= ~__CMPXCHG_DOUBLE;
5274 		s->flags |= SLAB_STORE_USER;
5275 	}
5276 	calculate_sizes(s, -1);
5277 	return length;
5278 }
5279 SLAB_ATTR(store_user);
5280 
5281 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5282 {
5283 	return 0;
5284 }
5285 
5286 static ssize_t validate_store(struct kmem_cache *s,
5287 			const char *buf, size_t length)
5288 {
5289 	int ret = -EINVAL;
5290 
5291 	if (buf[0] == '1') {
5292 		ret = validate_slab_cache(s);
5293 		if (ret >= 0)
5294 			ret = length;
5295 	}
5296 	return ret;
5297 }
5298 SLAB_ATTR(validate);
5299 
5300 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5301 {
5302 	if (!(s->flags & SLAB_STORE_USER))
5303 		return -ENOSYS;
5304 	return list_locations(s, buf, TRACK_ALLOC);
5305 }
5306 SLAB_ATTR_RO(alloc_calls);
5307 
5308 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5309 {
5310 	if (!(s->flags & SLAB_STORE_USER))
5311 		return -ENOSYS;
5312 	return list_locations(s, buf, TRACK_FREE);
5313 }
5314 SLAB_ATTR_RO(free_calls);
5315 #endif /* CONFIG_SLUB_DEBUG */
5316 
5317 #ifdef CONFIG_FAILSLAB
5318 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5319 {
5320 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5321 }
5322 
5323 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5324 							size_t length)
5325 {
5326 	if (s->refcount > 1)
5327 		return -EINVAL;
5328 
5329 	s->flags &= ~SLAB_FAILSLAB;
5330 	if (buf[0] == '1')
5331 		s->flags |= SLAB_FAILSLAB;
5332 	return length;
5333 }
5334 SLAB_ATTR(failslab);
5335 #endif
5336 
5337 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5338 {
5339 	return 0;
5340 }
5341 
5342 static ssize_t shrink_store(struct kmem_cache *s,
5343 			const char *buf, size_t length)
5344 {
5345 	if (buf[0] == '1')
5346 		kmem_cache_shrink_all(s);
5347 	else
5348 		return -EINVAL;
5349 	return length;
5350 }
5351 SLAB_ATTR(shrink);
5352 
5353 #ifdef CONFIG_NUMA
5354 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5355 {
5356 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5357 }
5358 
5359 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5360 				const char *buf, size_t length)
5361 {
5362 	unsigned int ratio;
5363 	int err;
5364 
5365 	err = kstrtouint(buf, 10, &ratio);
5366 	if (err)
5367 		return err;
5368 	if (ratio > 100)
5369 		return -ERANGE;
5370 
5371 	s->remote_node_defrag_ratio = ratio * 10;
5372 
5373 	return length;
5374 }
5375 SLAB_ATTR(remote_node_defrag_ratio);
5376 #endif
5377 
5378 #ifdef CONFIG_SLUB_STATS
5379 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5380 {
5381 	unsigned long sum  = 0;
5382 	int cpu;
5383 	int len;
5384 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5385 
5386 	if (!data)
5387 		return -ENOMEM;
5388 
5389 	for_each_online_cpu(cpu) {
5390 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5391 
5392 		data[cpu] = x;
5393 		sum += x;
5394 	}
5395 
5396 	len = sprintf(buf, "%lu", sum);
5397 
5398 #ifdef CONFIG_SMP
5399 	for_each_online_cpu(cpu) {
5400 		if (data[cpu] && len < PAGE_SIZE - 20)
5401 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5402 	}
5403 #endif
5404 	kfree(data);
5405 	return len + sprintf(buf + len, "\n");
5406 }
5407 
5408 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5409 {
5410 	int cpu;
5411 
5412 	for_each_online_cpu(cpu)
5413 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5414 }
5415 
5416 #define STAT_ATTR(si, text) 					\
5417 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5418 {								\
5419 	return show_stat(s, buf, si);				\
5420 }								\
5421 static ssize_t text##_store(struct kmem_cache *s,		\
5422 				const char *buf, size_t length)	\
5423 {								\
5424 	if (buf[0] != '0')					\
5425 		return -EINVAL;					\
5426 	clear_stat(s, si);					\
5427 	return length;						\
5428 }								\
5429 SLAB_ATTR(text);						\
5430 
5431 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5432 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5433 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5434 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5435 STAT_ATTR(FREE_FROZEN, free_frozen);
5436 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5437 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5438 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5439 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5440 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5441 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5442 STAT_ATTR(FREE_SLAB, free_slab);
5443 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5444 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5445 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5446 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5447 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5448 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5449 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5450 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5451 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5452 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5453 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5454 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5455 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5456 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5457 #endif	/* CONFIG_SLUB_STATS */
5458 
5459 static struct attribute *slab_attrs[] = {
5460 	&slab_size_attr.attr,
5461 	&object_size_attr.attr,
5462 	&objs_per_slab_attr.attr,
5463 	&order_attr.attr,
5464 	&min_partial_attr.attr,
5465 	&cpu_partial_attr.attr,
5466 	&objects_attr.attr,
5467 	&objects_partial_attr.attr,
5468 	&partial_attr.attr,
5469 	&cpu_slabs_attr.attr,
5470 	&ctor_attr.attr,
5471 	&aliases_attr.attr,
5472 	&align_attr.attr,
5473 	&hwcache_align_attr.attr,
5474 	&reclaim_account_attr.attr,
5475 	&destroy_by_rcu_attr.attr,
5476 	&shrink_attr.attr,
5477 	&slabs_cpu_partial_attr.attr,
5478 #ifdef CONFIG_SLUB_DEBUG
5479 	&total_objects_attr.attr,
5480 	&slabs_attr.attr,
5481 	&sanity_checks_attr.attr,
5482 	&trace_attr.attr,
5483 	&red_zone_attr.attr,
5484 	&poison_attr.attr,
5485 	&store_user_attr.attr,
5486 	&validate_attr.attr,
5487 	&alloc_calls_attr.attr,
5488 	&free_calls_attr.attr,
5489 #endif
5490 #ifdef CONFIG_ZONE_DMA
5491 	&cache_dma_attr.attr,
5492 #endif
5493 #ifdef CONFIG_NUMA
5494 	&remote_node_defrag_ratio_attr.attr,
5495 #endif
5496 #ifdef CONFIG_SLUB_STATS
5497 	&alloc_fastpath_attr.attr,
5498 	&alloc_slowpath_attr.attr,
5499 	&free_fastpath_attr.attr,
5500 	&free_slowpath_attr.attr,
5501 	&free_frozen_attr.attr,
5502 	&free_add_partial_attr.attr,
5503 	&free_remove_partial_attr.attr,
5504 	&alloc_from_partial_attr.attr,
5505 	&alloc_slab_attr.attr,
5506 	&alloc_refill_attr.attr,
5507 	&alloc_node_mismatch_attr.attr,
5508 	&free_slab_attr.attr,
5509 	&cpuslab_flush_attr.attr,
5510 	&deactivate_full_attr.attr,
5511 	&deactivate_empty_attr.attr,
5512 	&deactivate_to_head_attr.attr,
5513 	&deactivate_to_tail_attr.attr,
5514 	&deactivate_remote_frees_attr.attr,
5515 	&deactivate_bypass_attr.attr,
5516 	&order_fallback_attr.attr,
5517 	&cmpxchg_double_fail_attr.attr,
5518 	&cmpxchg_double_cpu_fail_attr.attr,
5519 	&cpu_partial_alloc_attr.attr,
5520 	&cpu_partial_free_attr.attr,
5521 	&cpu_partial_node_attr.attr,
5522 	&cpu_partial_drain_attr.attr,
5523 #endif
5524 #ifdef CONFIG_FAILSLAB
5525 	&failslab_attr.attr,
5526 #endif
5527 	&usersize_attr.attr,
5528 
5529 	NULL
5530 };
5531 
5532 static const struct attribute_group slab_attr_group = {
5533 	.attrs = slab_attrs,
5534 };
5535 
5536 static ssize_t slab_attr_show(struct kobject *kobj,
5537 				struct attribute *attr,
5538 				char *buf)
5539 {
5540 	struct slab_attribute *attribute;
5541 	struct kmem_cache *s;
5542 	int err;
5543 
5544 	attribute = to_slab_attr(attr);
5545 	s = to_slab(kobj);
5546 
5547 	if (!attribute->show)
5548 		return -EIO;
5549 
5550 	err = attribute->show(s, buf);
5551 
5552 	return err;
5553 }
5554 
5555 static ssize_t slab_attr_store(struct kobject *kobj,
5556 				struct attribute *attr,
5557 				const char *buf, size_t len)
5558 {
5559 	struct slab_attribute *attribute;
5560 	struct kmem_cache *s;
5561 	int err;
5562 
5563 	attribute = to_slab_attr(attr);
5564 	s = to_slab(kobj);
5565 
5566 	if (!attribute->store)
5567 		return -EIO;
5568 
5569 	err = attribute->store(s, buf, len);
5570 #ifdef CONFIG_MEMCG
5571 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5572 		struct kmem_cache *c;
5573 
5574 		mutex_lock(&slab_mutex);
5575 		if (s->max_attr_size < len)
5576 			s->max_attr_size = len;
5577 
5578 		/*
5579 		 * This is a best effort propagation, so this function's return
5580 		 * value will be determined by the parent cache only. This is
5581 		 * basically because not all attributes will have a well
5582 		 * defined semantics for rollbacks - most of the actions will
5583 		 * have permanent effects.
5584 		 *
5585 		 * Returning the error value of any of the children that fail
5586 		 * is not 100 % defined, in the sense that users seeing the
5587 		 * error code won't be able to know anything about the state of
5588 		 * the cache.
5589 		 *
5590 		 * Only returning the error code for the parent cache at least
5591 		 * has well defined semantics. The cache being written to
5592 		 * directly either failed or succeeded, in which case we loop
5593 		 * through the descendants with best-effort propagation.
5594 		 */
5595 		for_each_memcg_cache(c, s)
5596 			attribute->store(c, buf, len);
5597 		mutex_unlock(&slab_mutex);
5598 	}
5599 #endif
5600 	return err;
5601 }
5602 
5603 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5604 {
5605 #ifdef CONFIG_MEMCG
5606 	int i;
5607 	char *buffer = NULL;
5608 	struct kmem_cache *root_cache;
5609 
5610 	if (is_root_cache(s))
5611 		return;
5612 
5613 	root_cache = s->memcg_params.root_cache;
5614 
5615 	/*
5616 	 * This mean this cache had no attribute written. Therefore, no point
5617 	 * in copying default values around
5618 	 */
5619 	if (!root_cache->max_attr_size)
5620 		return;
5621 
5622 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5623 		char mbuf[64];
5624 		char *buf;
5625 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5626 		ssize_t len;
5627 
5628 		if (!attr || !attr->store || !attr->show)
5629 			continue;
5630 
5631 		/*
5632 		 * It is really bad that we have to allocate here, so we will
5633 		 * do it only as a fallback. If we actually allocate, though,
5634 		 * we can just use the allocated buffer until the end.
5635 		 *
5636 		 * Most of the slub attributes will tend to be very small in
5637 		 * size, but sysfs allows buffers up to a page, so they can
5638 		 * theoretically happen.
5639 		 */
5640 		if (buffer)
5641 			buf = buffer;
5642 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5643 			buf = mbuf;
5644 		else {
5645 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5646 			if (WARN_ON(!buffer))
5647 				continue;
5648 			buf = buffer;
5649 		}
5650 
5651 		len = attr->show(root_cache, buf);
5652 		if (len > 0)
5653 			attr->store(s, buf, len);
5654 	}
5655 
5656 	if (buffer)
5657 		free_page((unsigned long)buffer);
5658 #endif	/* CONFIG_MEMCG */
5659 }
5660 
5661 static void kmem_cache_release(struct kobject *k)
5662 {
5663 	slab_kmem_cache_release(to_slab(k));
5664 }
5665 
5666 static const struct sysfs_ops slab_sysfs_ops = {
5667 	.show = slab_attr_show,
5668 	.store = slab_attr_store,
5669 };
5670 
5671 static struct kobj_type slab_ktype = {
5672 	.sysfs_ops = &slab_sysfs_ops,
5673 	.release = kmem_cache_release,
5674 };
5675 
5676 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5677 {
5678 	struct kobj_type *ktype = get_ktype(kobj);
5679 
5680 	if (ktype == &slab_ktype)
5681 		return 1;
5682 	return 0;
5683 }
5684 
5685 static const struct kset_uevent_ops slab_uevent_ops = {
5686 	.filter = uevent_filter,
5687 };
5688 
5689 static struct kset *slab_kset;
5690 
5691 static inline struct kset *cache_kset(struct kmem_cache *s)
5692 {
5693 #ifdef CONFIG_MEMCG
5694 	if (!is_root_cache(s))
5695 		return s->memcg_params.root_cache->memcg_kset;
5696 #endif
5697 	return slab_kset;
5698 }
5699 
5700 #define ID_STR_LENGTH 64
5701 
5702 /* Create a unique string id for a slab cache:
5703  *
5704  * Format	:[flags-]size
5705  */
5706 static char *create_unique_id(struct kmem_cache *s)
5707 {
5708 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5709 	char *p = name;
5710 
5711 	BUG_ON(!name);
5712 
5713 	*p++ = ':';
5714 	/*
5715 	 * First flags affecting slabcache operations. We will only
5716 	 * get here for aliasable slabs so we do not need to support
5717 	 * too many flags. The flags here must cover all flags that
5718 	 * are matched during merging to guarantee that the id is
5719 	 * unique.
5720 	 */
5721 	if (s->flags & SLAB_CACHE_DMA)
5722 		*p++ = 'd';
5723 	if (s->flags & SLAB_CACHE_DMA32)
5724 		*p++ = 'D';
5725 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5726 		*p++ = 'a';
5727 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5728 		*p++ = 'F';
5729 	if (s->flags & SLAB_ACCOUNT)
5730 		*p++ = 'A';
5731 	if (p != name + 1)
5732 		*p++ = '-';
5733 	p += sprintf(p, "%07u", s->size);
5734 
5735 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5736 	return name;
5737 }
5738 
5739 static void sysfs_slab_remove_workfn(struct work_struct *work)
5740 {
5741 	struct kmem_cache *s =
5742 		container_of(work, struct kmem_cache, kobj_remove_work);
5743 
5744 	if (!s->kobj.state_in_sysfs)
5745 		/*
5746 		 * For a memcg cache, this may be called during
5747 		 * deactivation and again on shutdown.  Remove only once.
5748 		 * A cache is never shut down before deactivation is
5749 		 * complete, so no need to worry about synchronization.
5750 		 */
5751 		goto out;
5752 
5753 #ifdef CONFIG_MEMCG
5754 	kset_unregister(s->memcg_kset);
5755 #endif
5756 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5757 out:
5758 	kobject_put(&s->kobj);
5759 }
5760 
5761 static int sysfs_slab_add(struct kmem_cache *s)
5762 {
5763 	int err;
5764 	const char *name;
5765 	struct kset *kset = cache_kset(s);
5766 	int unmergeable = slab_unmergeable(s);
5767 
5768 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5769 
5770 	if (!kset) {
5771 		kobject_init(&s->kobj, &slab_ktype);
5772 		return 0;
5773 	}
5774 
5775 	if (!unmergeable && disable_higher_order_debug &&
5776 			(slub_debug & DEBUG_METADATA_FLAGS))
5777 		unmergeable = 1;
5778 
5779 	if (unmergeable) {
5780 		/*
5781 		 * Slabcache can never be merged so we can use the name proper.
5782 		 * This is typically the case for debug situations. In that
5783 		 * case we can catch duplicate names easily.
5784 		 */
5785 		sysfs_remove_link(&slab_kset->kobj, s->name);
5786 		name = s->name;
5787 	} else {
5788 		/*
5789 		 * Create a unique name for the slab as a target
5790 		 * for the symlinks.
5791 		 */
5792 		name = create_unique_id(s);
5793 	}
5794 
5795 	s->kobj.kset = kset;
5796 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5797 	if (err)
5798 		goto out;
5799 
5800 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5801 	if (err)
5802 		goto out_del_kobj;
5803 
5804 #ifdef CONFIG_MEMCG
5805 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5806 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5807 		if (!s->memcg_kset) {
5808 			err = -ENOMEM;
5809 			goto out_del_kobj;
5810 		}
5811 	}
5812 #endif
5813 
5814 	kobject_uevent(&s->kobj, KOBJ_ADD);
5815 	if (!unmergeable) {
5816 		/* Setup first alias */
5817 		sysfs_slab_alias(s, s->name);
5818 	}
5819 out:
5820 	if (!unmergeable)
5821 		kfree(name);
5822 	return err;
5823 out_del_kobj:
5824 	kobject_del(&s->kobj);
5825 	goto out;
5826 }
5827 
5828 static void sysfs_slab_remove(struct kmem_cache *s)
5829 {
5830 	if (slab_state < FULL)
5831 		/*
5832 		 * Sysfs has not been setup yet so no need to remove the
5833 		 * cache from sysfs.
5834 		 */
5835 		return;
5836 
5837 	kobject_get(&s->kobj);
5838 	schedule_work(&s->kobj_remove_work);
5839 }
5840 
5841 void sysfs_slab_unlink(struct kmem_cache *s)
5842 {
5843 	if (slab_state >= FULL)
5844 		kobject_del(&s->kobj);
5845 }
5846 
5847 void sysfs_slab_release(struct kmem_cache *s)
5848 {
5849 	if (slab_state >= FULL)
5850 		kobject_put(&s->kobj);
5851 }
5852 
5853 /*
5854  * Need to buffer aliases during bootup until sysfs becomes
5855  * available lest we lose that information.
5856  */
5857 struct saved_alias {
5858 	struct kmem_cache *s;
5859 	const char *name;
5860 	struct saved_alias *next;
5861 };
5862 
5863 static struct saved_alias *alias_list;
5864 
5865 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5866 {
5867 	struct saved_alias *al;
5868 
5869 	if (slab_state == FULL) {
5870 		/*
5871 		 * If we have a leftover link then remove it.
5872 		 */
5873 		sysfs_remove_link(&slab_kset->kobj, name);
5874 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5875 	}
5876 
5877 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5878 	if (!al)
5879 		return -ENOMEM;
5880 
5881 	al->s = s;
5882 	al->name = name;
5883 	al->next = alias_list;
5884 	alias_list = al;
5885 	return 0;
5886 }
5887 
5888 static int __init slab_sysfs_init(void)
5889 {
5890 	struct kmem_cache *s;
5891 	int err;
5892 
5893 	mutex_lock(&slab_mutex);
5894 
5895 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5896 	if (!slab_kset) {
5897 		mutex_unlock(&slab_mutex);
5898 		pr_err("Cannot register slab subsystem.\n");
5899 		return -ENOSYS;
5900 	}
5901 
5902 	slab_state = FULL;
5903 
5904 	list_for_each_entry(s, &slab_caches, list) {
5905 		err = sysfs_slab_add(s);
5906 		if (err)
5907 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5908 			       s->name);
5909 	}
5910 
5911 	while (alias_list) {
5912 		struct saved_alias *al = alias_list;
5913 
5914 		alias_list = alias_list->next;
5915 		err = sysfs_slab_alias(al->s, al->name);
5916 		if (err)
5917 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5918 			       al->name);
5919 		kfree(al);
5920 	}
5921 
5922 	mutex_unlock(&slab_mutex);
5923 	resiliency_test();
5924 	return 0;
5925 }
5926 
5927 __initcall(slab_sysfs_init);
5928 #endif /* CONFIG_SYSFS */
5929 
5930 /*
5931  * The /proc/slabinfo ABI
5932  */
5933 #ifdef CONFIG_SLUB_DEBUG
5934 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5935 {
5936 	unsigned long nr_slabs = 0;
5937 	unsigned long nr_objs = 0;
5938 	unsigned long nr_free = 0;
5939 	int node;
5940 	struct kmem_cache_node *n;
5941 
5942 	for_each_kmem_cache_node(s, node, n) {
5943 		nr_slabs += node_nr_slabs(n);
5944 		nr_objs += node_nr_objs(n);
5945 		nr_free += count_partial(n, count_free);
5946 	}
5947 
5948 	sinfo->active_objs = nr_objs - nr_free;
5949 	sinfo->num_objs = nr_objs;
5950 	sinfo->active_slabs = nr_slabs;
5951 	sinfo->num_slabs = nr_slabs;
5952 	sinfo->objects_per_slab = oo_objects(s->oo);
5953 	sinfo->cache_order = oo_order(s->oo);
5954 }
5955 
5956 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5957 {
5958 }
5959 
5960 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5961 		       size_t count, loff_t *ppos)
5962 {
5963 	return -EIO;
5964 }
5965 #endif /* CONFIG_SLUB_DEBUG */
5966