1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kmemcheck.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 37 #include <trace/events/kmem.h> 38 39 #include "internal.h" 40 41 /* 42 * Lock order: 43 * 1. slab_mutex (Global Mutex) 44 * 2. node->list_lock 45 * 3. slab_lock(page) (Only on some arches and for debugging) 46 * 47 * slab_mutex 48 * 49 * The role of the slab_mutex is to protect the list of all the slabs 50 * and to synchronize major metadata changes to slab cache structures. 51 * 52 * The slab_lock is only used for debugging and on arches that do not 53 * have the ability to do a cmpxchg_double. It only protects the second 54 * double word in the page struct. Meaning 55 * A. page->freelist -> List of object free in a page 56 * B. page->counters -> Counters of objects 57 * C. page->frozen -> frozen state 58 * 59 * If a slab is frozen then it is exempt from list management. It is not 60 * on any list. The processor that froze the slab is the one who can 61 * perform list operations on the page. Other processors may put objects 62 * onto the freelist but the processor that froze the slab is the only 63 * one that can retrieve the objects from the page's freelist. 64 * 65 * The list_lock protects the partial and full list on each node and 66 * the partial slab counter. If taken then no new slabs may be added or 67 * removed from the lists nor make the number of partial slabs be modified. 68 * (Note that the total number of slabs is an atomic value that may be 69 * modified without taking the list lock). 70 * 71 * The list_lock is a centralized lock and thus we avoid taking it as 72 * much as possible. As long as SLUB does not have to handle partial 73 * slabs, operations can continue without any centralized lock. F.e. 74 * allocating a long series of objects that fill up slabs does not require 75 * the list lock. 76 * Interrupts are disabled during allocation and deallocation in order to 77 * make the slab allocator safe to use in the context of an irq. In addition 78 * interrupts are disabled to ensure that the processor does not change 79 * while handling per_cpu slabs, due to kernel preemption. 80 * 81 * SLUB assigns one slab for allocation to each processor. 82 * Allocations only occur from these slabs called cpu slabs. 83 * 84 * Slabs with free elements are kept on a partial list and during regular 85 * operations no list for full slabs is used. If an object in a full slab is 86 * freed then the slab will show up again on the partial lists. 87 * We track full slabs for debugging purposes though because otherwise we 88 * cannot scan all objects. 89 * 90 * Slabs are freed when they become empty. Teardown and setup is 91 * minimal so we rely on the page allocators per cpu caches for 92 * fast frees and allocs. 93 * 94 * Overloading of page flags that are otherwise used for LRU management. 95 * 96 * PageActive The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * PageError Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 127 { 128 #ifdef CONFIG_SLUB_CPU_PARTIAL 129 return !kmem_cache_debug(s); 130 #else 131 return false; 132 #endif 133 } 134 135 /* 136 * Issues still to be resolved: 137 * 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 139 * 140 * - Variable sizing of the per node arrays 141 */ 142 143 /* Enable to test recovery from slab corruption on boot */ 144 #undef SLUB_RESILIENCY_TEST 145 146 /* Enable to log cmpxchg failures */ 147 #undef SLUB_DEBUG_CMPXCHG 148 149 /* 150 * Mininum number of partial slabs. These will be left on the partial 151 * lists even if they are empty. kmem_cache_shrink may reclaim them. 152 */ 153 #define MIN_PARTIAL 5 154 155 /* 156 * Maximum number of desirable partial slabs. 157 * The existence of more partial slabs makes kmem_cache_shrink 158 * sort the partial list by the number of objects in use. 159 */ 160 #define MAX_PARTIAL 10 161 162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 163 SLAB_POISON | SLAB_STORE_USER) 164 165 /* 166 * Debugging flags that require metadata to be stored in the slab. These get 167 * disabled when slub_debug=O is used and a cache's min order increases with 168 * metadata. 169 */ 170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 171 172 /* 173 * Set of flags that will prevent slab merging 174 */ 175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 177 SLAB_FAILSLAB) 178 179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 180 SLAB_CACHE_DMA | SLAB_NOTRACK) 181 182 #define OO_SHIFT 16 183 #define OO_MASK ((1 << OO_SHIFT) - 1) 184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 185 186 /* Internal SLUB flags */ 187 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 189 190 #ifdef CONFIG_SMP 191 static struct notifier_block slab_notifier; 192 #endif 193 194 /* 195 * Tracking user of a slab. 196 */ 197 #define TRACK_ADDRS_COUNT 16 198 struct track { 199 unsigned long addr; /* Called from address */ 200 #ifdef CONFIG_STACKTRACE 201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 202 #endif 203 int cpu; /* Was running on cpu */ 204 int pid; /* Pid context */ 205 unsigned long when; /* When did the operation occur */ 206 }; 207 208 enum track_item { TRACK_ALLOC, TRACK_FREE }; 209 210 #ifdef CONFIG_SYSFS 211 static int sysfs_slab_add(struct kmem_cache *); 212 static int sysfs_slab_alias(struct kmem_cache *, const char *); 213 static void sysfs_slab_remove(struct kmem_cache *); 214 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 215 #else 216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 218 { return 0; } 219 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 220 221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 222 #endif 223 224 static inline void stat(const struct kmem_cache *s, enum stat_item si) 225 { 226 #ifdef CONFIG_SLUB_STATS 227 /* 228 * The rmw is racy on a preemptible kernel but this is acceptable, so 229 * avoid this_cpu_add()'s irq-disable overhead. 230 */ 231 raw_cpu_inc(s->cpu_slab->stat[si]); 232 #endif 233 } 234 235 /******************************************************************** 236 * Core slab cache functions 237 *******************************************************************/ 238 239 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 240 { 241 return s->node[node]; 242 } 243 244 /* Verify that a pointer has an address that is valid within a slab page */ 245 static inline int check_valid_pointer(struct kmem_cache *s, 246 struct page *page, const void *object) 247 { 248 void *base; 249 250 if (!object) 251 return 1; 252 253 base = page_address(page); 254 if (object < base || object >= base + page->objects * s->size || 255 (object - base) % s->size) { 256 return 0; 257 } 258 259 return 1; 260 } 261 262 static inline void *get_freepointer(struct kmem_cache *s, void *object) 263 { 264 return *(void **)(object + s->offset); 265 } 266 267 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 268 { 269 prefetch(object + s->offset); 270 } 271 272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 273 { 274 void *p; 275 276 #ifdef CONFIG_DEBUG_PAGEALLOC 277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 278 #else 279 p = get_freepointer(s, object); 280 #endif 281 return p; 282 } 283 284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 285 { 286 *(void **)(object + s->offset) = fp; 287 } 288 289 /* Loop over all objects in a slab */ 290 #define for_each_object(__p, __s, __addr, __objects) \ 291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 292 __p += (__s)->size) 293 294 /* Determine object index from a given position */ 295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 296 { 297 return (p - addr) / s->size; 298 } 299 300 static inline size_t slab_ksize(const struct kmem_cache *s) 301 { 302 #ifdef CONFIG_SLUB_DEBUG 303 /* 304 * Debugging requires use of the padding between object 305 * and whatever may come after it. 306 */ 307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 308 return s->object_size; 309 310 #endif 311 /* 312 * If we have the need to store the freelist pointer 313 * back there or track user information then we can 314 * only use the space before that information. 315 */ 316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 317 return s->inuse; 318 /* 319 * Else we can use all the padding etc for the allocation 320 */ 321 return s->size; 322 } 323 324 static inline int order_objects(int order, unsigned long size, int reserved) 325 { 326 return ((PAGE_SIZE << order) - reserved) / size; 327 } 328 329 static inline struct kmem_cache_order_objects oo_make(int order, 330 unsigned long size, int reserved) 331 { 332 struct kmem_cache_order_objects x = { 333 (order << OO_SHIFT) + order_objects(order, size, reserved) 334 }; 335 336 return x; 337 } 338 339 static inline int oo_order(struct kmem_cache_order_objects x) 340 { 341 return x.x >> OO_SHIFT; 342 } 343 344 static inline int oo_objects(struct kmem_cache_order_objects x) 345 { 346 return x.x & OO_MASK; 347 } 348 349 /* 350 * Per slab locking using the pagelock 351 */ 352 static __always_inline void slab_lock(struct page *page) 353 { 354 bit_spin_lock(PG_locked, &page->flags); 355 } 356 357 static __always_inline void slab_unlock(struct page *page) 358 { 359 __bit_spin_unlock(PG_locked, &page->flags); 360 } 361 362 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 363 { 364 struct page tmp; 365 tmp.counters = counters_new; 366 /* 367 * page->counters can cover frozen/inuse/objects as well 368 * as page->_count. If we assign to ->counters directly 369 * we run the risk of losing updates to page->_count, so 370 * be careful and only assign to the fields we need. 371 */ 372 page->frozen = tmp.frozen; 373 page->inuse = tmp.inuse; 374 page->objects = tmp.objects; 375 } 376 377 /* Interrupts must be disabled (for the fallback code to work right) */ 378 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 379 void *freelist_old, unsigned long counters_old, 380 void *freelist_new, unsigned long counters_new, 381 const char *n) 382 { 383 VM_BUG_ON(!irqs_disabled()); 384 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 385 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 386 if (s->flags & __CMPXCHG_DOUBLE) { 387 if (cmpxchg_double(&page->freelist, &page->counters, 388 freelist_old, counters_old, 389 freelist_new, counters_new)) 390 return 1; 391 } else 392 #endif 393 { 394 slab_lock(page); 395 if (page->freelist == freelist_old && 396 page->counters == counters_old) { 397 page->freelist = freelist_new; 398 set_page_slub_counters(page, counters_new); 399 slab_unlock(page); 400 return 1; 401 } 402 slab_unlock(page); 403 } 404 405 cpu_relax(); 406 stat(s, CMPXCHG_DOUBLE_FAIL); 407 408 #ifdef SLUB_DEBUG_CMPXCHG 409 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 410 #endif 411 412 return 0; 413 } 414 415 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 416 void *freelist_old, unsigned long counters_old, 417 void *freelist_new, unsigned long counters_new, 418 const char *n) 419 { 420 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 421 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 422 if (s->flags & __CMPXCHG_DOUBLE) { 423 if (cmpxchg_double(&page->freelist, &page->counters, 424 freelist_old, counters_old, 425 freelist_new, counters_new)) 426 return 1; 427 } else 428 #endif 429 { 430 unsigned long flags; 431 432 local_irq_save(flags); 433 slab_lock(page); 434 if (page->freelist == freelist_old && 435 page->counters == counters_old) { 436 page->freelist = freelist_new; 437 set_page_slub_counters(page, counters_new); 438 slab_unlock(page); 439 local_irq_restore(flags); 440 return 1; 441 } 442 slab_unlock(page); 443 local_irq_restore(flags); 444 } 445 446 cpu_relax(); 447 stat(s, CMPXCHG_DOUBLE_FAIL); 448 449 #ifdef SLUB_DEBUG_CMPXCHG 450 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 451 #endif 452 453 return 0; 454 } 455 456 #ifdef CONFIG_SLUB_DEBUG 457 /* 458 * Determine a map of object in use on a page. 459 * 460 * Node listlock must be held to guarantee that the page does 461 * not vanish from under us. 462 */ 463 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 464 { 465 void *p; 466 void *addr = page_address(page); 467 468 for (p = page->freelist; p; p = get_freepointer(s, p)) 469 set_bit(slab_index(p, s, addr), map); 470 } 471 472 /* 473 * Debug settings: 474 */ 475 #ifdef CONFIG_SLUB_DEBUG_ON 476 static int slub_debug = DEBUG_DEFAULT_FLAGS; 477 #else 478 static int slub_debug; 479 #endif 480 481 static char *slub_debug_slabs; 482 static int disable_higher_order_debug; 483 484 /* 485 * Object debugging 486 */ 487 static void print_section(char *text, u8 *addr, unsigned int length) 488 { 489 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 490 length, 1); 491 } 492 493 static struct track *get_track(struct kmem_cache *s, void *object, 494 enum track_item alloc) 495 { 496 struct track *p; 497 498 if (s->offset) 499 p = object + s->offset + sizeof(void *); 500 else 501 p = object + s->inuse; 502 503 return p + alloc; 504 } 505 506 static void set_track(struct kmem_cache *s, void *object, 507 enum track_item alloc, unsigned long addr) 508 { 509 struct track *p = get_track(s, object, alloc); 510 511 if (addr) { 512 #ifdef CONFIG_STACKTRACE 513 struct stack_trace trace; 514 int i; 515 516 trace.nr_entries = 0; 517 trace.max_entries = TRACK_ADDRS_COUNT; 518 trace.entries = p->addrs; 519 trace.skip = 3; 520 save_stack_trace(&trace); 521 522 /* See rant in lockdep.c */ 523 if (trace.nr_entries != 0 && 524 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 525 trace.nr_entries--; 526 527 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 528 p->addrs[i] = 0; 529 #endif 530 p->addr = addr; 531 p->cpu = smp_processor_id(); 532 p->pid = current->pid; 533 p->when = jiffies; 534 } else 535 memset(p, 0, sizeof(struct track)); 536 } 537 538 static void init_tracking(struct kmem_cache *s, void *object) 539 { 540 if (!(s->flags & SLAB_STORE_USER)) 541 return; 542 543 set_track(s, object, TRACK_FREE, 0UL); 544 set_track(s, object, TRACK_ALLOC, 0UL); 545 } 546 547 static void print_track(const char *s, struct track *t) 548 { 549 if (!t->addr) 550 return; 551 552 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 553 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 554 #ifdef CONFIG_STACKTRACE 555 { 556 int i; 557 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 558 if (t->addrs[i]) 559 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 560 else 561 break; 562 } 563 #endif 564 } 565 566 static void print_tracking(struct kmem_cache *s, void *object) 567 { 568 if (!(s->flags & SLAB_STORE_USER)) 569 return; 570 571 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 572 print_track("Freed", get_track(s, object, TRACK_FREE)); 573 } 574 575 static void print_page_info(struct page *page) 576 { 577 printk(KERN_ERR 578 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 579 page, page->objects, page->inuse, page->freelist, page->flags); 580 581 } 582 583 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 584 { 585 va_list args; 586 char buf[100]; 587 588 va_start(args, fmt); 589 vsnprintf(buf, sizeof(buf), fmt, args); 590 va_end(args); 591 printk(KERN_ERR "========================================" 592 "=====================================\n"); 593 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); 594 printk(KERN_ERR "----------------------------------------" 595 "-------------------------------------\n\n"); 596 597 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 598 } 599 600 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 601 { 602 va_list args; 603 char buf[100]; 604 605 va_start(args, fmt); 606 vsnprintf(buf, sizeof(buf), fmt, args); 607 va_end(args); 608 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 609 } 610 611 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 612 { 613 unsigned int off; /* Offset of last byte */ 614 u8 *addr = page_address(page); 615 616 print_tracking(s, p); 617 618 print_page_info(page); 619 620 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 621 p, p - addr, get_freepointer(s, p)); 622 623 if (p > addr + 16) 624 print_section("Bytes b4 ", p - 16, 16); 625 626 print_section("Object ", p, min_t(unsigned long, s->object_size, 627 PAGE_SIZE)); 628 if (s->flags & SLAB_RED_ZONE) 629 print_section("Redzone ", p + s->object_size, 630 s->inuse - s->object_size); 631 632 if (s->offset) 633 off = s->offset + sizeof(void *); 634 else 635 off = s->inuse; 636 637 if (s->flags & SLAB_STORE_USER) 638 off += 2 * sizeof(struct track); 639 640 if (off != s->size) 641 /* Beginning of the filler is the free pointer */ 642 print_section("Padding ", p + off, s->size - off); 643 644 dump_stack(); 645 } 646 647 static void object_err(struct kmem_cache *s, struct page *page, 648 u8 *object, char *reason) 649 { 650 slab_bug(s, "%s", reason); 651 print_trailer(s, page, object); 652 } 653 654 static void slab_err(struct kmem_cache *s, struct page *page, 655 const char *fmt, ...) 656 { 657 va_list args; 658 char buf[100]; 659 660 va_start(args, fmt); 661 vsnprintf(buf, sizeof(buf), fmt, args); 662 va_end(args); 663 slab_bug(s, "%s", buf); 664 print_page_info(page); 665 dump_stack(); 666 } 667 668 static void init_object(struct kmem_cache *s, void *object, u8 val) 669 { 670 u8 *p = object; 671 672 if (s->flags & __OBJECT_POISON) { 673 memset(p, POISON_FREE, s->object_size - 1); 674 p[s->object_size - 1] = POISON_END; 675 } 676 677 if (s->flags & SLAB_RED_ZONE) 678 memset(p + s->object_size, val, s->inuse - s->object_size); 679 } 680 681 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 682 void *from, void *to) 683 { 684 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 685 memset(from, data, to - from); 686 } 687 688 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 689 u8 *object, char *what, 690 u8 *start, unsigned int value, unsigned int bytes) 691 { 692 u8 *fault; 693 u8 *end; 694 695 fault = memchr_inv(start, value, bytes); 696 if (!fault) 697 return 1; 698 699 end = start + bytes; 700 while (end > fault && end[-1] == value) 701 end--; 702 703 slab_bug(s, "%s overwritten", what); 704 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 705 fault, end - 1, fault[0], value); 706 print_trailer(s, page, object); 707 708 restore_bytes(s, what, value, fault, end); 709 return 0; 710 } 711 712 /* 713 * Object layout: 714 * 715 * object address 716 * Bytes of the object to be managed. 717 * If the freepointer may overlay the object then the free 718 * pointer is the first word of the object. 719 * 720 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 721 * 0xa5 (POISON_END) 722 * 723 * object + s->object_size 724 * Padding to reach word boundary. This is also used for Redzoning. 725 * Padding is extended by another word if Redzoning is enabled and 726 * object_size == inuse. 727 * 728 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 729 * 0xcc (RED_ACTIVE) for objects in use. 730 * 731 * object + s->inuse 732 * Meta data starts here. 733 * 734 * A. Free pointer (if we cannot overwrite object on free) 735 * B. Tracking data for SLAB_STORE_USER 736 * C. Padding to reach required alignment boundary or at mininum 737 * one word if debugging is on to be able to detect writes 738 * before the word boundary. 739 * 740 * Padding is done using 0x5a (POISON_INUSE) 741 * 742 * object + s->size 743 * Nothing is used beyond s->size. 744 * 745 * If slabcaches are merged then the object_size and inuse boundaries are mostly 746 * ignored. And therefore no slab options that rely on these boundaries 747 * may be used with merged slabcaches. 748 */ 749 750 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 751 { 752 unsigned long off = s->inuse; /* The end of info */ 753 754 if (s->offset) 755 /* Freepointer is placed after the object. */ 756 off += sizeof(void *); 757 758 if (s->flags & SLAB_STORE_USER) 759 /* We also have user information there */ 760 off += 2 * sizeof(struct track); 761 762 if (s->size == off) 763 return 1; 764 765 return check_bytes_and_report(s, page, p, "Object padding", 766 p + off, POISON_INUSE, s->size - off); 767 } 768 769 /* Check the pad bytes at the end of a slab page */ 770 static int slab_pad_check(struct kmem_cache *s, struct page *page) 771 { 772 u8 *start; 773 u8 *fault; 774 u8 *end; 775 int length; 776 int remainder; 777 778 if (!(s->flags & SLAB_POISON)) 779 return 1; 780 781 start = page_address(page); 782 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 783 end = start + length; 784 remainder = length % s->size; 785 if (!remainder) 786 return 1; 787 788 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 789 if (!fault) 790 return 1; 791 while (end > fault && end[-1] == POISON_INUSE) 792 end--; 793 794 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 795 print_section("Padding ", end - remainder, remainder); 796 797 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 798 return 0; 799 } 800 801 static int check_object(struct kmem_cache *s, struct page *page, 802 void *object, u8 val) 803 { 804 u8 *p = object; 805 u8 *endobject = object + s->object_size; 806 807 if (s->flags & SLAB_RED_ZONE) { 808 if (!check_bytes_and_report(s, page, object, "Redzone", 809 endobject, val, s->inuse - s->object_size)) 810 return 0; 811 } else { 812 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 813 check_bytes_and_report(s, page, p, "Alignment padding", 814 endobject, POISON_INUSE, 815 s->inuse - s->object_size); 816 } 817 } 818 819 if (s->flags & SLAB_POISON) { 820 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 821 (!check_bytes_and_report(s, page, p, "Poison", p, 822 POISON_FREE, s->object_size - 1) || 823 !check_bytes_and_report(s, page, p, "Poison", 824 p + s->object_size - 1, POISON_END, 1))) 825 return 0; 826 /* 827 * check_pad_bytes cleans up on its own. 828 */ 829 check_pad_bytes(s, page, p); 830 } 831 832 if (!s->offset && val == SLUB_RED_ACTIVE) 833 /* 834 * Object and freepointer overlap. Cannot check 835 * freepointer while object is allocated. 836 */ 837 return 1; 838 839 /* Check free pointer validity */ 840 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 841 object_err(s, page, p, "Freepointer corrupt"); 842 /* 843 * No choice but to zap it and thus lose the remainder 844 * of the free objects in this slab. May cause 845 * another error because the object count is now wrong. 846 */ 847 set_freepointer(s, p, NULL); 848 return 0; 849 } 850 return 1; 851 } 852 853 static int check_slab(struct kmem_cache *s, struct page *page) 854 { 855 int maxobj; 856 857 VM_BUG_ON(!irqs_disabled()); 858 859 if (!PageSlab(page)) { 860 slab_err(s, page, "Not a valid slab page"); 861 return 0; 862 } 863 864 maxobj = order_objects(compound_order(page), s->size, s->reserved); 865 if (page->objects > maxobj) { 866 slab_err(s, page, "objects %u > max %u", 867 s->name, page->objects, maxobj); 868 return 0; 869 } 870 if (page->inuse > page->objects) { 871 slab_err(s, page, "inuse %u > max %u", 872 s->name, page->inuse, page->objects); 873 return 0; 874 } 875 /* Slab_pad_check fixes things up after itself */ 876 slab_pad_check(s, page); 877 return 1; 878 } 879 880 /* 881 * Determine if a certain object on a page is on the freelist. Must hold the 882 * slab lock to guarantee that the chains are in a consistent state. 883 */ 884 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 885 { 886 int nr = 0; 887 void *fp; 888 void *object = NULL; 889 unsigned long max_objects; 890 891 fp = page->freelist; 892 while (fp && nr <= page->objects) { 893 if (fp == search) 894 return 1; 895 if (!check_valid_pointer(s, page, fp)) { 896 if (object) { 897 object_err(s, page, object, 898 "Freechain corrupt"); 899 set_freepointer(s, object, NULL); 900 } else { 901 slab_err(s, page, "Freepointer corrupt"); 902 page->freelist = NULL; 903 page->inuse = page->objects; 904 slab_fix(s, "Freelist cleared"); 905 return 0; 906 } 907 break; 908 } 909 object = fp; 910 fp = get_freepointer(s, object); 911 nr++; 912 } 913 914 max_objects = order_objects(compound_order(page), s->size, s->reserved); 915 if (max_objects > MAX_OBJS_PER_PAGE) 916 max_objects = MAX_OBJS_PER_PAGE; 917 918 if (page->objects != max_objects) { 919 slab_err(s, page, "Wrong number of objects. Found %d but " 920 "should be %d", page->objects, max_objects); 921 page->objects = max_objects; 922 slab_fix(s, "Number of objects adjusted."); 923 } 924 if (page->inuse != page->objects - nr) { 925 slab_err(s, page, "Wrong object count. Counter is %d but " 926 "counted were %d", page->inuse, page->objects - nr); 927 page->inuse = page->objects - nr; 928 slab_fix(s, "Object count adjusted."); 929 } 930 return search == NULL; 931 } 932 933 static void trace(struct kmem_cache *s, struct page *page, void *object, 934 int alloc) 935 { 936 if (s->flags & SLAB_TRACE) { 937 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 938 s->name, 939 alloc ? "alloc" : "free", 940 object, page->inuse, 941 page->freelist); 942 943 if (!alloc) 944 print_section("Object ", (void *)object, 945 s->object_size); 946 947 dump_stack(); 948 } 949 } 950 951 /* 952 * Hooks for other subsystems that check memory allocations. In a typical 953 * production configuration these hooks all should produce no code at all. 954 */ 955 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 956 { 957 kmemleak_alloc(ptr, size, 1, flags); 958 } 959 960 static inline void kfree_hook(const void *x) 961 { 962 kmemleak_free(x); 963 } 964 965 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 966 { 967 flags &= gfp_allowed_mask; 968 lockdep_trace_alloc(flags); 969 might_sleep_if(flags & __GFP_WAIT); 970 971 return should_failslab(s->object_size, flags, s->flags); 972 } 973 974 static inline void slab_post_alloc_hook(struct kmem_cache *s, 975 gfp_t flags, void *object) 976 { 977 flags &= gfp_allowed_mask; 978 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 979 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 980 } 981 982 static inline void slab_free_hook(struct kmem_cache *s, void *x) 983 { 984 kmemleak_free_recursive(x, s->flags); 985 986 /* 987 * Trouble is that we may no longer disable interrupts in the fast path 988 * So in order to make the debug calls that expect irqs to be 989 * disabled we need to disable interrupts temporarily. 990 */ 991 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 992 { 993 unsigned long flags; 994 995 local_irq_save(flags); 996 kmemcheck_slab_free(s, x, s->object_size); 997 debug_check_no_locks_freed(x, s->object_size); 998 local_irq_restore(flags); 999 } 1000 #endif 1001 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1002 debug_check_no_obj_freed(x, s->object_size); 1003 } 1004 1005 /* 1006 * Tracking of fully allocated slabs for debugging purposes. 1007 */ 1008 static void add_full(struct kmem_cache *s, 1009 struct kmem_cache_node *n, struct page *page) 1010 { 1011 if (!(s->flags & SLAB_STORE_USER)) 1012 return; 1013 1014 lockdep_assert_held(&n->list_lock); 1015 list_add(&page->lru, &n->full); 1016 } 1017 1018 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1019 { 1020 if (!(s->flags & SLAB_STORE_USER)) 1021 return; 1022 1023 lockdep_assert_held(&n->list_lock); 1024 list_del(&page->lru); 1025 } 1026 1027 /* Tracking of the number of slabs for debugging purposes */ 1028 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1029 { 1030 struct kmem_cache_node *n = get_node(s, node); 1031 1032 return atomic_long_read(&n->nr_slabs); 1033 } 1034 1035 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1036 { 1037 return atomic_long_read(&n->nr_slabs); 1038 } 1039 1040 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1041 { 1042 struct kmem_cache_node *n = get_node(s, node); 1043 1044 /* 1045 * May be called early in order to allocate a slab for the 1046 * kmem_cache_node structure. Solve the chicken-egg 1047 * dilemma by deferring the increment of the count during 1048 * bootstrap (see early_kmem_cache_node_alloc). 1049 */ 1050 if (likely(n)) { 1051 atomic_long_inc(&n->nr_slabs); 1052 atomic_long_add(objects, &n->total_objects); 1053 } 1054 } 1055 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1056 { 1057 struct kmem_cache_node *n = get_node(s, node); 1058 1059 atomic_long_dec(&n->nr_slabs); 1060 atomic_long_sub(objects, &n->total_objects); 1061 } 1062 1063 /* Object debug checks for alloc/free paths */ 1064 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1065 void *object) 1066 { 1067 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1068 return; 1069 1070 init_object(s, object, SLUB_RED_INACTIVE); 1071 init_tracking(s, object); 1072 } 1073 1074 static noinline int alloc_debug_processing(struct kmem_cache *s, 1075 struct page *page, 1076 void *object, unsigned long addr) 1077 { 1078 if (!check_slab(s, page)) 1079 goto bad; 1080 1081 if (!check_valid_pointer(s, page, object)) { 1082 object_err(s, page, object, "Freelist Pointer check fails"); 1083 goto bad; 1084 } 1085 1086 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1087 goto bad; 1088 1089 /* Success perform special debug activities for allocs */ 1090 if (s->flags & SLAB_STORE_USER) 1091 set_track(s, object, TRACK_ALLOC, addr); 1092 trace(s, page, object, 1); 1093 init_object(s, object, SLUB_RED_ACTIVE); 1094 return 1; 1095 1096 bad: 1097 if (PageSlab(page)) { 1098 /* 1099 * If this is a slab page then lets do the best we can 1100 * to avoid issues in the future. Marking all objects 1101 * as used avoids touching the remaining objects. 1102 */ 1103 slab_fix(s, "Marking all objects used"); 1104 page->inuse = page->objects; 1105 page->freelist = NULL; 1106 } 1107 return 0; 1108 } 1109 1110 static noinline struct kmem_cache_node *free_debug_processing( 1111 struct kmem_cache *s, struct page *page, void *object, 1112 unsigned long addr, unsigned long *flags) 1113 { 1114 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1115 1116 spin_lock_irqsave(&n->list_lock, *flags); 1117 slab_lock(page); 1118 1119 if (!check_slab(s, page)) 1120 goto fail; 1121 1122 if (!check_valid_pointer(s, page, object)) { 1123 slab_err(s, page, "Invalid object pointer 0x%p", object); 1124 goto fail; 1125 } 1126 1127 if (on_freelist(s, page, object)) { 1128 object_err(s, page, object, "Object already free"); 1129 goto fail; 1130 } 1131 1132 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1133 goto out; 1134 1135 if (unlikely(s != page->slab_cache)) { 1136 if (!PageSlab(page)) { 1137 slab_err(s, page, "Attempt to free object(0x%p) " 1138 "outside of slab", object); 1139 } else if (!page->slab_cache) { 1140 printk(KERN_ERR 1141 "SLUB <none>: no slab for object 0x%p.\n", 1142 object); 1143 dump_stack(); 1144 } else 1145 object_err(s, page, object, 1146 "page slab pointer corrupt."); 1147 goto fail; 1148 } 1149 1150 if (s->flags & SLAB_STORE_USER) 1151 set_track(s, object, TRACK_FREE, addr); 1152 trace(s, page, object, 0); 1153 init_object(s, object, SLUB_RED_INACTIVE); 1154 out: 1155 slab_unlock(page); 1156 /* 1157 * Keep node_lock to preserve integrity 1158 * until the object is actually freed 1159 */ 1160 return n; 1161 1162 fail: 1163 slab_unlock(page); 1164 spin_unlock_irqrestore(&n->list_lock, *flags); 1165 slab_fix(s, "Object at 0x%p not freed", object); 1166 return NULL; 1167 } 1168 1169 static int __init setup_slub_debug(char *str) 1170 { 1171 slub_debug = DEBUG_DEFAULT_FLAGS; 1172 if (*str++ != '=' || !*str) 1173 /* 1174 * No options specified. Switch on full debugging. 1175 */ 1176 goto out; 1177 1178 if (*str == ',') 1179 /* 1180 * No options but restriction on slabs. This means full 1181 * debugging for slabs matching a pattern. 1182 */ 1183 goto check_slabs; 1184 1185 if (tolower(*str) == 'o') { 1186 /* 1187 * Avoid enabling debugging on caches if its minimum order 1188 * would increase as a result. 1189 */ 1190 disable_higher_order_debug = 1; 1191 goto out; 1192 } 1193 1194 slub_debug = 0; 1195 if (*str == '-') 1196 /* 1197 * Switch off all debugging measures. 1198 */ 1199 goto out; 1200 1201 /* 1202 * Determine which debug features should be switched on 1203 */ 1204 for (; *str && *str != ','; str++) { 1205 switch (tolower(*str)) { 1206 case 'f': 1207 slub_debug |= SLAB_DEBUG_FREE; 1208 break; 1209 case 'z': 1210 slub_debug |= SLAB_RED_ZONE; 1211 break; 1212 case 'p': 1213 slub_debug |= SLAB_POISON; 1214 break; 1215 case 'u': 1216 slub_debug |= SLAB_STORE_USER; 1217 break; 1218 case 't': 1219 slub_debug |= SLAB_TRACE; 1220 break; 1221 case 'a': 1222 slub_debug |= SLAB_FAILSLAB; 1223 break; 1224 default: 1225 printk(KERN_ERR "slub_debug option '%c' " 1226 "unknown. skipped\n", *str); 1227 } 1228 } 1229 1230 check_slabs: 1231 if (*str == ',') 1232 slub_debug_slabs = str + 1; 1233 out: 1234 return 1; 1235 } 1236 1237 __setup("slub_debug", setup_slub_debug); 1238 1239 static unsigned long kmem_cache_flags(unsigned long object_size, 1240 unsigned long flags, const char *name, 1241 void (*ctor)(void *)) 1242 { 1243 /* 1244 * Enable debugging if selected on the kernel commandline. 1245 */ 1246 if (slub_debug && (!slub_debug_slabs || (name && 1247 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1248 flags |= slub_debug; 1249 1250 return flags; 1251 } 1252 #else 1253 static inline void setup_object_debug(struct kmem_cache *s, 1254 struct page *page, void *object) {} 1255 1256 static inline int alloc_debug_processing(struct kmem_cache *s, 1257 struct page *page, void *object, unsigned long addr) { return 0; } 1258 1259 static inline struct kmem_cache_node *free_debug_processing( 1260 struct kmem_cache *s, struct page *page, void *object, 1261 unsigned long addr, unsigned long *flags) { return NULL; } 1262 1263 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1264 { return 1; } 1265 static inline int check_object(struct kmem_cache *s, struct page *page, 1266 void *object, u8 val) { return 1; } 1267 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1268 struct page *page) {} 1269 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1270 struct page *page) {} 1271 static inline unsigned long kmem_cache_flags(unsigned long object_size, 1272 unsigned long flags, const char *name, 1273 void (*ctor)(void *)) 1274 { 1275 return flags; 1276 } 1277 #define slub_debug 0 1278 1279 #define disable_higher_order_debug 0 1280 1281 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1282 { return 0; } 1283 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1284 { return 0; } 1285 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1286 int objects) {} 1287 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1288 int objects) {} 1289 1290 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1291 { 1292 kmemleak_alloc(ptr, size, 1, flags); 1293 } 1294 1295 static inline void kfree_hook(const void *x) 1296 { 1297 kmemleak_free(x); 1298 } 1299 1300 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1301 { return 0; } 1302 1303 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1304 void *object) 1305 { 1306 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, 1307 flags & gfp_allowed_mask); 1308 } 1309 1310 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1311 { 1312 kmemleak_free_recursive(x, s->flags); 1313 } 1314 1315 #endif /* CONFIG_SLUB_DEBUG */ 1316 1317 /* 1318 * Slab allocation and freeing 1319 */ 1320 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1321 struct kmem_cache_order_objects oo) 1322 { 1323 int order = oo_order(oo); 1324 1325 flags |= __GFP_NOTRACK; 1326 1327 if (node == NUMA_NO_NODE) 1328 return alloc_pages(flags, order); 1329 else 1330 return alloc_pages_exact_node(node, flags, order); 1331 } 1332 1333 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1334 { 1335 struct page *page; 1336 struct kmem_cache_order_objects oo = s->oo; 1337 gfp_t alloc_gfp; 1338 1339 flags &= gfp_allowed_mask; 1340 1341 if (flags & __GFP_WAIT) 1342 local_irq_enable(); 1343 1344 flags |= s->allocflags; 1345 1346 /* 1347 * Let the initial higher-order allocation fail under memory pressure 1348 * so we fall-back to the minimum order allocation. 1349 */ 1350 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1351 1352 page = alloc_slab_page(alloc_gfp, node, oo); 1353 if (unlikely(!page)) { 1354 oo = s->min; 1355 alloc_gfp = flags; 1356 /* 1357 * Allocation may have failed due to fragmentation. 1358 * Try a lower order alloc if possible 1359 */ 1360 page = alloc_slab_page(alloc_gfp, node, oo); 1361 1362 if (page) 1363 stat(s, ORDER_FALLBACK); 1364 } 1365 1366 if (kmemcheck_enabled && page 1367 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1368 int pages = 1 << oo_order(oo); 1369 1370 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1371 1372 /* 1373 * Objects from caches that have a constructor don't get 1374 * cleared when they're allocated, so we need to do it here. 1375 */ 1376 if (s->ctor) 1377 kmemcheck_mark_uninitialized_pages(page, pages); 1378 else 1379 kmemcheck_mark_unallocated_pages(page, pages); 1380 } 1381 1382 if (flags & __GFP_WAIT) 1383 local_irq_disable(); 1384 if (!page) 1385 return NULL; 1386 1387 page->objects = oo_objects(oo); 1388 mod_zone_page_state(page_zone(page), 1389 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1390 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1391 1 << oo_order(oo)); 1392 1393 return page; 1394 } 1395 1396 static void setup_object(struct kmem_cache *s, struct page *page, 1397 void *object) 1398 { 1399 setup_object_debug(s, page, object); 1400 if (unlikely(s->ctor)) 1401 s->ctor(object); 1402 } 1403 1404 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1405 { 1406 struct page *page; 1407 void *start; 1408 void *last; 1409 void *p; 1410 int order; 1411 1412 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1413 1414 page = allocate_slab(s, 1415 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1416 if (!page) 1417 goto out; 1418 1419 order = compound_order(page); 1420 inc_slabs_node(s, page_to_nid(page), page->objects); 1421 memcg_bind_pages(s, order); 1422 page->slab_cache = s; 1423 __SetPageSlab(page); 1424 if (page->pfmemalloc) 1425 SetPageSlabPfmemalloc(page); 1426 1427 start = page_address(page); 1428 1429 if (unlikely(s->flags & SLAB_POISON)) 1430 memset(start, POISON_INUSE, PAGE_SIZE << order); 1431 1432 last = start; 1433 for_each_object(p, s, start, page->objects) { 1434 setup_object(s, page, last); 1435 set_freepointer(s, last, p); 1436 last = p; 1437 } 1438 setup_object(s, page, last); 1439 set_freepointer(s, last, NULL); 1440 1441 page->freelist = start; 1442 page->inuse = page->objects; 1443 page->frozen = 1; 1444 out: 1445 return page; 1446 } 1447 1448 static void __free_slab(struct kmem_cache *s, struct page *page) 1449 { 1450 int order = compound_order(page); 1451 int pages = 1 << order; 1452 1453 if (kmem_cache_debug(s)) { 1454 void *p; 1455 1456 slab_pad_check(s, page); 1457 for_each_object(p, s, page_address(page), 1458 page->objects) 1459 check_object(s, page, p, SLUB_RED_INACTIVE); 1460 } 1461 1462 kmemcheck_free_shadow(page, compound_order(page)); 1463 1464 mod_zone_page_state(page_zone(page), 1465 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1466 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1467 -pages); 1468 1469 __ClearPageSlabPfmemalloc(page); 1470 __ClearPageSlab(page); 1471 1472 memcg_release_pages(s, order); 1473 page_mapcount_reset(page); 1474 if (current->reclaim_state) 1475 current->reclaim_state->reclaimed_slab += pages; 1476 __free_memcg_kmem_pages(page, order); 1477 } 1478 1479 #define need_reserve_slab_rcu \ 1480 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1481 1482 static void rcu_free_slab(struct rcu_head *h) 1483 { 1484 struct page *page; 1485 1486 if (need_reserve_slab_rcu) 1487 page = virt_to_head_page(h); 1488 else 1489 page = container_of((struct list_head *)h, struct page, lru); 1490 1491 __free_slab(page->slab_cache, page); 1492 } 1493 1494 static void free_slab(struct kmem_cache *s, struct page *page) 1495 { 1496 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1497 struct rcu_head *head; 1498 1499 if (need_reserve_slab_rcu) { 1500 int order = compound_order(page); 1501 int offset = (PAGE_SIZE << order) - s->reserved; 1502 1503 VM_BUG_ON(s->reserved != sizeof(*head)); 1504 head = page_address(page) + offset; 1505 } else { 1506 /* 1507 * RCU free overloads the RCU head over the LRU 1508 */ 1509 head = (void *)&page->lru; 1510 } 1511 1512 call_rcu(head, rcu_free_slab); 1513 } else 1514 __free_slab(s, page); 1515 } 1516 1517 static void discard_slab(struct kmem_cache *s, struct page *page) 1518 { 1519 dec_slabs_node(s, page_to_nid(page), page->objects); 1520 free_slab(s, page); 1521 } 1522 1523 /* 1524 * Management of partially allocated slabs. 1525 */ 1526 static inline void 1527 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1528 { 1529 n->nr_partial++; 1530 if (tail == DEACTIVATE_TO_TAIL) 1531 list_add_tail(&page->lru, &n->partial); 1532 else 1533 list_add(&page->lru, &n->partial); 1534 } 1535 1536 static inline void add_partial(struct kmem_cache_node *n, 1537 struct page *page, int tail) 1538 { 1539 lockdep_assert_held(&n->list_lock); 1540 __add_partial(n, page, tail); 1541 } 1542 1543 static inline void 1544 __remove_partial(struct kmem_cache_node *n, struct page *page) 1545 { 1546 list_del(&page->lru); 1547 n->nr_partial--; 1548 } 1549 1550 static inline void remove_partial(struct kmem_cache_node *n, 1551 struct page *page) 1552 { 1553 lockdep_assert_held(&n->list_lock); 1554 __remove_partial(n, page); 1555 } 1556 1557 /* 1558 * Remove slab from the partial list, freeze it and 1559 * return the pointer to the freelist. 1560 * 1561 * Returns a list of objects or NULL if it fails. 1562 */ 1563 static inline void *acquire_slab(struct kmem_cache *s, 1564 struct kmem_cache_node *n, struct page *page, 1565 int mode, int *objects) 1566 { 1567 void *freelist; 1568 unsigned long counters; 1569 struct page new; 1570 1571 lockdep_assert_held(&n->list_lock); 1572 1573 /* 1574 * Zap the freelist and set the frozen bit. 1575 * The old freelist is the list of objects for the 1576 * per cpu allocation list. 1577 */ 1578 freelist = page->freelist; 1579 counters = page->counters; 1580 new.counters = counters; 1581 *objects = new.objects - new.inuse; 1582 if (mode) { 1583 new.inuse = page->objects; 1584 new.freelist = NULL; 1585 } else { 1586 new.freelist = freelist; 1587 } 1588 1589 VM_BUG_ON(new.frozen); 1590 new.frozen = 1; 1591 1592 if (!__cmpxchg_double_slab(s, page, 1593 freelist, counters, 1594 new.freelist, new.counters, 1595 "acquire_slab")) 1596 return NULL; 1597 1598 remove_partial(n, page); 1599 WARN_ON(!freelist); 1600 return freelist; 1601 } 1602 1603 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1604 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1605 1606 /* 1607 * Try to allocate a partial slab from a specific node. 1608 */ 1609 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1610 struct kmem_cache_cpu *c, gfp_t flags) 1611 { 1612 struct page *page, *page2; 1613 void *object = NULL; 1614 int available = 0; 1615 int objects; 1616 1617 /* 1618 * Racy check. If we mistakenly see no partial slabs then we 1619 * just allocate an empty slab. If we mistakenly try to get a 1620 * partial slab and there is none available then get_partials() 1621 * will return NULL. 1622 */ 1623 if (!n || !n->nr_partial) 1624 return NULL; 1625 1626 spin_lock(&n->list_lock); 1627 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1628 void *t; 1629 1630 if (!pfmemalloc_match(page, flags)) 1631 continue; 1632 1633 t = acquire_slab(s, n, page, object == NULL, &objects); 1634 if (!t) 1635 break; 1636 1637 available += objects; 1638 if (!object) { 1639 c->page = page; 1640 stat(s, ALLOC_FROM_PARTIAL); 1641 object = t; 1642 } else { 1643 put_cpu_partial(s, page, 0); 1644 stat(s, CPU_PARTIAL_NODE); 1645 } 1646 if (!kmem_cache_has_cpu_partial(s) 1647 || available > s->cpu_partial / 2) 1648 break; 1649 1650 } 1651 spin_unlock(&n->list_lock); 1652 return object; 1653 } 1654 1655 /* 1656 * Get a page from somewhere. Search in increasing NUMA distances. 1657 */ 1658 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1659 struct kmem_cache_cpu *c) 1660 { 1661 #ifdef CONFIG_NUMA 1662 struct zonelist *zonelist; 1663 struct zoneref *z; 1664 struct zone *zone; 1665 enum zone_type high_zoneidx = gfp_zone(flags); 1666 void *object; 1667 unsigned int cpuset_mems_cookie; 1668 1669 /* 1670 * The defrag ratio allows a configuration of the tradeoffs between 1671 * inter node defragmentation and node local allocations. A lower 1672 * defrag_ratio increases the tendency to do local allocations 1673 * instead of attempting to obtain partial slabs from other nodes. 1674 * 1675 * If the defrag_ratio is set to 0 then kmalloc() always 1676 * returns node local objects. If the ratio is higher then kmalloc() 1677 * may return off node objects because partial slabs are obtained 1678 * from other nodes and filled up. 1679 * 1680 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1681 * defrag_ratio = 1000) then every (well almost) allocation will 1682 * first attempt to defrag slab caches on other nodes. This means 1683 * scanning over all nodes to look for partial slabs which may be 1684 * expensive if we do it every time we are trying to find a slab 1685 * with available objects. 1686 */ 1687 if (!s->remote_node_defrag_ratio || 1688 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1689 return NULL; 1690 1691 do { 1692 cpuset_mems_cookie = read_mems_allowed_begin(); 1693 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1694 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1695 struct kmem_cache_node *n; 1696 1697 n = get_node(s, zone_to_nid(zone)); 1698 1699 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1700 n->nr_partial > s->min_partial) { 1701 object = get_partial_node(s, n, c, flags); 1702 if (object) { 1703 /* 1704 * Don't check read_mems_allowed_retry() 1705 * here - if mems_allowed was updated in 1706 * parallel, that was a harmless race 1707 * between allocation and the cpuset 1708 * update 1709 */ 1710 return object; 1711 } 1712 } 1713 } 1714 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1715 #endif 1716 return NULL; 1717 } 1718 1719 /* 1720 * Get a partial page, lock it and return it. 1721 */ 1722 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1723 struct kmem_cache_cpu *c) 1724 { 1725 void *object; 1726 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1727 1728 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1729 if (object || node != NUMA_NO_NODE) 1730 return object; 1731 1732 return get_any_partial(s, flags, c); 1733 } 1734 1735 #ifdef CONFIG_PREEMPT 1736 /* 1737 * Calculate the next globally unique transaction for disambiguiation 1738 * during cmpxchg. The transactions start with the cpu number and are then 1739 * incremented by CONFIG_NR_CPUS. 1740 */ 1741 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1742 #else 1743 /* 1744 * No preemption supported therefore also no need to check for 1745 * different cpus. 1746 */ 1747 #define TID_STEP 1 1748 #endif 1749 1750 static inline unsigned long next_tid(unsigned long tid) 1751 { 1752 return tid + TID_STEP; 1753 } 1754 1755 static inline unsigned int tid_to_cpu(unsigned long tid) 1756 { 1757 return tid % TID_STEP; 1758 } 1759 1760 static inline unsigned long tid_to_event(unsigned long tid) 1761 { 1762 return tid / TID_STEP; 1763 } 1764 1765 static inline unsigned int init_tid(int cpu) 1766 { 1767 return cpu; 1768 } 1769 1770 static inline void note_cmpxchg_failure(const char *n, 1771 const struct kmem_cache *s, unsigned long tid) 1772 { 1773 #ifdef SLUB_DEBUG_CMPXCHG 1774 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1775 1776 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1777 1778 #ifdef CONFIG_PREEMPT 1779 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1780 printk("due to cpu change %d -> %d\n", 1781 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1782 else 1783 #endif 1784 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1785 printk("due to cpu running other code. Event %ld->%ld\n", 1786 tid_to_event(tid), tid_to_event(actual_tid)); 1787 else 1788 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1789 actual_tid, tid, next_tid(tid)); 1790 #endif 1791 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1792 } 1793 1794 static void init_kmem_cache_cpus(struct kmem_cache *s) 1795 { 1796 int cpu; 1797 1798 for_each_possible_cpu(cpu) 1799 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1800 } 1801 1802 /* 1803 * Remove the cpu slab 1804 */ 1805 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1806 void *freelist) 1807 { 1808 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1809 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1810 int lock = 0; 1811 enum slab_modes l = M_NONE, m = M_NONE; 1812 void *nextfree; 1813 int tail = DEACTIVATE_TO_HEAD; 1814 struct page new; 1815 struct page old; 1816 1817 if (page->freelist) { 1818 stat(s, DEACTIVATE_REMOTE_FREES); 1819 tail = DEACTIVATE_TO_TAIL; 1820 } 1821 1822 /* 1823 * Stage one: Free all available per cpu objects back 1824 * to the page freelist while it is still frozen. Leave the 1825 * last one. 1826 * 1827 * There is no need to take the list->lock because the page 1828 * is still frozen. 1829 */ 1830 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1831 void *prior; 1832 unsigned long counters; 1833 1834 do { 1835 prior = page->freelist; 1836 counters = page->counters; 1837 set_freepointer(s, freelist, prior); 1838 new.counters = counters; 1839 new.inuse--; 1840 VM_BUG_ON(!new.frozen); 1841 1842 } while (!__cmpxchg_double_slab(s, page, 1843 prior, counters, 1844 freelist, new.counters, 1845 "drain percpu freelist")); 1846 1847 freelist = nextfree; 1848 } 1849 1850 /* 1851 * Stage two: Ensure that the page is unfrozen while the 1852 * list presence reflects the actual number of objects 1853 * during unfreeze. 1854 * 1855 * We setup the list membership and then perform a cmpxchg 1856 * with the count. If there is a mismatch then the page 1857 * is not unfrozen but the page is on the wrong list. 1858 * 1859 * Then we restart the process which may have to remove 1860 * the page from the list that we just put it on again 1861 * because the number of objects in the slab may have 1862 * changed. 1863 */ 1864 redo: 1865 1866 old.freelist = page->freelist; 1867 old.counters = page->counters; 1868 VM_BUG_ON(!old.frozen); 1869 1870 /* Determine target state of the slab */ 1871 new.counters = old.counters; 1872 if (freelist) { 1873 new.inuse--; 1874 set_freepointer(s, freelist, old.freelist); 1875 new.freelist = freelist; 1876 } else 1877 new.freelist = old.freelist; 1878 1879 new.frozen = 0; 1880 1881 if (!new.inuse && n->nr_partial > s->min_partial) 1882 m = M_FREE; 1883 else if (new.freelist) { 1884 m = M_PARTIAL; 1885 if (!lock) { 1886 lock = 1; 1887 /* 1888 * Taking the spinlock removes the possiblity 1889 * that acquire_slab() will see a slab page that 1890 * is frozen 1891 */ 1892 spin_lock(&n->list_lock); 1893 } 1894 } else { 1895 m = M_FULL; 1896 if (kmem_cache_debug(s) && !lock) { 1897 lock = 1; 1898 /* 1899 * This also ensures that the scanning of full 1900 * slabs from diagnostic functions will not see 1901 * any frozen slabs. 1902 */ 1903 spin_lock(&n->list_lock); 1904 } 1905 } 1906 1907 if (l != m) { 1908 1909 if (l == M_PARTIAL) 1910 1911 remove_partial(n, page); 1912 1913 else if (l == M_FULL) 1914 1915 remove_full(s, n, page); 1916 1917 if (m == M_PARTIAL) { 1918 1919 add_partial(n, page, tail); 1920 stat(s, tail); 1921 1922 } else if (m == M_FULL) { 1923 1924 stat(s, DEACTIVATE_FULL); 1925 add_full(s, n, page); 1926 1927 } 1928 } 1929 1930 l = m; 1931 if (!__cmpxchg_double_slab(s, page, 1932 old.freelist, old.counters, 1933 new.freelist, new.counters, 1934 "unfreezing slab")) 1935 goto redo; 1936 1937 if (lock) 1938 spin_unlock(&n->list_lock); 1939 1940 if (m == M_FREE) { 1941 stat(s, DEACTIVATE_EMPTY); 1942 discard_slab(s, page); 1943 stat(s, FREE_SLAB); 1944 } 1945 } 1946 1947 /* 1948 * Unfreeze all the cpu partial slabs. 1949 * 1950 * This function must be called with interrupts disabled 1951 * for the cpu using c (or some other guarantee must be there 1952 * to guarantee no concurrent accesses). 1953 */ 1954 static void unfreeze_partials(struct kmem_cache *s, 1955 struct kmem_cache_cpu *c) 1956 { 1957 #ifdef CONFIG_SLUB_CPU_PARTIAL 1958 struct kmem_cache_node *n = NULL, *n2 = NULL; 1959 struct page *page, *discard_page = NULL; 1960 1961 while ((page = c->partial)) { 1962 struct page new; 1963 struct page old; 1964 1965 c->partial = page->next; 1966 1967 n2 = get_node(s, page_to_nid(page)); 1968 if (n != n2) { 1969 if (n) 1970 spin_unlock(&n->list_lock); 1971 1972 n = n2; 1973 spin_lock(&n->list_lock); 1974 } 1975 1976 do { 1977 1978 old.freelist = page->freelist; 1979 old.counters = page->counters; 1980 VM_BUG_ON(!old.frozen); 1981 1982 new.counters = old.counters; 1983 new.freelist = old.freelist; 1984 1985 new.frozen = 0; 1986 1987 } while (!__cmpxchg_double_slab(s, page, 1988 old.freelist, old.counters, 1989 new.freelist, new.counters, 1990 "unfreezing slab")); 1991 1992 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { 1993 page->next = discard_page; 1994 discard_page = page; 1995 } else { 1996 add_partial(n, page, DEACTIVATE_TO_TAIL); 1997 stat(s, FREE_ADD_PARTIAL); 1998 } 1999 } 2000 2001 if (n) 2002 spin_unlock(&n->list_lock); 2003 2004 while (discard_page) { 2005 page = discard_page; 2006 discard_page = discard_page->next; 2007 2008 stat(s, DEACTIVATE_EMPTY); 2009 discard_slab(s, page); 2010 stat(s, FREE_SLAB); 2011 } 2012 #endif 2013 } 2014 2015 /* 2016 * Put a page that was just frozen (in __slab_free) into a partial page 2017 * slot if available. This is done without interrupts disabled and without 2018 * preemption disabled. The cmpxchg is racy and may put the partial page 2019 * onto a random cpus partial slot. 2020 * 2021 * If we did not find a slot then simply move all the partials to the 2022 * per node partial list. 2023 */ 2024 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2025 { 2026 #ifdef CONFIG_SLUB_CPU_PARTIAL 2027 struct page *oldpage; 2028 int pages; 2029 int pobjects; 2030 2031 do { 2032 pages = 0; 2033 pobjects = 0; 2034 oldpage = this_cpu_read(s->cpu_slab->partial); 2035 2036 if (oldpage) { 2037 pobjects = oldpage->pobjects; 2038 pages = oldpage->pages; 2039 if (drain && pobjects > s->cpu_partial) { 2040 unsigned long flags; 2041 /* 2042 * partial array is full. Move the existing 2043 * set to the per node partial list. 2044 */ 2045 local_irq_save(flags); 2046 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2047 local_irq_restore(flags); 2048 oldpage = NULL; 2049 pobjects = 0; 2050 pages = 0; 2051 stat(s, CPU_PARTIAL_DRAIN); 2052 } 2053 } 2054 2055 pages++; 2056 pobjects += page->objects - page->inuse; 2057 2058 page->pages = pages; 2059 page->pobjects = pobjects; 2060 page->next = oldpage; 2061 2062 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2063 != oldpage); 2064 #endif 2065 } 2066 2067 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2068 { 2069 stat(s, CPUSLAB_FLUSH); 2070 deactivate_slab(s, c->page, c->freelist); 2071 2072 c->tid = next_tid(c->tid); 2073 c->page = NULL; 2074 c->freelist = NULL; 2075 } 2076 2077 /* 2078 * Flush cpu slab. 2079 * 2080 * Called from IPI handler with interrupts disabled. 2081 */ 2082 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2083 { 2084 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2085 2086 if (likely(c)) { 2087 if (c->page) 2088 flush_slab(s, c); 2089 2090 unfreeze_partials(s, c); 2091 } 2092 } 2093 2094 static void flush_cpu_slab(void *d) 2095 { 2096 struct kmem_cache *s = d; 2097 2098 __flush_cpu_slab(s, smp_processor_id()); 2099 } 2100 2101 static bool has_cpu_slab(int cpu, void *info) 2102 { 2103 struct kmem_cache *s = info; 2104 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2105 2106 return c->page || c->partial; 2107 } 2108 2109 static void flush_all(struct kmem_cache *s) 2110 { 2111 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2112 } 2113 2114 /* 2115 * Check if the objects in a per cpu structure fit numa 2116 * locality expectations. 2117 */ 2118 static inline int node_match(struct page *page, int node) 2119 { 2120 #ifdef CONFIG_NUMA 2121 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2122 return 0; 2123 #endif 2124 return 1; 2125 } 2126 2127 static int count_free(struct page *page) 2128 { 2129 return page->objects - page->inuse; 2130 } 2131 2132 static unsigned long count_partial(struct kmem_cache_node *n, 2133 int (*get_count)(struct page *)) 2134 { 2135 unsigned long flags; 2136 unsigned long x = 0; 2137 struct page *page; 2138 2139 spin_lock_irqsave(&n->list_lock, flags); 2140 list_for_each_entry(page, &n->partial, lru) 2141 x += get_count(page); 2142 spin_unlock_irqrestore(&n->list_lock, flags); 2143 return x; 2144 } 2145 2146 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2147 { 2148 #ifdef CONFIG_SLUB_DEBUG 2149 return atomic_long_read(&n->total_objects); 2150 #else 2151 return 0; 2152 #endif 2153 } 2154 2155 static noinline void 2156 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2157 { 2158 int node; 2159 2160 printk(KERN_WARNING 2161 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2162 nid, gfpflags); 2163 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2164 "default order: %d, min order: %d\n", s->name, s->object_size, 2165 s->size, oo_order(s->oo), oo_order(s->min)); 2166 2167 if (oo_order(s->min) > get_order(s->object_size)) 2168 printk(KERN_WARNING " %s debugging increased min order, use " 2169 "slub_debug=O to disable.\n", s->name); 2170 2171 for_each_online_node(node) { 2172 struct kmem_cache_node *n = get_node(s, node); 2173 unsigned long nr_slabs; 2174 unsigned long nr_objs; 2175 unsigned long nr_free; 2176 2177 if (!n) 2178 continue; 2179 2180 nr_free = count_partial(n, count_free); 2181 nr_slabs = node_nr_slabs(n); 2182 nr_objs = node_nr_objs(n); 2183 2184 printk(KERN_WARNING 2185 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2186 node, nr_slabs, nr_objs, nr_free); 2187 } 2188 } 2189 2190 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2191 int node, struct kmem_cache_cpu **pc) 2192 { 2193 void *freelist; 2194 struct kmem_cache_cpu *c = *pc; 2195 struct page *page; 2196 2197 freelist = get_partial(s, flags, node, c); 2198 2199 if (freelist) 2200 return freelist; 2201 2202 page = new_slab(s, flags, node); 2203 if (page) { 2204 c = __this_cpu_ptr(s->cpu_slab); 2205 if (c->page) 2206 flush_slab(s, c); 2207 2208 /* 2209 * No other reference to the page yet so we can 2210 * muck around with it freely without cmpxchg 2211 */ 2212 freelist = page->freelist; 2213 page->freelist = NULL; 2214 2215 stat(s, ALLOC_SLAB); 2216 c->page = page; 2217 *pc = c; 2218 } else 2219 freelist = NULL; 2220 2221 return freelist; 2222 } 2223 2224 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2225 { 2226 if (unlikely(PageSlabPfmemalloc(page))) 2227 return gfp_pfmemalloc_allowed(gfpflags); 2228 2229 return true; 2230 } 2231 2232 /* 2233 * Check the page->freelist of a page and either transfer the freelist to the 2234 * per cpu freelist or deactivate the page. 2235 * 2236 * The page is still frozen if the return value is not NULL. 2237 * 2238 * If this function returns NULL then the page has been unfrozen. 2239 * 2240 * This function must be called with interrupt disabled. 2241 */ 2242 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2243 { 2244 struct page new; 2245 unsigned long counters; 2246 void *freelist; 2247 2248 do { 2249 freelist = page->freelist; 2250 counters = page->counters; 2251 2252 new.counters = counters; 2253 VM_BUG_ON(!new.frozen); 2254 2255 new.inuse = page->objects; 2256 new.frozen = freelist != NULL; 2257 2258 } while (!__cmpxchg_double_slab(s, page, 2259 freelist, counters, 2260 NULL, new.counters, 2261 "get_freelist")); 2262 2263 return freelist; 2264 } 2265 2266 /* 2267 * Slow path. The lockless freelist is empty or we need to perform 2268 * debugging duties. 2269 * 2270 * Processing is still very fast if new objects have been freed to the 2271 * regular freelist. In that case we simply take over the regular freelist 2272 * as the lockless freelist and zap the regular freelist. 2273 * 2274 * If that is not working then we fall back to the partial lists. We take the 2275 * first element of the freelist as the object to allocate now and move the 2276 * rest of the freelist to the lockless freelist. 2277 * 2278 * And if we were unable to get a new slab from the partial slab lists then 2279 * we need to allocate a new slab. This is the slowest path since it involves 2280 * a call to the page allocator and the setup of a new slab. 2281 */ 2282 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2283 unsigned long addr, struct kmem_cache_cpu *c) 2284 { 2285 void *freelist; 2286 struct page *page; 2287 unsigned long flags; 2288 2289 local_irq_save(flags); 2290 #ifdef CONFIG_PREEMPT 2291 /* 2292 * We may have been preempted and rescheduled on a different 2293 * cpu before disabling interrupts. Need to reload cpu area 2294 * pointer. 2295 */ 2296 c = this_cpu_ptr(s->cpu_slab); 2297 #endif 2298 2299 page = c->page; 2300 if (!page) 2301 goto new_slab; 2302 redo: 2303 2304 if (unlikely(!node_match(page, node))) { 2305 stat(s, ALLOC_NODE_MISMATCH); 2306 deactivate_slab(s, page, c->freelist); 2307 c->page = NULL; 2308 c->freelist = NULL; 2309 goto new_slab; 2310 } 2311 2312 /* 2313 * By rights, we should be searching for a slab page that was 2314 * PFMEMALLOC but right now, we are losing the pfmemalloc 2315 * information when the page leaves the per-cpu allocator 2316 */ 2317 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2318 deactivate_slab(s, page, c->freelist); 2319 c->page = NULL; 2320 c->freelist = NULL; 2321 goto new_slab; 2322 } 2323 2324 /* must check again c->freelist in case of cpu migration or IRQ */ 2325 freelist = c->freelist; 2326 if (freelist) 2327 goto load_freelist; 2328 2329 stat(s, ALLOC_SLOWPATH); 2330 2331 freelist = get_freelist(s, page); 2332 2333 if (!freelist) { 2334 c->page = NULL; 2335 stat(s, DEACTIVATE_BYPASS); 2336 goto new_slab; 2337 } 2338 2339 stat(s, ALLOC_REFILL); 2340 2341 load_freelist: 2342 /* 2343 * freelist is pointing to the list of objects to be used. 2344 * page is pointing to the page from which the objects are obtained. 2345 * That page must be frozen for per cpu allocations to work. 2346 */ 2347 VM_BUG_ON(!c->page->frozen); 2348 c->freelist = get_freepointer(s, freelist); 2349 c->tid = next_tid(c->tid); 2350 local_irq_restore(flags); 2351 return freelist; 2352 2353 new_slab: 2354 2355 if (c->partial) { 2356 page = c->page = c->partial; 2357 c->partial = page->next; 2358 stat(s, CPU_PARTIAL_ALLOC); 2359 c->freelist = NULL; 2360 goto redo; 2361 } 2362 2363 freelist = new_slab_objects(s, gfpflags, node, &c); 2364 2365 if (unlikely(!freelist)) { 2366 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2367 slab_out_of_memory(s, gfpflags, node); 2368 2369 local_irq_restore(flags); 2370 return NULL; 2371 } 2372 2373 page = c->page; 2374 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2375 goto load_freelist; 2376 2377 /* Only entered in the debug case */ 2378 if (kmem_cache_debug(s) && 2379 !alloc_debug_processing(s, page, freelist, addr)) 2380 goto new_slab; /* Slab failed checks. Next slab needed */ 2381 2382 deactivate_slab(s, page, get_freepointer(s, freelist)); 2383 c->page = NULL; 2384 c->freelist = NULL; 2385 local_irq_restore(flags); 2386 return freelist; 2387 } 2388 2389 /* 2390 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2391 * have the fastpath folded into their functions. So no function call 2392 * overhead for requests that can be satisfied on the fastpath. 2393 * 2394 * The fastpath works by first checking if the lockless freelist can be used. 2395 * If not then __slab_alloc is called for slow processing. 2396 * 2397 * Otherwise we can simply pick the next object from the lockless free list. 2398 */ 2399 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2400 gfp_t gfpflags, int node, unsigned long addr) 2401 { 2402 void **object; 2403 struct kmem_cache_cpu *c; 2404 struct page *page; 2405 unsigned long tid; 2406 2407 if (slab_pre_alloc_hook(s, gfpflags)) 2408 return NULL; 2409 2410 s = memcg_kmem_get_cache(s, gfpflags); 2411 redo: 2412 /* 2413 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2414 * enabled. We may switch back and forth between cpus while 2415 * reading from one cpu area. That does not matter as long 2416 * as we end up on the original cpu again when doing the cmpxchg. 2417 * 2418 * Preemption is disabled for the retrieval of the tid because that 2419 * must occur from the current processor. We cannot allow rescheduling 2420 * on a different processor between the determination of the pointer 2421 * and the retrieval of the tid. 2422 */ 2423 preempt_disable(); 2424 c = __this_cpu_ptr(s->cpu_slab); 2425 2426 /* 2427 * The transaction ids are globally unique per cpu and per operation on 2428 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2429 * occurs on the right processor and that there was no operation on the 2430 * linked list in between. 2431 */ 2432 tid = c->tid; 2433 preempt_enable(); 2434 2435 object = c->freelist; 2436 page = c->page; 2437 if (unlikely(!object || !node_match(page, node))) 2438 object = __slab_alloc(s, gfpflags, node, addr, c); 2439 2440 else { 2441 void *next_object = get_freepointer_safe(s, object); 2442 2443 /* 2444 * The cmpxchg will only match if there was no additional 2445 * operation and if we are on the right processor. 2446 * 2447 * The cmpxchg does the following atomically (without lock 2448 * semantics!) 2449 * 1. Relocate first pointer to the current per cpu area. 2450 * 2. Verify that tid and freelist have not been changed 2451 * 3. If they were not changed replace tid and freelist 2452 * 2453 * Since this is without lock semantics the protection is only 2454 * against code executing on this cpu *not* from access by 2455 * other cpus. 2456 */ 2457 if (unlikely(!this_cpu_cmpxchg_double( 2458 s->cpu_slab->freelist, s->cpu_slab->tid, 2459 object, tid, 2460 next_object, next_tid(tid)))) { 2461 2462 note_cmpxchg_failure("slab_alloc", s, tid); 2463 goto redo; 2464 } 2465 prefetch_freepointer(s, next_object); 2466 stat(s, ALLOC_FASTPATH); 2467 } 2468 2469 if (unlikely(gfpflags & __GFP_ZERO) && object) 2470 memset(object, 0, s->object_size); 2471 2472 slab_post_alloc_hook(s, gfpflags, object); 2473 2474 return object; 2475 } 2476 2477 static __always_inline void *slab_alloc(struct kmem_cache *s, 2478 gfp_t gfpflags, unsigned long addr) 2479 { 2480 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2481 } 2482 2483 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2484 { 2485 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2486 2487 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2488 s->size, gfpflags); 2489 2490 return ret; 2491 } 2492 EXPORT_SYMBOL(kmem_cache_alloc); 2493 2494 #ifdef CONFIG_TRACING 2495 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2496 { 2497 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2498 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2499 return ret; 2500 } 2501 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2502 #endif 2503 2504 #ifdef CONFIG_NUMA 2505 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2506 { 2507 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2508 2509 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2510 s->object_size, s->size, gfpflags, node); 2511 2512 return ret; 2513 } 2514 EXPORT_SYMBOL(kmem_cache_alloc_node); 2515 2516 #ifdef CONFIG_TRACING 2517 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2518 gfp_t gfpflags, 2519 int node, size_t size) 2520 { 2521 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2522 2523 trace_kmalloc_node(_RET_IP_, ret, 2524 size, s->size, gfpflags, node); 2525 return ret; 2526 } 2527 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2528 #endif 2529 #endif 2530 2531 /* 2532 * Slow patch handling. This may still be called frequently since objects 2533 * have a longer lifetime than the cpu slabs in most processing loads. 2534 * 2535 * So we still attempt to reduce cache line usage. Just take the slab 2536 * lock and free the item. If there is no additional partial page 2537 * handling required then we can return immediately. 2538 */ 2539 static void __slab_free(struct kmem_cache *s, struct page *page, 2540 void *x, unsigned long addr) 2541 { 2542 void *prior; 2543 void **object = (void *)x; 2544 int was_frozen; 2545 struct page new; 2546 unsigned long counters; 2547 struct kmem_cache_node *n = NULL; 2548 unsigned long uninitialized_var(flags); 2549 2550 stat(s, FREE_SLOWPATH); 2551 2552 if (kmem_cache_debug(s) && 2553 !(n = free_debug_processing(s, page, x, addr, &flags))) 2554 return; 2555 2556 do { 2557 if (unlikely(n)) { 2558 spin_unlock_irqrestore(&n->list_lock, flags); 2559 n = NULL; 2560 } 2561 prior = page->freelist; 2562 counters = page->counters; 2563 set_freepointer(s, object, prior); 2564 new.counters = counters; 2565 was_frozen = new.frozen; 2566 new.inuse--; 2567 if ((!new.inuse || !prior) && !was_frozen) { 2568 2569 if (kmem_cache_has_cpu_partial(s) && !prior) { 2570 2571 /* 2572 * Slab was on no list before and will be 2573 * partially empty 2574 * We can defer the list move and instead 2575 * freeze it. 2576 */ 2577 new.frozen = 1; 2578 2579 } else { /* Needs to be taken off a list */ 2580 2581 n = get_node(s, page_to_nid(page)); 2582 /* 2583 * Speculatively acquire the list_lock. 2584 * If the cmpxchg does not succeed then we may 2585 * drop the list_lock without any processing. 2586 * 2587 * Otherwise the list_lock will synchronize with 2588 * other processors updating the list of slabs. 2589 */ 2590 spin_lock_irqsave(&n->list_lock, flags); 2591 2592 } 2593 } 2594 2595 } while (!cmpxchg_double_slab(s, page, 2596 prior, counters, 2597 object, new.counters, 2598 "__slab_free")); 2599 2600 if (likely(!n)) { 2601 2602 /* 2603 * If we just froze the page then put it onto the 2604 * per cpu partial list. 2605 */ 2606 if (new.frozen && !was_frozen) { 2607 put_cpu_partial(s, page, 1); 2608 stat(s, CPU_PARTIAL_FREE); 2609 } 2610 /* 2611 * The list lock was not taken therefore no list 2612 * activity can be necessary. 2613 */ 2614 if (was_frozen) 2615 stat(s, FREE_FROZEN); 2616 return; 2617 } 2618 2619 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) 2620 goto slab_empty; 2621 2622 /* 2623 * Objects left in the slab. If it was not on the partial list before 2624 * then add it. 2625 */ 2626 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2627 if (kmem_cache_debug(s)) 2628 remove_full(s, n, page); 2629 add_partial(n, page, DEACTIVATE_TO_TAIL); 2630 stat(s, FREE_ADD_PARTIAL); 2631 } 2632 spin_unlock_irqrestore(&n->list_lock, flags); 2633 return; 2634 2635 slab_empty: 2636 if (prior) { 2637 /* 2638 * Slab on the partial list. 2639 */ 2640 remove_partial(n, page); 2641 stat(s, FREE_REMOVE_PARTIAL); 2642 } else { 2643 /* Slab must be on the full list */ 2644 remove_full(s, n, page); 2645 } 2646 2647 spin_unlock_irqrestore(&n->list_lock, flags); 2648 stat(s, FREE_SLAB); 2649 discard_slab(s, page); 2650 } 2651 2652 /* 2653 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2654 * can perform fastpath freeing without additional function calls. 2655 * 2656 * The fastpath is only possible if we are freeing to the current cpu slab 2657 * of this processor. This typically the case if we have just allocated 2658 * the item before. 2659 * 2660 * If fastpath is not possible then fall back to __slab_free where we deal 2661 * with all sorts of special processing. 2662 */ 2663 static __always_inline void slab_free(struct kmem_cache *s, 2664 struct page *page, void *x, unsigned long addr) 2665 { 2666 void **object = (void *)x; 2667 struct kmem_cache_cpu *c; 2668 unsigned long tid; 2669 2670 slab_free_hook(s, x); 2671 2672 redo: 2673 /* 2674 * Determine the currently cpus per cpu slab. 2675 * The cpu may change afterward. However that does not matter since 2676 * data is retrieved via this pointer. If we are on the same cpu 2677 * during the cmpxchg then the free will succedd. 2678 */ 2679 preempt_disable(); 2680 c = __this_cpu_ptr(s->cpu_slab); 2681 2682 tid = c->tid; 2683 preempt_enable(); 2684 2685 if (likely(page == c->page)) { 2686 set_freepointer(s, object, c->freelist); 2687 2688 if (unlikely(!this_cpu_cmpxchg_double( 2689 s->cpu_slab->freelist, s->cpu_slab->tid, 2690 c->freelist, tid, 2691 object, next_tid(tid)))) { 2692 2693 note_cmpxchg_failure("slab_free", s, tid); 2694 goto redo; 2695 } 2696 stat(s, FREE_FASTPATH); 2697 } else 2698 __slab_free(s, page, x, addr); 2699 2700 } 2701 2702 void kmem_cache_free(struct kmem_cache *s, void *x) 2703 { 2704 s = cache_from_obj(s, x); 2705 if (!s) 2706 return; 2707 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2708 trace_kmem_cache_free(_RET_IP_, x); 2709 } 2710 EXPORT_SYMBOL(kmem_cache_free); 2711 2712 /* 2713 * Object placement in a slab is made very easy because we always start at 2714 * offset 0. If we tune the size of the object to the alignment then we can 2715 * get the required alignment by putting one properly sized object after 2716 * another. 2717 * 2718 * Notice that the allocation order determines the sizes of the per cpu 2719 * caches. Each processor has always one slab available for allocations. 2720 * Increasing the allocation order reduces the number of times that slabs 2721 * must be moved on and off the partial lists and is therefore a factor in 2722 * locking overhead. 2723 */ 2724 2725 /* 2726 * Mininum / Maximum order of slab pages. This influences locking overhead 2727 * and slab fragmentation. A higher order reduces the number of partial slabs 2728 * and increases the number of allocations possible without having to 2729 * take the list_lock. 2730 */ 2731 static int slub_min_order; 2732 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2733 static int slub_min_objects; 2734 2735 /* 2736 * Merge control. If this is set then no merging of slab caches will occur. 2737 * (Could be removed. This was introduced to pacify the merge skeptics.) 2738 */ 2739 static int slub_nomerge; 2740 2741 /* 2742 * Calculate the order of allocation given an slab object size. 2743 * 2744 * The order of allocation has significant impact on performance and other 2745 * system components. Generally order 0 allocations should be preferred since 2746 * order 0 does not cause fragmentation in the page allocator. Larger objects 2747 * be problematic to put into order 0 slabs because there may be too much 2748 * unused space left. We go to a higher order if more than 1/16th of the slab 2749 * would be wasted. 2750 * 2751 * In order to reach satisfactory performance we must ensure that a minimum 2752 * number of objects is in one slab. Otherwise we may generate too much 2753 * activity on the partial lists which requires taking the list_lock. This is 2754 * less a concern for large slabs though which are rarely used. 2755 * 2756 * slub_max_order specifies the order where we begin to stop considering the 2757 * number of objects in a slab as critical. If we reach slub_max_order then 2758 * we try to keep the page order as low as possible. So we accept more waste 2759 * of space in favor of a small page order. 2760 * 2761 * Higher order allocations also allow the placement of more objects in a 2762 * slab and thereby reduce object handling overhead. If the user has 2763 * requested a higher mininum order then we start with that one instead of 2764 * the smallest order which will fit the object. 2765 */ 2766 static inline int slab_order(int size, int min_objects, 2767 int max_order, int fract_leftover, int reserved) 2768 { 2769 int order; 2770 int rem; 2771 int min_order = slub_min_order; 2772 2773 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2774 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2775 2776 for (order = max(min_order, 2777 fls(min_objects * size - 1) - PAGE_SHIFT); 2778 order <= max_order; order++) { 2779 2780 unsigned long slab_size = PAGE_SIZE << order; 2781 2782 if (slab_size < min_objects * size + reserved) 2783 continue; 2784 2785 rem = (slab_size - reserved) % size; 2786 2787 if (rem <= slab_size / fract_leftover) 2788 break; 2789 2790 } 2791 2792 return order; 2793 } 2794 2795 static inline int calculate_order(int size, int reserved) 2796 { 2797 int order; 2798 int min_objects; 2799 int fraction; 2800 int max_objects; 2801 2802 /* 2803 * Attempt to find best configuration for a slab. This 2804 * works by first attempting to generate a layout with 2805 * the best configuration and backing off gradually. 2806 * 2807 * First we reduce the acceptable waste in a slab. Then 2808 * we reduce the minimum objects required in a slab. 2809 */ 2810 min_objects = slub_min_objects; 2811 if (!min_objects) 2812 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2813 max_objects = order_objects(slub_max_order, size, reserved); 2814 min_objects = min(min_objects, max_objects); 2815 2816 while (min_objects > 1) { 2817 fraction = 16; 2818 while (fraction >= 4) { 2819 order = slab_order(size, min_objects, 2820 slub_max_order, fraction, reserved); 2821 if (order <= slub_max_order) 2822 return order; 2823 fraction /= 2; 2824 } 2825 min_objects--; 2826 } 2827 2828 /* 2829 * We were unable to place multiple objects in a slab. Now 2830 * lets see if we can place a single object there. 2831 */ 2832 order = slab_order(size, 1, slub_max_order, 1, reserved); 2833 if (order <= slub_max_order) 2834 return order; 2835 2836 /* 2837 * Doh this slab cannot be placed using slub_max_order. 2838 */ 2839 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2840 if (order < MAX_ORDER) 2841 return order; 2842 return -ENOSYS; 2843 } 2844 2845 static void 2846 init_kmem_cache_node(struct kmem_cache_node *n) 2847 { 2848 n->nr_partial = 0; 2849 spin_lock_init(&n->list_lock); 2850 INIT_LIST_HEAD(&n->partial); 2851 #ifdef CONFIG_SLUB_DEBUG 2852 atomic_long_set(&n->nr_slabs, 0); 2853 atomic_long_set(&n->total_objects, 0); 2854 INIT_LIST_HEAD(&n->full); 2855 #endif 2856 } 2857 2858 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2859 { 2860 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2861 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2862 2863 /* 2864 * Must align to double word boundary for the double cmpxchg 2865 * instructions to work; see __pcpu_double_call_return_bool(). 2866 */ 2867 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2868 2 * sizeof(void *)); 2869 2870 if (!s->cpu_slab) 2871 return 0; 2872 2873 init_kmem_cache_cpus(s); 2874 2875 return 1; 2876 } 2877 2878 static struct kmem_cache *kmem_cache_node; 2879 2880 /* 2881 * No kmalloc_node yet so do it by hand. We know that this is the first 2882 * slab on the node for this slabcache. There are no concurrent accesses 2883 * possible. 2884 * 2885 * Note that this function only works on the kmem_cache_node 2886 * when allocating for the kmem_cache_node. This is used for bootstrapping 2887 * memory on a fresh node that has no slab structures yet. 2888 */ 2889 static void early_kmem_cache_node_alloc(int node) 2890 { 2891 struct page *page; 2892 struct kmem_cache_node *n; 2893 2894 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2895 2896 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2897 2898 BUG_ON(!page); 2899 if (page_to_nid(page) != node) { 2900 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2901 "node %d\n", node); 2902 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2903 "in order to be able to continue\n"); 2904 } 2905 2906 n = page->freelist; 2907 BUG_ON(!n); 2908 page->freelist = get_freepointer(kmem_cache_node, n); 2909 page->inuse = 1; 2910 page->frozen = 0; 2911 kmem_cache_node->node[node] = n; 2912 #ifdef CONFIG_SLUB_DEBUG 2913 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2914 init_tracking(kmem_cache_node, n); 2915 #endif 2916 init_kmem_cache_node(n); 2917 inc_slabs_node(kmem_cache_node, node, page->objects); 2918 2919 /* 2920 * No locks need to be taken here as it has just been 2921 * initialized and there is no concurrent access. 2922 */ 2923 __add_partial(n, page, DEACTIVATE_TO_HEAD); 2924 } 2925 2926 static void free_kmem_cache_nodes(struct kmem_cache *s) 2927 { 2928 int node; 2929 2930 for_each_node_state(node, N_NORMAL_MEMORY) { 2931 struct kmem_cache_node *n = s->node[node]; 2932 2933 if (n) 2934 kmem_cache_free(kmem_cache_node, n); 2935 2936 s->node[node] = NULL; 2937 } 2938 } 2939 2940 static int init_kmem_cache_nodes(struct kmem_cache *s) 2941 { 2942 int node; 2943 2944 for_each_node_state(node, N_NORMAL_MEMORY) { 2945 struct kmem_cache_node *n; 2946 2947 if (slab_state == DOWN) { 2948 early_kmem_cache_node_alloc(node); 2949 continue; 2950 } 2951 n = kmem_cache_alloc_node(kmem_cache_node, 2952 GFP_KERNEL, node); 2953 2954 if (!n) { 2955 free_kmem_cache_nodes(s); 2956 return 0; 2957 } 2958 2959 s->node[node] = n; 2960 init_kmem_cache_node(n); 2961 } 2962 return 1; 2963 } 2964 2965 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2966 { 2967 if (min < MIN_PARTIAL) 2968 min = MIN_PARTIAL; 2969 else if (min > MAX_PARTIAL) 2970 min = MAX_PARTIAL; 2971 s->min_partial = min; 2972 } 2973 2974 /* 2975 * calculate_sizes() determines the order and the distribution of data within 2976 * a slab object. 2977 */ 2978 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2979 { 2980 unsigned long flags = s->flags; 2981 unsigned long size = s->object_size; 2982 int order; 2983 2984 /* 2985 * Round up object size to the next word boundary. We can only 2986 * place the free pointer at word boundaries and this determines 2987 * the possible location of the free pointer. 2988 */ 2989 size = ALIGN(size, sizeof(void *)); 2990 2991 #ifdef CONFIG_SLUB_DEBUG 2992 /* 2993 * Determine if we can poison the object itself. If the user of 2994 * the slab may touch the object after free or before allocation 2995 * then we should never poison the object itself. 2996 */ 2997 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2998 !s->ctor) 2999 s->flags |= __OBJECT_POISON; 3000 else 3001 s->flags &= ~__OBJECT_POISON; 3002 3003 3004 /* 3005 * If we are Redzoning then check if there is some space between the 3006 * end of the object and the free pointer. If not then add an 3007 * additional word to have some bytes to store Redzone information. 3008 */ 3009 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3010 size += sizeof(void *); 3011 #endif 3012 3013 /* 3014 * With that we have determined the number of bytes in actual use 3015 * by the object. This is the potential offset to the free pointer. 3016 */ 3017 s->inuse = size; 3018 3019 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3020 s->ctor)) { 3021 /* 3022 * Relocate free pointer after the object if it is not 3023 * permitted to overwrite the first word of the object on 3024 * kmem_cache_free. 3025 * 3026 * This is the case if we do RCU, have a constructor or 3027 * destructor or are poisoning the objects. 3028 */ 3029 s->offset = size; 3030 size += sizeof(void *); 3031 } 3032 3033 #ifdef CONFIG_SLUB_DEBUG 3034 if (flags & SLAB_STORE_USER) 3035 /* 3036 * Need to store information about allocs and frees after 3037 * the object. 3038 */ 3039 size += 2 * sizeof(struct track); 3040 3041 if (flags & SLAB_RED_ZONE) 3042 /* 3043 * Add some empty padding so that we can catch 3044 * overwrites from earlier objects rather than let 3045 * tracking information or the free pointer be 3046 * corrupted if a user writes before the start 3047 * of the object. 3048 */ 3049 size += sizeof(void *); 3050 #endif 3051 3052 /* 3053 * SLUB stores one object immediately after another beginning from 3054 * offset 0. In order to align the objects we have to simply size 3055 * each object to conform to the alignment. 3056 */ 3057 size = ALIGN(size, s->align); 3058 s->size = size; 3059 if (forced_order >= 0) 3060 order = forced_order; 3061 else 3062 order = calculate_order(size, s->reserved); 3063 3064 if (order < 0) 3065 return 0; 3066 3067 s->allocflags = 0; 3068 if (order) 3069 s->allocflags |= __GFP_COMP; 3070 3071 if (s->flags & SLAB_CACHE_DMA) 3072 s->allocflags |= GFP_DMA; 3073 3074 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3075 s->allocflags |= __GFP_RECLAIMABLE; 3076 3077 /* 3078 * Determine the number of objects per slab 3079 */ 3080 s->oo = oo_make(order, size, s->reserved); 3081 s->min = oo_make(get_order(size), size, s->reserved); 3082 if (oo_objects(s->oo) > oo_objects(s->max)) 3083 s->max = s->oo; 3084 3085 return !!oo_objects(s->oo); 3086 } 3087 3088 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3089 { 3090 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3091 s->reserved = 0; 3092 3093 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3094 s->reserved = sizeof(struct rcu_head); 3095 3096 if (!calculate_sizes(s, -1)) 3097 goto error; 3098 if (disable_higher_order_debug) { 3099 /* 3100 * Disable debugging flags that store metadata if the min slab 3101 * order increased. 3102 */ 3103 if (get_order(s->size) > get_order(s->object_size)) { 3104 s->flags &= ~DEBUG_METADATA_FLAGS; 3105 s->offset = 0; 3106 if (!calculate_sizes(s, -1)) 3107 goto error; 3108 } 3109 } 3110 3111 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3112 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3113 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3114 /* Enable fast mode */ 3115 s->flags |= __CMPXCHG_DOUBLE; 3116 #endif 3117 3118 /* 3119 * The larger the object size is, the more pages we want on the partial 3120 * list to avoid pounding the page allocator excessively. 3121 */ 3122 set_min_partial(s, ilog2(s->size) / 2); 3123 3124 /* 3125 * cpu_partial determined the maximum number of objects kept in the 3126 * per cpu partial lists of a processor. 3127 * 3128 * Per cpu partial lists mainly contain slabs that just have one 3129 * object freed. If they are used for allocation then they can be 3130 * filled up again with minimal effort. The slab will never hit the 3131 * per node partial lists and therefore no locking will be required. 3132 * 3133 * This setting also determines 3134 * 3135 * A) The number of objects from per cpu partial slabs dumped to the 3136 * per node list when we reach the limit. 3137 * B) The number of objects in cpu partial slabs to extract from the 3138 * per node list when we run out of per cpu objects. We only fetch 3139 * 50% to keep some capacity around for frees. 3140 */ 3141 if (!kmem_cache_has_cpu_partial(s)) 3142 s->cpu_partial = 0; 3143 else if (s->size >= PAGE_SIZE) 3144 s->cpu_partial = 2; 3145 else if (s->size >= 1024) 3146 s->cpu_partial = 6; 3147 else if (s->size >= 256) 3148 s->cpu_partial = 13; 3149 else 3150 s->cpu_partial = 30; 3151 3152 #ifdef CONFIG_NUMA 3153 s->remote_node_defrag_ratio = 1000; 3154 #endif 3155 if (!init_kmem_cache_nodes(s)) 3156 goto error; 3157 3158 if (alloc_kmem_cache_cpus(s)) 3159 return 0; 3160 3161 free_kmem_cache_nodes(s); 3162 error: 3163 if (flags & SLAB_PANIC) 3164 panic("Cannot create slab %s size=%lu realsize=%u " 3165 "order=%u offset=%u flags=%lx\n", 3166 s->name, (unsigned long)s->size, s->size, 3167 oo_order(s->oo), s->offset, flags); 3168 return -EINVAL; 3169 } 3170 3171 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3172 const char *text) 3173 { 3174 #ifdef CONFIG_SLUB_DEBUG 3175 void *addr = page_address(page); 3176 void *p; 3177 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3178 sizeof(long), GFP_ATOMIC); 3179 if (!map) 3180 return; 3181 slab_err(s, page, text, s->name); 3182 slab_lock(page); 3183 3184 get_map(s, page, map); 3185 for_each_object(p, s, addr, page->objects) { 3186 3187 if (!test_bit(slab_index(p, s, addr), map)) { 3188 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3189 p, p - addr); 3190 print_tracking(s, p); 3191 } 3192 } 3193 slab_unlock(page); 3194 kfree(map); 3195 #endif 3196 } 3197 3198 /* 3199 * Attempt to free all partial slabs on a node. 3200 * This is called from kmem_cache_close(). We must be the last thread 3201 * using the cache and therefore we do not need to lock anymore. 3202 */ 3203 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3204 { 3205 struct page *page, *h; 3206 3207 list_for_each_entry_safe(page, h, &n->partial, lru) { 3208 if (!page->inuse) { 3209 __remove_partial(n, page); 3210 discard_slab(s, page); 3211 } else { 3212 list_slab_objects(s, page, 3213 "Objects remaining in %s on kmem_cache_close()"); 3214 } 3215 } 3216 } 3217 3218 /* 3219 * Release all resources used by a slab cache. 3220 */ 3221 static inline int kmem_cache_close(struct kmem_cache *s) 3222 { 3223 int node; 3224 3225 flush_all(s); 3226 /* Attempt to free all objects */ 3227 for_each_node_state(node, N_NORMAL_MEMORY) { 3228 struct kmem_cache_node *n = get_node(s, node); 3229 3230 free_partial(s, n); 3231 if (n->nr_partial || slabs_node(s, node)) 3232 return 1; 3233 } 3234 free_percpu(s->cpu_slab); 3235 free_kmem_cache_nodes(s); 3236 return 0; 3237 } 3238 3239 int __kmem_cache_shutdown(struct kmem_cache *s) 3240 { 3241 int rc = kmem_cache_close(s); 3242 3243 if (!rc) { 3244 /* 3245 * Since slab_attr_store may take the slab_mutex, we should 3246 * release the lock while removing the sysfs entry in order to 3247 * avoid a deadlock. Because this is pretty much the last 3248 * operation we do and the lock will be released shortly after 3249 * that in slab_common.c, we could just move sysfs_slab_remove 3250 * to a later point in common code. We should do that when we 3251 * have a common sysfs framework for all allocators. 3252 */ 3253 mutex_unlock(&slab_mutex); 3254 sysfs_slab_remove(s); 3255 mutex_lock(&slab_mutex); 3256 } 3257 3258 return rc; 3259 } 3260 3261 /******************************************************************** 3262 * Kmalloc subsystem 3263 *******************************************************************/ 3264 3265 static int __init setup_slub_min_order(char *str) 3266 { 3267 get_option(&str, &slub_min_order); 3268 3269 return 1; 3270 } 3271 3272 __setup("slub_min_order=", setup_slub_min_order); 3273 3274 static int __init setup_slub_max_order(char *str) 3275 { 3276 get_option(&str, &slub_max_order); 3277 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3278 3279 return 1; 3280 } 3281 3282 __setup("slub_max_order=", setup_slub_max_order); 3283 3284 static int __init setup_slub_min_objects(char *str) 3285 { 3286 get_option(&str, &slub_min_objects); 3287 3288 return 1; 3289 } 3290 3291 __setup("slub_min_objects=", setup_slub_min_objects); 3292 3293 static int __init setup_slub_nomerge(char *str) 3294 { 3295 slub_nomerge = 1; 3296 return 1; 3297 } 3298 3299 __setup("slub_nomerge", setup_slub_nomerge); 3300 3301 void *__kmalloc(size_t size, gfp_t flags) 3302 { 3303 struct kmem_cache *s; 3304 void *ret; 3305 3306 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3307 return kmalloc_large(size, flags); 3308 3309 s = kmalloc_slab(size, flags); 3310 3311 if (unlikely(ZERO_OR_NULL_PTR(s))) 3312 return s; 3313 3314 ret = slab_alloc(s, flags, _RET_IP_); 3315 3316 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3317 3318 return ret; 3319 } 3320 EXPORT_SYMBOL(__kmalloc); 3321 3322 #ifdef CONFIG_NUMA 3323 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3324 { 3325 struct page *page; 3326 void *ptr = NULL; 3327 3328 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG; 3329 page = alloc_pages_node(node, flags, get_order(size)); 3330 if (page) 3331 ptr = page_address(page); 3332 3333 kmalloc_large_node_hook(ptr, size, flags); 3334 return ptr; 3335 } 3336 3337 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3338 { 3339 struct kmem_cache *s; 3340 void *ret; 3341 3342 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3343 ret = kmalloc_large_node(size, flags, node); 3344 3345 trace_kmalloc_node(_RET_IP_, ret, 3346 size, PAGE_SIZE << get_order(size), 3347 flags, node); 3348 3349 return ret; 3350 } 3351 3352 s = kmalloc_slab(size, flags); 3353 3354 if (unlikely(ZERO_OR_NULL_PTR(s))) 3355 return s; 3356 3357 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3358 3359 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3360 3361 return ret; 3362 } 3363 EXPORT_SYMBOL(__kmalloc_node); 3364 #endif 3365 3366 size_t ksize(const void *object) 3367 { 3368 struct page *page; 3369 3370 if (unlikely(object == ZERO_SIZE_PTR)) 3371 return 0; 3372 3373 page = virt_to_head_page(object); 3374 3375 if (unlikely(!PageSlab(page))) { 3376 WARN_ON(!PageCompound(page)); 3377 return PAGE_SIZE << compound_order(page); 3378 } 3379 3380 return slab_ksize(page->slab_cache); 3381 } 3382 EXPORT_SYMBOL(ksize); 3383 3384 void kfree(const void *x) 3385 { 3386 struct page *page; 3387 void *object = (void *)x; 3388 3389 trace_kfree(_RET_IP_, x); 3390 3391 if (unlikely(ZERO_OR_NULL_PTR(x))) 3392 return; 3393 3394 page = virt_to_head_page(x); 3395 if (unlikely(!PageSlab(page))) { 3396 BUG_ON(!PageCompound(page)); 3397 kfree_hook(x); 3398 __free_memcg_kmem_pages(page, compound_order(page)); 3399 return; 3400 } 3401 slab_free(page->slab_cache, page, object, _RET_IP_); 3402 } 3403 EXPORT_SYMBOL(kfree); 3404 3405 /* 3406 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3407 * the remaining slabs by the number of items in use. The slabs with the 3408 * most items in use come first. New allocations will then fill those up 3409 * and thus they can be removed from the partial lists. 3410 * 3411 * The slabs with the least items are placed last. This results in them 3412 * being allocated from last increasing the chance that the last objects 3413 * are freed in them. 3414 */ 3415 int kmem_cache_shrink(struct kmem_cache *s) 3416 { 3417 int node; 3418 int i; 3419 struct kmem_cache_node *n; 3420 struct page *page; 3421 struct page *t; 3422 int objects = oo_objects(s->max); 3423 struct list_head *slabs_by_inuse = 3424 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3425 unsigned long flags; 3426 3427 if (!slabs_by_inuse) 3428 return -ENOMEM; 3429 3430 flush_all(s); 3431 for_each_node_state(node, N_NORMAL_MEMORY) { 3432 n = get_node(s, node); 3433 3434 if (!n->nr_partial) 3435 continue; 3436 3437 for (i = 0; i < objects; i++) 3438 INIT_LIST_HEAD(slabs_by_inuse + i); 3439 3440 spin_lock_irqsave(&n->list_lock, flags); 3441 3442 /* 3443 * Build lists indexed by the items in use in each slab. 3444 * 3445 * Note that concurrent frees may occur while we hold the 3446 * list_lock. page->inuse here is the upper limit. 3447 */ 3448 list_for_each_entry_safe(page, t, &n->partial, lru) { 3449 list_move(&page->lru, slabs_by_inuse + page->inuse); 3450 if (!page->inuse) 3451 n->nr_partial--; 3452 } 3453 3454 /* 3455 * Rebuild the partial list with the slabs filled up most 3456 * first and the least used slabs at the end. 3457 */ 3458 for (i = objects - 1; i > 0; i--) 3459 list_splice(slabs_by_inuse + i, n->partial.prev); 3460 3461 spin_unlock_irqrestore(&n->list_lock, flags); 3462 3463 /* Release empty slabs */ 3464 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3465 discard_slab(s, page); 3466 } 3467 3468 kfree(slabs_by_inuse); 3469 return 0; 3470 } 3471 EXPORT_SYMBOL(kmem_cache_shrink); 3472 3473 static int slab_mem_going_offline_callback(void *arg) 3474 { 3475 struct kmem_cache *s; 3476 3477 mutex_lock(&slab_mutex); 3478 list_for_each_entry(s, &slab_caches, list) 3479 kmem_cache_shrink(s); 3480 mutex_unlock(&slab_mutex); 3481 3482 return 0; 3483 } 3484 3485 static void slab_mem_offline_callback(void *arg) 3486 { 3487 struct kmem_cache_node *n; 3488 struct kmem_cache *s; 3489 struct memory_notify *marg = arg; 3490 int offline_node; 3491 3492 offline_node = marg->status_change_nid_normal; 3493 3494 /* 3495 * If the node still has available memory. we need kmem_cache_node 3496 * for it yet. 3497 */ 3498 if (offline_node < 0) 3499 return; 3500 3501 mutex_lock(&slab_mutex); 3502 list_for_each_entry(s, &slab_caches, list) { 3503 n = get_node(s, offline_node); 3504 if (n) { 3505 /* 3506 * if n->nr_slabs > 0, slabs still exist on the node 3507 * that is going down. We were unable to free them, 3508 * and offline_pages() function shouldn't call this 3509 * callback. So, we must fail. 3510 */ 3511 BUG_ON(slabs_node(s, offline_node)); 3512 3513 s->node[offline_node] = NULL; 3514 kmem_cache_free(kmem_cache_node, n); 3515 } 3516 } 3517 mutex_unlock(&slab_mutex); 3518 } 3519 3520 static int slab_mem_going_online_callback(void *arg) 3521 { 3522 struct kmem_cache_node *n; 3523 struct kmem_cache *s; 3524 struct memory_notify *marg = arg; 3525 int nid = marg->status_change_nid_normal; 3526 int ret = 0; 3527 3528 /* 3529 * If the node's memory is already available, then kmem_cache_node is 3530 * already created. Nothing to do. 3531 */ 3532 if (nid < 0) 3533 return 0; 3534 3535 /* 3536 * We are bringing a node online. No memory is available yet. We must 3537 * allocate a kmem_cache_node structure in order to bring the node 3538 * online. 3539 */ 3540 mutex_lock(&slab_mutex); 3541 list_for_each_entry(s, &slab_caches, list) { 3542 /* 3543 * XXX: kmem_cache_alloc_node will fallback to other nodes 3544 * since memory is not yet available from the node that 3545 * is brought up. 3546 */ 3547 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3548 if (!n) { 3549 ret = -ENOMEM; 3550 goto out; 3551 } 3552 init_kmem_cache_node(n); 3553 s->node[nid] = n; 3554 } 3555 out: 3556 mutex_unlock(&slab_mutex); 3557 return ret; 3558 } 3559 3560 static int slab_memory_callback(struct notifier_block *self, 3561 unsigned long action, void *arg) 3562 { 3563 int ret = 0; 3564 3565 switch (action) { 3566 case MEM_GOING_ONLINE: 3567 ret = slab_mem_going_online_callback(arg); 3568 break; 3569 case MEM_GOING_OFFLINE: 3570 ret = slab_mem_going_offline_callback(arg); 3571 break; 3572 case MEM_OFFLINE: 3573 case MEM_CANCEL_ONLINE: 3574 slab_mem_offline_callback(arg); 3575 break; 3576 case MEM_ONLINE: 3577 case MEM_CANCEL_OFFLINE: 3578 break; 3579 } 3580 if (ret) 3581 ret = notifier_from_errno(ret); 3582 else 3583 ret = NOTIFY_OK; 3584 return ret; 3585 } 3586 3587 static struct notifier_block slab_memory_callback_nb = { 3588 .notifier_call = slab_memory_callback, 3589 .priority = SLAB_CALLBACK_PRI, 3590 }; 3591 3592 /******************************************************************** 3593 * Basic setup of slabs 3594 *******************************************************************/ 3595 3596 /* 3597 * Used for early kmem_cache structures that were allocated using 3598 * the page allocator. Allocate them properly then fix up the pointers 3599 * that may be pointing to the wrong kmem_cache structure. 3600 */ 3601 3602 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3603 { 3604 int node; 3605 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3606 3607 memcpy(s, static_cache, kmem_cache->object_size); 3608 3609 /* 3610 * This runs very early, and only the boot processor is supposed to be 3611 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3612 * IPIs around. 3613 */ 3614 __flush_cpu_slab(s, smp_processor_id()); 3615 for_each_node_state(node, N_NORMAL_MEMORY) { 3616 struct kmem_cache_node *n = get_node(s, node); 3617 struct page *p; 3618 3619 if (n) { 3620 list_for_each_entry(p, &n->partial, lru) 3621 p->slab_cache = s; 3622 3623 #ifdef CONFIG_SLUB_DEBUG 3624 list_for_each_entry(p, &n->full, lru) 3625 p->slab_cache = s; 3626 #endif 3627 } 3628 } 3629 list_add(&s->list, &slab_caches); 3630 return s; 3631 } 3632 3633 void __init kmem_cache_init(void) 3634 { 3635 static __initdata struct kmem_cache boot_kmem_cache, 3636 boot_kmem_cache_node; 3637 3638 if (debug_guardpage_minorder()) 3639 slub_max_order = 0; 3640 3641 kmem_cache_node = &boot_kmem_cache_node; 3642 kmem_cache = &boot_kmem_cache; 3643 3644 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3645 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3646 3647 register_hotmemory_notifier(&slab_memory_callback_nb); 3648 3649 /* Able to allocate the per node structures */ 3650 slab_state = PARTIAL; 3651 3652 create_boot_cache(kmem_cache, "kmem_cache", 3653 offsetof(struct kmem_cache, node) + 3654 nr_node_ids * sizeof(struct kmem_cache_node *), 3655 SLAB_HWCACHE_ALIGN); 3656 3657 kmem_cache = bootstrap(&boot_kmem_cache); 3658 3659 /* 3660 * Allocate kmem_cache_node properly from the kmem_cache slab. 3661 * kmem_cache_node is separately allocated so no need to 3662 * update any list pointers. 3663 */ 3664 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3665 3666 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3667 create_kmalloc_caches(0); 3668 3669 #ifdef CONFIG_SMP 3670 register_cpu_notifier(&slab_notifier); 3671 #endif 3672 3673 printk(KERN_INFO 3674 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d," 3675 " CPUs=%d, Nodes=%d\n", 3676 cache_line_size(), 3677 slub_min_order, slub_max_order, slub_min_objects, 3678 nr_cpu_ids, nr_node_ids); 3679 } 3680 3681 void __init kmem_cache_init_late(void) 3682 { 3683 } 3684 3685 /* 3686 * Find a mergeable slab cache 3687 */ 3688 static int slab_unmergeable(struct kmem_cache *s) 3689 { 3690 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3691 return 1; 3692 3693 if (!is_root_cache(s)) 3694 return 1; 3695 3696 if (s->ctor) 3697 return 1; 3698 3699 /* 3700 * We may have set a slab to be unmergeable during bootstrap. 3701 */ 3702 if (s->refcount < 0) 3703 return 1; 3704 3705 return 0; 3706 } 3707 3708 static struct kmem_cache *find_mergeable(size_t size, size_t align, 3709 unsigned long flags, const char *name, void (*ctor)(void *)) 3710 { 3711 struct kmem_cache *s; 3712 3713 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3714 return NULL; 3715 3716 if (ctor) 3717 return NULL; 3718 3719 size = ALIGN(size, sizeof(void *)); 3720 align = calculate_alignment(flags, align, size); 3721 size = ALIGN(size, align); 3722 flags = kmem_cache_flags(size, flags, name, NULL); 3723 3724 list_for_each_entry(s, &slab_caches, list) { 3725 if (slab_unmergeable(s)) 3726 continue; 3727 3728 if (size > s->size) 3729 continue; 3730 3731 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3732 continue; 3733 /* 3734 * Check if alignment is compatible. 3735 * Courtesy of Adrian Drzewiecki 3736 */ 3737 if ((s->size & ~(align - 1)) != s->size) 3738 continue; 3739 3740 if (s->size - size >= sizeof(void *)) 3741 continue; 3742 3743 return s; 3744 } 3745 return NULL; 3746 } 3747 3748 struct kmem_cache * 3749 __kmem_cache_alias(const char *name, size_t size, size_t align, 3750 unsigned long flags, void (*ctor)(void *)) 3751 { 3752 struct kmem_cache *s; 3753 3754 s = find_mergeable(size, align, flags, name, ctor); 3755 if (s) { 3756 int i; 3757 struct kmem_cache *c; 3758 3759 s->refcount++; 3760 3761 /* 3762 * Adjust the object sizes so that we clear 3763 * the complete object on kzalloc. 3764 */ 3765 s->object_size = max(s->object_size, (int)size); 3766 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3767 3768 for_each_memcg_cache_index(i) { 3769 c = cache_from_memcg_idx(s, i); 3770 if (!c) 3771 continue; 3772 c->object_size = s->object_size; 3773 c->inuse = max_t(int, c->inuse, 3774 ALIGN(size, sizeof(void *))); 3775 } 3776 3777 if (sysfs_slab_alias(s, name)) { 3778 s->refcount--; 3779 s = NULL; 3780 } 3781 } 3782 3783 return s; 3784 } 3785 3786 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3787 { 3788 int err; 3789 3790 err = kmem_cache_open(s, flags); 3791 if (err) 3792 return err; 3793 3794 /* Mutex is not taken during early boot */ 3795 if (slab_state <= UP) 3796 return 0; 3797 3798 memcg_propagate_slab_attrs(s); 3799 err = sysfs_slab_add(s); 3800 if (err) 3801 kmem_cache_close(s); 3802 3803 return err; 3804 } 3805 3806 #ifdef CONFIG_SMP 3807 /* 3808 * Use the cpu notifier to insure that the cpu slabs are flushed when 3809 * necessary. 3810 */ 3811 static int slab_cpuup_callback(struct notifier_block *nfb, 3812 unsigned long action, void *hcpu) 3813 { 3814 long cpu = (long)hcpu; 3815 struct kmem_cache *s; 3816 unsigned long flags; 3817 3818 switch (action) { 3819 case CPU_UP_CANCELED: 3820 case CPU_UP_CANCELED_FROZEN: 3821 case CPU_DEAD: 3822 case CPU_DEAD_FROZEN: 3823 mutex_lock(&slab_mutex); 3824 list_for_each_entry(s, &slab_caches, list) { 3825 local_irq_save(flags); 3826 __flush_cpu_slab(s, cpu); 3827 local_irq_restore(flags); 3828 } 3829 mutex_unlock(&slab_mutex); 3830 break; 3831 default: 3832 break; 3833 } 3834 return NOTIFY_OK; 3835 } 3836 3837 static struct notifier_block slab_notifier = { 3838 .notifier_call = slab_cpuup_callback 3839 }; 3840 3841 #endif 3842 3843 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3844 { 3845 struct kmem_cache *s; 3846 void *ret; 3847 3848 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3849 return kmalloc_large(size, gfpflags); 3850 3851 s = kmalloc_slab(size, gfpflags); 3852 3853 if (unlikely(ZERO_OR_NULL_PTR(s))) 3854 return s; 3855 3856 ret = slab_alloc(s, gfpflags, caller); 3857 3858 /* Honor the call site pointer we received. */ 3859 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3860 3861 return ret; 3862 } 3863 3864 #ifdef CONFIG_NUMA 3865 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3866 int node, unsigned long caller) 3867 { 3868 struct kmem_cache *s; 3869 void *ret; 3870 3871 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3872 ret = kmalloc_large_node(size, gfpflags, node); 3873 3874 trace_kmalloc_node(caller, ret, 3875 size, PAGE_SIZE << get_order(size), 3876 gfpflags, node); 3877 3878 return ret; 3879 } 3880 3881 s = kmalloc_slab(size, gfpflags); 3882 3883 if (unlikely(ZERO_OR_NULL_PTR(s))) 3884 return s; 3885 3886 ret = slab_alloc_node(s, gfpflags, node, caller); 3887 3888 /* Honor the call site pointer we received. */ 3889 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3890 3891 return ret; 3892 } 3893 #endif 3894 3895 #ifdef CONFIG_SYSFS 3896 static int count_inuse(struct page *page) 3897 { 3898 return page->inuse; 3899 } 3900 3901 static int count_total(struct page *page) 3902 { 3903 return page->objects; 3904 } 3905 #endif 3906 3907 #ifdef CONFIG_SLUB_DEBUG 3908 static int validate_slab(struct kmem_cache *s, struct page *page, 3909 unsigned long *map) 3910 { 3911 void *p; 3912 void *addr = page_address(page); 3913 3914 if (!check_slab(s, page) || 3915 !on_freelist(s, page, NULL)) 3916 return 0; 3917 3918 /* Now we know that a valid freelist exists */ 3919 bitmap_zero(map, page->objects); 3920 3921 get_map(s, page, map); 3922 for_each_object(p, s, addr, page->objects) { 3923 if (test_bit(slab_index(p, s, addr), map)) 3924 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3925 return 0; 3926 } 3927 3928 for_each_object(p, s, addr, page->objects) 3929 if (!test_bit(slab_index(p, s, addr), map)) 3930 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3931 return 0; 3932 return 1; 3933 } 3934 3935 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3936 unsigned long *map) 3937 { 3938 slab_lock(page); 3939 validate_slab(s, page, map); 3940 slab_unlock(page); 3941 } 3942 3943 static int validate_slab_node(struct kmem_cache *s, 3944 struct kmem_cache_node *n, unsigned long *map) 3945 { 3946 unsigned long count = 0; 3947 struct page *page; 3948 unsigned long flags; 3949 3950 spin_lock_irqsave(&n->list_lock, flags); 3951 3952 list_for_each_entry(page, &n->partial, lru) { 3953 validate_slab_slab(s, page, map); 3954 count++; 3955 } 3956 if (count != n->nr_partial) 3957 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3958 "counter=%ld\n", s->name, count, n->nr_partial); 3959 3960 if (!(s->flags & SLAB_STORE_USER)) 3961 goto out; 3962 3963 list_for_each_entry(page, &n->full, lru) { 3964 validate_slab_slab(s, page, map); 3965 count++; 3966 } 3967 if (count != atomic_long_read(&n->nr_slabs)) 3968 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3969 "counter=%ld\n", s->name, count, 3970 atomic_long_read(&n->nr_slabs)); 3971 3972 out: 3973 spin_unlock_irqrestore(&n->list_lock, flags); 3974 return count; 3975 } 3976 3977 static long validate_slab_cache(struct kmem_cache *s) 3978 { 3979 int node; 3980 unsigned long count = 0; 3981 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3982 sizeof(unsigned long), GFP_KERNEL); 3983 3984 if (!map) 3985 return -ENOMEM; 3986 3987 flush_all(s); 3988 for_each_node_state(node, N_NORMAL_MEMORY) { 3989 struct kmem_cache_node *n = get_node(s, node); 3990 3991 count += validate_slab_node(s, n, map); 3992 } 3993 kfree(map); 3994 return count; 3995 } 3996 /* 3997 * Generate lists of code addresses where slabcache objects are allocated 3998 * and freed. 3999 */ 4000 4001 struct location { 4002 unsigned long count; 4003 unsigned long addr; 4004 long long sum_time; 4005 long min_time; 4006 long max_time; 4007 long min_pid; 4008 long max_pid; 4009 DECLARE_BITMAP(cpus, NR_CPUS); 4010 nodemask_t nodes; 4011 }; 4012 4013 struct loc_track { 4014 unsigned long max; 4015 unsigned long count; 4016 struct location *loc; 4017 }; 4018 4019 static void free_loc_track(struct loc_track *t) 4020 { 4021 if (t->max) 4022 free_pages((unsigned long)t->loc, 4023 get_order(sizeof(struct location) * t->max)); 4024 } 4025 4026 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4027 { 4028 struct location *l; 4029 int order; 4030 4031 order = get_order(sizeof(struct location) * max); 4032 4033 l = (void *)__get_free_pages(flags, order); 4034 if (!l) 4035 return 0; 4036 4037 if (t->count) { 4038 memcpy(l, t->loc, sizeof(struct location) * t->count); 4039 free_loc_track(t); 4040 } 4041 t->max = max; 4042 t->loc = l; 4043 return 1; 4044 } 4045 4046 static int add_location(struct loc_track *t, struct kmem_cache *s, 4047 const struct track *track) 4048 { 4049 long start, end, pos; 4050 struct location *l; 4051 unsigned long caddr; 4052 unsigned long age = jiffies - track->when; 4053 4054 start = -1; 4055 end = t->count; 4056 4057 for ( ; ; ) { 4058 pos = start + (end - start + 1) / 2; 4059 4060 /* 4061 * There is nothing at "end". If we end up there 4062 * we need to add something to before end. 4063 */ 4064 if (pos == end) 4065 break; 4066 4067 caddr = t->loc[pos].addr; 4068 if (track->addr == caddr) { 4069 4070 l = &t->loc[pos]; 4071 l->count++; 4072 if (track->when) { 4073 l->sum_time += age; 4074 if (age < l->min_time) 4075 l->min_time = age; 4076 if (age > l->max_time) 4077 l->max_time = age; 4078 4079 if (track->pid < l->min_pid) 4080 l->min_pid = track->pid; 4081 if (track->pid > l->max_pid) 4082 l->max_pid = track->pid; 4083 4084 cpumask_set_cpu(track->cpu, 4085 to_cpumask(l->cpus)); 4086 } 4087 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4088 return 1; 4089 } 4090 4091 if (track->addr < caddr) 4092 end = pos; 4093 else 4094 start = pos; 4095 } 4096 4097 /* 4098 * Not found. Insert new tracking element. 4099 */ 4100 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4101 return 0; 4102 4103 l = t->loc + pos; 4104 if (pos < t->count) 4105 memmove(l + 1, l, 4106 (t->count - pos) * sizeof(struct location)); 4107 t->count++; 4108 l->count = 1; 4109 l->addr = track->addr; 4110 l->sum_time = age; 4111 l->min_time = age; 4112 l->max_time = age; 4113 l->min_pid = track->pid; 4114 l->max_pid = track->pid; 4115 cpumask_clear(to_cpumask(l->cpus)); 4116 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4117 nodes_clear(l->nodes); 4118 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4119 return 1; 4120 } 4121 4122 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4123 struct page *page, enum track_item alloc, 4124 unsigned long *map) 4125 { 4126 void *addr = page_address(page); 4127 void *p; 4128 4129 bitmap_zero(map, page->objects); 4130 get_map(s, page, map); 4131 4132 for_each_object(p, s, addr, page->objects) 4133 if (!test_bit(slab_index(p, s, addr), map)) 4134 add_location(t, s, get_track(s, p, alloc)); 4135 } 4136 4137 static int list_locations(struct kmem_cache *s, char *buf, 4138 enum track_item alloc) 4139 { 4140 int len = 0; 4141 unsigned long i; 4142 struct loc_track t = { 0, 0, NULL }; 4143 int node; 4144 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4145 sizeof(unsigned long), GFP_KERNEL); 4146 4147 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4148 GFP_TEMPORARY)) { 4149 kfree(map); 4150 return sprintf(buf, "Out of memory\n"); 4151 } 4152 /* Push back cpu slabs */ 4153 flush_all(s); 4154 4155 for_each_node_state(node, N_NORMAL_MEMORY) { 4156 struct kmem_cache_node *n = get_node(s, node); 4157 unsigned long flags; 4158 struct page *page; 4159 4160 if (!atomic_long_read(&n->nr_slabs)) 4161 continue; 4162 4163 spin_lock_irqsave(&n->list_lock, flags); 4164 list_for_each_entry(page, &n->partial, lru) 4165 process_slab(&t, s, page, alloc, map); 4166 list_for_each_entry(page, &n->full, lru) 4167 process_slab(&t, s, page, alloc, map); 4168 spin_unlock_irqrestore(&n->list_lock, flags); 4169 } 4170 4171 for (i = 0; i < t.count; i++) { 4172 struct location *l = &t.loc[i]; 4173 4174 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4175 break; 4176 len += sprintf(buf + len, "%7ld ", l->count); 4177 4178 if (l->addr) 4179 len += sprintf(buf + len, "%pS", (void *)l->addr); 4180 else 4181 len += sprintf(buf + len, "<not-available>"); 4182 4183 if (l->sum_time != l->min_time) { 4184 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4185 l->min_time, 4186 (long)div_u64(l->sum_time, l->count), 4187 l->max_time); 4188 } else 4189 len += sprintf(buf + len, " age=%ld", 4190 l->min_time); 4191 4192 if (l->min_pid != l->max_pid) 4193 len += sprintf(buf + len, " pid=%ld-%ld", 4194 l->min_pid, l->max_pid); 4195 else 4196 len += sprintf(buf + len, " pid=%ld", 4197 l->min_pid); 4198 4199 if (num_online_cpus() > 1 && 4200 !cpumask_empty(to_cpumask(l->cpus)) && 4201 len < PAGE_SIZE - 60) { 4202 len += sprintf(buf + len, " cpus="); 4203 len += cpulist_scnprintf(buf + len, 4204 PAGE_SIZE - len - 50, 4205 to_cpumask(l->cpus)); 4206 } 4207 4208 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4209 len < PAGE_SIZE - 60) { 4210 len += sprintf(buf + len, " nodes="); 4211 len += nodelist_scnprintf(buf + len, 4212 PAGE_SIZE - len - 50, 4213 l->nodes); 4214 } 4215 4216 len += sprintf(buf + len, "\n"); 4217 } 4218 4219 free_loc_track(&t); 4220 kfree(map); 4221 if (!t.count) 4222 len += sprintf(buf, "No data\n"); 4223 return len; 4224 } 4225 #endif 4226 4227 #ifdef SLUB_RESILIENCY_TEST 4228 static void resiliency_test(void) 4229 { 4230 u8 *p; 4231 4232 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4233 4234 printk(KERN_ERR "SLUB resiliency testing\n"); 4235 printk(KERN_ERR "-----------------------\n"); 4236 printk(KERN_ERR "A. Corruption after allocation\n"); 4237 4238 p = kzalloc(16, GFP_KERNEL); 4239 p[16] = 0x12; 4240 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4241 " 0x12->0x%p\n\n", p + 16); 4242 4243 validate_slab_cache(kmalloc_caches[4]); 4244 4245 /* Hmmm... The next two are dangerous */ 4246 p = kzalloc(32, GFP_KERNEL); 4247 p[32 + sizeof(void *)] = 0x34; 4248 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4249 " 0x34 -> -0x%p\n", p); 4250 printk(KERN_ERR 4251 "If allocated object is overwritten then not detectable\n\n"); 4252 4253 validate_slab_cache(kmalloc_caches[5]); 4254 p = kzalloc(64, GFP_KERNEL); 4255 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4256 *p = 0x56; 4257 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4258 p); 4259 printk(KERN_ERR 4260 "If allocated object is overwritten then not detectable\n\n"); 4261 validate_slab_cache(kmalloc_caches[6]); 4262 4263 printk(KERN_ERR "\nB. Corruption after free\n"); 4264 p = kzalloc(128, GFP_KERNEL); 4265 kfree(p); 4266 *p = 0x78; 4267 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4268 validate_slab_cache(kmalloc_caches[7]); 4269 4270 p = kzalloc(256, GFP_KERNEL); 4271 kfree(p); 4272 p[50] = 0x9a; 4273 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4274 p); 4275 validate_slab_cache(kmalloc_caches[8]); 4276 4277 p = kzalloc(512, GFP_KERNEL); 4278 kfree(p); 4279 p[512] = 0xab; 4280 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4281 validate_slab_cache(kmalloc_caches[9]); 4282 } 4283 #else 4284 #ifdef CONFIG_SYSFS 4285 static void resiliency_test(void) {}; 4286 #endif 4287 #endif 4288 4289 #ifdef CONFIG_SYSFS 4290 enum slab_stat_type { 4291 SL_ALL, /* All slabs */ 4292 SL_PARTIAL, /* Only partially allocated slabs */ 4293 SL_CPU, /* Only slabs used for cpu caches */ 4294 SL_OBJECTS, /* Determine allocated objects not slabs */ 4295 SL_TOTAL /* Determine object capacity not slabs */ 4296 }; 4297 4298 #define SO_ALL (1 << SL_ALL) 4299 #define SO_PARTIAL (1 << SL_PARTIAL) 4300 #define SO_CPU (1 << SL_CPU) 4301 #define SO_OBJECTS (1 << SL_OBJECTS) 4302 #define SO_TOTAL (1 << SL_TOTAL) 4303 4304 static ssize_t show_slab_objects(struct kmem_cache *s, 4305 char *buf, unsigned long flags) 4306 { 4307 unsigned long total = 0; 4308 int node; 4309 int x; 4310 unsigned long *nodes; 4311 4312 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4313 if (!nodes) 4314 return -ENOMEM; 4315 4316 if (flags & SO_CPU) { 4317 int cpu; 4318 4319 for_each_possible_cpu(cpu) { 4320 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4321 cpu); 4322 int node; 4323 struct page *page; 4324 4325 page = ACCESS_ONCE(c->page); 4326 if (!page) 4327 continue; 4328 4329 node = page_to_nid(page); 4330 if (flags & SO_TOTAL) 4331 x = page->objects; 4332 else if (flags & SO_OBJECTS) 4333 x = page->inuse; 4334 else 4335 x = 1; 4336 4337 total += x; 4338 nodes[node] += x; 4339 4340 page = ACCESS_ONCE(c->partial); 4341 if (page) { 4342 node = page_to_nid(page); 4343 if (flags & SO_TOTAL) 4344 WARN_ON_ONCE(1); 4345 else if (flags & SO_OBJECTS) 4346 WARN_ON_ONCE(1); 4347 else 4348 x = page->pages; 4349 total += x; 4350 nodes[node] += x; 4351 } 4352 } 4353 } 4354 4355 lock_memory_hotplug(); 4356 #ifdef CONFIG_SLUB_DEBUG 4357 if (flags & SO_ALL) { 4358 for_each_node_state(node, N_NORMAL_MEMORY) { 4359 struct kmem_cache_node *n = get_node(s, node); 4360 4361 if (flags & SO_TOTAL) 4362 x = atomic_long_read(&n->total_objects); 4363 else if (flags & SO_OBJECTS) 4364 x = atomic_long_read(&n->total_objects) - 4365 count_partial(n, count_free); 4366 else 4367 x = atomic_long_read(&n->nr_slabs); 4368 total += x; 4369 nodes[node] += x; 4370 } 4371 4372 } else 4373 #endif 4374 if (flags & SO_PARTIAL) { 4375 for_each_node_state(node, N_NORMAL_MEMORY) { 4376 struct kmem_cache_node *n = get_node(s, node); 4377 4378 if (flags & SO_TOTAL) 4379 x = count_partial(n, count_total); 4380 else if (flags & SO_OBJECTS) 4381 x = count_partial(n, count_inuse); 4382 else 4383 x = n->nr_partial; 4384 total += x; 4385 nodes[node] += x; 4386 } 4387 } 4388 x = sprintf(buf, "%lu", total); 4389 #ifdef CONFIG_NUMA 4390 for_each_node_state(node, N_NORMAL_MEMORY) 4391 if (nodes[node]) 4392 x += sprintf(buf + x, " N%d=%lu", 4393 node, nodes[node]); 4394 #endif 4395 unlock_memory_hotplug(); 4396 kfree(nodes); 4397 return x + sprintf(buf + x, "\n"); 4398 } 4399 4400 #ifdef CONFIG_SLUB_DEBUG 4401 static int any_slab_objects(struct kmem_cache *s) 4402 { 4403 int node; 4404 4405 for_each_online_node(node) { 4406 struct kmem_cache_node *n = get_node(s, node); 4407 4408 if (!n) 4409 continue; 4410 4411 if (atomic_long_read(&n->total_objects)) 4412 return 1; 4413 } 4414 return 0; 4415 } 4416 #endif 4417 4418 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4419 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4420 4421 struct slab_attribute { 4422 struct attribute attr; 4423 ssize_t (*show)(struct kmem_cache *s, char *buf); 4424 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4425 }; 4426 4427 #define SLAB_ATTR_RO(_name) \ 4428 static struct slab_attribute _name##_attr = \ 4429 __ATTR(_name, 0400, _name##_show, NULL) 4430 4431 #define SLAB_ATTR(_name) \ 4432 static struct slab_attribute _name##_attr = \ 4433 __ATTR(_name, 0600, _name##_show, _name##_store) 4434 4435 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4436 { 4437 return sprintf(buf, "%d\n", s->size); 4438 } 4439 SLAB_ATTR_RO(slab_size); 4440 4441 static ssize_t align_show(struct kmem_cache *s, char *buf) 4442 { 4443 return sprintf(buf, "%d\n", s->align); 4444 } 4445 SLAB_ATTR_RO(align); 4446 4447 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4448 { 4449 return sprintf(buf, "%d\n", s->object_size); 4450 } 4451 SLAB_ATTR_RO(object_size); 4452 4453 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4454 { 4455 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4456 } 4457 SLAB_ATTR_RO(objs_per_slab); 4458 4459 static ssize_t order_store(struct kmem_cache *s, 4460 const char *buf, size_t length) 4461 { 4462 unsigned long order; 4463 int err; 4464 4465 err = kstrtoul(buf, 10, &order); 4466 if (err) 4467 return err; 4468 4469 if (order > slub_max_order || order < slub_min_order) 4470 return -EINVAL; 4471 4472 calculate_sizes(s, order); 4473 return length; 4474 } 4475 4476 static ssize_t order_show(struct kmem_cache *s, char *buf) 4477 { 4478 return sprintf(buf, "%d\n", oo_order(s->oo)); 4479 } 4480 SLAB_ATTR(order); 4481 4482 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4483 { 4484 return sprintf(buf, "%lu\n", s->min_partial); 4485 } 4486 4487 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4488 size_t length) 4489 { 4490 unsigned long min; 4491 int err; 4492 4493 err = kstrtoul(buf, 10, &min); 4494 if (err) 4495 return err; 4496 4497 set_min_partial(s, min); 4498 return length; 4499 } 4500 SLAB_ATTR(min_partial); 4501 4502 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4503 { 4504 return sprintf(buf, "%u\n", s->cpu_partial); 4505 } 4506 4507 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4508 size_t length) 4509 { 4510 unsigned long objects; 4511 int err; 4512 4513 err = kstrtoul(buf, 10, &objects); 4514 if (err) 4515 return err; 4516 if (objects && !kmem_cache_has_cpu_partial(s)) 4517 return -EINVAL; 4518 4519 s->cpu_partial = objects; 4520 flush_all(s); 4521 return length; 4522 } 4523 SLAB_ATTR(cpu_partial); 4524 4525 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4526 { 4527 if (!s->ctor) 4528 return 0; 4529 return sprintf(buf, "%pS\n", s->ctor); 4530 } 4531 SLAB_ATTR_RO(ctor); 4532 4533 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4534 { 4535 return sprintf(buf, "%d\n", s->refcount - 1); 4536 } 4537 SLAB_ATTR_RO(aliases); 4538 4539 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4540 { 4541 return show_slab_objects(s, buf, SO_PARTIAL); 4542 } 4543 SLAB_ATTR_RO(partial); 4544 4545 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4546 { 4547 return show_slab_objects(s, buf, SO_CPU); 4548 } 4549 SLAB_ATTR_RO(cpu_slabs); 4550 4551 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4552 { 4553 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4554 } 4555 SLAB_ATTR_RO(objects); 4556 4557 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4558 { 4559 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4560 } 4561 SLAB_ATTR_RO(objects_partial); 4562 4563 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4564 { 4565 int objects = 0; 4566 int pages = 0; 4567 int cpu; 4568 int len; 4569 4570 for_each_online_cpu(cpu) { 4571 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4572 4573 if (page) { 4574 pages += page->pages; 4575 objects += page->pobjects; 4576 } 4577 } 4578 4579 len = sprintf(buf, "%d(%d)", objects, pages); 4580 4581 #ifdef CONFIG_SMP 4582 for_each_online_cpu(cpu) { 4583 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4584 4585 if (page && len < PAGE_SIZE - 20) 4586 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4587 page->pobjects, page->pages); 4588 } 4589 #endif 4590 return len + sprintf(buf + len, "\n"); 4591 } 4592 SLAB_ATTR_RO(slabs_cpu_partial); 4593 4594 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4595 { 4596 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4597 } 4598 4599 static ssize_t reclaim_account_store(struct kmem_cache *s, 4600 const char *buf, size_t length) 4601 { 4602 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4603 if (buf[0] == '1') 4604 s->flags |= SLAB_RECLAIM_ACCOUNT; 4605 return length; 4606 } 4607 SLAB_ATTR(reclaim_account); 4608 4609 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4610 { 4611 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4612 } 4613 SLAB_ATTR_RO(hwcache_align); 4614 4615 #ifdef CONFIG_ZONE_DMA 4616 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4617 { 4618 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4619 } 4620 SLAB_ATTR_RO(cache_dma); 4621 #endif 4622 4623 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4624 { 4625 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4626 } 4627 SLAB_ATTR_RO(destroy_by_rcu); 4628 4629 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4630 { 4631 return sprintf(buf, "%d\n", s->reserved); 4632 } 4633 SLAB_ATTR_RO(reserved); 4634 4635 #ifdef CONFIG_SLUB_DEBUG 4636 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4637 { 4638 return show_slab_objects(s, buf, SO_ALL); 4639 } 4640 SLAB_ATTR_RO(slabs); 4641 4642 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4643 { 4644 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4645 } 4646 SLAB_ATTR_RO(total_objects); 4647 4648 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4649 { 4650 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4651 } 4652 4653 static ssize_t sanity_checks_store(struct kmem_cache *s, 4654 const char *buf, size_t length) 4655 { 4656 s->flags &= ~SLAB_DEBUG_FREE; 4657 if (buf[0] == '1') { 4658 s->flags &= ~__CMPXCHG_DOUBLE; 4659 s->flags |= SLAB_DEBUG_FREE; 4660 } 4661 return length; 4662 } 4663 SLAB_ATTR(sanity_checks); 4664 4665 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4666 { 4667 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4668 } 4669 4670 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4671 size_t length) 4672 { 4673 s->flags &= ~SLAB_TRACE; 4674 if (buf[0] == '1') { 4675 s->flags &= ~__CMPXCHG_DOUBLE; 4676 s->flags |= SLAB_TRACE; 4677 } 4678 return length; 4679 } 4680 SLAB_ATTR(trace); 4681 4682 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4683 { 4684 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4685 } 4686 4687 static ssize_t red_zone_store(struct kmem_cache *s, 4688 const char *buf, size_t length) 4689 { 4690 if (any_slab_objects(s)) 4691 return -EBUSY; 4692 4693 s->flags &= ~SLAB_RED_ZONE; 4694 if (buf[0] == '1') { 4695 s->flags &= ~__CMPXCHG_DOUBLE; 4696 s->flags |= SLAB_RED_ZONE; 4697 } 4698 calculate_sizes(s, -1); 4699 return length; 4700 } 4701 SLAB_ATTR(red_zone); 4702 4703 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4704 { 4705 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4706 } 4707 4708 static ssize_t poison_store(struct kmem_cache *s, 4709 const char *buf, size_t length) 4710 { 4711 if (any_slab_objects(s)) 4712 return -EBUSY; 4713 4714 s->flags &= ~SLAB_POISON; 4715 if (buf[0] == '1') { 4716 s->flags &= ~__CMPXCHG_DOUBLE; 4717 s->flags |= SLAB_POISON; 4718 } 4719 calculate_sizes(s, -1); 4720 return length; 4721 } 4722 SLAB_ATTR(poison); 4723 4724 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4725 { 4726 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4727 } 4728 4729 static ssize_t store_user_store(struct kmem_cache *s, 4730 const char *buf, size_t length) 4731 { 4732 if (any_slab_objects(s)) 4733 return -EBUSY; 4734 4735 s->flags &= ~SLAB_STORE_USER; 4736 if (buf[0] == '1') { 4737 s->flags &= ~__CMPXCHG_DOUBLE; 4738 s->flags |= SLAB_STORE_USER; 4739 } 4740 calculate_sizes(s, -1); 4741 return length; 4742 } 4743 SLAB_ATTR(store_user); 4744 4745 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4746 { 4747 return 0; 4748 } 4749 4750 static ssize_t validate_store(struct kmem_cache *s, 4751 const char *buf, size_t length) 4752 { 4753 int ret = -EINVAL; 4754 4755 if (buf[0] == '1') { 4756 ret = validate_slab_cache(s); 4757 if (ret >= 0) 4758 ret = length; 4759 } 4760 return ret; 4761 } 4762 SLAB_ATTR(validate); 4763 4764 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4765 { 4766 if (!(s->flags & SLAB_STORE_USER)) 4767 return -ENOSYS; 4768 return list_locations(s, buf, TRACK_ALLOC); 4769 } 4770 SLAB_ATTR_RO(alloc_calls); 4771 4772 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4773 { 4774 if (!(s->flags & SLAB_STORE_USER)) 4775 return -ENOSYS; 4776 return list_locations(s, buf, TRACK_FREE); 4777 } 4778 SLAB_ATTR_RO(free_calls); 4779 #endif /* CONFIG_SLUB_DEBUG */ 4780 4781 #ifdef CONFIG_FAILSLAB 4782 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4783 { 4784 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4785 } 4786 4787 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4788 size_t length) 4789 { 4790 s->flags &= ~SLAB_FAILSLAB; 4791 if (buf[0] == '1') 4792 s->flags |= SLAB_FAILSLAB; 4793 return length; 4794 } 4795 SLAB_ATTR(failslab); 4796 #endif 4797 4798 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4799 { 4800 return 0; 4801 } 4802 4803 static ssize_t shrink_store(struct kmem_cache *s, 4804 const char *buf, size_t length) 4805 { 4806 if (buf[0] == '1') { 4807 int rc = kmem_cache_shrink(s); 4808 4809 if (rc) 4810 return rc; 4811 } else 4812 return -EINVAL; 4813 return length; 4814 } 4815 SLAB_ATTR(shrink); 4816 4817 #ifdef CONFIG_NUMA 4818 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4819 { 4820 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4821 } 4822 4823 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4824 const char *buf, size_t length) 4825 { 4826 unsigned long ratio; 4827 int err; 4828 4829 err = kstrtoul(buf, 10, &ratio); 4830 if (err) 4831 return err; 4832 4833 if (ratio <= 100) 4834 s->remote_node_defrag_ratio = ratio * 10; 4835 4836 return length; 4837 } 4838 SLAB_ATTR(remote_node_defrag_ratio); 4839 #endif 4840 4841 #ifdef CONFIG_SLUB_STATS 4842 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4843 { 4844 unsigned long sum = 0; 4845 int cpu; 4846 int len; 4847 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4848 4849 if (!data) 4850 return -ENOMEM; 4851 4852 for_each_online_cpu(cpu) { 4853 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4854 4855 data[cpu] = x; 4856 sum += x; 4857 } 4858 4859 len = sprintf(buf, "%lu", sum); 4860 4861 #ifdef CONFIG_SMP 4862 for_each_online_cpu(cpu) { 4863 if (data[cpu] && len < PAGE_SIZE - 20) 4864 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4865 } 4866 #endif 4867 kfree(data); 4868 return len + sprintf(buf + len, "\n"); 4869 } 4870 4871 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4872 { 4873 int cpu; 4874 4875 for_each_online_cpu(cpu) 4876 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4877 } 4878 4879 #define STAT_ATTR(si, text) \ 4880 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4881 { \ 4882 return show_stat(s, buf, si); \ 4883 } \ 4884 static ssize_t text##_store(struct kmem_cache *s, \ 4885 const char *buf, size_t length) \ 4886 { \ 4887 if (buf[0] != '0') \ 4888 return -EINVAL; \ 4889 clear_stat(s, si); \ 4890 return length; \ 4891 } \ 4892 SLAB_ATTR(text); \ 4893 4894 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4895 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4896 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4897 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4898 STAT_ATTR(FREE_FROZEN, free_frozen); 4899 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4900 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4901 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4902 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4903 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4904 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4905 STAT_ATTR(FREE_SLAB, free_slab); 4906 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4907 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4908 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4909 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4910 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4911 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4912 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4913 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4914 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4915 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4916 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4917 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4918 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4919 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4920 #endif 4921 4922 static struct attribute *slab_attrs[] = { 4923 &slab_size_attr.attr, 4924 &object_size_attr.attr, 4925 &objs_per_slab_attr.attr, 4926 &order_attr.attr, 4927 &min_partial_attr.attr, 4928 &cpu_partial_attr.attr, 4929 &objects_attr.attr, 4930 &objects_partial_attr.attr, 4931 &partial_attr.attr, 4932 &cpu_slabs_attr.attr, 4933 &ctor_attr.attr, 4934 &aliases_attr.attr, 4935 &align_attr.attr, 4936 &hwcache_align_attr.attr, 4937 &reclaim_account_attr.attr, 4938 &destroy_by_rcu_attr.attr, 4939 &shrink_attr.attr, 4940 &reserved_attr.attr, 4941 &slabs_cpu_partial_attr.attr, 4942 #ifdef CONFIG_SLUB_DEBUG 4943 &total_objects_attr.attr, 4944 &slabs_attr.attr, 4945 &sanity_checks_attr.attr, 4946 &trace_attr.attr, 4947 &red_zone_attr.attr, 4948 &poison_attr.attr, 4949 &store_user_attr.attr, 4950 &validate_attr.attr, 4951 &alloc_calls_attr.attr, 4952 &free_calls_attr.attr, 4953 #endif 4954 #ifdef CONFIG_ZONE_DMA 4955 &cache_dma_attr.attr, 4956 #endif 4957 #ifdef CONFIG_NUMA 4958 &remote_node_defrag_ratio_attr.attr, 4959 #endif 4960 #ifdef CONFIG_SLUB_STATS 4961 &alloc_fastpath_attr.attr, 4962 &alloc_slowpath_attr.attr, 4963 &free_fastpath_attr.attr, 4964 &free_slowpath_attr.attr, 4965 &free_frozen_attr.attr, 4966 &free_add_partial_attr.attr, 4967 &free_remove_partial_attr.attr, 4968 &alloc_from_partial_attr.attr, 4969 &alloc_slab_attr.attr, 4970 &alloc_refill_attr.attr, 4971 &alloc_node_mismatch_attr.attr, 4972 &free_slab_attr.attr, 4973 &cpuslab_flush_attr.attr, 4974 &deactivate_full_attr.attr, 4975 &deactivate_empty_attr.attr, 4976 &deactivate_to_head_attr.attr, 4977 &deactivate_to_tail_attr.attr, 4978 &deactivate_remote_frees_attr.attr, 4979 &deactivate_bypass_attr.attr, 4980 &order_fallback_attr.attr, 4981 &cmpxchg_double_fail_attr.attr, 4982 &cmpxchg_double_cpu_fail_attr.attr, 4983 &cpu_partial_alloc_attr.attr, 4984 &cpu_partial_free_attr.attr, 4985 &cpu_partial_node_attr.attr, 4986 &cpu_partial_drain_attr.attr, 4987 #endif 4988 #ifdef CONFIG_FAILSLAB 4989 &failslab_attr.attr, 4990 #endif 4991 4992 NULL 4993 }; 4994 4995 static struct attribute_group slab_attr_group = { 4996 .attrs = slab_attrs, 4997 }; 4998 4999 static ssize_t slab_attr_show(struct kobject *kobj, 5000 struct attribute *attr, 5001 char *buf) 5002 { 5003 struct slab_attribute *attribute; 5004 struct kmem_cache *s; 5005 int err; 5006 5007 attribute = to_slab_attr(attr); 5008 s = to_slab(kobj); 5009 5010 if (!attribute->show) 5011 return -EIO; 5012 5013 err = attribute->show(s, buf); 5014 5015 return err; 5016 } 5017 5018 static ssize_t slab_attr_store(struct kobject *kobj, 5019 struct attribute *attr, 5020 const char *buf, size_t len) 5021 { 5022 struct slab_attribute *attribute; 5023 struct kmem_cache *s; 5024 int err; 5025 5026 attribute = to_slab_attr(attr); 5027 s = to_slab(kobj); 5028 5029 if (!attribute->store) 5030 return -EIO; 5031 5032 err = attribute->store(s, buf, len); 5033 #ifdef CONFIG_MEMCG_KMEM 5034 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5035 int i; 5036 5037 mutex_lock(&slab_mutex); 5038 if (s->max_attr_size < len) 5039 s->max_attr_size = len; 5040 5041 /* 5042 * This is a best effort propagation, so this function's return 5043 * value will be determined by the parent cache only. This is 5044 * basically because not all attributes will have a well 5045 * defined semantics for rollbacks - most of the actions will 5046 * have permanent effects. 5047 * 5048 * Returning the error value of any of the children that fail 5049 * is not 100 % defined, in the sense that users seeing the 5050 * error code won't be able to know anything about the state of 5051 * the cache. 5052 * 5053 * Only returning the error code for the parent cache at least 5054 * has well defined semantics. The cache being written to 5055 * directly either failed or succeeded, in which case we loop 5056 * through the descendants with best-effort propagation. 5057 */ 5058 for_each_memcg_cache_index(i) { 5059 struct kmem_cache *c = cache_from_memcg_idx(s, i); 5060 if (c) 5061 attribute->store(c, buf, len); 5062 } 5063 mutex_unlock(&slab_mutex); 5064 } 5065 #endif 5066 return err; 5067 } 5068 5069 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5070 { 5071 #ifdef CONFIG_MEMCG_KMEM 5072 int i; 5073 char *buffer = NULL; 5074 5075 if (!is_root_cache(s)) 5076 return; 5077 5078 /* 5079 * This mean this cache had no attribute written. Therefore, no point 5080 * in copying default values around 5081 */ 5082 if (!s->max_attr_size) 5083 return; 5084 5085 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5086 char mbuf[64]; 5087 char *buf; 5088 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5089 5090 if (!attr || !attr->store || !attr->show) 5091 continue; 5092 5093 /* 5094 * It is really bad that we have to allocate here, so we will 5095 * do it only as a fallback. If we actually allocate, though, 5096 * we can just use the allocated buffer until the end. 5097 * 5098 * Most of the slub attributes will tend to be very small in 5099 * size, but sysfs allows buffers up to a page, so they can 5100 * theoretically happen. 5101 */ 5102 if (buffer) 5103 buf = buffer; 5104 else if (s->max_attr_size < ARRAY_SIZE(mbuf)) 5105 buf = mbuf; 5106 else { 5107 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5108 if (WARN_ON(!buffer)) 5109 continue; 5110 buf = buffer; 5111 } 5112 5113 attr->show(s->memcg_params->root_cache, buf); 5114 attr->store(s, buf, strlen(buf)); 5115 } 5116 5117 if (buffer) 5118 free_page((unsigned long)buffer); 5119 #endif 5120 } 5121 5122 static const struct sysfs_ops slab_sysfs_ops = { 5123 .show = slab_attr_show, 5124 .store = slab_attr_store, 5125 }; 5126 5127 static struct kobj_type slab_ktype = { 5128 .sysfs_ops = &slab_sysfs_ops, 5129 }; 5130 5131 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5132 { 5133 struct kobj_type *ktype = get_ktype(kobj); 5134 5135 if (ktype == &slab_ktype) 5136 return 1; 5137 return 0; 5138 } 5139 5140 static const struct kset_uevent_ops slab_uevent_ops = { 5141 .filter = uevent_filter, 5142 }; 5143 5144 static struct kset *slab_kset; 5145 5146 static inline struct kset *cache_kset(struct kmem_cache *s) 5147 { 5148 #ifdef CONFIG_MEMCG_KMEM 5149 if (!is_root_cache(s)) 5150 return s->memcg_params->root_cache->memcg_kset; 5151 #endif 5152 return slab_kset; 5153 } 5154 5155 #define ID_STR_LENGTH 64 5156 5157 /* Create a unique string id for a slab cache: 5158 * 5159 * Format :[flags-]size 5160 */ 5161 static char *create_unique_id(struct kmem_cache *s) 5162 { 5163 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5164 char *p = name; 5165 5166 BUG_ON(!name); 5167 5168 *p++ = ':'; 5169 /* 5170 * First flags affecting slabcache operations. We will only 5171 * get here for aliasable slabs so we do not need to support 5172 * too many flags. The flags here must cover all flags that 5173 * are matched during merging to guarantee that the id is 5174 * unique. 5175 */ 5176 if (s->flags & SLAB_CACHE_DMA) 5177 *p++ = 'd'; 5178 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5179 *p++ = 'a'; 5180 if (s->flags & SLAB_DEBUG_FREE) 5181 *p++ = 'F'; 5182 if (!(s->flags & SLAB_NOTRACK)) 5183 *p++ = 't'; 5184 if (p != name + 1) 5185 *p++ = '-'; 5186 p += sprintf(p, "%07d", s->size); 5187 5188 #ifdef CONFIG_MEMCG_KMEM 5189 if (!is_root_cache(s)) 5190 p += sprintf(p, "-%08d", 5191 memcg_cache_id(s->memcg_params->memcg)); 5192 #endif 5193 5194 BUG_ON(p > name + ID_STR_LENGTH - 1); 5195 return name; 5196 } 5197 5198 static int sysfs_slab_add(struct kmem_cache *s) 5199 { 5200 int err; 5201 const char *name; 5202 int unmergeable = slab_unmergeable(s); 5203 5204 if (unmergeable) { 5205 /* 5206 * Slabcache can never be merged so we can use the name proper. 5207 * This is typically the case for debug situations. In that 5208 * case we can catch duplicate names easily. 5209 */ 5210 sysfs_remove_link(&slab_kset->kobj, s->name); 5211 name = s->name; 5212 } else { 5213 /* 5214 * Create a unique name for the slab as a target 5215 * for the symlinks. 5216 */ 5217 name = create_unique_id(s); 5218 } 5219 5220 s->kobj.kset = cache_kset(s); 5221 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5222 if (err) 5223 goto out_put_kobj; 5224 5225 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5226 if (err) 5227 goto out_del_kobj; 5228 5229 #ifdef CONFIG_MEMCG_KMEM 5230 if (is_root_cache(s)) { 5231 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5232 if (!s->memcg_kset) { 5233 err = -ENOMEM; 5234 goto out_del_kobj; 5235 } 5236 } 5237 #endif 5238 5239 kobject_uevent(&s->kobj, KOBJ_ADD); 5240 if (!unmergeable) { 5241 /* Setup first alias */ 5242 sysfs_slab_alias(s, s->name); 5243 } 5244 out: 5245 if (!unmergeable) 5246 kfree(name); 5247 return err; 5248 out_del_kobj: 5249 kobject_del(&s->kobj); 5250 out_put_kobj: 5251 kobject_put(&s->kobj); 5252 goto out; 5253 } 5254 5255 static void sysfs_slab_remove(struct kmem_cache *s) 5256 { 5257 if (slab_state < FULL) 5258 /* 5259 * Sysfs has not been setup yet so no need to remove the 5260 * cache from sysfs. 5261 */ 5262 return; 5263 5264 #ifdef CONFIG_MEMCG_KMEM 5265 kset_unregister(s->memcg_kset); 5266 #endif 5267 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5268 kobject_del(&s->kobj); 5269 kobject_put(&s->kobj); 5270 } 5271 5272 /* 5273 * Need to buffer aliases during bootup until sysfs becomes 5274 * available lest we lose that information. 5275 */ 5276 struct saved_alias { 5277 struct kmem_cache *s; 5278 const char *name; 5279 struct saved_alias *next; 5280 }; 5281 5282 static struct saved_alias *alias_list; 5283 5284 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5285 { 5286 struct saved_alias *al; 5287 5288 if (slab_state == FULL) { 5289 /* 5290 * If we have a leftover link then remove it. 5291 */ 5292 sysfs_remove_link(&slab_kset->kobj, name); 5293 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5294 } 5295 5296 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5297 if (!al) 5298 return -ENOMEM; 5299 5300 al->s = s; 5301 al->name = name; 5302 al->next = alias_list; 5303 alias_list = al; 5304 return 0; 5305 } 5306 5307 static int __init slab_sysfs_init(void) 5308 { 5309 struct kmem_cache *s; 5310 int err; 5311 5312 mutex_lock(&slab_mutex); 5313 5314 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5315 if (!slab_kset) { 5316 mutex_unlock(&slab_mutex); 5317 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5318 return -ENOSYS; 5319 } 5320 5321 slab_state = FULL; 5322 5323 list_for_each_entry(s, &slab_caches, list) { 5324 err = sysfs_slab_add(s); 5325 if (err) 5326 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5327 " to sysfs\n", s->name); 5328 } 5329 5330 while (alias_list) { 5331 struct saved_alias *al = alias_list; 5332 5333 alias_list = alias_list->next; 5334 err = sysfs_slab_alias(al->s, al->name); 5335 if (err) 5336 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5337 " %s to sysfs\n", al->name); 5338 kfree(al); 5339 } 5340 5341 mutex_unlock(&slab_mutex); 5342 resiliency_test(); 5343 return 0; 5344 } 5345 5346 __initcall(slab_sysfs_init); 5347 #endif /* CONFIG_SYSFS */ 5348 5349 /* 5350 * The /proc/slabinfo ABI 5351 */ 5352 #ifdef CONFIG_SLABINFO 5353 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5354 { 5355 unsigned long nr_slabs = 0; 5356 unsigned long nr_objs = 0; 5357 unsigned long nr_free = 0; 5358 int node; 5359 5360 for_each_online_node(node) { 5361 struct kmem_cache_node *n = get_node(s, node); 5362 5363 if (!n) 5364 continue; 5365 5366 nr_slabs += node_nr_slabs(n); 5367 nr_objs += node_nr_objs(n); 5368 nr_free += count_partial(n, count_free); 5369 } 5370 5371 sinfo->active_objs = nr_objs - nr_free; 5372 sinfo->num_objs = nr_objs; 5373 sinfo->active_slabs = nr_slabs; 5374 sinfo->num_slabs = nr_slabs; 5375 sinfo->objects_per_slab = oo_objects(s->oo); 5376 sinfo->cache_order = oo_order(s->oo); 5377 } 5378 5379 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5380 { 5381 } 5382 5383 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5384 size_t count, loff_t *ppos) 5385 { 5386 return -EIO; 5387 } 5388 #endif /* CONFIG_SLABINFO */ 5389