1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * page->frozen The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 void *fixup_red_left(struct kmem_cache *s, void *p) 127 { 128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 129 p += s->red_left_pad; 130 131 return p; 132 } 133 134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 135 { 136 #ifdef CONFIG_SLUB_CPU_PARTIAL 137 return !kmem_cache_debug(s); 138 #else 139 return false; 140 #endif 141 } 142 143 /* 144 * Issues still to be resolved: 145 * 146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 147 * 148 * - Variable sizing of the per node arrays 149 */ 150 151 /* Enable to test recovery from slab corruption on boot */ 152 #undef SLUB_RESILIENCY_TEST 153 154 /* Enable to log cmpxchg failures */ 155 #undef SLUB_DEBUG_CMPXCHG 156 157 /* 158 * Mininum number of partial slabs. These will be left on the partial 159 * lists even if they are empty. kmem_cache_shrink may reclaim them. 160 */ 161 #define MIN_PARTIAL 5 162 163 /* 164 * Maximum number of desirable partial slabs. 165 * The existence of more partial slabs makes kmem_cache_shrink 166 * sort the partial list by the number of objects in use. 167 */ 168 #define MAX_PARTIAL 10 169 170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 171 SLAB_POISON | SLAB_STORE_USER) 172 173 /* 174 * These debug flags cannot use CMPXCHG because there might be consistency 175 * issues when checking or reading debug information 176 */ 177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 178 SLAB_TRACE) 179 180 181 /* 182 * Debugging flags that require metadata to be stored in the slab. These get 183 * disabled when slub_debug=O is used and a cache's min order increases with 184 * metadata. 185 */ 186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 187 188 #define OO_SHIFT 16 189 #define OO_MASK ((1 << OO_SHIFT) - 1) 190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 191 192 /* Internal SLUB flags */ 193 /* Poison object */ 194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 195 /* Use cmpxchg_double */ 196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 197 198 /* 199 * Tracking user of a slab. 200 */ 201 #define TRACK_ADDRS_COUNT 16 202 struct track { 203 unsigned long addr; /* Called from address */ 204 #ifdef CONFIG_STACKTRACE 205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 206 #endif 207 int cpu; /* Was running on cpu */ 208 int pid; /* Pid context */ 209 unsigned long when; /* When did the operation occur */ 210 }; 211 212 enum track_item { TRACK_ALLOC, TRACK_FREE }; 213 214 #ifdef CONFIG_SYSFS 215 static int sysfs_slab_add(struct kmem_cache *); 216 static int sysfs_slab_alias(struct kmem_cache *, const char *); 217 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 218 static void sysfs_slab_remove(struct kmem_cache *s); 219 #else 220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 222 { return 0; } 223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 224 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 225 #endif 226 227 static inline void stat(const struct kmem_cache *s, enum stat_item si) 228 { 229 #ifdef CONFIG_SLUB_STATS 230 /* 231 * The rmw is racy on a preemptible kernel but this is acceptable, so 232 * avoid this_cpu_add()'s irq-disable overhead. 233 */ 234 raw_cpu_inc(s->cpu_slab->stat[si]); 235 #endif 236 } 237 238 /******************************************************************** 239 * Core slab cache functions 240 *******************************************************************/ 241 242 /* 243 * Returns freelist pointer (ptr). With hardening, this is obfuscated 244 * with an XOR of the address where the pointer is held and a per-cache 245 * random number. 246 */ 247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 248 unsigned long ptr_addr) 249 { 250 #ifdef CONFIG_SLAB_FREELIST_HARDENED 251 /* 252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 253 * Normally, this doesn't cause any issues, as both set_freepointer() 254 * and get_freepointer() are called with a pointer with the same tag. 255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 256 * example, when __free_slub() iterates over objects in a cache, it 257 * passes untagged pointers to check_object(). check_object() in turns 258 * calls get_freepointer() with an untagged pointer, which causes the 259 * freepointer to be restored incorrectly. 260 */ 261 return (void *)((unsigned long)ptr ^ s->random ^ 262 (unsigned long)kasan_reset_tag((void *)ptr_addr)); 263 #else 264 return ptr; 265 #endif 266 } 267 268 /* Returns the freelist pointer recorded at location ptr_addr. */ 269 static inline void *freelist_dereference(const struct kmem_cache *s, 270 void *ptr_addr) 271 { 272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 273 (unsigned long)ptr_addr); 274 } 275 276 static inline void *get_freepointer(struct kmem_cache *s, void *object) 277 { 278 return freelist_dereference(s, object + s->offset); 279 } 280 281 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 282 { 283 prefetch(object + s->offset); 284 } 285 286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 287 { 288 unsigned long freepointer_addr; 289 void *p; 290 291 if (!debug_pagealloc_enabled_static()) 292 return get_freepointer(s, object); 293 294 freepointer_addr = (unsigned long)object + s->offset; 295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 296 return freelist_ptr(s, p, freepointer_addr); 297 } 298 299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 300 { 301 unsigned long freeptr_addr = (unsigned long)object + s->offset; 302 303 #ifdef CONFIG_SLAB_FREELIST_HARDENED 304 BUG_ON(object == fp); /* naive detection of double free or corruption */ 305 #endif 306 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 308 } 309 310 /* Loop over all objects in a slab */ 311 #define for_each_object(__p, __s, __addr, __objects) \ 312 for (__p = fixup_red_left(__s, __addr); \ 313 __p < (__addr) + (__objects) * (__s)->size; \ 314 __p += (__s)->size) 315 316 /* Determine object index from a given position */ 317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 318 { 319 return (kasan_reset_tag(p) - addr) / s->size; 320 } 321 322 static inline unsigned int order_objects(unsigned int order, unsigned int size) 323 { 324 return ((unsigned int)PAGE_SIZE << order) / size; 325 } 326 327 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 328 unsigned int size) 329 { 330 struct kmem_cache_order_objects x = { 331 (order << OO_SHIFT) + order_objects(order, size) 332 }; 333 334 return x; 335 } 336 337 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 338 { 339 return x.x >> OO_SHIFT; 340 } 341 342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 343 { 344 return x.x & OO_MASK; 345 } 346 347 /* 348 * Per slab locking using the pagelock 349 */ 350 static __always_inline void slab_lock(struct page *page) 351 { 352 VM_BUG_ON_PAGE(PageTail(page), page); 353 bit_spin_lock(PG_locked, &page->flags); 354 } 355 356 static __always_inline void slab_unlock(struct page *page) 357 { 358 VM_BUG_ON_PAGE(PageTail(page), page); 359 __bit_spin_unlock(PG_locked, &page->flags); 360 } 361 362 /* Interrupts must be disabled (for the fallback code to work right) */ 363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 364 void *freelist_old, unsigned long counters_old, 365 void *freelist_new, unsigned long counters_new, 366 const char *n) 367 { 368 VM_BUG_ON(!irqs_disabled()); 369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 371 if (s->flags & __CMPXCHG_DOUBLE) { 372 if (cmpxchg_double(&page->freelist, &page->counters, 373 freelist_old, counters_old, 374 freelist_new, counters_new)) 375 return true; 376 } else 377 #endif 378 { 379 slab_lock(page); 380 if (page->freelist == freelist_old && 381 page->counters == counters_old) { 382 page->freelist = freelist_new; 383 page->counters = counters_new; 384 slab_unlock(page); 385 return true; 386 } 387 slab_unlock(page); 388 } 389 390 cpu_relax(); 391 stat(s, CMPXCHG_DOUBLE_FAIL); 392 393 #ifdef SLUB_DEBUG_CMPXCHG 394 pr_info("%s %s: cmpxchg double redo ", n, s->name); 395 #endif 396 397 return false; 398 } 399 400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 401 void *freelist_old, unsigned long counters_old, 402 void *freelist_new, unsigned long counters_new, 403 const char *n) 404 { 405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 407 if (s->flags & __CMPXCHG_DOUBLE) { 408 if (cmpxchg_double(&page->freelist, &page->counters, 409 freelist_old, counters_old, 410 freelist_new, counters_new)) 411 return true; 412 } else 413 #endif 414 { 415 unsigned long flags; 416 417 local_irq_save(flags); 418 slab_lock(page); 419 if (page->freelist == freelist_old && 420 page->counters == counters_old) { 421 page->freelist = freelist_new; 422 page->counters = counters_new; 423 slab_unlock(page); 424 local_irq_restore(flags); 425 return true; 426 } 427 slab_unlock(page); 428 local_irq_restore(flags); 429 } 430 431 cpu_relax(); 432 stat(s, CMPXCHG_DOUBLE_FAIL); 433 434 #ifdef SLUB_DEBUG_CMPXCHG 435 pr_info("%s %s: cmpxchg double redo ", n, s->name); 436 #endif 437 438 return false; 439 } 440 441 #ifdef CONFIG_SLUB_DEBUG 442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 443 static DEFINE_SPINLOCK(object_map_lock); 444 445 /* 446 * Determine a map of object in use on a page. 447 * 448 * Node listlock must be held to guarantee that the page does 449 * not vanish from under us. 450 */ 451 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 452 { 453 void *p; 454 void *addr = page_address(page); 455 456 VM_BUG_ON(!irqs_disabled()); 457 458 spin_lock(&object_map_lock); 459 460 bitmap_zero(object_map, page->objects); 461 462 for (p = page->freelist; p; p = get_freepointer(s, p)) 463 set_bit(slab_index(p, s, addr), object_map); 464 465 return object_map; 466 } 467 468 static void put_map(unsigned long *map) 469 { 470 VM_BUG_ON(map != object_map); 471 lockdep_assert_held(&object_map_lock); 472 473 spin_unlock(&object_map_lock); 474 } 475 476 static inline unsigned int size_from_object(struct kmem_cache *s) 477 { 478 if (s->flags & SLAB_RED_ZONE) 479 return s->size - s->red_left_pad; 480 481 return s->size; 482 } 483 484 static inline void *restore_red_left(struct kmem_cache *s, void *p) 485 { 486 if (s->flags & SLAB_RED_ZONE) 487 p -= s->red_left_pad; 488 489 return p; 490 } 491 492 /* 493 * Debug settings: 494 */ 495 #if defined(CONFIG_SLUB_DEBUG_ON) 496 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 497 #else 498 static slab_flags_t slub_debug; 499 #endif 500 501 static char *slub_debug_slabs; 502 static int disable_higher_order_debug; 503 504 /* 505 * slub is about to manipulate internal object metadata. This memory lies 506 * outside the range of the allocated object, so accessing it would normally 507 * be reported by kasan as a bounds error. metadata_access_enable() is used 508 * to tell kasan that these accesses are OK. 509 */ 510 static inline void metadata_access_enable(void) 511 { 512 kasan_disable_current(); 513 } 514 515 static inline void metadata_access_disable(void) 516 { 517 kasan_enable_current(); 518 } 519 520 /* 521 * Object debugging 522 */ 523 524 /* Verify that a pointer has an address that is valid within a slab page */ 525 static inline int check_valid_pointer(struct kmem_cache *s, 526 struct page *page, void *object) 527 { 528 void *base; 529 530 if (!object) 531 return 1; 532 533 base = page_address(page); 534 object = kasan_reset_tag(object); 535 object = restore_red_left(s, object); 536 if (object < base || object >= base + page->objects * s->size || 537 (object - base) % s->size) { 538 return 0; 539 } 540 541 return 1; 542 } 543 544 static void print_section(char *level, char *text, u8 *addr, 545 unsigned int length) 546 { 547 metadata_access_enable(); 548 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 549 length, 1); 550 metadata_access_disable(); 551 } 552 553 static struct track *get_track(struct kmem_cache *s, void *object, 554 enum track_item alloc) 555 { 556 struct track *p; 557 558 if (s->offset) 559 p = object + s->offset + sizeof(void *); 560 else 561 p = object + s->inuse; 562 563 return p + alloc; 564 } 565 566 static void set_track(struct kmem_cache *s, void *object, 567 enum track_item alloc, unsigned long addr) 568 { 569 struct track *p = get_track(s, object, alloc); 570 571 if (addr) { 572 #ifdef CONFIG_STACKTRACE 573 unsigned int nr_entries; 574 575 metadata_access_enable(); 576 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 577 metadata_access_disable(); 578 579 if (nr_entries < TRACK_ADDRS_COUNT) 580 p->addrs[nr_entries] = 0; 581 #endif 582 p->addr = addr; 583 p->cpu = smp_processor_id(); 584 p->pid = current->pid; 585 p->when = jiffies; 586 } else { 587 memset(p, 0, sizeof(struct track)); 588 } 589 } 590 591 static void init_tracking(struct kmem_cache *s, void *object) 592 { 593 if (!(s->flags & SLAB_STORE_USER)) 594 return; 595 596 set_track(s, object, TRACK_FREE, 0UL); 597 set_track(s, object, TRACK_ALLOC, 0UL); 598 } 599 600 static void print_track(const char *s, struct track *t, unsigned long pr_time) 601 { 602 if (!t->addr) 603 return; 604 605 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 606 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 607 #ifdef CONFIG_STACKTRACE 608 { 609 int i; 610 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 611 if (t->addrs[i]) 612 pr_err("\t%pS\n", (void *)t->addrs[i]); 613 else 614 break; 615 } 616 #endif 617 } 618 619 static void print_tracking(struct kmem_cache *s, void *object) 620 { 621 unsigned long pr_time = jiffies; 622 if (!(s->flags & SLAB_STORE_USER)) 623 return; 624 625 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 626 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 627 } 628 629 static void print_page_info(struct page *page) 630 { 631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 632 page, page->objects, page->inuse, page->freelist, page->flags); 633 634 } 635 636 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 637 { 638 struct va_format vaf; 639 va_list args; 640 641 va_start(args, fmt); 642 vaf.fmt = fmt; 643 vaf.va = &args; 644 pr_err("=============================================================================\n"); 645 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 646 pr_err("-----------------------------------------------------------------------------\n\n"); 647 648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 649 va_end(args); 650 } 651 652 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 653 { 654 struct va_format vaf; 655 va_list args; 656 657 va_start(args, fmt); 658 vaf.fmt = fmt; 659 vaf.va = &args; 660 pr_err("FIX %s: %pV\n", s->name, &vaf); 661 va_end(args); 662 } 663 664 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 665 { 666 unsigned int off; /* Offset of last byte */ 667 u8 *addr = page_address(page); 668 669 print_tracking(s, p); 670 671 print_page_info(page); 672 673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 674 p, p - addr, get_freepointer(s, p)); 675 676 if (s->flags & SLAB_RED_ZONE) 677 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 678 s->red_left_pad); 679 else if (p > addr + 16) 680 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 681 682 print_section(KERN_ERR, "Object ", p, 683 min_t(unsigned int, s->object_size, PAGE_SIZE)); 684 if (s->flags & SLAB_RED_ZONE) 685 print_section(KERN_ERR, "Redzone ", p + s->object_size, 686 s->inuse - s->object_size); 687 688 if (s->offset) 689 off = s->offset + sizeof(void *); 690 else 691 off = s->inuse; 692 693 if (s->flags & SLAB_STORE_USER) 694 off += 2 * sizeof(struct track); 695 696 off += kasan_metadata_size(s); 697 698 if (off != size_from_object(s)) 699 /* Beginning of the filler is the free pointer */ 700 print_section(KERN_ERR, "Padding ", p + off, 701 size_from_object(s) - off); 702 703 dump_stack(); 704 } 705 706 void object_err(struct kmem_cache *s, struct page *page, 707 u8 *object, char *reason) 708 { 709 slab_bug(s, "%s", reason); 710 print_trailer(s, page, object); 711 } 712 713 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 714 const char *fmt, ...) 715 { 716 va_list args; 717 char buf[100]; 718 719 va_start(args, fmt); 720 vsnprintf(buf, sizeof(buf), fmt, args); 721 va_end(args); 722 slab_bug(s, "%s", buf); 723 print_page_info(page); 724 dump_stack(); 725 } 726 727 static void init_object(struct kmem_cache *s, void *object, u8 val) 728 { 729 u8 *p = object; 730 731 if (s->flags & SLAB_RED_ZONE) 732 memset(p - s->red_left_pad, val, s->red_left_pad); 733 734 if (s->flags & __OBJECT_POISON) { 735 memset(p, POISON_FREE, s->object_size - 1); 736 p[s->object_size - 1] = POISON_END; 737 } 738 739 if (s->flags & SLAB_RED_ZONE) 740 memset(p + s->object_size, val, s->inuse - s->object_size); 741 } 742 743 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 744 void *from, void *to) 745 { 746 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 747 memset(from, data, to - from); 748 } 749 750 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 751 u8 *object, char *what, 752 u8 *start, unsigned int value, unsigned int bytes) 753 { 754 u8 *fault; 755 u8 *end; 756 u8 *addr = page_address(page); 757 758 metadata_access_enable(); 759 fault = memchr_inv(start, value, bytes); 760 metadata_access_disable(); 761 if (!fault) 762 return 1; 763 764 end = start + bytes; 765 while (end > fault && end[-1] == value) 766 end--; 767 768 slab_bug(s, "%s overwritten", what); 769 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 770 fault, end - 1, fault - addr, 771 fault[0], value); 772 print_trailer(s, page, object); 773 774 restore_bytes(s, what, value, fault, end); 775 return 0; 776 } 777 778 /* 779 * Object layout: 780 * 781 * object address 782 * Bytes of the object to be managed. 783 * If the freepointer may overlay the object then the free 784 * pointer is the first word of the object. 785 * 786 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 787 * 0xa5 (POISON_END) 788 * 789 * object + s->object_size 790 * Padding to reach word boundary. This is also used for Redzoning. 791 * Padding is extended by another word if Redzoning is enabled and 792 * object_size == inuse. 793 * 794 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 795 * 0xcc (RED_ACTIVE) for objects in use. 796 * 797 * object + s->inuse 798 * Meta data starts here. 799 * 800 * A. Free pointer (if we cannot overwrite object on free) 801 * B. Tracking data for SLAB_STORE_USER 802 * C. Padding to reach required alignment boundary or at mininum 803 * one word if debugging is on to be able to detect writes 804 * before the word boundary. 805 * 806 * Padding is done using 0x5a (POISON_INUSE) 807 * 808 * object + s->size 809 * Nothing is used beyond s->size. 810 * 811 * If slabcaches are merged then the object_size and inuse boundaries are mostly 812 * ignored. And therefore no slab options that rely on these boundaries 813 * may be used with merged slabcaches. 814 */ 815 816 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 817 { 818 unsigned long off = s->inuse; /* The end of info */ 819 820 if (s->offset) 821 /* Freepointer is placed after the object. */ 822 off += sizeof(void *); 823 824 if (s->flags & SLAB_STORE_USER) 825 /* We also have user information there */ 826 off += 2 * sizeof(struct track); 827 828 off += kasan_metadata_size(s); 829 830 if (size_from_object(s) == off) 831 return 1; 832 833 return check_bytes_and_report(s, page, p, "Object padding", 834 p + off, POISON_INUSE, size_from_object(s) - off); 835 } 836 837 /* Check the pad bytes at the end of a slab page */ 838 static int slab_pad_check(struct kmem_cache *s, struct page *page) 839 { 840 u8 *start; 841 u8 *fault; 842 u8 *end; 843 u8 *pad; 844 int length; 845 int remainder; 846 847 if (!(s->flags & SLAB_POISON)) 848 return 1; 849 850 start = page_address(page); 851 length = page_size(page); 852 end = start + length; 853 remainder = length % s->size; 854 if (!remainder) 855 return 1; 856 857 pad = end - remainder; 858 metadata_access_enable(); 859 fault = memchr_inv(pad, POISON_INUSE, remainder); 860 metadata_access_disable(); 861 if (!fault) 862 return 1; 863 while (end > fault && end[-1] == POISON_INUSE) 864 end--; 865 866 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 867 fault, end - 1, fault - start); 868 print_section(KERN_ERR, "Padding ", pad, remainder); 869 870 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 871 return 0; 872 } 873 874 static int check_object(struct kmem_cache *s, struct page *page, 875 void *object, u8 val) 876 { 877 u8 *p = object; 878 u8 *endobject = object + s->object_size; 879 880 if (s->flags & SLAB_RED_ZONE) { 881 if (!check_bytes_and_report(s, page, object, "Redzone", 882 object - s->red_left_pad, val, s->red_left_pad)) 883 return 0; 884 885 if (!check_bytes_and_report(s, page, object, "Redzone", 886 endobject, val, s->inuse - s->object_size)) 887 return 0; 888 } else { 889 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 890 check_bytes_and_report(s, page, p, "Alignment padding", 891 endobject, POISON_INUSE, 892 s->inuse - s->object_size); 893 } 894 } 895 896 if (s->flags & SLAB_POISON) { 897 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 898 (!check_bytes_and_report(s, page, p, "Poison", p, 899 POISON_FREE, s->object_size - 1) || 900 !check_bytes_and_report(s, page, p, "Poison", 901 p + s->object_size - 1, POISON_END, 1))) 902 return 0; 903 /* 904 * check_pad_bytes cleans up on its own. 905 */ 906 check_pad_bytes(s, page, p); 907 } 908 909 if (!s->offset && val == SLUB_RED_ACTIVE) 910 /* 911 * Object and freepointer overlap. Cannot check 912 * freepointer while object is allocated. 913 */ 914 return 1; 915 916 /* Check free pointer validity */ 917 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 918 object_err(s, page, p, "Freepointer corrupt"); 919 /* 920 * No choice but to zap it and thus lose the remainder 921 * of the free objects in this slab. May cause 922 * another error because the object count is now wrong. 923 */ 924 set_freepointer(s, p, NULL); 925 return 0; 926 } 927 return 1; 928 } 929 930 static int check_slab(struct kmem_cache *s, struct page *page) 931 { 932 int maxobj; 933 934 VM_BUG_ON(!irqs_disabled()); 935 936 if (!PageSlab(page)) { 937 slab_err(s, page, "Not a valid slab page"); 938 return 0; 939 } 940 941 maxobj = order_objects(compound_order(page), s->size); 942 if (page->objects > maxobj) { 943 slab_err(s, page, "objects %u > max %u", 944 page->objects, maxobj); 945 return 0; 946 } 947 if (page->inuse > page->objects) { 948 slab_err(s, page, "inuse %u > max %u", 949 page->inuse, page->objects); 950 return 0; 951 } 952 /* Slab_pad_check fixes things up after itself */ 953 slab_pad_check(s, page); 954 return 1; 955 } 956 957 /* 958 * Determine if a certain object on a page is on the freelist. Must hold the 959 * slab lock to guarantee that the chains are in a consistent state. 960 */ 961 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 962 { 963 int nr = 0; 964 void *fp; 965 void *object = NULL; 966 int max_objects; 967 968 fp = page->freelist; 969 while (fp && nr <= page->objects) { 970 if (fp == search) 971 return 1; 972 if (!check_valid_pointer(s, page, fp)) { 973 if (object) { 974 object_err(s, page, object, 975 "Freechain corrupt"); 976 set_freepointer(s, object, NULL); 977 } else { 978 slab_err(s, page, "Freepointer corrupt"); 979 page->freelist = NULL; 980 page->inuse = page->objects; 981 slab_fix(s, "Freelist cleared"); 982 return 0; 983 } 984 break; 985 } 986 object = fp; 987 fp = get_freepointer(s, object); 988 nr++; 989 } 990 991 max_objects = order_objects(compound_order(page), s->size); 992 if (max_objects > MAX_OBJS_PER_PAGE) 993 max_objects = MAX_OBJS_PER_PAGE; 994 995 if (page->objects != max_objects) { 996 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 997 page->objects, max_objects); 998 page->objects = max_objects; 999 slab_fix(s, "Number of objects adjusted."); 1000 } 1001 if (page->inuse != page->objects - nr) { 1002 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1003 page->inuse, page->objects - nr); 1004 page->inuse = page->objects - nr; 1005 slab_fix(s, "Object count adjusted."); 1006 } 1007 return search == NULL; 1008 } 1009 1010 static void trace(struct kmem_cache *s, struct page *page, void *object, 1011 int alloc) 1012 { 1013 if (s->flags & SLAB_TRACE) { 1014 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1015 s->name, 1016 alloc ? "alloc" : "free", 1017 object, page->inuse, 1018 page->freelist); 1019 1020 if (!alloc) 1021 print_section(KERN_INFO, "Object ", (void *)object, 1022 s->object_size); 1023 1024 dump_stack(); 1025 } 1026 } 1027 1028 /* 1029 * Tracking of fully allocated slabs for debugging purposes. 1030 */ 1031 static void add_full(struct kmem_cache *s, 1032 struct kmem_cache_node *n, struct page *page) 1033 { 1034 if (!(s->flags & SLAB_STORE_USER)) 1035 return; 1036 1037 lockdep_assert_held(&n->list_lock); 1038 list_add(&page->slab_list, &n->full); 1039 } 1040 1041 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1042 { 1043 if (!(s->flags & SLAB_STORE_USER)) 1044 return; 1045 1046 lockdep_assert_held(&n->list_lock); 1047 list_del(&page->slab_list); 1048 } 1049 1050 /* Tracking of the number of slabs for debugging purposes */ 1051 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1052 { 1053 struct kmem_cache_node *n = get_node(s, node); 1054 1055 return atomic_long_read(&n->nr_slabs); 1056 } 1057 1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1059 { 1060 return atomic_long_read(&n->nr_slabs); 1061 } 1062 1063 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1064 { 1065 struct kmem_cache_node *n = get_node(s, node); 1066 1067 /* 1068 * May be called early in order to allocate a slab for the 1069 * kmem_cache_node structure. Solve the chicken-egg 1070 * dilemma by deferring the increment of the count during 1071 * bootstrap (see early_kmem_cache_node_alloc). 1072 */ 1073 if (likely(n)) { 1074 atomic_long_inc(&n->nr_slabs); 1075 atomic_long_add(objects, &n->total_objects); 1076 } 1077 } 1078 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1079 { 1080 struct kmem_cache_node *n = get_node(s, node); 1081 1082 atomic_long_dec(&n->nr_slabs); 1083 atomic_long_sub(objects, &n->total_objects); 1084 } 1085 1086 /* Object debug checks for alloc/free paths */ 1087 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1088 void *object) 1089 { 1090 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1091 return; 1092 1093 init_object(s, object, SLUB_RED_INACTIVE); 1094 init_tracking(s, object); 1095 } 1096 1097 static 1098 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1099 { 1100 if (!(s->flags & SLAB_POISON)) 1101 return; 1102 1103 metadata_access_enable(); 1104 memset(addr, POISON_INUSE, page_size(page)); 1105 metadata_access_disable(); 1106 } 1107 1108 static inline int alloc_consistency_checks(struct kmem_cache *s, 1109 struct page *page, void *object) 1110 { 1111 if (!check_slab(s, page)) 1112 return 0; 1113 1114 if (!check_valid_pointer(s, page, object)) { 1115 object_err(s, page, object, "Freelist Pointer check fails"); 1116 return 0; 1117 } 1118 1119 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1120 return 0; 1121 1122 return 1; 1123 } 1124 1125 static noinline int alloc_debug_processing(struct kmem_cache *s, 1126 struct page *page, 1127 void *object, unsigned long addr) 1128 { 1129 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1130 if (!alloc_consistency_checks(s, page, object)) 1131 goto bad; 1132 } 1133 1134 /* Success perform special debug activities for allocs */ 1135 if (s->flags & SLAB_STORE_USER) 1136 set_track(s, object, TRACK_ALLOC, addr); 1137 trace(s, page, object, 1); 1138 init_object(s, object, SLUB_RED_ACTIVE); 1139 return 1; 1140 1141 bad: 1142 if (PageSlab(page)) { 1143 /* 1144 * If this is a slab page then lets do the best we can 1145 * to avoid issues in the future. Marking all objects 1146 * as used avoids touching the remaining objects. 1147 */ 1148 slab_fix(s, "Marking all objects used"); 1149 page->inuse = page->objects; 1150 page->freelist = NULL; 1151 } 1152 return 0; 1153 } 1154 1155 static inline int free_consistency_checks(struct kmem_cache *s, 1156 struct page *page, void *object, unsigned long addr) 1157 { 1158 if (!check_valid_pointer(s, page, object)) { 1159 slab_err(s, page, "Invalid object pointer 0x%p", object); 1160 return 0; 1161 } 1162 1163 if (on_freelist(s, page, object)) { 1164 object_err(s, page, object, "Object already free"); 1165 return 0; 1166 } 1167 1168 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1169 return 0; 1170 1171 if (unlikely(s != page->slab_cache)) { 1172 if (!PageSlab(page)) { 1173 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1174 object); 1175 } else if (!page->slab_cache) { 1176 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1177 object); 1178 dump_stack(); 1179 } else 1180 object_err(s, page, object, 1181 "page slab pointer corrupt."); 1182 return 0; 1183 } 1184 return 1; 1185 } 1186 1187 /* Supports checking bulk free of a constructed freelist */ 1188 static noinline int free_debug_processing( 1189 struct kmem_cache *s, struct page *page, 1190 void *head, void *tail, int bulk_cnt, 1191 unsigned long addr) 1192 { 1193 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1194 void *object = head; 1195 int cnt = 0; 1196 unsigned long uninitialized_var(flags); 1197 int ret = 0; 1198 1199 spin_lock_irqsave(&n->list_lock, flags); 1200 slab_lock(page); 1201 1202 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1203 if (!check_slab(s, page)) 1204 goto out; 1205 } 1206 1207 next_object: 1208 cnt++; 1209 1210 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1211 if (!free_consistency_checks(s, page, object, addr)) 1212 goto out; 1213 } 1214 1215 if (s->flags & SLAB_STORE_USER) 1216 set_track(s, object, TRACK_FREE, addr); 1217 trace(s, page, object, 0); 1218 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1219 init_object(s, object, SLUB_RED_INACTIVE); 1220 1221 /* Reached end of constructed freelist yet? */ 1222 if (object != tail) { 1223 object = get_freepointer(s, object); 1224 goto next_object; 1225 } 1226 ret = 1; 1227 1228 out: 1229 if (cnt != bulk_cnt) 1230 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1231 bulk_cnt, cnt); 1232 1233 slab_unlock(page); 1234 spin_unlock_irqrestore(&n->list_lock, flags); 1235 if (!ret) 1236 slab_fix(s, "Object at 0x%p not freed", object); 1237 return ret; 1238 } 1239 1240 static int __init setup_slub_debug(char *str) 1241 { 1242 slub_debug = DEBUG_DEFAULT_FLAGS; 1243 if (*str++ != '=' || !*str) 1244 /* 1245 * No options specified. Switch on full debugging. 1246 */ 1247 goto out; 1248 1249 if (*str == ',') 1250 /* 1251 * No options but restriction on slabs. This means full 1252 * debugging for slabs matching a pattern. 1253 */ 1254 goto check_slabs; 1255 1256 slub_debug = 0; 1257 if (*str == '-') 1258 /* 1259 * Switch off all debugging measures. 1260 */ 1261 goto out; 1262 1263 /* 1264 * Determine which debug features should be switched on 1265 */ 1266 for (; *str && *str != ','; str++) { 1267 switch (tolower(*str)) { 1268 case 'f': 1269 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1270 break; 1271 case 'z': 1272 slub_debug |= SLAB_RED_ZONE; 1273 break; 1274 case 'p': 1275 slub_debug |= SLAB_POISON; 1276 break; 1277 case 'u': 1278 slub_debug |= SLAB_STORE_USER; 1279 break; 1280 case 't': 1281 slub_debug |= SLAB_TRACE; 1282 break; 1283 case 'a': 1284 slub_debug |= SLAB_FAILSLAB; 1285 break; 1286 case 'o': 1287 /* 1288 * Avoid enabling debugging on caches if its minimum 1289 * order would increase as a result. 1290 */ 1291 disable_higher_order_debug = 1; 1292 break; 1293 default: 1294 pr_err("slub_debug option '%c' unknown. skipped\n", 1295 *str); 1296 } 1297 } 1298 1299 check_slabs: 1300 if (*str == ',') 1301 slub_debug_slabs = str + 1; 1302 out: 1303 if ((static_branch_unlikely(&init_on_alloc) || 1304 static_branch_unlikely(&init_on_free)) && 1305 (slub_debug & SLAB_POISON)) 1306 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1307 return 1; 1308 } 1309 1310 __setup("slub_debug", setup_slub_debug); 1311 1312 /* 1313 * kmem_cache_flags - apply debugging options to the cache 1314 * @object_size: the size of an object without meta data 1315 * @flags: flags to set 1316 * @name: name of the cache 1317 * @ctor: constructor function 1318 * 1319 * Debug option(s) are applied to @flags. In addition to the debug 1320 * option(s), if a slab name (or multiple) is specified i.e. 1321 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1322 * then only the select slabs will receive the debug option(s). 1323 */ 1324 slab_flags_t kmem_cache_flags(unsigned int object_size, 1325 slab_flags_t flags, const char *name, 1326 void (*ctor)(void *)) 1327 { 1328 char *iter; 1329 size_t len; 1330 1331 /* If slub_debug = 0, it folds into the if conditional. */ 1332 if (!slub_debug_slabs) 1333 return flags | slub_debug; 1334 1335 len = strlen(name); 1336 iter = slub_debug_slabs; 1337 while (*iter) { 1338 char *end, *glob; 1339 size_t cmplen; 1340 1341 end = strchrnul(iter, ','); 1342 1343 glob = strnchr(iter, end - iter, '*'); 1344 if (glob) 1345 cmplen = glob - iter; 1346 else 1347 cmplen = max_t(size_t, len, (end - iter)); 1348 1349 if (!strncmp(name, iter, cmplen)) { 1350 flags |= slub_debug; 1351 break; 1352 } 1353 1354 if (!*end) 1355 break; 1356 iter = end + 1; 1357 } 1358 1359 return flags; 1360 } 1361 #else /* !CONFIG_SLUB_DEBUG */ 1362 static inline void setup_object_debug(struct kmem_cache *s, 1363 struct page *page, void *object) {} 1364 static inline 1365 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1366 1367 static inline int alloc_debug_processing(struct kmem_cache *s, 1368 struct page *page, void *object, unsigned long addr) { return 0; } 1369 1370 static inline int free_debug_processing( 1371 struct kmem_cache *s, struct page *page, 1372 void *head, void *tail, int bulk_cnt, 1373 unsigned long addr) { return 0; } 1374 1375 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1376 { return 1; } 1377 static inline int check_object(struct kmem_cache *s, struct page *page, 1378 void *object, u8 val) { return 1; } 1379 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1380 struct page *page) {} 1381 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1382 struct page *page) {} 1383 slab_flags_t kmem_cache_flags(unsigned int object_size, 1384 slab_flags_t flags, const char *name, 1385 void (*ctor)(void *)) 1386 { 1387 return flags; 1388 } 1389 #define slub_debug 0 1390 1391 #define disable_higher_order_debug 0 1392 1393 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1394 { return 0; } 1395 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1396 { return 0; } 1397 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1398 int objects) {} 1399 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1400 int objects) {} 1401 1402 #endif /* CONFIG_SLUB_DEBUG */ 1403 1404 /* 1405 * Hooks for other subsystems that check memory allocations. In a typical 1406 * production configuration these hooks all should produce no code at all. 1407 */ 1408 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1409 { 1410 ptr = kasan_kmalloc_large(ptr, size, flags); 1411 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1412 kmemleak_alloc(ptr, size, 1, flags); 1413 return ptr; 1414 } 1415 1416 static __always_inline void kfree_hook(void *x) 1417 { 1418 kmemleak_free(x); 1419 kasan_kfree_large(x, _RET_IP_); 1420 } 1421 1422 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1423 { 1424 kmemleak_free_recursive(x, s->flags); 1425 1426 /* 1427 * Trouble is that we may no longer disable interrupts in the fast path 1428 * So in order to make the debug calls that expect irqs to be 1429 * disabled we need to disable interrupts temporarily. 1430 */ 1431 #ifdef CONFIG_LOCKDEP 1432 { 1433 unsigned long flags; 1434 1435 local_irq_save(flags); 1436 debug_check_no_locks_freed(x, s->object_size); 1437 local_irq_restore(flags); 1438 } 1439 #endif 1440 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1441 debug_check_no_obj_freed(x, s->object_size); 1442 1443 /* KASAN might put x into memory quarantine, delaying its reuse */ 1444 return kasan_slab_free(s, x, _RET_IP_); 1445 } 1446 1447 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1448 void **head, void **tail) 1449 { 1450 1451 void *object; 1452 void *next = *head; 1453 void *old_tail = *tail ? *tail : *head; 1454 int rsize; 1455 1456 /* Head and tail of the reconstructed freelist */ 1457 *head = NULL; 1458 *tail = NULL; 1459 1460 do { 1461 object = next; 1462 next = get_freepointer(s, object); 1463 1464 if (slab_want_init_on_free(s)) { 1465 /* 1466 * Clear the object and the metadata, but don't touch 1467 * the redzone. 1468 */ 1469 memset(object, 0, s->object_size); 1470 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1471 : 0; 1472 memset((char *)object + s->inuse, 0, 1473 s->size - s->inuse - rsize); 1474 1475 } 1476 /* If object's reuse doesn't have to be delayed */ 1477 if (!slab_free_hook(s, object)) { 1478 /* Move object to the new freelist */ 1479 set_freepointer(s, object, *head); 1480 *head = object; 1481 if (!*tail) 1482 *tail = object; 1483 } 1484 } while (object != old_tail); 1485 1486 if (*head == *tail) 1487 *tail = NULL; 1488 1489 return *head != NULL; 1490 } 1491 1492 static void *setup_object(struct kmem_cache *s, struct page *page, 1493 void *object) 1494 { 1495 setup_object_debug(s, page, object); 1496 object = kasan_init_slab_obj(s, object); 1497 if (unlikely(s->ctor)) { 1498 kasan_unpoison_object_data(s, object); 1499 s->ctor(object); 1500 kasan_poison_object_data(s, object); 1501 } 1502 return object; 1503 } 1504 1505 /* 1506 * Slab allocation and freeing 1507 */ 1508 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1509 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1510 { 1511 struct page *page; 1512 unsigned int order = oo_order(oo); 1513 1514 if (node == NUMA_NO_NODE) 1515 page = alloc_pages(flags, order); 1516 else 1517 page = __alloc_pages_node(node, flags, order); 1518 1519 if (page && charge_slab_page(page, flags, order, s)) { 1520 __free_pages(page, order); 1521 page = NULL; 1522 } 1523 1524 return page; 1525 } 1526 1527 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1528 /* Pre-initialize the random sequence cache */ 1529 static int init_cache_random_seq(struct kmem_cache *s) 1530 { 1531 unsigned int count = oo_objects(s->oo); 1532 int err; 1533 1534 /* Bailout if already initialised */ 1535 if (s->random_seq) 1536 return 0; 1537 1538 err = cache_random_seq_create(s, count, GFP_KERNEL); 1539 if (err) { 1540 pr_err("SLUB: Unable to initialize free list for %s\n", 1541 s->name); 1542 return err; 1543 } 1544 1545 /* Transform to an offset on the set of pages */ 1546 if (s->random_seq) { 1547 unsigned int i; 1548 1549 for (i = 0; i < count; i++) 1550 s->random_seq[i] *= s->size; 1551 } 1552 return 0; 1553 } 1554 1555 /* Initialize each random sequence freelist per cache */ 1556 static void __init init_freelist_randomization(void) 1557 { 1558 struct kmem_cache *s; 1559 1560 mutex_lock(&slab_mutex); 1561 1562 list_for_each_entry(s, &slab_caches, list) 1563 init_cache_random_seq(s); 1564 1565 mutex_unlock(&slab_mutex); 1566 } 1567 1568 /* Get the next entry on the pre-computed freelist randomized */ 1569 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1570 unsigned long *pos, void *start, 1571 unsigned long page_limit, 1572 unsigned long freelist_count) 1573 { 1574 unsigned int idx; 1575 1576 /* 1577 * If the target page allocation failed, the number of objects on the 1578 * page might be smaller than the usual size defined by the cache. 1579 */ 1580 do { 1581 idx = s->random_seq[*pos]; 1582 *pos += 1; 1583 if (*pos >= freelist_count) 1584 *pos = 0; 1585 } while (unlikely(idx >= page_limit)); 1586 1587 return (char *)start + idx; 1588 } 1589 1590 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1591 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1592 { 1593 void *start; 1594 void *cur; 1595 void *next; 1596 unsigned long idx, pos, page_limit, freelist_count; 1597 1598 if (page->objects < 2 || !s->random_seq) 1599 return false; 1600 1601 freelist_count = oo_objects(s->oo); 1602 pos = get_random_int() % freelist_count; 1603 1604 page_limit = page->objects * s->size; 1605 start = fixup_red_left(s, page_address(page)); 1606 1607 /* First entry is used as the base of the freelist */ 1608 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1609 freelist_count); 1610 cur = setup_object(s, page, cur); 1611 page->freelist = cur; 1612 1613 for (idx = 1; idx < page->objects; idx++) { 1614 next = next_freelist_entry(s, page, &pos, start, page_limit, 1615 freelist_count); 1616 next = setup_object(s, page, next); 1617 set_freepointer(s, cur, next); 1618 cur = next; 1619 } 1620 set_freepointer(s, cur, NULL); 1621 1622 return true; 1623 } 1624 #else 1625 static inline int init_cache_random_seq(struct kmem_cache *s) 1626 { 1627 return 0; 1628 } 1629 static inline void init_freelist_randomization(void) { } 1630 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1631 { 1632 return false; 1633 } 1634 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1635 1636 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1637 { 1638 struct page *page; 1639 struct kmem_cache_order_objects oo = s->oo; 1640 gfp_t alloc_gfp; 1641 void *start, *p, *next; 1642 int idx; 1643 bool shuffle; 1644 1645 flags &= gfp_allowed_mask; 1646 1647 if (gfpflags_allow_blocking(flags)) 1648 local_irq_enable(); 1649 1650 flags |= s->allocflags; 1651 1652 /* 1653 * Let the initial higher-order allocation fail under memory pressure 1654 * so we fall-back to the minimum order allocation. 1655 */ 1656 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1657 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1658 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1659 1660 page = alloc_slab_page(s, alloc_gfp, node, oo); 1661 if (unlikely(!page)) { 1662 oo = s->min; 1663 alloc_gfp = flags; 1664 /* 1665 * Allocation may have failed due to fragmentation. 1666 * Try a lower order alloc if possible 1667 */ 1668 page = alloc_slab_page(s, alloc_gfp, node, oo); 1669 if (unlikely(!page)) 1670 goto out; 1671 stat(s, ORDER_FALLBACK); 1672 } 1673 1674 page->objects = oo_objects(oo); 1675 1676 page->slab_cache = s; 1677 __SetPageSlab(page); 1678 if (page_is_pfmemalloc(page)) 1679 SetPageSlabPfmemalloc(page); 1680 1681 kasan_poison_slab(page); 1682 1683 start = page_address(page); 1684 1685 setup_page_debug(s, page, start); 1686 1687 shuffle = shuffle_freelist(s, page); 1688 1689 if (!shuffle) { 1690 start = fixup_red_left(s, start); 1691 start = setup_object(s, page, start); 1692 page->freelist = start; 1693 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1694 next = p + s->size; 1695 next = setup_object(s, page, next); 1696 set_freepointer(s, p, next); 1697 p = next; 1698 } 1699 set_freepointer(s, p, NULL); 1700 } 1701 1702 page->inuse = page->objects; 1703 page->frozen = 1; 1704 1705 out: 1706 if (gfpflags_allow_blocking(flags)) 1707 local_irq_disable(); 1708 if (!page) 1709 return NULL; 1710 1711 inc_slabs_node(s, page_to_nid(page), page->objects); 1712 1713 return page; 1714 } 1715 1716 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1717 { 1718 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1719 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1720 flags &= ~GFP_SLAB_BUG_MASK; 1721 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1722 invalid_mask, &invalid_mask, flags, &flags); 1723 dump_stack(); 1724 } 1725 1726 return allocate_slab(s, 1727 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1728 } 1729 1730 static void __free_slab(struct kmem_cache *s, struct page *page) 1731 { 1732 int order = compound_order(page); 1733 int pages = 1 << order; 1734 1735 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1736 void *p; 1737 1738 slab_pad_check(s, page); 1739 for_each_object(p, s, page_address(page), 1740 page->objects) 1741 check_object(s, page, p, SLUB_RED_INACTIVE); 1742 } 1743 1744 __ClearPageSlabPfmemalloc(page); 1745 __ClearPageSlab(page); 1746 1747 page->mapping = NULL; 1748 if (current->reclaim_state) 1749 current->reclaim_state->reclaimed_slab += pages; 1750 uncharge_slab_page(page, order, s); 1751 __free_pages(page, order); 1752 } 1753 1754 static void rcu_free_slab(struct rcu_head *h) 1755 { 1756 struct page *page = container_of(h, struct page, rcu_head); 1757 1758 __free_slab(page->slab_cache, page); 1759 } 1760 1761 static void free_slab(struct kmem_cache *s, struct page *page) 1762 { 1763 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1764 call_rcu(&page->rcu_head, rcu_free_slab); 1765 } else 1766 __free_slab(s, page); 1767 } 1768 1769 static void discard_slab(struct kmem_cache *s, struct page *page) 1770 { 1771 dec_slabs_node(s, page_to_nid(page), page->objects); 1772 free_slab(s, page); 1773 } 1774 1775 /* 1776 * Management of partially allocated slabs. 1777 */ 1778 static inline void 1779 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1780 { 1781 n->nr_partial++; 1782 if (tail == DEACTIVATE_TO_TAIL) 1783 list_add_tail(&page->slab_list, &n->partial); 1784 else 1785 list_add(&page->slab_list, &n->partial); 1786 } 1787 1788 static inline void add_partial(struct kmem_cache_node *n, 1789 struct page *page, int tail) 1790 { 1791 lockdep_assert_held(&n->list_lock); 1792 __add_partial(n, page, tail); 1793 } 1794 1795 static inline void remove_partial(struct kmem_cache_node *n, 1796 struct page *page) 1797 { 1798 lockdep_assert_held(&n->list_lock); 1799 list_del(&page->slab_list); 1800 n->nr_partial--; 1801 } 1802 1803 /* 1804 * Remove slab from the partial list, freeze it and 1805 * return the pointer to the freelist. 1806 * 1807 * Returns a list of objects or NULL if it fails. 1808 */ 1809 static inline void *acquire_slab(struct kmem_cache *s, 1810 struct kmem_cache_node *n, struct page *page, 1811 int mode, int *objects) 1812 { 1813 void *freelist; 1814 unsigned long counters; 1815 struct page new; 1816 1817 lockdep_assert_held(&n->list_lock); 1818 1819 /* 1820 * Zap the freelist and set the frozen bit. 1821 * The old freelist is the list of objects for the 1822 * per cpu allocation list. 1823 */ 1824 freelist = page->freelist; 1825 counters = page->counters; 1826 new.counters = counters; 1827 *objects = new.objects - new.inuse; 1828 if (mode) { 1829 new.inuse = page->objects; 1830 new.freelist = NULL; 1831 } else { 1832 new.freelist = freelist; 1833 } 1834 1835 VM_BUG_ON(new.frozen); 1836 new.frozen = 1; 1837 1838 if (!__cmpxchg_double_slab(s, page, 1839 freelist, counters, 1840 new.freelist, new.counters, 1841 "acquire_slab")) 1842 return NULL; 1843 1844 remove_partial(n, page); 1845 WARN_ON(!freelist); 1846 return freelist; 1847 } 1848 1849 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1850 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1851 1852 /* 1853 * Try to allocate a partial slab from a specific node. 1854 */ 1855 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1856 struct kmem_cache_cpu *c, gfp_t flags) 1857 { 1858 struct page *page, *page2; 1859 void *object = NULL; 1860 unsigned int available = 0; 1861 int objects; 1862 1863 /* 1864 * Racy check. If we mistakenly see no partial slabs then we 1865 * just allocate an empty slab. If we mistakenly try to get a 1866 * partial slab and there is none available then get_partials() 1867 * will return NULL. 1868 */ 1869 if (!n || !n->nr_partial) 1870 return NULL; 1871 1872 spin_lock(&n->list_lock); 1873 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1874 void *t; 1875 1876 if (!pfmemalloc_match(page, flags)) 1877 continue; 1878 1879 t = acquire_slab(s, n, page, object == NULL, &objects); 1880 if (!t) 1881 break; 1882 1883 available += objects; 1884 if (!object) { 1885 c->page = page; 1886 stat(s, ALLOC_FROM_PARTIAL); 1887 object = t; 1888 } else { 1889 put_cpu_partial(s, page, 0); 1890 stat(s, CPU_PARTIAL_NODE); 1891 } 1892 if (!kmem_cache_has_cpu_partial(s) 1893 || available > slub_cpu_partial(s) / 2) 1894 break; 1895 1896 } 1897 spin_unlock(&n->list_lock); 1898 return object; 1899 } 1900 1901 /* 1902 * Get a page from somewhere. Search in increasing NUMA distances. 1903 */ 1904 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1905 struct kmem_cache_cpu *c) 1906 { 1907 #ifdef CONFIG_NUMA 1908 struct zonelist *zonelist; 1909 struct zoneref *z; 1910 struct zone *zone; 1911 enum zone_type high_zoneidx = gfp_zone(flags); 1912 void *object; 1913 unsigned int cpuset_mems_cookie; 1914 1915 /* 1916 * The defrag ratio allows a configuration of the tradeoffs between 1917 * inter node defragmentation and node local allocations. A lower 1918 * defrag_ratio increases the tendency to do local allocations 1919 * instead of attempting to obtain partial slabs from other nodes. 1920 * 1921 * If the defrag_ratio is set to 0 then kmalloc() always 1922 * returns node local objects. If the ratio is higher then kmalloc() 1923 * may return off node objects because partial slabs are obtained 1924 * from other nodes and filled up. 1925 * 1926 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1927 * (which makes defrag_ratio = 1000) then every (well almost) 1928 * allocation will first attempt to defrag slab caches on other nodes. 1929 * This means scanning over all nodes to look for partial slabs which 1930 * may be expensive if we do it every time we are trying to find a slab 1931 * with available objects. 1932 */ 1933 if (!s->remote_node_defrag_ratio || 1934 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1935 return NULL; 1936 1937 do { 1938 cpuset_mems_cookie = read_mems_allowed_begin(); 1939 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1940 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1941 struct kmem_cache_node *n; 1942 1943 n = get_node(s, zone_to_nid(zone)); 1944 1945 if (n && cpuset_zone_allowed(zone, flags) && 1946 n->nr_partial > s->min_partial) { 1947 object = get_partial_node(s, n, c, flags); 1948 if (object) { 1949 /* 1950 * Don't check read_mems_allowed_retry() 1951 * here - if mems_allowed was updated in 1952 * parallel, that was a harmless race 1953 * between allocation and the cpuset 1954 * update 1955 */ 1956 return object; 1957 } 1958 } 1959 } 1960 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1961 #endif /* CONFIG_NUMA */ 1962 return NULL; 1963 } 1964 1965 /* 1966 * Get a partial page, lock it and return it. 1967 */ 1968 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1969 struct kmem_cache_cpu *c) 1970 { 1971 void *object; 1972 int searchnode = node; 1973 1974 if (node == NUMA_NO_NODE) 1975 searchnode = numa_mem_id(); 1976 1977 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1978 if (object || node != NUMA_NO_NODE) 1979 return object; 1980 1981 return get_any_partial(s, flags, c); 1982 } 1983 1984 #ifdef CONFIG_PREEMPTION 1985 /* 1986 * Calculate the next globally unique transaction for disambiguiation 1987 * during cmpxchg. The transactions start with the cpu number and are then 1988 * incremented by CONFIG_NR_CPUS. 1989 */ 1990 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1991 #else 1992 /* 1993 * No preemption supported therefore also no need to check for 1994 * different cpus. 1995 */ 1996 #define TID_STEP 1 1997 #endif 1998 1999 static inline unsigned long next_tid(unsigned long tid) 2000 { 2001 return tid + TID_STEP; 2002 } 2003 2004 #ifdef SLUB_DEBUG_CMPXCHG 2005 static inline unsigned int tid_to_cpu(unsigned long tid) 2006 { 2007 return tid % TID_STEP; 2008 } 2009 2010 static inline unsigned long tid_to_event(unsigned long tid) 2011 { 2012 return tid / TID_STEP; 2013 } 2014 #endif 2015 2016 static inline unsigned int init_tid(int cpu) 2017 { 2018 return cpu; 2019 } 2020 2021 static inline void note_cmpxchg_failure(const char *n, 2022 const struct kmem_cache *s, unsigned long tid) 2023 { 2024 #ifdef SLUB_DEBUG_CMPXCHG 2025 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2026 2027 pr_info("%s %s: cmpxchg redo ", n, s->name); 2028 2029 #ifdef CONFIG_PREEMPTION 2030 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2031 pr_warn("due to cpu change %d -> %d\n", 2032 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2033 else 2034 #endif 2035 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2036 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2037 tid_to_event(tid), tid_to_event(actual_tid)); 2038 else 2039 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2040 actual_tid, tid, next_tid(tid)); 2041 #endif 2042 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2043 } 2044 2045 static void init_kmem_cache_cpus(struct kmem_cache *s) 2046 { 2047 int cpu; 2048 2049 for_each_possible_cpu(cpu) 2050 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2051 } 2052 2053 /* 2054 * Remove the cpu slab 2055 */ 2056 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2057 void *freelist, struct kmem_cache_cpu *c) 2058 { 2059 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2060 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2061 int lock = 0; 2062 enum slab_modes l = M_NONE, m = M_NONE; 2063 void *nextfree; 2064 int tail = DEACTIVATE_TO_HEAD; 2065 struct page new; 2066 struct page old; 2067 2068 if (page->freelist) { 2069 stat(s, DEACTIVATE_REMOTE_FREES); 2070 tail = DEACTIVATE_TO_TAIL; 2071 } 2072 2073 /* 2074 * Stage one: Free all available per cpu objects back 2075 * to the page freelist while it is still frozen. Leave the 2076 * last one. 2077 * 2078 * There is no need to take the list->lock because the page 2079 * is still frozen. 2080 */ 2081 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2082 void *prior; 2083 unsigned long counters; 2084 2085 do { 2086 prior = page->freelist; 2087 counters = page->counters; 2088 set_freepointer(s, freelist, prior); 2089 new.counters = counters; 2090 new.inuse--; 2091 VM_BUG_ON(!new.frozen); 2092 2093 } while (!__cmpxchg_double_slab(s, page, 2094 prior, counters, 2095 freelist, new.counters, 2096 "drain percpu freelist")); 2097 2098 freelist = nextfree; 2099 } 2100 2101 /* 2102 * Stage two: Ensure that the page is unfrozen while the 2103 * list presence reflects the actual number of objects 2104 * during unfreeze. 2105 * 2106 * We setup the list membership and then perform a cmpxchg 2107 * with the count. If there is a mismatch then the page 2108 * is not unfrozen but the page is on the wrong list. 2109 * 2110 * Then we restart the process which may have to remove 2111 * the page from the list that we just put it on again 2112 * because the number of objects in the slab may have 2113 * changed. 2114 */ 2115 redo: 2116 2117 old.freelist = page->freelist; 2118 old.counters = page->counters; 2119 VM_BUG_ON(!old.frozen); 2120 2121 /* Determine target state of the slab */ 2122 new.counters = old.counters; 2123 if (freelist) { 2124 new.inuse--; 2125 set_freepointer(s, freelist, old.freelist); 2126 new.freelist = freelist; 2127 } else 2128 new.freelist = old.freelist; 2129 2130 new.frozen = 0; 2131 2132 if (!new.inuse && n->nr_partial >= s->min_partial) 2133 m = M_FREE; 2134 else if (new.freelist) { 2135 m = M_PARTIAL; 2136 if (!lock) { 2137 lock = 1; 2138 /* 2139 * Taking the spinlock removes the possibility 2140 * that acquire_slab() will see a slab page that 2141 * is frozen 2142 */ 2143 spin_lock(&n->list_lock); 2144 } 2145 } else { 2146 m = M_FULL; 2147 if (kmem_cache_debug(s) && !lock) { 2148 lock = 1; 2149 /* 2150 * This also ensures that the scanning of full 2151 * slabs from diagnostic functions will not see 2152 * any frozen slabs. 2153 */ 2154 spin_lock(&n->list_lock); 2155 } 2156 } 2157 2158 if (l != m) { 2159 if (l == M_PARTIAL) 2160 remove_partial(n, page); 2161 else if (l == M_FULL) 2162 remove_full(s, n, page); 2163 2164 if (m == M_PARTIAL) 2165 add_partial(n, page, tail); 2166 else if (m == M_FULL) 2167 add_full(s, n, page); 2168 } 2169 2170 l = m; 2171 if (!__cmpxchg_double_slab(s, page, 2172 old.freelist, old.counters, 2173 new.freelist, new.counters, 2174 "unfreezing slab")) 2175 goto redo; 2176 2177 if (lock) 2178 spin_unlock(&n->list_lock); 2179 2180 if (m == M_PARTIAL) 2181 stat(s, tail); 2182 else if (m == M_FULL) 2183 stat(s, DEACTIVATE_FULL); 2184 else if (m == M_FREE) { 2185 stat(s, DEACTIVATE_EMPTY); 2186 discard_slab(s, page); 2187 stat(s, FREE_SLAB); 2188 } 2189 2190 c->page = NULL; 2191 c->freelist = NULL; 2192 } 2193 2194 /* 2195 * Unfreeze all the cpu partial slabs. 2196 * 2197 * This function must be called with interrupts disabled 2198 * for the cpu using c (or some other guarantee must be there 2199 * to guarantee no concurrent accesses). 2200 */ 2201 static void unfreeze_partials(struct kmem_cache *s, 2202 struct kmem_cache_cpu *c) 2203 { 2204 #ifdef CONFIG_SLUB_CPU_PARTIAL 2205 struct kmem_cache_node *n = NULL, *n2 = NULL; 2206 struct page *page, *discard_page = NULL; 2207 2208 while ((page = c->partial)) { 2209 struct page new; 2210 struct page old; 2211 2212 c->partial = page->next; 2213 2214 n2 = get_node(s, page_to_nid(page)); 2215 if (n != n2) { 2216 if (n) 2217 spin_unlock(&n->list_lock); 2218 2219 n = n2; 2220 spin_lock(&n->list_lock); 2221 } 2222 2223 do { 2224 2225 old.freelist = page->freelist; 2226 old.counters = page->counters; 2227 VM_BUG_ON(!old.frozen); 2228 2229 new.counters = old.counters; 2230 new.freelist = old.freelist; 2231 2232 new.frozen = 0; 2233 2234 } while (!__cmpxchg_double_slab(s, page, 2235 old.freelist, old.counters, 2236 new.freelist, new.counters, 2237 "unfreezing slab")); 2238 2239 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2240 page->next = discard_page; 2241 discard_page = page; 2242 } else { 2243 add_partial(n, page, DEACTIVATE_TO_TAIL); 2244 stat(s, FREE_ADD_PARTIAL); 2245 } 2246 } 2247 2248 if (n) 2249 spin_unlock(&n->list_lock); 2250 2251 while (discard_page) { 2252 page = discard_page; 2253 discard_page = discard_page->next; 2254 2255 stat(s, DEACTIVATE_EMPTY); 2256 discard_slab(s, page); 2257 stat(s, FREE_SLAB); 2258 } 2259 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2260 } 2261 2262 /* 2263 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2264 * partial page slot if available. 2265 * 2266 * If we did not find a slot then simply move all the partials to the 2267 * per node partial list. 2268 */ 2269 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2270 { 2271 #ifdef CONFIG_SLUB_CPU_PARTIAL 2272 struct page *oldpage; 2273 int pages; 2274 int pobjects; 2275 2276 preempt_disable(); 2277 do { 2278 pages = 0; 2279 pobjects = 0; 2280 oldpage = this_cpu_read(s->cpu_slab->partial); 2281 2282 if (oldpage) { 2283 pobjects = oldpage->pobjects; 2284 pages = oldpage->pages; 2285 if (drain && pobjects > s->cpu_partial) { 2286 unsigned long flags; 2287 /* 2288 * partial array is full. Move the existing 2289 * set to the per node partial list. 2290 */ 2291 local_irq_save(flags); 2292 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2293 local_irq_restore(flags); 2294 oldpage = NULL; 2295 pobjects = 0; 2296 pages = 0; 2297 stat(s, CPU_PARTIAL_DRAIN); 2298 } 2299 } 2300 2301 pages++; 2302 pobjects += page->objects - page->inuse; 2303 2304 page->pages = pages; 2305 page->pobjects = pobjects; 2306 page->next = oldpage; 2307 2308 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2309 != oldpage); 2310 if (unlikely(!s->cpu_partial)) { 2311 unsigned long flags; 2312 2313 local_irq_save(flags); 2314 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2315 local_irq_restore(flags); 2316 } 2317 preempt_enable(); 2318 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2319 } 2320 2321 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2322 { 2323 stat(s, CPUSLAB_FLUSH); 2324 deactivate_slab(s, c->page, c->freelist, c); 2325 2326 c->tid = next_tid(c->tid); 2327 } 2328 2329 /* 2330 * Flush cpu slab. 2331 * 2332 * Called from IPI handler with interrupts disabled. 2333 */ 2334 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2335 { 2336 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2337 2338 if (c->page) 2339 flush_slab(s, c); 2340 2341 unfreeze_partials(s, c); 2342 } 2343 2344 static void flush_cpu_slab(void *d) 2345 { 2346 struct kmem_cache *s = d; 2347 2348 __flush_cpu_slab(s, smp_processor_id()); 2349 } 2350 2351 static bool has_cpu_slab(int cpu, void *info) 2352 { 2353 struct kmem_cache *s = info; 2354 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2355 2356 return c->page || slub_percpu_partial(c); 2357 } 2358 2359 static void flush_all(struct kmem_cache *s) 2360 { 2361 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); 2362 } 2363 2364 /* 2365 * Use the cpu notifier to insure that the cpu slabs are flushed when 2366 * necessary. 2367 */ 2368 static int slub_cpu_dead(unsigned int cpu) 2369 { 2370 struct kmem_cache *s; 2371 unsigned long flags; 2372 2373 mutex_lock(&slab_mutex); 2374 list_for_each_entry(s, &slab_caches, list) { 2375 local_irq_save(flags); 2376 __flush_cpu_slab(s, cpu); 2377 local_irq_restore(flags); 2378 } 2379 mutex_unlock(&slab_mutex); 2380 return 0; 2381 } 2382 2383 /* 2384 * Check if the objects in a per cpu structure fit numa 2385 * locality expectations. 2386 */ 2387 static inline int node_match(struct page *page, int node) 2388 { 2389 #ifdef CONFIG_NUMA 2390 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2391 return 0; 2392 #endif 2393 return 1; 2394 } 2395 2396 #ifdef CONFIG_SLUB_DEBUG 2397 static int count_free(struct page *page) 2398 { 2399 return page->objects - page->inuse; 2400 } 2401 2402 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2403 { 2404 return atomic_long_read(&n->total_objects); 2405 } 2406 #endif /* CONFIG_SLUB_DEBUG */ 2407 2408 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2409 static unsigned long count_partial(struct kmem_cache_node *n, 2410 int (*get_count)(struct page *)) 2411 { 2412 unsigned long flags; 2413 unsigned long x = 0; 2414 struct page *page; 2415 2416 spin_lock_irqsave(&n->list_lock, flags); 2417 list_for_each_entry(page, &n->partial, slab_list) 2418 x += get_count(page); 2419 spin_unlock_irqrestore(&n->list_lock, flags); 2420 return x; 2421 } 2422 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2423 2424 static noinline void 2425 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2426 { 2427 #ifdef CONFIG_SLUB_DEBUG 2428 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2429 DEFAULT_RATELIMIT_BURST); 2430 int node; 2431 struct kmem_cache_node *n; 2432 2433 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2434 return; 2435 2436 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2437 nid, gfpflags, &gfpflags); 2438 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2439 s->name, s->object_size, s->size, oo_order(s->oo), 2440 oo_order(s->min)); 2441 2442 if (oo_order(s->min) > get_order(s->object_size)) 2443 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2444 s->name); 2445 2446 for_each_kmem_cache_node(s, node, n) { 2447 unsigned long nr_slabs; 2448 unsigned long nr_objs; 2449 unsigned long nr_free; 2450 2451 nr_free = count_partial(n, count_free); 2452 nr_slabs = node_nr_slabs(n); 2453 nr_objs = node_nr_objs(n); 2454 2455 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2456 node, nr_slabs, nr_objs, nr_free); 2457 } 2458 #endif 2459 } 2460 2461 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2462 int node, struct kmem_cache_cpu **pc) 2463 { 2464 void *freelist; 2465 struct kmem_cache_cpu *c = *pc; 2466 struct page *page; 2467 2468 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2469 2470 freelist = get_partial(s, flags, node, c); 2471 2472 if (freelist) 2473 return freelist; 2474 2475 page = new_slab(s, flags, node); 2476 if (page) { 2477 c = raw_cpu_ptr(s->cpu_slab); 2478 if (c->page) 2479 flush_slab(s, c); 2480 2481 /* 2482 * No other reference to the page yet so we can 2483 * muck around with it freely without cmpxchg 2484 */ 2485 freelist = page->freelist; 2486 page->freelist = NULL; 2487 2488 stat(s, ALLOC_SLAB); 2489 c->page = page; 2490 *pc = c; 2491 } 2492 2493 return freelist; 2494 } 2495 2496 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2497 { 2498 if (unlikely(PageSlabPfmemalloc(page))) 2499 return gfp_pfmemalloc_allowed(gfpflags); 2500 2501 return true; 2502 } 2503 2504 /* 2505 * Check the page->freelist of a page and either transfer the freelist to the 2506 * per cpu freelist or deactivate the page. 2507 * 2508 * The page is still frozen if the return value is not NULL. 2509 * 2510 * If this function returns NULL then the page has been unfrozen. 2511 * 2512 * This function must be called with interrupt disabled. 2513 */ 2514 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2515 { 2516 struct page new; 2517 unsigned long counters; 2518 void *freelist; 2519 2520 do { 2521 freelist = page->freelist; 2522 counters = page->counters; 2523 2524 new.counters = counters; 2525 VM_BUG_ON(!new.frozen); 2526 2527 new.inuse = page->objects; 2528 new.frozen = freelist != NULL; 2529 2530 } while (!__cmpxchg_double_slab(s, page, 2531 freelist, counters, 2532 NULL, new.counters, 2533 "get_freelist")); 2534 2535 return freelist; 2536 } 2537 2538 /* 2539 * Slow path. The lockless freelist is empty or we need to perform 2540 * debugging duties. 2541 * 2542 * Processing is still very fast if new objects have been freed to the 2543 * regular freelist. In that case we simply take over the regular freelist 2544 * as the lockless freelist and zap the regular freelist. 2545 * 2546 * If that is not working then we fall back to the partial lists. We take the 2547 * first element of the freelist as the object to allocate now and move the 2548 * rest of the freelist to the lockless freelist. 2549 * 2550 * And if we were unable to get a new slab from the partial slab lists then 2551 * we need to allocate a new slab. This is the slowest path since it involves 2552 * a call to the page allocator and the setup of a new slab. 2553 * 2554 * Version of __slab_alloc to use when we know that interrupts are 2555 * already disabled (which is the case for bulk allocation). 2556 */ 2557 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2558 unsigned long addr, struct kmem_cache_cpu *c) 2559 { 2560 void *freelist; 2561 struct page *page; 2562 2563 page = c->page; 2564 if (!page) { 2565 /* 2566 * if the node is not online or has no normal memory, just 2567 * ignore the node constraint 2568 */ 2569 if (unlikely(node != NUMA_NO_NODE && 2570 !node_state(node, N_NORMAL_MEMORY))) 2571 node = NUMA_NO_NODE; 2572 goto new_slab; 2573 } 2574 redo: 2575 2576 if (unlikely(!node_match(page, node))) { 2577 /* 2578 * same as above but node_match() being false already 2579 * implies node != NUMA_NO_NODE 2580 */ 2581 if (!node_state(node, N_NORMAL_MEMORY)) { 2582 node = NUMA_NO_NODE; 2583 goto redo; 2584 } else { 2585 stat(s, ALLOC_NODE_MISMATCH); 2586 deactivate_slab(s, page, c->freelist, c); 2587 goto new_slab; 2588 } 2589 } 2590 2591 /* 2592 * By rights, we should be searching for a slab page that was 2593 * PFMEMALLOC but right now, we are losing the pfmemalloc 2594 * information when the page leaves the per-cpu allocator 2595 */ 2596 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2597 deactivate_slab(s, page, c->freelist, c); 2598 goto new_slab; 2599 } 2600 2601 /* must check again c->freelist in case of cpu migration or IRQ */ 2602 freelist = c->freelist; 2603 if (freelist) 2604 goto load_freelist; 2605 2606 freelist = get_freelist(s, page); 2607 2608 if (!freelist) { 2609 c->page = NULL; 2610 stat(s, DEACTIVATE_BYPASS); 2611 goto new_slab; 2612 } 2613 2614 stat(s, ALLOC_REFILL); 2615 2616 load_freelist: 2617 /* 2618 * freelist is pointing to the list of objects to be used. 2619 * page is pointing to the page from which the objects are obtained. 2620 * That page must be frozen for per cpu allocations to work. 2621 */ 2622 VM_BUG_ON(!c->page->frozen); 2623 c->freelist = get_freepointer(s, freelist); 2624 c->tid = next_tid(c->tid); 2625 return freelist; 2626 2627 new_slab: 2628 2629 if (slub_percpu_partial(c)) { 2630 page = c->page = slub_percpu_partial(c); 2631 slub_set_percpu_partial(c, page); 2632 stat(s, CPU_PARTIAL_ALLOC); 2633 goto redo; 2634 } 2635 2636 freelist = new_slab_objects(s, gfpflags, node, &c); 2637 2638 if (unlikely(!freelist)) { 2639 slab_out_of_memory(s, gfpflags, node); 2640 return NULL; 2641 } 2642 2643 page = c->page; 2644 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2645 goto load_freelist; 2646 2647 /* Only entered in the debug case */ 2648 if (kmem_cache_debug(s) && 2649 !alloc_debug_processing(s, page, freelist, addr)) 2650 goto new_slab; /* Slab failed checks. Next slab needed */ 2651 2652 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2653 return freelist; 2654 } 2655 2656 /* 2657 * Another one that disabled interrupt and compensates for possible 2658 * cpu changes by refetching the per cpu area pointer. 2659 */ 2660 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2661 unsigned long addr, struct kmem_cache_cpu *c) 2662 { 2663 void *p; 2664 unsigned long flags; 2665 2666 local_irq_save(flags); 2667 #ifdef CONFIG_PREEMPTION 2668 /* 2669 * We may have been preempted and rescheduled on a different 2670 * cpu before disabling interrupts. Need to reload cpu area 2671 * pointer. 2672 */ 2673 c = this_cpu_ptr(s->cpu_slab); 2674 #endif 2675 2676 p = ___slab_alloc(s, gfpflags, node, addr, c); 2677 local_irq_restore(flags); 2678 return p; 2679 } 2680 2681 /* 2682 * If the object has been wiped upon free, make sure it's fully initialized by 2683 * zeroing out freelist pointer. 2684 */ 2685 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2686 void *obj) 2687 { 2688 if (unlikely(slab_want_init_on_free(s)) && obj) 2689 memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); 2690 } 2691 2692 /* 2693 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2694 * have the fastpath folded into their functions. So no function call 2695 * overhead for requests that can be satisfied on the fastpath. 2696 * 2697 * The fastpath works by first checking if the lockless freelist can be used. 2698 * If not then __slab_alloc is called for slow processing. 2699 * 2700 * Otherwise we can simply pick the next object from the lockless free list. 2701 */ 2702 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2703 gfp_t gfpflags, int node, unsigned long addr) 2704 { 2705 void *object; 2706 struct kmem_cache_cpu *c; 2707 struct page *page; 2708 unsigned long tid; 2709 2710 s = slab_pre_alloc_hook(s, gfpflags); 2711 if (!s) 2712 return NULL; 2713 redo: 2714 /* 2715 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2716 * enabled. We may switch back and forth between cpus while 2717 * reading from one cpu area. That does not matter as long 2718 * as we end up on the original cpu again when doing the cmpxchg. 2719 * 2720 * We should guarantee that tid and kmem_cache are retrieved on 2721 * the same cpu. It could be different if CONFIG_PREEMPTION so we need 2722 * to check if it is matched or not. 2723 */ 2724 do { 2725 tid = this_cpu_read(s->cpu_slab->tid); 2726 c = raw_cpu_ptr(s->cpu_slab); 2727 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2728 unlikely(tid != READ_ONCE(c->tid))); 2729 2730 /* 2731 * Irqless object alloc/free algorithm used here depends on sequence 2732 * of fetching cpu_slab's data. tid should be fetched before anything 2733 * on c to guarantee that object and page associated with previous tid 2734 * won't be used with current tid. If we fetch tid first, object and 2735 * page could be one associated with next tid and our alloc/free 2736 * request will be failed. In this case, we will retry. So, no problem. 2737 */ 2738 barrier(); 2739 2740 /* 2741 * The transaction ids are globally unique per cpu and per operation on 2742 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2743 * occurs on the right processor and that there was no operation on the 2744 * linked list in between. 2745 */ 2746 2747 object = c->freelist; 2748 page = c->page; 2749 if (unlikely(!object || !node_match(page, node))) { 2750 object = __slab_alloc(s, gfpflags, node, addr, c); 2751 stat(s, ALLOC_SLOWPATH); 2752 } else { 2753 void *next_object = get_freepointer_safe(s, object); 2754 2755 /* 2756 * The cmpxchg will only match if there was no additional 2757 * operation and if we are on the right processor. 2758 * 2759 * The cmpxchg does the following atomically (without lock 2760 * semantics!) 2761 * 1. Relocate first pointer to the current per cpu area. 2762 * 2. Verify that tid and freelist have not been changed 2763 * 3. If they were not changed replace tid and freelist 2764 * 2765 * Since this is without lock semantics the protection is only 2766 * against code executing on this cpu *not* from access by 2767 * other cpus. 2768 */ 2769 if (unlikely(!this_cpu_cmpxchg_double( 2770 s->cpu_slab->freelist, s->cpu_slab->tid, 2771 object, tid, 2772 next_object, next_tid(tid)))) { 2773 2774 note_cmpxchg_failure("slab_alloc", s, tid); 2775 goto redo; 2776 } 2777 prefetch_freepointer(s, next_object); 2778 stat(s, ALLOC_FASTPATH); 2779 } 2780 2781 maybe_wipe_obj_freeptr(s, object); 2782 2783 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2784 memset(object, 0, s->object_size); 2785 2786 slab_post_alloc_hook(s, gfpflags, 1, &object); 2787 2788 return object; 2789 } 2790 2791 static __always_inline void *slab_alloc(struct kmem_cache *s, 2792 gfp_t gfpflags, unsigned long addr) 2793 { 2794 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2795 } 2796 2797 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2798 { 2799 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2800 2801 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2802 s->size, gfpflags); 2803 2804 return ret; 2805 } 2806 EXPORT_SYMBOL(kmem_cache_alloc); 2807 2808 #ifdef CONFIG_TRACING 2809 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2810 { 2811 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2812 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2813 ret = kasan_kmalloc(s, ret, size, gfpflags); 2814 return ret; 2815 } 2816 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2817 #endif 2818 2819 #ifdef CONFIG_NUMA 2820 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2821 { 2822 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2823 2824 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2825 s->object_size, s->size, gfpflags, node); 2826 2827 return ret; 2828 } 2829 EXPORT_SYMBOL(kmem_cache_alloc_node); 2830 2831 #ifdef CONFIG_TRACING 2832 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2833 gfp_t gfpflags, 2834 int node, size_t size) 2835 { 2836 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2837 2838 trace_kmalloc_node(_RET_IP_, ret, 2839 size, s->size, gfpflags, node); 2840 2841 ret = kasan_kmalloc(s, ret, size, gfpflags); 2842 return ret; 2843 } 2844 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2845 #endif 2846 #endif /* CONFIG_NUMA */ 2847 2848 /* 2849 * Slow path handling. This may still be called frequently since objects 2850 * have a longer lifetime than the cpu slabs in most processing loads. 2851 * 2852 * So we still attempt to reduce cache line usage. Just take the slab 2853 * lock and free the item. If there is no additional partial page 2854 * handling required then we can return immediately. 2855 */ 2856 static void __slab_free(struct kmem_cache *s, struct page *page, 2857 void *head, void *tail, int cnt, 2858 unsigned long addr) 2859 2860 { 2861 void *prior; 2862 int was_frozen; 2863 struct page new; 2864 unsigned long counters; 2865 struct kmem_cache_node *n = NULL; 2866 unsigned long uninitialized_var(flags); 2867 2868 stat(s, FREE_SLOWPATH); 2869 2870 if (kmem_cache_debug(s) && 2871 !free_debug_processing(s, page, head, tail, cnt, addr)) 2872 return; 2873 2874 do { 2875 if (unlikely(n)) { 2876 spin_unlock_irqrestore(&n->list_lock, flags); 2877 n = NULL; 2878 } 2879 prior = page->freelist; 2880 counters = page->counters; 2881 set_freepointer(s, tail, prior); 2882 new.counters = counters; 2883 was_frozen = new.frozen; 2884 new.inuse -= cnt; 2885 if ((!new.inuse || !prior) && !was_frozen) { 2886 2887 if (kmem_cache_has_cpu_partial(s) && !prior) { 2888 2889 /* 2890 * Slab was on no list before and will be 2891 * partially empty 2892 * We can defer the list move and instead 2893 * freeze it. 2894 */ 2895 new.frozen = 1; 2896 2897 } else { /* Needs to be taken off a list */ 2898 2899 n = get_node(s, page_to_nid(page)); 2900 /* 2901 * Speculatively acquire the list_lock. 2902 * If the cmpxchg does not succeed then we may 2903 * drop the list_lock without any processing. 2904 * 2905 * Otherwise the list_lock will synchronize with 2906 * other processors updating the list of slabs. 2907 */ 2908 spin_lock_irqsave(&n->list_lock, flags); 2909 2910 } 2911 } 2912 2913 } while (!cmpxchg_double_slab(s, page, 2914 prior, counters, 2915 head, new.counters, 2916 "__slab_free")); 2917 2918 if (likely(!n)) { 2919 2920 /* 2921 * If we just froze the page then put it onto the 2922 * per cpu partial list. 2923 */ 2924 if (new.frozen && !was_frozen) { 2925 put_cpu_partial(s, page, 1); 2926 stat(s, CPU_PARTIAL_FREE); 2927 } 2928 /* 2929 * The list lock was not taken therefore no list 2930 * activity can be necessary. 2931 */ 2932 if (was_frozen) 2933 stat(s, FREE_FROZEN); 2934 return; 2935 } 2936 2937 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2938 goto slab_empty; 2939 2940 /* 2941 * Objects left in the slab. If it was not on the partial list before 2942 * then add it. 2943 */ 2944 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2945 remove_full(s, n, page); 2946 add_partial(n, page, DEACTIVATE_TO_TAIL); 2947 stat(s, FREE_ADD_PARTIAL); 2948 } 2949 spin_unlock_irqrestore(&n->list_lock, flags); 2950 return; 2951 2952 slab_empty: 2953 if (prior) { 2954 /* 2955 * Slab on the partial list. 2956 */ 2957 remove_partial(n, page); 2958 stat(s, FREE_REMOVE_PARTIAL); 2959 } else { 2960 /* Slab must be on the full list */ 2961 remove_full(s, n, page); 2962 } 2963 2964 spin_unlock_irqrestore(&n->list_lock, flags); 2965 stat(s, FREE_SLAB); 2966 discard_slab(s, page); 2967 } 2968 2969 /* 2970 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2971 * can perform fastpath freeing without additional function calls. 2972 * 2973 * The fastpath is only possible if we are freeing to the current cpu slab 2974 * of this processor. This typically the case if we have just allocated 2975 * the item before. 2976 * 2977 * If fastpath is not possible then fall back to __slab_free where we deal 2978 * with all sorts of special processing. 2979 * 2980 * Bulk free of a freelist with several objects (all pointing to the 2981 * same page) possible by specifying head and tail ptr, plus objects 2982 * count (cnt). Bulk free indicated by tail pointer being set. 2983 */ 2984 static __always_inline void do_slab_free(struct kmem_cache *s, 2985 struct page *page, void *head, void *tail, 2986 int cnt, unsigned long addr) 2987 { 2988 void *tail_obj = tail ? : head; 2989 struct kmem_cache_cpu *c; 2990 unsigned long tid; 2991 redo: 2992 /* 2993 * Determine the currently cpus per cpu slab. 2994 * The cpu may change afterward. However that does not matter since 2995 * data is retrieved via this pointer. If we are on the same cpu 2996 * during the cmpxchg then the free will succeed. 2997 */ 2998 do { 2999 tid = this_cpu_read(s->cpu_slab->tid); 3000 c = raw_cpu_ptr(s->cpu_slab); 3001 } while (IS_ENABLED(CONFIG_PREEMPTION) && 3002 unlikely(tid != READ_ONCE(c->tid))); 3003 3004 /* Same with comment on barrier() in slab_alloc_node() */ 3005 barrier(); 3006 3007 if (likely(page == c->page)) { 3008 void **freelist = READ_ONCE(c->freelist); 3009 3010 set_freepointer(s, tail_obj, freelist); 3011 3012 if (unlikely(!this_cpu_cmpxchg_double( 3013 s->cpu_slab->freelist, s->cpu_slab->tid, 3014 freelist, tid, 3015 head, next_tid(tid)))) { 3016 3017 note_cmpxchg_failure("slab_free", s, tid); 3018 goto redo; 3019 } 3020 stat(s, FREE_FASTPATH); 3021 } else 3022 __slab_free(s, page, head, tail_obj, cnt, addr); 3023 3024 } 3025 3026 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3027 void *head, void *tail, int cnt, 3028 unsigned long addr) 3029 { 3030 /* 3031 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3032 * to remove objects, whose reuse must be delayed. 3033 */ 3034 if (slab_free_freelist_hook(s, &head, &tail)) 3035 do_slab_free(s, page, head, tail, cnt, addr); 3036 } 3037 3038 #ifdef CONFIG_KASAN_GENERIC 3039 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3040 { 3041 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3042 } 3043 #endif 3044 3045 void kmem_cache_free(struct kmem_cache *s, void *x) 3046 { 3047 s = cache_from_obj(s, x); 3048 if (!s) 3049 return; 3050 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3051 trace_kmem_cache_free(_RET_IP_, x); 3052 } 3053 EXPORT_SYMBOL(kmem_cache_free); 3054 3055 struct detached_freelist { 3056 struct page *page; 3057 void *tail; 3058 void *freelist; 3059 int cnt; 3060 struct kmem_cache *s; 3061 }; 3062 3063 /* 3064 * This function progressively scans the array with free objects (with 3065 * a limited look ahead) and extract objects belonging to the same 3066 * page. It builds a detached freelist directly within the given 3067 * page/objects. This can happen without any need for 3068 * synchronization, because the objects are owned by running process. 3069 * The freelist is build up as a single linked list in the objects. 3070 * The idea is, that this detached freelist can then be bulk 3071 * transferred to the real freelist(s), but only requiring a single 3072 * synchronization primitive. Look ahead in the array is limited due 3073 * to performance reasons. 3074 */ 3075 static inline 3076 int build_detached_freelist(struct kmem_cache *s, size_t size, 3077 void **p, struct detached_freelist *df) 3078 { 3079 size_t first_skipped_index = 0; 3080 int lookahead = 3; 3081 void *object; 3082 struct page *page; 3083 3084 /* Always re-init detached_freelist */ 3085 df->page = NULL; 3086 3087 do { 3088 object = p[--size]; 3089 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3090 } while (!object && size); 3091 3092 if (!object) 3093 return 0; 3094 3095 page = virt_to_head_page(object); 3096 if (!s) { 3097 /* Handle kalloc'ed objects */ 3098 if (unlikely(!PageSlab(page))) { 3099 BUG_ON(!PageCompound(page)); 3100 kfree_hook(object); 3101 __free_pages(page, compound_order(page)); 3102 p[size] = NULL; /* mark object processed */ 3103 return size; 3104 } 3105 /* Derive kmem_cache from object */ 3106 df->s = page->slab_cache; 3107 } else { 3108 df->s = cache_from_obj(s, object); /* Support for memcg */ 3109 } 3110 3111 /* Start new detached freelist */ 3112 df->page = page; 3113 set_freepointer(df->s, object, NULL); 3114 df->tail = object; 3115 df->freelist = object; 3116 p[size] = NULL; /* mark object processed */ 3117 df->cnt = 1; 3118 3119 while (size) { 3120 object = p[--size]; 3121 if (!object) 3122 continue; /* Skip processed objects */ 3123 3124 /* df->page is always set at this point */ 3125 if (df->page == virt_to_head_page(object)) { 3126 /* Opportunity build freelist */ 3127 set_freepointer(df->s, object, df->freelist); 3128 df->freelist = object; 3129 df->cnt++; 3130 p[size] = NULL; /* mark object processed */ 3131 3132 continue; 3133 } 3134 3135 /* Limit look ahead search */ 3136 if (!--lookahead) 3137 break; 3138 3139 if (!first_skipped_index) 3140 first_skipped_index = size + 1; 3141 } 3142 3143 return first_skipped_index; 3144 } 3145 3146 /* Note that interrupts must be enabled when calling this function. */ 3147 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3148 { 3149 if (WARN_ON(!size)) 3150 return; 3151 3152 do { 3153 struct detached_freelist df; 3154 3155 size = build_detached_freelist(s, size, p, &df); 3156 if (!df.page) 3157 continue; 3158 3159 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3160 } while (likely(size)); 3161 } 3162 EXPORT_SYMBOL(kmem_cache_free_bulk); 3163 3164 /* Note that interrupts must be enabled when calling this function. */ 3165 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3166 void **p) 3167 { 3168 struct kmem_cache_cpu *c; 3169 int i; 3170 3171 /* memcg and kmem_cache debug support */ 3172 s = slab_pre_alloc_hook(s, flags); 3173 if (unlikely(!s)) 3174 return false; 3175 /* 3176 * Drain objects in the per cpu slab, while disabling local 3177 * IRQs, which protects against PREEMPT and interrupts 3178 * handlers invoking normal fastpath. 3179 */ 3180 local_irq_disable(); 3181 c = this_cpu_ptr(s->cpu_slab); 3182 3183 for (i = 0; i < size; i++) { 3184 void *object = c->freelist; 3185 3186 if (unlikely(!object)) { 3187 /* 3188 * We may have removed an object from c->freelist using 3189 * the fastpath in the previous iteration; in that case, 3190 * c->tid has not been bumped yet. 3191 * Since ___slab_alloc() may reenable interrupts while 3192 * allocating memory, we should bump c->tid now. 3193 */ 3194 c->tid = next_tid(c->tid); 3195 3196 /* 3197 * Invoking slow path likely have side-effect 3198 * of re-populating per CPU c->freelist 3199 */ 3200 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3201 _RET_IP_, c); 3202 if (unlikely(!p[i])) 3203 goto error; 3204 3205 c = this_cpu_ptr(s->cpu_slab); 3206 maybe_wipe_obj_freeptr(s, p[i]); 3207 3208 continue; /* goto for-loop */ 3209 } 3210 c->freelist = get_freepointer(s, object); 3211 p[i] = object; 3212 maybe_wipe_obj_freeptr(s, p[i]); 3213 } 3214 c->tid = next_tid(c->tid); 3215 local_irq_enable(); 3216 3217 /* Clear memory outside IRQ disabled fastpath loop */ 3218 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3219 int j; 3220 3221 for (j = 0; j < i; j++) 3222 memset(p[j], 0, s->object_size); 3223 } 3224 3225 /* memcg and kmem_cache debug support */ 3226 slab_post_alloc_hook(s, flags, size, p); 3227 return i; 3228 error: 3229 local_irq_enable(); 3230 slab_post_alloc_hook(s, flags, i, p); 3231 __kmem_cache_free_bulk(s, i, p); 3232 return 0; 3233 } 3234 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3235 3236 3237 /* 3238 * Object placement in a slab is made very easy because we always start at 3239 * offset 0. If we tune the size of the object to the alignment then we can 3240 * get the required alignment by putting one properly sized object after 3241 * another. 3242 * 3243 * Notice that the allocation order determines the sizes of the per cpu 3244 * caches. Each processor has always one slab available for allocations. 3245 * Increasing the allocation order reduces the number of times that slabs 3246 * must be moved on and off the partial lists and is therefore a factor in 3247 * locking overhead. 3248 */ 3249 3250 /* 3251 * Mininum / Maximum order of slab pages. This influences locking overhead 3252 * and slab fragmentation. A higher order reduces the number of partial slabs 3253 * and increases the number of allocations possible without having to 3254 * take the list_lock. 3255 */ 3256 static unsigned int slub_min_order; 3257 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3258 static unsigned int slub_min_objects; 3259 3260 /* 3261 * Calculate the order of allocation given an slab object size. 3262 * 3263 * The order of allocation has significant impact on performance and other 3264 * system components. Generally order 0 allocations should be preferred since 3265 * order 0 does not cause fragmentation in the page allocator. Larger objects 3266 * be problematic to put into order 0 slabs because there may be too much 3267 * unused space left. We go to a higher order if more than 1/16th of the slab 3268 * would be wasted. 3269 * 3270 * In order to reach satisfactory performance we must ensure that a minimum 3271 * number of objects is in one slab. Otherwise we may generate too much 3272 * activity on the partial lists which requires taking the list_lock. This is 3273 * less a concern for large slabs though which are rarely used. 3274 * 3275 * slub_max_order specifies the order where we begin to stop considering the 3276 * number of objects in a slab as critical. If we reach slub_max_order then 3277 * we try to keep the page order as low as possible. So we accept more waste 3278 * of space in favor of a small page order. 3279 * 3280 * Higher order allocations also allow the placement of more objects in a 3281 * slab and thereby reduce object handling overhead. If the user has 3282 * requested a higher mininum order then we start with that one instead of 3283 * the smallest order which will fit the object. 3284 */ 3285 static inline unsigned int slab_order(unsigned int size, 3286 unsigned int min_objects, unsigned int max_order, 3287 unsigned int fract_leftover) 3288 { 3289 unsigned int min_order = slub_min_order; 3290 unsigned int order; 3291 3292 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3293 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3294 3295 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3296 order <= max_order; order++) { 3297 3298 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3299 unsigned int rem; 3300 3301 rem = slab_size % size; 3302 3303 if (rem <= slab_size / fract_leftover) 3304 break; 3305 } 3306 3307 return order; 3308 } 3309 3310 static inline int calculate_order(unsigned int size) 3311 { 3312 unsigned int order; 3313 unsigned int min_objects; 3314 unsigned int max_objects; 3315 3316 /* 3317 * Attempt to find best configuration for a slab. This 3318 * works by first attempting to generate a layout with 3319 * the best configuration and backing off gradually. 3320 * 3321 * First we increase the acceptable waste in a slab. Then 3322 * we reduce the minimum objects required in a slab. 3323 */ 3324 min_objects = slub_min_objects; 3325 if (!min_objects) 3326 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3327 max_objects = order_objects(slub_max_order, size); 3328 min_objects = min(min_objects, max_objects); 3329 3330 while (min_objects > 1) { 3331 unsigned int fraction; 3332 3333 fraction = 16; 3334 while (fraction >= 4) { 3335 order = slab_order(size, min_objects, 3336 slub_max_order, fraction); 3337 if (order <= slub_max_order) 3338 return order; 3339 fraction /= 2; 3340 } 3341 min_objects--; 3342 } 3343 3344 /* 3345 * We were unable to place multiple objects in a slab. Now 3346 * lets see if we can place a single object there. 3347 */ 3348 order = slab_order(size, 1, slub_max_order, 1); 3349 if (order <= slub_max_order) 3350 return order; 3351 3352 /* 3353 * Doh this slab cannot be placed using slub_max_order. 3354 */ 3355 order = slab_order(size, 1, MAX_ORDER, 1); 3356 if (order < MAX_ORDER) 3357 return order; 3358 return -ENOSYS; 3359 } 3360 3361 static void 3362 init_kmem_cache_node(struct kmem_cache_node *n) 3363 { 3364 n->nr_partial = 0; 3365 spin_lock_init(&n->list_lock); 3366 INIT_LIST_HEAD(&n->partial); 3367 #ifdef CONFIG_SLUB_DEBUG 3368 atomic_long_set(&n->nr_slabs, 0); 3369 atomic_long_set(&n->total_objects, 0); 3370 INIT_LIST_HEAD(&n->full); 3371 #endif 3372 } 3373 3374 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3375 { 3376 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3377 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3378 3379 /* 3380 * Must align to double word boundary for the double cmpxchg 3381 * instructions to work; see __pcpu_double_call_return_bool(). 3382 */ 3383 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3384 2 * sizeof(void *)); 3385 3386 if (!s->cpu_slab) 3387 return 0; 3388 3389 init_kmem_cache_cpus(s); 3390 3391 return 1; 3392 } 3393 3394 static struct kmem_cache *kmem_cache_node; 3395 3396 /* 3397 * No kmalloc_node yet so do it by hand. We know that this is the first 3398 * slab on the node for this slabcache. There are no concurrent accesses 3399 * possible. 3400 * 3401 * Note that this function only works on the kmem_cache_node 3402 * when allocating for the kmem_cache_node. This is used for bootstrapping 3403 * memory on a fresh node that has no slab structures yet. 3404 */ 3405 static void early_kmem_cache_node_alloc(int node) 3406 { 3407 struct page *page; 3408 struct kmem_cache_node *n; 3409 3410 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3411 3412 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3413 3414 BUG_ON(!page); 3415 if (page_to_nid(page) != node) { 3416 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3417 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3418 } 3419 3420 n = page->freelist; 3421 BUG_ON(!n); 3422 #ifdef CONFIG_SLUB_DEBUG 3423 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3424 init_tracking(kmem_cache_node, n); 3425 #endif 3426 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3427 GFP_KERNEL); 3428 page->freelist = get_freepointer(kmem_cache_node, n); 3429 page->inuse = 1; 3430 page->frozen = 0; 3431 kmem_cache_node->node[node] = n; 3432 init_kmem_cache_node(n); 3433 inc_slabs_node(kmem_cache_node, node, page->objects); 3434 3435 /* 3436 * No locks need to be taken here as it has just been 3437 * initialized and there is no concurrent access. 3438 */ 3439 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3440 } 3441 3442 static void free_kmem_cache_nodes(struct kmem_cache *s) 3443 { 3444 int node; 3445 struct kmem_cache_node *n; 3446 3447 for_each_kmem_cache_node(s, node, n) { 3448 s->node[node] = NULL; 3449 kmem_cache_free(kmem_cache_node, n); 3450 } 3451 } 3452 3453 void __kmem_cache_release(struct kmem_cache *s) 3454 { 3455 cache_random_seq_destroy(s); 3456 free_percpu(s->cpu_slab); 3457 free_kmem_cache_nodes(s); 3458 } 3459 3460 static int init_kmem_cache_nodes(struct kmem_cache *s) 3461 { 3462 int node; 3463 3464 for_each_node_state(node, N_NORMAL_MEMORY) { 3465 struct kmem_cache_node *n; 3466 3467 if (slab_state == DOWN) { 3468 early_kmem_cache_node_alloc(node); 3469 continue; 3470 } 3471 n = kmem_cache_alloc_node(kmem_cache_node, 3472 GFP_KERNEL, node); 3473 3474 if (!n) { 3475 free_kmem_cache_nodes(s); 3476 return 0; 3477 } 3478 3479 init_kmem_cache_node(n); 3480 s->node[node] = n; 3481 } 3482 return 1; 3483 } 3484 3485 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3486 { 3487 if (min < MIN_PARTIAL) 3488 min = MIN_PARTIAL; 3489 else if (min > MAX_PARTIAL) 3490 min = MAX_PARTIAL; 3491 s->min_partial = min; 3492 } 3493 3494 static void set_cpu_partial(struct kmem_cache *s) 3495 { 3496 #ifdef CONFIG_SLUB_CPU_PARTIAL 3497 /* 3498 * cpu_partial determined the maximum number of objects kept in the 3499 * per cpu partial lists of a processor. 3500 * 3501 * Per cpu partial lists mainly contain slabs that just have one 3502 * object freed. If they are used for allocation then they can be 3503 * filled up again with minimal effort. The slab will never hit the 3504 * per node partial lists and therefore no locking will be required. 3505 * 3506 * This setting also determines 3507 * 3508 * A) The number of objects from per cpu partial slabs dumped to the 3509 * per node list when we reach the limit. 3510 * B) The number of objects in cpu partial slabs to extract from the 3511 * per node list when we run out of per cpu objects. We only fetch 3512 * 50% to keep some capacity around for frees. 3513 */ 3514 if (!kmem_cache_has_cpu_partial(s)) 3515 s->cpu_partial = 0; 3516 else if (s->size >= PAGE_SIZE) 3517 s->cpu_partial = 2; 3518 else if (s->size >= 1024) 3519 s->cpu_partial = 6; 3520 else if (s->size >= 256) 3521 s->cpu_partial = 13; 3522 else 3523 s->cpu_partial = 30; 3524 #endif 3525 } 3526 3527 /* 3528 * calculate_sizes() determines the order and the distribution of data within 3529 * a slab object. 3530 */ 3531 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3532 { 3533 slab_flags_t flags = s->flags; 3534 unsigned int size = s->object_size; 3535 unsigned int order; 3536 3537 /* 3538 * Round up object size to the next word boundary. We can only 3539 * place the free pointer at word boundaries and this determines 3540 * the possible location of the free pointer. 3541 */ 3542 size = ALIGN(size, sizeof(void *)); 3543 3544 #ifdef CONFIG_SLUB_DEBUG 3545 /* 3546 * Determine if we can poison the object itself. If the user of 3547 * the slab may touch the object after free or before allocation 3548 * then we should never poison the object itself. 3549 */ 3550 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3551 !s->ctor) 3552 s->flags |= __OBJECT_POISON; 3553 else 3554 s->flags &= ~__OBJECT_POISON; 3555 3556 3557 /* 3558 * If we are Redzoning then check if there is some space between the 3559 * end of the object and the free pointer. If not then add an 3560 * additional word to have some bytes to store Redzone information. 3561 */ 3562 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3563 size += sizeof(void *); 3564 #endif 3565 3566 /* 3567 * With that we have determined the number of bytes in actual use 3568 * by the object. This is the potential offset to the free pointer. 3569 */ 3570 s->inuse = size; 3571 3572 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3573 s->ctor)) { 3574 /* 3575 * Relocate free pointer after the object if it is not 3576 * permitted to overwrite the first word of the object on 3577 * kmem_cache_free. 3578 * 3579 * This is the case if we do RCU, have a constructor or 3580 * destructor or are poisoning the objects. 3581 */ 3582 s->offset = size; 3583 size += sizeof(void *); 3584 } 3585 3586 #ifdef CONFIG_SLUB_DEBUG 3587 if (flags & SLAB_STORE_USER) 3588 /* 3589 * Need to store information about allocs and frees after 3590 * the object. 3591 */ 3592 size += 2 * sizeof(struct track); 3593 #endif 3594 3595 kasan_cache_create(s, &size, &s->flags); 3596 #ifdef CONFIG_SLUB_DEBUG 3597 if (flags & SLAB_RED_ZONE) { 3598 /* 3599 * Add some empty padding so that we can catch 3600 * overwrites from earlier objects rather than let 3601 * tracking information or the free pointer be 3602 * corrupted if a user writes before the start 3603 * of the object. 3604 */ 3605 size += sizeof(void *); 3606 3607 s->red_left_pad = sizeof(void *); 3608 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3609 size += s->red_left_pad; 3610 } 3611 #endif 3612 3613 /* 3614 * SLUB stores one object immediately after another beginning from 3615 * offset 0. In order to align the objects we have to simply size 3616 * each object to conform to the alignment. 3617 */ 3618 size = ALIGN(size, s->align); 3619 s->size = size; 3620 if (forced_order >= 0) 3621 order = forced_order; 3622 else 3623 order = calculate_order(size); 3624 3625 if ((int)order < 0) 3626 return 0; 3627 3628 s->allocflags = 0; 3629 if (order) 3630 s->allocflags |= __GFP_COMP; 3631 3632 if (s->flags & SLAB_CACHE_DMA) 3633 s->allocflags |= GFP_DMA; 3634 3635 if (s->flags & SLAB_CACHE_DMA32) 3636 s->allocflags |= GFP_DMA32; 3637 3638 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3639 s->allocflags |= __GFP_RECLAIMABLE; 3640 3641 /* 3642 * Determine the number of objects per slab 3643 */ 3644 s->oo = oo_make(order, size); 3645 s->min = oo_make(get_order(size), size); 3646 if (oo_objects(s->oo) > oo_objects(s->max)) 3647 s->max = s->oo; 3648 3649 return !!oo_objects(s->oo); 3650 } 3651 3652 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3653 { 3654 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3655 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3656 s->random = get_random_long(); 3657 #endif 3658 3659 if (!calculate_sizes(s, -1)) 3660 goto error; 3661 if (disable_higher_order_debug) { 3662 /* 3663 * Disable debugging flags that store metadata if the min slab 3664 * order increased. 3665 */ 3666 if (get_order(s->size) > get_order(s->object_size)) { 3667 s->flags &= ~DEBUG_METADATA_FLAGS; 3668 s->offset = 0; 3669 if (!calculate_sizes(s, -1)) 3670 goto error; 3671 } 3672 } 3673 3674 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3675 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3676 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3677 /* Enable fast mode */ 3678 s->flags |= __CMPXCHG_DOUBLE; 3679 #endif 3680 3681 /* 3682 * The larger the object size is, the more pages we want on the partial 3683 * list to avoid pounding the page allocator excessively. 3684 */ 3685 set_min_partial(s, ilog2(s->size) / 2); 3686 3687 set_cpu_partial(s); 3688 3689 #ifdef CONFIG_NUMA 3690 s->remote_node_defrag_ratio = 1000; 3691 #endif 3692 3693 /* Initialize the pre-computed randomized freelist if slab is up */ 3694 if (slab_state >= UP) { 3695 if (init_cache_random_seq(s)) 3696 goto error; 3697 } 3698 3699 if (!init_kmem_cache_nodes(s)) 3700 goto error; 3701 3702 if (alloc_kmem_cache_cpus(s)) 3703 return 0; 3704 3705 free_kmem_cache_nodes(s); 3706 error: 3707 return -EINVAL; 3708 } 3709 3710 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3711 const char *text) 3712 { 3713 #ifdef CONFIG_SLUB_DEBUG 3714 void *addr = page_address(page); 3715 void *p; 3716 unsigned long *map; 3717 3718 slab_err(s, page, text, s->name); 3719 slab_lock(page); 3720 3721 map = get_map(s, page); 3722 for_each_object(p, s, addr, page->objects) { 3723 3724 if (!test_bit(slab_index(p, s, addr), map)) { 3725 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3726 print_tracking(s, p); 3727 } 3728 } 3729 put_map(map); 3730 3731 slab_unlock(page); 3732 #endif 3733 } 3734 3735 /* 3736 * Attempt to free all partial slabs on a node. 3737 * This is called from __kmem_cache_shutdown(). We must take list_lock 3738 * because sysfs file might still access partial list after the shutdowning. 3739 */ 3740 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3741 { 3742 LIST_HEAD(discard); 3743 struct page *page, *h; 3744 3745 BUG_ON(irqs_disabled()); 3746 spin_lock_irq(&n->list_lock); 3747 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3748 if (!page->inuse) { 3749 remove_partial(n, page); 3750 list_add(&page->slab_list, &discard); 3751 } else { 3752 list_slab_objects(s, page, 3753 "Objects remaining in %s on __kmem_cache_shutdown()"); 3754 } 3755 } 3756 spin_unlock_irq(&n->list_lock); 3757 3758 list_for_each_entry_safe(page, h, &discard, slab_list) 3759 discard_slab(s, page); 3760 } 3761 3762 bool __kmem_cache_empty(struct kmem_cache *s) 3763 { 3764 int node; 3765 struct kmem_cache_node *n; 3766 3767 for_each_kmem_cache_node(s, node, n) 3768 if (n->nr_partial || slabs_node(s, node)) 3769 return false; 3770 return true; 3771 } 3772 3773 /* 3774 * Release all resources used by a slab cache. 3775 */ 3776 int __kmem_cache_shutdown(struct kmem_cache *s) 3777 { 3778 int node; 3779 struct kmem_cache_node *n; 3780 3781 flush_all(s); 3782 /* Attempt to free all objects */ 3783 for_each_kmem_cache_node(s, node, n) { 3784 free_partial(s, n); 3785 if (n->nr_partial || slabs_node(s, node)) 3786 return 1; 3787 } 3788 sysfs_slab_remove(s); 3789 return 0; 3790 } 3791 3792 /******************************************************************** 3793 * Kmalloc subsystem 3794 *******************************************************************/ 3795 3796 static int __init setup_slub_min_order(char *str) 3797 { 3798 get_option(&str, (int *)&slub_min_order); 3799 3800 return 1; 3801 } 3802 3803 __setup("slub_min_order=", setup_slub_min_order); 3804 3805 static int __init setup_slub_max_order(char *str) 3806 { 3807 get_option(&str, (int *)&slub_max_order); 3808 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3809 3810 return 1; 3811 } 3812 3813 __setup("slub_max_order=", setup_slub_max_order); 3814 3815 static int __init setup_slub_min_objects(char *str) 3816 { 3817 get_option(&str, (int *)&slub_min_objects); 3818 3819 return 1; 3820 } 3821 3822 __setup("slub_min_objects=", setup_slub_min_objects); 3823 3824 void *__kmalloc(size_t size, gfp_t flags) 3825 { 3826 struct kmem_cache *s; 3827 void *ret; 3828 3829 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3830 return kmalloc_large(size, flags); 3831 3832 s = kmalloc_slab(size, flags); 3833 3834 if (unlikely(ZERO_OR_NULL_PTR(s))) 3835 return s; 3836 3837 ret = slab_alloc(s, flags, _RET_IP_); 3838 3839 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3840 3841 ret = kasan_kmalloc(s, ret, size, flags); 3842 3843 return ret; 3844 } 3845 EXPORT_SYMBOL(__kmalloc); 3846 3847 #ifdef CONFIG_NUMA 3848 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3849 { 3850 struct page *page; 3851 void *ptr = NULL; 3852 unsigned int order = get_order(size); 3853 3854 flags |= __GFP_COMP; 3855 page = alloc_pages_node(node, flags, order); 3856 if (page) { 3857 ptr = page_address(page); 3858 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3859 1 << order); 3860 } 3861 3862 return kmalloc_large_node_hook(ptr, size, flags); 3863 } 3864 3865 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3866 { 3867 struct kmem_cache *s; 3868 void *ret; 3869 3870 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3871 ret = kmalloc_large_node(size, flags, node); 3872 3873 trace_kmalloc_node(_RET_IP_, ret, 3874 size, PAGE_SIZE << get_order(size), 3875 flags, node); 3876 3877 return ret; 3878 } 3879 3880 s = kmalloc_slab(size, flags); 3881 3882 if (unlikely(ZERO_OR_NULL_PTR(s))) 3883 return s; 3884 3885 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3886 3887 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3888 3889 ret = kasan_kmalloc(s, ret, size, flags); 3890 3891 return ret; 3892 } 3893 EXPORT_SYMBOL(__kmalloc_node); 3894 #endif /* CONFIG_NUMA */ 3895 3896 #ifdef CONFIG_HARDENED_USERCOPY 3897 /* 3898 * Rejects incorrectly sized objects and objects that are to be copied 3899 * to/from userspace but do not fall entirely within the containing slab 3900 * cache's usercopy region. 3901 * 3902 * Returns NULL if check passes, otherwise const char * to name of cache 3903 * to indicate an error. 3904 */ 3905 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3906 bool to_user) 3907 { 3908 struct kmem_cache *s; 3909 unsigned int offset; 3910 size_t object_size; 3911 3912 ptr = kasan_reset_tag(ptr); 3913 3914 /* Find object and usable object size. */ 3915 s = page->slab_cache; 3916 3917 /* Reject impossible pointers. */ 3918 if (ptr < page_address(page)) 3919 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3920 to_user, 0, n); 3921 3922 /* Find offset within object. */ 3923 offset = (ptr - page_address(page)) % s->size; 3924 3925 /* Adjust for redzone and reject if within the redzone. */ 3926 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3927 if (offset < s->red_left_pad) 3928 usercopy_abort("SLUB object in left red zone", 3929 s->name, to_user, offset, n); 3930 offset -= s->red_left_pad; 3931 } 3932 3933 /* Allow address range falling entirely within usercopy region. */ 3934 if (offset >= s->useroffset && 3935 offset - s->useroffset <= s->usersize && 3936 n <= s->useroffset - offset + s->usersize) 3937 return; 3938 3939 /* 3940 * If the copy is still within the allocated object, produce 3941 * a warning instead of rejecting the copy. This is intended 3942 * to be a temporary method to find any missing usercopy 3943 * whitelists. 3944 */ 3945 object_size = slab_ksize(s); 3946 if (usercopy_fallback && 3947 offset <= object_size && n <= object_size - offset) { 3948 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3949 return; 3950 } 3951 3952 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3953 } 3954 #endif /* CONFIG_HARDENED_USERCOPY */ 3955 3956 size_t __ksize(const void *object) 3957 { 3958 struct page *page; 3959 3960 if (unlikely(object == ZERO_SIZE_PTR)) 3961 return 0; 3962 3963 page = virt_to_head_page(object); 3964 3965 if (unlikely(!PageSlab(page))) { 3966 WARN_ON(!PageCompound(page)); 3967 return page_size(page); 3968 } 3969 3970 return slab_ksize(page->slab_cache); 3971 } 3972 EXPORT_SYMBOL(__ksize); 3973 3974 void kfree(const void *x) 3975 { 3976 struct page *page; 3977 void *object = (void *)x; 3978 3979 trace_kfree(_RET_IP_, x); 3980 3981 if (unlikely(ZERO_OR_NULL_PTR(x))) 3982 return; 3983 3984 page = virt_to_head_page(x); 3985 if (unlikely(!PageSlab(page))) { 3986 unsigned int order = compound_order(page); 3987 3988 BUG_ON(!PageCompound(page)); 3989 kfree_hook(object); 3990 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3991 -(1 << order)); 3992 __free_pages(page, order); 3993 return; 3994 } 3995 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3996 } 3997 EXPORT_SYMBOL(kfree); 3998 3999 #define SHRINK_PROMOTE_MAX 32 4000 4001 /* 4002 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4003 * up most to the head of the partial lists. New allocations will then 4004 * fill those up and thus they can be removed from the partial lists. 4005 * 4006 * The slabs with the least items are placed last. This results in them 4007 * being allocated from last increasing the chance that the last objects 4008 * are freed in them. 4009 */ 4010 int __kmem_cache_shrink(struct kmem_cache *s) 4011 { 4012 int node; 4013 int i; 4014 struct kmem_cache_node *n; 4015 struct page *page; 4016 struct page *t; 4017 struct list_head discard; 4018 struct list_head promote[SHRINK_PROMOTE_MAX]; 4019 unsigned long flags; 4020 int ret = 0; 4021 4022 flush_all(s); 4023 for_each_kmem_cache_node(s, node, n) { 4024 INIT_LIST_HEAD(&discard); 4025 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4026 INIT_LIST_HEAD(promote + i); 4027 4028 spin_lock_irqsave(&n->list_lock, flags); 4029 4030 /* 4031 * Build lists of slabs to discard or promote. 4032 * 4033 * Note that concurrent frees may occur while we hold the 4034 * list_lock. page->inuse here is the upper limit. 4035 */ 4036 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4037 int free = page->objects - page->inuse; 4038 4039 /* Do not reread page->inuse */ 4040 barrier(); 4041 4042 /* We do not keep full slabs on the list */ 4043 BUG_ON(free <= 0); 4044 4045 if (free == page->objects) { 4046 list_move(&page->slab_list, &discard); 4047 n->nr_partial--; 4048 } else if (free <= SHRINK_PROMOTE_MAX) 4049 list_move(&page->slab_list, promote + free - 1); 4050 } 4051 4052 /* 4053 * Promote the slabs filled up most to the head of the 4054 * partial list. 4055 */ 4056 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4057 list_splice(promote + i, &n->partial); 4058 4059 spin_unlock_irqrestore(&n->list_lock, flags); 4060 4061 /* Release empty slabs */ 4062 list_for_each_entry_safe(page, t, &discard, slab_list) 4063 discard_slab(s, page); 4064 4065 if (slabs_node(s, node)) 4066 ret = 1; 4067 } 4068 4069 return ret; 4070 } 4071 4072 #ifdef CONFIG_MEMCG 4073 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 4074 { 4075 /* 4076 * Called with all the locks held after a sched RCU grace period. 4077 * Even if @s becomes empty after shrinking, we can't know that @s 4078 * doesn't have allocations already in-flight and thus can't 4079 * destroy @s until the associated memcg is released. 4080 * 4081 * However, let's remove the sysfs files for empty caches here. 4082 * Each cache has a lot of interface files which aren't 4083 * particularly useful for empty draining caches; otherwise, we can 4084 * easily end up with millions of unnecessary sysfs files on 4085 * systems which have a lot of memory and transient cgroups. 4086 */ 4087 if (!__kmem_cache_shrink(s)) 4088 sysfs_slab_remove(s); 4089 } 4090 4091 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4092 { 4093 /* 4094 * Disable empty slabs caching. Used to avoid pinning offline 4095 * memory cgroups by kmem pages that can be freed. 4096 */ 4097 slub_set_cpu_partial(s, 0); 4098 s->min_partial = 0; 4099 } 4100 #endif /* CONFIG_MEMCG */ 4101 4102 static int slab_mem_going_offline_callback(void *arg) 4103 { 4104 struct kmem_cache *s; 4105 4106 mutex_lock(&slab_mutex); 4107 list_for_each_entry(s, &slab_caches, list) 4108 __kmem_cache_shrink(s); 4109 mutex_unlock(&slab_mutex); 4110 4111 return 0; 4112 } 4113 4114 static void slab_mem_offline_callback(void *arg) 4115 { 4116 struct kmem_cache_node *n; 4117 struct kmem_cache *s; 4118 struct memory_notify *marg = arg; 4119 int offline_node; 4120 4121 offline_node = marg->status_change_nid_normal; 4122 4123 /* 4124 * If the node still has available memory. we need kmem_cache_node 4125 * for it yet. 4126 */ 4127 if (offline_node < 0) 4128 return; 4129 4130 mutex_lock(&slab_mutex); 4131 list_for_each_entry(s, &slab_caches, list) { 4132 n = get_node(s, offline_node); 4133 if (n) { 4134 /* 4135 * if n->nr_slabs > 0, slabs still exist on the node 4136 * that is going down. We were unable to free them, 4137 * and offline_pages() function shouldn't call this 4138 * callback. So, we must fail. 4139 */ 4140 BUG_ON(slabs_node(s, offline_node)); 4141 4142 s->node[offline_node] = NULL; 4143 kmem_cache_free(kmem_cache_node, n); 4144 } 4145 } 4146 mutex_unlock(&slab_mutex); 4147 } 4148 4149 static int slab_mem_going_online_callback(void *arg) 4150 { 4151 struct kmem_cache_node *n; 4152 struct kmem_cache *s; 4153 struct memory_notify *marg = arg; 4154 int nid = marg->status_change_nid_normal; 4155 int ret = 0; 4156 4157 /* 4158 * If the node's memory is already available, then kmem_cache_node is 4159 * already created. Nothing to do. 4160 */ 4161 if (nid < 0) 4162 return 0; 4163 4164 /* 4165 * We are bringing a node online. No memory is available yet. We must 4166 * allocate a kmem_cache_node structure in order to bring the node 4167 * online. 4168 */ 4169 mutex_lock(&slab_mutex); 4170 list_for_each_entry(s, &slab_caches, list) { 4171 /* 4172 * XXX: kmem_cache_alloc_node will fallback to other nodes 4173 * since memory is not yet available from the node that 4174 * is brought up. 4175 */ 4176 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4177 if (!n) { 4178 ret = -ENOMEM; 4179 goto out; 4180 } 4181 init_kmem_cache_node(n); 4182 s->node[nid] = n; 4183 } 4184 out: 4185 mutex_unlock(&slab_mutex); 4186 return ret; 4187 } 4188 4189 static int slab_memory_callback(struct notifier_block *self, 4190 unsigned long action, void *arg) 4191 { 4192 int ret = 0; 4193 4194 switch (action) { 4195 case MEM_GOING_ONLINE: 4196 ret = slab_mem_going_online_callback(arg); 4197 break; 4198 case MEM_GOING_OFFLINE: 4199 ret = slab_mem_going_offline_callback(arg); 4200 break; 4201 case MEM_OFFLINE: 4202 case MEM_CANCEL_ONLINE: 4203 slab_mem_offline_callback(arg); 4204 break; 4205 case MEM_ONLINE: 4206 case MEM_CANCEL_OFFLINE: 4207 break; 4208 } 4209 if (ret) 4210 ret = notifier_from_errno(ret); 4211 else 4212 ret = NOTIFY_OK; 4213 return ret; 4214 } 4215 4216 static struct notifier_block slab_memory_callback_nb = { 4217 .notifier_call = slab_memory_callback, 4218 .priority = SLAB_CALLBACK_PRI, 4219 }; 4220 4221 /******************************************************************** 4222 * Basic setup of slabs 4223 *******************************************************************/ 4224 4225 /* 4226 * Used for early kmem_cache structures that were allocated using 4227 * the page allocator. Allocate them properly then fix up the pointers 4228 * that may be pointing to the wrong kmem_cache structure. 4229 */ 4230 4231 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4232 { 4233 int node; 4234 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4235 struct kmem_cache_node *n; 4236 4237 memcpy(s, static_cache, kmem_cache->object_size); 4238 4239 /* 4240 * This runs very early, and only the boot processor is supposed to be 4241 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4242 * IPIs around. 4243 */ 4244 __flush_cpu_slab(s, smp_processor_id()); 4245 for_each_kmem_cache_node(s, node, n) { 4246 struct page *p; 4247 4248 list_for_each_entry(p, &n->partial, slab_list) 4249 p->slab_cache = s; 4250 4251 #ifdef CONFIG_SLUB_DEBUG 4252 list_for_each_entry(p, &n->full, slab_list) 4253 p->slab_cache = s; 4254 #endif 4255 } 4256 slab_init_memcg_params(s); 4257 list_add(&s->list, &slab_caches); 4258 memcg_link_cache(s, NULL); 4259 return s; 4260 } 4261 4262 void __init kmem_cache_init(void) 4263 { 4264 static __initdata struct kmem_cache boot_kmem_cache, 4265 boot_kmem_cache_node; 4266 4267 if (debug_guardpage_minorder()) 4268 slub_max_order = 0; 4269 4270 kmem_cache_node = &boot_kmem_cache_node; 4271 kmem_cache = &boot_kmem_cache; 4272 4273 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4274 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4275 4276 register_hotmemory_notifier(&slab_memory_callback_nb); 4277 4278 /* Able to allocate the per node structures */ 4279 slab_state = PARTIAL; 4280 4281 create_boot_cache(kmem_cache, "kmem_cache", 4282 offsetof(struct kmem_cache, node) + 4283 nr_node_ids * sizeof(struct kmem_cache_node *), 4284 SLAB_HWCACHE_ALIGN, 0, 0); 4285 4286 kmem_cache = bootstrap(&boot_kmem_cache); 4287 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4288 4289 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4290 setup_kmalloc_cache_index_table(); 4291 create_kmalloc_caches(0); 4292 4293 /* Setup random freelists for each cache */ 4294 init_freelist_randomization(); 4295 4296 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4297 slub_cpu_dead); 4298 4299 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4300 cache_line_size(), 4301 slub_min_order, slub_max_order, slub_min_objects, 4302 nr_cpu_ids, nr_node_ids); 4303 } 4304 4305 void __init kmem_cache_init_late(void) 4306 { 4307 } 4308 4309 struct kmem_cache * 4310 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4311 slab_flags_t flags, void (*ctor)(void *)) 4312 { 4313 struct kmem_cache *s, *c; 4314 4315 s = find_mergeable(size, align, flags, name, ctor); 4316 if (s) { 4317 s->refcount++; 4318 4319 /* 4320 * Adjust the object sizes so that we clear 4321 * the complete object on kzalloc. 4322 */ 4323 s->object_size = max(s->object_size, size); 4324 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4325 4326 for_each_memcg_cache(c, s) { 4327 c->object_size = s->object_size; 4328 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4329 } 4330 4331 if (sysfs_slab_alias(s, name)) { 4332 s->refcount--; 4333 s = NULL; 4334 } 4335 } 4336 4337 return s; 4338 } 4339 4340 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4341 { 4342 int err; 4343 4344 err = kmem_cache_open(s, flags); 4345 if (err) 4346 return err; 4347 4348 /* Mutex is not taken during early boot */ 4349 if (slab_state <= UP) 4350 return 0; 4351 4352 memcg_propagate_slab_attrs(s); 4353 err = sysfs_slab_add(s); 4354 if (err) 4355 __kmem_cache_release(s); 4356 4357 return err; 4358 } 4359 4360 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4361 { 4362 struct kmem_cache *s; 4363 void *ret; 4364 4365 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4366 return kmalloc_large(size, gfpflags); 4367 4368 s = kmalloc_slab(size, gfpflags); 4369 4370 if (unlikely(ZERO_OR_NULL_PTR(s))) 4371 return s; 4372 4373 ret = slab_alloc(s, gfpflags, caller); 4374 4375 /* Honor the call site pointer we received. */ 4376 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4377 4378 return ret; 4379 } 4380 4381 #ifdef CONFIG_NUMA 4382 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4383 int node, unsigned long caller) 4384 { 4385 struct kmem_cache *s; 4386 void *ret; 4387 4388 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4389 ret = kmalloc_large_node(size, gfpflags, node); 4390 4391 trace_kmalloc_node(caller, ret, 4392 size, PAGE_SIZE << get_order(size), 4393 gfpflags, node); 4394 4395 return ret; 4396 } 4397 4398 s = kmalloc_slab(size, gfpflags); 4399 4400 if (unlikely(ZERO_OR_NULL_PTR(s))) 4401 return s; 4402 4403 ret = slab_alloc_node(s, gfpflags, node, caller); 4404 4405 /* Honor the call site pointer we received. */ 4406 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4407 4408 return ret; 4409 } 4410 #endif 4411 4412 #ifdef CONFIG_SYSFS 4413 static int count_inuse(struct page *page) 4414 { 4415 return page->inuse; 4416 } 4417 4418 static int count_total(struct page *page) 4419 { 4420 return page->objects; 4421 } 4422 #endif 4423 4424 #ifdef CONFIG_SLUB_DEBUG 4425 static void validate_slab(struct kmem_cache *s, struct page *page) 4426 { 4427 void *p; 4428 void *addr = page_address(page); 4429 unsigned long *map; 4430 4431 slab_lock(page); 4432 4433 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4434 goto unlock; 4435 4436 /* Now we know that a valid freelist exists */ 4437 map = get_map(s, page); 4438 for_each_object(p, s, addr, page->objects) { 4439 u8 val = test_bit(slab_index(p, s, addr), map) ? 4440 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4441 4442 if (!check_object(s, page, p, val)) 4443 break; 4444 } 4445 put_map(map); 4446 unlock: 4447 slab_unlock(page); 4448 } 4449 4450 static int validate_slab_node(struct kmem_cache *s, 4451 struct kmem_cache_node *n) 4452 { 4453 unsigned long count = 0; 4454 struct page *page; 4455 unsigned long flags; 4456 4457 spin_lock_irqsave(&n->list_lock, flags); 4458 4459 list_for_each_entry(page, &n->partial, slab_list) { 4460 validate_slab(s, page); 4461 count++; 4462 } 4463 if (count != n->nr_partial) 4464 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4465 s->name, count, n->nr_partial); 4466 4467 if (!(s->flags & SLAB_STORE_USER)) 4468 goto out; 4469 4470 list_for_each_entry(page, &n->full, slab_list) { 4471 validate_slab(s, page); 4472 count++; 4473 } 4474 if (count != atomic_long_read(&n->nr_slabs)) 4475 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4476 s->name, count, atomic_long_read(&n->nr_slabs)); 4477 4478 out: 4479 spin_unlock_irqrestore(&n->list_lock, flags); 4480 return count; 4481 } 4482 4483 static long validate_slab_cache(struct kmem_cache *s) 4484 { 4485 int node; 4486 unsigned long count = 0; 4487 struct kmem_cache_node *n; 4488 4489 flush_all(s); 4490 for_each_kmem_cache_node(s, node, n) 4491 count += validate_slab_node(s, n); 4492 4493 return count; 4494 } 4495 /* 4496 * Generate lists of code addresses where slabcache objects are allocated 4497 * and freed. 4498 */ 4499 4500 struct location { 4501 unsigned long count; 4502 unsigned long addr; 4503 long long sum_time; 4504 long min_time; 4505 long max_time; 4506 long min_pid; 4507 long max_pid; 4508 DECLARE_BITMAP(cpus, NR_CPUS); 4509 nodemask_t nodes; 4510 }; 4511 4512 struct loc_track { 4513 unsigned long max; 4514 unsigned long count; 4515 struct location *loc; 4516 }; 4517 4518 static void free_loc_track(struct loc_track *t) 4519 { 4520 if (t->max) 4521 free_pages((unsigned long)t->loc, 4522 get_order(sizeof(struct location) * t->max)); 4523 } 4524 4525 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4526 { 4527 struct location *l; 4528 int order; 4529 4530 order = get_order(sizeof(struct location) * max); 4531 4532 l = (void *)__get_free_pages(flags, order); 4533 if (!l) 4534 return 0; 4535 4536 if (t->count) { 4537 memcpy(l, t->loc, sizeof(struct location) * t->count); 4538 free_loc_track(t); 4539 } 4540 t->max = max; 4541 t->loc = l; 4542 return 1; 4543 } 4544 4545 static int add_location(struct loc_track *t, struct kmem_cache *s, 4546 const struct track *track) 4547 { 4548 long start, end, pos; 4549 struct location *l; 4550 unsigned long caddr; 4551 unsigned long age = jiffies - track->when; 4552 4553 start = -1; 4554 end = t->count; 4555 4556 for ( ; ; ) { 4557 pos = start + (end - start + 1) / 2; 4558 4559 /* 4560 * There is nothing at "end". If we end up there 4561 * we need to add something to before end. 4562 */ 4563 if (pos == end) 4564 break; 4565 4566 caddr = t->loc[pos].addr; 4567 if (track->addr == caddr) { 4568 4569 l = &t->loc[pos]; 4570 l->count++; 4571 if (track->when) { 4572 l->sum_time += age; 4573 if (age < l->min_time) 4574 l->min_time = age; 4575 if (age > l->max_time) 4576 l->max_time = age; 4577 4578 if (track->pid < l->min_pid) 4579 l->min_pid = track->pid; 4580 if (track->pid > l->max_pid) 4581 l->max_pid = track->pid; 4582 4583 cpumask_set_cpu(track->cpu, 4584 to_cpumask(l->cpus)); 4585 } 4586 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4587 return 1; 4588 } 4589 4590 if (track->addr < caddr) 4591 end = pos; 4592 else 4593 start = pos; 4594 } 4595 4596 /* 4597 * Not found. Insert new tracking element. 4598 */ 4599 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4600 return 0; 4601 4602 l = t->loc + pos; 4603 if (pos < t->count) 4604 memmove(l + 1, l, 4605 (t->count - pos) * sizeof(struct location)); 4606 t->count++; 4607 l->count = 1; 4608 l->addr = track->addr; 4609 l->sum_time = age; 4610 l->min_time = age; 4611 l->max_time = age; 4612 l->min_pid = track->pid; 4613 l->max_pid = track->pid; 4614 cpumask_clear(to_cpumask(l->cpus)); 4615 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4616 nodes_clear(l->nodes); 4617 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4618 return 1; 4619 } 4620 4621 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4622 struct page *page, enum track_item alloc) 4623 { 4624 void *addr = page_address(page); 4625 void *p; 4626 unsigned long *map; 4627 4628 map = get_map(s, page); 4629 for_each_object(p, s, addr, page->objects) 4630 if (!test_bit(slab_index(p, s, addr), map)) 4631 add_location(t, s, get_track(s, p, alloc)); 4632 put_map(map); 4633 } 4634 4635 static int list_locations(struct kmem_cache *s, char *buf, 4636 enum track_item alloc) 4637 { 4638 int len = 0; 4639 unsigned long i; 4640 struct loc_track t = { 0, 0, NULL }; 4641 int node; 4642 struct kmem_cache_node *n; 4643 4644 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4645 GFP_KERNEL)) { 4646 return sprintf(buf, "Out of memory\n"); 4647 } 4648 /* Push back cpu slabs */ 4649 flush_all(s); 4650 4651 for_each_kmem_cache_node(s, node, n) { 4652 unsigned long flags; 4653 struct page *page; 4654 4655 if (!atomic_long_read(&n->nr_slabs)) 4656 continue; 4657 4658 spin_lock_irqsave(&n->list_lock, flags); 4659 list_for_each_entry(page, &n->partial, slab_list) 4660 process_slab(&t, s, page, alloc); 4661 list_for_each_entry(page, &n->full, slab_list) 4662 process_slab(&t, s, page, alloc); 4663 spin_unlock_irqrestore(&n->list_lock, flags); 4664 } 4665 4666 for (i = 0; i < t.count; i++) { 4667 struct location *l = &t.loc[i]; 4668 4669 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4670 break; 4671 len += sprintf(buf + len, "%7ld ", l->count); 4672 4673 if (l->addr) 4674 len += sprintf(buf + len, "%pS", (void *)l->addr); 4675 else 4676 len += sprintf(buf + len, "<not-available>"); 4677 4678 if (l->sum_time != l->min_time) { 4679 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4680 l->min_time, 4681 (long)div_u64(l->sum_time, l->count), 4682 l->max_time); 4683 } else 4684 len += sprintf(buf + len, " age=%ld", 4685 l->min_time); 4686 4687 if (l->min_pid != l->max_pid) 4688 len += sprintf(buf + len, " pid=%ld-%ld", 4689 l->min_pid, l->max_pid); 4690 else 4691 len += sprintf(buf + len, " pid=%ld", 4692 l->min_pid); 4693 4694 if (num_online_cpus() > 1 && 4695 !cpumask_empty(to_cpumask(l->cpus)) && 4696 len < PAGE_SIZE - 60) 4697 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4698 " cpus=%*pbl", 4699 cpumask_pr_args(to_cpumask(l->cpus))); 4700 4701 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4702 len < PAGE_SIZE - 60) 4703 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4704 " nodes=%*pbl", 4705 nodemask_pr_args(&l->nodes)); 4706 4707 len += sprintf(buf + len, "\n"); 4708 } 4709 4710 free_loc_track(&t); 4711 if (!t.count) 4712 len += sprintf(buf, "No data\n"); 4713 return len; 4714 } 4715 #endif /* CONFIG_SLUB_DEBUG */ 4716 4717 #ifdef SLUB_RESILIENCY_TEST 4718 static void __init resiliency_test(void) 4719 { 4720 u8 *p; 4721 int type = KMALLOC_NORMAL; 4722 4723 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4724 4725 pr_err("SLUB resiliency testing\n"); 4726 pr_err("-----------------------\n"); 4727 pr_err("A. Corruption after allocation\n"); 4728 4729 p = kzalloc(16, GFP_KERNEL); 4730 p[16] = 0x12; 4731 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4732 p + 16); 4733 4734 validate_slab_cache(kmalloc_caches[type][4]); 4735 4736 /* Hmmm... The next two are dangerous */ 4737 p = kzalloc(32, GFP_KERNEL); 4738 p[32 + sizeof(void *)] = 0x34; 4739 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4740 p); 4741 pr_err("If allocated object is overwritten then not detectable\n\n"); 4742 4743 validate_slab_cache(kmalloc_caches[type][5]); 4744 p = kzalloc(64, GFP_KERNEL); 4745 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4746 *p = 0x56; 4747 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4748 p); 4749 pr_err("If allocated object is overwritten then not detectable\n\n"); 4750 validate_slab_cache(kmalloc_caches[type][6]); 4751 4752 pr_err("\nB. Corruption after free\n"); 4753 p = kzalloc(128, GFP_KERNEL); 4754 kfree(p); 4755 *p = 0x78; 4756 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4757 validate_slab_cache(kmalloc_caches[type][7]); 4758 4759 p = kzalloc(256, GFP_KERNEL); 4760 kfree(p); 4761 p[50] = 0x9a; 4762 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4763 validate_slab_cache(kmalloc_caches[type][8]); 4764 4765 p = kzalloc(512, GFP_KERNEL); 4766 kfree(p); 4767 p[512] = 0xab; 4768 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4769 validate_slab_cache(kmalloc_caches[type][9]); 4770 } 4771 #else 4772 #ifdef CONFIG_SYSFS 4773 static void resiliency_test(void) {}; 4774 #endif 4775 #endif /* SLUB_RESILIENCY_TEST */ 4776 4777 #ifdef CONFIG_SYSFS 4778 enum slab_stat_type { 4779 SL_ALL, /* All slabs */ 4780 SL_PARTIAL, /* Only partially allocated slabs */ 4781 SL_CPU, /* Only slabs used for cpu caches */ 4782 SL_OBJECTS, /* Determine allocated objects not slabs */ 4783 SL_TOTAL /* Determine object capacity not slabs */ 4784 }; 4785 4786 #define SO_ALL (1 << SL_ALL) 4787 #define SO_PARTIAL (1 << SL_PARTIAL) 4788 #define SO_CPU (1 << SL_CPU) 4789 #define SO_OBJECTS (1 << SL_OBJECTS) 4790 #define SO_TOTAL (1 << SL_TOTAL) 4791 4792 #ifdef CONFIG_MEMCG 4793 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4794 4795 static int __init setup_slub_memcg_sysfs(char *str) 4796 { 4797 int v; 4798 4799 if (get_option(&str, &v) > 0) 4800 memcg_sysfs_enabled = v; 4801 4802 return 1; 4803 } 4804 4805 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4806 #endif 4807 4808 static ssize_t show_slab_objects(struct kmem_cache *s, 4809 char *buf, unsigned long flags) 4810 { 4811 unsigned long total = 0; 4812 int node; 4813 int x; 4814 unsigned long *nodes; 4815 4816 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4817 if (!nodes) 4818 return -ENOMEM; 4819 4820 if (flags & SO_CPU) { 4821 int cpu; 4822 4823 for_each_possible_cpu(cpu) { 4824 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4825 cpu); 4826 int node; 4827 struct page *page; 4828 4829 page = READ_ONCE(c->page); 4830 if (!page) 4831 continue; 4832 4833 node = page_to_nid(page); 4834 if (flags & SO_TOTAL) 4835 x = page->objects; 4836 else if (flags & SO_OBJECTS) 4837 x = page->inuse; 4838 else 4839 x = 1; 4840 4841 total += x; 4842 nodes[node] += x; 4843 4844 page = slub_percpu_partial_read_once(c); 4845 if (page) { 4846 node = page_to_nid(page); 4847 if (flags & SO_TOTAL) 4848 WARN_ON_ONCE(1); 4849 else if (flags & SO_OBJECTS) 4850 WARN_ON_ONCE(1); 4851 else 4852 x = page->pages; 4853 total += x; 4854 nodes[node] += x; 4855 } 4856 } 4857 } 4858 4859 /* 4860 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 4861 * already held which will conflict with an existing lock order: 4862 * 4863 * mem_hotplug_lock->slab_mutex->kernfs_mutex 4864 * 4865 * We don't really need mem_hotplug_lock (to hold off 4866 * slab_mem_going_offline_callback) here because slab's memory hot 4867 * unplug code doesn't destroy the kmem_cache->node[] data. 4868 */ 4869 4870 #ifdef CONFIG_SLUB_DEBUG 4871 if (flags & SO_ALL) { 4872 struct kmem_cache_node *n; 4873 4874 for_each_kmem_cache_node(s, node, n) { 4875 4876 if (flags & SO_TOTAL) 4877 x = atomic_long_read(&n->total_objects); 4878 else if (flags & SO_OBJECTS) 4879 x = atomic_long_read(&n->total_objects) - 4880 count_partial(n, count_free); 4881 else 4882 x = atomic_long_read(&n->nr_slabs); 4883 total += x; 4884 nodes[node] += x; 4885 } 4886 4887 } else 4888 #endif 4889 if (flags & SO_PARTIAL) { 4890 struct kmem_cache_node *n; 4891 4892 for_each_kmem_cache_node(s, node, n) { 4893 if (flags & SO_TOTAL) 4894 x = count_partial(n, count_total); 4895 else if (flags & SO_OBJECTS) 4896 x = count_partial(n, count_inuse); 4897 else 4898 x = n->nr_partial; 4899 total += x; 4900 nodes[node] += x; 4901 } 4902 } 4903 x = sprintf(buf, "%lu", total); 4904 #ifdef CONFIG_NUMA 4905 for (node = 0; node < nr_node_ids; node++) 4906 if (nodes[node]) 4907 x += sprintf(buf + x, " N%d=%lu", 4908 node, nodes[node]); 4909 #endif 4910 kfree(nodes); 4911 return x + sprintf(buf + x, "\n"); 4912 } 4913 4914 #ifdef CONFIG_SLUB_DEBUG 4915 static int any_slab_objects(struct kmem_cache *s) 4916 { 4917 int node; 4918 struct kmem_cache_node *n; 4919 4920 for_each_kmem_cache_node(s, node, n) 4921 if (atomic_long_read(&n->total_objects)) 4922 return 1; 4923 4924 return 0; 4925 } 4926 #endif 4927 4928 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4929 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4930 4931 struct slab_attribute { 4932 struct attribute attr; 4933 ssize_t (*show)(struct kmem_cache *s, char *buf); 4934 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4935 }; 4936 4937 #define SLAB_ATTR_RO(_name) \ 4938 static struct slab_attribute _name##_attr = \ 4939 __ATTR(_name, 0400, _name##_show, NULL) 4940 4941 #define SLAB_ATTR(_name) \ 4942 static struct slab_attribute _name##_attr = \ 4943 __ATTR(_name, 0600, _name##_show, _name##_store) 4944 4945 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4946 { 4947 return sprintf(buf, "%u\n", s->size); 4948 } 4949 SLAB_ATTR_RO(slab_size); 4950 4951 static ssize_t align_show(struct kmem_cache *s, char *buf) 4952 { 4953 return sprintf(buf, "%u\n", s->align); 4954 } 4955 SLAB_ATTR_RO(align); 4956 4957 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4958 { 4959 return sprintf(buf, "%u\n", s->object_size); 4960 } 4961 SLAB_ATTR_RO(object_size); 4962 4963 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4964 { 4965 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4966 } 4967 SLAB_ATTR_RO(objs_per_slab); 4968 4969 static ssize_t order_store(struct kmem_cache *s, 4970 const char *buf, size_t length) 4971 { 4972 unsigned int order; 4973 int err; 4974 4975 err = kstrtouint(buf, 10, &order); 4976 if (err) 4977 return err; 4978 4979 if (order > slub_max_order || order < slub_min_order) 4980 return -EINVAL; 4981 4982 calculate_sizes(s, order); 4983 return length; 4984 } 4985 4986 static ssize_t order_show(struct kmem_cache *s, char *buf) 4987 { 4988 return sprintf(buf, "%u\n", oo_order(s->oo)); 4989 } 4990 SLAB_ATTR(order); 4991 4992 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4993 { 4994 return sprintf(buf, "%lu\n", s->min_partial); 4995 } 4996 4997 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4998 size_t length) 4999 { 5000 unsigned long min; 5001 int err; 5002 5003 err = kstrtoul(buf, 10, &min); 5004 if (err) 5005 return err; 5006 5007 set_min_partial(s, min); 5008 return length; 5009 } 5010 SLAB_ATTR(min_partial); 5011 5012 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5013 { 5014 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 5015 } 5016 5017 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5018 size_t length) 5019 { 5020 unsigned int objects; 5021 int err; 5022 5023 err = kstrtouint(buf, 10, &objects); 5024 if (err) 5025 return err; 5026 if (objects && !kmem_cache_has_cpu_partial(s)) 5027 return -EINVAL; 5028 5029 slub_set_cpu_partial(s, objects); 5030 flush_all(s); 5031 return length; 5032 } 5033 SLAB_ATTR(cpu_partial); 5034 5035 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5036 { 5037 if (!s->ctor) 5038 return 0; 5039 return sprintf(buf, "%pS\n", s->ctor); 5040 } 5041 SLAB_ATTR_RO(ctor); 5042 5043 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5044 { 5045 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5046 } 5047 SLAB_ATTR_RO(aliases); 5048 5049 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5050 { 5051 return show_slab_objects(s, buf, SO_PARTIAL); 5052 } 5053 SLAB_ATTR_RO(partial); 5054 5055 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5056 { 5057 return show_slab_objects(s, buf, SO_CPU); 5058 } 5059 SLAB_ATTR_RO(cpu_slabs); 5060 5061 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5062 { 5063 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5064 } 5065 SLAB_ATTR_RO(objects); 5066 5067 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5068 { 5069 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5070 } 5071 SLAB_ATTR_RO(objects_partial); 5072 5073 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5074 { 5075 int objects = 0; 5076 int pages = 0; 5077 int cpu; 5078 int len; 5079 5080 for_each_online_cpu(cpu) { 5081 struct page *page; 5082 5083 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5084 5085 if (page) { 5086 pages += page->pages; 5087 objects += page->pobjects; 5088 } 5089 } 5090 5091 len = sprintf(buf, "%d(%d)", objects, pages); 5092 5093 #ifdef CONFIG_SMP 5094 for_each_online_cpu(cpu) { 5095 struct page *page; 5096 5097 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5098 5099 if (page && len < PAGE_SIZE - 20) 5100 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5101 page->pobjects, page->pages); 5102 } 5103 #endif 5104 return len + sprintf(buf + len, "\n"); 5105 } 5106 SLAB_ATTR_RO(slabs_cpu_partial); 5107 5108 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5109 { 5110 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5111 } 5112 5113 static ssize_t reclaim_account_store(struct kmem_cache *s, 5114 const char *buf, size_t length) 5115 { 5116 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5117 if (buf[0] == '1') 5118 s->flags |= SLAB_RECLAIM_ACCOUNT; 5119 return length; 5120 } 5121 SLAB_ATTR(reclaim_account); 5122 5123 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5124 { 5125 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5126 } 5127 SLAB_ATTR_RO(hwcache_align); 5128 5129 #ifdef CONFIG_ZONE_DMA 5130 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5131 { 5132 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5133 } 5134 SLAB_ATTR_RO(cache_dma); 5135 #endif 5136 5137 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5138 { 5139 return sprintf(buf, "%u\n", s->usersize); 5140 } 5141 SLAB_ATTR_RO(usersize); 5142 5143 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5144 { 5145 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5146 } 5147 SLAB_ATTR_RO(destroy_by_rcu); 5148 5149 #ifdef CONFIG_SLUB_DEBUG 5150 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5151 { 5152 return show_slab_objects(s, buf, SO_ALL); 5153 } 5154 SLAB_ATTR_RO(slabs); 5155 5156 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5157 { 5158 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5159 } 5160 SLAB_ATTR_RO(total_objects); 5161 5162 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5163 { 5164 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5165 } 5166 5167 static ssize_t sanity_checks_store(struct kmem_cache *s, 5168 const char *buf, size_t length) 5169 { 5170 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5171 if (buf[0] == '1') { 5172 s->flags &= ~__CMPXCHG_DOUBLE; 5173 s->flags |= SLAB_CONSISTENCY_CHECKS; 5174 } 5175 return length; 5176 } 5177 SLAB_ATTR(sanity_checks); 5178 5179 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5180 { 5181 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5182 } 5183 5184 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5185 size_t length) 5186 { 5187 /* 5188 * Tracing a merged cache is going to give confusing results 5189 * as well as cause other issues like converting a mergeable 5190 * cache into an umergeable one. 5191 */ 5192 if (s->refcount > 1) 5193 return -EINVAL; 5194 5195 s->flags &= ~SLAB_TRACE; 5196 if (buf[0] == '1') { 5197 s->flags &= ~__CMPXCHG_DOUBLE; 5198 s->flags |= SLAB_TRACE; 5199 } 5200 return length; 5201 } 5202 SLAB_ATTR(trace); 5203 5204 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5205 { 5206 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5207 } 5208 5209 static ssize_t red_zone_store(struct kmem_cache *s, 5210 const char *buf, size_t length) 5211 { 5212 if (any_slab_objects(s)) 5213 return -EBUSY; 5214 5215 s->flags &= ~SLAB_RED_ZONE; 5216 if (buf[0] == '1') { 5217 s->flags |= SLAB_RED_ZONE; 5218 } 5219 calculate_sizes(s, -1); 5220 return length; 5221 } 5222 SLAB_ATTR(red_zone); 5223 5224 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5225 { 5226 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5227 } 5228 5229 static ssize_t poison_store(struct kmem_cache *s, 5230 const char *buf, size_t length) 5231 { 5232 if (any_slab_objects(s)) 5233 return -EBUSY; 5234 5235 s->flags &= ~SLAB_POISON; 5236 if (buf[0] == '1') { 5237 s->flags |= SLAB_POISON; 5238 } 5239 calculate_sizes(s, -1); 5240 return length; 5241 } 5242 SLAB_ATTR(poison); 5243 5244 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5245 { 5246 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5247 } 5248 5249 static ssize_t store_user_store(struct kmem_cache *s, 5250 const char *buf, size_t length) 5251 { 5252 if (any_slab_objects(s)) 5253 return -EBUSY; 5254 5255 s->flags &= ~SLAB_STORE_USER; 5256 if (buf[0] == '1') { 5257 s->flags &= ~__CMPXCHG_DOUBLE; 5258 s->flags |= SLAB_STORE_USER; 5259 } 5260 calculate_sizes(s, -1); 5261 return length; 5262 } 5263 SLAB_ATTR(store_user); 5264 5265 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5266 { 5267 return 0; 5268 } 5269 5270 static ssize_t validate_store(struct kmem_cache *s, 5271 const char *buf, size_t length) 5272 { 5273 int ret = -EINVAL; 5274 5275 if (buf[0] == '1') { 5276 ret = validate_slab_cache(s); 5277 if (ret >= 0) 5278 ret = length; 5279 } 5280 return ret; 5281 } 5282 SLAB_ATTR(validate); 5283 5284 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5285 { 5286 if (!(s->flags & SLAB_STORE_USER)) 5287 return -ENOSYS; 5288 return list_locations(s, buf, TRACK_ALLOC); 5289 } 5290 SLAB_ATTR_RO(alloc_calls); 5291 5292 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5293 { 5294 if (!(s->flags & SLAB_STORE_USER)) 5295 return -ENOSYS; 5296 return list_locations(s, buf, TRACK_FREE); 5297 } 5298 SLAB_ATTR_RO(free_calls); 5299 #endif /* CONFIG_SLUB_DEBUG */ 5300 5301 #ifdef CONFIG_FAILSLAB 5302 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5303 { 5304 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5305 } 5306 5307 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5308 size_t length) 5309 { 5310 if (s->refcount > 1) 5311 return -EINVAL; 5312 5313 s->flags &= ~SLAB_FAILSLAB; 5314 if (buf[0] == '1') 5315 s->flags |= SLAB_FAILSLAB; 5316 return length; 5317 } 5318 SLAB_ATTR(failslab); 5319 #endif 5320 5321 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5322 { 5323 return 0; 5324 } 5325 5326 static ssize_t shrink_store(struct kmem_cache *s, 5327 const char *buf, size_t length) 5328 { 5329 if (buf[0] == '1') 5330 kmem_cache_shrink_all(s); 5331 else 5332 return -EINVAL; 5333 return length; 5334 } 5335 SLAB_ATTR(shrink); 5336 5337 #ifdef CONFIG_NUMA 5338 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5339 { 5340 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5341 } 5342 5343 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5344 const char *buf, size_t length) 5345 { 5346 unsigned int ratio; 5347 int err; 5348 5349 err = kstrtouint(buf, 10, &ratio); 5350 if (err) 5351 return err; 5352 if (ratio > 100) 5353 return -ERANGE; 5354 5355 s->remote_node_defrag_ratio = ratio * 10; 5356 5357 return length; 5358 } 5359 SLAB_ATTR(remote_node_defrag_ratio); 5360 #endif 5361 5362 #ifdef CONFIG_SLUB_STATS 5363 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5364 { 5365 unsigned long sum = 0; 5366 int cpu; 5367 int len; 5368 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5369 5370 if (!data) 5371 return -ENOMEM; 5372 5373 for_each_online_cpu(cpu) { 5374 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5375 5376 data[cpu] = x; 5377 sum += x; 5378 } 5379 5380 len = sprintf(buf, "%lu", sum); 5381 5382 #ifdef CONFIG_SMP 5383 for_each_online_cpu(cpu) { 5384 if (data[cpu] && len < PAGE_SIZE - 20) 5385 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5386 } 5387 #endif 5388 kfree(data); 5389 return len + sprintf(buf + len, "\n"); 5390 } 5391 5392 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5393 { 5394 int cpu; 5395 5396 for_each_online_cpu(cpu) 5397 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5398 } 5399 5400 #define STAT_ATTR(si, text) \ 5401 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5402 { \ 5403 return show_stat(s, buf, si); \ 5404 } \ 5405 static ssize_t text##_store(struct kmem_cache *s, \ 5406 const char *buf, size_t length) \ 5407 { \ 5408 if (buf[0] != '0') \ 5409 return -EINVAL; \ 5410 clear_stat(s, si); \ 5411 return length; \ 5412 } \ 5413 SLAB_ATTR(text); \ 5414 5415 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5416 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5417 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5418 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5419 STAT_ATTR(FREE_FROZEN, free_frozen); 5420 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5421 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5422 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5423 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5424 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5425 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5426 STAT_ATTR(FREE_SLAB, free_slab); 5427 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5428 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5429 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5430 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5431 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5432 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5433 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5434 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5435 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5436 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5437 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5438 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5439 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5440 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5441 #endif /* CONFIG_SLUB_STATS */ 5442 5443 static struct attribute *slab_attrs[] = { 5444 &slab_size_attr.attr, 5445 &object_size_attr.attr, 5446 &objs_per_slab_attr.attr, 5447 &order_attr.attr, 5448 &min_partial_attr.attr, 5449 &cpu_partial_attr.attr, 5450 &objects_attr.attr, 5451 &objects_partial_attr.attr, 5452 &partial_attr.attr, 5453 &cpu_slabs_attr.attr, 5454 &ctor_attr.attr, 5455 &aliases_attr.attr, 5456 &align_attr.attr, 5457 &hwcache_align_attr.attr, 5458 &reclaim_account_attr.attr, 5459 &destroy_by_rcu_attr.attr, 5460 &shrink_attr.attr, 5461 &slabs_cpu_partial_attr.attr, 5462 #ifdef CONFIG_SLUB_DEBUG 5463 &total_objects_attr.attr, 5464 &slabs_attr.attr, 5465 &sanity_checks_attr.attr, 5466 &trace_attr.attr, 5467 &red_zone_attr.attr, 5468 &poison_attr.attr, 5469 &store_user_attr.attr, 5470 &validate_attr.attr, 5471 &alloc_calls_attr.attr, 5472 &free_calls_attr.attr, 5473 #endif 5474 #ifdef CONFIG_ZONE_DMA 5475 &cache_dma_attr.attr, 5476 #endif 5477 #ifdef CONFIG_NUMA 5478 &remote_node_defrag_ratio_attr.attr, 5479 #endif 5480 #ifdef CONFIG_SLUB_STATS 5481 &alloc_fastpath_attr.attr, 5482 &alloc_slowpath_attr.attr, 5483 &free_fastpath_attr.attr, 5484 &free_slowpath_attr.attr, 5485 &free_frozen_attr.attr, 5486 &free_add_partial_attr.attr, 5487 &free_remove_partial_attr.attr, 5488 &alloc_from_partial_attr.attr, 5489 &alloc_slab_attr.attr, 5490 &alloc_refill_attr.attr, 5491 &alloc_node_mismatch_attr.attr, 5492 &free_slab_attr.attr, 5493 &cpuslab_flush_attr.attr, 5494 &deactivate_full_attr.attr, 5495 &deactivate_empty_attr.attr, 5496 &deactivate_to_head_attr.attr, 5497 &deactivate_to_tail_attr.attr, 5498 &deactivate_remote_frees_attr.attr, 5499 &deactivate_bypass_attr.attr, 5500 &order_fallback_attr.attr, 5501 &cmpxchg_double_fail_attr.attr, 5502 &cmpxchg_double_cpu_fail_attr.attr, 5503 &cpu_partial_alloc_attr.attr, 5504 &cpu_partial_free_attr.attr, 5505 &cpu_partial_node_attr.attr, 5506 &cpu_partial_drain_attr.attr, 5507 #endif 5508 #ifdef CONFIG_FAILSLAB 5509 &failslab_attr.attr, 5510 #endif 5511 &usersize_attr.attr, 5512 5513 NULL 5514 }; 5515 5516 static const struct attribute_group slab_attr_group = { 5517 .attrs = slab_attrs, 5518 }; 5519 5520 static ssize_t slab_attr_show(struct kobject *kobj, 5521 struct attribute *attr, 5522 char *buf) 5523 { 5524 struct slab_attribute *attribute; 5525 struct kmem_cache *s; 5526 int err; 5527 5528 attribute = to_slab_attr(attr); 5529 s = to_slab(kobj); 5530 5531 if (!attribute->show) 5532 return -EIO; 5533 5534 err = attribute->show(s, buf); 5535 5536 return err; 5537 } 5538 5539 static ssize_t slab_attr_store(struct kobject *kobj, 5540 struct attribute *attr, 5541 const char *buf, size_t len) 5542 { 5543 struct slab_attribute *attribute; 5544 struct kmem_cache *s; 5545 int err; 5546 5547 attribute = to_slab_attr(attr); 5548 s = to_slab(kobj); 5549 5550 if (!attribute->store) 5551 return -EIO; 5552 5553 err = attribute->store(s, buf, len); 5554 #ifdef CONFIG_MEMCG 5555 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5556 struct kmem_cache *c; 5557 5558 mutex_lock(&slab_mutex); 5559 if (s->max_attr_size < len) 5560 s->max_attr_size = len; 5561 5562 /* 5563 * This is a best effort propagation, so this function's return 5564 * value will be determined by the parent cache only. This is 5565 * basically because not all attributes will have a well 5566 * defined semantics for rollbacks - most of the actions will 5567 * have permanent effects. 5568 * 5569 * Returning the error value of any of the children that fail 5570 * is not 100 % defined, in the sense that users seeing the 5571 * error code won't be able to know anything about the state of 5572 * the cache. 5573 * 5574 * Only returning the error code for the parent cache at least 5575 * has well defined semantics. The cache being written to 5576 * directly either failed or succeeded, in which case we loop 5577 * through the descendants with best-effort propagation. 5578 */ 5579 for_each_memcg_cache(c, s) 5580 attribute->store(c, buf, len); 5581 mutex_unlock(&slab_mutex); 5582 } 5583 #endif 5584 return err; 5585 } 5586 5587 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5588 { 5589 #ifdef CONFIG_MEMCG 5590 int i; 5591 char *buffer = NULL; 5592 struct kmem_cache *root_cache; 5593 5594 if (is_root_cache(s)) 5595 return; 5596 5597 root_cache = s->memcg_params.root_cache; 5598 5599 /* 5600 * This mean this cache had no attribute written. Therefore, no point 5601 * in copying default values around 5602 */ 5603 if (!root_cache->max_attr_size) 5604 return; 5605 5606 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5607 char mbuf[64]; 5608 char *buf; 5609 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5610 ssize_t len; 5611 5612 if (!attr || !attr->store || !attr->show) 5613 continue; 5614 5615 /* 5616 * It is really bad that we have to allocate here, so we will 5617 * do it only as a fallback. If we actually allocate, though, 5618 * we can just use the allocated buffer until the end. 5619 * 5620 * Most of the slub attributes will tend to be very small in 5621 * size, but sysfs allows buffers up to a page, so they can 5622 * theoretically happen. 5623 */ 5624 if (buffer) 5625 buf = buffer; 5626 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5627 buf = mbuf; 5628 else { 5629 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5630 if (WARN_ON(!buffer)) 5631 continue; 5632 buf = buffer; 5633 } 5634 5635 len = attr->show(root_cache, buf); 5636 if (len > 0) 5637 attr->store(s, buf, len); 5638 } 5639 5640 if (buffer) 5641 free_page((unsigned long)buffer); 5642 #endif /* CONFIG_MEMCG */ 5643 } 5644 5645 static void kmem_cache_release(struct kobject *k) 5646 { 5647 slab_kmem_cache_release(to_slab(k)); 5648 } 5649 5650 static const struct sysfs_ops slab_sysfs_ops = { 5651 .show = slab_attr_show, 5652 .store = slab_attr_store, 5653 }; 5654 5655 static struct kobj_type slab_ktype = { 5656 .sysfs_ops = &slab_sysfs_ops, 5657 .release = kmem_cache_release, 5658 }; 5659 5660 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5661 { 5662 struct kobj_type *ktype = get_ktype(kobj); 5663 5664 if (ktype == &slab_ktype) 5665 return 1; 5666 return 0; 5667 } 5668 5669 static const struct kset_uevent_ops slab_uevent_ops = { 5670 .filter = uevent_filter, 5671 }; 5672 5673 static struct kset *slab_kset; 5674 5675 static inline struct kset *cache_kset(struct kmem_cache *s) 5676 { 5677 #ifdef CONFIG_MEMCG 5678 if (!is_root_cache(s)) 5679 return s->memcg_params.root_cache->memcg_kset; 5680 #endif 5681 return slab_kset; 5682 } 5683 5684 #define ID_STR_LENGTH 64 5685 5686 /* Create a unique string id for a slab cache: 5687 * 5688 * Format :[flags-]size 5689 */ 5690 static char *create_unique_id(struct kmem_cache *s) 5691 { 5692 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5693 char *p = name; 5694 5695 BUG_ON(!name); 5696 5697 *p++ = ':'; 5698 /* 5699 * First flags affecting slabcache operations. We will only 5700 * get here for aliasable slabs so we do not need to support 5701 * too many flags. The flags here must cover all flags that 5702 * are matched during merging to guarantee that the id is 5703 * unique. 5704 */ 5705 if (s->flags & SLAB_CACHE_DMA) 5706 *p++ = 'd'; 5707 if (s->flags & SLAB_CACHE_DMA32) 5708 *p++ = 'D'; 5709 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5710 *p++ = 'a'; 5711 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5712 *p++ = 'F'; 5713 if (s->flags & SLAB_ACCOUNT) 5714 *p++ = 'A'; 5715 if (p != name + 1) 5716 *p++ = '-'; 5717 p += sprintf(p, "%07u", s->size); 5718 5719 BUG_ON(p > name + ID_STR_LENGTH - 1); 5720 return name; 5721 } 5722 5723 static void sysfs_slab_remove_workfn(struct work_struct *work) 5724 { 5725 struct kmem_cache *s = 5726 container_of(work, struct kmem_cache, kobj_remove_work); 5727 5728 if (!s->kobj.state_in_sysfs) 5729 /* 5730 * For a memcg cache, this may be called during 5731 * deactivation and again on shutdown. Remove only once. 5732 * A cache is never shut down before deactivation is 5733 * complete, so no need to worry about synchronization. 5734 */ 5735 goto out; 5736 5737 #ifdef CONFIG_MEMCG 5738 kset_unregister(s->memcg_kset); 5739 #endif 5740 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5741 out: 5742 kobject_put(&s->kobj); 5743 } 5744 5745 static int sysfs_slab_add(struct kmem_cache *s) 5746 { 5747 int err; 5748 const char *name; 5749 struct kset *kset = cache_kset(s); 5750 int unmergeable = slab_unmergeable(s); 5751 5752 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5753 5754 if (!kset) { 5755 kobject_init(&s->kobj, &slab_ktype); 5756 return 0; 5757 } 5758 5759 if (!unmergeable && disable_higher_order_debug && 5760 (slub_debug & DEBUG_METADATA_FLAGS)) 5761 unmergeable = 1; 5762 5763 if (unmergeable) { 5764 /* 5765 * Slabcache can never be merged so we can use the name proper. 5766 * This is typically the case for debug situations. In that 5767 * case we can catch duplicate names easily. 5768 */ 5769 sysfs_remove_link(&slab_kset->kobj, s->name); 5770 name = s->name; 5771 } else { 5772 /* 5773 * Create a unique name for the slab as a target 5774 * for the symlinks. 5775 */ 5776 name = create_unique_id(s); 5777 } 5778 5779 s->kobj.kset = kset; 5780 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5781 if (err) 5782 goto out; 5783 5784 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5785 if (err) 5786 goto out_del_kobj; 5787 5788 #ifdef CONFIG_MEMCG 5789 if (is_root_cache(s) && memcg_sysfs_enabled) { 5790 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5791 if (!s->memcg_kset) { 5792 err = -ENOMEM; 5793 goto out_del_kobj; 5794 } 5795 } 5796 #endif 5797 5798 kobject_uevent(&s->kobj, KOBJ_ADD); 5799 if (!unmergeable) { 5800 /* Setup first alias */ 5801 sysfs_slab_alias(s, s->name); 5802 } 5803 out: 5804 if (!unmergeable) 5805 kfree(name); 5806 return err; 5807 out_del_kobj: 5808 kobject_del(&s->kobj); 5809 goto out; 5810 } 5811 5812 static void sysfs_slab_remove(struct kmem_cache *s) 5813 { 5814 if (slab_state < FULL) 5815 /* 5816 * Sysfs has not been setup yet so no need to remove the 5817 * cache from sysfs. 5818 */ 5819 return; 5820 5821 kobject_get(&s->kobj); 5822 schedule_work(&s->kobj_remove_work); 5823 } 5824 5825 void sysfs_slab_unlink(struct kmem_cache *s) 5826 { 5827 if (slab_state >= FULL) 5828 kobject_del(&s->kobj); 5829 } 5830 5831 void sysfs_slab_release(struct kmem_cache *s) 5832 { 5833 if (slab_state >= FULL) 5834 kobject_put(&s->kobj); 5835 } 5836 5837 /* 5838 * Need to buffer aliases during bootup until sysfs becomes 5839 * available lest we lose that information. 5840 */ 5841 struct saved_alias { 5842 struct kmem_cache *s; 5843 const char *name; 5844 struct saved_alias *next; 5845 }; 5846 5847 static struct saved_alias *alias_list; 5848 5849 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5850 { 5851 struct saved_alias *al; 5852 5853 if (slab_state == FULL) { 5854 /* 5855 * If we have a leftover link then remove it. 5856 */ 5857 sysfs_remove_link(&slab_kset->kobj, name); 5858 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5859 } 5860 5861 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5862 if (!al) 5863 return -ENOMEM; 5864 5865 al->s = s; 5866 al->name = name; 5867 al->next = alias_list; 5868 alias_list = al; 5869 return 0; 5870 } 5871 5872 static int __init slab_sysfs_init(void) 5873 { 5874 struct kmem_cache *s; 5875 int err; 5876 5877 mutex_lock(&slab_mutex); 5878 5879 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5880 if (!slab_kset) { 5881 mutex_unlock(&slab_mutex); 5882 pr_err("Cannot register slab subsystem.\n"); 5883 return -ENOSYS; 5884 } 5885 5886 slab_state = FULL; 5887 5888 list_for_each_entry(s, &slab_caches, list) { 5889 err = sysfs_slab_add(s); 5890 if (err) 5891 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5892 s->name); 5893 } 5894 5895 while (alias_list) { 5896 struct saved_alias *al = alias_list; 5897 5898 alias_list = alias_list->next; 5899 err = sysfs_slab_alias(al->s, al->name); 5900 if (err) 5901 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5902 al->name); 5903 kfree(al); 5904 } 5905 5906 mutex_unlock(&slab_mutex); 5907 resiliency_test(); 5908 return 0; 5909 } 5910 5911 __initcall(slab_sysfs_init); 5912 #endif /* CONFIG_SYSFS */ 5913 5914 /* 5915 * The /proc/slabinfo ABI 5916 */ 5917 #ifdef CONFIG_SLUB_DEBUG 5918 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5919 { 5920 unsigned long nr_slabs = 0; 5921 unsigned long nr_objs = 0; 5922 unsigned long nr_free = 0; 5923 int node; 5924 struct kmem_cache_node *n; 5925 5926 for_each_kmem_cache_node(s, node, n) { 5927 nr_slabs += node_nr_slabs(n); 5928 nr_objs += node_nr_objs(n); 5929 nr_free += count_partial(n, count_free); 5930 } 5931 5932 sinfo->active_objs = nr_objs - nr_free; 5933 sinfo->num_objs = nr_objs; 5934 sinfo->active_slabs = nr_slabs; 5935 sinfo->num_slabs = nr_slabs; 5936 sinfo->objects_per_slab = oo_objects(s->oo); 5937 sinfo->cache_order = oo_order(s->oo); 5938 } 5939 5940 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5941 { 5942 } 5943 5944 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5945 size_t count, loff_t *ppos) 5946 { 5947 return -EIO; 5948 } 5949 #endif /* CONFIG_SLUB_DEBUG */ 5950