1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/notifier.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmemcheck.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/debugobjects.h> 31 #include <linux/kallsyms.h> 32 #include <linux/memory.h> 33 #include <linux/math64.h> 34 #include <linux/fault-inject.h> 35 #include <linux/stacktrace.h> 36 #include <linux/prefetch.h> 37 #include <linux/memcontrol.h> 38 #include <linux/random.h> 39 40 #include <trace/events/kmem.h> 41 42 #include "internal.h" 43 44 /* 45 * Lock order: 46 * 1. slab_mutex (Global Mutex) 47 * 2. node->list_lock 48 * 3. slab_lock(page) (Only on some arches and for debugging) 49 * 50 * slab_mutex 51 * 52 * The role of the slab_mutex is to protect the list of all the slabs 53 * and to synchronize major metadata changes to slab cache structures. 54 * 55 * The slab_lock is only used for debugging and on arches that do not 56 * have the ability to do a cmpxchg_double. It only protects the second 57 * double word in the page struct. Meaning 58 * A. page->freelist -> List of object free in a page 59 * B. page->counters -> Counters of objects 60 * C. page->frozen -> frozen state 61 * 62 * If a slab is frozen then it is exempt from list management. It is not 63 * on any list. The processor that froze the slab is the one who can 64 * perform list operations on the page. Other processors may put objects 65 * onto the freelist but the processor that froze the slab is the only 66 * one that can retrieve the objects from the page's freelist. 67 * 68 * The list_lock protects the partial and full list on each node and 69 * the partial slab counter. If taken then no new slabs may be added or 70 * removed from the lists nor make the number of partial slabs be modified. 71 * (Note that the total number of slabs is an atomic value that may be 72 * modified without taking the list lock). 73 * 74 * The list_lock is a centralized lock and thus we avoid taking it as 75 * much as possible. As long as SLUB does not have to handle partial 76 * slabs, operations can continue without any centralized lock. F.e. 77 * allocating a long series of objects that fill up slabs does not require 78 * the list lock. 79 * Interrupts are disabled during allocation and deallocation in order to 80 * make the slab allocator safe to use in the context of an irq. In addition 81 * interrupts are disabled to ensure that the processor does not change 82 * while handling per_cpu slabs, due to kernel preemption. 83 * 84 * SLUB assigns one slab for allocation to each processor. 85 * Allocations only occur from these slabs called cpu slabs. 86 * 87 * Slabs with free elements are kept on a partial list and during regular 88 * operations no list for full slabs is used. If an object in a full slab is 89 * freed then the slab will show up again on the partial lists. 90 * We track full slabs for debugging purposes though because otherwise we 91 * cannot scan all objects. 92 * 93 * Slabs are freed when they become empty. Teardown and setup is 94 * minimal so we rely on the page allocators per cpu caches for 95 * fast frees and allocs. 96 * 97 * Overloading of page flags that are otherwise used for LRU management. 98 * 99 * PageActive The slab is frozen and exempt from list processing. 100 * This means that the slab is dedicated to a purpose 101 * such as satisfying allocations for a specific 102 * processor. Objects may be freed in the slab while 103 * it is frozen but slab_free will then skip the usual 104 * list operations. It is up to the processor holding 105 * the slab to integrate the slab into the slab lists 106 * when the slab is no longer needed. 107 * 108 * One use of this flag is to mark slabs that are 109 * used for allocations. Then such a slab becomes a cpu 110 * slab. The cpu slab may be equipped with an additional 111 * freelist that allows lockless access to 112 * free objects in addition to the regular freelist 113 * that requires the slab lock. 114 * 115 * PageError Slab requires special handling due to debug 116 * options set. This moves slab handling out of 117 * the fast path and disables lockless freelists. 118 */ 119 120 static inline int kmem_cache_debug(struct kmem_cache *s) 121 { 122 #ifdef CONFIG_SLUB_DEBUG 123 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 124 #else 125 return 0; 126 #endif 127 } 128 129 void *fixup_red_left(struct kmem_cache *s, void *p) 130 { 131 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 132 p += s->red_left_pad; 133 134 return p; 135 } 136 137 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 138 { 139 #ifdef CONFIG_SLUB_CPU_PARTIAL 140 return !kmem_cache_debug(s); 141 #else 142 return false; 143 #endif 144 } 145 146 /* 147 * Issues still to be resolved: 148 * 149 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 150 * 151 * - Variable sizing of the per node arrays 152 */ 153 154 /* Enable to test recovery from slab corruption on boot */ 155 #undef SLUB_RESILIENCY_TEST 156 157 /* Enable to log cmpxchg failures */ 158 #undef SLUB_DEBUG_CMPXCHG 159 160 /* 161 * Mininum number of partial slabs. These will be left on the partial 162 * lists even if they are empty. kmem_cache_shrink may reclaim them. 163 */ 164 #define MIN_PARTIAL 5 165 166 /* 167 * Maximum number of desirable partial slabs. 168 * The existence of more partial slabs makes kmem_cache_shrink 169 * sort the partial list by the number of objects in use. 170 */ 171 #define MAX_PARTIAL 10 172 173 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 174 SLAB_POISON | SLAB_STORE_USER) 175 176 /* 177 * These debug flags cannot use CMPXCHG because there might be consistency 178 * issues when checking or reading debug information 179 */ 180 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 181 SLAB_TRACE) 182 183 184 /* 185 * Debugging flags that require metadata to be stored in the slab. These get 186 * disabled when slub_debug=O is used and a cache's min order increases with 187 * metadata. 188 */ 189 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 190 191 #define OO_SHIFT 16 192 #define OO_MASK ((1 << OO_SHIFT) - 1) 193 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 194 195 /* Internal SLUB flags */ 196 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 197 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 198 199 /* 200 * Tracking user of a slab. 201 */ 202 #define TRACK_ADDRS_COUNT 16 203 struct track { 204 unsigned long addr; /* Called from address */ 205 #ifdef CONFIG_STACKTRACE 206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 207 #endif 208 int cpu; /* Was running on cpu */ 209 int pid; /* Pid context */ 210 unsigned long when; /* When did the operation occur */ 211 }; 212 213 enum track_item { TRACK_ALLOC, TRACK_FREE }; 214 215 #ifdef CONFIG_SYSFS 216 static int sysfs_slab_add(struct kmem_cache *); 217 static int sysfs_slab_alias(struct kmem_cache *, const char *); 218 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 219 static void sysfs_slab_remove(struct kmem_cache *s); 220 #else 221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 223 { return 0; } 224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 225 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 /* 232 * The rmw is racy on a preemptible kernel but this is acceptable, so 233 * avoid this_cpu_add()'s irq-disable overhead. 234 */ 235 raw_cpu_inc(s->cpu_slab->stat[si]); 236 #endif 237 } 238 239 /******************************************************************** 240 * Core slab cache functions 241 *******************************************************************/ 242 243 /* 244 * Returns freelist pointer (ptr). With hardening, this is obfuscated 245 * with an XOR of the address where the pointer is held and a per-cache 246 * random number. 247 */ 248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 249 unsigned long ptr_addr) 250 { 251 #ifdef CONFIG_SLAB_FREELIST_HARDENED 252 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); 253 #else 254 return ptr; 255 #endif 256 } 257 258 /* Returns the freelist pointer recorded at location ptr_addr. */ 259 static inline void *freelist_dereference(const struct kmem_cache *s, 260 void *ptr_addr) 261 { 262 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 263 (unsigned long)ptr_addr); 264 } 265 266 static inline void *get_freepointer(struct kmem_cache *s, void *object) 267 { 268 return freelist_dereference(s, object + s->offset); 269 } 270 271 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 272 { 273 if (object) 274 prefetch(freelist_dereference(s, object + s->offset)); 275 } 276 277 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 278 { 279 unsigned long freepointer_addr; 280 void *p; 281 282 if (!debug_pagealloc_enabled()) 283 return get_freepointer(s, object); 284 285 freepointer_addr = (unsigned long)object + s->offset; 286 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 287 return freelist_ptr(s, p, freepointer_addr); 288 } 289 290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 291 { 292 unsigned long freeptr_addr = (unsigned long)object + s->offset; 293 294 #ifdef CONFIG_SLAB_FREELIST_HARDENED 295 BUG_ON(object == fp); /* naive detection of double free or corruption */ 296 #endif 297 298 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 299 } 300 301 /* Loop over all objects in a slab */ 302 #define for_each_object(__p, __s, __addr, __objects) \ 303 for (__p = fixup_red_left(__s, __addr); \ 304 __p < (__addr) + (__objects) * (__s)->size; \ 305 __p += (__s)->size) 306 307 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 308 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 309 __idx <= __objects; \ 310 __p += (__s)->size, __idx++) 311 312 /* Determine object index from a given position */ 313 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 314 { 315 return (p - addr) / s->size; 316 } 317 318 static inline int order_objects(int order, unsigned long size, int reserved) 319 { 320 return ((PAGE_SIZE << order) - reserved) / size; 321 } 322 323 static inline struct kmem_cache_order_objects oo_make(int order, 324 unsigned long size, int reserved) 325 { 326 struct kmem_cache_order_objects x = { 327 (order << OO_SHIFT) + order_objects(order, size, reserved) 328 }; 329 330 return x; 331 } 332 333 static inline int oo_order(struct kmem_cache_order_objects x) 334 { 335 return x.x >> OO_SHIFT; 336 } 337 338 static inline int oo_objects(struct kmem_cache_order_objects x) 339 { 340 return x.x & OO_MASK; 341 } 342 343 /* 344 * Per slab locking using the pagelock 345 */ 346 static __always_inline void slab_lock(struct page *page) 347 { 348 VM_BUG_ON_PAGE(PageTail(page), page); 349 bit_spin_lock(PG_locked, &page->flags); 350 } 351 352 static __always_inline void slab_unlock(struct page *page) 353 { 354 VM_BUG_ON_PAGE(PageTail(page), page); 355 __bit_spin_unlock(PG_locked, &page->flags); 356 } 357 358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 359 { 360 struct page tmp; 361 tmp.counters = counters_new; 362 /* 363 * page->counters can cover frozen/inuse/objects as well 364 * as page->_refcount. If we assign to ->counters directly 365 * we run the risk of losing updates to page->_refcount, so 366 * be careful and only assign to the fields we need. 367 */ 368 page->frozen = tmp.frozen; 369 page->inuse = tmp.inuse; 370 page->objects = tmp.objects; 371 } 372 373 /* Interrupts must be disabled (for the fallback code to work right) */ 374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 375 void *freelist_old, unsigned long counters_old, 376 void *freelist_new, unsigned long counters_new, 377 const char *n) 378 { 379 VM_BUG_ON(!irqs_disabled()); 380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 382 if (s->flags & __CMPXCHG_DOUBLE) { 383 if (cmpxchg_double(&page->freelist, &page->counters, 384 freelist_old, counters_old, 385 freelist_new, counters_new)) 386 return true; 387 } else 388 #endif 389 { 390 slab_lock(page); 391 if (page->freelist == freelist_old && 392 page->counters == counters_old) { 393 page->freelist = freelist_new; 394 set_page_slub_counters(page, counters_new); 395 slab_unlock(page); 396 return true; 397 } 398 slab_unlock(page); 399 } 400 401 cpu_relax(); 402 stat(s, CMPXCHG_DOUBLE_FAIL); 403 404 #ifdef SLUB_DEBUG_CMPXCHG 405 pr_info("%s %s: cmpxchg double redo ", n, s->name); 406 #endif 407 408 return false; 409 } 410 411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 412 void *freelist_old, unsigned long counters_old, 413 void *freelist_new, unsigned long counters_new, 414 const char *n) 415 { 416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 418 if (s->flags & __CMPXCHG_DOUBLE) { 419 if (cmpxchg_double(&page->freelist, &page->counters, 420 freelist_old, counters_old, 421 freelist_new, counters_new)) 422 return true; 423 } else 424 #endif 425 { 426 unsigned long flags; 427 428 local_irq_save(flags); 429 slab_lock(page); 430 if (page->freelist == freelist_old && 431 page->counters == counters_old) { 432 page->freelist = freelist_new; 433 set_page_slub_counters(page, counters_new); 434 slab_unlock(page); 435 local_irq_restore(flags); 436 return true; 437 } 438 slab_unlock(page); 439 local_irq_restore(flags); 440 } 441 442 cpu_relax(); 443 stat(s, CMPXCHG_DOUBLE_FAIL); 444 445 #ifdef SLUB_DEBUG_CMPXCHG 446 pr_info("%s %s: cmpxchg double redo ", n, s->name); 447 #endif 448 449 return false; 450 } 451 452 #ifdef CONFIG_SLUB_DEBUG 453 /* 454 * Determine a map of object in use on a page. 455 * 456 * Node listlock must be held to guarantee that the page does 457 * not vanish from under us. 458 */ 459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 460 { 461 void *p; 462 void *addr = page_address(page); 463 464 for (p = page->freelist; p; p = get_freepointer(s, p)) 465 set_bit(slab_index(p, s, addr), map); 466 } 467 468 static inline int size_from_object(struct kmem_cache *s) 469 { 470 if (s->flags & SLAB_RED_ZONE) 471 return s->size - s->red_left_pad; 472 473 return s->size; 474 } 475 476 static inline void *restore_red_left(struct kmem_cache *s, void *p) 477 { 478 if (s->flags & SLAB_RED_ZONE) 479 p -= s->red_left_pad; 480 481 return p; 482 } 483 484 /* 485 * Debug settings: 486 */ 487 #if defined(CONFIG_SLUB_DEBUG_ON) 488 static int slub_debug = DEBUG_DEFAULT_FLAGS; 489 #else 490 static int slub_debug; 491 #endif 492 493 static char *slub_debug_slabs; 494 static int disable_higher_order_debug; 495 496 /* 497 * slub is about to manipulate internal object metadata. This memory lies 498 * outside the range of the allocated object, so accessing it would normally 499 * be reported by kasan as a bounds error. metadata_access_enable() is used 500 * to tell kasan that these accesses are OK. 501 */ 502 static inline void metadata_access_enable(void) 503 { 504 kasan_disable_current(); 505 } 506 507 static inline void metadata_access_disable(void) 508 { 509 kasan_enable_current(); 510 } 511 512 /* 513 * Object debugging 514 */ 515 516 /* Verify that a pointer has an address that is valid within a slab page */ 517 static inline int check_valid_pointer(struct kmem_cache *s, 518 struct page *page, void *object) 519 { 520 void *base; 521 522 if (!object) 523 return 1; 524 525 base = page_address(page); 526 object = restore_red_left(s, object); 527 if (object < base || object >= base + page->objects * s->size || 528 (object - base) % s->size) { 529 return 0; 530 } 531 532 return 1; 533 } 534 535 static void print_section(char *level, char *text, u8 *addr, 536 unsigned int length) 537 { 538 metadata_access_enable(); 539 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 540 length, 1); 541 metadata_access_disable(); 542 } 543 544 static struct track *get_track(struct kmem_cache *s, void *object, 545 enum track_item alloc) 546 { 547 struct track *p; 548 549 if (s->offset) 550 p = object + s->offset + sizeof(void *); 551 else 552 p = object + s->inuse; 553 554 return p + alloc; 555 } 556 557 static void set_track(struct kmem_cache *s, void *object, 558 enum track_item alloc, unsigned long addr) 559 { 560 struct track *p = get_track(s, object, alloc); 561 562 if (addr) { 563 #ifdef CONFIG_STACKTRACE 564 struct stack_trace trace; 565 int i; 566 567 trace.nr_entries = 0; 568 trace.max_entries = TRACK_ADDRS_COUNT; 569 trace.entries = p->addrs; 570 trace.skip = 3; 571 metadata_access_enable(); 572 save_stack_trace(&trace); 573 metadata_access_disable(); 574 575 /* See rant in lockdep.c */ 576 if (trace.nr_entries != 0 && 577 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 578 trace.nr_entries--; 579 580 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 581 p->addrs[i] = 0; 582 #endif 583 p->addr = addr; 584 p->cpu = smp_processor_id(); 585 p->pid = current->pid; 586 p->when = jiffies; 587 } else 588 memset(p, 0, sizeof(struct track)); 589 } 590 591 static void init_tracking(struct kmem_cache *s, void *object) 592 { 593 if (!(s->flags & SLAB_STORE_USER)) 594 return; 595 596 set_track(s, object, TRACK_FREE, 0UL); 597 set_track(s, object, TRACK_ALLOC, 0UL); 598 } 599 600 static void print_track(const char *s, struct track *t) 601 { 602 if (!t->addr) 603 return; 604 605 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 606 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 607 #ifdef CONFIG_STACKTRACE 608 { 609 int i; 610 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 611 if (t->addrs[i]) 612 pr_err("\t%pS\n", (void *)t->addrs[i]); 613 else 614 break; 615 } 616 #endif 617 } 618 619 static void print_tracking(struct kmem_cache *s, void *object) 620 { 621 if (!(s->flags & SLAB_STORE_USER)) 622 return; 623 624 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 625 print_track("Freed", get_track(s, object, TRACK_FREE)); 626 } 627 628 static void print_page_info(struct page *page) 629 { 630 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 631 page, page->objects, page->inuse, page->freelist, page->flags); 632 633 } 634 635 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 636 { 637 struct va_format vaf; 638 va_list args; 639 640 va_start(args, fmt); 641 vaf.fmt = fmt; 642 vaf.va = &args; 643 pr_err("=============================================================================\n"); 644 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 645 pr_err("-----------------------------------------------------------------------------\n\n"); 646 647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 648 va_end(args); 649 } 650 651 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 652 { 653 struct va_format vaf; 654 va_list args; 655 656 va_start(args, fmt); 657 vaf.fmt = fmt; 658 vaf.va = &args; 659 pr_err("FIX %s: %pV\n", s->name, &vaf); 660 va_end(args); 661 } 662 663 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 664 { 665 unsigned int off; /* Offset of last byte */ 666 u8 *addr = page_address(page); 667 668 print_tracking(s, p); 669 670 print_page_info(page); 671 672 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 673 p, p - addr, get_freepointer(s, p)); 674 675 if (s->flags & SLAB_RED_ZONE) 676 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 677 s->red_left_pad); 678 else if (p > addr + 16) 679 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 680 681 print_section(KERN_ERR, "Object ", p, 682 min_t(unsigned long, s->object_size, PAGE_SIZE)); 683 if (s->flags & SLAB_RED_ZONE) 684 print_section(KERN_ERR, "Redzone ", p + s->object_size, 685 s->inuse - s->object_size); 686 687 if (s->offset) 688 off = s->offset + sizeof(void *); 689 else 690 off = s->inuse; 691 692 if (s->flags & SLAB_STORE_USER) 693 off += 2 * sizeof(struct track); 694 695 off += kasan_metadata_size(s); 696 697 if (off != size_from_object(s)) 698 /* Beginning of the filler is the free pointer */ 699 print_section(KERN_ERR, "Padding ", p + off, 700 size_from_object(s) - off); 701 702 dump_stack(); 703 } 704 705 void object_err(struct kmem_cache *s, struct page *page, 706 u8 *object, char *reason) 707 { 708 slab_bug(s, "%s", reason); 709 print_trailer(s, page, object); 710 } 711 712 static void slab_err(struct kmem_cache *s, struct page *page, 713 const char *fmt, ...) 714 { 715 va_list args; 716 char buf[100]; 717 718 va_start(args, fmt); 719 vsnprintf(buf, sizeof(buf), fmt, args); 720 va_end(args); 721 slab_bug(s, "%s", buf); 722 print_page_info(page); 723 dump_stack(); 724 } 725 726 static void init_object(struct kmem_cache *s, void *object, u8 val) 727 { 728 u8 *p = object; 729 730 if (s->flags & SLAB_RED_ZONE) 731 memset(p - s->red_left_pad, val, s->red_left_pad); 732 733 if (s->flags & __OBJECT_POISON) { 734 memset(p, POISON_FREE, s->object_size - 1); 735 p[s->object_size - 1] = POISON_END; 736 } 737 738 if (s->flags & SLAB_RED_ZONE) 739 memset(p + s->object_size, val, s->inuse - s->object_size); 740 } 741 742 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 743 void *from, void *to) 744 { 745 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 746 memset(from, data, to - from); 747 } 748 749 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 750 u8 *object, char *what, 751 u8 *start, unsigned int value, unsigned int bytes) 752 { 753 u8 *fault; 754 u8 *end; 755 756 metadata_access_enable(); 757 fault = memchr_inv(start, value, bytes); 758 metadata_access_disable(); 759 if (!fault) 760 return 1; 761 762 end = start + bytes; 763 while (end > fault && end[-1] == value) 764 end--; 765 766 slab_bug(s, "%s overwritten", what); 767 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 768 fault, end - 1, fault[0], value); 769 print_trailer(s, page, object); 770 771 restore_bytes(s, what, value, fault, end); 772 return 0; 773 } 774 775 /* 776 * Object layout: 777 * 778 * object address 779 * Bytes of the object to be managed. 780 * If the freepointer may overlay the object then the free 781 * pointer is the first word of the object. 782 * 783 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 784 * 0xa5 (POISON_END) 785 * 786 * object + s->object_size 787 * Padding to reach word boundary. This is also used for Redzoning. 788 * Padding is extended by another word if Redzoning is enabled and 789 * object_size == inuse. 790 * 791 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 792 * 0xcc (RED_ACTIVE) for objects in use. 793 * 794 * object + s->inuse 795 * Meta data starts here. 796 * 797 * A. Free pointer (if we cannot overwrite object on free) 798 * B. Tracking data for SLAB_STORE_USER 799 * C. Padding to reach required alignment boundary or at mininum 800 * one word if debugging is on to be able to detect writes 801 * before the word boundary. 802 * 803 * Padding is done using 0x5a (POISON_INUSE) 804 * 805 * object + s->size 806 * Nothing is used beyond s->size. 807 * 808 * If slabcaches are merged then the object_size and inuse boundaries are mostly 809 * ignored. And therefore no slab options that rely on these boundaries 810 * may be used with merged slabcaches. 811 */ 812 813 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 814 { 815 unsigned long off = s->inuse; /* The end of info */ 816 817 if (s->offset) 818 /* Freepointer is placed after the object. */ 819 off += sizeof(void *); 820 821 if (s->flags & SLAB_STORE_USER) 822 /* We also have user information there */ 823 off += 2 * sizeof(struct track); 824 825 off += kasan_metadata_size(s); 826 827 if (size_from_object(s) == off) 828 return 1; 829 830 return check_bytes_and_report(s, page, p, "Object padding", 831 p + off, POISON_INUSE, size_from_object(s) - off); 832 } 833 834 /* Check the pad bytes at the end of a slab page */ 835 static int slab_pad_check(struct kmem_cache *s, struct page *page) 836 { 837 u8 *start; 838 u8 *fault; 839 u8 *end; 840 int length; 841 int remainder; 842 843 if (!(s->flags & SLAB_POISON)) 844 return 1; 845 846 start = page_address(page); 847 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 848 end = start + length; 849 remainder = length % s->size; 850 if (!remainder) 851 return 1; 852 853 metadata_access_enable(); 854 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 855 metadata_access_disable(); 856 if (!fault) 857 return 1; 858 while (end > fault && end[-1] == POISON_INUSE) 859 end--; 860 861 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 862 print_section(KERN_ERR, "Padding ", end - remainder, remainder); 863 864 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 865 return 0; 866 } 867 868 static int check_object(struct kmem_cache *s, struct page *page, 869 void *object, u8 val) 870 { 871 u8 *p = object; 872 u8 *endobject = object + s->object_size; 873 874 if (s->flags & SLAB_RED_ZONE) { 875 if (!check_bytes_and_report(s, page, object, "Redzone", 876 object - s->red_left_pad, val, s->red_left_pad)) 877 return 0; 878 879 if (!check_bytes_and_report(s, page, object, "Redzone", 880 endobject, val, s->inuse - s->object_size)) 881 return 0; 882 } else { 883 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 884 check_bytes_and_report(s, page, p, "Alignment padding", 885 endobject, POISON_INUSE, 886 s->inuse - s->object_size); 887 } 888 } 889 890 if (s->flags & SLAB_POISON) { 891 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 892 (!check_bytes_and_report(s, page, p, "Poison", p, 893 POISON_FREE, s->object_size - 1) || 894 !check_bytes_and_report(s, page, p, "Poison", 895 p + s->object_size - 1, POISON_END, 1))) 896 return 0; 897 /* 898 * check_pad_bytes cleans up on its own. 899 */ 900 check_pad_bytes(s, page, p); 901 } 902 903 if (!s->offset && val == SLUB_RED_ACTIVE) 904 /* 905 * Object and freepointer overlap. Cannot check 906 * freepointer while object is allocated. 907 */ 908 return 1; 909 910 /* Check free pointer validity */ 911 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 912 object_err(s, page, p, "Freepointer corrupt"); 913 /* 914 * No choice but to zap it and thus lose the remainder 915 * of the free objects in this slab. May cause 916 * another error because the object count is now wrong. 917 */ 918 set_freepointer(s, p, NULL); 919 return 0; 920 } 921 return 1; 922 } 923 924 static int check_slab(struct kmem_cache *s, struct page *page) 925 { 926 int maxobj; 927 928 VM_BUG_ON(!irqs_disabled()); 929 930 if (!PageSlab(page)) { 931 slab_err(s, page, "Not a valid slab page"); 932 return 0; 933 } 934 935 maxobj = order_objects(compound_order(page), s->size, s->reserved); 936 if (page->objects > maxobj) { 937 slab_err(s, page, "objects %u > max %u", 938 page->objects, maxobj); 939 return 0; 940 } 941 if (page->inuse > page->objects) { 942 slab_err(s, page, "inuse %u > max %u", 943 page->inuse, page->objects); 944 return 0; 945 } 946 /* Slab_pad_check fixes things up after itself */ 947 slab_pad_check(s, page); 948 return 1; 949 } 950 951 /* 952 * Determine if a certain object on a page is on the freelist. Must hold the 953 * slab lock to guarantee that the chains are in a consistent state. 954 */ 955 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 956 { 957 int nr = 0; 958 void *fp; 959 void *object = NULL; 960 int max_objects; 961 962 fp = page->freelist; 963 while (fp && nr <= page->objects) { 964 if (fp == search) 965 return 1; 966 if (!check_valid_pointer(s, page, fp)) { 967 if (object) { 968 object_err(s, page, object, 969 "Freechain corrupt"); 970 set_freepointer(s, object, NULL); 971 } else { 972 slab_err(s, page, "Freepointer corrupt"); 973 page->freelist = NULL; 974 page->inuse = page->objects; 975 slab_fix(s, "Freelist cleared"); 976 return 0; 977 } 978 break; 979 } 980 object = fp; 981 fp = get_freepointer(s, object); 982 nr++; 983 } 984 985 max_objects = order_objects(compound_order(page), s->size, s->reserved); 986 if (max_objects > MAX_OBJS_PER_PAGE) 987 max_objects = MAX_OBJS_PER_PAGE; 988 989 if (page->objects != max_objects) { 990 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 991 page->objects, max_objects); 992 page->objects = max_objects; 993 slab_fix(s, "Number of objects adjusted."); 994 } 995 if (page->inuse != page->objects - nr) { 996 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 997 page->inuse, page->objects - nr); 998 page->inuse = page->objects - nr; 999 slab_fix(s, "Object count adjusted."); 1000 } 1001 return search == NULL; 1002 } 1003 1004 static void trace(struct kmem_cache *s, struct page *page, void *object, 1005 int alloc) 1006 { 1007 if (s->flags & SLAB_TRACE) { 1008 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1009 s->name, 1010 alloc ? "alloc" : "free", 1011 object, page->inuse, 1012 page->freelist); 1013 1014 if (!alloc) 1015 print_section(KERN_INFO, "Object ", (void *)object, 1016 s->object_size); 1017 1018 dump_stack(); 1019 } 1020 } 1021 1022 /* 1023 * Tracking of fully allocated slabs for debugging purposes. 1024 */ 1025 static void add_full(struct kmem_cache *s, 1026 struct kmem_cache_node *n, struct page *page) 1027 { 1028 if (!(s->flags & SLAB_STORE_USER)) 1029 return; 1030 1031 lockdep_assert_held(&n->list_lock); 1032 list_add(&page->lru, &n->full); 1033 } 1034 1035 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1036 { 1037 if (!(s->flags & SLAB_STORE_USER)) 1038 return; 1039 1040 lockdep_assert_held(&n->list_lock); 1041 list_del(&page->lru); 1042 } 1043 1044 /* Tracking of the number of slabs for debugging purposes */ 1045 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1046 { 1047 struct kmem_cache_node *n = get_node(s, node); 1048 1049 return atomic_long_read(&n->nr_slabs); 1050 } 1051 1052 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1053 { 1054 return atomic_long_read(&n->nr_slabs); 1055 } 1056 1057 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1058 { 1059 struct kmem_cache_node *n = get_node(s, node); 1060 1061 /* 1062 * May be called early in order to allocate a slab for the 1063 * kmem_cache_node structure. Solve the chicken-egg 1064 * dilemma by deferring the increment of the count during 1065 * bootstrap (see early_kmem_cache_node_alloc). 1066 */ 1067 if (likely(n)) { 1068 atomic_long_inc(&n->nr_slabs); 1069 atomic_long_add(objects, &n->total_objects); 1070 } 1071 } 1072 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1073 { 1074 struct kmem_cache_node *n = get_node(s, node); 1075 1076 atomic_long_dec(&n->nr_slabs); 1077 atomic_long_sub(objects, &n->total_objects); 1078 } 1079 1080 /* Object debug checks for alloc/free paths */ 1081 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1082 void *object) 1083 { 1084 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1085 return; 1086 1087 init_object(s, object, SLUB_RED_INACTIVE); 1088 init_tracking(s, object); 1089 } 1090 1091 static inline int alloc_consistency_checks(struct kmem_cache *s, 1092 struct page *page, 1093 void *object, unsigned long addr) 1094 { 1095 if (!check_slab(s, page)) 1096 return 0; 1097 1098 if (!check_valid_pointer(s, page, object)) { 1099 object_err(s, page, object, "Freelist Pointer check fails"); 1100 return 0; 1101 } 1102 1103 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1104 return 0; 1105 1106 return 1; 1107 } 1108 1109 static noinline int alloc_debug_processing(struct kmem_cache *s, 1110 struct page *page, 1111 void *object, unsigned long addr) 1112 { 1113 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1114 if (!alloc_consistency_checks(s, page, object, addr)) 1115 goto bad; 1116 } 1117 1118 /* Success perform special debug activities for allocs */ 1119 if (s->flags & SLAB_STORE_USER) 1120 set_track(s, object, TRACK_ALLOC, addr); 1121 trace(s, page, object, 1); 1122 init_object(s, object, SLUB_RED_ACTIVE); 1123 return 1; 1124 1125 bad: 1126 if (PageSlab(page)) { 1127 /* 1128 * If this is a slab page then lets do the best we can 1129 * to avoid issues in the future. Marking all objects 1130 * as used avoids touching the remaining objects. 1131 */ 1132 slab_fix(s, "Marking all objects used"); 1133 page->inuse = page->objects; 1134 page->freelist = NULL; 1135 } 1136 return 0; 1137 } 1138 1139 static inline int free_consistency_checks(struct kmem_cache *s, 1140 struct page *page, void *object, unsigned long addr) 1141 { 1142 if (!check_valid_pointer(s, page, object)) { 1143 slab_err(s, page, "Invalid object pointer 0x%p", object); 1144 return 0; 1145 } 1146 1147 if (on_freelist(s, page, object)) { 1148 object_err(s, page, object, "Object already free"); 1149 return 0; 1150 } 1151 1152 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1153 return 0; 1154 1155 if (unlikely(s != page->slab_cache)) { 1156 if (!PageSlab(page)) { 1157 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1158 object); 1159 } else if (!page->slab_cache) { 1160 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1161 object); 1162 dump_stack(); 1163 } else 1164 object_err(s, page, object, 1165 "page slab pointer corrupt."); 1166 return 0; 1167 } 1168 return 1; 1169 } 1170 1171 /* Supports checking bulk free of a constructed freelist */ 1172 static noinline int free_debug_processing( 1173 struct kmem_cache *s, struct page *page, 1174 void *head, void *tail, int bulk_cnt, 1175 unsigned long addr) 1176 { 1177 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1178 void *object = head; 1179 int cnt = 0; 1180 unsigned long uninitialized_var(flags); 1181 int ret = 0; 1182 1183 spin_lock_irqsave(&n->list_lock, flags); 1184 slab_lock(page); 1185 1186 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1187 if (!check_slab(s, page)) 1188 goto out; 1189 } 1190 1191 next_object: 1192 cnt++; 1193 1194 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1195 if (!free_consistency_checks(s, page, object, addr)) 1196 goto out; 1197 } 1198 1199 if (s->flags & SLAB_STORE_USER) 1200 set_track(s, object, TRACK_FREE, addr); 1201 trace(s, page, object, 0); 1202 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1203 init_object(s, object, SLUB_RED_INACTIVE); 1204 1205 /* Reached end of constructed freelist yet? */ 1206 if (object != tail) { 1207 object = get_freepointer(s, object); 1208 goto next_object; 1209 } 1210 ret = 1; 1211 1212 out: 1213 if (cnt != bulk_cnt) 1214 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1215 bulk_cnt, cnt); 1216 1217 slab_unlock(page); 1218 spin_unlock_irqrestore(&n->list_lock, flags); 1219 if (!ret) 1220 slab_fix(s, "Object at 0x%p not freed", object); 1221 return ret; 1222 } 1223 1224 static int __init setup_slub_debug(char *str) 1225 { 1226 slub_debug = DEBUG_DEFAULT_FLAGS; 1227 if (*str++ != '=' || !*str) 1228 /* 1229 * No options specified. Switch on full debugging. 1230 */ 1231 goto out; 1232 1233 if (*str == ',') 1234 /* 1235 * No options but restriction on slabs. This means full 1236 * debugging for slabs matching a pattern. 1237 */ 1238 goto check_slabs; 1239 1240 slub_debug = 0; 1241 if (*str == '-') 1242 /* 1243 * Switch off all debugging measures. 1244 */ 1245 goto out; 1246 1247 /* 1248 * Determine which debug features should be switched on 1249 */ 1250 for (; *str && *str != ','; str++) { 1251 switch (tolower(*str)) { 1252 case 'f': 1253 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1254 break; 1255 case 'z': 1256 slub_debug |= SLAB_RED_ZONE; 1257 break; 1258 case 'p': 1259 slub_debug |= SLAB_POISON; 1260 break; 1261 case 'u': 1262 slub_debug |= SLAB_STORE_USER; 1263 break; 1264 case 't': 1265 slub_debug |= SLAB_TRACE; 1266 break; 1267 case 'a': 1268 slub_debug |= SLAB_FAILSLAB; 1269 break; 1270 case 'o': 1271 /* 1272 * Avoid enabling debugging on caches if its minimum 1273 * order would increase as a result. 1274 */ 1275 disable_higher_order_debug = 1; 1276 break; 1277 default: 1278 pr_err("slub_debug option '%c' unknown. skipped\n", 1279 *str); 1280 } 1281 } 1282 1283 check_slabs: 1284 if (*str == ',') 1285 slub_debug_slabs = str + 1; 1286 out: 1287 return 1; 1288 } 1289 1290 __setup("slub_debug", setup_slub_debug); 1291 1292 unsigned long kmem_cache_flags(unsigned long object_size, 1293 unsigned long flags, const char *name, 1294 void (*ctor)(void *)) 1295 { 1296 /* 1297 * Enable debugging if selected on the kernel commandline. 1298 */ 1299 if (slub_debug && (!slub_debug_slabs || (name && 1300 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1301 flags |= slub_debug; 1302 1303 return flags; 1304 } 1305 #else /* !CONFIG_SLUB_DEBUG */ 1306 static inline void setup_object_debug(struct kmem_cache *s, 1307 struct page *page, void *object) {} 1308 1309 static inline int alloc_debug_processing(struct kmem_cache *s, 1310 struct page *page, void *object, unsigned long addr) { return 0; } 1311 1312 static inline int free_debug_processing( 1313 struct kmem_cache *s, struct page *page, 1314 void *head, void *tail, int bulk_cnt, 1315 unsigned long addr) { return 0; } 1316 1317 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1318 { return 1; } 1319 static inline int check_object(struct kmem_cache *s, struct page *page, 1320 void *object, u8 val) { return 1; } 1321 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1322 struct page *page) {} 1323 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1324 struct page *page) {} 1325 unsigned long kmem_cache_flags(unsigned long object_size, 1326 unsigned long flags, const char *name, 1327 void (*ctor)(void *)) 1328 { 1329 return flags; 1330 } 1331 #define slub_debug 0 1332 1333 #define disable_higher_order_debug 0 1334 1335 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1336 { return 0; } 1337 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1338 { return 0; } 1339 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1340 int objects) {} 1341 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1342 int objects) {} 1343 1344 #endif /* CONFIG_SLUB_DEBUG */ 1345 1346 /* 1347 * Hooks for other subsystems that check memory allocations. In a typical 1348 * production configuration these hooks all should produce no code at all. 1349 */ 1350 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1351 { 1352 kmemleak_alloc(ptr, size, 1, flags); 1353 kasan_kmalloc_large(ptr, size, flags); 1354 } 1355 1356 static inline void kfree_hook(const void *x) 1357 { 1358 kmemleak_free(x); 1359 kasan_kfree_large(x); 1360 } 1361 1362 static inline void *slab_free_hook(struct kmem_cache *s, void *x) 1363 { 1364 void *freeptr; 1365 1366 kmemleak_free_recursive(x, s->flags); 1367 1368 /* 1369 * Trouble is that we may no longer disable interrupts in the fast path 1370 * So in order to make the debug calls that expect irqs to be 1371 * disabled we need to disable interrupts temporarily. 1372 */ 1373 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1374 { 1375 unsigned long flags; 1376 1377 local_irq_save(flags); 1378 kmemcheck_slab_free(s, x, s->object_size); 1379 debug_check_no_locks_freed(x, s->object_size); 1380 local_irq_restore(flags); 1381 } 1382 #endif 1383 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1384 debug_check_no_obj_freed(x, s->object_size); 1385 1386 freeptr = get_freepointer(s, x); 1387 /* 1388 * kasan_slab_free() may put x into memory quarantine, delaying its 1389 * reuse. In this case the object's freelist pointer is changed. 1390 */ 1391 kasan_slab_free(s, x); 1392 return freeptr; 1393 } 1394 1395 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1396 void *head, void *tail) 1397 { 1398 /* 1399 * Compiler cannot detect this function can be removed if slab_free_hook() 1400 * evaluates to nothing. Thus, catch all relevant config debug options here. 1401 */ 1402 #if defined(CONFIG_KMEMCHECK) || \ 1403 defined(CONFIG_LOCKDEP) || \ 1404 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1405 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1406 defined(CONFIG_KASAN) 1407 1408 void *object = head; 1409 void *tail_obj = tail ? : head; 1410 void *freeptr; 1411 1412 do { 1413 freeptr = slab_free_hook(s, object); 1414 } while ((object != tail_obj) && (object = freeptr)); 1415 #endif 1416 } 1417 1418 static void setup_object(struct kmem_cache *s, struct page *page, 1419 void *object) 1420 { 1421 setup_object_debug(s, page, object); 1422 kasan_init_slab_obj(s, object); 1423 if (unlikely(s->ctor)) { 1424 kasan_unpoison_object_data(s, object); 1425 s->ctor(object); 1426 kasan_poison_object_data(s, object); 1427 } 1428 } 1429 1430 /* 1431 * Slab allocation and freeing 1432 */ 1433 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1434 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1435 { 1436 struct page *page; 1437 int order = oo_order(oo); 1438 1439 flags |= __GFP_NOTRACK; 1440 1441 if (node == NUMA_NO_NODE) 1442 page = alloc_pages(flags, order); 1443 else 1444 page = __alloc_pages_node(node, flags, order); 1445 1446 if (page && memcg_charge_slab(page, flags, order, s)) { 1447 __free_pages(page, order); 1448 page = NULL; 1449 } 1450 1451 return page; 1452 } 1453 1454 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1455 /* Pre-initialize the random sequence cache */ 1456 static int init_cache_random_seq(struct kmem_cache *s) 1457 { 1458 int err; 1459 unsigned long i, count = oo_objects(s->oo); 1460 1461 /* Bailout if already initialised */ 1462 if (s->random_seq) 1463 return 0; 1464 1465 err = cache_random_seq_create(s, count, GFP_KERNEL); 1466 if (err) { 1467 pr_err("SLUB: Unable to initialize free list for %s\n", 1468 s->name); 1469 return err; 1470 } 1471 1472 /* Transform to an offset on the set of pages */ 1473 if (s->random_seq) { 1474 for (i = 0; i < count; i++) 1475 s->random_seq[i] *= s->size; 1476 } 1477 return 0; 1478 } 1479 1480 /* Initialize each random sequence freelist per cache */ 1481 static void __init init_freelist_randomization(void) 1482 { 1483 struct kmem_cache *s; 1484 1485 mutex_lock(&slab_mutex); 1486 1487 list_for_each_entry(s, &slab_caches, list) 1488 init_cache_random_seq(s); 1489 1490 mutex_unlock(&slab_mutex); 1491 } 1492 1493 /* Get the next entry on the pre-computed freelist randomized */ 1494 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1495 unsigned long *pos, void *start, 1496 unsigned long page_limit, 1497 unsigned long freelist_count) 1498 { 1499 unsigned int idx; 1500 1501 /* 1502 * If the target page allocation failed, the number of objects on the 1503 * page might be smaller than the usual size defined by the cache. 1504 */ 1505 do { 1506 idx = s->random_seq[*pos]; 1507 *pos += 1; 1508 if (*pos >= freelist_count) 1509 *pos = 0; 1510 } while (unlikely(idx >= page_limit)); 1511 1512 return (char *)start + idx; 1513 } 1514 1515 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1516 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1517 { 1518 void *start; 1519 void *cur; 1520 void *next; 1521 unsigned long idx, pos, page_limit, freelist_count; 1522 1523 if (page->objects < 2 || !s->random_seq) 1524 return false; 1525 1526 freelist_count = oo_objects(s->oo); 1527 pos = get_random_int() % freelist_count; 1528 1529 page_limit = page->objects * s->size; 1530 start = fixup_red_left(s, page_address(page)); 1531 1532 /* First entry is used as the base of the freelist */ 1533 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1534 freelist_count); 1535 page->freelist = cur; 1536 1537 for (idx = 1; idx < page->objects; idx++) { 1538 setup_object(s, page, cur); 1539 next = next_freelist_entry(s, page, &pos, start, page_limit, 1540 freelist_count); 1541 set_freepointer(s, cur, next); 1542 cur = next; 1543 } 1544 setup_object(s, page, cur); 1545 set_freepointer(s, cur, NULL); 1546 1547 return true; 1548 } 1549 #else 1550 static inline int init_cache_random_seq(struct kmem_cache *s) 1551 { 1552 return 0; 1553 } 1554 static inline void init_freelist_randomization(void) { } 1555 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1556 { 1557 return false; 1558 } 1559 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1560 1561 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1562 { 1563 struct page *page; 1564 struct kmem_cache_order_objects oo = s->oo; 1565 gfp_t alloc_gfp; 1566 void *start, *p; 1567 int idx, order; 1568 bool shuffle; 1569 1570 flags &= gfp_allowed_mask; 1571 1572 if (gfpflags_allow_blocking(flags)) 1573 local_irq_enable(); 1574 1575 flags |= s->allocflags; 1576 1577 /* 1578 * Let the initial higher-order allocation fail under memory pressure 1579 * so we fall-back to the minimum order allocation. 1580 */ 1581 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1582 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1583 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1584 1585 page = alloc_slab_page(s, alloc_gfp, node, oo); 1586 if (unlikely(!page)) { 1587 oo = s->min; 1588 alloc_gfp = flags; 1589 /* 1590 * Allocation may have failed due to fragmentation. 1591 * Try a lower order alloc if possible 1592 */ 1593 page = alloc_slab_page(s, alloc_gfp, node, oo); 1594 if (unlikely(!page)) 1595 goto out; 1596 stat(s, ORDER_FALLBACK); 1597 } 1598 1599 if (kmemcheck_enabled && 1600 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1601 int pages = 1 << oo_order(oo); 1602 1603 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1604 1605 /* 1606 * Objects from caches that have a constructor don't get 1607 * cleared when they're allocated, so we need to do it here. 1608 */ 1609 if (s->ctor) 1610 kmemcheck_mark_uninitialized_pages(page, pages); 1611 else 1612 kmemcheck_mark_unallocated_pages(page, pages); 1613 } 1614 1615 page->objects = oo_objects(oo); 1616 1617 order = compound_order(page); 1618 page->slab_cache = s; 1619 __SetPageSlab(page); 1620 if (page_is_pfmemalloc(page)) 1621 SetPageSlabPfmemalloc(page); 1622 1623 start = page_address(page); 1624 1625 if (unlikely(s->flags & SLAB_POISON)) 1626 memset(start, POISON_INUSE, PAGE_SIZE << order); 1627 1628 kasan_poison_slab(page); 1629 1630 shuffle = shuffle_freelist(s, page); 1631 1632 if (!shuffle) { 1633 for_each_object_idx(p, idx, s, start, page->objects) { 1634 setup_object(s, page, p); 1635 if (likely(idx < page->objects)) 1636 set_freepointer(s, p, p + s->size); 1637 else 1638 set_freepointer(s, p, NULL); 1639 } 1640 page->freelist = fixup_red_left(s, start); 1641 } 1642 1643 page->inuse = page->objects; 1644 page->frozen = 1; 1645 1646 out: 1647 if (gfpflags_allow_blocking(flags)) 1648 local_irq_disable(); 1649 if (!page) 1650 return NULL; 1651 1652 mod_lruvec_page_state(page, 1653 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1654 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1655 1 << oo_order(oo)); 1656 1657 inc_slabs_node(s, page_to_nid(page), page->objects); 1658 1659 return page; 1660 } 1661 1662 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1663 { 1664 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1665 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1666 flags &= ~GFP_SLAB_BUG_MASK; 1667 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1668 invalid_mask, &invalid_mask, flags, &flags); 1669 dump_stack(); 1670 } 1671 1672 return allocate_slab(s, 1673 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1674 } 1675 1676 static void __free_slab(struct kmem_cache *s, struct page *page) 1677 { 1678 int order = compound_order(page); 1679 int pages = 1 << order; 1680 1681 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1682 void *p; 1683 1684 slab_pad_check(s, page); 1685 for_each_object(p, s, page_address(page), 1686 page->objects) 1687 check_object(s, page, p, SLUB_RED_INACTIVE); 1688 } 1689 1690 kmemcheck_free_shadow(page, compound_order(page)); 1691 1692 mod_lruvec_page_state(page, 1693 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1694 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1695 -pages); 1696 1697 __ClearPageSlabPfmemalloc(page); 1698 __ClearPageSlab(page); 1699 1700 page_mapcount_reset(page); 1701 if (current->reclaim_state) 1702 current->reclaim_state->reclaimed_slab += pages; 1703 memcg_uncharge_slab(page, order, s); 1704 __free_pages(page, order); 1705 } 1706 1707 #define need_reserve_slab_rcu \ 1708 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1709 1710 static void rcu_free_slab(struct rcu_head *h) 1711 { 1712 struct page *page; 1713 1714 if (need_reserve_slab_rcu) 1715 page = virt_to_head_page(h); 1716 else 1717 page = container_of((struct list_head *)h, struct page, lru); 1718 1719 __free_slab(page->slab_cache, page); 1720 } 1721 1722 static void free_slab(struct kmem_cache *s, struct page *page) 1723 { 1724 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1725 struct rcu_head *head; 1726 1727 if (need_reserve_slab_rcu) { 1728 int order = compound_order(page); 1729 int offset = (PAGE_SIZE << order) - s->reserved; 1730 1731 VM_BUG_ON(s->reserved != sizeof(*head)); 1732 head = page_address(page) + offset; 1733 } else { 1734 head = &page->rcu_head; 1735 } 1736 1737 call_rcu(head, rcu_free_slab); 1738 } else 1739 __free_slab(s, page); 1740 } 1741 1742 static void discard_slab(struct kmem_cache *s, struct page *page) 1743 { 1744 dec_slabs_node(s, page_to_nid(page), page->objects); 1745 free_slab(s, page); 1746 } 1747 1748 /* 1749 * Management of partially allocated slabs. 1750 */ 1751 static inline void 1752 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1753 { 1754 n->nr_partial++; 1755 if (tail == DEACTIVATE_TO_TAIL) 1756 list_add_tail(&page->lru, &n->partial); 1757 else 1758 list_add(&page->lru, &n->partial); 1759 } 1760 1761 static inline void add_partial(struct kmem_cache_node *n, 1762 struct page *page, int tail) 1763 { 1764 lockdep_assert_held(&n->list_lock); 1765 __add_partial(n, page, tail); 1766 } 1767 1768 static inline void remove_partial(struct kmem_cache_node *n, 1769 struct page *page) 1770 { 1771 lockdep_assert_held(&n->list_lock); 1772 list_del(&page->lru); 1773 n->nr_partial--; 1774 } 1775 1776 /* 1777 * Remove slab from the partial list, freeze it and 1778 * return the pointer to the freelist. 1779 * 1780 * Returns a list of objects or NULL if it fails. 1781 */ 1782 static inline void *acquire_slab(struct kmem_cache *s, 1783 struct kmem_cache_node *n, struct page *page, 1784 int mode, int *objects) 1785 { 1786 void *freelist; 1787 unsigned long counters; 1788 struct page new; 1789 1790 lockdep_assert_held(&n->list_lock); 1791 1792 /* 1793 * Zap the freelist and set the frozen bit. 1794 * The old freelist is the list of objects for the 1795 * per cpu allocation list. 1796 */ 1797 freelist = page->freelist; 1798 counters = page->counters; 1799 new.counters = counters; 1800 *objects = new.objects - new.inuse; 1801 if (mode) { 1802 new.inuse = page->objects; 1803 new.freelist = NULL; 1804 } else { 1805 new.freelist = freelist; 1806 } 1807 1808 VM_BUG_ON(new.frozen); 1809 new.frozen = 1; 1810 1811 if (!__cmpxchg_double_slab(s, page, 1812 freelist, counters, 1813 new.freelist, new.counters, 1814 "acquire_slab")) 1815 return NULL; 1816 1817 remove_partial(n, page); 1818 WARN_ON(!freelist); 1819 return freelist; 1820 } 1821 1822 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1823 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1824 1825 /* 1826 * Try to allocate a partial slab from a specific node. 1827 */ 1828 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1829 struct kmem_cache_cpu *c, gfp_t flags) 1830 { 1831 struct page *page, *page2; 1832 void *object = NULL; 1833 int available = 0; 1834 int objects; 1835 1836 /* 1837 * Racy check. If we mistakenly see no partial slabs then we 1838 * just allocate an empty slab. If we mistakenly try to get a 1839 * partial slab and there is none available then get_partials() 1840 * will return NULL. 1841 */ 1842 if (!n || !n->nr_partial) 1843 return NULL; 1844 1845 spin_lock(&n->list_lock); 1846 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1847 void *t; 1848 1849 if (!pfmemalloc_match(page, flags)) 1850 continue; 1851 1852 t = acquire_slab(s, n, page, object == NULL, &objects); 1853 if (!t) 1854 break; 1855 1856 available += objects; 1857 if (!object) { 1858 c->page = page; 1859 stat(s, ALLOC_FROM_PARTIAL); 1860 object = t; 1861 } else { 1862 put_cpu_partial(s, page, 0); 1863 stat(s, CPU_PARTIAL_NODE); 1864 } 1865 if (!kmem_cache_has_cpu_partial(s) 1866 || available > slub_cpu_partial(s) / 2) 1867 break; 1868 1869 } 1870 spin_unlock(&n->list_lock); 1871 return object; 1872 } 1873 1874 /* 1875 * Get a page from somewhere. Search in increasing NUMA distances. 1876 */ 1877 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1878 struct kmem_cache_cpu *c) 1879 { 1880 #ifdef CONFIG_NUMA 1881 struct zonelist *zonelist; 1882 struct zoneref *z; 1883 struct zone *zone; 1884 enum zone_type high_zoneidx = gfp_zone(flags); 1885 void *object; 1886 unsigned int cpuset_mems_cookie; 1887 1888 /* 1889 * The defrag ratio allows a configuration of the tradeoffs between 1890 * inter node defragmentation and node local allocations. A lower 1891 * defrag_ratio increases the tendency to do local allocations 1892 * instead of attempting to obtain partial slabs from other nodes. 1893 * 1894 * If the defrag_ratio is set to 0 then kmalloc() always 1895 * returns node local objects. If the ratio is higher then kmalloc() 1896 * may return off node objects because partial slabs are obtained 1897 * from other nodes and filled up. 1898 * 1899 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1900 * (which makes defrag_ratio = 1000) then every (well almost) 1901 * allocation will first attempt to defrag slab caches on other nodes. 1902 * This means scanning over all nodes to look for partial slabs which 1903 * may be expensive if we do it every time we are trying to find a slab 1904 * with available objects. 1905 */ 1906 if (!s->remote_node_defrag_ratio || 1907 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1908 return NULL; 1909 1910 do { 1911 cpuset_mems_cookie = read_mems_allowed_begin(); 1912 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1913 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1914 struct kmem_cache_node *n; 1915 1916 n = get_node(s, zone_to_nid(zone)); 1917 1918 if (n && cpuset_zone_allowed(zone, flags) && 1919 n->nr_partial > s->min_partial) { 1920 object = get_partial_node(s, n, c, flags); 1921 if (object) { 1922 /* 1923 * Don't check read_mems_allowed_retry() 1924 * here - if mems_allowed was updated in 1925 * parallel, that was a harmless race 1926 * between allocation and the cpuset 1927 * update 1928 */ 1929 return object; 1930 } 1931 } 1932 } 1933 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1934 #endif 1935 return NULL; 1936 } 1937 1938 /* 1939 * Get a partial page, lock it and return it. 1940 */ 1941 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1942 struct kmem_cache_cpu *c) 1943 { 1944 void *object; 1945 int searchnode = node; 1946 1947 if (node == NUMA_NO_NODE) 1948 searchnode = numa_mem_id(); 1949 else if (!node_present_pages(node)) 1950 searchnode = node_to_mem_node(node); 1951 1952 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1953 if (object || node != NUMA_NO_NODE) 1954 return object; 1955 1956 return get_any_partial(s, flags, c); 1957 } 1958 1959 #ifdef CONFIG_PREEMPT 1960 /* 1961 * Calculate the next globally unique transaction for disambiguiation 1962 * during cmpxchg. The transactions start with the cpu number and are then 1963 * incremented by CONFIG_NR_CPUS. 1964 */ 1965 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1966 #else 1967 /* 1968 * No preemption supported therefore also no need to check for 1969 * different cpus. 1970 */ 1971 #define TID_STEP 1 1972 #endif 1973 1974 static inline unsigned long next_tid(unsigned long tid) 1975 { 1976 return tid + TID_STEP; 1977 } 1978 1979 static inline unsigned int tid_to_cpu(unsigned long tid) 1980 { 1981 return tid % TID_STEP; 1982 } 1983 1984 static inline unsigned long tid_to_event(unsigned long tid) 1985 { 1986 return tid / TID_STEP; 1987 } 1988 1989 static inline unsigned int init_tid(int cpu) 1990 { 1991 return cpu; 1992 } 1993 1994 static inline void note_cmpxchg_failure(const char *n, 1995 const struct kmem_cache *s, unsigned long tid) 1996 { 1997 #ifdef SLUB_DEBUG_CMPXCHG 1998 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1999 2000 pr_info("%s %s: cmpxchg redo ", n, s->name); 2001 2002 #ifdef CONFIG_PREEMPT 2003 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2004 pr_warn("due to cpu change %d -> %d\n", 2005 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2006 else 2007 #endif 2008 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2009 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2010 tid_to_event(tid), tid_to_event(actual_tid)); 2011 else 2012 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2013 actual_tid, tid, next_tid(tid)); 2014 #endif 2015 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2016 } 2017 2018 static void init_kmem_cache_cpus(struct kmem_cache *s) 2019 { 2020 int cpu; 2021 2022 for_each_possible_cpu(cpu) 2023 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2024 } 2025 2026 /* 2027 * Remove the cpu slab 2028 */ 2029 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2030 void *freelist, struct kmem_cache_cpu *c) 2031 { 2032 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2033 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2034 int lock = 0; 2035 enum slab_modes l = M_NONE, m = M_NONE; 2036 void *nextfree; 2037 int tail = DEACTIVATE_TO_HEAD; 2038 struct page new; 2039 struct page old; 2040 2041 if (page->freelist) { 2042 stat(s, DEACTIVATE_REMOTE_FREES); 2043 tail = DEACTIVATE_TO_TAIL; 2044 } 2045 2046 /* 2047 * Stage one: Free all available per cpu objects back 2048 * to the page freelist while it is still frozen. Leave the 2049 * last one. 2050 * 2051 * There is no need to take the list->lock because the page 2052 * is still frozen. 2053 */ 2054 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2055 void *prior; 2056 unsigned long counters; 2057 2058 do { 2059 prior = page->freelist; 2060 counters = page->counters; 2061 set_freepointer(s, freelist, prior); 2062 new.counters = counters; 2063 new.inuse--; 2064 VM_BUG_ON(!new.frozen); 2065 2066 } while (!__cmpxchg_double_slab(s, page, 2067 prior, counters, 2068 freelist, new.counters, 2069 "drain percpu freelist")); 2070 2071 freelist = nextfree; 2072 } 2073 2074 /* 2075 * Stage two: Ensure that the page is unfrozen while the 2076 * list presence reflects the actual number of objects 2077 * during unfreeze. 2078 * 2079 * We setup the list membership and then perform a cmpxchg 2080 * with the count. If there is a mismatch then the page 2081 * is not unfrozen but the page is on the wrong list. 2082 * 2083 * Then we restart the process which may have to remove 2084 * the page from the list that we just put it on again 2085 * because the number of objects in the slab may have 2086 * changed. 2087 */ 2088 redo: 2089 2090 old.freelist = page->freelist; 2091 old.counters = page->counters; 2092 VM_BUG_ON(!old.frozen); 2093 2094 /* Determine target state of the slab */ 2095 new.counters = old.counters; 2096 if (freelist) { 2097 new.inuse--; 2098 set_freepointer(s, freelist, old.freelist); 2099 new.freelist = freelist; 2100 } else 2101 new.freelist = old.freelist; 2102 2103 new.frozen = 0; 2104 2105 if (!new.inuse && n->nr_partial >= s->min_partial) 2106 m = M_FREE; 2107 else if (new.freelist) { 2108 m = M_PARTIAL; 2109 if (!lock) { 2110 lock = 1; 2111 /* 2112 * Taking the spinlock removes the possiblity 2113 * that acquire_slab() will see a slab page that 2114 * is frozen 2115 */ 2116 spin_lock(&n->list_lock); 2117 } 2118 } else { 2119 m = M_FULL; 2120 if (kmem_cache_debug(s) && !lock) { 2121 lock = 1; 2122 /* 2123 * This also ensures that the scanning of full 2124 * slabs from diagnostic functions will not see 2125 * any frozen slabs. 2126 */ 2127 spin_lock(&n->list_lock); 2128 } 2129 } 2130 2131 if (l != m) { 2132 2133 if (l == M_PARTIAL) 2134 2135 remove_partial(n, page); 2136 2137 else if (l == M_FULL) 2138 2139 remove_full(s, n, page); 2140 2141 if (m == M_PARTIAL) { 2142 2143 add_partial(n, page, tail); 2144 stat(s, tail); 2145 2146 } else if (m == M_FULL) { 2147 2148 stat(s, DEACTIVATE_FULL); 2149 add_full(s, n, page); 2150 2151 } 2152 } 2153 2154 l = m; 2155 if (!__cmpxchg_double_slab(s, page, 2156 old.freelist, old.counters, 2157 new.freelist, new.counters, 2158 "unfreezing slab")) 2159 goto redo; 2160 2161 if (lock) 2162 spin_unlock(&n->list_lock); 2163 2164 if (m == M_FREE) { 2165 stat(s, DEACTIVATE_EMPTY); 2166 discard_slab(s, page); 2167 stat(s, FREE_SLAB); 2168 } 2169 2170 c->page = NULL; 2171 c->freelist = NULL; 2172 } 2173 2174 /* 2175 * Unfreeze all the cpu partial slabs. 2176 * 2177 * This function must be called with interrupts disabled 2178 * for the cpu using c (or some other guarantee must be there 2179 * to guarantee no concurrent accesses). 2180 */ 2181 static void unfreeze_partials(struct kmem_cache *s, 2182 struct kmem_cache_cpu *c) 2183 { 2184 #ifdef CONFIG_SLUB_CPU_PARTIAL 2185 struct kmem_cache_node *n = NULL, *n2 = NULL; 2186 struct page *page, *discard_page = NULL; 2187 2188 while ((page = c->partial)) { 2189 struct page new; 2190 struct page old; 2191 2192 c->partial = page->next; 2193 2194 n2 = get_node(s, page_to_nid(page)); 2195 if (n != n2) { 2196 if (n) 2197 spin_unlock(&n->list_lock); 2198 2199 n = n2; 2200 spin_lock(&n->list_lock); 2201 } 2202 2203 do { 2204 2205 old.freelist = page->freelist; 2206 old.counters = page->counters; 2207 VM_BUG_ON(!old.frozen); 2208 2209 new.counters = old.counters; 2210 new.freelist = old.freelist; 2211 2212 new.frozen = 0; 2213 2214 } while (!__cmpxchg_double_slab(s, page, 2215 old.freelist, old.counters, 2216 new.freelist, new.counters, 2217 "unfreezing slab")); 2218 2219 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2220 page->next = discard_page; 2221 discard_page = page; 2222 } else { 2223 add_partial(n, page, DEACTIVATE_TO_TAIL); 2224 stat(s, FREE_ADD_PARTIAL); 2225 } 2226 } 2227 2228 if (n) 2229 spin_unlock(&n->list_lock); 2230 2231 while (discard_page) { 2232 page = discard_page; 2233 discard_page = discard_page->next; 2234 2235 stat(s, DEACTIVATE_EMPTY); 2236 discard_slab(s, page); 2237 stat(s, FREE_SLAB); 2238 } 2239 #endif 2240 } 2241 2242 /* 2243 * Put a page that was just frozen (in __slab_free) into a partial page 2244 * slot if available. This is done without interrupts disabled and without 2245 * preemption disabled. The cmpxchg is racy and may put the partial page 2246 * onto a random cpus partial slot. 2247 * 2248 * If we did not find a slot then simply move all the partials to the 2249 * per node partial list. 2250 */ 2251 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2252 { 2253 #ifdef CONFIG_SLUB_CPU_PARTIAL 2254 struct page *oldpage; 2255 int pages; 2256 int pobjects; 2257 2258 preempt_disable(); 2259 do { 2260 pages = 0; 2261 pobjects = 0; 2262 oldpage = this_cpu_read(s->cpu_slab->partial); 2263 2264 if (oldpage) { 2265 pobjects = oldpage->pobjects; 2266 pages = oldpage->pages; 2267 if (drain && pobjects > s->cpu_partial) { 2268 unsigned long flags; 2269 /* 2270 * partial array is full. Move the existing 2271 * set to the per node partial list. 2272 */ 2273 local_irq_save(flags); 2274 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2275 local_irq_restore(flags); 2276 oldpage = NULL; 2277 pobjects = 0; 2278 pages = 0; 2279 stat(s, CPU_PARTIAL_DRAIN); 2280 } 2281 } 2282 2283 pages++; 2284 pobjects += page->objects - page->inuse; 2285 2286 page->pages = pages; 2287 page->pobjects = pobjects; 2288 page->next = oldpage; 2289 2290 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2291 != oldpage); 2292 if (unlikely(!s->cpu_partial)) { 2293 unsigned long flags; 2294 2295 local_irq_save(flags); 2296 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2297 local_irq_restore(flags); 2298 } 2299 preempt_enable(); 2300 #endif 2301 } 2302 2303 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2304 { 2305 stat(s, CPUSLAB_FLUSH); 2306 deactivate_slab(s, c->page, c->freelist, c); 2307 2308 c->tid = next_tid(c->tid); 2309 } 2310 2311 /* 2312 * Flush cpu slab. 2313 * 2314 * Called from IPI handler with interrupts disabled. 2315 */ 2316 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2317 { 2318 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2319 2320 if (likely(c)) { 2321 if (c->page) 2322 flush_slab(s, c); 2323 2324 unfreeze_partials(s, c); 2325 } 2326 } 2327 2328 static void flush_cpu_slab(void *d) 2329 { 2330 struct kmem_cache *s = d; 2331 2332 __flush_cpu_slab(s, smp_processor_id()); 2333 } 2334 2335 static bool has_cpu_slab(int cpu, void *info) 2336 { 2337 struct kmem_cache *s = info; 2338 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2339 2340 return c->page || slub_percpu_partial(c); 2341 } 2342 2343 static void flush_all(struct kmem_cache *s) 2344 { 2345 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2346 } 2347 2348 /* 2349 * Use the cpu notifier to insure that the cpu slabs are flushed when 2350 * necessary. 2351 */ 2352 static int slub_cpu_dead(unsigned int cpu) 2353 { 2354 struct kmem_cache *s; 2355 unsigned long flags; 2356 2357 mutex_lock(&slab_mutex); 2358 list_for_each_entry(s, &slab_caches, list) { 2359 local_irq_save(flags); 2360 __flush_cpu_slab(s, cpu); 2361 local_irq_restore(flags); 2362 } 2363 mutex_unlock(&slab_mutex); 2364 return 0; 2365 } 2366 2367 /* 2368 * Check if the objects in a per cpu structure fit numa 2369 * locality expectations. 2370 */ 2371 static inline int node_match(struct page *page, int node) 2372 { 2373 #ifdef CONFIG_NUMA 2374 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2375 return 0; 2376 #endif 2377 return 1; 2378 } 2379 2380 #ifdef CONFIG_SLUB_DEBUG 2381 static int count_free(struct page *page) 2382 { 2383 return page->objects - page->inuse; 2384 } 2385 2386 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2387 { 2388 return atomic_long_read(&n->total_objects); 2389 } 2390 #endif /* CONFIG_SLUB_DEBUG */ 2391 2392 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2393 static unsigned long count_partial(struct kmem_cache_node *n, 2394 int (*get_count)(struct page *)) 2395 { 2396 unsigned long flags; 2397 unsigned long x = 0; 2398 struct page *page; 2399 2400 spin_lock_irqsave(&n->list_lock, flags); 2401 list_for_each_entry(page, &n->partial, lru) 2402 x += get_count(page); 2403 spin_unlock_irqrestore(&n->list_lock, flags); 2404 return x; 2405 } 2406 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2407 2408 static noinline void 2409 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2410 { 2411 #ifdef CONFIG_SLUB_DEBUG 2412 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2413 DEFAULT_RATELIMIT_BURST); 2414 int node; 2415 struct kmem_cache_node *n; 2416 2417 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2418 return; 2419 2420 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2421 nid, gfpflags, &gfpflags); 2422 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2423 s->name, s->object_size, s->size, oo_order(s->oo), 2424 oo_order(s->min)); 2425 2426 if (oo_order(s->min) > get_order(s->object_size)) 2427 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2428 s->name); 2429 2430 for_each_kmem_cache_node(s, node, n) { 2431 unsigned long nr_slabs; 2432 unsigned long nr_objs; 2433 unsigned long nr_free; 2434 2435 nr_free = count_partial(n, count_free); 2436 nr_slabs = node_nr_slabs(n); 2437 nr_objs = node_nr_objs(n); 2438 2439 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2440 node, nr_slabs, nr_objs, nr_free); 2441 } 2442 #endif 2443 } 2444 2445 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2446 int node, struct kmem_cache_cpu **pc) 2447 { 2448 void *freelist; 2449 struct kmem_cache_cpu *c = *pc; 2450 struct page *page; 2451 2452 freelist = get_partial(s, flags, node, c); 2453 2454 if (freelist) 2455 return freelist; 2456 2457 page = new_slab(s, flags, node); 2458 if (page) { 2459 c = raw_cpu_ptr(s->cpu_slab); 2460 if (c->page) 2461 flush_slab(s, c); 2462 2463 /* 2464 * No other reference to the page yet so we can 2465 * muck around with it freely without cmpxchg 2466 */ 2467 freelist = page->freelist; 2468 page->freelist = NULL; 2469 2470 stat(s, ALLOC_SLAB); 2471 c->page = page; 2472 *pc = c; 2473 } else 2474 freelist = NULL; 2475 2476 return freelist; 2477 } 2478 2479 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2480 { 2481 if (unlikely(PageSlabPfmemalloc(page))) 2482 return gfp_pfmemalloc_allowed(gfpflags); 2483 2484 return true; 2485 } 2486 2487 /* 2488 * Check the page->freelist of a page and either transfer the freelist to the 2489 * per cpu freelist or deactivate the page. 2490 * 2491 * The page is still frozen if the return value is not NULL. 2492 * 2493 * If this function returns NULL then the page has been unfrozen. 2494 * 2495 * This function must be called with interrupt disabled. 2496 */ 2497 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2498 { 2499 struct page new; 2500 unsigned long counters; 2501 void *freelist; 2502 2503 do { 2504 freelist = page->freelist; 2505 counters = page->counters; 2506 2507 new.counters = counters; 2508 VM_BUG_ON(!new.frozen); 2509 2510 new.inuse = page->objects; 2511 new.frozen = freelist != NULL; 2512 2513 } while (!__cmpxchg_double_slab(s, page, 2514 freelist, counters, 2515 NULL, new.counters, 2516 "get_freelist")); 2517 2518 return freelist; 2519 } 2520 2521 /* 2522 * Slow path. The lockless freelist is empty or we need to perform 2523 * debugging duties. 2524 * 2525 * Processing is still very fast if new objects have been freed to the 2526 * regular freelist. In that case we simply take over the regular freelist 2527 * as the lockless freelist and zap the regular freelist. 2528 * 2529 * If that is not working then we fall back to the partial lists. We take the 2530 * first element of the freelist as the object to allocate now and move the 2531 * rest of the freelist to the lockless freelist. 2532 * 2533 * And if we were unable to get a new slab from the partial slab lists then 2534 * we need to allocate a new slab. This is the slowest path since it involves 2535 * a call to the page allocator and the setup of a new slab. 2536 * 2537 * Version of __slab_alloc to use when we know that interrupts are 2538 * already disabled (which is the case for bulk allocation). 2539 */ 2540 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2541 unsigned long addr, struct kmem_cache_cpu *c) 2542 { 2543 void *freelist; 2544 struct page *page; 2545 2546 page = c->page; 2547 if (!page) 2548 goto new_slab; 2549 redo: 2550 2551 if (unlikely(!node_match(page, node))) { 2552 int searchnode = node; 2553 2554 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2555 searchnode = node_to_mem_node(node); 2556 2557 if (unlikely(!node_match(page, searchnode))) { 2558 stat(s, ALLOC_NODE_MISMATCH); 2559 deactivate_slab(s, page, c->freelist, c); 2560 goto new_slab; 2561 } 2562 } 2563 2564 /* 2565 * By rights, we should be searching for a slab page that was 2566 * PFMEMALLOC but right now, we are losing the pfmemalloc 2567 * information when the page leaves the per-cpu allocator 2568 */ 2569 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2570 deactivate_slab(s, page, c->freelist, c); 2571 goto new_slab; 2572 } 2573 2574 /* must check again c->freelist in case of cpu migration or IRQ */ 2575 freelist = c->freelist; 2576 if (freelist) 2577 goto load_freelist; 2578 2579 freelist = get_freelist(s, page); 2580 2581 if (!freelist) { 2582 c->page = NULL; 2583 stat(s, DEACTIVATE_BYPASS); 2584 goto new_slab; 2585 } 2586 2587 stat(s, ALLOC_REFILL); 2588 2589 load_freelist: 2590 /* 2591 * freelist is pointing to the list of objects to be used. 2592 * page is pointing to the page from which the objects are obtained. 2593 * That page must be frozen for per cpu allocations to work. 2594 */ 2595 VM_BUG_ON(!c->page->frozen); 2596 c->freelist = get_freepointer(s, freelist); 2597 c->tid = next_tid(c->tid); 2598 return freelist; 2599 2600 new_slab: 2601 2602 if (slub_percpu_partial(c)) { 2603 page = c->page = slub_percpu_partial(c); 2604 slub_set_percpu_partial(c, page); 2605 stat(s, CPU_PARTIAL_ALLOC); 2606 goto redo; 2607 } 2608 2609 freelist = new_slab_objects(s, gfpflags, node, &c); 2610 2611 if (unlikely(!freelist)) { 2612 slab_out_of_memory(s, gfpflags, node); 2613 return NULL; 2614 } 2615 2616 page = c->page; 2617 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2618 goto load_freelist; 2619 2620 /* Only entered in the debug case */ 2621 if (kmem_cache_debug(s) && 2622 !alloc_debug_processing(s, page, freelist, addr)) 2623 goto new_slab; /* Slab failed checks. Next slab needed */ 2624 2625 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2626 return freelist; 2627 } 2628 2629 /* 2630 * Another one that disabled interrupt and compensates for possible 2631 * cpu changes by refetching the per cpu area pointer. 2632 */ 2633 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2634 unsigned long addr, struct kmem_cache_cpu *c) 2635 { 2636 void *p; 2637 unsigned long flags; 2638 2639 local_irq_save(flags); 2640 #ifdef CONFIG_PREEMPT 2641 /* 2642 * We may have been preempted and rescheduled on a different 2643 * cpu before disabling interrupts. Need to reload cpu area 2644 * pointer. 2645 */ 2646 c = this_cpu_ptr(s->cpu_slab); 2647 #endif 2648 2649 p = ___slab_alloc(s, gfpflags, node, addr, c); 2650 local_irq_restore(flags); 2651 return p; 2652 } 2653 2654 /* 2655 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2656 * have the fastpath folded into their functions. So no function call 2657 * overhead for requests that can be satisfied on the fastpath. 2658 * 2659 * The fastpath works by first checking if the lockless freelist can be used. 2660 * If not then __slab_alloc is called for slow processing. 2661 * 2662 * Otherwise we can simply pick the next object from the lockless free list. 2663 */ 2664 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2665 gfp_t gfpflags, int node, unsigned long addr) 2666 { 2667 void *object; 2668 struct kmem_cache_cpu *c; 2669 struct page *page; 2670 unsigned long tid; 2671 2672 s = slab_pre_alloc_hook(s, gfpflags); 2673 if (!s) 2674 return NULL; 2675 redo: 2676 /* 2677 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2678 * enabled. We may switch back and forth between cpus while 2679 * reading from one cpu area. That does not matter as long 2680 * as we end up on the original cpu again when doing the cmpxchg. 2681 * 2682 * We should guarantee that tid and kmem_cache are retrieved on 2683 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2684 * to check if it is matched or not. 2685 */ 2686 do { 2687 tid = this_cpu_read(s->cpu_slab->tid); 2688 c = raw_cpu_ptr(s->cpu_slab); 2689 } while (IS_ENABLED(CONFIG_PREEMPT) && 2690 unlikely(tid != READ_ONCE(c->tid))); 2691 2692 /* 2693 * Irqless object alloc/free algorithm used here depends on sequence 2694 * of fetching cpu_slab's data. tid should be fetched before anything 2695 * on c to guarantee that object and page associated with previous tid 2696 * won't be used with current tid. If we fetch tid first, object and 2697 * page could be one associated with next tid and our alloc/free 2698 * request will be failed. In this case, we will retry. So, no problem. 2699 */ 2700 barrier(); 2701 2702 /* 2703 * The transaction ids are globally unique per cpu and per operation on 2704 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2705 * occurs on the right processor and that there was no operation on the 2706 * linked list in between. 2707 */ 2708 2709 object = c->freelist; 2710 page = c->page; 2711 if (unlikely(!object || !node_match(page, node))) { 2712 object = __slab_alloc(s, gfpflags, node, addr, c); 2713 stat(s, ALLOC_SLOWPATH); 2714 } else { 2715 void *next_object = get_freepointer_safe(s, object); 2716 2717 /* 2718 * The cmpxchg will only match if there was no additional 2719 * operation and if we are on the right processor. 2720 * 2721 * The cmpxchg does the following atomically (without lock 2722 * semantics!) 2723 * 1. Relocate first pointer to the current per cpu area. 2724 * 2. Verify that tid and freelist have not been changed 2725 * 3. If they were not changed replace tid and freelist 2726 * 2727 * Since this is without lock semantics the protection is only 2728 * against code executing on this cpu *not* from access by 2729 * other cpus. 2730 */ 2731 if (unlikely(!this_cpu_cmpxchg_double( 2732 s->cpu_slab->freelist, s->cpu_slab->tid, 2733 object, tid, 2734 next_object, next_tid(tid)))) { 2735 2736 note_cmpxchg_failure("slab_alloc", s, tid); 2737 goto redo; 2738 } 2739 prefetch_freepointer(s, next_object); 2740 stat(s, ALLOC_FASTPATH); 2741 } 2742 2743 if (unlikely(gfpflags & __GFP_ZERO) && object) 2744 memset(object, 0, s->object_size); 2745 2746 slab_post_alloc_hook(s, gfpflags, 1, &object); 2747 2748 return object; 2749 } 2750 2751 static __always_inline void *slab_alloc(struct kmem_cache *s, 2752 gfp_t gfpflags, unsigned long addr) 2753 { 2754 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2755 } 2756 2757 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2758 { 2759 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2760 2761 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2762 s->size, gfpflags); 2763 2764 return ret; 2765 } 2766 EXPORT_SYMBOL(kmem_cache_alloc); 2767 2768 #ifdef CONFIG_TRACING 2769 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2770 { 2771 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2772 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2773 kasan_kmalloc(s, ret, size, gfpflags); 2774 return ret; 2775 } 2776 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2777 #endif 2778 2779 #ifdef CONFIG_NUMA 2780 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2781 { 2782 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2783 2784 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2785 s->object_size, s->size, gfpflags, node); 2786 2787 return ret; 2788 } 2789 EXPORT_SYMBOL(kmem_cache_alloc_node); 2790 2791 #ifdef CONFIG_TRACING 2792 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2793 gfp_t gfpflags, 2794 int node, size_t size) 2795 { 2796 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2797 2798 trace_kmalloc_node(_RET_IP_, ret, 2799 size, s->size, gfpflags, node); 2800 2801 kasan_kmalloc(s, ret, size, gfpflags); 2802 return ret; 2803 } 2804 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2805 #endif 2806 #endif 2807 2808 /* 2809 * Slow path handling. This may still be called frequently since objects 2810 * have a longer lifetime than the cpu slabs in most processing loads. 2811 * 2812 * So we still attempt to reduce cache line usage. Just take the slab 2813 * lock and free the item. If there is no additional partial page 2814 * handling required then we can return immediately. 2815 */ 2816 static void __slab_free(struct kmem_cache *s, struct page *page, 2817 void *head, void *tail, int cnt, 2818 unsigned long addr) 2819 2820 { 2821 void *prior; 2822 int was_frozen; 2823 struct page new; 2824 unsigned long counters; 2825 struct kmem_cache_node *n = NULL; 2826 unsigned long uninitialized_var(flags); 2827 2828 stat(s, FREE_SLOWPATH); 2829 2830 if (kmem_cache_debug(s) && 2831 !free_debug_processing(s, page, head, tail, cnt, addr)) 2832 return; 2833 2834 do { 2835 if (unlikely(n)) { 2836 spin_unlock_irqrestore(&n->list_lock, flags); 2837 n = NULL; 2838 } 2839 prior = page->freelist; 2840 counters = page->counters; 2841 set_freepointer(s, tail, prior); 2842 new.counters = counters; 2843 was_frozen = new.frozen; 2844 new.inuse -= cnt; 2845 if ((!new.inuse || !prior) && !was_frozen) { 2846 2847 if (kmem_cache_has_cpu_partial(s) && !prior) { 2848 2849 /* 2850 * Slab was on no list before and will be 2851 * partially empty 2852 * We can defer the list move and instead 2853 * freeze it. 2854 */ 2855 new.frozen = 1; 2856 2857 } else { /* Needs to be taken off a list */ 2858 2859 n = get_node(s, page_to_nid(page)); 2860 /* 2861 * Speculatively acquire the list_lock. 2862 * If the cmpxchg does not succeed then we may 2863 * drop the list_lock without any processing. 2864 * 2865 * Otherwise the list_lock will synchronize with 2866 * other processors updating the list of slabs. 2867 */ 2868 spin_lock_irqsave(&n->list_lock, flags); 2869 2870 } 2871 } 2872 2873 } while (!cmpxchg_double_slab(s, page, 2874 prior, counters, 2875 head, new.counters, 2876 "__slab_free")); 2877 2878 if (likely(!n)) { 2879 2880 /* 2881 * If we just froze the page then put it onto the 2882 * per cpu partial list. 2883 */ 2884 if (new.frozen && !was_frozen) { 2885 put_cpu_partial(s, page, 1); 2886 stat(s, CPU_PARTIAL_FREE); 2887 } 2888 /* 2889 * The list lock was not taken therefore no list 2890 * activity can be necessary. 2891 */ 2892 if (was_frozen) 2893 stat(s, FREE_FROZEN); 2894 return; 2895 } 2896 2897 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2898 goto slab_empty; 2899 2900 /* 2901 * Objects left in the slab. If it was not on the partial list before 2902 * then add it. 2903 */ 2904 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2905 if (kmem_cache_debug(s)) 2906 remove_full(s, n, page); 2907 add_partial(n, page, DEACTIVATE_TO_TAIL); 2908 stat(s, FREE_ADD_PARTIAL); 2909 } 2910 spin_unlock_irqrestore(&n->list_lock, flags); 2911 return; 2912 2913 slab_empty: 2914 if (prior) { 2915 /* 2916 * Slab on the partial list. 2917 */ 2918 remove_partial(n, page); 2919 stat(s, FREE_REMOVE_PARTIAL); 2920 } else { 2921 /* Slab must be on the full list */ 2922 remove_full(s, n, page); 2923 } 2924 2925 spin_unlock_irqrestore(&n->list_lock, flags); 2926 stat(s, FREE_SLAB); 2927 discard_slab(s, page); 2928 } 2929 2930 /* 2931 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2932 * can perform fastpath freeing without additional function calls. 2933 * 2934 * The fastpath is only possible if we are freeing to the current cpu slab 2935 * of this processor. This typically the case if we have just allocated 2936 * the item before. 2937 * 2938 * If fastpath is not possible then fall back to __slab_free where we deal 2939 * with all sorts of special processing. 2940 * 2941 * Bulk free of a freelist with several objects (all pointing to the 2942 * same page) possible by specifying head and tail ptr, plus objects 2943 * count (cnt). Bulk free indicated by tail pointer being set. 2944 */ 2945 static __always_inline void do_slab_free(struct kmem_cache *s, 2946 struct page *page, void *head, void *tail, 2947 int cnt, unsigned long addr) 2948 { 2949 void *tail_obj = tail ? : head; 2950 struct kmem_cache_cpu *c; 2951 unsigned long tid; 2952 redo: 2953 /* 2954 * Determine the currently cpus per cpu slab. 2955 * The cpu may change afterward. However that does not matter since 2956 * data is retrieved via this pointer. If we are on the same cpu 2957 * during the cmpxchg then the free will succeed. 2958 */ 2959 do { 2960 tid = this_cpu_read(s->cpu_slab->tid); 2961 c = raw_cpu_ptr(s->cpu_slab); 2962 } while (IS_ENABLED(CONFIG_PREEMPT) && 2963 unlikely(tid != READ_ONCE(c->tid))); 2964 2965 /* Same with comment on barrier() in slab_alloc_node() */ 2966 barrier(); 2967 2968 if (likely(page == c->page)) { 2969 set_freepointer(s, tail_obj, c->freelist); 2970 2971 if (unlikely(!this_cpu_cmpxchg_double( 2972 s->cpu_slab->freelist, s->cpu_slab->tid, 2973 c->freelist, tid, 2974 head, next_tid(tid)))) { 2975 2976 note_cmpxchg_failure("slab_free", s, tid); 2977 goto redo; 2978 } 2979 stat(s, FREE_FASTPATH); 2980 } else 2981 __slab_free(s, page, head, tail_obj, cnt, addr); 2982 2983 } 2984 2985 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2986 void *head, void *tail, int cnt, 2987 unsigned long addr) 2988 { 2989 slab_free_freelist_hook(s, head, tail); 2990 /* 2991 * slab_free_freelist_hook() could have put the items into quarantine. 2992 * If so, no need to free them. 2993 */ 2994 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU)) 2995 return; 2996 do_slab_free(s, page, head, tail, cnt, addr); 2997 } 2998 2999 #ifdef CONFIG_KASAN 3000 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3001 { 3002 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3003 } 3004 #endif 3005 3006 void kmem_cache_free(struct kmem_cache *s, void *x) 3007 { 3008 s = cache_from_obj(s, x); 3009 if (!s) 3010 return; 3011 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3012 trace_kmem_cache_free(_RET_IP_, x); 3013 } 3014 EXPORT_SYMBOL(kmem_cache_free); 3015 3016 struct detached_freelist { 3017 struct page *page; 3018 void *tail; 3019 void *freelist; 3020 int cnt; 3021 struct kmem_cache *s; 3022 }; 3023 3024 /* 3025 * This function progressively scans the array with free objects (with 3026 * a limited look ahead) and extract objects belonging to the same 3027 * page. It builds a detached freelist directly within the given 3028 * page/objects. This can happen without any need for 3029 * synchronization, because the objects are owned by running process. 3030 * The freelist is build up as a single linked list in the objects. 3031 * The idea is, that this detached freelist can then be bulk 3032 * transferred to the real freelist(s), but only requiring a single 3033 * synchronization primitive. Look ahead in the array is limited due 3034 * to performance reasons. 3035 */ 3036 static inline 3037 int build_detached_freelist(struct kmem_cache *s, size_t size, 3038 void **p, struct detached_freelist *df) 3039 { 3040 size_t first_skipped_index = 0; 3041 int lookahead = 3; 3042 void *object; 3043 struct page *page; 3044 3045 /* Always re-init detached_freelist */ 3046 df->page = NULL; 3047 3048 do { 3049 object = p[--size]; 3050 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3051 } while (!object && size); 3052 3053 if (!object) 3054 return 0; 3055 3056 page = virt_to_head_page(object); 3057 if (!s) { 3058 /* Handle kalloc'ed objects */ 3059 if (unlikely(!PageSlab(page))) { 3060 BUG_ON(!PageCompound(page)); 3061 kfree_hook(object); 3062 __free_pages(page, compound_order(page)); 3063 p[size] = NULL; /* mark object processed */ 3064 return size; 3065 } 3066 /* Derive kmem_cache from object */ 3067 df->s = page->slab_cache; 3068 } else { 3069 df->s = cache_from_obj(s, object); /* Support for memcg */ 3070 } 3071 3072 /* Start new detached freelist */ 3073 df->page = page; 3074 set_freepointer(df->s, object, NULL); 3075 df->tail = object; 3076 df->freelist = object; 3077 p[size] = NULL; /* mark object processed */ 3078 df->cnt = 1; 3079 3080 while (size) { 3081 object = p[--size]; 3082 if (!object) 3083 continue; /* Skip processed objects */ 3084 3085 /* df->page is always set at this point */ 3086 if (df->page == virt_to_head_page(object)) { 3087 /* Opportunity build freelist */ 3088 set_freepointer(df->s, object, df->freelist); 3089 df->freelist = object; 3090 df->cnt++; 3091 p[size] = NULL; /* mark object processed */ 3092 3093 continue; 3094 } 3095 3096 /* Limit look ahead search */ 3097 if (!--lookahead) 3098 break; 3099 3100 if (!first_skipped_index) 3101 first_skipped_index = size + 1; 3102 } 3103 3104 return first_skipped_index; 3105 } 3106 3107 /* Note that interrupts must be enabled when calling this function. */ 3108 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3109 { 3110 if (WARN_ON(!size)) 3111 return; 3112 3113 do { 3114 struct detached_freelist df; 3115 3116 size = build_detached_freelist(s, size, p, &df); 3117 if (!df.page) 3118 continue; 3119 3120 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3121 } while (likely(size)); 3122 } 3123 EXPORT_SYMBOL(kmem_cache_free_bulk); 3124 3125 /* Note that interrupts must be enabled when calling this function. */ 3126 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3127 void **p) 3128 { 3129 struct kmem_cache_cpu *c; 3130 int i; 3131 3132 /* memcg and kmem_cache debug support */ 3133 s = slab_pre_alloc_hook(s, flags); 3134 if (unlikely(!s)) 3135 return false; 3136 /* 3137 * Drain objects in the per cpu slab, while disabling local 3138 * IRQs, which protects against PREEMPT and interrupts 3139 * handlers invoking normal fastpath. 3140 */ 3141 local_irq_disable(); 3142 c = this_cpu_ptr(s->cpu_slab); 3143 3144 for (i = 0; i < size; i++) { 3145 void *object = c->freelist; 3146 3147 if (unlikely(!object)) { 3148 /* 3149 * Invoking slow path likely have side-effect 3150 * of re-populating per CPU c->freelist 3151 */ 3152 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3153 _RET_IP_, c); 3154 if (unlikely(!p[i])) 3155 goto error; 3156 3157 c = this_cpu_ptr(s->cpu_slab); 3158 continue; /* goto for-loop */ 3159 } 3160 c->freelist = get_freepointer(s, object); 3161 p[i] = object; 3162 } 3163 c->tid = next_tid(c->tid); 3164 local_irq_enable(); 3165 3166 /* Clear memory outside IRQ disabled fastpath loop */ 3167 if (unlikely(flags & __GFP_ZERO)) { 3168 int j; 3169 3170 for (j = 0; j < i; j++) 3171 memset(p[j], 0, s->object_size); 3172 } 3173 3174 /* memcg and kmem_cache debug support */ 3175 slab_post_alloc_hook(s, flags, size, p); 3176 return i; 3177 error: 3178 local_irq_enable(); 3179 slab_post_alloc_hook(s, flags, i, p); 3180 __kmem_cache_free_bulk(s, i, p); 3181 return 0; 3182 } 3183 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3184 3185 3186 /* 3187 * Object placement in a slab is made very easy because we always start at 3188 * offset 0. If we tune the size of the object to the alignment then we can 3189 * get the required alignment by putting one properly sized object after 3190 * another. 3191 * 3192 * Notice that the allocation order determines the sizes of the per cpu 3193 * caches. Each processor has always one slab available for allocations. 3194 * Increasing the allocation order reduces the number of times that slabs 3195 * must be moved on and off the partial lists and is therefore a factor in 3196 * locking overhead. 3197 */ 3198 3199 /* 3200 * Mininum / Maximum order of slab pages. This influences locking overhead 3201 * and slab fragmentation. A higher order reduces the number of partial slabs 3202 * and increases the number of allocations possible without having to 3203 * take the list_lock. 3204 */ 3205 static int slub_min_order; 3206 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3207 static int slub_min_objects; 3208 3209 /* 3210 * Calculate the order of allocation given an slab object size. 3211 * 3212 * The order of allocation has significant impact on performance and other 3213 * system components. Generally order 0 allocations should be preferred since 3214 * order 0 does not cause fragmentation in the page allocator. Larger objects 3215 * be problematic to put into order 0 slabs because there may be too much 3216 * unused space left. We go to a higher order if more than 1/16th of the slab 3217 * would be wasted. 3218 * 3219 * In order to reach satisfactory performance we must ensure that a minimum 3220 * number of objects is in one slab. Otherwise we may generate too much 3221 * activity on the partial lists which requires taking the list_lock. This is 3222 * less a concern for large slabs though which are rarely used. 3223 * 3224 * slub_max_order specifies the order where we begin to stop considering the 3225 * number of objects in a slab as critical. If we reach slub_max_order then 3226 * we try to keep the page order as low as possible. So we accept more waste 3227 * of space in favor of a small page order. 3228 * 3229 * Higher order allocations also allow the placement of more objects in a 3230 * slab and thereby reduce object handling overhead. If the user has 3231 * requested a higher mininum order then we start with that one instead of 3232 * the smallest order which will fit the object. 3233 */ 3234 static inline int slab_order(int size, int min_objects, 3235 int max_order, int fract_leftover, int reserved) 3236 { 3237 int order; 3238 int rem; 3239 int min_order = slub_min_order; 3240 3241 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3242 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3243 3244 for (order = max(min_order, get_order(min_objects * size + reserved)); 3245 order <= max_order; order++) { 3246 3247 unsigned long slab_size = PAGE_SIZE << order; 3248 3249 rem = (slab_size - reserved) % size; 3250 3251 if (rem <= slab_size / fract_leftover) 3252 break; 3253 } 3254 3255 return order; 3256 } 3257 3258 static inline int calculate_order(int size, int reserved) 3259 { 3260 int order; 3261 int min_objects; 3262 int fraction; 3263 int max_objects; 3264 3265 /* 3266 * Attempt to find best configuration for a slab. This 3267 * works by first attempting to generate a layout with 3268 * the best configuration and backing off gradually. 3269 * 3270 * First we increase the acceptable waste in a slab. Then 3271 * we reduce the minimum objects required in a slab. 3272 */ 3273 min_objects = slub_min_objects; 3274 if (!min_objects) 3275 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3276 max_objects = order_objects(slub_max_order, size, reserved); 3277 min_objects = min(min_objects, max_objects); 3278 3279 while (min_objects > 1) { 3280 fraction = 16; 3281 while (fraction >= 4) { 3282 order = slab_order(size, min_objects, 3283 slub_max_order, fraction, reserved); 3284 if (order <= slub_max_order) 3285 return order; 3286 fraction /= 2; 3287 } 3288 min_objects--; 3289 } 3290 3291 /* 3292 * We were unable to place multiple objects in a slab. Now 3293 * lets see if we can place a single object there. 3294 */ 3295 order = slab_order(size, 1, slub_max_order, 1, reserved); 3296 if (order <= slub_max_order) 3297 return order; 3298 3299 /* 3300 * Doh this slab cannot be placed using slub_max_order. 3301 */ 3302 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3303 if (order < MAX_ORDER) 3304 return order; 3305 return -ENOSYS; 3306 } 3307 3308 static void 3309 init_kmem_cache_node(struct kmem_cache_node *n) 3310 { 3311 n->nr_partial = 0; 3312 spin_lock_init(&n->list_lock); 3313 INIT_LIST_HEAD(&n->partial); 3314 #ifdef CONFIG_SLUB_DEBUG 3315 atomic_long_set(&n->nr_slabs, 0); 3316 atomic_long_set(&n->total_objects, 0); 3317 INIT_LIST_HEAD(&n->full); 3318 #endif 3319 } 3320 3321 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3322 { 3323 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3324 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3325 3326 /* 3327 * Must align to double word boundary for the double cmpxchg 3328 * instructions to work; see __pcpu_double_call_return_bool(). 3329 */ 3330 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3331 2 * sizeof(void *)); 3332 3333 if (!s->cpu_slab) 3334 return 0; 3335 3336 init_kmem_cache_cpus(s); 3337 3338 return 1; 3339 } 3340 3341 static struct kmem_cache *kmem_cache_node; 3342 3343 /* 3344 * No kmalloc_node yet so do it by hand. We know that this is the first 3345 * slab on the node for this slabcache. There are no concurrent accesses 3346 * possible. 3347 * 3348 * Note that this function only works on the kmem_cache_node 3349 * when allocating for the kmem_cache_node. This is used for bootstrapping 3350 * memory on a fresh node that has no slab structures yet. 3351 */ 3352 static void early_kmem_cache_node_alloc(int node) 3353 { 3354 struct page *page; 3355 struct kmem_cache_node *n; 3356 3357 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3358 3359 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3360 3361 BUG_ON(!page); 3362 if (page_to_nid(page) != node) { 3363 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3364 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3365 } 3366 3367 n = page->freelist; 3368 BUG_ON(!n); 3369 page->freelist = get_freepointer(kmem_cache_node, n); 3370 page->inuse = 1; 3371 page->frozen = 0; 3372 kmem_cache_node->node[node] = n; 3373 #ifdef CONFIG_SLUB_DEBUG 3374 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3375 init_tracking(kmem_cache_node, n); 3376 #endif 3377 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3378 GFP_KERNEL); 3379 init_kmem_cache_node(n); 3380 inc_slabs_node(kmem_cache_node, node, page->objects); 3381 3382 /* 3383 * No locks need to be taken here as it has just been 3384 * initialized and there is no concurrent access. 3385 */ 3386 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3387 } 3388 3389 static void free_kmem_cache_nodes(struct kmem_cache *s) 3390 { 3391 int node; 3392 struct kmem_cache_node *n; 3393 3394 for_each_kmem_cache_node(s, node, n) { 3395 s->node[node] = NULL; 3396 kmem_cache_free(kmem_cache_node, n); 3397 } 3398 } 3399 3400 void __kmem_cache_release(struct kmem_cache *s) 3401 { 3402 cache_random_seq_destroy(s); 3403 free_percpu(s->cpu_slab); 3404 free_kmem_cache_nodes(s); 3405 } 3406 3407 static int init_kmem_cache_nodes(struct kmem_cache *s) 3408 { 3409 int node; 3410 3411 for_each_node_state(node, N_NORMAL_MEMORY) { 3412 struct kmem_cache_node *n; 3413 3414 if (slab_state == DOWN) { 3415 early_kmem_cache_node_alloc(node); 3416 continue; 3417 } 3418 n = kmem_cache_alloc_node(kmem_cache_node, 3419 GFP_KERNEL, node); 3420 3421 if (!n) { 3422 free_kmem_cache_nodes(s); 3423 return 0; 3424 } 3425 3426 init_kmem_cache_node(n); 3427 s->node[node] = n; 3428 } 3429 return 1; 3430 } 3431 3432 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3433 { 3434 if (min < MIN_PARTIAL) 3435 min = MIN_PARTIAL; 3436 else if (min > MAX_PARTIAL) 3437 min = MAX_PARTIAL; 3438 s->min_partial = min; 3439 } 3440 3441 static void set_cpu_partial(struct kmem_cache *s) 3442 { 3443 #ifdef CONFIG_SLUB_CPU_PARTIAL 3444 /* 3445 * cpu_partial determined the maximum number of objects kept in the 3446 * per cpu partial lists of a processor. 3447 * 3448 * Per cpu partial lists mainly contain slabs that just have one 3449 * object freed. If they are used for allocation then they can be 3450 * filled up again with minimal effort. The slab will never hit the 3451 * per node partial lists and therefore no locking will be required. 3452 * 3453 * This setting also determines 3454 * 3455 * A) The number of objects from per cpu partial slabs dumped to the 3456 * per node list when we reach the limit. 3457 * B) The number of objects in cpu partial slabs to extract from the 3458 * per node list when we run out of per cpu objects. We only fetch 3459 * 50% to keep some capacity around for frees. 3460 */ 3461 if (!kmem_cache_has_cpu_partial(s)) 3462 s->cpu_partial = 0; 3463 else if (s->size >= PAGE_SIZE) 3464 s->cpu_partial = 2; 3465 else if (s->size >= 1024) 3466 s->cpu_partial = 6; 3467 else if (s->size >= 256) 3468 s->cpu_partial = 13; 3469 else 3470 s->cpu_partial = 30; 3471 #endif 3472 } 3473 3474 /* 3475 * calculate_sizes() determines the order and the distribution of data within 3476 * a slab object. 3477 */ 3478 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3479 { 3480 unsigned long flags = s->flags; 3481 size_t size = s->object_size; 3482 int order; 3483 3484 /* 3485 * Round up object size to the next word boundary. We can only 3486 * place the free pointer at word boundaries and this determines 3487 * the possible location of the free pointer. 3488 */ 3489 size = ALIGN(size, sizeof(void *)); 3490 3491 #ifdef CONFIG_SLUB_DEBUG 3492 /* 3493 * Determine if we can poison the object itself. If the user of 3494 * the slab may touch the object after free or before allocation 3495 * then we should never poison the object itself. 3496 */ 3497 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3498 !s->ctor) 3499 s->flags |= __OBJECT_POISON; 3500 else 3501 s->flags &= ~__OBJECT_POISON; 3502 3503 3504 /* 3505 * If we are Redzoning then check if there is some space between the 3506 * end of the object and the free pointer. If not then add an 3507 * additional word to have some bytes to store Redzone information. 3508 */ 3509 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3510 size += sizeof(void *); 3511 #endif 3512 3513 /* 3514 * With that we have determined the number of bytes in actual use 3515 * by the object. This is the potential offset to the free pointer. 3516 */ 3517 s->inuse = size; 3518 3519 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3520 s->ctor)) { 3521 /* 3522 * Relocate free pointer after the object if it is not 3523 * permitted to overwrite the first word of the object on 3524 * kmem_cache_free. 3525 * 3526 * This is the case if we do RCU, have a constructor or 3527 * destructor or are poisoning the objects. 3528 */ 3529 s->offset = size; 3530 size += sizeof(void *); 3531 } 3532 3533 #ifdef CONFIG_SLUB_DEBUG 3534 if (flags & SLAB_STORE_USER) 3535 /* 3536 * Need to store information about allocs and frees after 3537 * the object. 3538 */ 3539 size += 2 * sizeof(struct track); 3540 #endif 3541 3542 kasan_cache_create(s, &size, &s->flags); 3543 #ifdef CONFIG_SLUB_DEBUG 3544 if (flags & SLAB_RED_ZONE) { 3545 /* 3546 * Add some empty padding so that we can catch 3547 * overwrites from earlier objects rather than let 3548 * tracking information or the free pointer be 3549 * corrupted if a user writes before the start 3550 * of the object. 3551 */ 3552 size += sizeof(void *); 3553 3554 s->red_left_pad = sizeof(void *); 3555 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3556 size += s->red_left_pad; 3557 } 3558 #endif 3559 3560 /* 3561 * SLUB stores one object immediately after another beginning from 3562 * offset 0. In order to align the objects we have to simply size 3563 * each object to conform to the alignment. 3564 */ 3565 size = ALIGN(size, s->align); 3566 s->size = size; 3567 if (forced_order >= 0) 3568 order = forced_order; 3569 else 3570 order = calculate_order(size, s->reserved); 3571 3572 if (order < 0) 3573 return 0; 3574 3575 s->allocflags = 0; 3576 if (order) 3577 s->allocflags |= __GFP_COMP; 3578 3579 if (s->flags & SLAB_CACHE_DMA) 3580 s->allocflags |= GFP_DMA; 3581 3582 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3583 s->allocflags |= __GFP_RECLAIMABLE; 3584 3585 /* 3586 * Determine the number of objects per slab 3587 */ 3588 s->oo = oo_make(order, size, s->reserved); 3589 s->min = oo_make(get_order(size), size, s->reserved); 3590 if (oo_objects(s->oo) > oo_objects(s->max)) 3591 s->max = s->oo; 3592 3593 return !!oo_objects(s->oo); 3594 } 3595 3596 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3597 { 3598 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3599 s->reserved = 0; 3600 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3601 s->random = get_random_long(); 3602 #endif 3603 3604 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU)) 3605 s->reserved = sizeof(struct rcu_head); 3606 3607 if (!calculate_sizes(s, -1)) 3608 goto error; 3609 if (disable_higher_order_debug) { 3610 /* 3611 * Disable debugging flags that store metadata if the min slab 3612 * order increased. 3613 */ 3614 if (get_order(s->size) > get_order(s->object_size)) { 3615 s->flags &= ~DEBUG_METADATA_FLAGS; 3616 s->offset = 0; 3617 if (!calculate_sizes(s, -1)) 3618 goto error; 3619 } 3620 } 3621 3622 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3623 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3624 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3625 /* Enable fast mode */ 3626 s->flags |= __CMPXCHG_DOUBLE; 3627 #endif 3628 3629 /* 3630 * The larger the object size is, the more pages we want on the partial 3631 * list to avoid pounding the page allocator excessively. 3632 */ 3633 set_min_partial(s, ilog2(s->size) / 2); 3634 3635 set_cpu_partial(s); 3636 3637 #ifdef CONFIG_NUMA 3638 s->remote_node_defrag_ratio = 1000; 3639 #endif 3640 3641 /* Initialize the pre-computed randomized freelist if slab is up */ 3642 if (slab_state >= UP) { 3643 if (init_cache_random_seq(s)) 3644 goto error; 3645 } 3646 3647 if (!init_kmem_cache_nodes(s)) 3648 goto error; 3649 3650 if (alloc_kmem_cache_cpus(s)) 3651 return 0; 3652 3653 free_kmem_cache_nodes(s); 3654 error: 3655 if (flags & SLAB_PANIC) 3656 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n", 3657 s->name, (unsigned long)s->size, s->size, 3658 oo_order(s->oo), s->offset, flags); 3659 return -EINVAL; 3660 } 3661 3662 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3663 const char *text) 3664 { 3665 #ifdef CONFIG_SLUB_DEBUG 3666 void *addr = page_address(page); 3667 void *p; 3668 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3669 sizeof(long), GFP_ATOMIC); 3670 if (!map) 3671 return; 3672 slab_err(s, page, text, s->name); 3673 slab_lock(page); 3674 3675 get_map(s, page, map); 3676 for_each_object(p, s, addr, page->objects) { 3677 3678 if (!test_bit(slab_index(p, s, addr), map)) { 3679 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3680 print_tracking(s, p); 3681 } 3682 } 3683 slab_unlock(page); 3684 kfree(map); 3685 #endif 3686 } 3687 3688 /* 3689 * Attempt to free all partial slabs on a node. 3690 * This is called from __kmem_cache_shutdown(). We must take list_lock 3691 * because sysfs file might still access partial list after the shutdowning. 3692 */ 3693 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3694 { 3695 LIST_HEAD(discard); 3696 struct page *page, *h; 3697 3698 BUG_ON(irqs_disabled()); 3699 spin_lock_irq(&n->list_lock); 3700 list_for_each_entry_safe(page, h, &n->partial, lru) { 3701 if (!page->inuse) { 3702 remove_partial(n, page); 3703 list_add(&page->lru, &discard); 3704 } else { 3705 list_slab_objects(s, page, 3706 "Objects remaining in %s on __kmem_cache_shutdown()"); 3707 } 3708 } 3709 spin_unlock_irq(&n->list_lock); 3710 3711 list_for_each_entry_safe(page, h, &discard, lru) 3712 discard_slab(s, page); 3713 } 3714 3715 /* 3716 * Release all resources used by a slab cache. 3717 */ 3718 int __kmem_cache_shutdown(struct kmem_cache *s) 3719 { 3720 int node; 3721 struct kmem_cache_node *n; 3722 3723 flush_all(s); 3724 /* Attempt to free all objects */ 3725 for_each_kmem_cache_node(s, node, n) { 3726 free_partial(s, n); 3727 if (n->nr_partial || slabs_node(s, node)) 3728 return 1; 3729 } 3730 sysfs_slab_remove(s); 3731 return 0; 3732 } 3733 3734 /******************************************************************** 3735 * Kmalloc subsystem 3736 *******************************************************************/ 3737 3738 static int __init setup_slub_min_order(char *str) 3739 { 3740 get_option(&str, &slub_min_order); 3741 3742 return 1; 3743 } 3744 3745 __setup("slub_min_order=", setup_slub_min_order); 3746 3747 static int __init setup_slub_max_order(char *str) 3748 { 3749 get_option(&str, &slub_max_order); 3750 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3751 3752 return 1; 3753 } 3754 3755 __setup("slub_max_order=", setup_slub_max_order); 3756 3757 static int __init setup_slub_min_objects(char *str) 3758 { 3759 get_option(&str, &slub_min_objects); 3760 3761 return 1; 3762 } 3763 3764 __setup("slub_min_objects=", setup_slub_min_objects); 3765 3766 void *__kmalloc(size_t size, gfp_t flags) 3767 { 3768 struct kmem_cache *s; 3769 void *ret; 3770 3771 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3772 return kmalloc_large(size, flags); 3773 3774 s = kmalloc_slab(size, flags); 3775 3776 if (unlikely(ZERO_OR_NULL_PTR(s))) 3777 return s; 3778 3779 ret = slab_alloc(s, flags, _RET_IP_); 3780 3781 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3782 3783 kasan_kmalloc(s, ret, size, flags); 3784 3785 return ret; 3786 } 3787 EXPORT_SYMBOL(__kmalloc); 3788 3789 #ifdef CONFIG_NUMA 3790 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3791 { 3792 struct page *page; 3793 void *ptr = NULL; 3794 3795 flags |= __GFP_COMP | __GFP_NOTRACK; 3796 page = alloc_pages_node(node, flags, get_order(size)); 3797 if (page) 3798 ptr = page_address(page); 3799 3800 kmalloc_large_node_hook(ptr, size, flags); 3801 return ptr; 3802 } 3803 3804 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3805 { 3806 struct kmem_cache *s; 3807 void *ret; 3808 3809 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3810 ret = kmalloc_large_node(size, flags, node); 3811 3812 trace_kmalloc_node(_RET_IP_, ret, 3813 size, PAGE_SIZE << get_order(size), 3814 flags, node); 3815 3816 return ret; 3817 } 3818 3819 s = kmalloc_slab(size, flags); 3820 3821 if (unlikely(ZERO_OR_NULL_PTR(s))) 3822 return s; 3823 3824 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3825 3826 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3827 3828 kasan_kmalloc(s, ret, size, flags); 3829 3830 return ret; 3831 } 3832 EXPORT_SYMBOL(__kmalloc_node); 3833 #endif 3834 3835 #ifdef CONFIG_HARDENED_USERCOPY 3836 /* 3837 * Rejects objects that are incorrectly sized. 3838 * 3839 * Returns NULL if check passes, otherwise const char * to name of cache 3840 * to indicate an error. 3841 */ 3842 const char *__check_heap_object(const void *ptr, unsigned long n, 3843 struct page *page) 3844 { 3845 struct kmem_cache *s; 3846 unsigned long offset; 3847 size_t object_size; 3848 3849 /* Find object and usable object size. */ 3850 s = page->slab_cache; 3851 object_size = slab_ksize(s); 3852 3853 /* Reject impossible pointers. */ 3854 if (ptr < page_address(page)) 3855 return s->name; 3856 3857 /* Find offset within object. */ 3858 offset = (ptr - page_address(page)) % s->size; 3859 3860 /* Adjust for redzone and reject if within the redzone. */ 3861 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3862 if (offset < s->red_left_pad) 3863 return s->name; 3864 offset -= s->red_left_pad; 3865 } 3866 3867 /* Allow address range falling entirely within object size. */ 3868 if (offset <= object_size && n <= object_size - offset) 3869 return NULL; 3870 3871 return s->name; 3872 } 3873 #endif /* CONFIG_HARDENED_USERCOPY */ 3874 3875 static size_t __ksize(const void *object) 3876 { 3877 struct page *page; 3878 3879 if (unlikely(object == ZERO_SIZE_PTR)) 3880 return 0; 3881 3882 page = virt_to_head_page(object); 3883 3884 if (unlikely(!PageSlab(page))) { 3885 WARN_ON(!PageCompound(page)); 3886 return PAGE_SIZE << compound_order(page); 3887 } 3888 3889 return slab_ksize(page->slab_cache); 3890 } 3891 3892 size_t ksize(const void *object) 3893 { 3894 size_t size = __ksize(object); 3895 /* We assume that ksize callers could use whole allocated area, 3896 * so we need to unpoison this area. 3897 */ 3898 kasan_unpoison_shadow(object, size); 3899 return size; 3900 } 3901 EXPORT_SYMBOL(ksize); 3902 3903 void kfree(const void *x) 3904 { 3905 struct page *page; 3906 void *object = (void *)x; 3907 3908 trace_kfree(_RET_IP_, x); 3909 3910 if (unlikely(ZERO_OR_NULL_PTR(x))) 3911 return; 3912 3913 page = virt_to_head_page(x); 3914 if (unlikely(!PageSlab(page))) { 3915 BUG_ON(!PageCompound(page)); 3916 kfree_hook(x); 3917 __free_pages(page, compound_order(page)); 3918 return; 3919 } 3920 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3921 } 3922 EXPORT_SYMBOL(kfree); 3923 3924 #define SHRINK_PROMOTE_MAX 32 3925 3926 /* 3927 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3928 * up most to the head of the partial lists. New allocations will then 3929 * fill those up and thus they can be removed from the partial lists. 3930 * 3931 * The slabs with the least items are placed last. This results in them 3932 * being allocated from last increasing the chance that the last objects 3933 * are freed in them. 3934 */ 3935 int __kmem_cache_shrink(struct kmem_cache *s) 3936 { 3937 int node; 3938 int i; 3939 struct kmem_cache_node *n; 3940 struct page *page; 3941 struct page *t; 3942 struct list_head discard; 3943 struct list_head promote[SHRINK_PROMOTE_MAX]; 3944 unsigned long flags; 3945 int ret = 0; 3946 3947 flush_all(s); 3948 for_each_kmem_cache_node(s, node, n) { 3949 INIT_LIST_HEAD(&discard); 3950 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3951 INIT_LIST_HEAD(promote + i); 3952 3953 spin_lock_irqsave(&n->list_lock, flags); 3954 3955 /* 3956 * Build lists of slabs to discard or promote. 3957 * 3958 * Note that concurrent frees may occur while we hold the 3959 * list_lock. page->inuse here is the upper limit. 3960 */ 3961 list_for_each_entry_safe(page, t, &n->partial, lru) { 3962 int free = page->objects - page->inuse; 3963 3964 /* Do not reread page->inuse */ 3965 barrier(); 3966 3967 /* We do not keep full slabs on the list */ 3968 BUG_ON(free <= 0); 3969 3970 if (free == page->objects) { 3971 list_move(&page->lru, &discard); 3972 n->nr_partial--; 3973 } else if (free <= SHRINK_PROMOTE_MAX) 3974 list_move(&page->lru, promote + free - 1); 3975 } 3976 3977 /* 3978 * Promote the slabs filled up most to the head of the 3979 * partial list. 3980 */ 3981 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3982 list_splice(promote + i, &n->partial); 3983 3984 spin_unlock_irqrestore(&n->list_lock, flags); 3985 3986 /* Release empty slabs */ 3987 list_for_each_entry_safe(page, t, &discard, lru) 3988 discard_slab(s, page); 3989 3990 if (slabs_node(s, node)) 3991 ret = 1; 3992 } 3993 3994 return ret; 3995 } 3996 3997 #ifdef CONFIG_MEMCG 3998 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 3999 { 4000 /* 4001 * Called with all the locks held after a sched RCU grace period. 4002 * Even if @s becomes empty after shrinking, we can't know that @s 4003 * doesn't have allocations already in-flight and thus can't 4004 * destroy @s until the associated memcg is released. 4005 * 4006 * However, let's remove the sysfs files for empty caches here. 4007 * Each cache has a lot of interface files which aren't 4008 * particularly useful for empty draining caches; otherwise, we can 4009 * easily end up with millions of unnecessary sysfs files on 4010 * systems which have a lot of memory and transient cgroups. 4011 */ 4012 if (!__kmem_cache_shrink(s)) 4013 sysfs_slab_remove(s); 4014 } 4015 4016 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4017 { 4018 /* 4019 * Disable empty slabs caching. Used to avoid pinning offline 4020 * memory cgroups by kmem pages that can be freed. 4021 */ 4022 slub_set_cpu_partial(s, 0); 4023 s->min_partial = 0; 4024 4025 /* 4026 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 4027 * we have to make sure the change is visible before shrinking. 4028 */ 4029 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 4030 } 4031 #endif 4032 4033 static int slab_mem_going_offline_callback(void *arg) 4034 { 4035 struct kmem_cache *s; 4036 4037 mutex_lock(&slab_mutex); 4038 list_for_each_entry(s, &slab_caches, list) 4039 __kmem_cache_shrink(s); 4040 mutex_unlock(&slab_mutex); 4041 4042 return 0; 4043 } 4044 4045 static void slab_mem_offline_callback(void *arg) 4046 { 4047 struct kmem_cache_node *n; 4048 struct kmem_cache *s; 4049 struct memory_notify *marg = arg; 4050 int offline_node; 4051 4052 offline_node = marg->status_change_nid_normal; 4053 4054 /* 4055 * If the node still has available memory. we need kmem_cache_node 4056 * for it yet. 4057 */ 4058 if (offline_node < 0) 4059 return; 4060 4061 mutex_lock(&slab_mutex); 4062 list_for_each_entry(s, &slab_caches, list) { 4063 n = get_node(s, offline_node); 4064 if (n) { 4065 /* 4066 * if n->nr_slabs > 0, slabs still exist on the node 4067 * that is going down. We were unable to free them, 4068 * and offline_pages() function shouldn't call this 4069 * callback. So, we must fail. 4070 */ 4071 BUG_ON(slabs_node(s, offline_node)); 4072 4073 s->node[offline_node] = NULL; 4074 kmem_cache_free(kmem_cache_node, n); 4075 } 4076 } 4077 mutex_unlock(&slab_mutex); 4078 } 4079 4080 static int slab_mem_going_online_callback(void *arg) 4081 { 4082 struct kmem_cache_node *n; 4083 struct kmem_cache *s; 4084 struct memory_notify *marg = arg; 4085 int nid = marg->status_change_nid_normal; 4086 int ret = 0; 4087 4088 /* 4089 * If the node's memory is already available, then kmem_cache_node is 4090 * already created. Nothing to do. 4091 */ 4092 if (nid < 0) 4093 return 0; 4094 4095 /* 4096 * We are bringing a node online. No memory is available yet. We must 4097 * allocate a kmem_cache_node structure in order to bring the node 4098 * online. 4099 */ 4100 mutex_lock(&slab_mutex); 4101 list_for_each_entry(s, &slab_caches, list) { 4102 /* 4103 * XXX: kmem_cache_alloc_node will fallback to other nodes 4104 * since memory is not yet available from the node that 4105 * is brought up. 4106 */ 4107 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4108 if (!n) { 4109 ret = -ENOMEM; 4110 goto out; 4111 } 4112 init_kmem_cache_node(n); 4113 s->node[nid] = n; 4114 } 4115 out: 4116 mutex_unlock(&slab_mutex); 4117 return ret; 4118 } 4119 4120 static int slab_memory_callback(struct notifier_block *self, 4121 unsigned long action, void *arg) 4122 { 4123 int ret = 0; 4124 4125 switch (action) { 4126 case MEM_GOING_ONLINE: 4127 ret = slab_mem_going_online_callback(arg); 4128 break; 4129 case MEM_GOING_OFFLINE: 4130 ret = slab_mem_going_offline_callback(arg); 4131 break; 4132 case MEM_OFFLINE: 4133 case MEM_CANCEL_ONLINE: 4134 slab_mem_offline_callback(arg); 4135 break; 4136 case MEM_ONLINE: 4137 case MEM_CANCEL_OFFLINE: 4138 break; 4139 } 4140 if (ret) 4141 ret = notifier_from_errno(ret); 4142 else 4143 ret = NOTIFY_OK; 4144 return ret; 4145 } 4146 4147 static struct notifier_block slab_memory_callback_nb = { 4148 .notifier_call = slab_memory_callback, 4149 .priority = SLAB_CALLBACK_PRI, 4150 }; 4151 4152 /******************************************************************** 4153 * Basic setup of slabs 4154 *******************************************************************/ 4155 4156 /* 4157 * Used for early kmem_cache structures that were allocated using 4158 * the page allocator. Allocate them properly then fix up the pointers 4159 * that may be pointing to the wrong kmem_cache structure. 4160 */ 4161 4162 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4163 { 4164 int node; 4165 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4166 struct kmem_cache_node *n; 4167 4168 memcpy(s, static_cache, kmem_cache->object_size); 4169 4170 /* 4171 * This runs very early, and only the boot processor is supposed to be 4172 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4173 * IPIs around. 4174 */ 4175 __flush_cpu_slab(s, smp_processor_id()); 4176 for_each_kmem_cache_node(s, node, n) { 4177 struct page *p; 4178 4179 list_for_each_entry(p, &n->partial, lru) 4180 p->slab_cache = s; 4181 4182 #ifdef CONFIG_SLUB_DEBUG 4183 list_for_each_entry(p, &n->full, lru) 4184 p->slab_cache = s; 4185 #endif 4186 } 4187 slab_init_memcg_params(s); 4188 list_add(&s->list, &slab_caches); 4189 memcg_link_cache(s); 4190 return s; 4191 } 4192 4193 void __init kmem_cache_init(void) 4194 { 4195 static __initdata struct kmem_cache boot_kmem_cache, 4196 boot_kmem_cache_node; 4197 4198 if (debug_guardpage_minorder()) 4199 slub_max_order = 0; 4200 4201 kmem_cache_node = &boot_kmem_cache_node; 4202 kmem_cache = &boot_kmem_cache; 4203 4204 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4205 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 4206 4207 register_hotmemory_notifier(&slab_memory_callback_nb); 4208 4209 /* Able to allocate the per node structures */ 4210 slab_state = PARTIAL; 4211 4212 create_boot_cache(kmem_cache, "kmem_cache", 4213 offsetof(struct kmem_cache, node) + 4214 nr_node_ids * sizeof(struct kmem_cache_node *), 4215 SLAB_HWCACHE_ALIGN); 4216 4217 kmem_cache = bootstrap(&boot_kmem_cache); 4218 4219 /* 4220 * Allocate kmem_cache_node properly from the kmem_cache slab. 4221 * kmem_cache_node is separately allocated so no need to 4222 * update any list pointers. 4223 */ 4224 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4225 4226 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4227 setup_kmalloc_cache_index_table(); 4228 create_kmalloc_caches(0); 4229 4230 /* Setup random freelists for each cache */ 4231 init_freelist_randomization(); 4232 4233 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4234 slub_cpu_dead); 4235 4236 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n", 4237 cache_line_size(), 4238 slub_min_order, slub_max_order, slub_min_objects, 4239 nr_cpu_ids, nr_node_ids); 4240 } 4241 4242 void __init kmem_cache_init_late(void) 4243 { 4244 } 4245 4246 struct kmem_cache * 4247 __kmem_cache_alias(const char *name, size_t size, size_t align, 4248 unsigned long flags, void (*ctor)(void *)) 4249 { 4250 struct kmem_cache *s, *c; 4251 4252 s = find_mergeable(size, align, flags, name, ctor); 4253 if (s) { 4254 s->refcount++; 4255 4256 /* 4257 * Adjust the object sizes so that we clear 4258 * the complete object on kzalloc. 4259 */ 4260 s->object_size = max(s->object_size, (int)size); 4261 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 4262 4263 for_each_memcg_cache(c, s) { 4264 c->object_size = s->object_size; 4265 c->inuse = max_t(int, c->inuse, 4266 ALIGN(size, sizeof(void *))); 4267 } 4268 4269 if (sysfs_slab_alias(s, name)) { 4270 s->refcount--; 4271 s = NULL; 4272 } 4273 } 4274 4275 return s; 4276 } 4277 4278 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 4279 { 4280 int err; 4281 4282 err = kmem_cache_open(s, flags); 4283 if (err) 4284 return err; 4285 4286 /* Mutex is not taken during early boot */ 4287 if (slab_state <= UP) 4288 return 0; 4289 4290 memcg_propagate_slab_attrs(s); 4291 err = sysfs_slab_add(s); 4292 if (err) 4293 __kmem_cache_release(s); 4294 4295 return err; 4296 } 4297 4298 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4299 { 4300 struct kmem_cache *s; 4301 void *ret; 4302 4303 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4304 return kmalloc_large(size, gfpflags); 4305 4306 s = kmalloc_slab(size, gfpflags); 4307 4308 if (unlikely(ZERO_OR_NULL_PTR(s))) 4309 return s; 4310 4311 ret = slab_alloc(s, gfpflags, caller); 4312 4313 /* Honor the call site pointer we received. */ 4314 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4315 4316 return ret; 4317 } 4318 4319 #ifdef CONFIG_NUMA 4320 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4321 int node, unsigned long caller) 4322 { 4323 struct kmem_cache *s; 4324 void *ret; 4325 4326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4327 ret = kmalloc_large_node(size, gfpflags, node); 4328 4329 trace_kmalloc_node(caller, ret, 4330 size, PAGE_SIZE << get_order(size), 4331 gfpflags, node); 4332 4333 return ret; 4334 } 4335 4336 s = kmalloc_slab(size, gfpflags); 4337 4338 if (unlikely(ZERO_OR_NULL_PTR(s))) 4339 return s; 4340 4341 ret = slab_alloc_node(s, gfpflags, node, caller); 4342 4343 /* Honor the call site pointer we received. */ 4344 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4345 4346 return ret; 4347 } 4348 #endif 4349 4350 #ifdef CONFIG_SYSFS 4351 static int count_inuse(struct page *page) 4352 { 4353 return page->inuse; 4354 } 4355 4356 static int count_total(struct page *page) 4357 { 4358 return page->objects; 4359 } 4360 #endif 4361 4362 #ifdef CONFIG_SLUB_DEBUG 4363 static int validate_slab(struct kmem_cache *s, struct page *page, 4364 unsigned long *map) 4365 { 4366 void *p; 4367 void *addr = page_address(page); 4368 4369 if (!check_slab(s, page) || 4370 !on_freelist(s, page, NULL)) 4371 return 0; 4372 4373 /* Now we know that a valid freelist exists */ 4374 bitmap_zero(map, page->objects); 4375 4376 get_map(s, page, map); 4377 for_each_object(p, s, addr, page->objects) { 4378 if (test_bit(slab_index(p, s, addr), map)) 4379 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4380 return 0; 4381 } 4382 4383 for_each_object(p, s, addr, page->objects) 4384 if (!test_bit(slab_index(p, s, addr), map)) 4385 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4386 return 0; 4387 return 1; 4388 } 4389 4390 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4391 unsigned long *map) 4392 { 4393 slab_lock(page); 4394 validate_slab(s, page, map); 4395 slab_unlock(page); 4396 } 4397 4398 static int validate_slab_node(struct kmem_cache *s, 4399 struct kmem_cache_node *n, unsigned long *map) 4400 { 4401 unsigned long count = 0; 4402 struct page *page; 4403 unsigned long flags; 4404 4405 spin_lock_irqsave(&n->list_lock, flags); 4406 4407 list_for_each_entry(page, &n->partial, lru) { 4408 validate_slab_slab(s, page, map); 4409 count++; 4410 } 4411 if (count != n->nr_partial) 4412 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4413 s->name, count, n->nr_partial); 4414 4415 if (!(s->flags & SLAB_STORE_USER)) 4416 goto out; 4417 4418 list_for_each_entry(page, &n->full, lru) { 4419 validate_slab_slab(s, page, map); 4420 count++; 4421 } 4422 if (count != atomic_long_read(&n->nr_slabs)) 4423 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4424 s->name, count, atomic_long_read(&n->nr_slabs)); 4425 4426 out: 4427 spin_unlock_irqrestore(&n->list_lock, flags); 4428 return count; 4429 } 4430 4431 static long validate_slab_cache(struct kmem_cache *s) 4432 { 4433 int node; 4434 unsigned long count = 0; 4435 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4436 sizeof(unsigned long), GFP_KERNEL); 4437 struct kmem_cache_node *n; 4438 4439 if (!map) 4440 return -ENOMEM; 4441 4442 flush_all(s); 4443 for_each_kmem_cache_node(s, node, n) 4444 count += validate_slab_node(s, n, map); 4445 kfree(map); 4446 return count; 4447 } 4448 /* 4449 * Generate lists of code addresses where slabcache objects are allocated 4450 * and freed. 4451 */ 4452 4453 struct location { 4454 unsigned long count; 4455 unsigned long addr; 4456 long long sum_time; 4457 long min_time; 4458 long max_time; 4459 long min_pid; 4460 long max_pid; 4461 DECLARE_BITMAP(cpus, NR_CPUS); 4462 nodemask_t nodes; 4463 }; 4464 4465 struct loc_track { 4466 unsigned long max; 4467 unsigned long count; 4468 struct location *loc; 4469 }; 4470 4471 static void free_loc_track(struct loc_track *t) 4472 { 4473 if (t->max) 4474 free_pages((unsigned long)t->loc, 4475 get_order(sizeof(struct location) * t->max)); 4476 } 4477 4478 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4479 { 4480 struct location *l; 4481 int order; 4482 4483 order = get_order(sizeof(struct location) * max); 4484 4485 l = (void *)__get_free_pages(flags, order); 4486 if (!l) 4487 return 0; 4488 4489 if (t->count) { 4490 memcpy(l, t->loc, sizeof(struct location) * t->count); 4491 free_loc_track(t); 4492 } 4493 t->max = max; 4494 t->loc = l; 4495 return 1; 4496 } 4497 4498 static int add_location(struct loc_track *t, struct kmem_cache *s, 4499 const struct track *track) 4500 { 4501 long start, end, pos; 4502 struct location *l; 4503 unsigned long caddr; 4504 unsigned long age = jiffies - track->when; 4505 4506 start = -1; 4507 end = t->count; 4508 4509 for ( ; ; ) { 4510 pos = start + (end - start + 1) / 2; 4511 4512 /* 4513 * There is nothing at "end". If we end up there 4514 * we need to add something to before end. 4515 */ 4516 if (pos == end) 4517 break; 4518 4519 caddr = t->loc[pos].addr; 4520 if (track->addr == caddr) { 4521 4522 l = &t->loc[pos]; 4523 l->count++; 4524 if (track->when) { 4525 l->sum_time += age; 4526 if (age < l->min_time) 4527 l->min_time = age; 4528 if (age > l->max_time) 4529 l->max_time = age; 4530 4531 if (track->pid < l->min_pid) 4532 l->min_pid = track->pid; 4533 if (track->pid > l->max_pid) 4534 l->max_pid = track->pid; 4535 4536 cpumask_set_cpu(track->cpu, 4537 to_cpumask(l->cpus)); 4538 } 4539 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4540 return 1; 4541 } 4542 4543 if (track->addr < caddr) 4544 end = pos; 4545 else 4546 start = pos; 4547 } 4548 4549 /* 4550 * Not found. Insert new tracking element. 4551 */ 4552 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4553 return 0; 4554 4555 l = t->loc + pos; 4556 if (pos < t->count) 4557 memmove(l + 1, l, 4558 (t->count - pos) * sizeof(struct location)); 4559 t->count++; 4560 l->count = 1; 4561 l->addr = track->addr; 4562 l->sum_time = age; 4563 l->min_time = age; 4564 l->max_time = age; 4565 l->min_pid = track->pid; 4566 l->max_pid = track->pid; 4567 cpumask_clear(to_cpumask(l->cpus)); 4568 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4569 nodes_clear(l->nodes); 4570 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4571 return 1; 4572 } 4573 4574 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4575 struct page *page, enum track_item alloc, 4576 unsigned long *map) 4577 { 4578 void *addr = page_address(page); 4579 void *p; 4580 4581 bitmap_zero(map, page->objects); 4582 get_map(s, page, map); 4583 4584 for_each_object(p, s, addr, page->objects) 4585 if (!test_bit(slab_index(p, s, addr), map)) 4586 add_location(t, s, get_track(s, p, alloc)); 4587 } 4588 4589 static int list_locations(struct kmem_cache *s, char *buf, 4590 enum track_item alloc) 4591 { 4592 int len = 0; 4593 unsigned long i; 4594 struct loc_track t = { 0, 0, NULL }; 4595 int node; 4596 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4597 sizeof(unsigned long), GFP_KERNEL); 4598 struct kmem_cache_node *n; 4599 4600 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4601 GFP_KERNEL)) { 4602 kfree(map); 4603 return sprintf(buf, "Out of memory\n"); 4604 } 4605 /* Push back cpu slabs */ 4606 flush_all(s); 4607 4608 for_each_kmem_cache_node(s, node, n) { 4609 unsigned long flags; 4610 struct page *page; 4611 4612 if (!atomic_long_read(&n->nr_slabs)) 4613 continue; 4614 4615 spin_lock_irqsave(&n->list_lock, flags); 4616 list_for_each_entry(page, &n->partial, lru) 4617 process_slab(&t, s, page, alloc, map); 4618 list_for_each_entry(page, &n->full, lru) 4619 process_slab(&t, s, page, alloc, map); 4620 spin_unlock_irqrestore(&n->list_lock, flags); 4621 } 4622 4623 for (i = 0; i < t.count; i++) { 4624 struct location *l = &t.loc[i]; 4625 4626 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4627 break; 4628 len += sprintf(buf + len, "%7ld ", l->count); 4629 4630 if (l->addr) 4631 len += sprintf(buf + len, "%pS", (void *)l->addr); 4632 else 4633 len += sprintf(buf + len, "<not-available>"); 4634 4635 if (l->sum_time != l->min_time) { 4636 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4637 l->min_time, 4638 (long)div_u64(l->sum_time, l->count), 4639 l->max_time); 4640 } else 4641 len += sprintf(buf + len, " age=%ld", 4642 l->min_time); 4643 4644 if (l->min_pid != l->max_pid) 4645 len += sprintf(buf + len, " pid=%ld-%ld", 4646 l->min_pid, l->max_pid); 4647 else 4648 len += sprintf(buf + len, " pid=%ld", 4649 l->min_pid); 4650 4651 if (num_online_cpus() > 1 && 4652 !cpumask_empty(to_cpumask(l->cpus)) && 4653 len < PAGE_SIZE - 60) 4654 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4655 " cpus=%*pbl", 4656 cpumask_pr_args(to_cpumask(l->cpus))); 4657 4658 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4659 len < PAGE_SIZE - 60) 4660 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4661 " nodes=%*pbl", 4662 nodemask_pr_args(&l->nodes)); 4663 4664 len += sprintf(buf + len, "\n"); 4665 } 4666 4667 free_loc_track(&t); 4668 kfree(map); 4669 if (!t.count) 4670 len += sprintf(buf, "No data\n"); 4671 return len; 4672 } 4673 #endif 4674 4675 #ifdef SLUB_RESILIENCY_TEST 4676 static void __init resiliency_test(void) 4677 { 4678 u8 *p; 4679 4680 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4681 4682 pr_err("SLUB resiliency testing\n"); 4683 pr_err("-----------------------\n"); 4684 pr_err("A. Corruption after allocation\n"); 4685 4686 p = kzalloc(16, GFP_KERNEL); 4687 p[16] = 0x12; 4688 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4689 p + 16); 4690 4691 validate_slab_cache(kmalloc_caches[4]); 4692 4693 /* Hmmm... The next two are dangerous */ 4694 p = kzalloc(32, GFP_KERNEL); 4695 p[32 + sizeof(void *)] = 0x34; 4696 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4697 p); 4698 pr_err("If allocated object is overwritten then not detectable\n\n"); 4699 4700 validate_slab_cache(kmalloc_caches[5]); 4701 p = kzalloc(64, GFP_KERNEL); 4702 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4703 *p = 0x56; 4704 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4705 p); 4706 pr_err("If allocated object is overwritten then not detectable\n\n"); 4707 validate_slab_cache(kmalloc_caches[6]); 4708 4709 pr_err("\nB. Corruption after free\n"); 4710 p = kzalloc(128, GFP_KERNEL); 4711 kfree(p); 4712 *p = 0x78; 4713 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4714 validate_slab_cache(kmalloc_caches[7]); 4715 4716 p = kzalloc(256, GFP_KERNEL); 4717 kfree(p); 4718 p[50] = 0x9a; 4719 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4720 validate_slab_cache(kmalloc_caches[8]); 4721 4722 p = kzalloc(512, GFP_KERNEL); 4723 kfree(p); 4724 p[512] = 0xab; 4725 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4726 validate_slab_cache(kmalloc_caches[9]); 4727 } 4728 #else 4729 #ifdef CONFIG_SYSFS 4730 static void resiliency_test(void) {}; 4731 #endif 4732 #endif 4733 4734 #ifdef CONFIG_SYSFS 4735 enum slab_stat_type { 4736 SL_ALL, /* All slabs */ 4737 SL_PARTIAL, /* Only partially allocated slabs */ 4738 SL_CPU, /* Only slabs used for cpu caches */ 4739 SL_OBJECTS, /* Determine allocated objects not slabs */ 4740 SL_TOTAL /* Determine object capacity not slabs */ 4741 }; 4742 4743 #define SO_ALL (1 << SL_ALL) 4744 #define SO_PARTIAL (1 << SL_PARTIAL) 4745 #define SO_CPU (1 << SL_CPU) 4746 #define SO_OBJECTS (1 << SL_OBJECTS) 4747 #define SO_TOTAL (1 << SL_TOTAL) 4748 4749 #ifdef CONFIG_MEMCG 4750 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4751 4752 static int __init setup_slub_memcg_sysfs(char *str) 4753 { 4754 int v; 4755 4756 if (get_option(&str, &v) > 0) 4757 memcg_sysfs_enabled = v; 4758 4759 return 1; 4760 } 4761 4762 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4763 #endif 4764 4765 static ssize_t show_slab_objects(struct kmem_cache *s, 4766 char *buf, unsigned long flags) 4767 { 4768 unsigned long total = 0; 4769 int node; 4770 int x; 4771 unsigned long *nodes; 4772 4773 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4774 if (!nodes) 4775 return -ENOMEM; 4776 4777 if (flags & SO_CPU) { 4778 int cpu; 4779 4780 for_each_possible_cpu(cpu) { 4781 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4782 cpu); 4783 int node; 4784 struct page *page; 4785 4786 page = READ_ONCE(c->page); 4787 if (!page) 4788 continue; 4789 4790 node = page_to_nid(page); 4791 if (flags & SO_TOTAL) 4792 x = page->objects; 4793 else if (flags & SO_OBJECTS) 4794 x = page->inuse; 4795 else 4796 x = 1; 4797 4798 total += x; 4799 nodes[node] += x; 4800 4801 page = slub_percpu_partial_read_once(c); 4802 if (page) { 4803 node = page_to_nid(page); 4804 if (flags & SO_TOTAL) 4805 WARN_ON_ONCE(1); 4806 else if (flags & SO_OBJECTS) 4807 WARN_ON_ONCE(1); 4808 else 4809 x = page->pages; 4810 total += x; 4811 nodes[node] += x; 4812 } 4813 } 4814 } 4815 4816 get_online_mems(); 4817 #ifdef CONFIG_SLUB_DEBUG 4818 if (flags & SO_ALL) { 4819 struct kmem_cache_node *n; 4820 4821 for_each_kmem_cache_node(s, node, n) { 4822 4823 if (flags & SO_TOTAL) 4824 x = atomic_long_read(&n->total_objects); 4825 else if (flags & SO_OBJECTS) 4826 x = atomic_long_read(&n->total_objects) - 4827 count_partial(n, count_free); 4828 else 4829 x = atomic_long_read(&n->nr_slabs); 4830 total += x; 4831 nodes[node] += x; 4832 } 4833 4834 } else 4835 #endif 4836 if (flags & SO_PARTIAL) { 4837 struct kmem_cache_node *n; 4838 4839 for_each_kmem_cache_node(s, node, n) { 4840 if (flags & SO_TOTAL) 4841 x = count_partial(n, count_total); 4842 else if (flags & SO_OBJECTS) 4843 x = count_partial(n, count_inuse); 4844 else 4845 x = n->nr_partial; 4846 total += x; 4847 nodes[node] += x; 4848 } 4849 } 4850 x = sprintf(buf, "%lu", total); 4851 #ifdef CONFIG_NUMA 4852 for (node = 0; node < nr_node_ids; node++) 4853 if (nodes[node]) 4854 x += sprintf(buf + x, " N%d=%lu", 4855 node, nodes[node]); 4856 #endif 4857 put_online_mems(); 4858 kfree(nodes); 4859 return x + sprintf(buf + x, "\n"); 4860 } 4861 4862 #ifdef CONFIG_SLUB_DEBUG 4863 static int any_slab_objects(struct kmem_cache *s) 4864 { 4865 int node; 4866 struct kmem_cache_node *n; 4867 4868 for_each_kmem_cache_node(s, node, n) 4869 if (atomic_long_read(&n->total_objects)) 4870 return 1; 4871 4872 return 0; 4873 } 4874 #endif 4875 4876 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4877 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4878 4879 struct slab_attribute { 4880 struct attribute attr; 4881 ssize_t (*show)(struct kmem_cache *s, char *buf); 4882 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4883 }; 4884 4885 #define SLAB_ATTR_RO(_name) \ 4886 static struct slab_attribute _name##_attr = \ 4887 __ATTR(_name, 0400, _name##_show, NULL) 4888 4889 #define SLAB_ATTR(_name) \ 4890 static struct slab_attribute _name##_attr = \ 4891 __ATTR(_name, 0600, _name##_show, _name##_store) 4892 4893 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4894 { 4895 return sprintf(buf, "%d\n", s->size); 4896 } 4897 SLAB_ATTR_RO(slab_size); 4898 4899 static ssize_t align_show(struct kmem_cache *s, char *buf) 4900 { 4901 return sprintf(buf, "%d\n", s->align); 4902 } 4903 SLAB_ATTR_RO(align); 4904 4905 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4906 { 4907 return sprintf(buf, "%d\n", s->object_size); 4908 } 4909 SLAB_ATTR_RO(object_size); 4910 4911 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4912 { 4913 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4914 } 4915 SLAB_ATTR_RO(objs_per_slab); 4916 4917 static ssize_t order_store(struct kmem_cache *s, 4918 const char *buf, size_t length) 4919 { 4920 unsigned long order; 4921 int err; 4922 4923 err = kstrtoul(buf, 10, &order); 4924 if (err) 4925 return err; 4926 4927 if (order > slub_max_order || order < slub_min_order) 4928 return -EINVAL; 4929 4930 calculate_sizes(s, order); 4931 return length; 4932 } 4933 4934 static ssize_t order_show(struct kmem_cache *s, char *buf) 4935 { 4936 return sprintf(buf, "%d\n", oo_order(s->oo)); 4937 } 4938 SLAB_ATTR(order); 4939 4940 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4941 { 4942 return sprintf(buf, "%lu\n", s->min_partial); 4943 } 4944 4945 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4946 size_t length) 4947 { 4948 unsigned long min; 4949 int err; 4950 4951 err = kstrtoul(buf, 10, &min); 4952 if (err) 4953 return err; 4954 4955 set_min_partial(s, min); 4956 return length; 4957 } 4958 SLAB_ATTR(min_partial); 4959 4960 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4961 { 4962 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4963 } 4964 4965 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4966 size_t length) 4967 { 4968 unsigned long objects; 4969 int err; 4970 4971 err = kstrtoul(buf, 10, &objects); 4972 if (err) 4973 return err; 4974 if (objects && !kmem_cache_has_cpu_partial(s)) 4975 return -EINVAL; 4976 4977 slub_set_cpu_partial(s, objects); 4978 flush_all(s); 4979 return length; 4980 } 4981 SLAB_ATTR(cpu_partial); 4982 4983 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4984 { 4985 if (!s->ctor) 4986 return 0; 4987 return sprintf(buf, "%pS\n", s->ctor); 4988 } 4989 SLAB_ATTR_RO(ctor); 4990 4991 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4992 { 4993 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4994 } 4995 SLAB_ATTR_RO(aliases); 4996 4997 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4998 { 4999 return show_slab_objects(s, buf, SO_PARTIAL); 5000 } 5001 SLAB_ATTR_RO(partial); 5002 5003 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5004 { 5005 return show_slab_objects(s, buf, SO_CPU); 5006 } 5007 SLAB_ATTR_RO(cpu_slabs); 5008 5009 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5010 { 5011 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5012 } 5013 SLAB_ATTR_RO(objects); 5014 5015 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5016 { 5017 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5018 } 5019 SLAB_ATTR_RO(objects_partial); 5020 5021 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5022 { 5023 int objects = 0; 5024 int pages = 0; 5025 int cpu; 5026 int len; 5027 5028 for_each_online_cpu(cpu) { 5029 struct page *page; 5030 5031 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5032 5033 if (page) { 5034 pages += page->pages; 5035 objects += page->pobjects; 5036 } 5037 } 5038 5039 len = sprintf(buf, "%d(%d)", objects, pages); 5040 5041 #ifdef CONFIG_SMP 5042 for_each_online_cpu(cpu) { 5043 struct page *page; 5044 5045 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5046 5047 if (page && len < PAGE_SIZE - 20) 5048 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5049 page->pobjects, page->pages); 5050 } 5051 #endif 5052 return len + sprintf(buf + len, "\n"); 5053 } 5054 SLAB_ATTR_RO(slabs_cpu_partial); 5055 5056 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5057 { 5058 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5059 } 5060 5061 static ssize_t reclaim_account_store(struct kmem_cache *s, 5062 const char *buf, size_t length) 5063 { 5064 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5065 if (buf[0] == '1') 5066 s->flags |= SLAB_RECLAIM_ACCOUNT; 5067 return length; 5068 } 5069 SLAB_ATTR(reclaim_account); 5070 5071 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5072 { 5073 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5074 } 5075 SLAB_ATTR_RO(hwcache_align); 5076 5077 #ifdef CONFIG_ZONE_DMA 5078 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5079 { 5080 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5081 } 5082 SLAB_ATTR_RO(cache_dma); 5083 #endif 5084 5085 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5086 { 5087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5088 } 5089 SLAB_ATTR_RO(destroy_by_rcu); 5090 5091 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 5092 { 5093 return sprintf(buf, "%d\n", s->reserved); 5094 } 5095 SLAB_ATTR_RO(reserved); 5096 5097 #ifdef CONFIG_SLUB_DEBUG 5098 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5099 { 5100 return show_slab_objects(s, buf, SO_ALL); 5101 } 5102 SLAB_ATTR_RO(slabs); 5103 5104 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5105 { 5106 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5107 } 5108 SLAB_ATTR_RO(total_objects); 5109 5110 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5111 { 5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5113 } 5114 5115 static ssize_t sanity_checks_store(struct kmem_cache *s, 5116 const char *buf, size_t length) 5117 { 5118 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5119 if (buf[0] == '1') { 5120 s->flags &= ~__CMPXCHG_DOUBLE; 5121 s->flags |= SLAB_CONSISTENCY_CHECKS; 5122 } 5123 return length; 5124 } 5125 SLAB_ATTR(sanity_checks); 5126 5127 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5128 { 5129 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5130 } 5131 5132 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5133 size_t length) 5134 { 5135 /* 5136 * Tracing a merged cache is going to give confusing results 5137 * as well as cause other issues like converting a mergeable 5138 * cache into an umergeable one. 5139 */ 5140 if (s->refcount > 1) 5141 return -EINVAL; 5142 5143 s->flags &= ~SLAB_TRACE; 5144 if (buf[0] == '1') { 5145 s->flags &= ~__CMPXCHG_DOUBLE; 5146 s->flags |= SLAB_TRACE; 5147 } 5148 return length; 5149 } 5150 SLAB_ATTR(trace); 5151 5152 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5153 { 5154 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5155 } 5156 5157 static ssize_t red_zone_store(struct kmem_cache *s, 5158 const char *buf, size_t length) 5159 { 5160 if (any_slab_objects(s)) 5161 return -EBUSY; 5162 5163 s->flags &= ~SLAB_RED_ZONE; 5164 if (buf[0] == '1') { 5165 s->flags |= SLAB_RED_ZONE; 5166 } 5167 calculate_sizes(s, -1); 5168 return length; 5169 } 5170 SLAB_ATTR(red_zone); 5171 5172 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5173 { 5174 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5175 } 5176 5177 static ssize_t poison_store(struct kmem_cache *s, 5178 const char *buf, size_t length) 5179 { 5180 if (any_slab_objects(s)) 5181 return -EBUSY; 5182 5183 s->flags &= ~SLAB_POISON; 5184 if (buf[0] == '1') { 5185 s->flags |= SLAB_POISON; 5186 } 5187 calculate_sizes(s, -1); 5188 return length; 5189 } 5190 SLAB_ATTR(poison); 5191 5192 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5193 { 5194 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5195 } 5196 5197 static ssize_t store_user_store(struct kmem_cache *s, 5198 const char *buf, size_t length) 5199 { 5200 if (any_slab_objects(s)) 5201 return -EBUSY; 5202 5203 s->flags &= ~SLAB_STORE_USER; 5204 if (buf[0] == '1') { 5205 s->flags &= ~__CMPXCHG_DOUBLE; 5206 s->flags |= SLAB_STORE_USER; 5207 } 5208 calculate_sizes(s, -1); 5209 return length; 5210 } 5211 SLAB_ATTR(store_user); 5212 5213 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5214 { 5215 return 0; 5216 } 5217 5218 static ssize_t validate_store(struct kmem_cache *s, 5219 const char *buf, size_t length) 5220 { 5221 int ret = -EINVAL; 5222 5223 if (buf[0] == '1') { 5224 ret = validate_slab_cache(s); 5225 if (ret >= 0) 5226 ret = length; 5227 } 5228 return ret; 5229 } 5230 SLAB_ATTR(validate); 5231 5232 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5233 { 5234 if (!(s->flags & SLAB_STORE_USER)) 5235 return -ENOSYS; 5236 return list_locations(s, buf, TRACK_ALLOC); 5237 } 5238 SLAB_ATTR_RO(alloc_calls); 5239 5240 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5241 { 5242 if (!(s->flags & SLAB_STORE_USER)) 5243 return -ENOSYS; 5244 return list_locations(s, buf, TRACK_FREE); 5245 } 5246 SLAB_ATTR_RO(free_calls); 5247 #endif /* CONFIG_SLUB_DEBUG */ 5248 5249 #ifdef CONFIG_FAILSLAB 5250 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5251 { 5252 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5253 } 5254 5255 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5256 size_t length) 5257 { 5258 if (s->refcount > 1) 5259 return -EINVAL; 5260 5261 s->flags &= ~SLAB_FAILSLAB; 5262 if (buf[0] == '1') 5263 s->flags |= SLAB_FAILSLAB; 5264 return length; 5265 } 5266 SLAB_ATTR(failslab); 5267 #endif 5268 5269 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5270 { 5271 return 0; 5272 } 5273 5274 static ssize_t shrink_store(struct kmem_cache *s, 5275 const char *buf, size_t length) 5276 { 5277 if (buf[0] == '1') 5278 kmem_cache_shrink(s); 5279 else 5280 return -EINVAL; 5281 return length; 5282 } 5283 SLAB_ATTR(shrink); 5284 5285 #ifdef CONFIG_NUMA 5286 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5287 { 5288 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 5289 } 5290 5291 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5292 const char *buf, size_t length) 5293 { 5294 unsigned long ratio; 5295 int err; 5296 5297 err = kstrtoul(buf, 10, &ratio); 5298 if (err) 5299 return err; 5300 5301 if (ratio <= 100) 5302 s->remote_node_defrag_ratio = ratio * 10; 5303 5304 return length; 5305 } 5306 SLAB_ATTR(remote_node_defrag_ratio); 5307 #endif 5308 5309 #ifdef CONFIG_SLUB_STATS 5310 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5311 { 5312 unsigned long sum = 0; 5313 int cpu; 5314 int len; 5315 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5316 5317 if (!data) 5318 return -ENOMEM; 5319 5320 for_each_online_cpu(cpu) { 5321 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5322 5323 data[cpu] = x; 5324 sum += x; 5325 } 5326 5327 len = sprintf(buf, "%lu", sum); 5328 5329 #ifdef CONFIG_SMP 5330 for_each_online_cpu(cpu) { 5331 if (data[cpu] && len < PAGE_SIZE - 20) 5332 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5333 } 5334 #endif 5335 kfree(data); 5336 return len + sprintf(buf + len, "\n"); 5337 } 5338 5339 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5340 { 5341 int cpu; 5342 5343 for_each_online_cpu(cpu) 5344 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5345 } 5346 5347 #define STAT_ATTR(si, text) \ 5348 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5349 { \ 5350 return show_stat(s, buf, si); \ 5351 } \ 5352 static ssize_t text##_store(struct kmem_cache *s, \ 5353 const char *buf, size_t length) \ 5354 { \ 5355 if (buf[0] != '0') \ 5356 return -EINVAL; \ 5357 clear_stat(s, si); \ 5358 return length; \ 5359 } \ 5360 SLAB_ATTR(text); \ 5361 5362 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5363 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5364 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5365 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5366 STAT_ATTR(FREE_FROZEN, free_frozen); 5367 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5368 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5369 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5370 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5371 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5372 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5373 STAT_ATTR(FREE_SLAB, free_slab); 5374 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5375 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5376 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5377 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5378 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5379 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5380 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5381 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5382 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5383 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5384 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5385 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5386 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5387 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5388 #endif 5389 5390 static struct attribute *slab_attrs[] = { 5391 &slab_size_attr.attr, 5392 &object_size_attr.attr, 5393 &objs_per_slab_attr.attr, 5394 &order_attr.attr, 5395 &min_partial_attr.attr, 5396 &cpu_partial_attr.attr, 5397 &objects_attr.attr, 5398 &objects_partial_attr.attr, 5399 &partial_attr.attr, 5400 &cpu_slabs_attr.attr, 5401 &ctor_attr.attr, 5402 &aliases_attr.attr, 5403 &align_attr.attr, 5404 &hwcache_align_attr.attr, 5405 &reclaim_account_attr.attr, 5406 &destroy_by_rcu_attr.attr, 5407 &shrink_attr.attr, 5408 &reserved_attr.attr, 5409 &slabs_cpu_partial_attr.attr, 5410 #ifdef CONFIG_SLUB_DEBUG 5411 &total_objects_attr.attr, 5412 &slabs_attr.attr, 5413 &sanity_checks_attr.attr, 5414 &trace_attr.attr, 5415 &red_zone_attr.attr, 5416 &poison_attr.attr, 5417 &store_user_attr.attr, 5418 &validate_attr.attr, 5419 &alloc_calls_attr.attr, 5420 &free_calls_attr.attr, 5421 #endif 5422 #ifdef CONFIG_ZONE_DMA 5423 &cache_dma_attr.attr, 5424 #endif 5425 #ifdef CONFIG_NUMA 5426 &remote_node_defrag_ratio_attr.attr, 5427 #endif 5428 #ifdef CONFIG_SLUB_STATS 5429 &alloc_fastpath_attr.attr, 5430 &alloc_slowpath_attr.attr, 5431 &free_fastpath_attr.attr, 5432 &free_slowpath_attr.attr, 5433 &free_frozen_attr.attr, 5434 &free_add_partial_attr.attr, 5435 &free_remove_partial_attr.attr, 5436 &alloc_from_partial_attr.attr, 5437 &alloc_slab_attr.attr, 5438 &alloc_refill_attr.attr, 5439 &alloc_node_mismatch_attr.attr, 5440 &free_slab_attr.attr, 5441 &cpuslab_flush_attr.attr, 5442 &deactivate_full_attr.attr, 5443 &deactivate_empty_attr.attr, 5444 &deactivate_to_head_attr.attr, 5445 &deactivate_to_tail_attr.attr, 5446 &deactivate_remote_frees_attr.attr, 5447 &deactivate_bypass_attr.attr, 5448 &order_fallback_attr.attr, 5449 &cmpxchg_double_fail_attr.attr, 5450 &cmpxchg_double_cpu_fail_attr.attr, 5451 &cpu_partial_alloc_attr.attr, 5452 &cpu_partial_free_attr.attr, 5453 &cpu_partial_node_attr.attr, 5454 &cpu_partial_drain_attr.attr, 5455 #endif 5456 #ifdef CONFIG_FAILSLAB 5457 &failslab_attr.attr, 5458 #endif 5459 5460 NULL 5461 }; 5462 5463 static const struct attribute_group slab_attr_group = { 5464 .attrs = slab_attrs, 5465 }; 5466 5467 static ssize_t slab_attr_show(struct kobject *kobj, 5468 struct attribute *attr, 5469 char *buf) 5470 { 5471 struct slab_attribute *attribute; 5472 struct kmem_cache *s; 5473 int err; 5474 5475 attribute = to_slab_attr(attr); 5476 s = to_slab(kobj); 5477 5478 if (!attribute->show) 5479 return -EIO; 5480 5481 err = attribute->show(s, buf); 5482 5483 return err; 5484 } 5485 5486 static ssize_t slab_attr_store(struct kobject *kobj, 5487 struct attribute *attr, 5488 const char *buf, size_t len) 5489 { 5490 struct slab_attribute *attribute; 5491 struct kmem_cache *s; 5492 int err; 5493 5494 attribute = to_slab_attr(attr); 5495 s = to_slab(kobj); 5496 5497 if (!attribute->store) 5498 return -EIO; 5499 5500 err = attribute->store(s, buf, len); 5501 #ifdef CONFIG_MEMCG 5502 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5503 struct kmem_cache *c; 5504 5505 mutex_lock(&slab_mutex); 5506 if (s->max_attr_size < len) 5507 s->max_attr_size = len; 5508 5509 /* 5510 * This is a best effort propagation, so this function's return 5511 * value will be determined by the parent cache only. This is 5512 * basically because not all attributes will have a well 5513 * defined semantics for rollbacks - most of the actions will 5514 * have permanent effects. 5515 * 5516 * Returning the error value of any of the children that fail 5517 * is not 100 % defined, in the sense that users seeing the 5518 * error code won't be able to know anything about the state of 5519 * the cache. 5520 * 5521 * Only returning the error code for the parent cache at least 5522 * has well defined semantics. The cache being written to 5523 * directly either failed or succeeded, in which case we loop 5524 * through the descendants with best-effort propagation. 5525 */ 5526 for_each_memcg_cache(c, s) 5527 attribute->store(c, buf, len); 5528 mutex_unlock(&slab_mutex); 5529 } 5530 #endif 5531 return err; 5532 } 5533 5534 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5535 { 5536 #ifdef CONFIG_MEMCG 5537 int i; 5538 char *buffer = NULL; 5539 struct kmem_cache *root_cache; 5540 5541 if (is_root_cache(s)) 5542 return; 5543 5544 root_cache = s->memcg_params.root_cache; 5545 5546 /* 5547 * This mean this cache had no attribute written. Therefore, no point 5548 * in copying default values around 5549 */ 5550 if (!root_cache->max_attr_size) 5551 return; 5552 5553 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5554 char mbuf[64]; 5555 char *buf; 5556 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5557 ssize_t len; 5558 5559 if (!attr || !attr->store || !attr->show) 5560 continue; 5561 5562 /* 5563 * It is really bad that we have to allocate here, so we will 5564 * do it only as a fallback. If we actually allocate, though, 5565 * we can just use the allocated buffer until the end. 5566 * 5567 * Most of the slub attributes will tend to be very small in 5568 * size, but sysfs allows buffers up to a page, so they can 5569 * theoretically happen. 5570 */ 5571 if (buffer) 5572 buf = buffer; 5573 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5574 buf = mbuf; 5575 else { 5576 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5577 if (WARN_ON(!buffer)) 5578 continue; 5579 buf = buffer; 5580 } 5581 5582 len = attr->show(root_cache, buf); 5583 if (len > 0) 5584 attr->store(s, buf, len); 5585 } 5586 5587 if (buffer) 5588 free_page((unsigned long)buffer); 5589 #endif 5590 } 5591 5592 static void kmem_cache_release(struct kobject *k) 5593 { 5594 slab_kmem_cache_release(to_slab(k)); 5595 } 5596 5597 static const struct sysfs_ops slab_sysfs_ops = { 5598 .show = slab_attr_show, 5599 .store = slab_attr_store, 5600 }; 5601 5602 static struct kobj_type slab_ktype = { 5603 .sysfs_ops = &slab_sysfs_ops, 5604 .release = kmem_cache_release, 5605 }; 5606 5607 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5608 { 5609 struct kobj_type *ktype = get_ktype(kobj); 5610 5611 if (ktype == &slab_ktype) 5612 return 1; 5613 return 0; 5614 } 5615 5616 static const struct kset_uevent_ops slab_uevent_ops = { 5617 .filter = uevent_filter, 5618 }; 5619 5620 static struct kset *slab_kset; 5621 5622 static inline struct kset *cache_kset(struct kmem_cache *s) 5623 { 5624 #ifdef CONFIG_MEMCG 5625 if (!is_root_cache(s)) 5626 return s->memcg_params.root_cache->memcg_kset; 5627 #endif 5628 return slab_kset; 5629 } 5630 5631 #define ID_STR_LENGTH 64 5632 5633 /* Create a unique string id for a slab cache: 5634 * 5635 * Format :[flags-]size 5636 */ 5637 static char *create_unique_id(struct kmem_cache *s) 5638 { 5639 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5640 char *p = name; 5641 5642 BUG_ON(!name); 5643 5644 *p++ = ':'; 5645 /* 5646 * First flags affecting slabcache operations. We will only 5647 * get here for aliasable slabs so we do not need to support 5648 * too many flags. The flags here must cover all flags that 5649 * are matched during merging to guarantee that the id is 5650 * unique. 5651 */ 5652 if (s->flags & SLAB_CACHE_DMA) 5653 *p++ = 'd'; 5654 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5655 *p++ = 'a'; 5656 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5657 *p++ = 'F'; 5658 if (!(s->flags & SLAB_NOTRACK)) 5659 *p++ = 't'; 5660 if (s->flags & SLAB_ACCOUNT) 5661 *p++ = 'A'; 5662 if (p != name + 1) 5663 *p++ = '-'; 5664 p += sprintf(p, "%07d", s->size); 5665 5666 BUG_ON(p > name + ID_STR_LENGTH - 1); 5667 return name; 5668 } 5669 5670 static void sysfs_slab_remove_workfn(struct work_struct *work) 5671 { 5672 struct kmem_cache *s = 5673 container_of(work, struct kmem_cache, kobj_remove_work); 5674 5675 if (!s->kobj.state_in_sysfs) 5676 /* 5677 * For a memcg cache, this may be called during 5678 * deactivation and again on shutdown. Remove only once. 5679 * A cache is never shut down before deactivation is 5680 * complete, so no need to worry about synchronization. 5681 */ 5682 goto out; 5683 5684 #ifdef CONFIG_MEMCG 5685 kset_unregister(s->memcg_kset); 5686 #endif 5687 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5688 kobject_del(&s->kobj); 5689 out: 5690 kobject_put(&s->kobj); 5691 } 5692 5693 static int sysfs_slab_add(struct kmem_cache *s) 5694 { 5695 int err; 5696 const char *name; 5697 struct kset *kset = cache_kset(s); 5698 int unmergeable = slab_unmergeable(s); 5699 5700 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5701 5702 if (!kset) { 5703 kobject_init(&s->kobj, &slab_ktype); 5704 return 0; 5705 } 5706 5707 if (unmergeable) { 5708 /* 5709 * Slabcache can never be merged so we can use the name proper. 5710 * This is typically the case for debug situations. In that 5711 * case we can catch duplicate names easily. 5712 */ 5713 sysfs_remove_link(&slab_kset->kobj, s->name); 5714 name = s->name; 5715 } else { 5716 /* 5717 * Create a unique name for the slab as a target 5718 * for the symlinks. 5719 */ 5720 name = create_unique_id(s); 5721 } 5722 5723 s->kobj.kset = kset; 5724 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5725 if (err) 5726 goto out; 5727 5728 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5729 if (err) 5730 goto out_del_kobj; 5731 5732 #ifdef CONFIG_MEMCG 5733 if (is_root_cache(s) && memcg_sysfs_enabled) { 5734 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5735 if (!s->memcg_kset) { 5736 err = -ENOMEM; 5737 goto out_del_kobj; 5738 } 5739 } 5740 #endif 5741 5742 kobject_uevent(&s->kobj, KOBJ_ADD); 5743 if (!unmergeable) { 5744 /* Setup first alias */ 5745 sysfs_slab_alias(s, s->name); 5746 } 5747 out: 5748 if (!unmergeable) 5749 kfree(name); 5750 return err; 5751 out_del_kobj: 5752 kobject_del(&s->kobj); 5753 goto out; 5754 } 5755 5756 static void sysfs_slab_remove(struct kmem_cache *s) 5757 { 5758 if (slab_state < FULL) 5759 /* 5760 * Sysfs has not been setup yet so no need to remove the 5761 * cache from sysfs. 5762 */ 5763 return; 5764 5765 kobject_get(&s->kobj); 5766 schedule_work(&s->kobj_remove_work); 5767 } 5768 5769 void sysfs_slab_release(struct kmem_cache *s) 5770 { 5771 if (slab_state >= FULL) 5772 kobject_put(&s->kobj); 5773 } 5774 5775 /* 5776 * Need to buffer aliases during bootup until sysfs becomes 5777 * available lest we lose that information. 5778 */ 5779 struct saved_alias { 5780 struct kmem_cache *s; 5781 const char *name; 5782 struct saved_alias *next; 5783 }; 5784 5785 static struct saved_alias *alias_list; 5786 5787 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5788 { 5789 struct saved_alias *al; 5790 5791 if (slab_state == FULL) { 5792 /* 5793 * If we have a leftover link then remove it. 5794 */ 5795 sysfs_remove_link(&slab_kset->kobj, name); 5796 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5797 } 5798 5799 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5800 if (!al) 5801 return -ENOMEM; 5802 5803 al->s = s; 5804 al->name = name; 5805 al->next = alias_list; 5806 alias_list = al; 5807 return 0; 5808 } 5809 5810 static int __init slab_sysfs_init(void) 5811 { 5812 struct kmem_cache *s; 5813 int err; 5814 5815 mutex_lock(&slab_mutex); 5816 5817 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5818 if (!slab_kset) { 5819 mutex_unlock(&slab_mutex); 5820 pr_err("Cannot register slab subsystem.\n"); 5821 return -ENOSYS; 5822 } 5823 5824 slab_state = FULL; 5825 5826 list_for_each_entry(s, &slab_caches, list) { 5827 err = sysfs_slab_add(s); 5828 if (err) 5829 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5830 s->name); 5831 } 5832 5833 while (alias_list) { 5834 struct saved_alias *al = alias_list; 5835 5836 alias_list = alias_list->next; 5837 err = sysfs_slab_alias(al->s, al->name); 5838 if (err) 5839 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5840 al->name); 5841 kfree(al); 5842 } 5843 5844 mutex_unlock(&slab_mutex); 5845 resiliency_test(); 5846 return 0; 5847 } 5848 5849 __initcall(slab_sysfs_init); 5850 #endif /* CONFIG_SYSFS */ 5851 5852 /* 5853 * The /proc/slabinfo ABI 5854 */ 5855 #ifdef CONFIG_SLABINFO 5856 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5857 { 5858 unsigned long nr_slabs = 0; 5859 unsigned long nr_objs = 0; 5860 unsigned long nr_free = 0; 5861 int node; 5862 struct kmem_cache_node *n; 5863 5864 for_each_kmem_cache_node(s, node, n) { 5865 nr_slabs += node_nr_slabs(n); 5866 nr_objs += node_nr_objs(n); 5867 nr_free += count_partial(n, count_free); 5868 } 5869 5870 sinfo->active_objs = nr_objs - nr_free; 5871 sinfo->num_objs = nr_objs; 5872 sinfo->active_slabs = nr_slabs; 5873 sinfo->num_slabs = nr_slabs; 5874 sinfo->objects_per_slab = oo_objects(s->oo); 5875 sinfo->cache_order = oo_order(s->oo); 5876 } 5877 5878 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5879 { 5880 } 5881 5882 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5883 size_t count, loff_t *ppos) 5884 { 5885 return -EIO; 5886 } 5887 #endif /* CONFIG_SLABINFO */ 5888