xref: /openbmc/linux/mm/slub.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmemcheck.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 
40 #include <trace/events/kmem.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Lock order:
46  *   1. slab_mutex (Global Mutex)
47  *   2. node->list_lock
48  *   3. slab_lock(page) (Only on some arches and for debugging)
49  *
50  *   slab_mutex
51  *
52  *   The role of the slab_mutex is to protect the list of all the slabs
53  *   and to synchronize major metadata changes to slab cache structures.
54  *
55  *   The slab_lock is only used for debugging and on arches that do not
56  *   have the ability to do a cmpxchg_double. It only protects the second
57  *   double word in the page struct. Meaning
58  *	A. page->freelist	-> List of object free in a page
59  *	B. page->counters	-> Counters of objects
60  *	C. page->frozen		-> frozen state
61  *
62  *   If a slab is frozen then it is exempt from list management. It is not
63  *   on any list. The processor that froze the slab is the one who can
64  *   perform list operations on the page. Other processors may put objects
65  *   onto the freelist but the processor that froze the slab is the only
66  *   one that can retrieve the objects from the page's freelist.
67  *
68  *   The list_lock protects the partial and full list on each node and
69  *   the partial slab counter. If taken then no new slabs may be added or
70  *   removed from the lists nor make the number of partial slabs be modified.
71  *   (Note that the total number of slabs is an atomic value that may be
72  *   modified without taking the list lock).
73  *
74  *   The list_lock is a centralized lock and thus we avoid taking it as
75  *   much as possible. As long as SLUB does not have to handle partial
76  *   slabs, operations can continue without any centralized lock. F.e.
77  *   allocating a long series of objects that fill up slabs does not require
78  *   the list lock.
79  *   Interrupts are disabled during allocation and deallocation in order to
80  *   make the slab allocator safe to use in the context of an irq. In addition
81  *   interrupts are disabled to ensure that the processor does not change
82  *   while handling per_cpu slabs, due to kernel preemption.
83  *
84  * SLUB assigns one slab for allocation to each processor.
85  * Allocations only occur from these slabs called cpu slabs.
86  *
87  * Slabs with free elements are kept on a partial list and during regular
88  * operations no list for full slabs is used. If an object in a full slab is
89  * freed then the slab will show up again on the partial lists.
90  * We track full slabs for debugging purposes though because otherwise we
91  * cannot scan all objects.
92  *
93  * Slabs are freed when they become empty. Teardown and setup is
94  * minimal so we rely on the page allocators per cpu caches for
95  * fast frees and allocs.
96  *
97  * Overloading of page flags that are otherwise used for LRU management.
98  *
99  * PageActive 		The slab is frozen and exempt from list processing.
100  * 			This means that the slab is dedicated to a purpose
101  * 			such as satisfying allocations for a specific
102  * 			processor. Objects may be freed in the slab while
103  * 			it is frozen but slab_free will then skip the usual
104  * 			list operations. It is up to the processor holding
105  * 			the slab to integrate the slab into the slab lists
106  * 			when the slab is no longer needed.
107  *
108  * 			One use of this flag is to mark slabs that are
109  * 			used for allocations. Then such a slab becomes a cpu
110  * 			slab. The cpu slab may be equipped with an additional
111  * 			freelist that allows lockless access to
112  * 			free objects in addition to the regular freelist
113  * 			that requires the slab lock.
114  *
115  * PageError		Slab requires special handling due to debug
116  * 			options set. This moves	slab handling out of
117  * 			the fast path and disables lockless freelists.
118  */
119 
120 static inline int kmem_cache_debug(struct kmem_cache *s)
121 {
122 #ifdef CONFIG_SLUB_DEBUG
123 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
124 #else
125 	return 0;
126 #endif
127 }
128 
129 void *fixup_red_left(struct kmem_cache *s, void *p)
130 {
131 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
132 		p += s->red_left_pad;
133 
134 	return p;
135 }
136 
137 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
138 {
139 #ifdef CONFIG_SLUB_CPU_PARTIAL
140 	return !kmem_cache_debug(s);
141 #else
142 	return false;
143 #endif
144 }
145 
146 /*
147  * Issues still to be resolved:
148  *
149  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150  *
151  * - Variable sizing of the per node arrays
152  */
153 
154 /* Enable to test recovery from slab corruption on boot */
155 #undef SLUB_RESILIENCY_TEST
156 
157 /* Enable to log cmpxchg failures */
158 #undef SLUB_DEBUG_CMPXCHG
159 
160 /*
161  * Mininum number of partial slabs. These will be left on the partial
162  * lists even if they are empty. kmem_cache_shrink may reclaim them.
163  */
164 #define MIN_PARTIAL 5
165 
166 /*
167  * Maximum number of desirable partial slabs.
168  * The existence of more partial slabs makes kmem_cache_shrink
169  * sort the partial list by the number of objects in use.
170  */
171 #define MAX_PARTIAL 10
172 
173 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
174 				SLAB_POISON | SLAB_STORE_USER)
175 
176 /*
177  * These debug flags cannot use CMPXCHG because there might be consistency
178  * issues when checking or reading debug information
179  */
180 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
181 				SLAB_TRACE)
182 
183 
184 /*
185  * Debugging flags that require metadata to be stored in the slab.  These get
186  * disabled when slub_debug=O is used and a cache's min order increases with
187  * metadata.
188  */
189 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 
191 #define OO_SHIFT	16
192 #define OO_MASK		((1 << OO_SHIFT) - 1)
193 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
194 
195 /* Internal SLUB flags */
196 #define __OBJECT_POISON		0x80000000UL /* Poison object */
197 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
198 
199 /*
200  * Tracking user of a slab.
201  */
202 #define TRACK_ADDRS_COUNT 16
203 struct track {
204 	unsigned long addr;	/* Called from address */
205 #ifdef CONFIG_STACKTRACE
206 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
207 #endif
208 	int cpu;		/* Was running on cpu */
209 	int pid;		/* Pid context */
210 	unsigned long when;	/* When did the operation occur */
211 };
212 
213 enum track_item { TRACK_ALLOC, TRACK_FREE };
214 
215 #ifdef CONFIG_SYSFS
216 static int sysfs_slab_add(struct kmem_cache *);
217 static int sysfs_slab_alias(struct kmem_cache *, const char *);
218 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
219 static void sysfs_slab_remove(struct kmem_cache *s);
220 #else
221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 							{ return 0; }
224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
225 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	/*
232 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 	 * avoid this_cpu_add()'s irq-disable overhead.
234 	 */
235 	raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238 
239 /********************************************************************
240  * 			Core slab cache functions
241  *******************************************************************/
242 
243 /*
244  * Returns freelist pointer (ptr). With hardening, this is obfuscated
245  * with an XOR of the address where the pointer is held and a per-cache
246  * random number.
247  */
248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 				 unsigned long ptr_addr)
250 {
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
253 #else
254 	return ptr;
255 #endif
256 }
257 
258 /* Returns the freelist pointer recorded at location ptr_addr. */
259 static inline void *freelist_dereference(const struct kmem_cache *s,
260 					 void *ptr_addr)
261 {
262 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
263 			    (unsigned long)ptr_addr);
264 }
265 
266 static inline void *get_freepointer(struct kmem_cache *s, void *object)
267 {
268 	return freelist_dereference(s, object + s->offset);
269 }
270 
271 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
272 {
273 	if (object)
274 		prefetch(freelist_dereference(s, object + s->offset));
275 }
276 
277 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
278 {
279 	unsigned long freepointer_addr;
280 	void *p;
281 
282 	if (!debug_pagealloc_enabled())
283 		return get_freepointer(s, object);
284 
285 	freepointer_addr = (unsigned long)object + s->offset;
286 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
287 	return freelist_ptr(s, p, freepointer_addr);
288 }
289 
290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291 {
292 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
293 
294 #ifdef CONFIG_SLAB_FREELIST_HARDENED
295 	BUG_ON(object == fp); /* naive detection of double free or corruption */
296 #endif
297 
298 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
299 }
300 
301 /* Loop over all objects in a slab */
302 #define for_each_object(__p, __s, __addr, __objects) \
303 	for (__p = fixup_red_left(__s, __addr); \
304 		__p < (__addr) + (__objects) * (__s)->size; \
305 		__p += (__s)->size)
306 
307 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
308 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
309 		__idx <= __objects; \
310 		__p += (__s)->size, __idx++)
311 
312 /* Determine object index from a given position */
313 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
314 {
315 	return (p - addr) / s->size;
316 }
317 
318 static inline int order_objects(int order, unsigned long size, int reserved)
319 {
320 	return ((PAGE_SIZE << order) - reserved) / size;
321 }
322 
323 static inline struct kmem_cache_order_objects oo_make(int order,
324 		unsigned long size, int reserved)
325 {
326 	struct kmem_cache_order_objects x = {
327 		(order << OO_SHIFT) + order_objects(order, size, reserved)
328 	};
329 
330 	return x;
331 }
332 
333 static inline int oo_order(struct kmem_cache_order_objects x)
334 {
335 	return x.x >> OO_SHIFT;
336 }
337 
338 static inline int oo_objects(struct kmem_cache_order_objects x)
339 {
340 	return x.x & OO_MASK;
341 }
342 
343 /*
344  * Per slab locking using the pagelock
345  */
346 static __always_inline void slab_lock(struct page *page)
347 {
348 	VM_BUG_ON_PAGE(PageTail(page), page);
349 	bit_spin_lock(PG_locked, &page->flags);
350 }
351 
352 static __always_inline void slab_unlock(struct page *page)
353 {
354 	VM_BUG_ON_PAGE(PageTail(page), page);
355 	__bit_spin_unlock(PG_locked, &page->flags);
356 }
357 
358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359 {
360 	struct page tmp;
361 	tmp.counters = counters_new;
362 	/*
363 	 * page->counters can cover frozen/inuse/objects as well
364 	 * as page->_refcount.  If we assign to ->counters directly
365 	 * we run the risk of losing updates to page->_refcount, so
366 	 * be careful and only assign to the fields we need.
367 	 */
368 	page->frozen  = tmp.frozen;
369 	page->inuse   = tmp.inuse;
370 	page->objects = tmp.objects;
371 }
372 
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 		void *freelist_old, unsigned long counters_old,
376 		void *freelist_new, unsigned long counters_new,
377 		const char *n)
378 {
379 	VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 	if (s->flags & __CMPXCHG_DOUBLE) {
383 		if (cmpxchg_double(&page->freelist, &page->counters,
384 				   freelist_old, counters_old,
385 				   freelist_new, counters_new))
386 			return true;
387 	} else
388 #endif
389 	{
390 		slab_lock(page);
391 		if (page->freelist == freelist_old &&
392 					page->counters == counters_old) {
393 			page->freelist = freelist_new;
394 			set_page_slub_counters(page, counters_new);
395 			slab_unlock(page);
396 			return true;
397 		}
398 		slab_unlock(page);
399 	}
400 
401 	cpu_relax();
402 	stat(s, CMPXCHG_DOUBLE_FAIL);
403 
404 #ifdef SLUB_DEBUG_CMPXCHG
405 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
406 #endif
407 
408 	return false;
409 }
410 
411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 		void *freelist_old, unsigned long counters_old,
413 		void *freelist_new, unsigned long counters_new,
414 		const char *n)
415 {
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 	if (s->flags & __CMPXCHG_DOUBLE) {
419 		if (cmpxchg_double(&page->freelist, &page->counters,
420 				   freelist_old, counters_old,
421 				   freelist_new, counters_new))
422 			return true;
423 	} else
424 #endif
425 	{
426 		unsigned long flags;
427 
428 		local_irq_save(flags);
429 		slab_lock(page);
430 		if (page->freelist == freelist_old &&
431 					page->counters == counters_old) {
432 			page->freelist = freelist_new;
433 			set_page_slub_counters(page, counters_new);
434 			slab_unlock(page);
435 			local_irq_restore(flags);
436 			return true;
437 		}
438 		slab_unlock(page);
439 		local_irq_restore(flags);
440 	}
441 
442 	cpu_relax();
443 	stat(s, CMPXCHG_DOUBLE_FAIL);
444 
445 #ifdef SLUB_DEBUG_CMPXCHG
446 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
447 #endif
448 
449 	return false;
450 }
451 
452 #ifdef CONFIG_SLUB_DEBUG
453 /*
454  * Determine a map of object in use on a page.
455  *
456  * Node listlock must be held to guarantee that the page does
457  * not vanish from under us.
458  */
459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460 {
461 	void *p;
462 	void *addr = page_address(page);
463 
464 	for (p = page->freelist; p; p = get_freepointer(s, p))
465 		set_bit(slab_index(p, s, addr), map);
466 }
467 
468 static inline int size_from_object(struct kmem_cache *s)
469 {
470 	if (s->flags & SLAB_RED_ZONE)
471 		return s->size - s->red_left_pad;
472 
473 	return s->size;
474 }
475 
476 static inline void *restore_red_left(struct kmem_cache *s, void *p)
477 {
478 	if (s->flags & SLAB_RED_ZONE)
479 		p -= s->red_left_pad;
480 
481 	return p;
482 }
483 
484 /*
485  * Debug settings:
486  */
487 #if defined(CONFIG_SLUB_DEBUG_ON)
488 static int slub_debug = DEBUG_DEFAULT_FLAGS;
489 #else
490 static int slub_debug;
491 #endif
492 
493 static char *slub_debug_slabs;
494 static int disable_higher_order_debug;
495 
496 /*
497  * slub is about to manipulate internal object metadata.  This memory lies
498  * outside the range of the allocated object, so accessing it would normally
499  * be reported by kasan as a bounds error.  metadata_access_enable() is used
500  * to tell kasan that these accesses are OK.
501  */
502 static inline void metadata_access_enable(void)
503 {
504 	kasan_disable_current();
505 }
506 
507 static inline void metadata_access_disable(void)
508 {
509 	kasan_enable_current();
510 }
511 
512 /*
513  * Object debugging
514  */
515 
516 /* Verify that a pointer has an address that is valid within a slab page */
517 static inline int check_valid_pointer(struct kmem_cache *s,
518 				struct page *page, void *object)
519 {
520 	void *base;
521 
522 	if (!object)
523 		return 1;
524 
525 	base = page_address(page);
526 	object = restore_red_left(s, object);
527 	if (object < base || object >= base + page->objects * s->size ||
528 		(object - base) % s->size) {
529 		return 0;
530 	}
531 
532 	return 1;
533 }
534 
535 static void print_section(char *level, char *text, u8 *addr,
536 			  unsigned int length)
537 {
538 	metadata_access_enable();
539 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
540 			length, 1);
541 	metadata_access_disable();
542 }
543 
544 static struct track *get_track(struct kmem_cache *s, void *object,
545 	enum track_item alloc)
546 {
547 	struct track *p;
548 
549 	if (s->offset)
550 		p = object + s->offset + sizeof(void *);
551 	else
552 		p = object + s->inuse;
553 
554 	return p + alloc;
555 }
556 
557 static void set_track(struct kmem_cache *s, void *object,
558 			enum track_item alloc, unsigned long addr)
559 {
560 	struct track *p = get_track(s, object, alloc);
561 
562 	if (addr) {
563 #ifdef CONFIG_STACKTRACE
564 		struct stack_trace trace;
565 		int i;
566 
567 		trace.nr_entries = 0;
568 		trace.max_entries = TRACK_ADDRS_COUNT;
569 		trace.entries = p->addrs;
570 		trace.skip = 3;
571 		metadata_access_enable();
572 		save_stack_trace(&trace);
573 		metadata_access_disable();
574 
575 		/* See rant in lockdep.c */
576 		if (trace.nr_entries != 0 &&
577 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
578 			trace.nr_entries--;
579 
580 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
581 			p->addrs[i] = 0;
582 #endif
583 		p->addr = addr;
584 		p->cpu = smp_processor_id();
585 		p->pid = current->pid;
586 		p->when = jiffies;
587 	} else
588 		memset(p, 0, sizeof(struct track));
589 }
590 
591 static void init_tracking(struct kmem_cache *s, void *object)
592 {
593 	if (!(s->flags & SLAB_STORE_USER))
594 		return;
595 
596 	set_track(s, object, TRACK_FREE, 0UL);
597 	set_track(s, object, TRACK_ALLOC, 0UL);
598 }
599 
600 static void print_track(const char *s, struct track *t)
601 {
602 	if (!t->addr)
603 		return;
604 
605 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
606 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
607 #ifdef CONFIG_STACKTRACE
608 	{
609 		int i;
610 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
611 			if (t->addrs[i])
612 				pr_err("\t%pS\n", (void *)t->addrs[i]);
613 			else
614 				break;
615 	}
616 #endif
617 }
618 
619 static void print_tracking(struct kmem_cache *s, void *object)
620 {
621 	if (!(s->flags & SLAB_STORE_USER))
622 		return;
623 
624 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
625 	print_track("Freed", get_track(s, object, TRACK_FREE));
626 }
627 
628 static void print_page_info(struct page *page)
629 {
630 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
631 	       page, page->objects, page->inuse, page->freelist, page->flags);
632 
633 }
634 
635 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
636 {
637 	struct va_format vaf;
638 	va_list args;
639 
640 	va_start(args, fmt);
641 	vaf.fmt = fmt;
642 	vaf.va = &args;
643 	pr_err("=============================================================================\n");
644 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
645 	pr_err("-----------------------------------------------------------------------------\n\n");
646 
647 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
648 	va_end(args);
649 }
650 
651 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
652 {
653 	struct va_format vaf;
654 	va_list args;
655 
656 	va_start(args, fmt);
657 	vaf.fmt = fmt;
658 	vaf.va = &args;
659 	pr_err("FIX %s: %pV\n", s->name, &vaf);
660 	va_end(args);
661 }
662 
663 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
664 {
665 	unsigned int off;	/* Offset of last byte */
666 	u8 *addr = page_address(page);
667 
668 	print_tracking(s, p);
669 
670 	print_page_info(page);
671 
672 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
673 	       p, p - addr, get_freepointer(s, p));
674 
675 	if (s->flags & SLAB_RED_ZONE)
676 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
677 			      s->red_left_pad);
678 	else if (p > addr + 16)
679 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
680 
681 	print_section(KERN_ERR, "Object ", p,
682 		      min_t(unsigned long, s->object_size, PAGE_SIZE));
683 	if (s->flags & SLAB_RED_ZONE)
684 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
685 			s->inuse - s->object_size);
686 
687 	if (s->offset)
688 		off = s->offset + sizeof(void *);
689 	else
690 		off = s->inuse;
691 
692 	if (s->flags & SLAB_STORE_USER)
693 		off += 2 * sizeof(struct track);
694 
695 	off += kasan_metadata_size(s);
696 
697 	if (off != size_from_object(s))
698 		/* Beginning of the filler is the free pointer */
699 		print_section(KERN_ERR, "Padding ", p + off,
700 			      size_from_object(s) - off);
701 
702 	dump_stack();
703 }
704 
705 void object_err(struct kmem_cache *s, struct page *page,
706 			u8 *object, char *reason)
707 {
708 	slab_bug(s, "%s", reason);
709 	print_trailer(s, page, object);
710 }
711 
712 static void slab_err(struct kmem_cache *s, struct page *page,
713 			const char *fmt, ...)
714 {
715 	va_list args;
716 	char buf[100];
717 
718 	va_start(args, fmt);
719 	vsnprintf(buf, sizeof(buf), fmt, args);
720 	va_end(args);
721 	slab_bug(s, "%s", buf);
722 	print_page_info(page);
723 	dump_stack();
724 }
725 
726 static void init_object(struct kmem_cache *s, void *object, u8 val)
727 {
728 	u8 *p = object;
729 
730 	if (s->flags & SLAB_RED_ZONE)
731 		memset(p - s->red_left_pad, val, s->red_left_pad);
732 
733 	if (s->flags & __OBJECT_POISON) {
734 		memset(p, POISON_FREE, s->object_size - 1);
735 		p[s->object_size - 1] = POISON_END;
736 	}
737 
738 	if (s->flags & SLAB_RED_ZONE)
739 		memset(p + s->object_size, val, s->inuse - s->object_size);
740 }
741 
742 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
743 						void *from, void *to)
744 {
745 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
746 	memset(from, data, to - from);
747 }
748 
749 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
750 			u8 *object, char *what,
751 			u8 *start, unsigned int value, unsigned int bytes)
752 {
753 	u8 *fault;
754 	u8 *end;
755 
756 	metadata_access_enable();
757 	fault = memchr_inv(start, value, bytes);
758 	metadata_access_disable();
759 	if (!fault)
760 		return 1;
761 
762 	end = start + bytes;
763 	while (end > fault && end[-1] == value)
764 		end--;
765 
766 	slab_bug(s, "%s overwritten", what);
767 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
768 					fault, end - 1, fault[0], value);
769 	print_trailer(s, page, object);
770 
771 	restore_bytes(s, what, value, fault, end);
772 	return 0;
773 }
774 
775 /*
776  * Object layout:
777  *
778  * object address
779  * 	Bytes of the object to be managed.
780  * 	If the freepointer may overlay the object then the free
781  * 	pointer is the first word of the object.
782  *
783  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
784  * 	0xa5 (POISON_END)
785  *
786  * object + s->object_size
787  * 	Padding to reach word boundary. This is also used for Redzoning.
788  * 	Padding is extended by another word if Redzoning is enabled and
789  * 	object_size == inuse.
790  *
791  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
792  * 	0xcc (RED_ACTIVE) for objects in use.
793  *
794  * object + s->inuse
795  * 	Meta data starts here.
796  *
797  * 	A. Free pointer (if we cannot overwrite object on free)
798  * 	B. Tracking data for SLAB_STORE_USER
799  * 	C. Padding to reach required alignment boundary or at mininum
800  * 		one word if debugging is on to be able to detect writes
801  * 		before the word boundary.
802  *
803  *	Padding is done using 0x5a (POISON_INUSE)
804  *
805  * object + s->size
806  * 	Nothing is used beyond s->size.
807  *
808  * If slabcaches are merged then the object_size and inuse boundaries are mostly
809  * ignored. And therefore no slab options that rely on these boundaries
810  * may be used with merged slabcaches.
811  */
812 
813 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
814 {
815 	unsigned long off = s->inuse;	/* The end of info */
816 
817 	if (s->offset)
818 		/* Freepointer is placed after the object. */
819 		off += sizeof(void *);
820 
821 	if (s->flags & SLAB_STORE_USER)
822 		/* We also have user information there */
823 		off += 2 * sizeof(struct track);
824 
825 	off += kasan_metadata_size(s);
826 
827 	if (size_from_object(s) == off)
828 		return 1;
829 
830 	return check_bytes_and_report(s, page, p, "Object padding",
831 			p + off, POISON_INUSE, size_from_object(s) - off);
832 }
833 
834 /* Check the pad bytes at the end of a slab page */
835 static int slab_pad_check(struct kmem_cache *s, struct page *page)
836 {
837 	u8 *start;
838 	u8 *fault;
839 	u8 *end;
840 	int length;
841 	int remainder;
842 
843 	if (!(s->flags & SLAB_POISON))
844 		return 1;
845 
846 	start = page_address(page);
847 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
848 	end = start + length;
849 	remainder = length % s->size;
850 	if (!remainder)
851 		return 1;
852 
853 	metadata_access_enable();
854 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
855 	metadata_access_disable();
856 	if (!fault)
857 		return 1;
858 	while (end > fault && end[-1] == POISON_INUSE)
859 		end--;
860 
861 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
862 	print_section(KERN_ERR, "Padding ", end - remainder, remainder);
863 
864 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
865 	return 0;
866 }
867 
868 static int check_object(struct kmem_cache *s, struct page *page,
869 					void *object, u8 val)
870 {
871 	u8 *p = object;
872 	u8 *endobject = object + s->object_size;
873 
874 	if (s->flags & SLAB_RED_ZONE) {
875 		if (!check_bytes_and_report(s, page, object, "Redzone",
876 			object - s->red_left_pad, val, s->red_left_pad))
877 			return 0;
878 
879 		if (!check_bytes_and_report(s, page, object, "Redzone",
880 			endobject, val, s->inuse - s->object_size))
881 			return 0;
882 	} else {
883 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
884 			check_bytes_and_report(s, page, p, "Alignment padding",
885 				endobject, POISON_INUSE,
886 				s->inuse - s->object_size);
887 		}
888 	}
889 
890 	if (s->flags & SLAB_POISON) {
891 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
892 			(!check_bytes_and_report(s, page, p, "Poison", p,
893 					POISON_FREE, s->object_size - 1) ||
894 			 !check_bytes_and_report(s, page, p, "Poison",
895 				p + s->object_size - 1, POISON_END, 1)))
896 			return 0;
897 		/*
898 		 * check_pad_bytes cleans up on its own.
899 		 */
900 		check_pad_bytes(s, page, p);
901 	}
902 
903 	if (!s->offset && val == SLUB_RED_ACTIVE)
904 		/*
905 		 * Object and freepointer overlap. Cannot check
906 		 * freepointer while object is allocated.
907 		 */
908 		return 1;
909 
910 	/* Check free pointer validity */
911 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
912 		object_err(s, page, p, "Freepointer corrupt");
913 		/*
914 		 * No choice but to zap it and thus lose the remainder
915 		 * of the free objects in this slab. May cause
916 		 * another error because the object count is now wrong.
917 		 */
918 		set_freepointer(s, p, NULL);
919 		return 0;
920 	}
921 	return 1;
922 }
923 
924 static int check_slab(struct kmem_cache *s, struct page *page)
925 {
926 	int maxobj;
927 
928 	VM_BUG_ON(!irqs_disabled());
929 
930 	if (!PageSlab(page)) {
931 		slab_err(s, page, "Not a valid slab page");
932 		return 0;
933 	}
934 
935 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
936 	if (page->objects > maxobj) {
937 		slab_err(s, page, "objects %u > max %u",
938 			page->objects, maxobj);
939 		return 0;
940 	}
941 	if (page->inuse > page->objects) {
942 		slab_err(s, page, "inuse %u > max %u",
943 			page->inuse, page->objects);
944 		return 0;
945 	}
946 	/* Slab_pad_check fixes things up after itself */
947 	slab_pad_check(s, page);
948 	return 1;
949 }
950 
951 /*
952  * Determine if a certain object on a page is on the freelist. Must hold the
953  * slab lock to guarantee that the chains are in a consistent state.
954  */
955 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
956 {
957 	int nr = 0;
958 	void *fp;
959 	void *object = NULL;
960 	int max_objects;
961 
962 	fp = page->freelist;
963 	while (fp && nr <= page->objects) {
964 		if (fp == search)
965 			return 1;
966 		if (!check_valid_pointer(s, page, fp)) {
967 			if (object) {
968 				object_err(s, page, object,
969 					"Freechain corrupt");
970 				set_freepointer(s, object, NULL);
971 			} else {
972 				slab_err(s, page, "Freepointer corrupt");
973 				page->freelist = NULL;
974 				page->inuse = page->objects;
975 				slab_fix(s, "Freelist cleared");
976 				return 0;
977 			}
978 			break;
979 		}
980 		object = fp;
981 		fp = get_freepointer(s, object);
982 		nr++;
983 	}
984 
985 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
986 	if (max_objects > MAX_OBJS_PER_PAGE)
987 		max_objects = MAX_OBJS_PER_PAGE;
988 
989 	if (page->objects != max_objects) {
990 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
991 			 page->objects, max_objects);
992 		page->objects = max_objects;
993 		slab_fix(s, "Number of objects adjusted.");
994 	}
995 	if (page->inuse != page->objects - nr) {
996 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
997 			 page->inuse, page->objects - nr);
998 		page->inuse = page->objects - nr;
999 		slab_fix(s, "Object count adjusted.");
1000 	}
1001 	return search == NULL;
1002 }
1003 
1004 static void trace(struct kmem_cache *s, struct page *page, void *object,
1005 								int alloc)
1006 {
1007 	if (s->flags & SLAB_TRACE) {
1008 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1009 			s->name,
1010 			alloc ? "alloc" : "free",
1011 			object, page->inuse,
1012 			page->freelist);
1013 
1014 		if (!alloc)
1015 			print_section(KERN_INFO, "Object ", (void *)object,
1016 					s->object_size);
1017 
1018 		dump_stack();
1019 	}
1020 }
1021 
1022 /*
1023  * Tracking of fully allocated slabs for debugging purposes.
1024  */
1025 static void add_full(struct kmem_cache *s,
1026 	struct kmem_cache_node *n, struct page *page)
1027 {
1028 	if (!(s->flags & SLAB_STORE_USER))
1029 		return;
1030 
1031 	lockdep_assert_held(&n->list_lock);
1032 	list_add(&page->lru, &n->full);
1033 }
1034 
1035 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1036 {
1037 	if (!(s->flags & SLAB_STORE_USER))
1038 		return;
1039 
1040 	lockdep_assert_held(&n->list_lock);
1041 	list_del(&page->lru);
1042 }
1043 
1044 /* Tracking of the number of slabs for debugging purposes */
1045 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1046 {
1047 	struct kmem_cache_node *n = get_node(s, node);
1048 
1049 	return atomic_long_read(&n->nr_slabs);
1050 }
1051 
1052 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1053 {
1054 	return atomic_long_read(&n->nr_slabs);
1055 }
1056 
1057 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1058 {
1059 	struct kmem_cache_node *n = get_node(s, node);
1060 
1061 	/*
1062 	 * May be called early in order to allocate a slab for the
1063 	 * kmem_cache_node structure. Solve the chicken-egg
1064 	 * dilemma by deferring the increment of the count during
1065 	 * bootstrap (see early_kmem_cache_node_alloc).
1066 	 */
1067 	if (likely(n)) {
1068 		atomic_long_inc(&n->nr_slabs);
1069 		atomic_long_add(objects, &n->total_objects);
1070 	}
1071 }
1072 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1073 {
1074 	struct kmem_cache_node *n = get_node(s, node);
1075 
1076 	atomic_long_dec(&n->nr_slabs);
1077 	atomic_long_sub(objects, &n->total_objects);
1078 }
1079 
1080 /* Object debug checks for alloc/free paths */
1081 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1082 								void *object)
1083 {
1084 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1085 		return;
1086 
1087 	init_object(s, object, SLUB_RED_INACTIVE);
1088 	init_tracking(s, object);
1089 }
1090 
1091 static inline int alloc_consistency_checks(struct kmem_cache *s,
1092 					struct page *page,
1093 					void *object, unsigned long addr)
1094 {
1095 	if (!check_slab(s, page))
1096 		return 0;
1097 
1098 	if (!check_valid_pointer(s, page, object)) {
1099 		object_err(s, page, object, "Freelist Pointer check fails");
1100 		return 0;
1101 	}
1102 
1103 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1104 		return 0;
1105 
1106 	return 1;
1107 }
1108 
1109 static noinline int alloc_debug_processing(struct kmem_cache *s,
1110 					struct page *page,
1111 					void *object, unsigned long addr)
1112 {
1113 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1114 		if (!alloc_consistency_checks(s, page, object, addr))
1115 			goto bad;
1116 	}
1117 
1118 	/* Success perform special debug activities for allocs */
1119 	if (s->flags & SLAB_STORE_USER)
1120 		set_track(s, object, TRACK_ALLOC, addr);
1121 	trace(s, page, object, 1);
1122 	init_object(s, object, SLUB_RED_ACTIVE);
1123 	return 1;
1124 
1125 bad:
1126 	if (PageSlab(page)) {
1127 		/*
1128 		 * If this is a slab page then lets do the best we can
1129 		 * to avoid issues in the future. Marking all objects
1130 		 * as used avoids touching the remaining objects.
1131 		 */
1132 		slab_fix(s, "Marking all objects used");
1133 		page->inuse = page->objects;
1134 		page->freelist = NULL;
1135 	}
1136 	return 0;
1137 }
1138 
1139 static inline int free_consistency_checks(struct kmem_cache *s,
1140 		struct page *page, void *object, unsigned long addr)
1141 {
1142 	if (!check_valid_pointer(s, page, object)) {
1143 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1144 		return 0;
1145 	}
1146 
1147 	if (on_freelist(s, page, object)) {
1148 		object_err(s, page, object, "Object already free");
1149 		return 0;
1150 	}
1151 
1152 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1153 		return 0;
1154 
1155 	if (unlikely(s != page->slab_cache)) {
1156 		if (!PageSlab(page)) {
1157 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1158 				 object);
1159 		} else if (!page->slab_cache) {
1160 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1161 			       object);
1162 			dump_stack();
1163 		} else
1164 			object_err(s, page, object,
1165 					"page slab pointer corrupt.");
1166 		return 0;
1167 	}
1168 	return 1;
1169 }
1170 
1171 /* Supports checking bulk free of a constructed freelist */
1172 static noinline int free_debug_processing(
1173 	struct kmem_cache *s, struct page *page,
1174 	void *head, void *tail, int bulk_cnt,
1175 	unsigned long addr)
1176 {
1177 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1178 	void *object = head;
1179 	int cnt = 0;
1180 	unsigned long uninitialized_var(flags);
1181 	int ret = 0;
1182 
1183 	spin_lock_irqsave(&n->list_lock, flags);
1184 	slab_lock(page);
1185 
1186 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1187 		if (!check_slab(s, page))
1188 			goto out;
1189 	}
1190 
1191 next_object:
1192 	cnt++;
1193 
1194 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1195 		if (!free_consistency_checks(s, page, object, addr))
1196 			goto out;
1197 	}
1198 
1199 	if (s->flags & SLAB_STORE_USER)
1200 		set_track(s, object, TRACK_FREE, addr);
1201 	trace(s, page, object, 0);
1202 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1203 	init_object(s, object, SLUB_RED_INACTIVE);
1204 
1205 	/* Reached end of constructed freelist yet? */
1206 	if (object != tail) {
1207 		object = get_freepointer(s, object);
1208 		goto next_object;
1209 	}
1210 	ret = 1;
1211 
1212 out:
1213 	if (cnt != bulk_cnt)
1214 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1215 			 bulk_cnt, cnt);
1216 
1217 	slab_unlock(page);
1218 	spin_unlock_irqrestore(&n->list_lock, flags);
1219 	if (!ret)
1220 		slab_fix(s, "Object at 0x%p not freed", object);
1221 	return ret;
1222 }
1223 
1224 static int __init setup_slub_debug(char *str)
1225 {
1226 	slub_debug = DEBUG_DEFAULT_FLAGS;
1227 	if (*str++ != '=' || !*str)
1228 		/*
1229 		 * No options specified. Switch on full debugging.
1230 		 */
1231 		goto out;
1232 
1233 	if (*str == ',')
1234 		/*
1235 		 * No options but restriction on slabs. This means full
1236 		 * debugging for slabs matching a pattern.
1237 		 */
1238 		goto check_slabs;
1239 
1240 	slub_debug = 0;
1241 	if (*str == '-')
1242 		/*
1243 		 * Switch off all debugging measures.
1244 		 */
1245 		goto out;
1246 
1247 	/*
1248 	 * Determine which debug features should be switched on
1249 	 */
1250 	for (; *str && *str != ','; str++) {
1251 		switch (tolower(*str)) {
1252 		case 'f':
1253 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1254 			break;
1255 		case 'z':
1256 			slub_debug |= SLAB_RED_ZONE;
1257 			break;
1258 		case 'p':
1259 			slub_debug |= SLAB_POISON;
1260 			break;
1261 		case 'u':
1262 			slub_debug |= SLAB_STORE_USER;
1263 			break;
1264 		case 't':
1265 			slub_debug |= SLAB_TRACE;
1266 			break;
1267 		case 'a':
1268 			slub_debug |= SLAB_FAILSLAB;
1269 			break;
1270 		case 'o':
1271 			/*
1272 			 * Avoid enabling debugging on caches if its minimum
1273 			 * order would increase as a result.
1274 			 */
1275 			disable_higher_order_debug = 1;
1276 			break;
1277 		default:
1278 			pr_err("slub_debug option '%c' unknown. skipped\n",
1279 			       *str);
1280 		}
1281 	}
1282 
1283 check_slabs:
1284 	if (*str == ',')
1285 		slub_debug_slabs = str + 1;
1286 out:
1287 	return 1;
1288 }
1289 
1290 __setup("slub_debug", setup_slub_debug);
1291 
1292 unsigned long kmem_cache_flags(unsigned long object_size,
1293 	unsigned long flags, const char *name,
1294 	void (*ctor)(void *))
1295 {
1296 	/*
1297 	 * Enable debugging if selected on the kernel commandline.
1298 	 */
1299 	if (slub_debug && (!slub_debug_slabs || (name &&
1300 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1301 		flags |= slub_debug;
1302 
1303 	return flags;
1304 }
1305 #else /* !CONFIG_SLUB_DEBUG */
1306 static inline void setup_object_debug(struct kmem_cache *s,
1307 			struct page *page, void *object) {}
1308 
1309 static inline int alloc_debug_processing(struct kmem_cache *s,
1310 	struct page *page, void *object, unsigned long addr) { return 0; }
1311 
1312 static inline int free_debug_processing(
1313 	struct kmem_cache *s, struct page *page,
1314 	void *head, void *tail, int bulk_cnt,
1315 	unsigned long addr) { return 0; }
1316 
1317 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1318 			{ return 1; }
1319 static inline int check_object(struct kmem_cache *s, struct page *page,
1320 			void *object, u8 val) { return 1; }
1321 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1322 					struct page *page) {}
1323 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1324 					struct page *page) {}
1325 unsigned long kmem_cache_flags(unsigned long object_size,
1326 	unsigned long flags, const char *name,
1327 	void (*ctor)(void *))
1328 {
1329 	return flags;
1330 }
1331 #define slub_debug 0
1332 
1333 #define disable_higher_order_debug 0
1334 
1335 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1336 							{ return 0; }
1337 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1338 							{ return 0; }
1339 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1340 							int objects) {}
1341 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1342 							int objects) {}
1343 
1344 #endif /* CONFIG_SLUB_DEBUG */
1345 
1346 /*
1347  * Hooks for other subsystems that check memory allocations. In a typical
1348  * production configuration these hooks all should produce no code at all.
1349  */
1350 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1351 {
1352 	kmemleak_alloc(ptr, size, 1, flags);
1353 	kasan_kmalloc_large(ptr, size, flags);
1354 }
1355 
1356 static inline void kfree_hook(const void *x)
1357 {
1358 	kmemleak_free(x);
1359 	kasan_kfree_large(x);
1360 }
1361 
1362 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1363 {
1364 	void *freeptr;
1365 
1366 	kmemleak_free_recursive(x, s->flags);
1367 
1368 	/*
1369 	 * Trouble is that we may no longer disable interrupts in the fast path
1370 	 * So in order to make the debug calls that expect irqs to be
1371 	 * disabled we need to disable interrupts temporarily.
1372 	 */
1373 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1374 	{
1375 		unsigned long flags;
1376 
1377 		local_irq_save(flags);
1378 		kmemcheck_slab_free(s, x, s->object_size);
1379 		debug_check_no_locks_freed(x, s->object_size);
1380 		local_irq_restore(flags);
1381 	}
1382 #endif
1383 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1384 		debug_check_no_obj_freed(x, s->object_size);
1385 
1386 	freeptr = get_freepointer(s, x);
1387 	/*
1388 	 * kasan_slab_free() may put x into memory quarantine, delaying its
1389 	 * reuse. In this case the object's freelist pointer is changed.
1390 	 */
1391 	kasan_slab_free(s, x);
1392 	return freeptr;
1393 }
1394 
1395 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1396 					   void *head, void *tail)
1397 {
1398 /*
1399  * Compiler cannot detect this function can be removed if slab_free_hook()
1400  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1401  */
1402 #if defined(CONFIG_KMEMCHECK) ||		\
1403 	defined(CONFIG_LOCKDEP)	||		\
1404 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1405 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1406 	defined(CONFIG_KASAN)
1407 
1408 	void *object = head;
1409 	void *tail_obj = tail ? : head;
1410 	void *freeptr;
1411 
1412 	do {
1413 		freeptr = slab_free_hook(s, object);
1414 	} while ((object != tail_obj) && (object = freeptr));
1415 #endif
1416 }
1417 
1418 static void setup_object(struct kmem_cache *s, struct page *page,
1419 				void *object)
1420 {
1421 	setup_object_debug(s, page, object);
1422 	kasan_init_slab_obj(s, object);
1423 	if (unlikely(s->ctor)) {
1424 		kasan_unpoison_object_data(s, object);
1425 		s->ctor(object);
1426 		kasan_poison_object_data(s, object);
1427 	}
1428 }
1429 
1430 /*
1431  * Slab allocation and freeing
1432  */
1433 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1434 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1435 {
1436 	struct page *page;
1437 	int order = oo_order(oo);
1438 
1439 	flags |= __GFP_NOTRACK;
1440 
1441 	if (node == NUMA_NO_NODE)
1442 		page = alloc_pages(flags, order);
1443 	else
1444 		page = __alloc_pages_node(node, flags, order);
1445 
1446 	if (page && memcg_charge_slab(page, flags, order, s)) {
1447 		__free_pages(page, order);
1448 		page = NULL;
1449 	}
1450 
1451 	return page;
1452 }
1453 
1454 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1455 /* Pre-initialize the random sequence cache */
1456 static int init_cache_random_seq(struct kmem_cache *s)
1457 {
1458 	int err;
1459 	unsigned long i, count = oo_objects(s->oo);
1460 
1461 	/* Bailout if already initialised */
1462 	if (s->random_seq)
1463 		return 0;
1464 
1465 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1466 	if (err) {
1467 		pr_err("SLUB: Unable to initialize free list for %s\n",
1468 			s->name);
1469 		return err;
1470 	}
1471 
1472 	/* Transform to an offset on the set of pages */
1473 	if (s->random_seq) {
1474 		for (i = 0; i < count; i++)
1475 			s->random_seq[i] *= s->size;
1476 	}
1477 	return 0;
1478 }
1479 
1480 /* Initialize each random sequence freelist per cache */
1481 static void __init init_freelist_randomization(void)
1482 {
1483 	struct kmem_cache *s;
1484 
1485 	mutex_lock(&slab_mutex);
1486 
1487 	list_for_each_entry(s, &slab_caches, list)
1488 		init_cache_random_seq(s);
1489 
1490 	mutex_unlock(&slab_mutex);
1491 }
1492 
1493 /* Get the next entry on the pre-computed freelist randomized */
1494 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1495 				unsigned long *pos, void *start,
1496 				unsigned long page_limit,
1497 				unsigned long freelist_count)
1498 {
1499 	unsigned int idx;
1500 
1501 	/*
1502 	 * If the target page allocation failed, the number of objects on the
1503 	 * page might be smaller than the usual size defined by the cache.
1504 	 */
1505 	do {
1506 		idx = s->random_seq[*pos];
1507 		*pos += 1;
1508 		if (*pos >= freelist_count)
1509 			*pos = 0;
1510 	} while (unlikely(idx >= page_limit));
1511 
1512 	return (char *)start + idx;
1513 }
1514 
1515 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1516 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1517 {
1518 	void *start;
1519 	void *cur;
1520 	void *next;
1521 	unsigned long idx, pos, page_limit, freelist_count;
1522 
1523 	if (page->objects < 2 || !s->random_seq)
1524 		return false;
1525 
1526 	freelist_count = oo_objects(s->oo);
1527 	pos = get_random_int() % freelist_count;
1528 
1529 	page_limit = page->objects * s->size;
1530 	start = fixup_red_left(s, page_address(page));
1531 
1532 	/* First entry is used as the base of the freelist */
1533 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1534 				freelist_count);
1535 	page->freelist = cur;
1536 
1537 	for (idx = 1; idx < page->objects; idx++) {
1538 		setup_object(s, page, cur);
1539 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1540 			freelist_count);
1541 		set_freepointer(s, cur, next);
1542 		cur = next;
1543 	}
1544 	setup_object(s, page, cur);
1545 	set_freepointer(s, cur, NULL);
1546 
1547 	return true;
1548 }
1549 #else
1550 static inline int init_cache_random_seq(struct kmem_cache *s)
1551 {
1552 	return 0;
1553 }
1554 static inline void init_freelist_randomization(void) { }
1555 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1556 {
1557 	return false;
1558 }
1559 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1560 
1561 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1562 {
1563 	struct page *page;
1564 	struct kmem_cache_order_objects oo = s->oo;
1565 	gfp_t alloc_gfp;
1566 	void *start, *p;
1567 	int idx, order;
1568 	bool shuffle;
1569 
1570 	flags &= gfp_allowed_mask;
1571 
1572 	if (gfpflags_allow_blocking(flags))
1573 		local_irq_enable();
1574 
1575 	flags |= s->allocflags;
1576 
1577 	/*
1578 	 * Let the initial higher-order allocation fail under memory pressure
1579 	 * so we fall-back to the minimum order allocation.
1580 	 */
1581 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1582 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1583 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1584 
1585 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1586 	if (unlikely(!page)) {
1587 		oo = s->min;
1588 		alloc_gfp = flags;
1589 		/*
1590 		 * Allocation may have failed due to fragmentation.
1591 		 * Try a lower order alloc if possible
1592 		 */
1593 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1594 		if (unlikely(!page))
1595 			goto out;
1596 		stat(s, ORDER_FALLBACK);
1597 	}
1598 
1599 	if (kmemcheck_enabled &&
1600 	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1601 		int pages = 1 << oo_order(oo);
1602 
1603 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1604 
1605 		/*
1606 		 * Objects from caches that have a constructor don't get
1607 		 * cleared when they're allocated, so we need to do it here.
1608 		 */
1609 		if (s->ctor)
1610 			kmemcheck_mark_uninitialized_pages(page, pages);
1611 		else
1612 			kmemcheck_mark_unallocated_pages(page, pages);
1613 	}
1614 
1615 	page->objects = oo_objects(oo);
1616 
1617 	order = compound_order(page);
1618 	page->slab_cache = s;
1619 	__SetPageSlab(page);
1620 	if (page_is_pfmemalloc(page))
1621 		SetPageSlabPfmemalloc(page);
1622 
1623 	start = page_address(page);
1624 
1625 	if (unlikely(s->flags & SLAB_POISON))
1626 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1627 
1628 	kasan_poison_slab(page);
1629 
1630 	shuffle = shuffle_freelist(s, page);
1631 
1632 	if (!shuffle) {
1633 		for_each_object_idx(p, idx, s, start, page->objects) {
1634 			setup_object(s, page, p);
1635 			if (likely(idx < page->objects))
1636 				set_freepointer(s, p, p + s->size);
1637 			else
1638 				set_freepointer(s, p, NULL);
1639 		}
1640 		page->freelist = fixup_red_left(s, start);
1641 	}
1642 
1643 	page->inuse = page->objects;
1644 	page->frozen = 1;
1645 
1646 out:
1647 	if (gfpflags_allow_blocking(flags))
1648 		local_irq_disable();
1649 	if (!page)
1650 		return NULL;
1651 
1652 	mod_lruvec_page_state(page,
1653 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1654 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1655 		1 << oo_order(oo));
1656 
1657 	inc_slabs_node(s, page_to_nid(page), page->objects);
1658 
1659 	return page;
1660 }
1661 
1662 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1663 {
1664 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1665 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1666 		flags &= ~GFP_SLAB_BUG_MASK;
1667 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1668 				invalid_mask, &invalid_mask, flags, &flags);
1669 		dump_stack();
1670 	}
1671 
1672 	return allocate_slab(s,
1673 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1674 }
1675 
1676 static void __free_slab(struct kmem_cache *s, struct page *page)
1677 {
1678 	int order = compound_order(page);
1679 	int pages = 1 << order;
1680 
1681 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1682 		void *p;
1683 
1684 		slab_pad_check(s, page);
1685 		for_each_object(p, s, page_address(page),
1686 						page->objects)
1687 			check_object(s, page, p, SLUB_RED_INACTIVE);
1688 	}
1689 
1690 	kmemcheck_free_shadow(page, compound_order(page));
1691 
1692 	mod_lruvec_page_state(page,
1693 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1694 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1695 		-pages);
1696 
1697 	__ClearPageSlabPfmemalloc(page);
1698 	__ClearPageSlab(page);
1699 
1700 	page_mapcount_reset(page);
1701 	if (current->reclaim_state)
1702 		current->reclaim_state->reclaimed_slab += pages;
1703 	memcg_uncharge_slab(page, order, s);
1704 	__free_pages(page, order);
1705 }
1706 
1707 #define need_reserve_slab_rcu						\
1708 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1709 
1710 static void rcu_free_slab(struct rcu_head *h)
1711 {
1712 	struct page *page;
1713 
1714 	if (need_reserve_slab_rcu)
1715 		page = virt_to_head_page(h);
1716 	else
1717 		page = container_of((struct list_head *)h, struct page, lru);
1718 
1719 	__free_slab(page->slab_cache, page);
1720 }
1721 
1722 static void free_slab(struct kmem_cache *s, struct page *page)
1723 {
1724 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1725 		struct rcu_head *head;
1726 
1727 		if (need_reserve_slab_rcu) {
1728 			int order = compound_order(page);
1729 			int offset = (PAGE_SIZE << order) - s->reserved;
1730 
1731 			VM_BUG_ON(s->reserved != sizeof(*head));
1732 			head = page_address(page) + offset;
1733 		} else {
1734 			head = &page->rcu_head;
1735 		}
1736 
1737 		call_rcu(head, rcu_free_slab);
1738 	} else
1739 		__free_slab(s, page);
1740 }
1741 
1742 static void discard_slab(struct kmem_cache *s, struct page *page)
1743 {
1744 	dec_slabs_node(s, page_to_nid(page), page->objects);
1745 	free_slab(s, page);
1746 }
1747 
1748 /*
1749  * Management of partially allocated slabs.
1750  */
1751 static inline void
1752 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1753 {
1754 	n->nr_partial++;
1755 	if (tail == DEACTIVATE_TO_TAIL)
1756 		list_add_tail(&page->lru, &n->partial);
1757 	else
1758 		list_add(&page->lru, &n->partial);
1759 }
1760 
1761 static inline void add_partial(struct kmem_cache_node *n,
1762 				struct page *page, int tail)
1763 {
1764 	lockdep_assert_held(&n->list_lock);
1765 	__add_partial(n, page, tail);
1766 }
1767 
1768 static inline void remove_partial(struct kmem_cache_node *n,
1769 					struct page *page)
1770 {
1771 	lockdep_assert_held(&n->list_lock);
1772 	list_del(&page->lru);
1773 	n->nr_partial--;
1774 }
1775 
1776 /*
1777  * Remove slab from the partial list, freeze it and
1778  * return the pointer to the freelist.
1779  *
1780  * Returns a list of objects or NULL if it fails.
1781  */
1782 static inline void *acquire_slab(struct kmem_cache *s,
1783 		struct kmem_cache_node *n, struct page *page,
1784 		int mode, int *objects)
1785 {
1786 	void *freelist;
1787 	unsigned long counters;
1788 	struct page new;
1789 
1790 	lockdep_assert_held(&n->list_lock);
1791 
1792 	/*
1793 	 * Zap the freelist and set the frozen bit.
1794 	 * The old freelist is the list of objects for the
1795 	 * per cpu allocation list.
1796 	 */
1797 	freelist = page->freelist;
1798 	counters = page->counters;
1799 	new.counters = counters;
1800 	*objects = new.objects - new.inuse;
1801 	if (mode) {
1802 		new.inuse = page->objects;
1803 		new.freelist = NULL;
1804 	} else {
1805 		new.freelist = freelist;
1806 	}
1807 
1808 	VM_BUG_ON(new.frozen);
1809 	new.frozen = 1;
1810 
1811 	if (!__cmpxchg_double_slab(s, page,
1812 			freelist, counters,
1813 			new.freelist, new.counters,
1814 			"acquire_slab"))
1815 		return NULL;
1816 
1817 	remove_partial(n, page);
1818 	WARN_ON(!freelist);
1819 	return freelist;
1820 }
1821 
1822 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1823 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1824 
1825 /*
1826  * Try to allocate a partial slab from a specific node.
1827  */
1828 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1829 				struct kmem_cache_cpu *c, gfp_t flags)
1830 {
1831 	struct page *page, *page2;
1832 	void *object = NULL;
1833 	int available = 0;
1834 	int objects;
1835 
1836 	/*
1837 	 * Racy check. If we mistakenly see no partial slabs then we
1838 	 * just allocate an empty slab. If we mistakenly try to get a
1839 	 * partial slab and there is none available then get_partials()
1840 	 * will return NULL.
1841 	 */
1842 	if (!n || !n->nr_partial)
1843 		return NULL;
1844 
1845 	spin_lock(&n->list_lock);
1846 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1847 		void *t;
1848 
1849 		if (!pfmemalloc_match(page, flags))
1850 			continue;
1851 
1852 		t = acquire_slab(s, n, page, object == NULL, &objects);
1853 		if (!t)
1854 			break;
1855 
1856 		available += objects;
1857 		if (!object) {
1858 			c->page = page;
1859 			stat(s, ALLOC_FROM_PARTIAL);
1860 			object = t;
1861 		} else {
1862 			put_cpu_partial(s, page, 0);
1863 			stat(s, CPU_PARTIAL_NODE);
1864 		}
1865 		if (!kmem_cache_has_cpu_partial(s)
1866 			|| available > slub_cpu_partial(s) / 2)
1867 			break;
1868 
1869 	}
1870 	spin_unlock(&n->list_lock);
1871 	return object;
1872 }
1873 
1874 /*
1875  * Get a page from somewhere. Search in increasing NUMA distances.
1876  */
1877 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1878 		struct kmem_cache_cpu *c)
1879 {
1880 #ifdef CONFIG_NUMA
1881 	struct zonelist *zonelist;
1882 	struct zoneref *z;
1883 	struct zone *zone;
1884 	enum zone_type high_zoneidx = gfp_zone(flags);
1885 	void *object;
1886 	unsigned int cpuset_mems_cookie;
1887 
1888 	/*
1889 	 * The defrag ratio allows a configuration of the tradeoffs between
1890 	 * inter node defragmentation and node local allocations. A lower
1891 	 * defrag_ratio increases the tendency to do local allocations
1892 	 * instead of attempting to obtain partial slabs from other nodes.
1893 	 *
1894 	 * If the defrag_ratio is set to 0 then kmalloc() always
1895 	 * returns node local objects. If the ratio is higher then kmalloc()
1896 	 * may return off node objects because partial slabs are obtained
1897 	 * from other nodes and filled up.
1898 	 *
1899 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1900 	 * (which makes defrag_ratio = 1000) then every (well almost)
1901 	 * allocation will first attempt to defrag slab caches on other nodes.
1902 	 * This means scanning over all nodes to look for partial slabs which
1903 	 * may be expensive if we do it every time we are trying to find a slab
1904 	 * with available objects.
1905 	 */
1906 	if (!s->remote_node_defrag_ratio ||
1907 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1908 		return NULL;
1909 
1910 	do {
1911 		cpuset_mems_cookie = read_mems_allowed_begin();
1912 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1913 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1914 			struct kmem_cache_node *n;
1915 
1916 			n = get_node(s, zone_to_nid(zone));
1917 
1918 			if (n && cpuset_zone_allowed(zone, flags) &&
1919 					n->nr_partial > s->min_partial) {
1920 				object = get_partial_node(s, n, c, flags);
1921 				if (object) {
1922 					/*
1923 					 * Don't check read_mems_allowed_retry()
1924 					 * here - if mems_allowed was updated in
1925 					 * parallel, that was a harmless race
1926 					 * between allocation and the cpuset
1927 					 * update
1928 					 */
1929 					return object;
1930 				}
1931 			}
1932 		}
1933 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1934 #endif
1935 	return NULL;
1936 }
1937 
1938 /*
1939  * Get a partial page, lock it and return it.
1940  */
1941 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1942 		struct kmem_cache_cpu *c)
1943 {
1944 	void *object;
1945 	int searchnode = node;
1946 
1947 	if (node == NUMA_NO_NODE)
1948 		searchnode = numa_mem_id();
1949 	else if (!node_present_pages(node))
1950 		searchnode = node_to_mem_node(node);
1951 
1952 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1953 	if (object || node != NUMA_NO_NODE)
1954 		return object;
1955 
1956 	return get_any_partial(s, flags, c);
1957 }
1958 
1959 #ifdef CONFIG_PREEMPT
1960 /*
1961  * Calculate the next globally unique transaction for disambiguiation
1962  * during cmpxchg. The transactions start with the cpu number and are then
1963  * incremented by CONFIG_NR_CPUS.
1964  */
1965 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1966 #else
1967 /*
1968  * No preemption supported therefore also no need to check for
1969  * different cpus.
1970  */
1971 #define TID_STEP 1
1972 #endif
1973 
1974 static inline unsigned long next_tid(unsigned long tid)
1975 {
1976 	return tid + TID_STEP;
1977 }
1978 
1979 static inline unsigned int tid_to_cpu(unsigned long tid)
1980 {
1981 	return tid % TID_STEP;
1982 }
1983 
1984 static inline unsigned long tid_to_event(unsigned long tid)
1985 {
1986 	return tid / TID_STEP;
1987 }
1988 
1989 static inline unsigned int init_tid(int cpu)
1990 {
1991 	return cpu;
1992 }
1993 
1994 static inline void note_cmpxchg_failure(const char *n,
1995 		const struct kmem_cache *s, unsigned long tid)
1996 {
1997 #ifdef SLUB_DEBUG_CMPXCHG
1998 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1999 
2000 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2001 
2002 #ifdef CONFIG_PREEMPT
2003 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2004 		pr_warn("due to cpu change %d -> %d\n",
2005 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2006 	else
2007 #endif
2008 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2009 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2010 			tid_to_event(tid), tid_to_event(actual_tid));
2011 	else
2012 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2013 			actual_tid, tid, next_tid(tid));
2014 #endif
2015 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2016 }
2017 
2018 static void init_kmem_cache_cpus(struct kmem_cache *s)
2019 {
2020 	int cpu;
2021 
2022 	for_each_possible_cpu(cpu)
2023 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2024 }
2025 
2026 /*
2027  * Remove the cpu slab
2028  */
2029 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2030 				void *freelist, struct kmem_cache_cpu *c)
2031 {
2032 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2033 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2034 	int lock = 0;
2035 	enum slab_modes l = M_NONE, m = M_NONE;
2036 	void *nextfree;
2037 	int tail = DEACTIVATE_TO_HEAD;
2038 	struct page new;
2039 	struct page old;
2040 
2041 	if (page->freelist) {
2042 		stat(s, DEACTIVATE_REMOTE_FREES);
2043 		tail = DEACTIVATE_TO_TAIL;
2044 	}
2045 
2046 	/*
2047 	 * Stage one: Free all available per cpu objects back
2048 	 * to the page freelist while it is still frozen. Leave the
2049 	 * last one.
2050 	 *
2051 	 * There is no need to take the list->lock because the page
2052 	 * is still frozen.
2053 	 */
2054 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2055 		void *prior;
2056 		unsigned long counters;
2057 
2058 		do {
2059 			prior = page->freelist;
2060 			counters = page->counters;
2061 			set_freepointer(s, freelist, prior);
2062 			new.counters = counters;
2063 			new.inuse--;
2064 			VM_BUG_ON(!new.frozen);
2065 
2066 		} while (!__cmpxchg_double_slab(s, page,
2067 			prior, counters,
2068 			freelist, new.counters,
2069 			"drain percpu freelist"));
2070 
2071 		freelist = nextfree;
2072 	}
2073 
2074 	/*
2075 	 * Stage two: Ensure that the page is unfrozen while the
2076 	 * list presence reflects the actual number of objects
2077 	 * during unfreeze.
2078 	 *
2079 	 * We setup the list membership and then perform a cmpxchg
2080 	 * with the count. If there is a mismatch then the page
2081 	 * is not unfrozen but the page is on the wrong list.
2082 	 *
2083 	 * Then we restart the process which may have to remove
2084 	 * the page from the list that we just put it on again
2085 	 * because the number of objects in the slab may have
2086 	 * changed.
2087 	 */
2088 redo:
2089 
2090 	old.freelist = page->freelist;
2091 	old.counters = page->counters;
2092 	VM_BUG_ON(!old.frozen);
2093 
2094 	/* Determine target state of the slab */
2095 	new.counters = old.counters;
2096 	if (freelist) {
2097 		new.inuse--;
2098 		set_freepointer(s, freelist, old.freelist);
2099 		new.freelist = freelist;
2100 	} else
2101 		new.freelist = old.freelist;
2102 
2103 	new.frozen = 0;
2104 
2105 	if (!new.inuse && n->nr_partial >= s->min_partial)
2106 		m = M_FREE;
2107 	else if (new.freelist) {
2108 		m = M_PARTIAL;
2109 		if (!lock) {
2110 			lock = 1;
2111 			/*
2112 			 * Taking the spinlock removes the possiblity
2113 			 * that acquire_slab() will see a slab page that
2114 			 * is frozen
2115 			 */
2116 			spin_lock(&n->list_lock);
2117 		}
2118 	} else {
2119 		m = M_FULL;
2120 		if (kmem_cache_debug(s) && !lock) {
2121 			lock = 1;
2122 			/*
2123 			 * This also ensures that the scanning of full
2124 			 * slabs from diagnostic functions will not see
2125 			 * any frozen slabs.
2126 			 */
2127 			spin_lock(&n->list_lock);
2128 		}
2129 	}
2130 
2131 	if (l != m) {
2132 
2133 		if (l == M_PARTIAL)
2134 
2135 			remove_partial(n, page);
2136 
2137 		else if (l == M_FULL)
2138 
2139 			remove_full(s, n, page);
2140 
2141 		if (m == M_PARTIAL) {
2142 
2143 			add_partial(n, page, tail);
2144 			stat(s, tail);
2145 
2146 		} else if (m == M_FULL) {
2147 
2148 			stat(s, DEACTIVATE_FULL);
2149 			add_full(s, n, page);
2150 
2151 		}
2152 	}
2153 
2154 	l = m;
2155 	if (!__cmpxchg_double_slab(s, page,
2156 				old.freelist, old.counters,
2157 				new.freelist, new.counters,
2158 				"unfreezing slab"))
2159 		goto redo;
2160 
2161 	if (lock)
2162 		spin_unlock(&n->list_lock);
2163 
2164 	if (m == M_FREE) {
2165 		stat(s, DEACTIVATE_EMPTY);
2166 		discard_slab(s, page);
2167 		stat(s, FREE_SLAB);
2168 	}
2169 
2170 	c->page = NULL;
2171 	c->freelist = NULL;
2172 }
2173 
2174 /*
2175  * Unfreeze all the cpu partial slabs.
2176  *
2177  * This function must be called with interrupts disabled
2178  * for the cpu using c (or some other guarantee must be there
2179  * to guarantee no concurrent accesses).
2180  */
2181 static void unfreeze_partials(struct kmem_cache *s,
2182 		struct kmem_cache_cpu *c)
2183 {
2184 #ifdef CONFIG_SLUB_CPU_PARTIAL
2185 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2186 	struct page *page, *discard_page = NULL;
2187 
2188 	while ((page = c->partial)) {
2189 		struct page new;
2190 		struct page old;
2191 
2192 		c->partial = page->next;
2193 
2194 		n2 = get_node(s, page_to_nid(page));
2195 		if (n != n2) {
2196 			if (n)
2197 				spin_unlock(&n->list_lock);
2198 
2199 			n = n2;
2200 			spin_lock(&n->list_lock);
2201 		}
2202 
2203 		do {
2204 
2205 			old.freelist = page->freelist;
2206 			old.counters = page->counters;
2207 			VM_BUG_ON(!old.frozen);
2208 
2209 			new.counters = old.counters;
2210 			new.freelist = old.freelist;
2211 
2212 			new.frozen = 0;
2213 
2214 		} while (!__cmpxchg_double_slab(s, page,
2215 				old.freelist, old.counters,
2216 				new.freelist, new.counters,
2217 				"unfreezing slab"));
2218 
2219 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2220 			page->next = discard_page;
2221 			discard_page = page;
2222 		} else {
2223 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2224 			stat(s, FREE_ADD_PARTIAL);
2225 		}
2226 	}
2227 
2228 	if (n)
2229 		spin_unlock(&n->list_lock);
2230 
2231 	while (discard_page) {
2232 		page = discard_page;
2233 		discard_page = discard_page->next;
2234 
2235 		stat(s, DEACTIVATE_EMPTY);
2236 		discard_slab(s, page);
2237 		stat(s, FREE_SLAB);
2238 	}
2239 #endif
2240 }
2241 
2242 /*
2243  * Put a page that was just frozen (in __slab_free) into a partial page
2244  * slot if available. This is done without interrupts disabled and without
2245  * preemption disabled. The cmpxchg is racy and may put the partial page
2246  * onto a random cpus partial slot.
2247  *
2248  * If we did not find a slot then simply move all the partials to the
2249  * per node partial list.
2250  */
2251 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2252 {
2253 #ifdef CONFIG_SLUB_CPU_PARTIAL
2254 	struct page *oldpage;
2255 	int pages;
2256 	int pobjects;
2257 
2258 	preempt_disable();
2259 	do {
2260 		pages = 0;
2261 		pobjects = 0;
2262 		oldpage = this_cpu_read(s->cpu_slab->partial);
2263 
2264 		if (oldpage) {
2265 			pobjects = oldpage->pobjects;
2266 			pages = oldpage->pages;
2267 			if (drain && pobjects > s->cpu_partial) {
2268 				unsigned long flags;
2269 				/*
2270 				 * partial array is full. Move the existing
2271 				 * set to the per node partial list.
2272 				 */
2273 				local_irq_save(flags);
2274 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2275 				local_irq_restore(flags);
2276 				oldpage = NULL;
2277 				pobjects = 0;
2278 				pages = 0;
2279 				stat(s, CPU_PARTIAL_DRAIN);
2280 			}
2281 		}
2282 
2283 		pages++;
2284 		pobjects += page->objects - page->inuse;
2285 
2286 		page->pages = pages;
2287 		page->pobjects = pobjects;
2288 		page->next = oldpage;
2289 
2290 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2291 								!= oldpage);
2292 	if (unlikely(!s->cpu_partial)) {
2293 		unsigned long flags;
2294 
2295 		local_irq_save(flags);
2296 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2297 		local_irq_restore(flags);
2298 	}
2299 	preempt_enable();
2300 #endif
2301 }
2302 
2303 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2304 {
2305 	stat(s, CPUSLAB_FLUSH);
2306 	deactivate_slab(s, c->page, c->freelist, c);
2307 
2308 	c->tid = next_tid(c->tid);
2309 }
2310 
2311 /*
2312  * Flush cpu slab.
2313  *
2314  * Called from IPI handler with interrupts disabled.
2315  */
2316 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2317 {
2318 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2319 
2320 	if (likely(c)) {
2321 		if (c->page)
2322 			flush_slab(s, c);
2323 
2324 		unfreeze_partials(s, c);
2325 	}
2326 }
2327 
2328 static void flush_cpu_slab(void *d)
2329 {
2330 	struct kmem_cache *s = d;
2331 
2332 	__flush_cpu_slab(s, smp_processor_id());
2333 }
2334 
2335 static bool has_cpu_slab(int cpu, void *info)
2336 {
2337 	struct kmem_cache *s = info;
2338 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2339 
2340 	return c->page || slub_percpu_partial(c);
2341 }
2342 
2343 static void flush_all(struct kmem_cache *s)
2344 {
2345 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2346 }
2347 
2348 /*
2349  * Use the cpu notifier to insure that the cpu slabs are flushed when
2350  * necessary.
2351  */
2352 static int slub_cpu_dead(unsigned int cpu)
2353 {
2354 	struct kmem_cache *s;
2355 	unsigned long flags;
2356 
2357 	mutex_lock(&slab_mutex);
2358 	list_for_each_entry(s, &slab_caches, list) {
2359 		local_irq_save(flags);
2360 		__flush_cpu_slab(s, cpu);
2361 		local_irq_restore(flags);
2362 	}
2363 	mutex_unlock(&slab_mutex);
2364 	return 0;
2365 }
2366 
2367 /*
2368  * Check if the objects in a per cpu structure fit numa
2369  * locality expectations.
2370  */
2371 static inline int node_match(struct page *page, int node)
2372 {
2373 #ifdef CONFIG_NUMA
2374 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2375 		return 0;
2376 #endif
2377 	return 1;
2378 }
2379 
2380 #ifdef CONFIG_SLUB_DEBUG
2381 static int count_free(struct page *page)
2382 {
2383 	return page->objects - page->inuse;
2384 }
2385 
2386 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2387 {
2388 	return atomic_long_read(&n->total_objects);
2389 }
2390 #endif /* CONFIG_SLUB_DEBUG */
2391 
2392 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2393 static unsigned long count_partial(struct kmem_cache_node *n,
2394 					int (*get_count)(struct page *))
2395 {
2396 	unsigned long flags;
2397 	unsigned long x = 0;
2398 	struct page *page;
2399 
2400 	spin_lock_irqsave(&n->list_lock, flags);
2401 	list_for_each_entry(page, &n->partial, lru)
2402 		x += get_count(page);
2403 	spin_unlock_irqrestore(&n->list_lock, flags);
2404 	return x;
2405 }
2406 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2407 
2408 static noinline void
2409 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2410 {
2411 #ifdef CONFIG_SLUB_DEBUG
2412 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2413 				      DEFAULT_RATELIMIT_BURST);
2414 	int node;
2415 	struct kmem_cache_node *n;
2416 
2417 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2418 		return;
2419 
2420 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2421 		nid, gfpflags, &gfpflags);
2422 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2423 		s->name, s->object_size, s->size, oo_order(s->oo),
2424 		oo_order(s->min));
2425 
2426 	if (oo_order(s->min) > get_order(s->object_size))
2427 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2428 			s->name);
2429 
2430 	for_each_kmem_cache_node(s, node, n) {
2431 		unsigned long nr_slabs;
2432 		unsigned long nr_objs;
2433 		unsigned long nr_free;
2434 
2435 		nr_free  = count_partial(n, count_free);
2436 		nr_slabs = node_nr_slabs(n);
2437 		nr_objs  = node_nr_objs(n);
2438 
2439 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2440 			node, nr_slabs, nr_objs, nr_free);
2441 	}
2442 #endif
2443 }
2444 
2445 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2446 			int node, struct kmem_cache_cpu **pc)
2447 {
2448 	void *freelist;
2449 	struct kmem_cache_cpu *c = *pc;
2450 	struct page *page;
2451 
2452 	freelist = get_partial(s, flags, node, c);
2453 
2454 	if (freelist)
2455 		return freelist;
2456 
2457 	page = new_slab(s, flags, node);
2458 	if (page) {
2459 		c = raw_cpu_ptr(s->cpu_slab);
2460 		if (c->page)
2461 			flush_slab(s, c);
2462 
2463 		/*
2464 		 * No other reference to the page yet so we can
2465 		 * muck around with it freely without cmpxchg
2466 		 */
2467 		freelist = page->freelist;
2468 		page->freelist = NULL;
2469 
2470 		stat(s, ALLOC_SLAB);
2471 		c->page = page;
2472 		*pc = c;
2473 	} else
2474 		freelist = NULL;
2475 
2476 	return freelist;
2477 }
2478 
2479 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2480 {
2481 	if (unlikely(PageSlabPfmemalloc(page)))
2482 		return gfp_pfmemalloc_allowed(gfpflags);
2483 
2484 	return true;
2485 }
2486 
2487 /*
2488  * Check the page->freelist of a page and either transfer the freelist to the
2489  * per cpu freelist or deactivate the page.
2490  *
2491  * The page is still frozen if the return value is not NULL.
2492  *
2493  * If this function returns NULL then the page has been unfrozen.
2494  *
2495  * This function must be called with interrupt disabled.
2496  */
2497 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2498 {
2499 	struct page new;
2500 	unsigned long counters;
2501 	void *freelist;
2502 
2503 	do {
2504 		freelist = page->freelist;
2505 		counters = page->counters;
2506 
2507 		new.counters = counters;
2508 		VM_BUG_ON(!new.frozen);
2509 
2510 		new.inuse = page->objects;
2511 		new.frozen = freelist != NULL;
2512 
2513 	} while (!__cmpxchg_double_slab(s, page,
2514 		freelist, counters,
2515 		NULL, new.counters,
2516 		"get_freelist"));
2517 
2518 	return freelist;
2519 }
2520 
2521 /*
2522  * Slow path. The lockless freelist is empty or we need to perform
2523  * debugging duties.
2524  *
2525  * Processing is still very fast if new objects have been freed to the
2526  * regular freelist. In that case we simply take over the regular freelist
2527  * as the lockless freelist and zap the regular freelist.
2528  *
2529  * If that is not working then we fall back to the partial lists. We take the
2530  * first element of the freelist as the object to allocate now and move the
2531  * rest of the freelist to the lockless freelist.
2532  *
2533  * And if we were unable to get a new slab from the partial slab lists then
2534  * we need to allocate a new slab. This is the slowest path since it involves
2535  * a call to the page allocator and the setup of a new slab.
2536  *
2537  * Version of __slab_alloc to use when we know that interrupts are
2538  * already disabled (which is the case for bulk allocation).
2539  */
2540 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2541 			  unsigned long addr, struct kmem_cache_cpu *c)
2542 {
2543 	void *freelist;
2544 	struct page *page;
2545 
2546 	page = c->page;
2547 	if (!page)
2548 		goto new_slab;
2549 redo:
2550 
2551 	if (unlikely(!node_match(page, node))) {
2552 		int searchnode = node;
2553 
2554 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2555 			searchnode = node_to_mem_node(node);
2556 
2557 		if (unlikely(!node_match(page, searchnode))) {
2558 			stat(s, ALLOC_NODE_MISMATCH);
2559 			deactivate_slab(s, page, c->freelist, c);
2560 			goto new_slab;
2561 		}
2562 	}
2563 
2564 	/*
2565 	 * By rights, we should be searching for a slab page that was
2566 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2567 	 * information when the page leaves the per-cpu allocator
2568 	 */
2569 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2570 		deactivate_slab(s, page, c->freelist, c);
2571 		goto new_slab;
2572 	}
2573 
2574 	/* must check again c->freelist in case of cpu migration or IRQ */
2575 	freelist = c->freelist;
2576 	if (freelist)
2577 		goto load_freelist;
2578 
2579 	freelist = get_freelist(s, page);
2580 
2581 	if (!freelist) {
2582 		c->page = NULL;
2583 		stat(s, DEACTIVATE_BYPASS);
2584 		goto new_slab;
2585 	}
2586 
2587 	stat(s, ALLOC_REFILL);
2588 
2589 load_freelist:
2590 	/*
2591 	 * freelist is pointing to the list of objects to be used.
2592 	 * page is pointing to the page from which the objects are obtained.
2593 	 * That page must be frozen for per cpu allocations to work.
2594 	 */
2595 	VM_BUG_ON(!c->page->frozen);
2596 	c->freelist = get_freepointer(s, freelist);
2597 	c->tid = next_tid(c->tid);
2598 	return freelist;
2599 
2600 new_slab:
2601 
2602 	if (slub_percpu_partial(c)) {
2603 		page = c->page = slub_percpu_partial(c);
2604 		slub_set_percpu_partial(c, page);
2605 		stat(s, CPU_PARTIAL_ALLOC);
2606 		goto redo;
2607 	}
2608 
2609 	freelist = new_slab_objects(s, gfpflags, node, &c);
2610 
2611 	if (unlikely(!freelist)) {
2612 		slab_out_of_memory(s, gfpflags, node);
2613 		return NULL;
2614 	}
2615 
2616 	page = c->page;
2617 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2618 		goto load_freelist;
2619 
2620 	/* Only entered in the debug case */
2621 	if (kmem_cache_debug(s) &&
2622 			!alloc_debug_processing(s, page, freelist, addr))
2623 		goto new_slab;	/* Slab failed checks. Next slab needed */
2624 
2625 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2626 	return freelist;
2627 }
2628 
2629 /*
2630  * Another one that disabled interrupt and compensates for possible
2631  * cpu changes by refetching the per cpu area pointer.
2632  */
2633 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2634 			  unsigned long addr, struct kmem_cache_cpu *c)
2635 {
2636 	void *p;
2637 	unsigned long flags;
2638 
2639 	local_irq_save(flags);
2640 #ifdef CONFIG_PREEMPT
2641 	/*
2642 	 * We may have been preempted and rescheduled on a different
2643 	 * cpu before disabling interrupts. Need to reload cpu area
2644 	 * pointer.
2645 	 */
2646 	c = this_cpu_ptr(s->cpu_slab);
2647 #endif
2648 
2649 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2650 	local_irq_restore(flags);
2651 	return p;
2652 }
2653 
2654 /*
2655  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2656  * have the fastpath folded into their functions. So no function call
2657  * overhead for requests that can be satisfied on the fastpath.
2658  *
2659  * The fastpath works by first checking if the lockless freelist can be used.
2660  * If not then __slab_alloc is called for slow processing.
2661  *
2662  * Otherwise we can simply pick the next object from the lockless free list.
2663  */
2664 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2665 		gfp_t gfpflags, int node, unsigned long addr)
2666 {
2667 	void *object;
2668 	struct kmem_cache_cpu *c;
2669 	struct page *page;
2670 	unsigned long tid;
2671 
2672 	s = slab_pre_alloc_hook(s, gfpflags);
2673 	if (!s)
2674 		return NULL;
2675 redo:
2676 	/*
2677 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2678 	 * enabled. We may switch back and forth between cpus while
2679 	 * reading from one cpu area. That does not matter as long
2680 	 * as we end up on the original cpu again when doing the cmpxchg.
2681 	 *
2682 	 * We should guarantee that tid and kmem_cache are retrieved on
2683 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2684 	 * to check if it is matched or not.
2685 	 */
2686 	do {
2687 		tid = this_cpu_read(s->cpu_slab->tid);
2688 		c = raw_cpu_ptr(s->cpu_slab);
2689 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2690 		 unlikely(tid != READ_ONCE(c->tid)));
2691 
2692 	/*
2693 	 * Irqless object alloc/free algorithm used here depends on sequence
2694 	 * of fetching cpu_slab's data. tid should be fetched before anything
2695 	 * on c to guarantee that object and page associated with previous tid
2696 	 * won't be used with current tid. If we fetch tid first, object and
2697 	 * page could be one associated with next tid and our alloc/free
2698 	 * request will be failed. In this case, we will retry. So, no problem.
2699 	 */
2700 	barrier();
2701 
2702 	/*
2703 	 * The transaction ids are globally unique per cpu and per operation on
2704 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2705 	 * occurs on the right processor and that there was no operation on the
2706 	 * linked list in between.
2707 	 */
2708 
2709 	object = c->freelist;
2710 	page = c->page;
2711 	if (unlikely(!object || !node_match(page, node))) {
2712 		object = __slab_alloc(s, gfpflags, node, addr, c);
2713 		stat(s, ALLOC_SLOWPATH);
2714 	} else {
2715 		void *next_object = get_freepointer_safe(s, object);
2716 
2717 		/*
2718 		 * The cmpxchg will only match if there was no additional
2719 		 * operation and if we are on the right processor.
2720 		 *
2721 		 * The cmpxchg does the following atomically (without lock
2722 		 * semantics!)
2723 		 * 1. Relocate first pointer to the current per cpu area.
2724 		 * 2. Verify that tid and freelist have not been changed
2725 		 * 3. If they were not changed replace tid and freelist
2726 		 *
2727 		 * Since this is without lock semantics the protection is only
2728 		 * against code executing on this cpu *not* from access by
2729 		 * other cpus.
2730 		 */
2731 		if (unlikely(!this_cpu_cmpxchg_double(
2732 				s->cpu_slab->freelist, s->cpu_slab->tid,
2733 				object, tid,
2734 				next_object, next_tid(tid)))) {
2735 
2736 			note_cmpxchg_failure("slab_alloc", s, tid);
2737 			goto redo;
2738 		}
2739 		prefetch_freepointer(s, next_object);
2740 		stat(s, ALLOC_FASTPATH);
2741 	}
2742 
2743 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2744 		memset(object, 0, s->object_size);
2745 
2746 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2747 
2748 	return object;
2749 }
2750 
2751 static __always_inline void *slab_alloc(struct kmem_cache *s,
2752 		gfp_t gfpflags, unsigned long addr)
2753 {
2754 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2755 }
2756 
2757 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2758 {
2759 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2760 
2761 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2762 				s->size, gfpflags);
2763 
2764 	return ret;
2765 }
2766 EXPORT_SYMBOL(kmem_cache_alloc);
2767 
2768 #ifdef CONFIG_TRACING
2769 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2770 {
2771 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2772 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2773 	kasan_kmalloc(s, ret, size, gfpflags);
2774 	return ret;
2775 }
2776 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2777 #endif
2778 
2779 #ifdef CONFIG_NUMA
2780 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2781 {
2782 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2783 
2784 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2785 				    s->object_size, s->size, gfpflags, node);
2786 
2787 	return ret;
2788 }
2789 EXPORT_SYMBOL(kmem_cache_alloc_node);
2790 
2791 #ifdef CONFIG_TRACING
2792 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2793 				    gfp_t gfpflags,
2794 				    int node, size_t size)
2795 {
2796 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2797 
2798 	trace_kmalloc_node(_RET_IP_, ret,
2799 			   size, s->size, gfpflags, node);
2800 
2801 	kasan_kmalloc(s, ret, size, gfpflags);
2802 	return ret;
2803 }
2804 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2805 #endif
2806 #endif
2807 
2808 /*
2809  * Slow path handling. This may still be called frequently since objects
2810  * have a longer lifetime than the cpu slabs in most processing loads.
2811  *
2812  * So we still attempt to reduce cache line usage. Just take the slab
2813  * lock and free the item. If there is no additional partial page
2814  * handling required then we can return immediately.
2815  */
2816 static void __slab_free(struct kmem_cache *s, struct page *page,
2817 			void *head, void *tail, int cnt,
2818 			unsigned long addr)
2819 
2820 {
2821 	void *prior;
2822 	int was_frozen;
2823 	struct page new;
2824 	unsigned long counters;
2825 	struct kmem_cache_node *n = NULL;
2826 	unsigned long uninitialized_var(flags);
2827 
2828 	stat(s, FREE_SLOWPATH);
2829 
2830 	if (kmem_cache_debug(s) &&
2831 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2832 		return;
2833 
2834 	do {
2835 		if (unlikely(n)) {
2836 			spin_unlock_irqrestore(&n->list_lock, flags);
2837 			n = NULL;
2838 		}
2839 		prior = page->freelist;
2840 		counters = page->counters;
2841 		set_freepointer(s, tail, prior);
2842 		new.counters = counters;
2843 		was_frozen = new.frozen;
2844 		new.inuse -= cnt;
2845 		if ((!new.inuse || !prior) && !was_frozen) {
2846 
2847 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2848 
2849 				/*
2850 				 * Slab was on no list before and will be
2851 				 * partially empty
2852 				 * We can defer the list move and instead
2853 				 * freeze it.
2854 				 */
2855 				new.frozen = 1;
2856 
2857 			} else { /* Needs to be taken off a list */
2858 
2859 				n = get_node(s, page_to_nid(page));
2860 				/*
2861 				 * Speculatively acquire the list_lock.
2862 				 * If the cmpxchg does not succeed then we may
2863 				 * drop the list_lock without any processing.
2864 				 *
2865 				 * Otherwise the list_lock will synchronize with
2866 				 * other processors updating the list of slabs.
2867 				 */
2868 				spin_lock_irqsave(&n->list_lock, flags);
2869 
2870 			}
2871 		}
2872 
2873 	} while (!cmpxchg_double_slab(s, page,
2874 		prior, counters,
2875 		head, new.counters,
2876 		"__slab_free"));
2877 
2878 	if (likely(!n)) {
2879 
2880 		/*
2881 		 * If we just froze the page then put it onto the
2882 		 * per cpu partial list.
2883 		 */
2884 		if (new.frozen && !was_frozen) {
2885 			put_cpu_partial(s, page, 1);
2886 			stat(s, CPU_PARTIAL_FREE);
2887 		}
2888 		/*
2889 		 * The list lock was not taken therefore no list
2890 		 * activity can be necessary.
2891 		 */
2892 		if (was_frozen)
2893 			stat(s, FREE_FROZEN);
2894 		return;
2895 	}
2896 
2897 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2898 		goto slab_empty;
2899 
2900 	/*
2901 	 * Objects left in the slab. If it was not on the partial list before
2902 	 * then add it.
2903 	 */
2904 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2905 		if (kmem_cache_debug(s))
2906 			remove_full(s, n, page);
2907 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2908 		stat(s, FREE_ADD_PARTIAL);
2909 	}
2910 	spin_unlock_irqrestore(&n->list_lock, flags);
2911 	return;
2912 
2913 slab_empty:
2914 	if (prior) {
2915 		/*
2916 		 * Slab on the partial list.
2917 		 */
2918 		remove_partial(n, page);
2919 		stat(s, FREE_REMOVE_PARTIAL);
2920 	} else {
2921 		/* Slab must be on the full list */
2922 		remove_full(s, n, page);
2923 	}
2924 
2925 	spin_unlock_irqrestore(&n->list_lock, flags);
2926 	stat(s, FREE_SLAB);
2927 	discard_slab(s, page);
2928 }
2929 
2930 /*
2931  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2932  * can perform fastpath freeing without additional function calls.
2933  *
2934  * The fastpath is only possible if we are freeing to the current cpu slab
2935  * of this processor. This typically the case if we have just allocated
2936  * the item before.
2937  *
2938  * If fastpath is not possible then fall back to __slab_free where we deal
2939  * with all sorts of special processing.
2940  *
2941  * Bulk free of a freelist with several objects (all pointing to the
2942  * same page) possible by specifying head and tail ptr, plus objects
2943  * count (cnt). Bulk free indicated by tail pointer being set.
2944  */
2945 static __always_inline void do_slab_free(struct kmem_cache *s,
2946 				struct page *page, void *head, void *tail,
2947 				int cnt, unsigned long addr)
2948 {
2949 	void *tail_obj = tail ? : head;
2950 	struct kmem_cache_cpu *c;
2951 	unsigned long tid;
2952 redo:
2953 	/*
2954 	 * Determine the currently cpus per cpu slab.
2955 	 * The cpu may change afterward. However that does not matter since
2956 	 * data is retrieved via this pointer. If we are on the same cpu
2957 	 * during the cmpxchg then the free will succeed.
2958 	 */
2959 	do {
2960 		tid = this_cpu_read(s->cpu_slab->tid);
2961 		c = raw_cpu_ptr(s->cpu_slab);
2962 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2963 		 unlikely(tid != READ_ONCE(c->tid)));
2964 
2965 	/* Same with comment on barrier() in slab_alloc_node() */
2966 	barrier();
2967 
2968 	if (likely(page == c->page)) {
2969 		set_freepointer(s, tail_obj, c->freelist);
2970 
2971 		if (unlikely(!this_cpu_cmpxchg_double(
2972 				s->cpu_slab->freelist, s->cpu_slab->tid,
2973 				c->freelist, tid,
2974 				head, next_tid(tid)))) {
2975 
2976 			note_cmpxchg_failure("slab_free", s, tid);
2977 			goto redo;
2978 		}
2979 		stat(s, FREE_FASTPATH);
2980 	} else
2981 		__slab_free(s, page, head, tail_obj, cnt, addr);
2982 
2983 }
2984 
2985 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2986 				      void *head, void *tail, int cnt,
2987 				      unsigned long addr)
2988 {
2989 	slab_free_freelist_hook(s, head, tail);
2990 	/*
2991 	 * slab_free_freelist_hook() could have put the items into quarantine.
2992 	 * If so, no need to free them.
2993 	 */
2994 	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2995 		return;
2996 	do_slab_free(s, page, head, tail, cnt, addr);
2997 }
2998 
2999 #ifdef CONFIG_KASAN
3000 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3001 {
3002 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3003 }
3004 #endif
3005 
3006 void kmem_cache_free(struct kmem_cache *s, void *x)
3007 {
3008 	s = cache_from_obj(s, x);
3009 	if (!s)
3010 		return;
3011 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3012 	trace_kmem_cache_free(_RET_IP_, x);
3013 }
3014 EXPORT_SYMBOL(kmem_cache_free);
3015 
3016 struct detached_freelist {
3017 	struct page *page;
3018 	void *tail;
3019 	void *freelist;
3020 	int cnt;
3021 	struct kmem_cache *s;
3022 };
3023 
3024 /*
3025  * This function progressively scans the array with free objects (with
3026  * a limited look ahead) and extract objects belonging to the same
3027  * page.  It builds a detached freelist directly within the given
3028  * page/objects.  This can happen without any need for
3029  * synchronization, because the objects are owned by running process.
3030  * The freelist is build up as a single linked list in the objects.
3031  * The idea is, that this detached freelist can then be bulk
3032  * transferred to the real freelist(s), but only requiring a single
3033  * synchronization primitive.  Look ahead in the array is limited due
3034  * to performance reasons.
3035  */
3036 static inline
3037 int build_detached_freelist(struct kmem_cache *s, size_t size,
3038 			    void **p, struct detached_freelist *df)
3039 {
3040 	size_t first_skipped_index = 0;
3041 	int lookahead = 3;
3042 	void *object;
3043 	struct page *page;
3044 
3045 	/* Always re-init detached_freelist */
3046 	df->page = NULL;
3047 
3048 	do {
3049 		object = p[--size];
3050 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3051 	} while (!object && size);
3052 
3053 	if (!object)
3054 		return 0;
3055 
3056 	page = virt_to_head_page(object);
3057 	if (!s) {
3058 		/* Handle kalloc'ed objects */
3059 		if (unlikely(!PageSlab(page))) {
3060 			BUG_ON(!PageCompound(page));
3061 			kfree_hook(object);
3062 			__free_pages(page, compound_order(page));
3063 			p[size] = NULL; /* mark object processed */
3064 			return size;
3065 		}
3066 		/* Derive kmem_cache from object */
3067 		df->s = page->slab_cache;
3068 	} else {
3069 		df->s = cache_from_obj(s, object); /* Support for memcg */
3070 	}
3071 
3072 	/* Start new detached freelist */
3073 	df->page = page;
3074 	set_freepointer(df->s, object, NULL);
3075 	df->tail = object;
3076 	df->freelist = object;
3077 	p[size] = NULL; /* mark object processed */
3078 	df->cnt = 1;
3079 
3080 	while (size) {
3081 		object = p[--size];
3082 		if (!object)
3083 			continue; /* Skip processed objects */
3084 
3085 		/* df->page is always set at this point */
3086 		if (df->page == virt_to_head_page(object)) {
3087 			/* Opportunity build freelist */
3088 			set_freepointer(df->s, object, df->freelist);
3089 			df->freelist = object;
3090 			df->cnt++;
3091 			p[size] = NULL; /* mark object processed */
3092 
3093 			continue;
3094 		}
3095 
3096 		/* Limit look ahead search */
3097 		if (!--lookahead)
3098 			break;
3099 
3100 		if (!first_skipped_index)
3101 			first_skipped_index = size + 1;
3102 	}
3103 
3104 	return first_skipped_index;
3105 }
3106 
3107 /* Note that interrupts must be enabled when calling this function. */
3108 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3109 {
3110 	if (WARN_ON(!size))
3111 		return;
3112 
3113 	do {
3114 		struct detached_freelist df;
3115 
3116 		size = build_detached_freelist(s, size, p, &df);
3117 		if (!df.page)
3118 			continue;
3119 
3120 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3121 	} while (likely(size));
3122 }
3123 EXPORT_SYMBOL(kmem_cache_free_bulk);
3124 
3125 /* Note that interrupts must be enabled when calling this function. */
3126 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3127 			  void **p)
3128 {
3129 	struct kmem_cache_cpu *c;
3130 	int i;
3131 
3132 	/* memcg and kmem_cache debug support */
3133 	s = slab_pre_alloc_hook(s, flags);
3134 	if (unlikely(!s))
3135 		return false;
3136 	/*
3137 	 * Drain objects in the per cpu slab, while disabling local
3138 	 * IRQs, which protects against PREEMPT and interrupts
3139 	 * handlers invoking normal fastpath.
3140 	 */
3141 	local_irq_disable();
3142 	c = this_cpu_ptr(s->cpu_slab);
3143 
3144 	for (i = 0; i < size; i++) {
3145 		void *object = c->freelist;
3146 
3147 		if (unlikely(!object)) {
3148 			/*
3149 			 * Invoking slow path likely have side-effect
3150 			 * of re-populating per CPU c->freelist
3151 			 */
3152 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3153 					    _RET_IP_, c);
3154 			if (unlikely(!p[i]))
3155 				goto error;
3156 
3157 			c = this_cpu_ptr(s->cpu_slab);
3158 			continue; /* goto for-loop */
3159 		}
3160 		c->freelist = get_freepointer(s, object);
3161 		p[i] = object;
3162 	}
3163 	c->tid = next_tid(c->tid);
3164 	local_irq_enable();
3165 
3166 	/* Clear memory outside IRQ disabled fastpath loop */
3167 	if (unlikely(flags & __GFP_ZERO)) {
3168 		int j;
3169 
3170 		for (j = 0; j < i; j++)
3171 			memset(p[j], 0, s->object_size);
3172 	}
3173 
3174 	/* memcg and kmem_cache debug support */
3175 	slab_post_alloc_hook(s, flags, size, p);
3176 	return i;
3177 error:
3178 	local_irq_enable();
3179 	slab_post_alloc_hook(s, flags, i, p);
3180 	__kmem_cache_free_bulk(s, i, p);
3181 	return 0;
3182 }
3183 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3184 
3185 
3186 /*
3187  * Object placement in a slab is made very easy because we always start at
3188  * offset 0. If we tune the size of the object to the alignment then we can
3189  * get the required alignment by putting one properly sized object after
3190  * another.
3191  *
3192  * Notice that the allocation order determines the sizes of the per cpu
3193  * caches. Each processor has always one slab available for allocations.
3194  * Increasing the allocation order reduces the number of times that slabs
3195  * must be moved on and off the partial lists and is therefore a factor in
3196  * locking overhead.
3197  */
3198 
3199 /*
3200  * Mininum / Maximum order of slab pages. This influences locking overhead
3201  * and slab fragmentation. A higher order reduces the number of partial slabs
3202  * and increases the number of allocations possible without having to
3203  * take the list_lock.
3204  */
3205 static int slub_min_order;
3206 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3207 static int slub_min_objects;
3208 
3209 /*
3210  * Calculate the order of allocation given an slab object size.
3211  *
3212  * The order of allocation has significant impact on performance and other
3213  * system components. Generally order 0 allocations should be preferred since
3214  * order 0 does not cause fragmentation in the page allocator. Larger objects
3215  * be problematic to put into order 0 slabs because there may be too much
3216  * unused space left. We go to a higher order if more than 1/16th of the slab
3217  * would be wasted.
3218  *
3219  * In order to reach satisfactory performance we must ensure that a minimum
3220  * number of objects is in one slab. Otherwise we may generate too much
3221  * activity on the partial lists which requires taking the list_lock. This is
3222  * less a concern for large slabs though which are rarely used.
3223  *
3224  * slub_max_order specifies the order where we begin to stop considering the
3225  * number of objects in a slab as critical. If we reach slub_max_order then
3226  * we try to keep the page order as low as possible. So we accept more waste
3227  * of space in favor of a small page order.
3228  *
3229  * Higher order allocations also allow the placement of more objects in a
3230  * slab and thereby reduce object handling overhead. If the user has
3231  * requested a higher mininum order then we start with that one instead of
3232  * the smallest order which will fit the object.
3233  */
3234 static inline int slab_order(int size, int min_objects,
3235 				int max_order, int fract_leftover, int reserved)
3236 {
3237 	int order;
3238 	int rem;
3239 	int min_order = slub_min_order;
3240 
3241 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3242 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3243 
3244 	for (order = max(min_order, get_order(min_objects * size + reserved));
3245 			order <= max_order; order++) {
3246 
3247 		unsigned long slab_size = PAGE_SIZE << order;
3248 
3249 		rem = (slab_size - reserved) % size;
3250 
3251 		if (rem <= slab_size / fract_leftover)
3252 			break;
3253 	}
3254 
3255 	return order;
3256 }
3257 
3258 static inline int calculate_order(int size, int reserved)
3259 {
3260 	int order;
3261 	int min_objects;
3262 	int fraction;
3263 	int max_objects;
3264 
3265 	/*
3266 	 * Attempt to find best configuration for a slab. This
3267 	 * works by first attempting to generate a layout with
3268 	 * the best configuration and backing off gradually.
3269 	 *
3270 	 * First we increase the acceptable waste in a slab. Then
3271 	 * we reduce the minimum objects required in a slab.
3272 	 */
3273 	min_objects = slub_min_objects;
3274 	if (!min_objects)
3275 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3276 	max_objects = order_objects(slub_max_order, size, reserved);
3277 	min_objects = min(min_objects, max_objects);
3278 
3279 	while (min_objects > 1) {
3280 		fraction = 16;
3281 		while (fraction >= 4) {
3282 			order = slab_order(size, min_objects,
3283 					slub_max_order, fraction, reserved);
3284 			if (order <= slub_max_order)
3285 				return order;
3286 			fraction /= 2;
3287 		}
3288 		min_objects--;
3289 	}
3290 
3291 	/*
3292 	 * We were unable to place multiple objects in a slab. Now
3293 	 * lets see if we can place a single object there.
3294 	 */
3295 	order = slab_order(size, 1, slub_max_order, 1, reserved);
3296 	if (order <= slub_max_order)
3297 		return order;
3298 
3299 	/*
3300 	 * Doh this slab cannot be placed using slub_max_order.
3301 	 */
3302 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3303 	if (order < MAX_ORDER)
3304 		return order;
3305 	return -ENOSYS;
3306 }
3307 
3308 static void
3309 init_kmem_cache_node(struct kmem_cache_node *n)
3310 {
3311 	n->nr_partial = 0;
3312 	spin_lock_init(&n->list_lock);
3313 	INIT_LIST_HEAD(&n->partial);
3314 #ifdef CONFIG_SLUB_DEBUG
3315 	atomic_long_set(&n->nr_slabs, 0);
3316 	atomic_long_set(&n->total_objects, 0);
3317 	INIT_LIST_HEAD(&n->full);
3318 #endif
3319 }
3320 
3321 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3322 {
3323 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3324 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3325 
3326 	/*
3327 	 * Must align to double word boundary for the double cmpxchg
3328 	 * instructions to work; see __pcpu_double_call_return_bool().
3329 	 */
3330 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3331 				     2 * sizeof(void *));
3332 
3333 	if (!s->cpu_slab)
3334 		return 0;
3335 
3336 	init_kmem_cache_cpus(s);
3337 
3338 	return 1;
3339 }
3340 
3341 static struct kmem_cache *kmem_cache_node;
3342 
3343 /*
3344  * No kmalloc_node yet so do it by hand. We know that this is the first
3345  * slab on the node for this slabcache. There are no concurrent accesses
3346  * possible.
3347  *
3348  * Note that this function only works on the kmem_cache_node
3349  * when allocating for the kmem_cache_node. This is used for bootstrapping
3350  * memory on a fresh node that has no slab structures yet.
3351  */
3352 static void early_kmem_cache_node_alloc(int node)
3353 {
3354 	struct page *page;
3355 	struct kmem_cache_node *n;
3356 
3357 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3358 
3359 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3360 
3361 	BUG_ON(!page);
3362 	if (page_to_nid(page) != node) {
3363 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3364 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3365 	}
3366 
3367 	n = page->freelist;
3368 	BUG_ON(!n);
3369 	page->freelist = get_freepointer(kmem_cache_node, n);
3370 	page->inuse = 1;
3371 	page->frozen = 0;
3372 	kmem_cache_node->node[node] = n;
3373 #ifdef CONFIG_SLUB_DEBUG
3374 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3375 	init_tracking(kmem_cache_node, n);
3376 #endif
3377 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3378 		      GFP_KERNEL);
3379 	init_kmem_cache_node(n);
3380 	inc_slabs_node(kmem_cache_node, node, page->objects);
3381 
3382 	/*
3383 	 * No locks need to be taken here as it has just been
3384 	 * initialized and there is no concurrent access.
3385 	 */
3386 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3387 }
3388 
3389 static void free_kmem_cache_nodes(struct kmem_cache *s)
3390 {
3391 	int node;
3392 	struct kmem_cache_node *n;
3393 
3394 	for_each_kmem_cache_node(s, node, n) {
3395 		s->node[node] = NULL;
3396 		kmem_cache_free(kmem_cache_node, n);
3397 	}
3398 }
3399 
3400 void __kmem_cache_release(struct kmem_cache *s)
3401 {
3402 	cache_random_seq_destroy(s);
3403 	free_percpu(s->cpu_slab);
3404 	free_kmem_cache_nodes(s);
3405 }
3406 
3407 static int init_kmem_cache_nodes(struct kmem_cache *s)
3408 {
3409 	int node;
3410 
3411 	for_each_node_state(node, N_NORMAL_MEMORY) {
3412 		struct kmem_cache_node *n;
3413 
3414 		if (slab_state == DOWN) {
3415 			early_kmem_cache_node_alloc(node);
3416 			continue;
3417 		}
3418 		n = kmem_cache_alloc_node(kmem_cache_node,
3419 						GFP_KERNEL, node);
3420 
3421 		if (!n) {
3422 			free_kmem_cache_nodes(s);
3423 			return 0;
3424 		}
3425 
3426 		init_kmem_cache_node(n);
3427 		s->node[node] = n;
3428 	}
3429 	return 1;
3430 }
3431 
3432 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3433 {
3434 	if (min < MIN_PARTIAL)
3435 		min = MIN_PARTIAL;
3436 	else if (min > MAX_PARTIAL)
3437 		min = MAX_PARTIAL;
3438 	s->min_partial = min;
3439 }
3440 
3441 static void set_cpu_partial(struct kmem_cache *s)
3442 {
3443 #ifdef CONFIG_SLUB_CPU_PARTIAL
3444 	/*
3445 	 * cpu_partial determined the maximum number of objects kept in the
3446 	 * per cpu partial lists of a processor.
3447 	 *
3448 	 * Per cpu partial lists mainly contain slabs that just have one
3449 	 * object freed. If they are used for allocation then they can be
3450 	 * filled up again with minimal effort. The slab will never hit the
3451 	 * per node partial lists and therefore no locking will be required.
3452 	 *
3453 	 * This setting also determines
3454 	 *
3455 	 * A) The number of objects from per cpu partial slabs dumped to the
3456 	 *    per node list when we reach the limit.
3457 	 * B) The number of objects in cpu partial slabs to extract from the
3458 	 *    per node list when we run out of per cpu objects. We only fetch
3459 	 *    50% to keep some capacity around for frees.
3460 	 */
3461 	if (!kmem_cache_has_cpu_partial(s))
3462 		s->cpu_partial = 0;
3463 	else if (s->size >= PAGE_SIZE)
3464 		s->cpu_partial = 2;
3465 	else if (s->size >= 1024)
3466 		s->cpu_partial = 6;
3467 	else if (s->size >= 256)
3468 		s->cpu_partial = 13;
3469 	else
3470 		s->cpu_partial = 30;
3471 #endif
3472 }
3473 
3474 /*
3475  * calculate_sizes() determines the order and the distribution of data within
3476  * a slab object.
3477  */
3478 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3479 {
3480 	unsigned long flags = s->flags;
3481 	size_t size = s->object_size;
3482 	int order;
3483 
3484 	/*
3485 	 * Round up object size to the next word boundary. We can only
3486 	 * place the free pointer at word boundaries and this determines
3487 	 * the possible location of the free pointer.
3488 	 */
3489 	size = ALIGN(size, sizeof(void *));
3490 
3491 #ifdef CONFIG_SLUB_DEBUG
3492 	/*
3493 	 * Determine if we can poison the object itself. If the user of
3494 	 * the slab may touch the object after free or before allocation
3495 	 * then we should never poison the object itself.
3496 	 */
3497 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3498 			!s->ctor)
3499 		s->flags |= __OBJECT_POISON;
3500 	else
3501 		s->flags &= ~__OBJECT_POISON;
3502 
3503 
3504 	/*
3505 	 * If we are Redzoning then check if there is some space between the
3506 	 * end of the object and the free pointer. If not then add an
3507 	 * additional word to have some bytes to store Redzone information.
3508 	 */
3509 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3510 		size += sizeof(void *);
3511 #endif
3512 
3513 	/*
3514 	 * With that we have determined the number of bytes in actual use
3515 	 * by the object. This is the potential offset to the free pointer.
3516 	 */
3517 	s->inuse = size;
3518 
3519 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3520 		s->ctor)) {
3521 		/*
3522 		 * Relocate free pointer after the object if it is not
3523 		 * permitted to overwrite the first word of the object on
3524 		 * kmem_cache_free.
3525 		 *
3526 		 * This is the case if we do RCU, have a constructor or
3527 		 * destructor or are poisoning the objects.
3528 		 */
3529 		s->offset = size;
3530 		size += sizeof(void *);
3531 	}
3532 
3533 #ifdef CONFIG_SLUB_DEBUG
3534 	if (flags & SLAB_STORE_USER)
3535 		/*
3536 		 * Need to store information about allocs and frees after
3537 		 * the object.
3538 		 */
3539 		size += 2 * sizeof(struct track);
3540 #endif
3541 
3542 	kasan_cache_create(s, &size, &s->flags);
3543 #ifdef CONFIG_SLUB_DEBUG
3544 	if (flags & SLAB_RED_ZONE) {
3545 		/*
3546 		 * Add some empty padding so that we can catch
3547 		 * overwrites from earlier objects rather than let
3548 		 * tracking information or the free pointer be
3549 		 * corrupted if a user writes before the start
3550 		 * of the object.
3551 		 */
3552 		size += sizeof(void *);
3553 
3554 		s->red_left_pad = sizeof(void *);
3555 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3556 		size += s->red_left_pad;
3557 	}
3558 #endif
3559 
3560 	/*
3561 	 * SLUB stores one object immediately after another beginning from
3562 	 * offset 0. In order to align the objects we have to simply size
3563 	 * each object to conform to the alignment.
3564 	 */
3565 	size = ALIGN(size, s->align);
3566 	s->size = size;
3567 	if (forced_order >= 0)
3568 		order = forced_order;
3569 	else
3570 		order = calculate_order(size, s->reserved);
3571 
3572 	if (order < 0)
3573 		return 0;
3574 
3575 	s->allocflags = 0;
3576 	if (order)
3577 		s->allocflags |= __GFP_COMP;
3578 
3579 	if (s->flags & SLAB_CACHE_DMA)
3580 		s->allocflags |= GFP_DMA;
3581 
3582 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3583 		s->allocflags |= __GFP_RECLAIMABLE;
3584 
3585 	/*
3586 	 * Determine the number of objects per slab
3587 	 */
3588 	s->oo = oo_make(order, size, s->reserved);
3589 	s->min = oo_make(get_order(size), size, s->reserved);
3590 	if (oo_objects(s->oo) > oo_objects(s->max))
3591 		s->max = s->oo;
3592 
3593 	return !!oo_objects(s->oo);
3594 }
3595 
3596 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3597 {
3598 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3599 	s->reserved = 0;
3600 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3601 	s->random = get_random_long();
3602 #endif
3603 
3604 	if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3605 		s->reserved = sizeof(struct rcu_head);
3606 
3607 	if (!calculate_sizes(s, -1))
3608 		goto error;
3609 	if (disable_higher_order_debug) {
3610 		/*
3611 		 * Disable debugging flags that store metadata if the min slab
3612 		 * order increased.
3613 		 */
3614 		if (get_order(s->size) > get_order(s->object_size)) {
3615 			s->flags &= ~DEBUG_METADATA_FLAGS;
3616 			s->offset = 0;
3617 			if (!calculate_sizes(s, -1))
3618 				goto error;
3619 		}
3620 	}
3621 
3622 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3623     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3624 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3625 		/* Enable fast mode */
3626 		s->flags |= __CMPXCHG_DOUBLE;
3627 #endif
3628 
3629 	/*
3630 	 * The larger the object size is, the more pages we want on the partial
3631 	 * list to avoid pounding the page allocator excessively.
3632 	 */
3633 	set_min_partial(s, ilog2(s->size) / 2);
3634 
3635 	set_cpu_partial(s);
3636 
3637 #ifdef CONFIG_NUMA
3638 	s->remote_node_defrag_ratio = 1000;
3639 #endif
3640 
3641 	/* Initialize the pre-computed randomized freelist if slab is up */
3642 	if (slab_state >= UP) {
3643 		if (init_cache_random_seq(s))
3644 			goto error;
3645 	}
3646 
3647 	if (!init_kmem_cache_nodes(s))
3648 		goto error;
3649 
3650 	if (alloc_kmem_cache_cpus(s))
3651 		return 0;
3652 
3653 	free_kmem_cache_nodes(s);
3654 error:
3655 	if (flags & SLAB_PANIC)
3656 		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3657 		      s->name, (unsigned long)s->size, s->size,
3658 		      oo_order(s->oo), s->offset, flags);
3659 	return -EINVAL;
3660 }
3661 
3662 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3663 							const char *text)
3664 {
3665 #ifdef CONFIG_SLUB_DEBUG
3666 	void *addr = page_address(page);
3667 	void *p;
3668 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3669 				     sizeof(long), GFP_ATOMIC);
3670 	if (!map)
3671 		return;
3672 	slab_err(s, page, text, s->name);
3673 	slab_lock(page);
3674 
3675 	get_map(s, page, map);
3676 	for_each_object(p, s, addr, page->objects) {
3677 
3678 		if (!test_bit(slab_index(p, s, addr), map)) {
3679 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3680 			print_tracking(s, p);
3681 		}
3682 	}
3683 	slab_unlock(page);
3684 	kfree(map);
3685 #endif
3686 }
3687 
3688 /*
3689  * Attempt to free all partial slabs on a node.
3690  * This is called from __kmem_cache_shutdown(). We must take list_lock
3691  * because sysfs file might still access partial list after the shutdowning.
3692  */
3693 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3694 {
3695 	LIST_HEAD(discard);
3696 	struct page *page, *h;
3697 
3698 	BUG_ON(irqs_disabled());
3699 	spin_lock_irq(&n->list_lock);
3700 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3701 		if (!page->inuse) {
3702 			remove_partial(n, page);
3703 			list_add(&page->lru, &discard);
3704 		} else {
3705 			list_slab_objects(s, page,
3706 			"Objects remaining in %s on __kmem_cache_shutdown()");
3707 		}
3708 	}
3709 	spin_unlock_irq(&n->list_lock);
3710 
3711 	list_for_each_entry_safe(page, h, &discard, lru)
3712 		discard_slab(s, page);
3713 }
3714 
3715 /*
3716  * Release all resources used by a slab cache.
3717  */
3718 int __kmem_cache_shutdown(struct kmem_cache *s)
3719 {
3720 	int node;
3721 	struct kmem_cache_node *n;
3722 
3723 	flush_all(s);
3724 	/* Attempt to free all objects */
3725 	for_each_kmem_cache_node(s, node, n) {
3726 		free_partial(s, n);
3727 		if (n->nr_partial || slabs_node(s, node))
3728 			return 1;
3729 	}
3730 	sysfs_slab_remove(s);
3731 	return 0;
3732 }
3733 
3734 /********************************************************************
3735  *		Kmalloc subsystem
3736  *******************************************************************/
3737 
3738 static int __init setup_slub_min_order(char *str)
3739 {
3740 	get_option(&str, &slub_min_order);
3741 
3742 	return 1;
3743 }
3744 
3745 __setup("slub_min_order=", setup_slub_min_order);
3746 
3747 static int __init setup_slub_max_order(char *str)
3748 {
3749 	get_option(&str, &slub_max_order);
3750 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3751 
3752 	return 1;
3753 }
3754 
3755 __setup("slub_max_order=", setup_slub_max_order);
3756 
3757 static int __init setup_slub_min_objects(char *str)
3758 {
3759 	get_option(&str, &slub_min_objects);
3760 
3761 	return 1;
3762 }
3763 
3764 __setup("slub_min_objects=", setup_slub_min_objects);
3765 
3766 void *__kmalloc(size_t size, gfp_t flags)
3767 {
3768 	struct kmem_cache *s;
3769 	void *ret;
3770 
3771 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3772 		return kmalloc_large(size, flags);
3773 
3774 	s = kmalloc_slab(size, flags);
3775 
3776 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3777 		return s;
3778 
3779 	ret = slab_alloc(s, flags, _RET_IP_);
3780 
3781 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3782 
3783 	kasan_kmalloc(s, ret, size, flags);
3784 
3785 	return ret;
3786 }
3787 EXPORT_SYMBOL(__kmalloc);
3788 
3789 #ifdef CONFIG_NUMA
3790 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3791 {
3792 	struct page *page;
3793 	void *ptr = NULL;
3794 
3795 	flags |= __GFP_COMP | __GFP_NOTRACK;
3796 	page = alloc_pages_node(node, flags, get_order(size));
3797 	if (page)
3798 		ptr = page_address(page);
3799 
3800 	kmalloc_large_node_hook(ptr, size, flags);
3801 	return ptr;
3802 }
3803 
3804 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3805 {
3806 	struct kmem_cache *s;
3807 	void *ret;
3808 
3809 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3810 		ret = kmalloc_large_node(size, flags, node);
3811 
3812 		trace_kmalloc_node(_RET_IP_, ret,
3813 				   size, PAGE_SIZE << get_order(size),
3814 				   flags, node);
3815 
3816 		return ret;
3817 	}
3818 
3819 	s = kmalloc_slab(size, flags);
3820 
3821 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3822 		return s;
3823 
3824 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3825 
3826 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3827 
3828 	kasan_kmalloc(s, ret, size, flags);
3829 
3830 	return ret;
3831 }
3832 EXPORT_SYMBOL(__kmalloc_node);
3833 #endif
3834 
3835 #ifdef CONFIG_HARDENED_USERCOPY
3836 /*
3837  * Rejects objects that are incorrectly sized.
3838  *
3839  * Returns NULL if check passes, otherwise const char * to name of cache
3840  * to indicate an error.
3841  */
3842 const char *__check_heap_object(const void *ptr, unsigned long n,
3843 				struct page *page)
3844 {
3845 	struct kmem_cache *s;
3846 	unsigned long offset;
3847 	size_t object_size;
3848 
3849 	/* Find object and usable object size. */
3850 	s = page->slab_cache;
3851 	object_size = slab_ksize(s);
3852 
3853 	/* Reject impossible pointers. */
3854 	if (ptr < page_address(page))
3855 		return s->name;
3856 
3857 	/* Find offset within object. */
3858 	offset = (ptr - page_address(page)) % s->size;
3859 
3860 	/* Adjust for redzone and reject if within the redzone. */
3861 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3862 		if (offset < s->red_left_pad)
3863 			return s->name;
3864 		offset -= s->red_left_pad;
3865 	}
3866 
3867 	/* Allow address range falling entirely within object size. */
3868 	if (offset <= object_size && n <= object_size - offset)
3869 		return NULL;
3870 
3871 	return s->name;
3872 }
3873 #endif /* CONFIG_HARDENED_USERCOPY */
3874 
3875 static size_t __ksize(const void *object)
3876 {
3877 	struct page *page;
3878 
3879 	if (unlikely(object == ZERO_SIZE_PTR))
3880 		return 0;
3881 
3882 	page = virt_to_head_page(object);
3883 
3884 	if (unlikely(!PageSlab(page))) {
3885 		WARN_ON(!PageCompound(page));
3886 		return PAGE_SIZE << compound_order(page);
3887 	}
3888 
3889 	return slab_ksize(page->slab_cache);
3890 }
3891 
3892 size_t ksize(const void *object)
3893 {
3894 	size_t size = __ksize(object);
3895 	/* We assume that ksize callers could use whole allocated area,
3896 	 * so we need to unpoison this area.
3897 	 */
3898 	kasan_unpoison_shadow(object, size);
3899 	return size;
3900 }
3901 EXPORT_SYMBOL(ksize);
3902 
3903 void kfree(const void *x)
3904 {
3905 	struct page *page;
3906 	void *object = (void *)x;
3907 
3908 	trace_kfree(_RET_IP_, x);
3909 
3910 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3911 		return;
3912 
3913 	page = virt_to_head_page(x);
3914 	if (unlikely(!PageSlab(page))) {
3915 		BUG_ON(!PageCompound(page));
3916 		kfree_hook(x);
3917 		__free_pages(page, compound_order(page));
3918 		return;
3919 	}
3920 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3921 }
3922 EXPORT_SYMBOL(kfree);
3923 
3924 #define SHRINK_PROMOTE_MAX 32
3925 
3926 /*
3927  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3928  * up most to the head of the partial lists. New allocations will then
3929  * fill those up and thus they can be removed from the partial lists.
3930  *
3931  * The slabs with the least items are placed last. This results in them
3932  * being allocated from last increasing the chance that the last objects
3933  * are freed in them.
3934  */
3935 int __kmem_cache_shrink(struct kmem_cache *s)
3936 {
3937 	int node;
3938 	int i;
3939 	struct kmem_cache_node *n;
3940 	struct page *page;
3941 	struct page *t;
3942 	struct list_head discard;
3943 	struct list_head promote[SHRINK_PROMOTE_MAX];
3944 	unsigned long flags;
3945 	int ret = 0;
3946 
3947 	flush_all(s);
3948 	for_each_kmem_cache_node(s, node, n) {
3949 		INIT_LIST_HEAD(&discard);
3950 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3951 			INIT_LIST_HEAD(promote + i);
3952 
3953 		spin_lock_irqsave(&n->list_lock, flags);
3954 
3955 		/*
3956 		 * Build lists of slabs to discard or promote.
3957 		 *
3958 		 * Note that concurrent frees may occur while we hold the
3959 		 * list_lock. page->inuse here is the upper limit.
3960 		 */
3961 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3962 			int free = page->objects - page->inuse;
3963 
3964 			/* Do not reread page->inuse */
3965 			barrier();
3966 
3967 			/* We do not keep full slabs on the list */
3968 			BUG_ON(free <= 0);
3969 
3970 			if (free == page->objects) {
3971 				list_move(&page->lru, &discard);
3972 				n->nr_partial--;
3973 			} else if (free <= SHRINK_PROMOTE_MAX)
3974 				list_move(&page->lru, promote + free - 1);
3975 		}
3976 
3977 		/*
3978 		 * Promote the slabs filled up most to the head of the
3979 		 * partial list.
3980 		 */
3981 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3982 			list_splice(promote + i, &n->partial);
3983 
3984 		spin_unlock_irqrestore(&n->list_lock, flags);
3985 
3986 		/* Release empty slabs */
3987 		list_for_each_entry_safe(page, t, &discard, lru)
3988 			discard_slab(s, page);
3989 
3990 		if (slabs_node(s, node))
3991 			ret = 1;
3992 	}
3993 
3994 	return ret;
3995 }
3996 
3997 #ifdef CONFIG_MEMCG
3998 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3999 {
4000 	/*
4001 	 * Called with all the locks held after a sched RCU grace period.
4002 	 * Even if @s becomes empty after shrinking, we can't know that @s
4003 	 * doesn't have allocations already in-flight and thus can't
4004 	 * destroy @s until the associated memcg is released.
4005 	 *
4006 	 * However, let's remove the sysfs files for empty caches here.
4007 	 * Each cache has a lot of interface files which aren't
4008 	 * particularly useful for empty draining caches; otherwise, we can
4009 	 * easily end up with millions of unnecessary sysfs files on
4010 	 * systems which have a lot of memory and transient cgroups.
4011 	 */
4012 	if (!__kmem_cache_shrink(s))
4013 		sysfs_slab_remove(s);
4014 }
4015 
4016 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4017 {
4018 	/*
4019 	 * Disable empty slabs caching. Used to avoid pinning offline
4020 	 * memory cgroups by kmem pages that can be freed.
4021 	 */
4022 	slub_set_cpu_partial(s, 0);
4023 	s->min_partial = 0;
4024 
4025 	/*
4026 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4027 	 * we have to make sure the change is visible before shrinking.
4028 	 */
4029 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4030 }
4031 #endif
4032 
4033 static int slab_mem_going_offline_callback(void *arg)
4034 {
4035 	struct kmem_cache *s;
4036 
4037 	mutex_lock(&slab_mutex);
4038 	list_for_each_entry(s, &slab_caches, list)
4039 		__kmem_cache_shrink(s);
4040 	mutex_unlock(&slab_mutex);
4041 
4042 	return 0;
4043 }
4044 
4045 static void slab_mem_offline_callback(void *arg)
4046 {
4047 	struct kmem_cache_node *n;
4048 	struct kmem_cache *s;
4049 	struct memory_notify *marg = arg;
4050 	int offline_node;
4051 
4052 	offline_node = marg->status_change_nid_normal;
4053 
4054 	/*
4055 	 * If the node still has available memory. we need kmem_cache_node
4056 	 * for it yet.
4057 	 */
4058 	if (offline_node < 0)
4059 		return;
4060 
4061 	mutex_lock(&slab_mutex);
4062 	list_for_each_entry(s, &slab_caches, list) {
4063 		n = get_node(s, offline_node);
4064 		if (n) {
4065 			/*
4066 			 * if n->nr_slabs > 0, slabs still exist on the node
4067 			 * that is going down. We were unable to free them,
4068 			 * and offline_pages() function shouldn't call this
4069 			 * callback. So, we must fail.
4070 			 */
4071 			BUG_ON(slabs_node(s, offline_node));
4072 
4073 			s->node[offline_node] = NULL;
4074 			kmem_cache_free(kmem_cache_node, n);
4075 		}
4076 	}
4077 	mutex_unlock(&slab_mutex);
4078 }
4079 
4080 static int slab_mem_going_online_callback(void *arg)
4081 {
4082 	struct kmem_cache_node *n;
4083 	struct kmem_cache *s;
4084 	struct memory_notify *marg = arg;
4085 	int nid = marg->status_change_nid_normal;
4086 	int ret = 0;
4087 
4088 	/*
4089 	 * If the node's memory is already available, then kmem_cache_node is
4090 	 * already created. Nothing to do.
4091 	 */
4092 	if (nid < 0)
4093 		return 0;
4094 
4095 	/*
4096 	 * We are bringing a node online. No memory is available yet. We must
4097 	 * allocate a kmem_cache_node structure in order to bring the node
4098 	 * online.
4099 	 */
4100 	mutex_lock(&slab_mutex);
4101 	list_for_each_entry(s, &slab_caches, list) {
4102 		/*
4103 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4104 		 *      since memory is not yet available from the node that
4105 		 *      is brought up.
4106 		 */
4107 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4108 		if (!n) {
4109 			ret = -ENOMEM;
4110 			goto out;
4111 		}
4112 		init_kmem_cache_node(n);
4113 		s->node[nid] = n;
4114 	}
4115 out:
4116 	mutex_unlock(&slab_mutex);
4117 	return ret;
4118 }
4119 
4120 static int slab_memory_callback(struct notifier_block *self,
4121 				unsigned long action, void *arg)
4122 {
4123 	int ret = 0;
4124 
4125 	switch (action) {
4126 	case MEM_GOING_ONLINE:
4127 		ret = slab_mem_going_online_callback(arg);
4128 		break;
4129 	case MEM_GOING_OFFLINE:
4130 		ret = slab_mem_going_offline_callback(arg);
4131 		break;
4132 	case MEM_OFFLINE:
4133 	case MEM_CANCEL_ONLINE:
4134 		slab_mem_offline_callback(arg);
4135 		break;
4136 	case MEM_ONLINE:
4137 	case MEM_CANCEL_OFFLINE:
4138 		break;
4139 	}
4140 	if (ret)
4141 		ret = notifier_from_errno(ret);
4142 	else
4143 		ret = NOTIFY_OK;
4144 	return ret;
4145 }
4146 
4147 static struct notifier_block slab_memory_callback_nb = {
4148 	.notifier_call = slab_memory_callback,
4149 	.priority = SLAB_CALLBACK_PRI,
4150 };
4151 
4152 /********************************************************************
4153  *			Basic setup of slabs
4154  *******************************************************************/
4155 
4156 /*
4157  * Used for early kmem_cache structures that were allocated using
4158  * the page allocator. Allocate them properly then fix up the pointers
4159  * that may be pointing to the wrong kmem_cache structure.
4160  */
4161 
4162 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4163 {
4164 	int node;
4165 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4166 	struct kmem_cache_node *n;
4167 
4168 	memcpy(s, static_cache, kmem_cache->object_size);
4169 
4170 	/*
4171 	 * This runs very early, and only the boot processor is supposed to be
4172 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4173 	 * IPIs around.
4174 	 */
4175 	__flush_cpu_slab(s, smp_processor_id());
4176 	for_each_kmem_cache_node(s, node, n) {
4177 		struct page *p;
4178 
4179 		list_for_each_entry(p, &n->partial, lru)
4180 			p->slab_cache = s;
4181 
4182 #ifdef CONFIG_SLUB_DEBUG
4183 		list_for_each_entry(p, &n->full, lru)
4184 			p->slab_cache = s;
4185 #endif
4186 	}
4187 	slab_init_memcg_params(s);
4188 	list_add(&s->list, &slab_caches);
4189 	memcg_link_cache(s);
4190 	return s;
4191 }
4192 
4193 void __init kmem_cache_init(void)
4194 {
4195 	static __initdata struct kmem_cache boot_kmem_cache,
4196 		boot_kmem_cache_node;
4197 
4198 	if (debug_guardpage_minorder())
4199 		slub_max_order = 0;
4200 
4201 	kmem_cache_node = &boot_kmem_cache_node;
4202 	kmem_cache = &boot_kmem_cache;
4203 
4204 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4205 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4206 
4207 	register_hotmemory_notifier(&slab_memory_callback_nb);
4208 
4209 	/* Able to allocate the per node structures */
4210 	slab_state = PARTIAL;
4211 
4212 	create_boot_cache(kmem_cache, "kmem_cache",
4213 			offsetof(struct kmem_cache, node) +
4214 				nr_node_ids * sizeof(struct kmem_cache_node *),
4215 		       SLAB_HWCACHE_ALIGN);
4216 
4217 	kmem_cache = bootstrap(&boot_kmem_cache);
4218 
4219 	/*
4220 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
4221 	 * kmem_cache_node is separately allocated so no need to
4222 	 * update any list pointers.
4223 	 */
4224 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4225 
4226 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4227 	setup_kmalloc_cache_index_table();
4228 	create_kmalloc_caches(0);
4229 
4230 	/* Setup random freelists for each cache */
4231 	init_freelist_randomization();
4232 
4233 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4234 				  slub_cpu_dead);
4235 
4236 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4237 		cache_line_size(),
4238 		slub_min_order, slub_max_order, slub_min_objects,
4239 		nr_cpu_ids, nr_node_ids);
4240 }
4241 
4242 void __init kmem_cache_init_late(void)
4243 {
4244 }
4245 
4246 struct kmem_cache *
4247 __kmem_cache_alias(const char *name, size_t size, size_t align,
4248 		   unsigned long flags, void (*ctor)(void *))
4249 {
4250 	struct kmem_cache *s, *c;
4251 
4252 	s = find_mergeable(size, align, flags, name, ctor);
4253 	if (s) {
4254 		s->refcount++;
4255 
4256 		/*
4257 		 * Adjust the object sizes so that we clear
4258 		 * the complete object on kzalloc.
4259 		 */
4260 		s->object_size = max(s->object_size, (int)size);
4261 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4262 
4263 		for_each_memcg_cache(c, s) {
4264 			c->object_size = s->object_size;
4265 			c->inuse = max_t(int, c->inuse,
4266 					 ALIGN(size, sizeof(void *)));
4267 		}
4268 
4269 		if (sysfs_slab_alias(s, name)) {
4270 			s->refcount--;
4271 			s = NULL;
4272 		}
4273 	}
4274 
4275 	return s;
4276 }
4277 
4278 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4279 {
4280 	int err;
4281 
4282 	err = kmem_cache_open(s, flags);
4283 	if (err)
4284 		return err;
4285 
4286 	/* Mutex is not taken during early boot */
4287 	if (slab_state <= UP)
4288 		return 0;
4289 
4290 	memcg_propagate_slab_attrs(s);
4291 	err = sysfs_slab_add(s);
4292 	if (err)
4293 		__kmem_cache_release(s);
4294 
4295 	return err;
4296 }
4297 
4298 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4299 {
4300 	struct kmem_cache *s;
4301 	void *ret;
4302 
4303 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4304 		return kmalloc_large(size, gfpflags);
4305 
4306 	s = kmalloc_slab(size, gfpflags);
4307 
4308 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4309 		return s;
4310 
4311 	ret = slab_alloc(s, gfpflags, caller);
4312 
4313 	/* Honor the call site pointer we received. */
4314 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4315 
4316 	return ret;
4317 }
4318 
4319 #ifdef CONFIG_NUMA
4320 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4321 					int node, unsigned long caller)
4322 {
4323 	struct kmem_cache *s;
4324 	void *ret;
4325 
4326 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4327 		ret = kmalloc_large_node(size, gfpflags, node);
4328 
4329 		trace_kmalloc_node(caller, ret,
4330 				   size, PAGE_SIZE << get_order(size),
4331 				   gfpflags, node);
4332 
4333 		return ret;
4334 	}
4335 
4336 	s = kmalloc_slab(size, gfpflags);
4337 
4338 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4339 		return s;
4340 
4341 	ret = slab_alloc_node(s, gfpflags, node, caller);
4342 
4343 	/* Honor the call site pointer we received. */
4344 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4345 
4346 	return ret;
4347 }
4348 #endif
4349 
4350 #ifdef CONFIG_SYSFS
4351 static int count_inuse(struct page *page)
4352 {
4353 	return page->inuse;
4354 }
4355 
4356 static int count_total(struct page *page)
4357 {
4358 	return page->objects;
4359 }
4360 #endif
4361 
4362 #ifdef CONFIG_SLUB_DEBUG
4363 static int validate_slab(struct kmem_cache *s, struct page *page,
4364 						unsigned long *map)
4365 {
4366 	void *p;
4367 	void *addr = page_address(page);
4368 
4369 	if (!check_slab(s, page) ||
4370 			!on_freelist(s, page, NULL))
4371 		return 0;
4372 
4373 	/* Now we know that a valid freelist exists */
4374 	bitmap_zero(map, page->objects);
4375 
4376 	get_map(s, page, map);
4377 	for_each_object(p, s, addr, page->objects) {
4378 		if (test_bit(slab_index(p, s, addr), map))
4379 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4380 				return 0;
4381 	}
4382 
4383 	for_each_object(p, s, addr, page->objects)
4384 		if (!test_bit(slab_index(p, s, addr), map))
4385 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4386 				return 0;
4387 	return 1;
4388 }
4389 
4390 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4391 						unsigned long *map)
4392 {
4393 	slab_lock(page);
4394 	validate_slab(s, page, map);
4395 	slab_unlock(page);
4396 }
4397 
4398 static int validate_slab_node(struct kmem_cache *s,
4399 		struct kmem_cache_node *n, unsigned long *map)
4400 {
4401 	unsigned long count = 0;
4402 	struct page *page;
4403 	unsigned long flags;
4404 
4405 	spin_lock_irqsave(&n->list_lock, flags);
4406 
4407 	list_for_each_entry(page, &n->partial, lru) {
4408 		validate_slab_slab(s, page, map);
4409 		count++;
4410 	}
4411 	if (count != n->nr_partial)
4412 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4413 		       s->name, count, n->nr_partial);
4414 
4415 	if (!(s->flags & SLAB_STORE_USER))
4416 		goto out;
4417 
4418 	list_for_each_entry(page, &n->full, lru) {
4419 		validate_slab_slab(s, page, map);
4420 		count++;
4421 	}
4422 	if (count != atomic_long_read(&n->nr_slabs))
4423 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4424 		       s->name, count, atomic_long_read(&n->nr_slabs));
4425 
4426 out:
4427 	spin_unlock_irqrestore(&n->list_lock, flags);
4428 	return count;
4429 }
4430 
4431 static long validate_slab_cache(struct kmem_cache *s)
4432 {
4433 	int node;
4434 	unsigned long count = 0;
4435 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4436 				sizeof(unsigned long), GFP_KERNEL);
4437 	struct kmem_cache_node *n;
4438 
4439 	if (!map)
4440 		return -ENOMEM;
4441 
4442 	flush_all(s);
4443 	for_each_kmem_cache_node(s, node, n)
4444 		count += validate_slab_node(s, n, map);
4445 	kfree(map);
4446 	return count;
4447 }
4448 /*
4449  * Generate lists of code addresses where slabcache objects are allocated
4450  * and freed.
4451  */
4452 
4453 struct location {
4454 	unsigned long count;
4455 	unsigned long addr;
4456 	long long sum_time;
4457 	long min_time;
4458 	long max_time;
4459 	long min_pid;
4460 	long max_pid;
4461 	DECLARE_BITMAP(cpus, NR_CPUS);
4462 	nodemask_t nodes;
4463 };
4464 
4465 struct loc_track {
4466 	unsigned long max;
4467 	unsigned long count;
4468 	struct location *loc;
4469 };
4470 
4471 static void free_loc_track(struct loc_track *t)
4472 {
4473 	if (t->max)
4474 		free_pages((unsigned long)t->loc,
4475 			get_order(sizeof(struct location) * t->max));
4476 }
4477 
4478 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4479 {
4480 	struct location *l;
4481 	int order;
4482 
4483 	order = get_order(sizeof(struct location) * max);
4484 
4485 	l = (void *)__get_free_pages(flags, order);
4486 	if (!l)
4487 		return 0;
4488 
4489 	if (t->count) {
4490 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4491 		free_loc_track(t);
4492 	}
4493 	t->max = max;
4494 	t->loc = l;
4495 	return 1;
4496 }
4497 
4498 static int add_location(struct loc_track *t, struct kmem_cache *s,
4499 				const struct track *track)
4500 {
4501 	long start, end, pos;
4502 	struct location *l;
4503 	unsigned long caddr;
4504 	unsigned long age = jiffies - track->when;
4505 
4506 	start = -1;
4507 	end = t->count;
4508 
4509 	for ( ; ; ) {
4510 		pos = start + (end - start + 1) / 2;
4511 
4512 		/*
4513 		 * There is nothing at "end". If we end up there
4514 		 * we need to add something to before end.
4515 		 */
4516 		if (pos == end)
4517 			break;
4518 
4519 		caddr = t->loc[pos].addr;
4520 		if (track->addr == caddr) {
4521 
4522 			l = &t->loc[pos];
4523 			l->count++;
4524 			if (track->when) {
4525 				l->sum_time += age;
4526 				if (age < l->min_time)
4527 					l->min_time = age;
4528 				if (age > l->max_time)
4529 					l->max_time = age;
4530 
4531 				if (track->pid < l->min_pid)
4532 					l->min_pid = track->pid;
4533 				if (track->pid > l->max_pid)
4534 					l->max_pid = track->pid;
4535 
4536 				cpumask_set_cpu(track->cpu,
4537 						to_cpumask(l->cpus));
4538 			}
4539 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4540 			return 1;
4541 		}
4542 
4543 		if (track->addr < caddr)
4544 			end = pos;
4545 		else
4546 			start = pos;
4547 	}
4548 
4549 	/*
4550 	 * Not found. Insert new tracking element.
4551 	 */
4552 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4553 		return 0;
4554 
4555 	l = t->loc + pos;
4556 	if (pos < t->count)
4557 		memmove(l + 1, l,
4558 			(t->count - pos) * sizeof(struct location));
4559 	t->count++;
4560 	l->count = 1;
4561 	l->addr = track->addr;
4562 	l->sum_time = age;
4563 	l->min_time = age;
4564 	l->max_time = age;
4565 	l->min_pid = track->pid;
4566 	l->max_pid = track->pid;
4567 	cpumask_clear(to_cpumask(l->cpus));
4568 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4569 	nodes_clear(l->nodes);
4570 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4571 	return 1;
4572 }
4573 
4574 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4575 		struct page *page, enum track_item alloc,
4576 		unsigned long *map)
4577 {
4578 	void *addr = page_address(page);
4579 	void *p;
4580 
4581 	bitmap_zero(map, page->objects);
4582 	get_map(s, page, map);
4583 
4584 	for_each_object(p, s, addr, page->objects)
4585 		if (!test_bit(slab_index(p, s, addr), map))
4586 			add_location(t, s, get_track(s, p, alloc));
4587 }
4588 
4589 static int list_locations(struct kmem_cache *s, char *buf,
4590 					enum track_item alloc)
4591 {
4592 	int len = 0;
4593 	unsigned long i;
4594 	struct loc_track t = { 0, 0, NULL };
4595 	int node;
4596 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4597 				     sizeof(unsigned long), GFP_KERNEL);
4598 	struct kmem_cache_node *n;
4599 
4600 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4601 				     GFP_KERNEL)) {
4602 		kfree(map);
4603 		return sprintf(buf, "Out of memory\n");
4604 	}
4605 	/* Push back cpu slabs */
4606 	flush_all(s);
4607 
4608 	for_each_kmem_cache_node(s, node, n) {
4609 		unsigned long flags;
4610 		struct page *page;
4611 
4612 		if (!atomic_long_read(&n->nr_slabs))
4613 			continue;
4614 
4615 		spin_lock_irqsave(&n->list_lock, flags);
4616 		list_for_each_entry(page, &n->partial, lru)
4617 			process_slab(&t, s, page, alloc, map);
4618 		list_for_each_entry(page, &n->full, lru)
4619 			process_slab(&t, s, page, alloc, map);
4620 		spin_unlock_irqrestore(&n->list_lock, flags);
4621 	}
4622 
4623 	for (i = 0; i < t.count; i++) {
4624 		struct location *l = &t.loc[i];
4625 
4626 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4627 			break;
4628 		len += sprintf(buf + len, "%7ld ", l->count);
4629 
4630 		if (l->addr)
4631 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4632 		else
4633 			len += sprintf(buf + len, "<not-available>");
4634 
4635 		if (l->sum_time != l->min_time) {
4636 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4637 				l->min_time,
4638 				(long)div_u64(l->sum_time, l->count),
4639 				l->max_time);
4640 		} else
4641 			len += sprintf(buf + len, " age=%ld",
4642 				l->min_time);
4643 
4644 		if (l->min_pid != l->max_pid)
4645 			len += sprintf(buf + len, " pid=%ld-%ld",
4646 				l->min_pid, l->max_pid);
4647 		else
4648 			len += sprintf(buf + len, " pid=%ld",
4649 				l->min_pid);
4650 
4651 		if (num_online_cpus() > 1 &&
4652 				!cpumask_empty(to_cpumask(l->cpus)) &&
4653 				len < PAGE_SIZE - 60)
4654 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4655 					 " cpus=%*pbl",
4656 					 cpumask_pr_args(to_cpumask(l->cpus)));
4657 
4658 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4659 				len < PAGE_SIZE - 60)
4660 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4661 					 " nodes=%*pbl",
4662 					 nodemask_pr_args(&l->nodes));
4663 
4664 		len += sprintf(buf + len, "\n");
4665 	}
4666 
4667 	free_loc_track(&t);
4668 	kfree(map);
4669 	if (!t.count)
4670 		len += sprintf(buf, "No data\n");
4671 	return len;
4672 }
4673 #endif
4674 
4675 #ifdef SLUB_RESILIENCY_TEST
4676 static void __init resiliency_test(void)
4677 {
4678 	u8 *p;
4679 
4680 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4681 
4682 	pr_err("SLUB resiliency testing\n");
4683 	pr_err("-----------------------\n");
4684 	pr_err("A. Corruption after allocation\n");
4685 
4686 	p = kzalloc(16, GFP_KERNEL);
4687 	p[16] = 0x12;
4688 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4689 	       p + 16);
4690 
4691 	validate_slab_cache(kmalloc_caches[4]);
4692 
4693 	/* Hmmm... The next two are dangerous */
4694 	p = kzalloc(32, GFP_KERNEL);
4695 	p[32 + sizeof(void *)] = 0x34;
4696 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4697 	       p);
4698 	pr_err("If allocated object is overwritten then not detectable\n\n");
4699 
4700 	validate_slab_cache(kmalloc_caches[5]);
4701 	p = kzalloc(64, GFP_KERNEL);
4702 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4703 	*p = 0x56;
4704 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4705 	       p);
4706 	pr_err("If allocated object is overwritten then not detectable\n\n");
4707 	validate_slab_cache(kmalloc_caches[6]);
4708 
4709 	pr_err("\nB. Corruption after free\n");
4710 	p = kzalloc(128, GFP_KERNEL);
4711 	kfree(p);
4712 	*p = 0x78;
4713 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4714 	validate_slab_cache(kmalloc_caches[7]);
4715 
4716 	p = kzalloc(256, GFP_KERNEL);
4717 	kfree(p);
4718 	p[50] = 0x9a;
4719 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4720 	validate_slab_cache(kmalloc_caches[8]);
4721 
4722 	p = kzalloc(512, GFP_KERNEL);
4723 	kfree(p);
4724 	p[512] = 0xab;
4725 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4726 	validate_slab_cache(kmalloc_caches[9]);
4727 }
4728 #else
4729 #ifdef CONFIG_SYSFS
4730 static void resiliency_test(void) {};
4731 #endif
4732 #endif
4733 
4734 #ifdef CONFIG_SYSFS
4735 enum slab_stat_type {
4736 	SL_ALL,			/* All slabs */
4737 	SL_PARTIAL,		/* Only partially allocated slabs */
4738 	SL_CPU,			/* Only slabs used for cpu caches */
4739 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4740 	SL_TOTAL		/* Determine object capacity not slabs */
4741 };
4742 
4743 #define SO_ALL		(1 << SL_ALL)
4744 #define SO_PARTIAL	(1 << SL_PARTIAL)
4745 #define SO_CPU		(1 << SL_CPU)
4746 #define SO_OBJECTS	(1 << SL_OBJECTS)
4747 #define SO_TOTAL	(1 << SL_TOTAL)
4748 
4749 #ifdef CONFIG_MEMCG
4750 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4751 
4752 static int __init setup_slub_memcg_sysfs(char *str)
4753 {
4754 	int v;
4755 
4756 	if (get_option(&str, &v) > 0)
4757 		memcg_sysfs_enabled = v;
4758 
4759 	return 1;
4760 }
4761 
4762 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4763 #endif
4764 
4765 static ssize_t show_slab_objects(struct kmem_cache *s,
4766 			    char *buf, unsigned long flags)
4767 {
4768 	unsigned long total = 0;
4769 	int node;
4770 	int x;
4771 	unsigned long *nodes;
4772 
4773 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4774 	if (!nodes)
4775 		return -ENOMEM;
4776 
4777 	if (flags & SO_CPU) {
4778 		int cpu;
4779 
4780 		for_each_possible_cpu(cpu) {
4781 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4782 							       cpu);
4783 			int node;
4784 			struct page *page;
4785 
4786 			page = READ_ONCE(c->page);
4787 			if (!page)
4788 				continue;
4789 
4790 			node = page_to_nid(page);
4791 			if (flags & SO_TOTAL)
4792 				x = page->objects;
4793 			else if (flags & SO_OBJECTS)
4794 				x = page->inuse;
4795 			else
4796 				x = 1;
4797 
4798 			total += x;
4799 			nodes[node] += x;
4800 
4801 			page = slub_percpu_partial_read_once(c);
4802 			if (page) {
4803 				node = page_to_nid(page);
4804 				if (flags & SO_TOTAL)
4805 					WARN_ON_ONCE(1);
4806 				else if (flags & SO_OBJECTS)
4807 					WARN_ON_ONCE(1);
4808 				else
4809 					x = page->pages;
4810 				total += x;
4811 				nodes[node] += x;
4812 			}
4813 		}
4814 	}
4815 
4816 	get_online_mems();
4817 #ifdef CONFIG_SLUB_DEBUG
4818 	if (flags & SO_ALL) {
4819 		struct kmem_cache_node *n;
4820 
4821 		for_each_kmem_cache_node(s, node, n) {
4822 
4823 			if (flags & SO_TOTAL)
4824 				x = atomic_long_read(&n->total_objects);
4825 			else if (flags & SO_OBJECTS)
4826 				x = atomic_long_read(&n->total_objects) -
4827 					count_partial(n, count_free);
4828 			else
4829 				x = atomic_long_read(&n->nr_slabs);
4830 			total += x;
4831 			nodes[node] += x;
4832 		}
4833 
4834 	} else
4835 #endif
4836 	if (flags & SO_PARTIAL) {
4837 		struct kmem_cache_node *n;
4838 
4839 		for_each_kmem_cache_node(s, node, n) {
4840 			if (flags & SO_TOTAL)
4841 				x = count_partial(n, count_total);
4842 			else if (flags & SO_OBJECTS)
4843 				x = count_partial(n, count_inuse);
4844 			else
4845 				x = n->nr_partial;
4846 			total += x;
4847 			nodes[node] += x;
4848 		}
4849 	}
4850 	x = sprintf(buf, "%lu", total);
4851 #ifdef CONFIG_NUMA
4852 	for (node = 0; node < nr_node_ids; node++)
4853 		if (nodes[node])
4854 			x += sprintf(buf + x, " N%d=%lu",
4855 					node, nodes[node]);
4856 #endif
4857 	put_online_mems();
4858 	kfree(nodes);
4859 	return x + sprintf(buf + x, "\n");
4860 }
4861 
4862 #ifdef CONFIG_SLUB_DEBUG
4863 static int any_slab_objects(struct kmem_cache *s)
4864 {
4865 	int node;
4866 	struct kmem_cache_node *n;
4867 
4868 	for_each_kmem_cache_node(s, node, n)
4869 		if (atomic_long_read(&n->total_objects))
4870 			return 1;
4871 
4872 	return 0;
4873 }
4874 #endif
4875 
4876 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4877 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4878 
4879 struct slab_attribute {
4880 	struct attribute attr;
4881 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4882 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4883 };
4884 
4885 #define SLAB_ATTR_RO(_name) \
4886 	static struct slab_attribute _name##_attr = \
4887 	__ATTR(_name, 0400, _name##_show, NULL)
4888 
4889 #define SLAB_ATTR(_name) \
4890 	static struct slab_attribute _name##_attr =  \
4891 	__ATTR(_name, 0600, _name##_show, _name##_store)
4892 
4893 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4894 {
4895 	return sprintf(buf, "%d\n", s->size);
4896 }
4897 SLAB_ATTR_RO(slab_size);
4898 
4899 static ssize_t align_show(struct kmem_cache *s, char *buf)
4900 {
4901 	return sprintf(buf, "%d\n", s->align);
4902 }
4903 SLAB_ATTR_RO(align);
4904 
4905 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4906 {
4907 	return sprintf(buf, "%d\n", s->object_size);
4908 }
4909 SLAB_ATTR_RO(object_size);
4910 
4911 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4912 {
4913 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4914 }
4915 SLAB_ATTR_RO(objs_per_slab);
4916 
4917 static ssize_t order_store(struct kmem_cache *s,
4918 				const char *buf, size_t length)
4919 {
4920 	unsigned long order;
4921 	int err;
4922 
4923 	err = kstrtoul(buf, 10, &order);
4924 	if (err)
4925 		return err;
4926 
4927 	if (order > slub_max_order || order < slub_min_order)
4928 		return -EINVAL;
4929 
4930 	calculate_sizes(s, order);
4931 	return length;
4932 }
4933 
4934 static ssize_t order_show(struct kmem_cache *s, char *buf)
4935 {
4936 	return sprintf(buf, "%d\n", oo_order(s->oo));
4937 }
4938 SLAB_ATTR(order);
4939 
4940 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4941 {
4942 	return sprintf(buf, "%lu\n", s->min_partial);
4943 }
4944 
4945 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4946 				 size_t length)
4947 {
4948 	unsigned long min;
4949 	int err;
4950 
4951 	err = kstrtoul(buf, 10, &min);
4952 	if (err)
4953 		return err;
4954 
4955 	set_min_partial(s, min);
4956 	return length;
4957 }
4958 SLAB_ATTR(min_partial);
4959 
4960 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4961 {
4962 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4963 }
4964 
4965 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4966 				 size_t length)
4967 {
4968 	unsigned long objects;
4969 	int err;
4970 
4971 	err = kstrtoul(buf, 10, &objects);
4972 	if (err)
4973 		return err;
4974 	if (objects && !kmem_cache_has_cpu_partial(s))
4975 		return -EINVAL;
4976 
4977 	slub_set_cpu_partial(s, objects);
4978 	flush_all(s);
4979 	return length;
4980 }
4981 SLAB_ATTR(cpu_partial);
4982 
4983 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4984 {
4985 	if (!s->ctor)
4986 		return 0;
4987 	return sprintf(buf, "%pS\n", s->ctor);
4988 }
4989 SLAB_ATTR_RO(ctor);
4990 
4991 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4992 {
4993 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4994 }
4995 SLAB_ATTR_RO(aliases);
4996 
4997 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4998 {
4999 	return show_slab_objects(s, buf, SO_PARTIAL);
5000 }
5001 SLAB_ATTR_RO(partial);
5002 
5003 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5004 {
5005 	return show_slab_objects(s, buf, SO_CPU);
5006 }
5007 SLAB_ATTR_RO(cpu_slabs);
5008 
5009 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5010 {
5011 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5012 }
5013 SLAB_ATTR_RO(objects);
5014 
5015 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5016 {
5017 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5018 }
5019 SLAB_ATTR_RO(objects_partial);
5020 
5021 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5022 {
5023 	int objects = 0;
5024 	int pages = 0;
5025 	int cpu;
5026 	int len;
5027 
5028 	for_each_online_cpu(cpu) {
5029 		struct page *page;
5030 
5031 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5032 
5033 		if (page) {
5034 			pages += page->pages;
5035 			objects += page->pobjects;
5036 		}
5037 	}
5038 
5039 	len = sprintf(buf, "%d(%d)", objects, pages);
5040 
5041 #ifdef CONFIG_SMP
5042 	for_each_online_cpu(cpu) {
5043 		struct page *page;
5044 
5045 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5046 
5047 		if (page && len < PAGE_SIZE - 20)
5048 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5049 				page->pobjects, page->pages);
5050 	}
5051 #endif
5052 	return len + sprintf(buf + len, "\n");
5053 }
5054 SLAB_ATTR_RO(slabs_cpu_partial);
5055 
5056 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5057 {
5058 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5059 }
5060 
5061 static ssize_t reclaim_account_store(struct kmem_cache *s,
5062 				const char *buf, size_t length)
5063 {
5064 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5065 	if (buf[0] == '1')
5066 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5067 	return length;
5068 }
5069 SLAB_ATTR(reclaim_account);
5070 
5071 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5072 {
5073 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5074 }
5075 SLAB_ATTR_RO(hwcache_align);
5076 
5077 #ifdef CONFIG_ZONE_DMA
5078 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5079 {
5080 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5081 }
5082 SLAB_ATTR_RO(cache_dma);
5083 #endif
5084 
5085 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5086 {
5087 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5088 }
5089 SLAB_ATTR_RO(destroy_by_rcu);
5090 
5091 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5092 {
5093 	return sprintf(buf, "%d\n", s->reserved);
5094 }
5095 SLAB_ATTR_RO(reserved);
5096 
5097 #ifdef CONFIG_SLUB_DEBUG
5098 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5099 {
5100 	return show_slab_objects(s, buf, SO_ALL);
5101 }
5102 SLAB_ATTR_RO(slabs);
5103 
5104 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5105 {
5106 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5107 }
5108 SLAB_ATTR_RO(total_objects);
5109 
5110 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5111 {
5112 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5113 }
5114 
5115 static ssize_t sanity_checks_store(struct kmem_cache *s,
5116 				const char *buf, size_t length)
5117 {
5118 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5119 	if (buf[0] == '1') {
5120 		s->flags &= ~__CMPXCHG_DOUBLE;
5121 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5122 	}
5123 	return length;
5124 }
5125 SLAB_ATTR(sanity_checks);
5126 
5127 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5128 {
5129 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5130 }
5131 
5132 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5133 							size_t length)
5134 {
5135 	/*
5136 	 * Tracing a merged cache is going to give confusing results
5137 	 * as well as cause other issues like converting a mergeable
5138 	 * cache into an umergeable one.
5139 	 */
5140 	if (s->refcount > 1)
5141 		return -EINVAL;
5142 
5143 	s->flags &= ~SLAB_TRACE;
5144 	if (buf[0] == '1') {
5145 		s->flags &= ~__CMPXCHG_DOUBLE;
5146 		s->flags |= SLAB_TRACE;
5147 	}
5148 	return length;
5149 }
5150 SLAB_ATTR(trace);
5151 
5152 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5153 {
5154 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5155 }
5156 
5157 static ssize_t red_zone_store(struct kmem_cache *s,
5158 				const char *buf, size_t length)
5159 {
5160 	if (any_slab_objects(s))
5161 		return -EBUSY;
5162 
5163 	s->flags &= ~SLAB_RED_ZONE;
5164 	if (buf[0] == '1') {
5165 		s->flags |= SLAB_RED_ZONE;
5166 	}
5167 	calculate_sizes(s, -1);
5168 	return length;
5169 }
5170 SLAB_ATTR(red_zone);
5171 
5172 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5173 {
5174 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5175 }
5176 
5177 static ssize_t poison_store(struct kmem_cache *s,
5178 				const char *buf, size_t length)
5179 {
5180 	if (any_slab_objects(s))
5181 		return -EBUSY;
5182 
5183 	s->flags &= ~SLAB_POISON;
5184 	if (buf[0] == '1') {
5185 		s->flags |= SLAB_POISON;
5186 	}
5187 	calculate_sizes(s, -1);
5188 	return length;
5189 }
5190 SLAB_ATTR(poison);
5191 
5192 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5193 {
5194 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5195 }
5196 
5197 static ssize_t store_user_store(struct kmem_cache *s,
5198 				const char *buf, size_t length)
5199 {
5200 	if (any_slab_objects(s))
5201 		return -EBUSY;
5202 
5203 	s->flags &= ~SLAB_STORE_USER;
5204 	if (buf[0] == '1') {
5205 		s->flags &= ~__CMPXCHG_DOUBLE;
5206 		s->flags |= SLAB_STORE_USER;
5207 	}
5208 	calculate_sizes(s, -1);
5209 	return length;
5210 }
5211 SLAB_ATTR(store_user);
5212 
5213 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5214 {
5215 	return 0;
5216 }
5217 
5218 static ssize_t validate_store(struct kmem_cache *s,
5219 			const char *buf, size_t length)
5220 {
5221 	int ret = -EINVAL;
5222 
5223 	if (buf[0] == '1') {
5224 		ret = validate_slab_cache(s);
5225 		if (ret >= 0)
5226 			ret = length;
5227 	}
5228 	return ret;
5229 }
5230 SLAB_ATTR(validate);
5231 
5232 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5233 {
5234 	if (!(s->flags & SLAB_STORE_USER))
5235 		return -ENOSYS;
5236 	return list_locations(s, buf, TRACK_ALLOC);
5237 }
5238 SLAB_ATTR_RO(alloc_calls);
5239 
5240 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5241 {
5242 	if (!(s->flags & SLAB_STORE_USER))
5243 		return -ENOSYS;
5244 	return list_locations(s, buf, TRACK_FREE);
5245 }
5246 SLAB_ATTR_RO(free_calls);
5247 #endif /* CONFIG_SLUB_DEBUG */
5248 
5249 #ifdef CONFIG_FAILSLAB
5250 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5251 {
5252 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5253 }
5254 
5255 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5256 							size_t length)
5257 {
5258 	if (s->refcount > 1)
5259 		return -EINVAL;
5260 
5261 	s->flags &= ~SLAB_FAILSLAB;
5262 	if (buf[0] == '1')
5263 		s->flags |= SLAB_FAILSLAB;
5264 	return length;
5265 }
5266 SLAB_ATTR(failslab);
5267 #endif
5268 
5269 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5270 {
5271 	return 0;
5272 }
5273 
5274 static ssize_t shrink_store(struct kmem_cache *s,
5275 			const char *buf, size_t length)
5276 {
5277 	if (buf[0] == '1')
5278 		kmem_cache_shrink(s);
5279 	else
5280 		return -EINVAL;
5281 	return length;
5282 }
5283 SLAB_ATTR(shrink);
5284 
5285 #ifdef CONFIG_NUMA
5286 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5287 {
5288 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5289 }
5290 
5291 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5292 				const char *buf, size_t length)
5293 {
5294 	unsigned long ratio;
5295 	int err;
5296 
5297 	err = kstrtoul(buf, 10, &ratio);
5298 	if (err)
5299 		return err;
5300 
5301 	if (ratio <= 100)
5302 		s->remote_node_defrag_ratio = ratio * 10;
5303 
5304 	return length;
5305 }
5306 SLAB_ATTR(remote_node_defrag_ratio);
5307 #endif
5308 
5309 #ifdef CONFIG_SLUB_STATS
5310 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5311 {
5312 	unsigned long sum  = 0;
5313 	int cpu;
5314 	int len;
5315 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5316 
5317 	if (!data)
5318 		return -ENOMEM;
5319 
5320 	for_each_online_cpu(cpu) {
5321 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5322 
5323 		data[cpu] = x;
5324 		sum += x;
5325 	}
5326 
5327 	len = sprintf(buf, "%lu", sum);
5328 
5329 #ifdef CONFIG_SMP
5330 	for_each_online_cpu(cpu) {
5331 		if (data[cpu] && len < PAGE_SIZE - 20)
5332 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5333 	}
5334 #endif
5335 	kfree(data);
5336 	return len + sprintf(buf + len, "\n");
5337 }
5338 
5339 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5340 {
5341 	int cpu;
5342 
5343 	for_each_online_cpu(cpu)
5344 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5345 }
5346 
5347 #define STAT_ATTR(si, text) 					\
5348 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5349 {								\
5350 	return show_stat(s, buf, si);				\
5351 }								\
5352 static ssize_t text##_store(struct kmem_cache *s,		\
5353 				const char *buf, size_t length)	\
5354 {								\
5355 	if (buf[0] != '0')					\
5356 		return -EINVAL;					\
5357 	clear_stat(s, si);					\
5358 	return length;						\
5359 }								\
5360 SLAB_ATTR(text);						\
5361 
5362 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5363 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5364 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5365 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5366 STAT_ATTR(FREE_FROZEN, free_frozen);
5367 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5368 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5369 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5370 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5371 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5372 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5373 STAT_ATTR(FREE_SLAB, free_slab);
5374 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5375 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5376 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5377 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5378 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5379 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5380 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5381 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5382 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5383 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5384 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5385 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5386 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5387 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5388 #endif
5389 
5390 static struct attribute *slab_attrs[] = {
5391 	&slab_size_attr.attr,
5392 	&object_size_attr.attr,
5393 	&objs_per_slab_attr.attr,
5394 	&order_attr.attr,
5395 	&min_partial_attr.attr,
5396 	&cpu_partial_attr.attr,
5397 	&objects_attr.attr,
5398 	&objects_partial_attr.attr,
5399 	&partial_attr.attr,
5400 	&cpu_slabs_attr.attr,
5401 	&ctor_attr.attr,
5402 	&aliases_attr.attr,
5403 	&align_attr.attr,
5404 	&hwcache_align_attr.attr,
5405 	&reclaim_account_attr.attr,
5406 	&destroy_by_rcu_attr.attr,
5407 	&shrink_attr.attr,
5408 	&reserved_attr.attr,
5409 	&slabs_cpu_partial_attr.attr,
5410 #ifdef CONFIG_SLUB_DEBUG
5411 	&total_objects_attr.attr,
5412 	&slabs_attr.attr,
5413 	&sanity_checks_attr.attr,
5414 	&trace_attr.attr,
5415 	&red_zone_attr.attr,
5416 	&poison_attr.attr,
5417 	&store_user_attr.attr,
5418 	&validate_attr.attr,
5419 	&alloc_calls_attr.attr,
5420 	&free_calls_attr.attr,
5421 #endif
5422 #ifdef CONFIG_ZONE_DMA
5423 	&cache_dma_attr.attr,
5424 #endif
5425 #ifdef CONFIG_NUMA
5426 	&remote_node_defrag_ratio_attr.attr,
5427 #endif
5428 #ifdef CONFIG_SLUB_STATS
5429 	&alloc_fastpath_attr.attr,
5430 	&alloc_slowpath_attr.attr,
5431 	&free_fastpath_attr.attr,
5432 	&free_slowpath_attr.attr,
5433 	&free_frozen_attr.attr,
5434 	&free_add_partial_attr.attr,
5435 	&free_remove_partial_attr.attr,
5436 	&alloc_from_partial_attr.attr,
5437 	&alloc_slab_attr.attr,
5438 	&alloc_refill_attr.attr,
5439 	&alloc_node_mismatch_attr.attr,
5440 	&free_slab_attr.attr,
5441 	&cpuslab_flush_attr.attr,
5442 	&deactivate_full_attr.attr,
5443 	&deactivate_empty_attr.attr,
5444 	&deactivate_to_head_attr.attr,
5445 	&deactivate_to_tail_attr.attr,
5446 	&deactivate_remote_frees_attr.attr,
5447 	&deactivate_bypass_attr.attr,
5448 	&order_fallback_attr.attr,
5449 	&cmpxchg_double_fail_attr.attr,
5450 	&cmpxchg_double_cpu_fail_attr.attr,
5451 	&cpu_partial_alloc_attr.attr,
5452 	&cpu_partial_free_attr.attr,
5453 	&cpu_partial_node_attr.attr,
5454 	&cpu_partial_drain_attr.attr,
5455 #endif
5456 #ifdef CONFIG_FAILSLAB
5457 	&failslab_attr.attr,
5458 #endif
5459 
5460 	NULL
5461 };
5462 
5463 static const struct attribute_group slab_attr_group = {
5464 	.attrs = slab_attrs,
5465 };
5466 
5467 static ssize_t slab_attr_show(struct kobject *kobj,
5468 				struct attribute *attr,
5469 				char *buf)
5470 {
5471 	struct slab_attribute *attribute;
5472 	struct kmem_cache *s;
5473 	int err;
5474 
5475 	attribute = to_slab_attr(attr);
5476 	s = to_slab(kobj);
5477 
5478 	if (!attribute->show)
5479 		return -EIO;
5480 
5481 	err = attribute->show(s, buf);
5482 
5483 	return err;
5484 }
5485 
5486 static ssize_t slab_attr_store(struct kobject *kobj,
5487 				struct attribute *attr,
5488 				const char *buf, size_t len)
5489 {
5490 	struct slab_attribute *attribute;
5491 	struct kmem_cache *s;
5492 	int err;
5493 
5494 	attribute = to_slab_attr(attr);
5495 	s = to_slab(kobj);
5496 
5497 	if (!attribute->store)
5498 		return -EIO;
5499 
5500 	err = attribute->store(s, buf, len);
5501 #ifdef CONFIG_MEMCG
5502 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5503 		struct kmem_cache *c;
5504 
5505 		mutex_lock(&slab_mutex);
5506 		if (s->max_attr_size < len)
5507 			s->max_attr_size = len;
5508 
5509 		/*
5510 		 * This is a best effort propagation, so this function's return
5511 		 * value will be determined by the parent cache only. This is
5512 		 * basically because not all attributes will have a well
5513 		 * defined semantics for rollbacks - most of the actions will
5514 		 * have permanent effects.
5515 		 *
5516 		 * Returning the error value of any of the children that fail
5517 		 * is not 100 % defined, in the sense that users seeing the
5518 		 * error code won't be able to know anything about the state of
5519 		 * the cache.
5520 		 *
5521 		 * Only returning the error code for the parent cache at least
5522 		 * has well defined semantics. The cache being written to
5523 		 * directly either failed or succeeded, in which case we loop
5524 		 * through the descendants with best-effort propagation.
5525 		 */
5526 		for_each_memcg_cache(c, s)
5527 			attribute->store(c, buf, len);
5528 		mutex_unlock(&slab_mutex);
5529 	}
5530 #endif
5531 	return err;
5532 }
5533 
5534 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5535 {
5536 #ifdef CONFIG_MEMCG
5537 	int i;
5538 	char *buffer = NULL;
5539 	struct kmem_cache *root_cache;
5540 
5541 	if (is_root_cache(s))
5542 		return;
5543 
5544 	root_cache = s->memcg_params.root_cache;
5545 
5546 	/*
5547 	 * This mean this cache had no attribute written. Therefore, no point
5548 	 * in copying default values around
5549 	 */
5550 	if (!root_cache->max_attr_size)
5551 		return;
5552 
5553 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5554 		char mbuf[64];
5555 		char *buf;
5556 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5557 		ssize_t len;
5558 
5559 		if (!attr || !attr->store || !attr->show)
5560 			continue;
5561 
5562 		/*
5563 		 * It is really bad that we have to allocate here, so we will
5564 		 * do it only as a fallback. If we actually allocate, though,
5565 		 * we can just use the allocated buffer until the end.
5566 		 *
5567 		 * Most of the slub attributes will tend to be very small in
5568 		 * size, but sysfs allows buffers up to a page, so they can
5569 		 * theoretically happen.
5570 		 */
5571 		if (buffer)
5572 			buf = buffer;
5573 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5574 			buf = mbuf;
5575 		else {
5576 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5577 			if (WARN_ON(!buffer))
5578 				continue;
5579 			buf = buffer;
5580 		}
5581 
5582 		len = attr->show(root_cache, buf);
5583 		if (len > 0)
5584 			attr->store(s, buf, len);
5585 	}
5586 
5587 	if (buffer)
5588 		free_page((unsigned long)buffer);
5589 #endif
5590 }
5591 
5592 static void kmem_cache_release(struct kobject *k)
5593 {
5594 	slab_kmem_cache_release(to_slab(k));
5595 }
5596 
5597 static const struct sysfs_ops slab_sysfs_ops = {
5598 	.show = slab_attr_show,
5599 	.store = slab_attr_store,
5600 };
5601 
5602 static struct kobj_type slab_ktype = {
5603 	.sysfs_ops = &slab_sysfs_ops,
5604 	.release = kmem_cache_release,
5605 };
5606 
5607 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5608 {
5609 	struct kobj_type *ktype = get_ktype(kobj);
5610 
5611 	if (ktype == &slab_ktype)
5612 		return 1;
5613 	return 0;
5614 }
5615 
5616 static const struct kset_uevent_ops slab_uevent_ops = {
5617 	.filter = uevent_filter,
5618 };
5619 
5620 static struct kset *slab_kset;
5621 
5622 static inline struct kset *cache_kset(struct kmem_cache *s)
5623 {
5624 #ifdef CONFIG_MEMCG
5625 	if (!is_root_cache(s))
5626 		return s->memcg_params.root_cache->memcg_kset;
5627 #endif
5628 	return slab_kset;
5629 }
5630 
5631 #define ID_STR_LENGTH 64
5632 
5633 /* Create a unique string id for a slab cache:
5634  *
5635  * Format	:[flags-]size
5636  */
5637 static char *create_unique_id(struct kmem_cache *s)
5638 {
5639 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5640 	char *p = name;
5641 
5642 	BUG_ON(!name);
5643 
5644 	*p++ = ':';
5645 	/*
5646 	 * First flags affecting slabcache operations. We will only
5647 	 * get here for aliasable slabs so we do not need to support
5648 	 * too many flags. The flags here must cover all flags that
5649 	 * are matched during merging to guarantee that the id is
5650 	 * unique.
5651 	 */
5652 	if (s->flags & SLAB_CACHE_DMA)
5653 		*p++ = 'd';
5654 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5655 		*p++ = 'a';
5656 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5657 		*p++ = 'F';
5658 	if (!(s->flags & SLAB_NOTRACK))
5659 		*p++ = 't';
5660 	if (s->flags & SLAB_ACCOUNT)
5661 		*p++ = 'A';
5662 	if (p != name + 1)
5663 		*p++ = '-';
5664 	p += sprintf(p, "%07d", s->size);
5665 
5666 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5667 	return name;
5668 }
5669 
5670 static void sysfs_slab_remove_workfn(struct work_struct *work)
5671 {
5672 	struct kmem_cache *s =
5673 		container_of(work, struct kmem_cache, kobj_remove_work);
5674 
5675 	if (!s->kobj.state_in_sysfs)
5676 		/*
5677 		 * For a memcg cache, this may be called during
5678 		 * deactivation and again on shutdown.  Remove only once.
5679 		 * A cache is never shut down before deactivation is
5680 		 * complete, so no need to worry about synchronization.
5681 		 */
5682 		goto out;
5683 
5684 #ifdef CONFIG_MEMCG
5685 	kset_unregister(s->memcg_kset);
5686 #endif
5687 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5688 	kobject_del(&s->kobj);
5689 out:
5690 	kobject_put(&s->kobj);
5691 }
5692 
5693 static int sysfs_slab_add(struct kmem_cache *s)
5694 {
5695 	int err;
5696 	const char *name;
5697 	struct kset *kset = cache_kset(s);
5698 	int unmergeable = slab_unmergeable(s);
5699 
5700 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5701 
5702 	if (!kset) {
5703 		kobject_init(&s->kobj, &slab_ktype);
5704 		return 0;
5705 	}
5706 
5707 	if (unmergeable) {
5708 		/*
5709 		 * Slabcache can never be merged so we can use the name proper.
5710 		 * This is typically the case for debug situations. In that
5711 		 * case we can catch duplicate names easily.
5712 		 */
5713 		sysfs_remove_link(&slab_kset->kobj, s->name);
5714 		name = s->name;
5715 	} else {
5716 		/*
5717 		 * Create a unique name for the slab as a target
5718 		 * for the symlinks.
5719 		 */
5720 		name = create_unique_id(s);
5721 	}
5722 
5723 	s->kobj.kset = kset;
5724 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5725 	if (err)
5726 		goto out;
5727 
5728 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5729 	if (err)
5730 		goto out_del_kobj;
5731 
5732 #ifdef CONFIG_MEMCG
5733 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5734 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5735 		if (!s->memcg_kset) {
5736 			err = -ENOMEM;
5737 			goto out_del_kobj;
5738 		}
5739 	}
5740 #endif
5741 
5742 	kobject_uevent(&s->kobj, KOBJ_ADD);
5743 	if (!unmergeable) {
5744 		/* Setup first alias */
5745 		sysfs_slab_alias(s, s->name);
5746 	}
5747 out:
5748 	if (!unmergeable)
5749 		kfree(name);
5750 	return err;
5751 out_del_kobj:
5752 	kobject_del(&s->kobj);
5753 	goto out;
5754 }
5755 
5756 static void sysfs_slab_remove(struct kmem_cache *s)
5757 {
5758 	if (slab_state < FULL)
5759 		/*
5760 		 * Sysfs has not been setup yet so no need to remove the
5761 		 * cache from sysfs.
5762 		 */
5763 		return;
5764 
5765 	kobject_get(&s->kobj);
5766 	schedule_work(&s->kobj_remove_work);
5767 }
5768 
5769 void sysfs_slab_release(struct kmem_cache *s)
5770 {
5771 	if (slab_state >= FULL)
5772 		kobject_put(&s->kobj);
5773 }
5774 
5775 /*
5776  * Need to buffer aliases during bootup until sysfs becomes
5777  * available lest we lose that information.
5778  */
5779 struct saved_alias {
5780 	struct kmem_cache *s;
5781 	const char *name;
5782 	struct saved_alias *next;
5783 };
5784 
5785 static struct saved_alias *alias_list;
5786 
5787 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5788 {
5789 	struct saved_alias *al;
5790 
5791 	if (slab_state == FULL) {
5792 		/*
5793 		 * If we have a leftover link then remove it.
5794 		 */
5795 		sysfs_remove_link(&slab_kset->kobj, name);
5796 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5797 	}
5798 
5799 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5800 	if (!al)
5801 		return -ENOMEM;
5802 
5803 	al->s = s;
5804 	al->name = name;
5805 	al->next = alias_list;
5806 	alias_list = al;
5807 	return 0;
5808 }
5809 
5810 static int __init slab_sysfs_init(void)
5811 {
5812 	struct kmem_cache *s;
5813 	int err;
5814 
5815 	mutex_lock(&slab_mutex);
5816 
5817 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5818 	if (!slab_kset) {
5819 		mutex_unlock(&slab_mutex);
5820 		pr_err("Cannot register slab subsystem.\n");
5821 		return -ENOSYS;
5822 	}
5823 
5824 	slab_state = FULL;
5825 
5826 	list_for_each_entry(s, &slab_caches, list) {
5827 		err = sysfs_slab_add(s);
5828 		if (err)
5829 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5830 			       s->name);
5831 	}
5832 
5833 	while (alias_list) {
5834 		struct saved_alias *al = alias_list;
5835 
5836 		alias_list = alias_list->next;
5837 		err = sysfs_slab_alias(al->s, al->name);
5838 		if (err)
5839 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5840 			       al->name);
5841 		kfree(al);
5842 	}
5843 
5844 	mutex_unlock(&slab_mutex);
5845 	resiliency_test();
5846 	return 0;
5847 }
5848 
5849 __initcall(slab_sysfs_init);
5850 #endif /* CONFIG_SYSFS */
5851 
5852 /*
5853  * The /proc/slabinfo ABI
5854  */
5855 #ifdef CONFIG_SLABINFO
5856 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5857 {
5858 	unsigned long nr_slabs = 0;
5859 	unsigned long nr_objs = 0;
5860 	unsigned long nr_free = 0;
5861 	int node;
5862 	struct kmem_cache_node *n;
5863 
5864 	for_each_kmem_cache_node(s, node, n) {
5865 		nr_slabs += node_nr_slabs(n);
5866 		nr_objs += node_nr_objs(n);
5867 		nr_free += count_partial(n, count_free);
5868 	}
5869 
5870 	sinfo->active_objs = nr_objs - nr_free;
5871 	sinfo->num_objs = nr_objs;
5872 	sinfo->active_slabs = nr_slabs;
5873 	sinfo->num_slabs = nr_slabs;
5874 	sinfo->objects_per_slab = oo_objects(s->oo);
5875 	sinfo->cache_order = oo_order(s->oo);
5876 }
5877 
5878 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5879 {
5880 }
5881 
5882 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5883 		       size_t count, loff_t *ppos)
5884 {
5885 	return -EIO;
5886 }
5887 #endif /* CONFIG_SLABINFO */
5888