xref: /openbmc/linux/mm/slub.c (revision aded0023)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44 
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47 
48 #include "internal.h"
49 
50 /*
51  * Lock order:
52  *   1. slab_mutex (Global Mutex)
53  *   2. node->list_lock (Spinlock)
54  *   3. kmem_cache->cpu_slab->lock (Local lock)
55  *   4. slab_lock(slab) (Only on some arches)
56  *   5. object_map_lock (Only for debugging)
57  *
58  *   slab_mutex
59  *
60  *   The role of the slab_mutex is to protect the list of all the slabs
61  *   and to synchronize major metadata changes to slab cache structures.
62  *   Also synchronizes memory hotplug callbacks.
63  *
64  *   slab_lock
65  *
66  *   The slab_lock is a wrapper around the page lock, thus it is a bit
67  *   spinlock.
68  *
69  *   The slab_lock is only used on arches that do not have the ability
70  *   to do a cmpxchg_double. It only protects:
71  *
72  *	A. slab->freelist	-> List of free objects in a slab
73  *	B. slab->inuse		-> Number of objects in use
74  *	C. slab->objects	-> Number of objects in slab
75  *	D. slab->frozen		-> frozen state
76  *
77  *   Frozen slabs
78  *
79  *   If a slab is frozen then it is exempt from list management. It is not
80  *   on any list except per cpu partial list. The processor that froze the
81  *   slab is the one who can perform list operations on the slab. Other
82  *   processors may put objects onto the freelist but the processor that
83  *   froze the slab is the only one that can retrieve the objects from the
84  *   slab's freelist.
85  *
86  *   list_lock
87  *
88  *   The list_lock protects the partial and full list on each node and
89  *   the partial slab counter. If taken then no new slabs may be added or
90  *   removed from the lists nor make the number of partial slabs be modified.
91  *   (Note that the total number of slabs is an atomic value that may be
92  *   modified without taking the list lock).
93  *
94  *   The list_lock is a centralized lock and thus we avoid taking it as
95  *   much as possible. As long as SLUB does not have to handle partial
96  *   slabs, operations can continue without any centralized lock. F.e.
97  *   allocating a long series of objects that fill up slabs does not require
98  *   the list lock.
99  *
100  *   For debug caches, all allocations are forced to go through a list_lock
101  *   protected region to serialize against concurrent validation.
102  *
103  *   cpu_slab->lock local lock
104  *
105  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
106  *   except the stat counters. This is a percpu structure manipulated only by
107  *   the local cpu, so the lock protects against being preempted or interrupted
108  *   by an irq. Fast path operations rely on lockless operations instead.
109  *
110  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111  *   which means the lockless fastpath cannot be used as it might interfere with
112  *   an in-progress slow path operations. In this case the local lock is always
113  *   taken but it still utilizes the freelist for the common operations.
114  *
115  *   lockless fastpaths
116  *
117  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118  *   are fully lockless when satisfied from the percpu slab (and when
119  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
120  *   They also don't disable preemption or migration or irqs. They rely on
121  *   the transaction id (tid) field to detect being preempted or moved to
122  *   another cpu.
123  *
124  *   irq, preemption, migration considerations
125  *
126  *   Interrupts are disabled as part of list_lock or local_lock operations, or
127  *   around the slab_lock operation, in order to make the slab allocator safe
128  *   to use in the context of an irq.
129  *
130  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133  *   doesn't have to be revalidated in each section protected by the local lock.
134  *
135  * SLUB assigns one slab for allocation to each processor.
136  * Allocations only occur from these slabs called cpu slabs.
137  *
138  * Slabs with free elements are kept on a partial list and during regular
139  * operations no list for full slabs is used. If an object in a full slab is
140  * freed then the slab will show up again on the partial lists.
141  * We track full slabs for debugging purposes though because otherwise we
142  * cannot scan all objects.
143  *
144  * Slabs are freed when they become empty. Teardown and setup is
145  * minimal so we rely on the page allocators per cpu caches for
146  * fast frees and allocs.
147  *
148  * slab->frozen		The slab is frozen and exempt from list processing.
149  * 			This means that the slab is dedicated to a purpose
150  * 			such as satisfying allocations for a specific
151  * 			processor. Objects may be freed in the slab while
152  * 			it is frozen but slab_free will then skip the usual
153  * 			list operations. It is up to the processor holding
154  * 			the slab to integrate the slab into the slab lists
155  * 			when the slab is no longer needed.
156  *
157  * 			One use of this flag is to mark slabs that are
158  * 			used for allocations. Then such a slab becomes a cpu
159  * 			slab. The cpu slab may be equipped with an additional
160  * 			freelist that allows lockless access to
161  * 			free objects in addition to the regular freelist
162  * 			that requires the slab lock.
163  *
164  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
165  * 			options set. This moves	slab handling out of
166  * 			the fast path and disables lockless freelists.
167  */
168 
169 /*
170  * We could simply use migrate_disable()/enable() but as long as it's a
171  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172  */
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH()	(true)
177 #else
178 #define slub_get_cpu_ptr(var)		\
179 ({					\
180 	migrate_disable();		\
181 	this_cpu_ptr(var);		\
182 })
183 #define slub_put_cpu_ptr(var)		\
184 do {					\
185 	(void)(var);			\
186 	migrate_enable();		\
187 } while (0)
188 #define USE_LOCKLESS_FAST_PATH()	(false)
189 #endif
190 
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
193 #else
194 #define __fastpath_inline
195 #endif
196 
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200 #else
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202 #endif
203 #endif		/* CONFIG_SLUB_DEBUG */
204 
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
207 	struct slab **slab;
208 	gfp_t flags;
209 	unsigned int orig_size;
210 };
211 
212 static inline bool kmem_cache_debug(struct kmem_cache *s)
213 {
214 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215 }
216 
217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
218 {
219 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 			(s->flags & SLAB_KMALLOC));
221 }
222 
223 void *fixup_red_left(struct kmem_cache *s, void *p)
224 {
225 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 		p += s->red_left_pad;
227 
228 	return p;
229 }
230 
231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232 {
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 	return !kmem_cache_debug(s);
235 #else
236 	return false;
237 #endif
238 }
239 
240 /*
241  * Issues still to be resolved:
242  *
243  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244  *
245  * - Variable sizing of the per node arrays
246  */
247 
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
250 
251 #ifndef CONFIG_SLUB_TINY
252 /*
253  * Minimum number of partial slabs. These will be left on the partial
254  * lists even if they are empty. kmem_cache_shrink may reclaim them.
255  */
256 #define MIN_PARTIAL 5
257 
258 /*
259  * Maximum number of desirable partial slabs.
260  * The existence of more partial slabs makes kmem_cache_shrink
261  * sort the partial list by the number of objects in use.
262  */
263 #define MAX_PARTIAL 10
264 #else
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
267 #endif
268 
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 				SLAB_POISON | SLAB_STORE_USER)
271 
272 /*
273  * These debug flags cannot use CMPXCHG because there might be consistency
274  * issues when checking or reading debug information
275  */
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 				SLAB_TRACE)
278 
279 
280 /*
281  * Debugging flags that require metadata to be stored in the slab.  These get
282  * disabled when slub_debug=O is used and a cache's min order increases with
283  * metadata.
284  */
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286 
287 #define OO_SHIFT	16
288 #define OO_MASK		((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
290 
291 /* Internal SLUB flags */
292 /* Poison object */
293 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
295 
296 #ifdef system_has_freelist_aba
297 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
298 #else
299 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0U)
300 #endif
301 
302 /*
303  * Tracking user of a slab.
304  */
305 #define TRACK_ADDRS_COUNT 16
306 struct track {
307 	unsigned long addr;	/* Called from address */
308 #ifdef CONFIG_STACKDEPOT
309 	depot_stack_handle_t handle;
310 #endif
311 	int cpu;		/* Was running on cpu */
312 	int pid;		/* Pid context */
313 	unsigned long when;	/* When did the operation occur */
314 };
315 
316 enum track_item { TRACK_ALLOC, TRACK_FREE };
317 
318 #ifdef SLAB_SUPPORTS_SYSFS
319 static int sysfs_slab_add(struct kmem_cache *);
320 static int sysfs_slab_alias(struct kmem_cache *, const char *);
321 #else
322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324 							{ return 0; }
325 #endif
326 
327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328 static void debugfs_slab_add(struct kmem_cache *);
329 #else
330 static inline void debugfs_slab_add(struct kmem_cache *s) { }
331 #endif
332 
333 static inline void stat(const struct kmem_cache *s, enum stat_item si)
334 {
335 #ifdef CONFIG_SLUB_STATS
336 	/*
337 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 	 * avoid this_cpu_add()'s irq-disable overhead.
339 	 */
340 	raw_cpu_inc(s->cpu_slab->stat[si]);
341 #endif
342 }
343 
344 /*
345  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347  * differ during memory hotplug/hotremove operations.
348  * Protected by slab_mutex.
349  */
350 static nodemask_t slab_nodes;
351 
352 #ifndef CONFIG_SLUB_TINY
353 /*
354  * Workqueue used for flush_cpu_slab().
355  */
356 static struct workqueue_struct *flushwq;
357 #endif
358 
359 /********************************************************************
360  * 			Core slab cache functions
361  *******************************************************************/
362 
363 /*
364  * Returns freelist pointer (ptr). With hardening, this is obfuscated
365  * with an XOR of the address where the pointer is held and a per-cache
366  * random number.
367  */
368 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
369 				 unsigned long ptr_addr)
370 {
371 #ifdef CONFIG_SLAB_FREELIST_HARDENED
372 	/*
373 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
374 	 * Normally, this doesn't cause any issues, as both set_freepointer()
375 	 * and get_freepointer() are called with a pointer with the same tag.
376 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
377 	 * example, when __free_slub() iterates over objects in a cache, it
378 	 * passes untagged pointers to check_object(). check_object() in turns
379 	 * calls get_freepointer() with an untagged pointer, which causes the
380 	 * freepointer to be restored incorrectly.
381 	 */
382 	return (void *)((unsigned long)ptr ^ s->random ^
383 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
384 #else
385 	return ptr;
386 #endif
387 }
388 
389 /* Returns the freelist pointer recorded at location ptr_addr. */
390 static inline void *freelist_dereference(const struct kmem_cache *s,
391 					 void *ptr_addr)
392 {
393 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
394 			    (unsigned long)ptr_addr);
395 }
396 
397 static inline void *get_freepointer(struct kmem_cache *s, void *object)
398 {
399 	object = kasan_reset_tag(object);
400 	return freelist_dereference(s, object + s->offset);
401 }
402 
403 #ifndef CONFIG_SLUB_TINY
404 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
405 {
406 	prefetchw(object + s->offset);
407 }
408 #endif
409 
410 /*
411  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
412  * pointer value in the case the current thread loses the race for the next
413  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
414  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
415  * KMSAN will still check all arguments of cmpxchg because of imperfect
416  * handling of inline assembly.
417  * To work around this problem, we apply __no_kmsan_checks to ensure that
418  * get_freepointer_safe() returns initialized memory.
419  */
420 __no_kmsan_checks
421 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
422 {
423 	unsigned long freepointer_addr;
424 	void *p;
425 
426 	if (!debug_pagealloc_enabled_static())
427 		return get_freepointer(s, object);
428 
429 	object = kasan_reset_tag(object);
430 	freepointer_addr = (unsigned long)object + s->offset;
431 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
432 	return freelist_ptr(s, p, freepointer_addr);
433 }
434 
435 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
436 {
437 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
438 
439 #ifdef CONFIG_SLAB_FREELIST_HARDENED
440 	BUG_ON(object == fp); /* naive detection of double free or corruption */
441 #endif
442 
443 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
444 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
445 }
446 
447 /* Loop over all objects in a slab */
448 #define for_each_object(__p, __s, __addr, __objects) \
449 	for (__p = fixup_red_left(__s, __addr); \
450 		__p < (__addr) + (__objects) * (__s)->size; \
451 		__p += (__s)->size)
452 
453 static inline unsigned int order_objects(unsigned int order, unsigned int size)
454 {
455 	return ((unsigned int)PAGE_SIZE << order) / size;
456 }
457 
458 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
459 		unsigned int size)
460 {
461 	struct kmem_cache_order_objects x = {
462 		(order << OO_SHIFT) + order_objects(order, size)
463 	};
464 
465 	return x;
466 }
467 
468 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
469 {
470 	return x.x >> OO_SHIFT;
471 }
472 
473 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
474 {
475 	return x.x & OO_MASK;
476 }
477 
478 #ifdef CONFIG_SLUB_CPU_PARTIAL
479 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
480 {
481 	unsigned int nr_slabs;
482 
483 	s->cpu_partial = nr_objects;
484 
485 	/*
486 	 * We take the number of objects but actually limit the number of
487 	 * slabs on the per cpu partial list, in order to limit excessive
488 	 * growth of the list. For simplicity we assume that the slabs will
489 	 * be half-full.
490 	 */
491 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
492 	s->cpu_partial_slabs = nr_slabs;
493 }
494 #else
495 static inline void
496 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
497 {
498 }
499 #endif /* CONFIG_SLUB_CPU_PARTIAL */
500 
501 /*
502  * Per slab locking using the pagelock
503  */
504 static __always_inline void slab_lock(struct slab *slab)
505 {
506 	struct page *page = slab_page(slab);
507 
508 	VM_BUG_ON_PAGE(PageTail(page), page);
509 	bit_spin_lock(PG_locked, &page->flags);
510 }
511 
512 static __always_inline void slab_unlock(struct slab *slab)
513 {
514 	struct page *page = slab_page(slab);
515 
516 	VM_BUG_ON_PAGE(PageTail(page), page);
517 	__bit_spin_unlock(PG_locked, &page->flags);
518 }
519 
520 static inline bool
521 __update_freelist_fast(struct slab *slab,
522 		      void *freelist_old, unsigned long counters_old,
523 		      void *freelist_new, unsigned long counters_new)
524 {
525 #ifdef system_has_freelist_aba
526 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
527 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
528 
529 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
530 #else
531 	return false;
532 #endif
533 }
534 
535 static inline bool
536 __update_freelist_slow(struct slab *slab,
537 		      void *freelist_old, unsigned long counters_old,
538 		      void *freelist_new, unsigned long counters_new)
539 {
540 	bool ret = false;
541 
542 	slab_lock(slab);
543 	if (slab->freelist == freelist_old &&
544 	    slab->counters == counters_old) {
545 		slab->freelist = freelist_new;
546 		slab->counters = counters_new;
547 		ret = true;
548 	}
549 	slab_unlock(slab);
550 
551 	return ret;
552 }
553 
554 /*
555  * Interrupts must be disabled (for the fallback code to work right), typically
556  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
557  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
558  * allocation/ free operation in hardirq context. Therefore nothing can
559  * interrupt the operation.
560  */
561 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
562 		void *freelist_old, unsigned long counters_old,
563 		void *freelist_new, unsigned long counters_new,
564 		const char *n)
565 {
566 	bool ret;
567 
568 	if (USE_LOCKLESS_FAST_PATH())
569 		lockdep_assert_irqs_disabled();
570 
571 	if (s->flags & __CMPXCHG_DOUBLE) {
572 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
573 				            freelist_new, counters_new);
574 	} else {
575 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
576 				            freelist_new, counters_new);
577 	}
578 	if (likely(ret))
579 		return true;
580 
581 	cpu_relax();
582 	stat(s, CMPXCHG_DOUBLE_FAIL);
583 
584 #ifdef SLUB_DEBUG_CMPXCHG
585 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
586 #endif
587 
588 	return false;
589 }
590 
591 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
592 		void *freelist_old, unsigned long counters_old,
593 		void *freelist_new, unsigned long counters_new,
594 		const char *n)
595 {
596 	bool ret;
597 
598 	if (s->flags & __CMPXCHG_DOUBLE) {
599 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
600 				            freelist_new, counters_new);
601 	} else {
602 		unsigned long flags;
603 
604 		local_irq_save(flags);
605 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
606 				            freelist_new, counters_new);
607 		local_irq_restore(flags);
608 	}
609 	if (likely(ret))
610 		return true;
611 
612 	cpu_relax();
613 	stat(s, CMPXCHG_DOUBLE_FAIL);
614 
615 #ifdef SLUB_DEBUG_CMPXCHG
616 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
617 #endif
618 
619 	return false;
620 }
621 
622 #ifdef CONFIG_SLUB_DEBUG
623 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
624 static DEFINE_SPINLOCK(object_map_lock);
625 
626 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
627 		       struct slab *slab)
628 {
629 	void *addr = slab_address(slab);
630 	void *p;
631 
632 	bitmap_zero(obj_map, slab->objects);
633 
634 	for (p = slab->freelist; p; p = get_freepointer(s, p))
635 		set_bit(__obj_to_index(s, addr, p), obj_map);
636 }
637 
638 #if IS_ENABLED(CONFIG_KUNIT)
639 static bool slab_add_kunit_errors(void)
640 {
641 	struct kunit_resource *resource;
642 
643 	if (!kunit_get_current_test())
644 		return false;
645 
646 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
647 	if (!resource)
648 		return false;
649 
650 	(*(int *)resource->data)++;
651 	kunit_put_resource(resource);
652 	return true;
653 }
654 #else
655 static inline bool slab_add_kunit_errors(void) { return false; }
656 #endif
657 
658 static inline unsigned int size_from_object(struct kmem_cache *s)
659 {
660 	if (s->flags & SLAB_RED_ZONE)
661 		return s->size - s->red_left_pad;
662 
663 	return s->size;
664 }
665 
666 static inline void *restore_red_left(struct kmem_cache *s, void *p)
667 {
668 	if (s->flags & SLAB_RED_ZONE)
669 		p -= s->red_left_pad;
670 
671 	return p;
672 }
673 
674 /*
675  * Debug settings:
676  */
677 #if defined(CONFIG_SLUB_DEBUG_ON)
678 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
679 #else
680 static slab_flags_t slub_debug;
681 #endif
682 
683 static char *slub_debug_string;
684 static int disable_higher_order_debug;
685 
686 /*
687  * slub is about to manipulate internal object metadata.  This memory lies
688  * outside the range of the allocated object, so accessing it would normally
689  * be reported by kasan as a bounds error.  metadata_access_enable() is used
690  * to tell kasan that these accesses are OK.
691  */
692 static inline void metadata_access_enable(void)
693 {
694 	kasan_disable_current();
695 }
696 
697 static inline void metadata_access_disable(void)
698 {
699 	kasan_enable_current();
700 }
701 
702 /*
703  * Object debugging
704  */
705 
706 /* Verify that a pointer has an address that is valid within a slab page */
707 static inline int check_valid_pointer(struct kmem_cache *s,
708 				struct slab *slab, void *object)
709 {
710 	void *base;
711 
712 	if (!object)
713 		return 1;
714 
715 	base = slab_address(slab);
716 	object = kasan_reset_tag(object);
717 	object = restore_red_left(s, object);
718 	if (object < base || object >= base + slab->objects * s->size ||
719 		(object - base) % s->size) {
720 		return 0;
721 	}
722 
723 	return 1;
724 }
725 
726 static void print_section(char *level, char *text, u8 *addr,
727 			  unsigned int length)
728 {
729 	metadata_access_enable();
730 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
731 			16, 1, kasan_reset_tag((void *)addr), length, 1);
732 	metadata_access_disable();
733 }
734 
735 /*
736  * See comment in calculate_sizes().
737  */
738 static inline bool freeptr_outside_object(struct kmem_cache *s)
739 {
740 	return s->offset >= s->inuse;
741 }
742 
743 /*
744  * Return offset of the end of info block which is inuse + free pointer if
745  * not overlapping with object.
746  */
747 static inline unsigned int get_info_end(struct kmem_cache *s)
748 {
749 	if (freeptr_outside_object(s))
750 		return s->inuse + sizeof(void *);
751 	else
752 		return s->inuse;
753 }
754 
755 static struct track *get_track(struct kmem_cache *s, void *object,
756 	enum track_item alloc)
757 {
758 	struct track *p;
759 
760 	p = object + get_info_end(s);
761 
762 	return kasan_reset_tag(p + alloc);
763 }
764 
765 #ifdef CONFIG_STACKDEPOT
766 static noinline depot_stack_handle_t set_track_prepare(void)
767 {
768 	depot_stack_handle_t handle;
769 	unsigned long entries[TRACK_ADDRS_COUNT];
770 	unsigned int nr_entries;
771 
772 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
773 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
774 
775 	return handle;
776 }
777 #else
778 static inline depot_stack_handle_t set_track_prepare(void)
779 {
780 	return 0;
781 }
782 #endif
783 
784 static void set_track_update(struct kmem_cache *s, void *object,
785 			     enum track_item alloc, unsigned long addr,
786 			     depot_stack_handle_t handle)
787 {
788 	struct track *p = get_track(s, object, alloc);
789 
790 #ifdef CONFIG_STACKDEPOT
791 	p->handle = handle;
792 #endif
793 	p->addr = addr;
794 	p->cpu = smp_processor_id();
795 	p->pid = current->pid;
796 	p->when = jiffies;
797 }
798 
799 static __always_inline void set_track(struct kmem_cache *s, void *object,
800 				      enum track_item alloc, unsigned long addr)
801 {
802 	depot_stack_handle_t handle = set_track_prepare();
803 
804 	set_track_update(s, object, alloc, addr, handle);
805 }
806 
807 static void init_tracking(struct kmem_cache *s, void *object)
808 {
809 	struct track *p;
810 
811 	if (!(s->flags & SLAB_STORE_USER))
812 		return;
813 
814 	p = get_track(s, object, TRACK_ALLOC);
815 	memset(p, 0, 2*sizeof(struct track));
816 }
817 
818 static void print_track(const char *s, struct track *t, unsigned long pr_time)
819 {
820 	depot_stack_handle_t handle __maybe_unused;
821 
822 	if (!t->addr)
823 		return;
824 
825 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
826 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
827 #ifdef CONFIG_STACKDEPOT
828 	handle = READ_ONCE(t->handle);
829 	if (handle)
830 		stack_depot_print(handle);
831 	else
832 		pr_err("object allocation/free stack trace missing\n");
833 #endif
834 }
835 
836 void print_tracking(struct kmem_cache *s, void *object)
837 {
838 	unsigned long pr_time = jiffies;
839 	if (!(s->flags & SLAB_STORE_USER))
840 		return;
841 
842 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
843 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
844 }
845 
846 static void print_slab_info(const struct slab *slab)
847 {
848 	struct folio *folio = (struct folio *)slab_folio(slab);
849 
850 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
851 	       slab, slab->objects, slab->inuse, slab->freelist,
852 	       folio_flags(folio, 0));
853 }
854 
855 /*
856  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
857  * family will round up the real request size to these fixed ones, so
858  * there could be an extra area than what is requested. Save the original
859  * request size in the meta data area, for better debug and sanity check.
860  */
861 static inline void set_orig_size(struct kmem_cache *s,
862 				void *object, unsigned int orig_size)
863 {
864 	void *p = kasan_reset_tag(object);
865 
866 	if (!slub_debug_orig_size(s))
867 		return;
868 
869 #ifdef CONFIG_KASAN_GENERIC
870 	/*
871 	 * KASAN could save its free meta data in object's data area at
872 	 * offset 0, if the size is larger than 'orig_size', it will
873 	 * overlap the data redzone in [orig_size+1, object_size], and
874 	 * the check should be skipped.
875 	 */
876 	if (kasan_metadata_size(s, true) > orig_size)
877 		orig_size = s->object_size;
878 #endif
879 
880 	p += get_info_end(s);
881 	p += sizeof(struct track) * 2;
882 
883 	*(unsigned int *)p = orig_size;
884 }
885 
886 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
887 {
888 	void *p = kasan_reset_tag(object);
889 
890 	if (!slub_debug_orig_size(s))
891 		return s->object_size;
892 
893 	p += get_info_end(s);
894 	p += sizeof(struct track) * 2;
895 
896 	return *(unsigned int *)p;
897 }
898 
899 void skip_orig_size_check(struct kmem_cache *s, const void *object)
900 {
901 	set_orig_size(s, (void *)object, s->object_size);
902 }
903 
904 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
905 {
906 	struct va_format vaf;
907 	va_list args;
908 
909 	va_start(args, fmt);
910 	vaf.fmt = fmt;
911 	vaf.va = &args;
912 	pr_err("=============================================================================\n");
913 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
914 	pr_err("-----------------------------------------------------------------------------\n\n");
915 	va_end(args);
916 }
917 
918 __printf(2, 3)
919 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
920 {
921 	struct va_format vaf;
922 	va_list args;
923 
924 	if (slab_add_kunit_errors())
925 		return;
926 
927 	va_start(args, fmt);
928 	vaf.fmt = fmt;
929 	vaf.va = &args;
930 	pr_err("FIX %s: %pV\n", s->name, &vaf);
931 	va_end(args);
932 }
933 
934 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
935 {
936 	unsigned int off;	/* Offset of last byte */
937 	u8 *addr = slab_address(slab);
938 
939 	print_tracking(s, p);
940 
941 	print_slab_info(slab);
942 
943 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
944 	       p, p - addr, get_freepointer(s, p));
945 
946 	if (s->flags & SLAB_RED_ZONE)
947 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
948 			      s->red_left_pad);
949 	else if (p > addr + 16)
950 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
951 
952 	print_section(KERN_ERR,         "Object   ", p,
953 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
954 	if (s->flags & SLAB_RED_ZONE)
955 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
956 			s->inuse - s->object_size);
957 
958 	off = get_info_end(s);
959 
960 	if (s->flags & SLAB_STORE_USER)
961 		off += 2 * sizeof(struct track);
962 
963 	if (slub_debug_orig_size(s))
964 		off += sizeof(unsigned int);
965 
966 	off += kasan_metadata_size(s, false);
967 
968 	if (off != size_from_object(s))
969 		/* Beginning of the filler is the free pointer */
970 		print_section(KERN_ERR, "Padding  ", p + off,
971 			      size_from_object(s) - off);
972 
973 	dump_stack();
974 }
975 
976 static void object_err(struct kmem_cache *s, struct slab *slab,
977 			u8 *object, char *reason)
978 {
979 	if (slab_add_kunit_errors())
980 		return;
981 
982 	slab_bug(s, "%s", reason);
983 	print_trailer(s, slab, object);
984 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
985 }
986 
987 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
988 			       void **freelist, void *nextfree)
989 {
990 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
991 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
992 		object_err(s, slab, *freelist, "Freechain corrupt");
993 		*freelist = NULL;
994 		slab_fix(s, "Isolate corrupted freechain");
995 		return true;
996 	}
997 
998 	return false;
999 }
1000 
1001 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1002 			const char *fmt, ...)
1003 {
1004 	va_list args;
1005 	char buf[100];
1006 
1007 	if (slab_add_kunit_errors())
1008 		return;
1009 
1010 	va_start(args, fmt);
1011 	vsnprintf(buf, sizeof(buf), fmt, args);
1012 	va_end(args);
1013 	slab_bug(s, "%s", buf);
1014 	print_slab_info(slab);
1015 	dump_stack();
1016 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1017 }
1018 
1019 static void init_object(struct kmem_cache *s, void *object, u8 val)
1020 {
1021 	u8 *p = kasan_reset_tag(object);
1022 	unsigned int poison_size = s->object_size;
1023 
1024 	if (s->flags & SLAB_RED_ZONE) {
1025 		memset(p - s->red_left_pad, val, s->red_left_pad);
1026 
1027 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1028 			/*
1029 			 * Redzone the extra allocated space by kmalloc than
1030 			 * requested, and the poison size will be limited to
1031 			 * the original request size accordingly.
1032 			 */
1033 			poison_size = get_orig_size(s, object);
1034 		}
1035 	}
1036 
1037 	if (s->flags & __OBJECT_POISON) {
1038 		memset(p, POISON_FREE, poison_size - 1);
1039 		p[poison_size - 1] = POISON_END;
1040 	}
1041 
1042 	if (s->flags & SLAB_RED_ZONE)
1043 		memset(p + poison_size, val, s->inuse - poison_size);
1044 }
1045 
1046 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1047 						void *from, void *to)
1048 {
1049 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1050 	memset(from, data, to - from);
1051 }
1052 
1053 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1054 			u8 *object, char *what,
1055 			u8 *start, unsigned int value, unsigned int bytes)
1056 {
1057 	u8 *fault;
1058 	u8 *end;
1059 	u8 *addr = slab_address(slab);
1060 
1061 	metadata_access_enable();
1062 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1063 	metadata_access_disable();
1064 	if (!fault)
1065 		return 1;
1066 
1067 	end = start + bytes;
1068 	while (end > fault && end[-1] == value)
1069 		end--;
1070 
1071 	if (slab_add_kunit_errors())
1072 		goto skip_bug_print;
1073 
1074 	slab_bug(s, "%s overwritten", what);
1075 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1076 					fault, end - 1, fault - addr,
1077 					fault[0], value);
1078 	print_trailer(s, slab, object);
1079 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1080 
1081 skip_bug_print:
1082 	restore_bytes(s, what, value, fault, end);
1083 	return 0;
1084 }
1085 
1086 /*
1087  * Object layout:
1088  *
1089  * object address
1090  * 	Bytes of the object to be managed.
1091  * 	If the freepointer may overlay the object then the free
1092  *	pointer is at the middle of the object.
1093  *
1094  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1095  * 	0xa5 (POISON_END)
1096  *
1097  * object + s->object_size
1098  * 	Padding to reach word boundary. This is also used for Redzoning.
1099  * 	Padding is extended by another word if Redzoning is enabled and
1100  * 	object_size == inuse.
1101  *
1102  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1103  * 	0xcc (RED_ACTIVE) for objects in use.
1104  *
1105  * object + s->inuse
1106  * 	Meta data starts here.
1107  *
1108  * 	A. Free pointer (if we cannot overwrite object on free)
1109  * 	B. Tracking data for SLAB_STORE_USER
1110  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1111  *	D. Padding to reach required alignment boundary or at minimum
1112  * 		one word if debugging is on to be able to detect writes
1113  * 		before the word boundary.
1114  *
1115  *	Padding is done using 0x5a (POISON_INUSE)
1116  *
1117  * object + s->size
1118  * 	Nothing is used beyond s->size.
1119  *
1120  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1121  * ignored. And therefore no slab options that rely on these boundaries
1122  * may be used with merged slabcaches.
1123  */
1124 
1125 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1126 {
1127 	unsigned long off = get_info_end(s);	/* The end of info */
1128 
1129 	if (s->flags & SLAB_STORE_USER) {
1130 		/* We also have user information there */
1131 		off += 2 * sizeof(struct track);
1132 
1133 		if (s->flags & SLAB_KMALLOC)
1134 			off += sizeof(unsigned int);
1135 	}
1136 
1137 	off += kasan_metadata_size(s, false);
1138 
1139 	if (size_from_object(s) == off)
1140 		return 1;
1141 
1142 	return check_bytes_and_report(s, slab, p, "Object padding",
1143 			p + off, POISON_INUSE, size_from_object(s) - off);
1144 }
1145 
1146 /* Check the pad bytes at the end of a slab page */
1147 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1148 {
1149 	u8 *start;
1150 	u8 *fault;
1151 	u8 *end;
1152 	u8 *pad;
1153 	int length;
1154 	int remainder;
1155 
1156 	if (!(s->flags & SLAB_POISON))
1157 		return;
1158 
1159 	start = slab_address(slab);
1160 	length = slab_size(slab);
1161 	end = start + length;
1162 	remainder = length % s->size;
1163 	if (!remainder)
1164 		return;
1165 
1166 	pad = end - remainder;
1167 	metadata_access_enable();
1168 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1169 	metadata_access_disable();
1170 	if (!fault)
1171 		return;
1172 	while (end > fault && end[-1] == POISON_INUSE)
1173 		end--;
1174 
1175 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1176 			fault, end - 1, fault - start);
1177 	print_section(KERN_ERR, "Padding ", pad, remainder);
1178 
1179 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1180 }
1181 
1182 static int check_object(struct kmem_cache *s, struct slab *slab,
1183 					void *object, u8 val)
1184 {
1185 	u8 *p = object;
1186 	u8 *endobject = object + s->object_size;
1187 	unsigned int orig_size;
1188 
1189 	if (s->flags & SLAB_RED_ZONE) {
1190 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1191 			object - s->red_left_pad, val, s->red_left_pad))
1192 			return 0;
1193 
1194 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1195 			endobject, val, s->inuse - s->object_size))
1196 			return 0;
1197 
1198 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1199 			orig_size = get_orig_size(s, object);
1200 
1201 			if (s->object_size > orig_size  &&
1202 				!check_bytes_and_report(s, slab, object,
1203 					"kmalloc Redzone", p + orig_size,
1204 					val, s->object_size - orig_size)) {
1205 				return 0;
1206 			}
1207 		}
1208 	} else {
1209 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1210 			check_bytes_and_report(s, slab, p, "Alignment padding",
1211 				endobject, POISON_INUSE,
1212 				s->inuse - s->object_size);
1213 		}
1214 	}
1215 
1216 	if (s->flags & SLAB_POISON) {
1217 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1218 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1219 					POISON_FREE, s->object_size - 1) ||
1220 			 !check_bytes_and_report(s, slab, p, "End Poison",
1221 				p + s->object_size - 1, POISON_END, 1)))
1222 			return 0;
1223 		/*
1224 		 * check_pad_bytes cleans up on its own.
1225 		 */
1226 		check_pad_bytes(s, slab, p);
1227 	}
1228 
1229 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1230 		/*
1231 		 * Object and freepointer overlap. Cannot check
1232 		 * freepointer while object is allocated.
1233 		 */
1234 		return 1;
1235 
1236 	/* Check free pointer validity */
1237 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1238 		object_err(s, slab, p, "Freepointer corrupt");
1239 		/*
1240 		 * No choice but to zap it and thus lose the remainder
1241 		 * of the free objects in this slab. May cause
1242 		 * another error because the object count is now wrong.
1243 		 */
1244 		set_freepointer(s, p, NULL);
1245 		return 0;
1246 	}
1247 	return 1;
1248 }
1249 
1250 static int check_slab(struct kmem_cache *s, struct slab *slab)
1251 {
1252 	int maxobj;
1253 
1254 	if (!folio_test_slab(slab_folio(slab))) {
1255 		slab_err(s, slab, "Not a valid slab page");
1256 		return 0;
1257 	}
1258 
1259 	maxobj = order_objects(slab_order(slab), s->size);
1260 	if (slab->objects > maxobj) {
1261 		slab_err(s, slab, "objects %u > max %u",
1262 			slab->objects, maxobj);
1263 		return 0;
1264 	}
1265 	if (slab->inuse > slab->objects) {
1266 		slab_err(s, slab, "inuse %u > max %u",
1267 			slab->inuse, slab->objects);
1268 		return 0;
1269 	}
1270 	/* Slab_pad_check fixes things up after itself */
1271 	slab_pad_check(s, slab);
1272 	return 1;
1273 }
1274 
1275 /*
1276  * Determine if a certain object in a slab is on the freelist. Must hold the
1277  * slab lock to guarantee that the chains are in a consistent state.
1278  */
1279 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1280 {
1281 	int nr = 0;
1282 	void *fp;
1283 	void *object = NULL;
1284 	int max_objects;
1285 
1286 	fp = slab->freelist;
1287 	while (fp && nr <= slab->objects) {
1288 		if (fp == search)
1289 			return 1;
1290 		if (!check_valid_pointer(s, slab, fp)) {
1291 			if (object) {
1292 				object_err(s, slab, object,
1293 					"Freechain corrupt");
1294 				set_freepointer(s, object, NULL);
1295 			} else {
1296 				slab_err(s, slab, "Freepointer corrupt");
1297 				slab->freelist = NULL;
1298 				slab->inuse = slab->objects;
1299 				slab_fix(s, "Freelist cleared");
1300 				return 0;
1301 			}
1302 			break;
1303 		}
1304 		object = fp;
1305 		fp = get_freepointer(s, object);
1306 		nr++;
1307 	}
1308 
1309 	max_objects = order_objects(slab_order(slab), s->size);
1310 	if (max_objects > MAX_OBJS_PER_PAGE)
1311 		max_objects = MAX_OBJS_PER_PAGE;
1312 
1313 	if (slab->objects != max_objects) {
1314 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1315 			 slab->objects, max_objects);
1316 		slab->objects = max_objects;
1317 		slab_fix(s, "Number of objects adjusted");
1318 	}
1319 	if (slab->inuse != slab->objects - nr) {
1320 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1321 			 slab->inuse, slab->objects - nr);
1322 		slab->inuse = slab->objects - nr;
1323 		slab_fix(s, "Object count adjusted");
1324 	}
1325 	return search == NULL;
1326 }
1327 
1328 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1329 								int alloc)
1330 {
1331 	if (s->flags & SLAB_TRACE) {
1332 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1333 			s->name,
1334 			alloc ? "alloc" : "free",
1335 			object, slab->inuse,
1336 			slab->freelist);
1337 
1338 		if (!alloc)
1339 			print_section(KERN_INFO, "Object ", (void *)object,
1340 					s->object_size);
1341 
1342 		dump_stack();
1343 	}
1344 }
1345 
1346 /*
1347  * Tracking of fully allocated slabs for debugging purposes.
1348  */
1349 static void add_full(struct kmem_cache *s,
1350 	struct kmem_cache_node *n, struct slab *slab)
1351 {
1352 	if (!(s->flags & SLAB_STORE_USER))
1353 		return;
1354 
1355 	lockdep_assert_held(&n->list_lock);
1356 	list_add(&slab->slab_list, &n->full);
1357 }
1358 
1359 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1360 {
1361 	if (!(s->flags & SLAB_STORE_USER))
1362 		return;
1363 
1364 	lockdep_assert_held(&n->list_lock);
1365 	list_del(&slab->slab_list);
1366 }
1367 
1368 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1369 {
1370 	return atomic_long_read(&n->nr_slabs);
1371 }
1372 
1373 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1374 {
1375 	struct kmem_cache_node *n = get_node(s, node);
1376 
1377 	/*
1378 	 * May be called early in order to allocate a slab for the
1379 	 * kmem_cache_node structure. Solve the chicken-egg
1380 	 * dilemma by deferring the increment of the count during
1381 	 * bootstrap (see early_kmem_cache_node_alloc).
1382 	 */
1383 	if (likely(n)) {
1384 		atomic_long_inc(&n->nr_slabs);
1385 		atomic_long_add(objects, &n->total_objects);
1386 	}
1387 }
1388 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1389 {
1390 	struct kmem_cache_node *n = get_node(s, node);
1391 
1392 	atomic_long_dec(&n->nr_slabs);
1393 	atomic_long_sub(objects, &n->total_objects);
1394 }
1395 
1396 /* Object debug checks for alloc/free paths */
1397 static void setup_object_debug(struct kmem_cache *s, void *object)
1398 {
1399 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1400 		return;
1401 
1402 	init_object(s, object, SLUB_RED_INACTIVE);
1403 	init_tracking(s, object);
1404 }
1405 
1406 static
1407 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1408 {
1409 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1410 		return;
1411 
1412 	metadata_access_enable();
1413 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1414 	metadata_access_disable();
1415 }
1416 
1417 static inline int alloc_consistency_checks(struct kmem_cache *s,
1418 					struct slab *slab, void *object)
1419 {
1420 	if (!check_slab(s, slab))
1421 		return 0;
1422 
1423 	if (!check_valid_pointer(s, slab, object)) {
1424 		object_err(s, slab, object, "Freelist Pointer check fails");
1425 		return 0;
1426 	}
1427 
1428 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1429 		return 0;
1430 
1431 	return 1;
1432 }
1433 
1434 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1435 			struct slab *slab, void *object, int orig_size)
1436 {
1437 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1438 		if (!alloc_consistency_checks(s, slab, object))
1439 			goto bad;
1440 	}
1441 
1442 	/* Success. Perform special debug activities for allocs */
1443 	trace(s, slab, object, 1);
1444 	set_orig_size(s, object, orig_size);
1445 	init_object(s, object, SLUB_RED_ACTIVE);
1446 	return true;
1447 
1448 bad:
1449 	if (folio_test_slab(slab_folio(slab))) {
1450 		/*
1451 		 * If this is a slab page then lets do the best we can
1452 		 * to avoid issues in the future. Marking all objects
1453 		 * as used avoids touching the remaining objects.
1454 		 */
1455 		slab_fix(s, "Marking all objects used");
1456 		slab->inuse = slab->objects;
1457 		slab->freelist = NULL;
1458 	}
1459 	return false;
1460 }
1461 
1462 static inline int free_consistency_checks(struct kmem_cache *s,
1463 		struct slab *slab, void *object, unsigned long addr)
1464 {
1465 	if (!check_valid_pointer(s, slab, object)) {
1466 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1467 		return 0;
1468 	}
1469 
1470 	if (on_freelist(s, slab, object)) {
1471 		object_err(s, slab, object, "Object already free");
1472 		return 0;
1473 	}
1474 
1475 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1476 		return 0;
1477 
1478 	if (unlikely(s != slab->slab_cache)) {
1479 		if (!folio_test_slab(slab_folio(slab))) {
1480 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1481 				 object);
1482 		} else if (!slab->slab_cache) {
1483 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1484 			       object);
1485 			dump_stack();
1486 		} else
1487 			object_err(s, slab, object,
1488 					"page slab pointer corrupt.");
1489 		return 0;
1490 	}
1491 	return 1;
1492 }
1493 
1494 /*
1495  * Parse a block of slub_debug options. Blocks are delimited by ';'
1496  *
1497  * @str:    start of block
1498  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1499  * @slabs:  return start of list of slabs, or NULL when there's no list
1500  * @init:   assume this is initial parsing and not per-kmem-create parsing
1501  *
1502  * returns the start of next block if there's any, or NULL
1503  */
1504 static char *
1505 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1506 {
1507 	bool higher_order_disable = false;
1508 
1509 	/* Skip any completely empty blocks */
1510 	while (*str && *str == ';')
1511 		str++;
1512 
1513 	if (*str == ',') {
1514 		/*
1515 		 * No options but restriction on slabs. This means full
1516 		 * debugging for slabs matching a pattern.
1517 		 */
1518 		*flags = DEBUG_DEFAULT_FLAGS;
1519 		goto check_slabs;
1520 	}
1521 	*flags = 0;
1522 
1523 	/* Determine which debug features should be switched on */
1524 	for (; *str && *str != ',' && *str != ';'; str++) {
1525 		switch (tolower(*str)) {
1526 		case '-':
1527 			*flags = 0;
1528 			break;
1529 		case 'f':
1530 			*flags |= SLAB_CONSISTENCY_CHECKS;
1531 			break;
1532 		case 'z':
1533 			*flags |= SLAB_RED_ZONE;
1534 			break;
1535 		case 'p':
1536 			*flags |= SLAB_POISON;
1537 			break;
1538 		case 'u':
1539 			*flags |= SLAB_STORE_USER;
1540 			break;
1541 		case 't':
1542 			*flags |= SLAB_TRACE;
1543 			break;
1544 		case 'a':
1545 			*flags |= SLAB_FAILSLAB;
1546 			break;
1547 		case 'o':
1548 			/*
1549 			 * Avoid enabling debugging on caches if its minimum
1550 			 * order would increase as a result.
1551 			 */
1552 			higher_order_disable = true;
1553 			break;
1554 		default:
1555 			if (init)
1556 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1557 		}
1558 	}
1559 check_slabs:
1560 	if (*str == ',')
1561 		*slabs = ++str;
1562 	else
1563 		*slabs = NULL;
1564 
1565 	/* Skip over the slab list */
1566 	while (*str && *str != ';')
1567 		str++;
1568 
1569 	/* Skip any completely empty blocks */
1570 	while (*str && *str == ';')
1571 		str++;
1572 
1573 	if (init && higher_order_disable)
1574 		disable_higher_order_debug = 1;
1575 
1576 	if (*str)
1577 		return str;
1578 	else
1579 		return NULL;
1580 }
1581 
1582 static int __init setup_slub_debug(char *str)
1583 {
1584 	slab_flags_t flags;
1585 	slab_flags_t global_flags;
1586 	char *saved_str;
1587 	char *slab_list;
1588 	bool global_slub_debug_changed = false;
1589 	bool slab_list_specified = false;
1590 
1591 	global_flags = DEBUG_DEFAULT_FLAGS;
1592 	if (*str++ != '=' || !*str)
1593 		/*
1594 		 * No options specified. Switch on full debugging.
1595 		 */
1596 		goto out;
1597 
1598 	saved_str = str;
1599 	while (str) {
1600 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1601 
1602 		if (!slab_list) {
1603 			global_flags = flags;
1604 			global_slub_debug_changed = true;
1605 		} else {
1606 			slab_list_specified = true;
1607 			if (flags & SLAB_STORE_USER)
1608 				stack_depot_request_early_init();
1609 		}
1610 	}
1611 
1612 	/*
1613 	 * For backwards compatibility, a single list of flags with list of
1614 	 * slabs means debugging is only changed for those slabs, so the global
1615 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1616 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1617 	 * long as there is no option specifying flags without a slab list.
1618 	 */
1619 	if (slab_list_specified) {
1620 		if (!global_slub_debug_changed)
1621 			global_flags = slub_debug;
1622 		slub_debug_string = saved_str;
1623 	}
1624 out:
1625 	slub_debug = global_flags;
1626 	if (slub_debug & SLAB_STORE_USER)
1627 		stack_depot_request_early_init();
1628 	if (slub_debug != 0 || slub_debug_string)
1629 		static_branch_enable(&slub_debug_enabled);
1630 	else
1631 		static_branch_disable(&slub_debug_enabled);
1632 	if ((static_branch_unlikely(&init_on_alloc) ||
1633 	     static_branch_unlikely(&init_on_free)) &&
1634 	    (slub_debug & SLAB_POISON))
1635 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1636 	return 1;
1637 }
1638 
1639 __setup("slub_debug", setup_slub_debug);
1640 
1641 /*
1642  * kmem_cache_flags - apply debugging options to the cache
1643  * @object_size:	the size of an object without meta data
1644  * @flags:		flags to set
1645  * @name:		name of the cache
1646  *
1647  * Debug option(s) are applied to @flags. In addition to the debug
1648  * option(s), if a slab name (or multiple) is specified i.e.
1649  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1650  * then only the select slabs will receive the debug option(s).
1651  */
1652 slab_flags_t kmem_cache_flags(unsigned int object_size,
1653 	slab_flags_t flags, const char *name)
1654 {
1655 	char *iter;
1656 	size_t len;
1657 	char *next_block;
1658 	slab_flags_t block_flags;
1659 	slab_flags_t slub_debug_local = slub_debug;
1660 
1661 	if (flags & SLAB_NO_USER_FLAGS)
1662 		return flags;
1663 
1664 	/*
1665 	 * If the slab cache is for debugging (e.g. kmemleak) then
1666 	 * don't store user (stack trace) information by default,
1667 	 * but let the user enable it via the command line below.
1668 	 */
1669 	if (flags & SLAB_NOLEAKTRACE)
1670 		slub_debug_local &= ~SLAB_STORE_USER;
1671 
1672 	len = strlen(name);
1673 	next_block = slub_debug_string;
1674 	/* Go through all blocks of debug options, see if any matches our slab's name */
1675 	while (next_block) {
1676 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1677 		if (!iter)
1678 			continue;
1679 		/* Found a block that has a slab list, search it */
1680 		while (*iter) {
1681 			char *end, *glob;
1682 			size_t cmplen;
1683 
1684 			end = strchrnul(iter, ',');
1685 			if (next_block && next_block < end)
1686 				end = next_block - 1;
1687 
1688 			glob = strnchr(iter, end - iter, '*');
1689 			if (glob)
1690 				cmplen = glob - iter;
1691 			else
1692 				cmplen = max_t(size_t, len, (end - iter));
1693 
1694 			if (!strncmp(name, iter, cmplen)) {
1695 				flags |= block_flags;
1696 				return flags;
1697 			}
1698 
1699 			if (!*end || *end == ';')
1700 				break;
1701 			iter = end + 1;
1702 		}
1703 	}
1704 
1705 	return flags | slub_debug_local;
1706 }
1707 #else /* !CONFIG_SLUB_DEBUG */
1708 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1709 static inline
1710 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1711 
1712 static inline bool alloc_debug_processing(struct kmem_cache *s,
1713 	struct slab *slab, void *object, int orig_size) { return true; }
1714 
1715 static inline bool free_debug_processing(struct kmem_cache *s,
1716 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1717 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1718 
1719 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1720 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1721 			void *object, u8 val) { return 1; }
1722 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1723 static inline void set_track(struct kmem_cache *s, void *object,
1724 			     enum track_item alloc, unsigned long addr) {}
1725 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1726 					struct slab *slab) {}
1727 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1728 					struct slab *slab) {}
1729 slab_flags_t kmem_cache_flags(unsigned int object_size,
1730 	slab_flags_t flags, const char *name)
1731 {
1732 	return flags;
1733 }
1734 #define slub_debug 0
1735 
1736 #define disable_higher_order_debug 0
1737 
1738 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1739 							{ return 0; }
1740 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1741 							int objects) {}
1742 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1743 							int objects) {}
1744 
1745 #ifndef CONFIG_SLUB_TINY
1746 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1747 			       void **freelist, void *nextfree)
1748 {
1749 	return false;
1750 }
1751 #endif
1752 #endif /* CONFIG_SLUB_DEBUG */
1753 
1754 /*
1755  * Hooks for other subsystems that check memory allocations. In a typical
1756  * production configuration these hooks all should produce no code at all.
1757  */
1758 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1759 						void *x, bool init)
1760 {
1761 	kmemleak_free_recursive(x, s->flags);
1762 	kmsan_slab_free(s, x);
1763 
1764 	debug_check_no_locks_freed(x, s->object_size);
1765 
1766 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1767 		debug_check_no_obj_freed(x, s->object_size);
1768 
1769 	/* Use KCSAN to help debug racy use-after-free. */
1770 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1771 		__kcsan_check_access(x, s->object_size,
1772 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1773 
1774 	/*
1775 	 * As memory initialization might be integrated into KASAN,
1776 	 * kasan_slab_free and initialization memset's must be
1777 	 * kept together to avoid discrepancies in behavior.
1778 	 *
1779 	 * The initialization memset's clear the object and the metadata,
1780 	 * but don't touch the SLAB redzone.
1781 	 */
1782 	if (init) {
1783 		int rsize;
1784 
1785 		if (!kasan_has_integrated_init())
1786 			memset(kasan_reset_tag(x), 0, s->object_size);
1787 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1788 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1789 		       s->size - s->inuse - rsize);
1790 	}
1791 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1792 	return kasan_slab_free(s, x, init);
1793 }
1794 
1795 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1796 					   void **head, void **tail,
1797 					   int *cnt)
1798 {
1799 
1800 	void *object;
1801 	void *next = *head;
1802 	void *old_tail = *tail ? *tail : *head;
1803 
1804 	if (is_kfence_address(next)) {
1805 		slab_free_hook(s, next, false);
1806 		return true;
1807 	}
1808 
1809 	/* Head and tail of the reconstructed freelist */
1810 	*head = NULL;
1811 	*tail = NULL;
1812 
1813 	do {
1814 		object = next;
1815 		next = get_freepointer(s, object);
1816 
1817 		/* If object's reuse doesn't have to be delayed */
1818 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1819 			/* Move object to the new freelist */
1820 			set_freepointer(s, object, *head);
1821 			*head = object;
1822 			if (!*tail)
1823 				*tail = object;
1824 		} else {
1825 			/*
1826 			 * Adjust the reconstructed freelist depth
1827 			 * accordingly if object's reuse is delayed.
1828 			 */
1829 			--(*cnt);
1830 		}
1831 	} while (object != old_tail);
1832 
1833 	if (*head == *tail)
1834 		*tail = NULL;
1835 
1836 	return *head != NULL;
1837 }
1838 
1839 static void *setup_object(struct kmem_cache *s, void *object)
1840 {
1841 	setup_object_debug(s, object);
1842 	object = kasan_init_slab_obj(s, object);
1843 	if (unlikely(s->ctor)) {
1844 		kasan_unpoison_object_data(s, object);
1845 		s->ctor(object);
1846 		kasan_poison_object_data(s, object);
1847 	}
1848 	return object;
1849 }
1850 
1851 /*
1852  * Slab allocation and freeing
1853  */
1854 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1855 		struct kmem_cache_order_objects oo)
1856 {
1857 	struct folio *folio;
1858 	struct slab *slab;
1859 	unsigned int order = oo_order(oo);
1860 
1861 	if (node == NUMA_NO_NODE)
1862 		folio = (struct folio *)alloc_pages(flags, order);
1863 	else
1864 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1865 
1866 	if (!folio)
1867 		return NULL;
1868 
1869 	slab = folio_slab(folio);
1870 	__folio_set_slab(folio);
1871 	/* Make the flag visible before any changes to folio->mapping */
1872 	smp_wmb();
1873 	if (folio_is_pfmemalloc(folio))
1874 		slab_set_pfmemalloc(slab);
1875 
1876 	return slab;
1877 }
1878 
1879 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1880 /* Pre-initialize the random sequence cache */
1881 static int init_cache_random_seq(struct kmem_cache *s)
1882 {
1883 	unsigned int count = oo_objects(s->oo);
1884 	int err;
1885 
1886 	/* Bailout if already initialised */
1887 	if (s->random_seq)
1888 		return 0;
1889 
1890 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1891 	if (err) {
1892 		pr_err("SLUB: Unable to initialize free list for %s\n",
1893 			s->name);
1894 		return err;
1895 	}
1896 
1897 	/* Transform to an offset on the set of pages */
1898 	if (s->random_seq) {
1899 		unsigned int i;
1900 
1901 		for (i = 0; i < count; i++)
1902 			s->random_seq[i] *= s->size;
1903 	}
1904 	return 0;
1905 }
1906 
1907 /* Initialize each random sequence freelist per cache */
1908 static void __init init_freelist_randomization(void)
1909 {
1910 	struct kmem_cache *s;
1911 
1912 	mutex_lock(&slab_mutex);
1913 
1914 	list_for_each_entry(s, &slab_caches, list)
1915 		init_cache_random_seq(s);
1916 
1917 	mutex_unlock(&slab_mutex);
1918 }
1919 
1920 /* Get the next entry on the pre-computed freelist randomized */
1921 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1922 				unsigned long *pos, void *start,
1923 				unsigned long page_limit,
1924 				unsigned long freelist_count)
1925 {
1926 	unsigned int idx;
1927 
1928 	/*
1929 	 * If the target page allocation failed, the number of objects on the
1930 	 * page might be smaller than the usual size defined by the cache.
1931 	 */
1932 	do {
1933 		idx = s->random_seq[*pos];
1934 		*pos += 1;
1935 		if (*pos >= freelist_count)
1936 			*pos = 0;
1937 	} while (unlikely(idx >= page_limit));
1938 
1939 	return (char *)start + idx;
1940 }
1941 
1942 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1943 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1944 {
1945 	void *start;
1946 	void *cur;
1947 	void *next;
1948 	unsigned long idx, pos, page_limit, freelist_count;
1949 
1950 	if (slab->objects < 2 || !s->random_seq)
1951 		return false;
1952 
1953 	freelist_count = oo_objects(s->oo);
1954 	pos = get_random_u32_below(freelist_count);
1955 
1956 	page_limit = slab->objects * s->size;
1957 	start = fixup_red_left(s, slab_address(slab));
1958 
1959 	/* First entry is used as the base of the freelist */
1960 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1961 				freelist_count);
1962 	cur = setup_object(s, cur);
1963 	slab->freelist = cur;
1964 
1965 	for (idx = 1; idx < slab->objects; idx++) {
1966 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1967 			freelist_count);
1968 		next = setup_object(s, next);
1969 		set_freepointer(s, cur, next);
1970 		cur = next;
1971 	}
1972 	set_freepointer(s, cur, NULL);
1973 
1974 	return true;
1975 }
1976 #else
1977 static inline int init_cache_random_seq(struct kmem_cache *s)
1978 {
1979 	return 0;
1980 }
1981 static inline void init_freelist_randomization(void) { }
1982 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1983 {
1984 	return false;
1985 }
1986 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1987 
1988 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1989 {
1990 	struct slab *slab;
1991 	struct kmem_cache_order_objects oo = s->oo;
1992 	gfp_t alloc_gfp;
1993 	void *start, *p, *next;
1994 	int idx;
1995 	bool shuffle;
1996 
1997 	flags &= gfp_allowed_mask;
1998 
1999 	flags |= s->allocflags;
2000 
2001 	/*
2002 	 * Let the initial higher-order allocation fail under memory pressure
2003 	 * so we fall-back to the minimum order allocation.
2004 	 */
2005 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2006 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2007 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2008 
2009 	slab = alloc_slab_page(alloc_gfp, node, oo);
2010 	if (unlikely(!slab)) {
2011 		oo = s->min;
2012 		alloc_gfp = flags;
2013 		/*
2014 		 * Allocation may have failed due to fragmentation.
2015 		 * Try a lower order alloc if possible
2016 		 */
2017 		slab = alloc_slab_page(alloc_gfp, node, oo);
2018 		if (unlikely(!slab))
2019 			return NULL;
2020 		stat(s, ORDER_FALLBACK);
2021 	}
2022 
2023 	slab->objects = oo_objects(oo);
2024 	slab->inuse = 0;
2025 	slab->frozen = 0;
2026 
2027 	account_slab(slab, oo_order(oo), s, flags);
2028 
2029 	slab->slab_cache = s;
2030 
2031 	kasan_poison_slab(slab);
2032 
2033 	start = slab_address(slab);
2034 
2035 	setup_slab_debug(s, slab, start);
2036 
2037 	shuffle = shuffle_freelist(s, slab);
2038 
2039 	if (!shuffle) {
2040 		start = fixup_red_left(s, start);
2041 		start = setup_object(s, start);
2042 		slab->freelist = start;
2043 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2044 			next = p + s->size;
2045 			next = setup_object(s, next);
2046 			set_freepointer(s, p, next);
2047 			p = next;
2048 		}
2049 		set_freepointer(s, p, NULL);
2050 	}
2051 
2052 	return slab;
2053 }
2054 
2055 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2056 {
2057 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2058 		flags = kmalloc_fix_flags(flags);
2059 
2060 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2061 
2062 	return allocate_slab(s,
2063 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2064 }
2065 
2066 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2067 {
2068 	struct folio *folio = slab_folio(slab);
2069 	int order = folio_order(folio);
2070 	int pages = 1 << order;
2071 
2072 	__slab_clear_pfmemalloc(slab);
2073 	folio->mapping = NULL;
2074 	/* Make the mapping reset visible before clearing the flag */
2075 	smp_wmb();
2076 	__folio_clear_slab(folio);
2077 	mm_account_reclaimed_pages(pages);
2078 	unaccount_slab(slab, order, s);
2079 	__free_pages(&folio->page, order);
2080 }
2081 
2082 static void rcu_free_slab(struct rcu_head *h)
2083 {
2084 	struct slab *slab = container_of(h, struct slab, rcu_head);
2085 
2086 	__free_slab(slab->slab_cache, slab);
2087 }
2088 
2089 static void free_slab(struct kmem_cache *s, struct slab *slab)
2090 {
2091 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2092 		void *p;
2093 
2094 		slab_pad_check(s, slab);
2095 		for_each_object(p, s, slab_address(slab), slab->objects)
2096 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2097 	}
2098 
2099 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2100 		call_rcu(&slab->rcu_head, rcu_free_slab);
2101 	else
2102 		__free_slab(s, slab);
2103 }
2104 
2105 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2106 {
2107 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2108 	free_slab(s, slab);
2109 }
2110 
2111 /*
2112  * Management of partially allocated slabs.
2113  */
2114 static inline void
2115 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2116 {
2117 	n->nr_partial++;
2118 	if (tail == DEACTIVATE_TO_TAIL)
2119 		list_add_tail(&slab->slab_list, &n->partial);
2120 	else
2121 		list_add(&slab->slab_list, &n->partial);
2122 }
2123 
2124 static inline void add_partial(struct kmem_cache_node *n,
2125 				struct slab *slab, int tail)
2126 {
2127 	lockdep_assert_held(&n->list_lock);
2128 	__add_partial(n, slab, tail);
2129 }
2130 
2131 static inline void remove_partial(struct kmem_cache_node *n,
2132 					struct slab *slab)
2133 {
2134 	lockdep_assert_held(&n->list_lock);
2135 	list_del(&slab->slab_list);
2136 	n->nr_partial--;
2137 }
2138 
2139 /*
2140  * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2141  * slab from the n->partial list. Remove only a single object from the slab, do
2142  * the alloc_debug_processing() checks and leave the slab on the list, or move
2143  * it to full list if it was the last free object.
2144  */
2145 static void *alloc_single_from_partial(struct kmem_cache *s,
2146 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2147 {
2148 	void *object;
2149 
2150 	lockdep_assert_held(&n->list_lock);
2151 
2152 	object = slab->freelist;
2153 	slab->freelist = get_freepointer(s, object);
2154 	slab->inuse++;
2155 
2156 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2157 		remove_partial(n, slab);
2158 		return NULL;
2159 	}
2160 
2161 	if (slab->inuse == slab->objects) {
2162 		remove_partial(n, slab);
2163 		add_full(s, n, slab);
2164 	}
2165 
2166 	return object;
2167 }
2168 
2169 /*
2170  * Called only for kmem_cache_debug() caches to allocate from a freshly
2171  * allocated slab. Allocate a single object instead of whole freelist
2172  * and put the slab to the partial (or full) list.
2173  */
2174 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2175 					struct slab *slab, int orig_size)
2176 {
2177 	int nid = slab_nid(slab);
2178 	struct kmem_cache_node *n = get_node(s, nid);
2179 	unsigned long flags;
2180 	void *object;
2181 
2182 
2183 	object = slab->freelist;
2184 	slab->freelist = get_freepointer(s, object);
2185 	slab->inuse = 1;
2186 
2187 	if (!alloc_debug_processing(s, slab, object, orig_size))
2188 		/*
2189 		 * It's not really expected that this would fail on a
2190 		 * freshly allocated slab, but a concurrent memory
2191 		 * corruption in theory could cause that.
2192 		 */
2193 		return NULL;
2194 
2195 	spin_lock_irqsave(&n->list_lock, flags);
2196 
2197 	if (slab->inuse == slab->objects)
2198 		add_full(s, n, slab);
2199 	else
2200 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2201 
2202 	inc_slabs_node(s, nid, slab->objects);
2203 	spin_unlock_irqrestore(&n->list_lock, flags);
2204 
2205 	return object;
2206 }
2207 
2208 /*
2209  * Remove slab from the partial list, freeze it and
2210  * return the pointer to the freelist.
2211  *
2212  * Returns a list of objects or NULL if it fails.
2213  */
2214 static inline void *acquire_slab(struct kmem_cache *s,
2215 		struct kmem_cache_node *n, struct slab *slab,
2216 		int mode)
2217 {
2218 	void *freelist;
2219 	unsigned long counters;
2220 	struct slab new;
2221 
2222 	lockdep_assert_held(&n->list_lock);
2223 
2224 	/*
2225 	 * Zap the freelist and set the frozen bit.
2226 	 * The old freelist is the list of objects for the
2227 	 * per cpu allocation list.
2228 	 */
2229 	freelist = slab->freelist;
2230 	counters = slab->counters;
2231 	new.counters = counters;
2232 	if (mode) {
2233 		new.inuse = slab->objects;
2234 		new.freelist = NULL;
2235 	} else {
2236 		new.freelist = freelist;
2237 	}
2238 
2239 	VM_BUG_ON(new.frozen);
2240 	new.frozen = 1;
2241 
2242 	if (!__slab_update_freelist(s, slab,
2243 			freelist, counters,
2244 			new.freelist, new.counters,
2245 			"acquire_slab"))
2246 		return NULL;
2247 
2248 	remove_partial(n, slab);
2249 	WARN_ON(!freelist);
2250 	return freelist;
2251 }
2252 
2253 #ifdef CONFIG_SLUB_CPU_PARTIAL
2254 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2255 #else
2256 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2257 				   int drain) { }
2258 #endif
2259 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2260 
2261 /*
2262  * Try to allocate a partial slab from a specific node.
2263  */
2264 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2265 			      struct partial_context *pc)
2266 {
2267 	struct slab *slab, *slab2;
2268 	void *object = NULL;
2269 	unsigned long flags;
2270 	unsigned int partial_slabs = 0;
2271 
2272 	/*
2273 	 * Racy check. If we mistakenly see no partial slabs then we
2274 	 * just allocate an empty slab. If we mistakenly try to get a
2275 	 * partial slab and there is none available then get_partial()
2276 	 * will return NULL.
2277 	 */
2278 	if (!n || !n->nr_partial)
2279 		return NULL;
2280 
2281 	spin_lock_irqsave(&n->list_lock, flags);
2282 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2283 		void *t;
2284 
2285 		if (!pfmemalloc_match(slab, pc->flags))
2286 			continue;
2287 
2288 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2289 			object = alloc_single_from_partial(s, n, slab,
2290 							pc->orig_size);
2291 			if (object)
2292 				break;
2293 			continue;
2294 		}
2295 
2296 		t = acquire_slab(s, n, slab, object == NULL);
2297 		if (!t)
2298 			break;
2299 
2300 		if (!object) {
2301 			*pc->slab = slab;
2302 			stat(s, ALLOC_FROM_PARTIAL);
2303 			object = t;
2304 		} else {
2305 			put_cpu_partial(s, slab, 0);
2306 			stat(s, CPU_PARTIAL_NODE);
2307 			partial_slabs++;
2308 		}
2309 #ifdef CONFIG_SLUB_CPU_PARTIAL
2310 		if (!kmem_cache_has_cpu_partial(s)
2311 			|| partial_slabs > s->cpu_partial_slabs / 2)
2312 			break;
2313 #else
2314 		break;
2315 #endif
2316 
2317 	}
2318 	spin_unlock_irqrestore(&n->list_lock, flags);
2319 	return object;
2320 }
2321 
2322 /*
2323  * Get a slab from somewhere. Search in increasing NUMA distances.
2324  */
2325 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2326 {
2327 #ifdef CONFIG_NUMA
2328 	struct zonelist *zonelist;
2329 	struct zoneref *z;
2330 	struct zone *zone;
2331 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2332 	void *object;
2333 	unsigned int cpuset_mems_cookie;
2334 
2335 	/*
2336 	 * The defrag ratio allows a configuration of the tradeoffs between
2337 	 * inter node defragmentation and node local allocations. A lower
2338 	 * defrag_ratio increases the tendency to do local allocations
2339 	 * instead of attempting to obtain partial slabs from other nodes.
2340 	 *
2341 	 * If the defrag_ratio is set to 0 then kmalloc() always
2342 	 * returns node local objects. If the ratio is higher then kmalloc()
2343 	 * may return off node objects because partial slabs are obtained
2344 	 * from other nodes and filled up.
2345 	 *
2346 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2347 	 * (which makes defrag_ratio = 1000) then every (well almost)
2348 	 * allocation will first attempt to defrag slab caches on other nodes.
2349 	 * This means scanning over all nodes to look for partial slabs which
2350 	 * may be expensive if we do it every time we are trying to find a slab
2351 	 * with available objects.
2352 	 */
2353 	if (!s->remote_node_defrag_ratio ||
2354 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2355 		return NULL;
2356 
2357 	do {
2358 		cpuset_mems_cookie = read_mems_allowed_begin();
2359 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2360 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2361 			struct kmem_cache_node *n;
2362 
2363 			n = get_node(s, zone_to_nid(zone));
2364 
2365 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2366 					n->nr_partial > s->min_partial) {
2367 				object = get_partial_node(s, n, pc);
2368 				if (object) {
2369 					/*
2370 					 * Don't check read_mems_allowed_retry()
2371 					 * here - if mems_allowed was updated in
2372 					 * parallel, that was a harmless race
2373 					 * between allocation and the cpuset
2374 					 * update
2375 					 */
2376 					return object;
2377 				}
2378 			}
2379 		}
2380 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2381 #endif	/* CONFIG_NUMA */
2382 	return NULL;
2383 }
2384 
2385 /*
2386  * Get a partial slab, lock it and return it.
2387  */
2388 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2389 {
2390 	void *object;
2391 	int searchnode = node;
2392 
2393 	if (node == NUMA_NO_NODE)
2394 		searchnode = numa_mem_id();
2395 
2396 	object = get_partial_node(s, get_node(s, searchnode), pc);
2397 	if (object || node != NUMA_NO_NODE)
2398 		return object;
2399 
2400 	return get_any_partial(s, pc);
2401 }
2402 
2403 #ifndef CONFIG_SLUB_TINY
2404 
2405 #ifdef CONFIG_PREEMPTION
2406 /*
2407  * Calculate the next globally unique transaction for disambiguation
2408  * during cmpxchg. The transactions start with the cpu number and are then
2409  * incremented by CONFIG_NR_CPUS.
2410  */
2411 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2412 #else
2413 /*
2414  * No preemption supported therefore also no need to check for
2415  * different cpus.
2416  */
2417 #define TID_STEP 1
2418 #endif /* CONFIG_PREEMPTION */
2419 
2420 static inline unsigned long next_tid(unsigned long tid)
2421 {
2422 	return tid + TID_STEP;
2423 }
2424 
2425 #ifdef SLUB_DEBUG_CMPXCHG
2426 static inline unsigned int tid_to_cpu(unsigned long tid)
2427 {
2428 	return tid % TID_STEP;
2429 }
2430 
2431 static inline unsigned long tid_to_event(unsigned long tid)
2432 {
2433 	return tid / TID_STEP;
2434 }
2435 #endif
2436 
2437 static inline unsigned int init_tid(int cpu)
2438 {
2439 	return cpu;
2440 }
2441 
2442 static inline void note_cmpxchg_failure(const char *n,
2443 		const struct kmem_cache *s, unsigned long tid)
2444 {
2445 #ifdef SLUB_DEBUG_CMPXCHG
2446 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2447 
2448 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2449 
2450 #ifdef CONFIG_PREEMPTION
2451 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2452 		pr_warn("due to cpu change %d -> %d\n",
2453 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2454 	else
2455 #endif
2456 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2457 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2458 			tid_to_event(tid), tid_to_event(actual_tid));
2459 	else
2460 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2461 			actual_tid, tid, next_tid(tid));
2462 #endif
2463 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2464 }
2465 
2466 static void init_kmem_cache_cpus(struct kmem_cache *s)
2467 {
2468 	int cpu;
2469 	struct kmem_cache_cpu *c;
2470 
2471 	for_each_possible_cpu(cpu) {
2472 		c = per_cpu_ptr(s->cpu_slab, cpu);
2473 		local_lock_init(&c->lock);
2474 		c->tid = init_tid(cpu);
2475 	}
2476 }
2477 
2478 /*
2479  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2480  * unfreezes the slabs and puts it on the proper list.
2481  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2482  * by the caller.
2483  */
2484 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2485 			    void *freelist)
2486 {
2487 	enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2488 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2489 	int free_delta = 0;
2490 	enum slab_modes mode = M_NONE;
2491 	void *nextfree, *freelist_iter, *freelist_tail;
2492 	int tail = DEACTIVATE_TO_HEAD;
2493 	unsigned long flags = 0;
2494 	struct slab new;
2495 	struct slab old;
2496 
2497 	if (slab->freelist) {
2498 		stat(s, DEACTIVATE_REMOTE_FREES);
2499 		tail = DEACTIVATE_TO_TAIL;
2500 	}
2501 
2502 	/*
2503 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2504 	 * remember the last object in freelist_tail for later splicing.
2505 	 */
2506 	freelist_tail = NULL;
2507 	freelist_iter = freelist;
2508 	while (freelist_iter) {
2509 		nextfree = get_freepointer(s, freelist_iter);
2510 
2511 		/*
2512 		 * If 'nextfree' is invalid, it is possible that the object at
2513 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2514 		 * starting at 'freelist_iter' by skipping them.
2515 		 */
2516 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2517 			break;
2518 
2519 		freelist_tail = freelist_iter;
2520 		free_delta++;
2521 
2522 		freelist_iter = nextfree;
2523 	}
2524 
2525 	/*
2526 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2527 	 * freelist to the head of slab's freelist.
2528 	 *
2529 	 * Ensure that the slab is unfrozen while the list presence
2530 	 * reflects the actual number of objects during unfreeze.
2531 	 *
2532 	 * We first perform cmpxchg holding lock and insert to list
2533 	 * when it succeed. If there is mismatch then the slab is not
2534 	 * unfrozen and number of objects in the slab may have changed.
2535 	 * Then release lock and retry cmpxchg again.
2536 	 */
2537 redo:
2538 
2539 	old.freelist = READ_ONCE(slab->freelist);
2540 	old.counters = READ_ONCE(slab->counters);
2541 	VM_BUG_ON(!old.frozen);
2542 
2543 	/* Determine target state of the slab */
2544 	new.counters = old.counters;
2545 	if (freelist_tail) {
2546 		new.inuse -= free_delta;
2547 		set_freepointer(s, freelist_tail, old.freelist);
2548 		new.freelist = freelist;
2549 	} else
2550 		new.freelist = old.freelist;
2551 
2552 	new.frozen = 0;
2553 
2554 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2555 		mode = M_FREE;
2556 	} else if (new.freelist) {
2557 		mode = M_PARTIAL;
2558 		/*
2559 		 * Taking the spinlock removes the possibility that
2560 		 * acquire_slab() will see a slab that is frozen
2561 		 */
2562 		spin_lock_irqsave(&n->list_lock, flags);
2563 	} else {
2564 		mode = M_FULL_NOLIST;
2565 	}
2566 
2567 
2568 	if (!slab_update_freelist(s, slab,
2569 				old.freelist, old.counters,
2570 				new.freelist, new.counters,
2571 				"unfreezing slab")) {
2572 		if (mode == M_PARTIAL)
2573 			spin_unlock_irqrestore(&n->list_lock, flags);
2574 		goto redo;
2575 	}
2576 
2577 
2578 	if (mode == M_PARTIAL) {
2579 		add_partial(n, slab, tail);
2580 		spin_unlock_irqrestore(&n->list_lock, flags);
2581 		stat(s, tail);
2582 	} else if (mode == M_FREE) {
2583 		stat(s, DEACTIVATE_EMPTY);
2584 		discard_slab(s, slab);
2585 		stat(s, FREE_SLAB);
2586 	} else if (mode == M_FULL_NOLIST) {
2587 		stat(s, DEACTIVATE_FULL);
2588 	}
2589 }
2590 
2591 #ifdef CONFIG_SLUB_CPU_PARTIAL
2592 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2593 {
2594 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2595 	struct slab *slab, *slab_to_discard = NULL;
2596 	unsigned long flags = 0;
2597 
2598 	while (partial_slab) {
2599 		struct slab new;
2600 		struct slab old;
2601 
2602 		slab = partial_slab;
2603 		partial_slab = slab->next;
2604 
2605 		n2 = get_node(s, slab_nid(slab));
2606 		if (n != n2) {
2607 			if (n)
2608 				spin_unlock_irqrestore(&n->list_lock, flags);
2609 
2610 			n = n2;
2611 			spin_lock_irqsave(&n->list_lock, flags);
2612 		}
2613 
2614 		do {
2615 
2616 			old.freelist = slab->freelist;
2617 			old.counters = slab->counters;
2618 			VM_BUG_ON(!old.frozen);
2619 
2620 			new.counters = old.counters;
2621 			new.freelist = old.freelist;
2622 
2623 			new.frozen = 0;
2624 
2625 		} while (!__slab_update_freelist(s, slab,
2626 				old.freelist, old.counters,
2627 				new.freelist, new.counters,
2628 				"unfreezing slab"));
2629 
2630 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2631 			slab->next = slab_to_discard;
2632 			slab_to_discard = slab;
2633 		} else {
2634 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2635 			stat(s, FREE_ADD_PARTIAL);
2636 		}
2637 	}
2638 
2639 	if (n)
2640 		spin_unlock_irqrestore(&n->list_lock, flags);
2641 
2642 	while (slab_to_discard) {
2643 		slab = slab_to_discard;
2644 		slab_to_discard = slab_to_discard->next;
2645 
2646 		stat(s, DEACTIVATE_EMPTY);
2647 		discard_slab(s, slab);
2648 		stat(s, FREE_SLAB);
2649 	}
2650 }
2651 
2652 /*
2653  * Unfreeze all the cpu partial slabs.
2654  */
2655 static void unfreeze_partials(struct kmem_cache *s)
2656 {
2657 	struct slab *partial_slab;
2658 	unsigned long flags;
2659 
2660 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2661 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2662 	this_cpu_write(s->cpu_slab->partial, NULL);
2663 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2664 
2665 	if (partial_slab)
2666 		__unfreeze_partials(s, partial_slab);
2667 }
2668 
2669 static void unfreeze_partials_cpu(struct kmem_cache *s,
2670 				  struct kmem_cache_cpu *c)
2671 {
2672 	struct slab *partial_slab;
2673 
2674 	partial_slab = slub_percpu_partial(c);
2675 	c->partial = NULL;
2676 
2677 	if (partial_slab)
2678 		__unfreeze_partials(s, partial_slab);
2679 }
2680 
2681 /*
2682  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2683  * partial slab slot if available.
2684  *
2685  * If we did not find a slot then simply move all the partials to the
2686  * per node partial list.
2687  */
2688 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2689 {
2690 	struct slab *oldslab;
2691 	struct slab *slab_to_unfreeze = NULL;
2692 	unsigned long flags;
2693 	int slabs = 0;
2694 
2695 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2696 
2697 	oldslab = this_cpu_read(s->cpu_slab->partial);
2698 
2699 	if (oldslab) {
2700 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2701 			/*
2702 			 * Partial array is full. Move the existing set to the
2703 			 * per node partial list. Postpone the actual unfreezing
2704 			 * outside of the critical section.
2705 			 */
2706 			slab_to_unfreeze = oldslab;
2707 			oldslab = NULL;
2708 		} else {
2709 			slabs = oldslab->slabs;
2710 		}
2711 	}
2712 
2713 	slabs++;
2714 
2715 	slab->slabs = slabs;
2716 	slab->next = oldslab;
2717 
2718 	this_cpu_write(s->cpu_slab->partial, slab);
2719 
2720 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2721 
2722 	if (slab_to_unfreeze) {
2723 		__unfreeze_partials(s, slab_to_unfreeze);
2724 		stat(s, CPU_PARTIAL_DRAIN);
2725 	}
2726 }
2727 
2728 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2729 
2730 static inline void unfreeze_partials(struct kmem_cache *s) { }
2731 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2732 				  struct kmem_cache_cpu *c) { }
2733 
2734 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2735 
2736 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2737 {
2738 	unsigned long flags;
2739 	struct slab *slab;
2740 	void *freelist;
2741 
2742 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2743 
2744 	slab = c->slab;
2745 	freelist = c->freelist;
2746 
2747 	c->slab = NULL;
2748 	c->freelist = NULL;
2749 	c->tid = next_tid(c->tid);
2750 
2751 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2752 
2753 	if (slab) {
2754 		deactivate_slab(s, slab, freelist);
2755 		stat(s, CPUSLAB_FLUSH);
2756 	}
2757 }
2758 
2759 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2760 {
2761 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2762 	void *freelist = c->freelist;
2763 	struct slab *slab = c->slab;
2764 
2765 	c->slab = NULL;
2766 	c->freelist = NULL;
2767 	c->tid = next_tid(c->tid);
2768 
2769 	if (slab) {
2770 		deactivate_slab(s, slab, freelist);
2771 		stat(s, CPUSLAB_FLUSH);
2772 	}
2773 
2774 	unfreeze_partials_cpu(s, c);
2775 }
2776 
2777 struct slub_flush_work {
2778 	struct work_struct work;
2779 	struct kmem_cache *s;
2780 	bool skip;
2781 };
2782 
2783 /*
2784  * Flush cpu slab.
2785  *
2786  * Called from CPU work handler with migration disabled.
2787  */
2788 static void flush_cpu_slab(struct work_struct *w)
2789 {
2790 	struct kmem_cache *s;
2791 	struct kmem_cache_cpu *c;
2792 	struct slub_flush_work *sfw;
2793 
2794 	sfw = container_of(w, struct slub_flush_work, work);
2795 
2796 	s = sfw->s;
2797 	c = this_cpu_ptr(s->cpu_slab);
2798 
2799 	if (c->slab)
2800 		flush_slab(s, c);
2801 
2802 	unfreeze_partials(s);
2803 }
2804 
2805 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2806 {
2807 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2808 
2809 	return c->slab || slub_percpu_partial(c);
2810 }
2811 
2812 static DEFINE_MUTEX(flush_lock);
2813 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2814 
2815 static void flush_all_cpus_locked(struct kmem_cache *s)
2816 {
2817 	struct slub_flush_work *sfw;
2818 	unsigned int cpu;
2819 
2820 	lockdep_assert_cpus_held();
2821 	mutex_lock(&flush_lock);
2822 
2823 	for_each_online_cpu(cpu) {
2824 		sfw = &per_cpu(slub_flush, cpu);
2825 		if (!has_cpu_slab(cpu, s)) {
2826 			sfw->skip = true;
2827 			continue;
2828 		}
2829 		INIT_WORK(&sfw->work, flush_cpu_slab);
2830 		sfw->skip = false;
2831 		sfw->s = s;
2832 		queue_work_on(cpu, flushwq, &sfw->work);
2833 	}
2834 
2835 	for_each_online_cpu(cpu) {
2836 		sfw = &per_cpu(slub_flush, cpu);
2837 		if (sfw->skip)
2838 			continue;
2839 		flush_work(&sfw->work);
2840 	}
2841 
2842 	mutex_unlock(&flush_lock);
2843 }
2844 
2845 static void flush_all(struct kmem_cache *s)
2846 {
2847 	cpus_read_lock();
2848 	flush_all_cpus_locked(s);
2849 	cpus_read_unlock();
2850 }
2851 
2852 /*
2853  * Use the cpu notifier to insure that the cpu slabs are flushed when
2854  * necessary.
2855  */
2856 static int slub_cpu_dead(unsigned int cpu)
2857 {
2858 	struct kmem_cache *s;
2859 
2860 	mutex_lock(&slab_mutex);
2861 	list_for_each_entry(s, &slab_caches, list)
2862 		__flush_cpu_slab(s, cpu);
2863 	mutex_unlock(&slab_mutex);
2864 	return 0;
2865 }
2866 
2867 #else /* CONFIG_SLUB_TINY */
2868 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2869 static inline void flush_all(struct kmem_cache *s) { }
2870 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2871 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2872 #endif /* CONFIG_SLUB_TINY */
2873 
2874 /*
2875  * Check if the objects in a per cpu structure fit numa
2876  * locality expectations.
2877  */
2878 static inline int node_match(struct slab *slab, int node)
2879 {
2880 #ifdef CONFIG_NUMA
2881 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2882 		return 0;
2883 #endif
2884 	return 1;
2885 }
2886 
2887 #ifdef CONFIG_SLUB_DEBUG
2888 static int count_free(struct slab *slab)
2889 {
2890 	return slab->objects - slab->inuse;
2891 }
2892 
2893 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2894 {
2895 	return atomic_long_read(&n->total_objects);
2896 }
2897 
2898 /* Supports checking bulk free of a constructed freelist */
2899 static inline bool free_debug_processing(struct kmem_cache *s,
2900 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2901 	unsigned long addr, depot_stack_handle_t handle)
2902 {
2903 	bool checks_ok = false;
2904 	void *object = head;
2905 	int cnt = 0;
2906 
2907 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2908 		if (!check_slab(s, slab))
2909 			goto out;
2910 	}
2911 
2912 	if (slab->inuse < *bulk_cnt) {
2913 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2914 			 slab->inuse, *bulk_cnt);
2915 		goto out;
2916 	}
2917 
2918 next_object:
2919 
2920 	if (++cnt > *bulk_cnt)
2921 		goto out_cnt;
2922 
2923 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2924 		if (!free_consistency_checks(s, slab, object, addr))
2925 			goto out;
2926 	}
2927 
2928 	if (s->flags & SLAB_STORE_USER)
2929 		set_track_update(s, object, TRACK_FREE, addr, handle);
2930 	trace(s, slab, object, 0);
2931 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2932 	init_object(s, object, SLUB_RED_INACTIVE);
2933 
2934 	/* Reached end of constructed freelist yet? */
2935 	if (object != tail) {
2936 		object = get_freepointer(s, object);
2937 		goto next_object;
2938 	}
2939 	checks_ok = true;
2940 
2941 out_cnt:
2942 	if (cnt != *bulk_cnt) {
2943 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2944 			 *bulk_cnt, cnt);
2945 		*bulk_cnt = cnt;
2946 	}
2947 
2948 out:
2949 
2950 	if (!checks_ok)
2951 		slab_fix(s, "Object at 0x%p not freed", object);
2952 
2953 	return checks_ok;
2954 }
2955 #endif /* CONFIG_SLUB_DEBUG */
2956 
2957 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2958 static unsigned long count_partial(struct kmem_cache_node *n,
2959 					int (*get_count)(struct slab *))
2960 {
2961 	unsigned long flags;
2962 	unsigned long x = 0;
2963 	struct slab *slab;
2964 
2965 	spin_lock_irqsave(&n->list_lock, flags);
2966 	list_for_each_entry(slab, &n->partial, slab_list)
2967 		x += get_count(slab);
2968 	spin_unlock_irqrestore(&n->list_lock, flags);
2969 	return x;
2970 }
2971 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2972 
2973 #ifdef CONFIG_SLUB_DEBUG
2974 static noinline void
2975 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2976 {
2977 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2978 				      DEFAULT_RATELIMIT_BURST);
2979 	int node;
2980 	struct kmem_cache_node *n;
2981 
2982 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2983 		return;
2984 
2985 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2986 		nid, gfpflags, &gfpflags);
2987 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2988 		s->name, s->object_size, s->size, oo_order(s->oo),
2989 		oo_order(s->min));
2990 
2991 	if (oo_order(s->min) > get_order(s->object_size))
2992 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2993 			s->name);
2994 
2995 	for_each_kmem_cache_node(s, node, n) {
2996 		unsigned long nr_slabs;
2997 		unsigned long nr_objs;
2998 		unsigned long nr_free;
2999 
3000 		nr_free  = count_partial(n, count_free);
3001 		nr_slabs = node_nr_slabs(n);
3002 		nr_objs  = node_nr_objs(n);
3003 
3004 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3005 			node, nr_slabs, nr_objs, nr_free);
3006 	}
3007 }
3008 #else /* CONFIG_SLUB_DEBUG */
3009 static inline void
3010 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3011 #endif
3012 
3013 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3014 {
3015 	if (unlikely(slab_test_pfmemalloc(slab)))
3016 		return gfp_pfmemalloc_allowed(gfpflags);
3017 
3018 	return true;
3019 }
3020 
3021 #ifndef CONFIG_SLUB_TINY
3022 static inline bool
3023 __update_cpu_freelist_fast(struct kmem_cache *s,
3024 			   void *freelist_old, void *freelist_new,
3025 			   unsigned long tid)
3026 {
3027 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3028 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3029 
3030 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3031 					     &old.full, new.full);
3032 }
3033 
3034 /*
3035  * Check the slab->freelist and either transfer the freelist to the
3036  * per cpu freelist or deactivate the slab.
3037  *
3038  * The slab is still frozen if the return value is not NULL.
3039  *
3040  * If this function returns NULL then the slab has been unfrozen.
3041  */
3042 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3043 {
3044 	struct slab new;
3045 	unsigned long counters;
3046 	void *freelist;
3047 
3048 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3049 
3050 	do {
3051 		freelist = slab->freelist;
3052 		counters = slab->counters;
3053 
3054 		new.counters = counters;
3055 		VM_BUG_ON(!new.frozen);
3056 
3057 		new.inuse = slab->objects;
3058 		new.frozen = freelist != NULL;
3059 
3060 	} while (!__slab_update_freelist(s, slab,
3061 		freelist, counters,
3062 		NULL, new.counters,
3063 		"get_freelist"));
3064 
3065 	return freelist;
3066 }
3067 
3068 /*
3069  * Slow path. The lockless freelist is empty or we need to perform
3070  * debugging duties.
3071  *
3072  * Processing is still very fast if new objects have been freed to the
3073  * regular freelist. In that case we simply take over the regular freelist
3074  * as the lockless freelist and zap the regular freelist.
3075  *
3076  * If that is not working then we fall back to the partial lists. We take the
3077  * first element of the freelist as the object to allocate now and move the
3078  * rest of the freelist to the lockless freelist.
3079  *
3080  * And if we were unable to get a new slab from the partial slab lists then
3081  * we need to allocate a new slab. This is the slowest path since it involves
3082  * a call to the page allocator and the setup of a new slab.
3083  *
3084  * Version of __slab_alloc to use when we know that preemption is
3085  * already disabled (which is the case for bulk allocation).
3086  */
3087 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3088 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3089 {
3090 	void *freelist;
3091 	struct slab *slab;
3092 	unsigned long flags;
3093 	struct partial_context pc;
3094 
3095 	stat(s, ALLOC_SLOWPATH);
3096 
3097 reread_slab:
3098 
3099 	slab = READ_ONCE(c->slab);
3100 	if (!slab) {
3101 		/*
3102 		 * if the node is not online or has no normal memory, just
3103 		 * ignore the node constraint
3104 		 */
3105 		if (unlikely(node != NUMA_NO_NODE &&
3106 			     !node_isset(node, slab_nodes)))
3107 			node = NUMA_NO_NODE;
3108 		goto new_slab;
3109 	}
3110 redo:
3111 
3112 	if (unlikely(!node_match(slab, node))) {
3113 		/*
3114 		 * same as above but node_match() being false already
3115 		 * implies node != NUMA_NO_NODE
3116 		 */
3117 		if (!node_isset(node, slab_nodes)) {
3118 			node = NUMA_NO_NODE;
3119 		} else {
3120 			stat(s, ALLOC_NODE_MISMATCH);
3121 			goto deactivate_slab;
3122 		}
3123 	}
3124 
3125 	/*
3126 	 * By rights, we should be searching for a slab page that was
3127 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3128 	 * information when the page leaves the per-cpu allocator
3129 	 */
3130 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3131 		goto deactivate_slab;
3132 
3133 	/* must check again c->slab in case we got preempted and it changed */
3134 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3135 	if (unlikely(slab != c->slab)) {
3136 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3137 		goto reread_slab;
3138 	}
3139 	freelist = c->freelist;
3140 	if (freelist)
3141 		goto load_freelist;
3142 
3143 	freelist = get_freelist(s, slab);
3144 
3145 	if (!freelist) {
3146 		c->slab = NULL;
3147 		c->tid = next_tid(c->tid);
3148 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3149 		stat(s, DEACTIVATE_BYPASS);
3150 		goto new_slab;
3151 	}
3152 
3153 	stat(s, ALLOC_REFILL);
3154 
3155 load_freelist:
3156 
3157 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3158 
3159 	/*
3160 	 * freelist is pointing to the list of objects to be used.
3161 	 * slab is pointing to the slab from which the objects are obtained.
3162 	 * That slab must be frozen for per cpu allocations to work.
3163 	 */
3164 	VM_BUG_ON(!c->slab->frozen);
3165 	c->freelist = get_freepointer(s, freelist);
3166 	c->tid = next_tid(c->tid);
3167 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3168 	return freelist;
3169 
3170 deactivate_slab:
3171 
3172 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3173 	if (slab != c->slab) {
3174 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3175 		goto reread_slab;
3176 	}
3177 	freelist = c->freelist;
3178 	c->slab = NULL;
3179 	c->freelist = NULL;
3180 	c->tid = next_tid(c->tid);
3181 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3182 	deactivate_slab(s, slab, freelist);
3183 
3184 new_slab:
3185 
3186 	if (slub_percpu_partial(c)) {
3187 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3188 		if (unlikely(c->slab)) {
3189 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3190 			goto reread_slab;
3191 		}
3192 		if (unlikely(!slub_percpu_partial(c))) {
3193 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3194 			/* we were preempted and partial list got empty */
3195 			goto new_objects;
3196 		}
3197 
3198 		slab = c->slab = slub_percpu_partial(c);
3199 		slub_set_percpu_partial(c, slab);
3200 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3201 		stat(s, CPU_PARTIAL_ALLOC);
3202 		goto redo;
3203 	}
3204 
3205 new_objects:
3206 
3207 	pc.flags = gfpflags;
3208 	pc.slab = &slab;
3209 	pc.orig_size = orig_size;
3210 	freelist = get_partial(s, node, &pc);
3211 	if (freelist)
3212 		goto check_new_slab;
3213 
3214 	slub_put_cpu_ptr(s->cpu_slab);
3215 	slab = new_slab(s, gfpflags, node);
3216 	c = slub_get_cpu_ptr(s->cpu_slab);
3217 
3218 	if (unlikely(!slab)) {
3219 		slab_out_of_memory(s, gfpflags, node);
3220 		return NULL;
3221 	}
3222 
3223 	stat(s, ALLOC_SLAB);
3224 
3225 	if (kmem_cache_debug(s)) {
3226 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3227 
3228 		if (unlikely(!freelist))
3229 			goto new_objects;
3230 
3231 		if (s->flags & SLAB_STORE_USER)
3232 			set_track(s, freelist, TRACK_ALLOC, addr);
3233 
3234 		return freelist;
3235 	}
3236 
3237 	/*
3238 	 * No other reference to the slab yet so we can
3239 	 * muck around with it freely without cmpxchg
3240 	 */
3241 	freelist = slab->freelist;
3242 	slab->freelist = NULL;
3243 	slab->inuse = slab->objects;
3244 	slab->frozen = 1;
3245 
3246 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3247 
3248 check_new_slab:
3249 
3250 	if (kmem_cache_debug(s)) {
3251 		/*
3252 		 * For debug caches here we had to go through
3253 		 * alloc_single_from_partial() so just store the tracking info
3254 		 * and return the object
3255 		 */
3256 		if (s->flags & SLAB_STORE_USER)
3257 			set_track(s, freelist, TRACK_ALLOC, addr);
3258 
3259 		return freelist;
3260 	}
3261 
3262 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3263 		/*
3264 		 * For !pfmemalloc_match() case we don't load freelist so that
3265 		 * we don't make further mismatched allocations easier.
3266 		 */
3267 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3268 		return freelist;
3269 	}
3270 
3271 retry_load_slab:
3272 
3273 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3274 	if (unlikely(c->slab)) {
3275 		void *flush_freelist = c->freelist;
3276 		struct slab *flush_slab = c->slab;
3277 
3278 		c->slab = NULL;
3279 		c->freelist = NULL;
3280 		c->tid = next_tid(c->tid);
3281 
3282 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3283 
3284 		deactivate_slab(s, flush_slab, flush_freelist);
3285 
3286 		stat(s, CPUSLAB_FLUSH);
3287 
3288 		goto retry_load_slab;
3289 	}
3290 	c->slab = slab;
3291 
3292 	goto load_freelist;
3293 }
3294 
3295 /*
3296  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3297  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3298  * pointer.
3299  */
3300 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3301 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3302 {
3303 	void *p;
3304 
3305 #ifdef CONFIG_PREEMPT_COUNT
3306 	/*
3307 	 * We may have been preempted and rescheduled on a different
3308 	 * cpu before disabling preemption. Need to reload cpu area
3309 	 * pointer.
3310 	 */
3311 	c = slub_get_cpu_ptr(s->cpu_slab);
3312 #endif
3313 
3314 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3315 #ifdef CONFIG_PREEMPT_COUNT
3316 	slub_put_cpu_ptr(s->cpu_slab);
3317 #endif
3318 	return p;
3319 }
3320 
3321 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3322 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3323 {
3324 	struct kmem_cache_cpu *c;
3325 	struct slab *slab;
3326 	unsigned long tid;
3327 	void *object;
3328 
3329 redo:
3330 	/*
3331 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3332 	 * enabled. We may switch back and forth between cpus while
3333 	 * reading from one cpu area. That does not matter as long
3334 	 * as we end up on the original cpu again when doing the cmpxchg.
3335 	 *
3336 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3337 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3338 	 * the tid. If we are preempted and switched to another cpu between the
3339 	 * two reads, it's OK as the two are still associated with the same cpu
3340 	 * and cmpxchg later will validate the cpu.
3341 	 */
3342 	c = raw_cpu_ptr(s->cpu_slab);
3343 	tid = READ_ONCE(c->tid);
3344 
3345 	/*
3346 	 * Irqless object alloc/free algorithm used here depends on sequence
3347 	 * of fetching cpu_slab's data. tid should be fetched before anything
3348 	 * on c to guarantee that object and slab associated with previous tid
3349 	 * won't be used with current tid. If we fetch tid first, object and
3350 	 * slab could be one associated with next tid and our alloc/free
3351 	 * request will be failed. In this case, we will retry. So, no problem.
3352 	 */
3353 	barrier();
3354 
3355 	/*
3356 	 * The transaction ids are globally unique per cpu and per operation on
3357 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3358 	 * occurs on the right processor and that there was no operation on the
3359 	 * linked list in between.
3360 	 */
3361 
3362 	object = c->freelist;
3363 	slab = c->slab;
3364 
3365 	if (!USE_LOCKLESS_FAST_PATH() ||
3366 	    unlikely(!object || !slab || !node_match(slab, node))) {
3367 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3368 	} else {
3369 		void *next_object = get_freepointer_safe(s, object);
3370 
3371 		/*
3372 		 * The cmpxchg will only match if there was no additional
3373 		 * operation and if we are on the right processor.
3374 		 *
3375 		 * The cmpxchg does the following atomically (without lock
3376 		 * semantics!)
3377 		 * 1. Relocate first pointer to the current per cpu area.
3378 		 * 2. Verify that tid and freelist have not been changed
3379 		 * 3. If they were not changed replace tid and freelist
3380 		 *
3381 		 * Since this is without lock semantics the protection is only
3382 		 * against code executing on this cpu *not* from access by
3383 		 * other cpus.
3384 		 */
3385 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3386 			note_cmpxchg_failure("slab_alloc", s, tid);
3387 			goto redo;
3388 		}
3389 		prefetch_freepointer(s, next_object);
3390 		stat(s, ALLOC_FASTPATH);
3391 	}
3392 
3393 	return object;
3394 }
3395 #else /* CONFIG_SLUB_TINY */
3396 static void *__slab_alloc_node(struct kmem_cache *s,
3397 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3398 {
3399 	struct partial_context pc;
3400 	struct slab *slab;
3401 	void *object;
3402 
3403 	pc.flags = gfpflags;
3404 	pc.slab = &slab;
3405 	pc.orig_size = orig_size;
3406 	object = get_partial(s, node, &pc);
3407 
3408 	if (object)
3409 		return object;
3410 
3411 	slab = new_slab(s, gfpflags, node);
3412 	if (unlikely(!slab)) {
3413 		slab_out_of_memory(s, gfpflags, node);
3414 		return NULL;
3415 	}
3416 
3417 	object = alloc_single_from_new_slab(s, slab, orig_size);
3418 
3419 	return object;
3420 }
3421 #endif /* CONFIG_SLUB_TINY */
3422 
3423 /*
3424  * If the object has been wiped upon free, make sure it's fully initialized by
3425  * zeroing out freelist pointer.
3426  */
3427 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3428 						   void *obj)
3429 {
3430 	if (unlikely(slab_want_init_on_free(s)) && obj)
3431 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3432 			0, sizeof(void *));
3433 }
3434 
3435 /*
3436  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3437  * have the fastpath folded into their functions. So no function call
3438  * overhead for requests that can be satisfied on the fastpath.
3439  *
3440  * The fastpath works by first checking if the lockless freelist can be used.
3441  * If not then __slab_alloc is called for slow processing.
3442  *
3443  * Otherwise we can simply pick the next object from the lockless free list.
3444  */
3445 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3446 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3447 {
3448 	void *object;
3449 	struct obj_cgroup *objcg = NULL;
3450 	bool init = false;
3451 
3452 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3453 	if (!s)
3454 		return NULL;
3455 
3456 	object = kfence_alloc(s, orig_size, gfpflags);
3457 	if (unlikely(object))
3458 		goto out;
3459 
3460 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3461 
3462 	maybe_wipe_obj_freeptr(s, object);
3463 	init = slab_want_init_on_alloc(gfpflags, s);
3464 
3465 out:
3466 	/*
3467 	 * When init equals 'true', like for kzalloc() family, only
3468 	 * @orig_size bytes might be zeroed instead of s->object_size
3469 	 */
3470 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3471 
3472 	return object;
3473 }
3474 
3475 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3476 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3477 {
3478 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3479 }
3480 
3481 static __fastpath_inline
3482 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3483 			     gfp_t gfpflags)
3484 {
3485 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3486 
3487 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3488 
3489 	return ret;
3490 }
3491 
3492 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3493 {
3494 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3495 }
3496 EXPORT_SYMBOL(kmem_cache_alloc);
3497 
3498 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3499 			   gfp_t gfpflags)
3500 {
3501 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3502 }
3503 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3504 
3505 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3506 			      int node, size_t orig_size,
3507 			      unsigned long caller)
3508 {
3509 	return slab_alloc_node(s, NULL, gfpflags, node,
3510 			       caller, orig_size);
3511 }
3512 
3513 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3514 {
3515 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3516 
3517 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3518 
3519 	return ret;
3520 }
3521 EXPORT_SYMBOL(kmem_cache_alloc_node);
3522 
3523 static noinline void free_to_partial_list(
3524 	struct kmem_cache *s, struct slab *slab,
3525 	void *head, void *tail, int bulk_cnt,
3526 	unsigned long addr)
3527 {
3528 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3529 	struct slab *slab_free = NULL;
3530 	int cnt = bulk_cnt;
3531 	unsigned long flags;
3532 	depot_stack_handle_t handle = 0;
3533 
3534 	if (s->flags & SLAB_STORE_USER)
3535 		handle = set_track_prepare();
3536 
3537 	spin_lock_irqsave(&n->list_lock, flags);
3538 
3539 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3540 		void *prior = slab->freelist;
3541 
3542 		/* Perform the actual freeing while we still hold the locks */
3543 		slab->inuse -= cnt;
3544 		set_freepointer(s, tail, prior);
3545 		slab->freelist = head;
3546 
3547 		/*
3548 		 * If the slab is empty, and node's partial list is full,
3549 		 * it should be discarded anyway no matter it's on full or
3550 		 * partial list.
3551 		 */
3552 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3553 			slab_free = slab;
3554 
3555 		if (!prior) {
3556 			/* was on full list */
3557 			remove_full(s, n, slab);
3558 			if (!slab_free) {
3559 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
3560 				stat(s, FREE_ADD_PARTIAL);
3561 			}
3562 		} else if (slab_free) {
3563 			remove_partial(n, slab);
3564 			stat(s, FREE_REMOVE_PARTIAL);
3565 		}
3566 	}
3567 
3568 	if (slab_free) {
3569 		/*
3570 		 * Update the counters while still holding n->list_lock to
3571 		 * prevent spurious validation warnings
3572 		 */
3573 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3574 	}
3575 
3576 	spin_unlock_irqrestore(&n->list_lock, flags);
3577 
3578 	if (slab_free) {
3579 		stat(s, FREE_SLAB);
3580 		free_slab(s, slab_free);
3581 	}
3582 }
3583 
3584 /*
3585  * Slow path handling. This may still be called frequently since objects
3586  * have a longer lifetime than the cpu slabs in most processing loads.
3587  *
3588  * So we still attempt to reduce cache line usage. Just take the slab
3589  * lock and free the item. If there is no additional partial slab
3590  * handling required then we can return immediately.
3591  */
3592 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3593 			void *head, void *tail, int cnt,
3594 			unsigned long addr)
3595 
3596 {
3597 	void *prior;
3598 	int was_frozen;
3599 	struct slab new;
3600 	unsigned long counters;
3601 	struct kmem_cache_node *n = NULL;
3602 	unsigned long flags;
3603 
3604 	stat(s, FREE_SLOWPATH);
3605 
3606 	if (kfence_free(head))
3607 		return;
3608 
3609 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3610 		free_to_partial_list(s, slab, head, tail, cnt, addr);
3611 		return;
3612 	}
3613 
3614 	do {
3615 		if (unlikely(n)) {
3616 			spin_unlock_irqrestore(&n->list_lock, flags);
3617 			n = NULL;
3618 		}
3619 		prior = slab->freelist;
3620 		counters = slab->counters;
3621 		set_freepointer(s, tail, prior);
3622 		new.counters = counters;
3623 		was_frozen = new.frozen;
3624 		new.inuse -= cnt;
3625 		if ((!new.inuse || !prior) && !was_frozen) {
3626 
3627 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3628 
3629 				/*
3630 				 * Slab was on no list before and will be
3631 				 * partially empty
3632 				 * We can defer the list move and instead
3633 				 * freeze it.
3634 				 */
3635 				new.frozen = 1;
3636 
3637 			} else { /* Needs to be taken off a list */
3638 
3639 				n = get_node(s, slab_nid(slab));
3640 				/*
3641 				 * Speculatively acquire the list_lock.
3642 				 * If the cmpxchg does not succeed then we may
3643 				 * drop the list_lock without any processing.
3644 				 *
3645 				 * Otherwise the list_lock will synchronize with
3646 				 * other processors updating the list of slabs.
3647 				 */
3648 				spin_lock_irqsave(&n->list_lock, flags);
3649 
3650 			}
3651 		}
3652 
3653 	} while (!slab_update_freelist(s, slab,
3654 		prior, counters,
3655 		head, new.counters,
3656 		"__slab_free"));
3657 
3658 	if (likely(!n)) {
3659 
3660 		if (likely(was_frozen)) {
3661 			/*
3662 			 * The list lock was not taken therefore no list
3663 			 * activity can be necessary.
3664 			 */
3665 			stat(s, FREE_FROZEN);
3666 		} else if (new.frozen) {
3667 			/*
3668 			 * If we just froze the slab then put it onto the
3669 			 * per cpu partial list.
3670 			 */
3671 			put_cpu_partial(s, slab, 1);
3672 			stat(s, CPU_PARTIAL_FREE);
3673 		}
3674 
3675 		return;
3676 	}
3677 
3678 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3679 		goto slab_empty;
3680 
3681 	/*
3682 	 * Objects left in the slab. If it was not on the partial list before
3683 	 * then add it.
3684 	 */
3685 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3686 		remove_full(s, n, slab);
3687 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3688 		stat(s, FREE_ADD_PARTIAL);
3689 	}
3690 	spin_unlock_irqrestore(&n->list_lock, flags);
3691 	return;
3692 
3693 slab_empty:
3694 	if (prior) {
3695 		/*
3696 		 * Slab on the partial list.
3697 		 */
3698 		remove_partial(n, slab);
3699 		stat(s, FREE_REMOVE_PARTIAL);
3700 	} else {
3701 		/* Slab must be on the full list */
3702 		remove_full(s, n, slab);
3703 	}
3704 
3705 	spin_unlock_irqrestore(&n->list_lock, flags);
3706 	stat(s, FREE_SLAB);
3707 	discard_slab(s, slab);
3708 }
3709 
3710 #ifndef CONFIG_SLUB_TINY
3711 /*
3712  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3713  * can perform fastpath freeing without additional function calls.
3714  *
3715  * The fastpath is only possible if we are freeing to the current cpu slab
3716  * of this processor. This typically the case if we have just allocated
3717  * the item before.
3718  *
3719  * If fastpath is not possible then fall back to __slab_free where we deal
3720  * with all sorts of special processing.
3721  *
3722  * Bulk free of a freelist with several objects (all pointing to the
3723  * same slab) possible by specifying head and tail ptr, plus objects
3724  * count (cnt). Bulk free indicated by tail pointer being set.
3725  */
3726 static __always_inline void do_slab_free(struct kmem_cache *s,
3727 				struct slab *slab, void *head, void *tail,
3728 				int cnt, unsigned long addr)
3729 {
3730 	void *tail_obj = tail ? : head;
3731 	struct kmem_cache_cpu *c;
3732 	unsigned long tid;
3733 	void **freelist;
3734 
3735 redo:
3736 	/*
3737 	 * Determine the currently cpus per cpu slab.
3738 	 * The cpu may change afterward. However that does not matter since
3739 	 * data is retrieved via this pointer. If we are on the same cpu
3740 	 * during the cmpxchg then the free will succeed.
3741 	 */
3742 	c = raw_cpu_ptr(s->cpu_slab);
3743 	tid = READ_ONCE(c->tid);
3744 
3745 	/* Same with comment on barrier() in slab_alloc_node() */
3746 	barrier();
3747 
3748 	if (unlikely(slab != c->slab)) {
3749 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3750 		return;
3751 	}
3752 
3753 	if (USE_LOCKLESS_FAST_PATH()) {
3754 		freelist = READ_ONCE(c->freelist);
3755 
3756 		set_freepointer(s, tail_obj, freelist);
3757 
3758 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3759 			note_cmpxchg_failure("slab_free", s, tid);
3760 			goto redo;
3761 		}
3762 	} else {
3763 		/* Update the free list under the local lock */
3764 		local_lock(&s->cpu_slab->lock);
3765 		c = this_cpu_ptr(s->cpu_slab);
3766 		if (unlikely(slab != c->slab)) {
3767 			local_unlock(&s->cpu_slab->lock);
3768 			goto redo;
3769 		}
3770 		tid = c->tid;
3771 		freelist = c->freelist;
3772 
3773 		set_freepointer(s, tail_obj, freelist);
3774 		c->freelist = head;
3775 		c->tid = next_tid(tid);
3776 
3777 		local_unlock(&s->cpu_slab->lock);
3778 	}
3779 	stat(s, FREE_FASTPATH);
3780 }
3781 #else /* CONFIG_SLUB_TINY */
3782 static void do_slab_free(struct kmem_cache *s,
3783 				struct slab *slab, void *head, void *tail,
3784 				int cnt, unsigned long addr)
3785 {
3786 	void *tail_obj = tail ? : head;
3787 
3788 	__slab_free(s, slab, head, tail_obj, cnt, addr);
3789 }
3790 #endif /* CONFIG_SLUB_TINY */
3791 
3792 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3793 				      void *head, void *tail, void **p, int cnt,
3794 				      unsigned long addr)
3795 {
3796 	memcg_slab_free_hook(s, slab, p, cnt);
3797 	/*
3798 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3799 	 * to remove objects, whose reuse must be delayed.
3800 	 */
3801 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3802 		do_slab_free(s, slab, head, tail, cnt, addr);
3803 }
3804 
3805 #ifdef CONFIG_KASAN_GENERIC
3806 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3807 {
3808 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3809 }
3810 #endif
3811 
3812 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3813 {
3814 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3815 }
3816 
3817 void kmem_cache_free(struct kmem_cache *s, void *x)
3818 {
3819 	s = cache_from_obj(s, x);
3820 	if (!s)
3821 		return;
3822 	trace_kmem_cache_free(_RET_IP_, x, s);
3823 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3824 }
3825 EXPORT_SYMBOL(kmem_cache_free);
3826 
3827 struct detached_freelist {
3828 	struct slab *slab;
3829 	void *tail;
3830 	void *freelist;
3831 	int cnt;
3832 	struct kmem_cache *s;
3833 };
3834 
3835 /*
3836  * This function progressively scans the array with free objects (with
3837  * a limited look ahead) and extract objects belonging to the same
3838  * slab.  It builds a detached freelist directly within the given
3839  * slab/objects.  This can happen without any need for
3840  * synchronization, because the objects are owned by running process.
3841  * The freelist is build up as a single linked list in the objects.
3842  * The idea is, that this detached freelist can then be bulk
3843  * transferred to the real freelist(s), but only requiring a single
3844  * synchronization primitive.  Look ahead in the array is limited due
3845  * to performance reasons.
3846  */
3847 static inline
3848 int build_detached_freelist(struct kmem_cache *s, size_t size,
3849 			    void **p, struct detached_freelist *df)
3850 {
3851 	int lookahead = 3;
3852 	void *object;
3853 	struct folio *folio;
3854 	size_t same;
3855 
3856 	object = p[--size];
3857 	folio = virt_to_folio(object);
3858 	if (!s) {
3859 		/* Handle kalloc'ed objects */
3860 		if (unlikely(!folio_test_slab(folio))) {
3861 			free_large_kmalloc(folio, object);
3862 			df->slab = NULL;
3863 			return size;
3864 		}
3865 		/* Derive kmem_cache from object */
3866 		df->slab = folio_slab(folio);
3867 		df->s = df->slab->slab_cache;
3868 	} else {
3869 		df->slab = folio_slab(folio);
3870 		df->s = cache_from_obj(s, object); /* Support for memcg */
3871 	}
3872 
3873 	/* Start new detached freelist */
3874 	df->tail = object;
3875 	df->freelist = object;
3876 	df->cnt = 1;
3877 
3878 	if (is_kfence_address(object))
3879 		return size;
3880 
3881 	set_freepointer(df->s, object, NULL);
3882 
3883 	same = size;
3884 	while (size) {
3885 		object = p[--size];
3886 		/* df->slab is always set at this point */
3887 		if (df->slab == virt_to_slab(object)) {
3888 			/* Opportunity build freelist */
3889 			set_freepointer(df->s, object, df->freelist);
3890 			df->freelist = object;
3891 			df->cnt++;
3892 			same--;
3893 			if (size != same)
3894 				swap(p[size], p[same]);
3895 			continue;
3896 		}
3897 
3898 		/* Limit look ahead search */
3899 		if (!--lookahead)
3900 			break;
3901 	}
3902 
3903 	return same;
3904 }
3905 
3906 /* Note that interrupts must be enabled when calling this function. */
3907 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3908 {
3909 	if (!size)
3910 		return;
3911 
3912 	do {
3913 		struct detached_freelist df;
3914 
3915 		size = build_detached_freelist(s, size, p, &df);
3916 		if (!df.slab)
3917 			continue;
3918 
3919 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3920 			  _RET_IP_);
3921 	} while (likely(size));
3922 }
3923 EXPORT_SYMBOL(kmem_cache_free_bulk);
3924 
3925 #ifndef CONFIG_SLUB_TINY
3926 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3927 			size_t size, void **p, struct obj_cgroup *objcg)
3928 {
3929 	struct kmem_cache_cpu *c;
3930 	unsigned long irqflags;
3931 	int i;
3932 
3933 	/*
3934 	 * Drain objects in the per cpu slab, while disabling local
3935 	 * IRQs, which protects against PREEMPT and interrupts
3936 	 * handlers invoking normal fastpath.
3937 	 */
3938 	c = slub_get_cpu_ptr(s->cpu_slab);
3939 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3940 
3941 	for (i = 0; i < size; i++) {
3942 		void *object = kfence_alloc(s, s->object_size, flags);
3943 
3944 		if (unlikely(object)) {
3945 			p[i] = object;
3946 			continue;
3947 		}
3948 
3949 		object = c->freelist;
3950 		if (unlikely(!object)) {
3951 			/*
3952 			 * We may have removed an object from c->freelist using
3953 			 * the fastpath in the previous iteration; in that case,
3954 			 * c->tid has not been bumped yet.
3955 			 * Since ___slab_alloc() may reenable interrupts while
3956 			 * allocating memory, we should bump c->tid now.
3957 			 */
3958 			c->tid = next_tid(c->tid);
3959 
3960 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3961 
3962 			/*
3963 			 * Invoking slow path likely have side-effect
3964 			 * of re-populating per CPU c->freelist
3965 			 */
3966 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3967 					    _RET_IP_, c, s->object_size);
3968 			if (unlikely(!p[i]))
3969 				goto error;
3970 
3971 			c = this_cpu_ptr(s->cpu_slab);
3972 			maybe_wipe_obj_freeptr(s, p[i]);
3973 
3974 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3975 
3976 			continue; /* goto for-loop */
3977 		}
3978 		c->freelist = get_freepointer(s, object);
3979 		p[i] = object;
3980 		maybe_wipe_obj_freeptr(s, p[i]);
3981 	}
3982 	c->tid = next_tid(c->tid);
3983 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3984 	slub_put_cpu_ptr(s->cpu_slab);
3985 
3986 	return i;
3987 
3988 error:
3989 	slub_put_cpu_ptr(s->cpu_slab);
3990 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3991 	kmem_cache_free_bulk(s, i, p);
3992 	return 0;
3993 
3994 }
3995 #else /* CONFIG_SLUB_TINY */
3996 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3997 			size_t size, void **p, struct obj_cgroup *objcg)
3998 {
3999 	int i;
4000 
4001 	for (i = 0; i < size; i++) {
4002 		void *object = kfence_alloc(s, s->object_size, flags);
4003 
4004 		if (unlikely(object)) {
4005 			p[i] = object;
4006 			continue;
4007 		}
4008 
4009 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4010 					 _RET_IP_, s->object_size);
4011 		if (unlikely(!p[i]))
4012 			goto error;
4013 
4014 		maybe_wipe_obj_freeptr(s, p[i]);
4015 	}
4016 
4017 	return i;
4018 
4019 error:
4020 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4021 	kmem_cache_free_bulk(s, i, p);
4022 	return 0;
4023 }
4024 #endif /* CONFIG_SLUB_TINY */
4025 
4026 /* Note that interrupts must be enabled when calling this function. */
4027 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4028 			  void **p)
4029 {
4030 	int i;
4031 	struct obj_cgroup *objcg = NULL;
4032 
4033 	if (!size)
4034 		return 0;
4035 
4036 	/* memcg and kmem_cache debug support */
4037 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4038 	if (unlikely(!s))
4039 		return 0;
4040 
4041 	i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4042 
4043 	/*
4044 	 * memcg and kmem_cache debug support and memory initialization.
4045 	 * Done outside of the IRQ disabled fastpath loop.
4046 	 */
4047 	if (i != 0)
4048 		slab_post_alloc_hook(s, objcg, flags, size, p,
4049 			slab_want_init_on_alloc(flags, s), s->object_size);
4050 	return i;
4051 }
4052 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4053 
4054 
4055 /*
4056  * Object placement in a slab is made very easy because we always start at
4057  * offset 0. If we tune the size of the object to the alignment then we can
4058  * get the required alignment by putting one properly sized object after
4059  * another.
4060  *
4061  * Notice that the allocation order determines the sizes of the per cpu
4062  * caches. Each processor has always one slab available for allocations.
4063  * Increasing the allocation order reduces the number of times that slabs
4064  * must be moved on and off the partial lists and is therefore a factor in
4065  * locking overhead.
4066  */
4067 
4068 /*
4069  * Minimum / Maximum order of slab pages. This influences locking overhead
4070  * and slab fragmentation. A higher order reduces the number of partial slabs
4071  * and increases the number of allocations possible without having to
4072  * take the list_lock.
4073  */
4074 static unsigned int slub_min_order;
4075 static unsigned int slub_max_order =
4076 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4077 static unsigned int slub_min_objects;
4078 
4079 /*
4080  * Calculate the order of allocation given an slab object size.
4081  *
4082  * The order of allocation has significant impact on performance and other
4083  * system components. Generally order 0 allocations should be preferred since
4084  * order 0 does not cause fragmentation in the page allocator. Larger objects
4085  * be problematic to put into order 0 slabs because there may be too much
4086  * unused space left. We go to a higher order if more than 1/16th of the slab
4087  * would be wasted.
4088  *
4089  * In order to reach satisfactory performance we must ensure that a minimum
4090  * number of objects is in one slab. Otherwise we may generate too much
4091  * activity on the partial lists which requires taking the list_lock. This is
4092  * less a concern for large slabs though which are rarely used.
4093  *
4094  * slub_max_order specifies the order where we begin to stop considering the
4095  * number of objects in a slab as critical. If we reach slub_max_order then
4096  * we try to keep the page order as low as possible. So we accept more waste
4097  * of space in favor of a small page order.
4098  *
4099  * Higher order allocations also allow the placement of more objects in a
4100  * slab and thereby reduce object handling overhead. If the user has
4101  * requested a higher minimum order then we start with that one instead of
4102  * the smallest order which will fit the object.
4103  */
4104 static inline unsigned int calc_slab_order(unsigned int size,
4105 		unsigned int min_objects, unsigned int max_order,
4106 		unsigned int fract_leftover)
4107 {
4108 	unsigned int min_order = slub_min_order;
4109 	unsigned int order;
4110 
4111 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4112 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4113 
4114 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4115 			order <= max_order; order++) {
4116 
4117 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4118 		unsigned int rem;
4119 
4120 		rem = slab_size % size;
4121 
4122 		if (rem <= slab_size / fract_leftover)
4123 			break;
4124 	}
4125 
4126 	return order;
4127 }
4128 
4129 static inline int calculate_order(unsigned int size)
4130 {
4131 	unsigned int order;
4132 	unsigned int min_objects;
4133 	unsigned int max_objects;
4134 	unsigned int nr_cpus;
4135 
4136 	/*
4137 	 * Attempt to find best configuration for a slab. This
4138 	 * works by first attempting to generate a layout with
4139 	 * the best configuration and backing off gradually.
4140 	 *
4141 	 * First we increase the acceptable waste in a slab. Then
4142 	 * we reduce the minimum objects required in a slab.
4143 	 */
4144 	min_objects = slub_min_objects;
4145 	if (!min_objects) {
4146 		/*
4147 		 * Some architectures will only update present cpus when
4148 		 * onlining them, so don't trust the number if it's just 1. But
4149 		 * we also don't want to use nr_cpu_ids always, as on some other
4150 		 * architectures, there can be many possible cpus, but never
4151 		 * onlined. Here we compromise between trying to avoid too high
4152 		 * order on systems that appear larger than they are, and too
4153 		 * low order on systems that appear smaller than they are.
4154 		 */
4155 		nr_cpus = num_present_cpus();
4156 		if (nr_cpus <= 1)
4157 			nr_cpus = nr_cpu_ids;
4158 		min_objects = 4 * (fls(nr_cpus) + 1);
4159 	}
4160 	max_objects = order_objects(slub_max_order, size);
4161 	min_objects = min(min_objects, max_objects);
4162 
4163 	while (min_objects > 1) {
4164 		unsigned int fraction;
4165 
4166 		fraction = 16;
4167 		while (fraction >= 4) {
4168 			order = calc_slab_order(size, min_objects,
4169 					slub_max_order, fraction);
4170 			if (order <= slub_max_order)
4171 				return order;
4172 			fraction /= 2;
4173 		}
4174 		min_objects--;
4175 	}
4176 
4177 	/*
4178 	 * We were unable to place multiple objects in a slab. Now
4179 	 * lets see if we can place a single object there.
4180 	 */
4181 	order = calc_slab_order(size, 1, slub_max_order, 1);
4182 	if (order <= slub_max_order)
4183 		return order;
4184 
4185 	/*
4186 	 * Doh this slab cannot be placed using slub_max_order.
4187 	 */
4188 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4189 	if (order <= MAX_ORDER)
4190 		return order;
4191 	return -ENOSYS;
4192 }
4193 
4194 static void
4195 init_kmem_cache_node(struct kmem_cache_node *n)
4196 {
4197 	n->nr_partial = 0;
4198 	spin_lock_init(&n->list_lock);
4199 	INIT_LIST_HEAD(&n->partial);
4200 #ifdef CONFIG_SLUB_DEBUG
4201 	atomic_long_set(&n->nr_slabs, 0);
4202 	atomic_long_set(&n->total_objects, 0);
4203 	INIT_LIST_HEAD(&n->full);
4204 #endif
4205 }
4206 
4207 #ifndef CONFIG_SLUB_TINY
4208 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4209 {
4210 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4211 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4212 			sizeof(struct kmem_cache_cpu));
4213 
4214 	/*
4215 	 * Must align to double word boundary for the double cmpxchg
4216 	 * instructions to work; see __pcpu_double_call_return_bool().
4217 	 */
4218 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4219 				     2 * sizeof(void *));
4220 
4221 	if (!s->cpu_slab)
4222 		return 0;
4223 
4224 	init_kmem_cache_cpus(s);
4225 
4226 	return 1;
4227 }
4228 #else
4229 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4230 {
4231 	return 1;
4232 }
4233 #endif /* CONFIG_SLUB_TINY */
4234 
4235 static struct kmem_cache *kmem_cache_node;
4236 
4237 /*
4238  * No kmalloc_node yet so do it by hand. We know that this is the first
4239  * slab on the node for this slabcache. There are no concurrent accesses
4240  * possible.
4241  *
4242  * Note that this function only works on the kmem_cache_node
4243  * when allocating for the kmem_cache_node. This is used for bootstrapping
4244  * memory on a fresh node that has no slab structures yet.
4245  */
4246 static void early_kmem_cache_node_alloc(int node)
4247 {
4248 	struct slab *slab;
4249 	struct kmem_cache_node *n;
4250 
4251 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4252 
4253 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4254 
4255 	BUG_ON(!slab);
4256 	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4257 	if (slab_nid(slab) != node) {
4258 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4259 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4260 	}
4261 
4262 	n = slab->freelist;
4263 	BUG_ON(!n);
4264 #ifdef CONFIG_SLUB_DEBUG
4265 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4266 	init_tracking(kmem_cache_node, n);
4267 #endif
4268 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4269 	slab->freelist = get_freepointer(kmem_cache_node, n);
4270 	slab->inuse = 1;
4271 	kmem_cache_node->node[node] = n;
4272 	init_kmem_cache_node(n);
4273 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4274 
4275 	/*
4276 	 * No locks need to be taken here as it has just been
4277 	 * initialized and there is no concurrent access.
4278 	 */
4279 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4280 }
4281 
4282 static void free_kmem_cache_nodes(struct kmem_cache *s)
4283 {
4284 	int node;
4285 	struct kmem_cache_node *n;
4286 
4287 	for_each_kmem_cache_node(s, node, n) {
4288 		s->node[node] = NULL;
4289 		kmem_cache_free(kmem_cache_node, n);
4290 	}
4291 }
4292 
4293 void __kmem_cache_release(struct kmem_cache *s)
4294 {
4295 	cache_random_seq_destroy(s);
4296 #ifndef CONFIG_SLUB_TINY
4297 	free_percpu(s->cpu_slab);
4298 #endif
4299 	free_kmem_cache_nodes(s);
4300 }
4301 
4302 static int init_kmem_cache_nodes(struct kmem_cache *s)
4303 {
4304 	int node;
4305 
4306 	for_each_node_mask(node, slab_nodes) {
4307 		struct kmem_cache_node *n;
4308 
4309 		if (slab_state == DOWN) {
4310 			early_kmem_cache_node_alloc(node);
4311 			continue;
4312 		}
4313 		n = kmem_cache_alloc_node(kmem_cache_node,
4314 						GFP_KERNEL, node);
4315 
4316 		if (!n) {
4317 			free_kmem_cache_nodes(s);
4318 			return 0;
4319 		}
4320 
4321 		init_kmem_cache_node(n);
4322 		s->node[node] = n;
4323 	}
4324 	return 1;
4325 }
4326 
4327 static void set_cpu_partial(struct kmem_cache *s)
4328 {
4329 #ifdef CONFIG_SLUB_CPU_PARTIAL
4330 	unsigned int nr_objects;
4331 
4332 	/*
4333 	 * cpu_partial determined the maximum number of objects kept in the
4334 	 * per cpu partial lists of a processor.
4335 	 *
4336 	 * Per cpu partial lists mainly contain slabs that just have one
4337 	 * object freed. If they are used for allocation then they can be
4338 	 * filled up again with minimal effort. The slab will never hit the
4339 	 * per node partial lists and therefore no locking will be required.
4340 	 *
4341 	 * For backwards compatibility reasons, this is determined as number
4342 	 * of objects, even though we now limit maximum number of pages, see
4343 	 * slub_set_cpu_partial()
4344 	 */
4345 	if (!kmem_cache_has_cpu_partial(s))
4346 		nr_objects = 0;
4347 	else if (s->size >= PAGE_SIZE)
4348 		nr_objects = 6;
4349 	else if (s->size >= 1024)
4350 		nr_objects = 24;
4351 	else if (s->size >= 256)
4352 		nr_objects = 52;
4353 	else
4354 		nr_objects = 120;
4355 
4356 	slub_set_cpu_partial(s, nr_objects);
4357 #endif
4358 }
4359 
4360 /*
4361  * calculate_sizes() determines the order and the distribution of data within
4362  * a slab object.
4363  */
4364 static int calculate_sizes(struct kmem_cache *s)
4365 {
4366 	slab_flags_t flags = s->flags;
4367 	unsigned int size = s->object_size;
4368 	unsigned int order;
4369 
4370 	/*
4371 	 * Round up object size to the next word boundary. We can only
4372 	 * place the free pointer at word boundaries and this determines
4373 	 * the possible location of the free pointer.
4374 	 */
4375 	size = ALIGN(size, sizeof(void *));
4376 
4377 #ifdef CONFIG_SLUB_DEBUG
4378 	/*
4379 	 * Determine if we can poison the object itself. If the user of
4380 	 * the slab may touch the object after free or before allocation
4381 	 * then we should never poison the object itself.
4382 	 */
4383 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4384 			!s->ctor)
4385 		s->flags |= __OBJECT_POISON;
4386 	else
4387 		s->flags &= ~__OBJECT_POISON;
4388 
4389 
4390 	/*
4391 	 * If we are Redzoning then check if there is some space between the
4392 	 * end of the object and the free pointer. If not then add an
4393 	 * additional word to have some bytes to store Redzone information.
4394 	 */
4395 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4396 		size += sizeof(void *);
4397 #endif
4398 
4399 	/*
4400 	 * With that we have determined the number of bytes in actual use
4401 	 * by the object and redzoning.
4402 	 */
4403 	s->inuse = size;
4404 
4405 	if (slub_debug_orig_size(s) ||
4406 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4407 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4408 	    s->ctor) {
4409 		/*
4410 		 * Relocate free pointer after the object if it is not
4411 		 * permitted to overwrite the first word of the object on
4412 		 * kmem_cache_free.
4413 		 *
4414 		 * This is the case if we do RCU, have a constructor or
4415 		 * destructor, are poisoning the objects, or are
4416 		 * redzoning an object smaller than sizeof(void *).
4417 		 *
4418 		 * The assumption that s->offset >= s->inuse means free
4419 		 * pointer is outside of the object is used in the
4420 		 * freeptr_outside_object() function. If that is no
4421 		 * longer true, the function needs to be modified.
4422 		 */
4423 		s->offset = size;
4424 		size += sizeof(void *);
4425 	} else {
4426 		/*
4427 		 * Store freelist pointer near middle of object to keep
4428 		 * it away from the edges of the object to avoid small
4429 		 * sized over/underflows from neighboring allocations.
4430 		 */
4431 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4432 	}
4433 
4434 #ifdef CONFIG_SLUB_DEBUG
4435 	if (flags & SLAB_STORE_USER) {
4436 		/*
4437 		 * Need to store information about allocs and frees after
4438 		 * the object.
4439 		 */
4440 		size += 2 * sizeof(struct track);
4441 
4442 		/* Save the original kmalloc request size */
4443 		if (flags & SLAB_KMALLOC)
4444 			size += sizeof(unsigned int);
4445 	}
4446 #endif
4447 
4448 	kasan_cache_create(s, &size, &s->flags);
4449 #ifdef CONFIG_SLUB_DEBUG
4450 	if (flags & SLAB_RED_ZONE) {
4451 		/*
4452 		 * Add some empty padding so that we can catch
4453 		 * overwrites from earlier objects rather than let
4454 		 * tracking information or the free pointer be
4455 		 * corrupted if a user writes before the start
4456 		 * of the object.
4457 		 */
4458 		size += sizeof(void *);
4459 
4460 		s->red_left_pad = sizeof(void *);
4461 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4462 		size += s->red_left_pad;
4463 	}
4464 #endif
4465 
4466 	/*
4467 	 * SLUB stores one object immediately after another beginning from
4468 	 * offset 0. In order to align the objects we have to simply size
4469 	 * each object to conform to the alignment.
4470 	 */
4471 	size = ALIGN(size, s->align);
4472 	s->size = size;
4473 	s->reciprocal_size = reciprocal_value(size);
4474 	order = calculate_order(size);
4475 
4476 	if ((int)order < 0)
4477 		return 0;
4478 
4479 	s->allocflags = 0;
4480 	if (order)
4481 		s->allocflags |= __GFP_COMP;
4482 
4483 	if (s->flags & SLAB_CACHE_DMA)
4484 		s->allocflags |= GFP_DMA;
4485 
4486 	if (s->flags & SLAB_CACHE_DMA32)
4487 		s->allocflags |= GFP_DMA32;
4488 
4489 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4490 		s->allocflags |= __GFP_RECLAIMABLE;
4491 
4492 	/*
4493 	 * Determine the number of objects per slab
4494 	 */
4495 	s->oo = oo_make(order, size);
4496 	s->min = oo_make(get_order(size), size);
4497 
4498 	return !!oo_objects(s->oo);
4499 }
4500 
4501 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4502 {
4503 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4504 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4505 	s->random = get_random_long();
4506 #endif
4507 
4508 	if (!calculate_sizes(s))
4509 		goto error;
4510 	if (disable_higher_order_debug) {
4511 		/*
4512 		 * Disable debugging flags that store metadata if the min slab
4513 		 * order increased.
4514 		 */
4515 		if (get_order(s->size) > get_order(s->object_size)) {
4516 			s->flags &= ~DEBUG_METADATA_FLAGS;
4517 			s->offset = 0;
4518 			if (!calculate_sizes(s))
4519 				goto error;
4520 		}
4521 	}
4522 
4523 #ifdef system_has_freelist_aba
4524 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4525 		/* Enable fast mode */
4526 		s->flags |= __CMPXCHG_DOUBLE;
4527 	}
4528 #endif
4529 
4530 	/*
4531 	 * The larger the object size is, the more slabs we want on the partial
4532 	 * list to avoid pounding the page allocator excessively.
4533 	 */
4534 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4535 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4536 
4537 	set_cpu_partial(s);
4538 
4539 #ifdef CONFIG_NUMA
4540 	s->remote_node_defrag_ratio = 1000;
4541 #endif
4542 
4543 	/* Initialize the pre-computed randomized freelist if slab is up */
4544 	if (slab_state >= UP) {
4545 		if (init_cache_random_seq(s))
4546 			goto error;
4547 	}
4548 
4549 	if (!init_kmem_cache_nodes(s))
4550 		goto error;
4551 
4552 	if (alloc_kmem_cache_cpus(s))
4553 		return 0;
4554 
4555 error:
4556 	__kmem_cache_release(s);
4557 	return -EINVAL;
4558 }
4559 
4560 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4561 			      const char *text)
4562 {
4563 #ifdef CONFIG_SLUB_DEBUG
4564 	void *addr = slab_address(slab);
4565 	void *p;
4566 
4567 	slab_err(s, slab, text, s->name);
4568 
4569 	spin_lock(&object_map_lock);
4570 	__fill_map(object_map, s, slab);
4571 
4572 	for_each_object(p, s, addr, slab->objects) {
4573 
4574 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4575 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4576 			print_tracking(s, p);
4577 		}
4578 	}
4579 	spin_unlock(&object_map_lock);
4580 #endif
4581 }
4582 
4583 /*
4584  * Attempt to free all partial slabs on a node.
4585  * This is called from __kmem_cache_shutdown(). We must take list_lock
4586  * because sysfs file might still access partial list after the shutdowning.
4587  */
4588 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4589 {
4590 	LIST_HEAD(discard);
4591 	struct slab *slab, *h;
4592 
4593 	BUG_ON(irqs_disabled());
4594 	spin_lock_irq(&n->list_lock);
4595 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4596 		if (!slab->inuse) {
4597 			remove_partial(n, slab);
4598 			list_add(&slab->slab_list, &discard);
4599 		} else {
4600 			list_slab_objects(s, slab,
4601 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4602 		}
4603 	}
4604 	spin_unlock_irq(&n->list_lock);
4605 
4606 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4607 		discard_slab(s, slab);
4608 }
4609 
4610 bool __kmem_cache_empty(struct kmem_cache *s)
4611 {
4612 	int node;
4613 	struct kmem_cache_node *n;
4614 
4615 	for_each_kmem_cache_node(s, node, n)
4616 		if (n->nr_partial || node_nr_slabs(n))
4617 			return false;
4618 	return true;
4619 }
4620 
4621 /*
4622  * Release all resources used by a slab cache.
4623  */
4624 int __kmem_cache_shutdown(struct kmem_cache *s)
4625 {
4626 	int node;
4627 	struct kmem_cache_node *n;
4628 
4629 	flush_all_cpus_locked(s);
4630 	/* Attempt to free all objects */
4631 	for_each_kmem_cache_node(s, node, n) {
4632 		free_partial(s, n);
4633 		if (n->nr_partial || node_nr_slabs(n))
4634 			return 1;
4635 	}
4636 	return 0;
4637 }
4638 
4639 #ifdef CONFIG_PRINTK
4640 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4641 {
4642 	void *base;
4643 	int __maybe_unused i;
4644 	unsigned int objnr;
4645 	void *objp;
4646 	void *objp0;
4647 	struct kmem_cache *s = slab->slab_cache;
4648 	struct track __maybe_unused *trackp;
4649 
4650 	kpp->kp_ptr = object;
4651 	kpp->kp_slab = slab;
4652 	kpp->kp_slab_cache = s;
4653 	base = slab_address(slab);
4654 	objp0 = kasan_reset_tag(object);
4655 #ifdef CONFIG_SLUB_DEBUG
4656 	objp = restore_red_left(s, objp0);
4657 #else
4658 	objp = objp0;
4659 #endif
4660 	objnr = obj_to_index(s, slab, objp);
4661 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4662 	objp = base + s->size * objnr;
4663 	kpp->kp_objp = objp;
4664 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4665 			 || (objp - base) % s->size) ||
4666 	    !(s->flags & SLAB_STORE_USER))
4667 		return;
4668 #ifdef CONFIG_SLUB_DEBUG
4669 	objp = fixup_red_left(s, objp);
4670 	trackp = get_track(s, objp, TRACK_ALLOC);
4671 	kpp->kp_ret = (void *)trackp->addr;
4672 #ifdef CONFIG_STACKDEPOT
4673 	{
4674 		depot_stack_handle_t handle;
4675 		unsigned long *entries;
4676 		unsigned int nr_entries;
4677 
4678 		handle = READ_ONCE(trackp->handle);
4679 		if (handle) {
4680 			nr_entries = stack_depot_fetch(handle, &entries);
4681 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4682 				kpp->kp_stack[i] = (void *)entries[i];
4683 		}
4684 
4685 		trackp = get_track(s, objp, TRACK_FREE);
4686 		handle = READ_ONCE(trackp->handle);
4687 		if (handle) {
4688 			nr_entries = stack_depot_fetch(handle, &entries);
4689 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4690 				kpp->kp_free_stack[i] = (void *)entries[i];
4691 		}
4692 	}
4693 #endif
4694 #endif
4695 }
4696 #endif
4697 
4698 /********************************************************************
4699  *		Kmalloc subsystem
4700  *******************************************************************/
4701 
4702 static int __init setup_slub_min_order(char *str)
4703 {
4704 	get_option(&str, (int *)&slub_min_order);
4705 
4706 	return 1;
4707 }
4708 
4709 __setup("slub_min_order=", setup_slub_min_order);
4710 
4711 static int __init setup_slub_max_order(char *str)
4712 {
4713 	get_option(&str, (int *)&slub_max_order);
4714 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4715 
4716 	return 1;
4717 }
4718 
4719 __setup("slub_max_order=", setup_slub_max_order);
4720 
4721 static int __init setup_slub_min_objects(char *str)
4722 {
4723 	get_option(&str, (int *)&slub_min_objects);
4724 
4725 	return 1;
4726 }
4727 
4728 __setup("slub_min_objects=", setup_slub_min_objects);
4729 
4730 #ifdef CONFIG_HARDENED_USERCOPY
4731 /*
4732  * Rejects incorrectly sized objects and objects that are to be copied
4733  * to/from userspace but do not fall entirely within the containing slab
4734  * cache's usercopy region.
4735  *
4736  * Returns NULL if check passes, otherwise const char * to name of cache
4737  * to indicate an error.
4738  */
4739 void __check_heap_object(const void *ptr, unsigned long n,
4740 			 const struct slab *slab, bool to_user)
4741 {
4742 	struct kmem_cache *s;
4743 	unsigned int offset;
4744 	bool is_kfence = is_kfence_address(ptr);
4745 
4746 	ptr = kasan_reset_tag(ptr);
4747 
4748 	/* Find object and usable object size. */
4749 	s = slab->slab_cache;
4750 
4751 	/* Reject impossible pointers. */
4752 	if (ptr < slab_address(slab))
4753 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4754 			       to_user, 0, n);
4755 
4756 	/* Find offset within object. */
4757 	if (is_kfence)
4758 		offset = ptr - kfence_object_start(ptr);
4759 	else
4760 		offset = (ptr - slab_address(slab)) % s->size;
4761 
4762 	/* Adjust for redzone and reject if within the redzone. */
4763 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4764 		if (offset < s->red_left_pad)
4765 			usercopy_abort("SLUB object in left red zone",
4766 				       s->name, to_user, offset, n);
4767 		offset -= s->red_left_pad;
4768 	}
4769 
4770 	/* Allow address range falling entirely within usercopy region. */
4771 	if (offset >= s->useroffset &&
4772 	    offset - s->useroffset <= s->usersize &&
4773 	    n <= s->useroffset - offset + s->usersize)
4774 		return;
4775 
4776 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4777 }
4778 #endif /* CONFIG_HARDENED_USERCOPY */
4779 
4780 #define SHRINK_PROMOTE_MAX 32
4781 
4782 /*
4783  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4784  * up most to the head of the partial lists. New allocations will then
4785  * fill those up and thus they can be removed from the partial lists.
4786  *
4787  * The slabs with the least items are placed last. This results in them
4788  * being allocated from last increasing the chance that the last objects
4789  * are freed in them.
4790  */
4791 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4792 {
4793 	int node;
4794 	int i;
4795 	struct kmem_cache_node *n;
4796 	struct slab *slab;
4797 	struct slab *t;
4798 	struct list_head discard;
4799 	struct list_head promote[SHRINK_PROMOTE_MAX];
4800 	unsigned long flags;
4801 	int ret = 0;
4802 
4803 	for_each_kmem_cache_node(s, node, n) {
4804 		INIT_LIST_HEAD(&discard);
4805 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4806 			INIT_LIST_HEAD(promote + i);
4807 
4808 		spin_lock_irqsave(&n->list_lock, flags);
4809 
4810 		/*
4811 		 * Build lists of slabs to discard or promote.
4812 		 *
4813 		 * Note that concurrent frees may occur while we hold the
4814 		 * list_lock. slab->inuse here is the upper limit.
4815 		 */
4816 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4817 			int free = slab->objects - slab->inuse;
4818 
4819 			/* Do not reread slab->inuse */
4820 			barrier();
4821 
4822 			/* We do not keep full slabs on the list */
4823 			BUG_ON(free <= 0);
4824 
4825 			if (free == slab->objects) {
4826 				list_move(&slab->slab_list, &discard);
4827 				n->nr_partial--;
4828 				dec_slabs_node(s, node, slab->objects);
4829 			} else if (free <= SHRINK_PROMOTE_MAX)
4830 				list_move(&slab->slab_list, promote + free - 1);
4831 		}
4832 
4833 		/*
4834 		 * Promote the slabs filled up most to the head of the
4835 		 * partial list.
4836 		 */
4837 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4838 			list_splice(promote + i, &n->partial);
4839 
4840 		spin_unlock_irqrestore(&n->list_lock, flags);
4841 
4842 		/* Release empty slabs */
4843 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4844 			free_slab(s, slab);
4845 
4846 		if (node_nr_slabs(n))
4847 			ret = 1;
4848 	}
4849 
4850 	return ret;
4851 }
4852 
4853 int __kmem_cache_shrink(struct kmem_cache *s)
4854 {
4855 	flush_all(s);
4856 	return __kmem_cache_do_shrink(s);
4857 }
4858 
4859 static int slab_mem_going_offline_callback(void *arg)
4860 {
4861 	struct kmem_cache *s;
4862 
4863 	mutex_lock(&slab_mutex);
4864 	list_for_each_entry(s, &slab_caches, list) {
4865 		flush_all_cpus_locked(s);
4866 		__kmem_cache_do_shrink(s);
4867 	}
4868 	mutex_unlock(&slab_mutex);
4869 
4870 	return 0;
4871 }
4872 
4873 static void slab_mem_offline_callback(void *arg)
4874 {
4875 	struct memory_notify *marg = arg;
4876 	int offline_node;
4877 
4878 	offline_node = marg->status_change_nid_normal;
4879 
4880 	/*
4881 	 * If the node still has available memory. we need kmem_cache_node
4882 	 * for it yet.
4883 	 */
4884 	if (offline_node < 0)
4885 		return;
4886 
4887 	mutex_lock(&slab_mutex);
4888 	node_clear(offline_node, slab_nodes);
4889 	/*
4890 	 * We no longer free kmem_cache_node structures here, as it would be
4891 	 * racy with all get_node() users, and infeasible to protect them with
4892 	 * slab_mutex.
4893 	 */
4894 	mutex_unlock(&slab_mutex);
4895 }
4896 
4897 static int slab_mem_going_online_callback(void *arg)
4898 {
4899 	struct kmem_cache_node *n;
4900 	struct kmem_cache *s;
4901 	struct memory_notify *marg = arg;
4902 	int nid = marg->status_change_nid_normal;
4903 	int ret = 0;
4904 
4905 	/*
4906 	 * If the node's memory is already available, then kmem_cache_node is
4907 	 * already created. Nothing to do.
4908 	 */
4909 	if (nid < 0)
4910 		return 0;
4911 
4912 	/*
4913 	 * We are bringing a node online. No memory is available yet. We must
4914 	 * allocate a kmem_cache_node structure in order to bring the node
4915 	 * online.
4916 	 */
4917 	mutex_lock(&slab_mutex);
4918 	list_for_each_entry(s, &slab_caches, list) {
4919 		/*
4920 		 * The structure may already exist if the node was previously
4921 		 * onlined and offlined.
4922 		 */
4923 		if (get_node(s, nid))
4924 			continue;
4925 		/*
4926 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4927 		 *      since memory is not yet available from the node that
4928 		 *      is brought up.
4929 		 */
4930 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4931 		if (!n) {
4932 			ret = -ENOMEM;
4933 			goto out;
4934 		}
4935 		init_kmem_cache_node(n);
4936 		s->node[nid] = n;
4937 	}
4938 	/*
4939 	 * Any cache created after this point will also have kmem_cache_node
4940 	 * initialized for the new node.
4941 	 */
4942 	node_set(nid, slab_nodes);
4943 out:
4944 	mutex_unlock(&slab_mutex);
4945 	return ret;
4946 }
4947 
4948 static int slab_memory_callback(struct notifier_block *self,
4949 				unsigned long action, void *arg)
4950 {
4951 	int ret = 0;
4952 
4953 	switch (action) {
4954 	case MEM_GOING_ONLINE:
4955 		ret = slab_mem_going_online_callback(arg);
4956 		break;
4957 	case MEM_GOING_OFFLINE:
4958 		ret = slab_mem_going_offline_callback(arg);
4959 		break;
4960 	case MEM_OFFLINE:
4961 	case MEM_CANCEL_ONLINE:
4962 		slab_mem_offline_callback(arg);
4963 		break;
4964 	case MEM_ONLINE:
4965 	case MEM_CANCEL_OFFLINE:
4966 		break;
4967 	}
4968 	if (ret)
4969 		ret = notifier_from_errno(ret);
4970 	else
4971 		ret = NOTIFY_OK;
4972 	return ret;
4973 }
4974 
4975 /********************************************************************
4976  *			Basic setup of slabs
4977  *******************************************************************/
4978 
4979 /*
4980  * Used for early kmem_cache structures that were allocated using
4981  * the page allocator. Allocate them properly then fix up the pointers
4982  * that may be pointing to the wrong kmem_cache structure.
4983  */
4984 
4985 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4986 {
4987 	int node;
4988 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4989 	struct kmem_cache_node *n;
4990 
4991 	memcpy(s, static_cache, kmem_cache->object_size);
4992 
4993 	/*
4994 	 * This runs very early, and only the boot processor is supposed to be
4995 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4996 	 * IPIs around.
4997 	 */
4998 	__flush_cpu_slab(s, smp_processor_id());
4999 	for_each_kmem_cache_node(s, node, n) {
5000 		struct slab *p;
5001 
5002 		list_for_each_entry(p, &n->partial, slab_list)
5003 			p->slab_cache = s;
5004 
5005 #ifdef CONFIG_SLUB_DEBUG
5006 		list_for_each_entry(p, &n->full, slab_list)
5007 			p->slab_cache = s;
5008 #endif
5009 	}
5010 	list_add(&s->list, &slab_caches);
5011 	return s;
5012 }
5013 
5014 void __init kmem_cache_init(void)
5015 {
5016 	static __initdata struct kmem_cache boot_kmem_cache,
5017 		boot_kmem_cache_node;
5018 	int node;
5019 
5020 	if (debug_guardpage_minorder())
5021 		slub_max_order = 0;
5022 
5023 	/* Print slub debugging pointers without hashing */
5024 	if (__slub_debug_enabled())
5025 		no_hash_pointers_enable(NULL);
5026 
5027 	kmem_cache_node = &boot_kmem_cache_node;
5028 	kmem_cache = &boot_kmem_cache;
5029 
5030 	/*
5031 	 * Initialize the nodemask for which we will allocate per node
5032 	 * structures. Here we don't need taking slab_mutex yet.
5033 	 */
5034 	for_each_node_state(node, N_NORMAL_MEMORY)
5035 		node_set(node, slab_nodes);
5036 
5037 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5038 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5039 
5040 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5041 
5042 	/* Able to allocate the per node structures */
5043 	slab_state = PARTIAL;
5044 
5045 	create_boot_cache(kmem_cache, "kmem_cache",
5046 			offsetof(struct kmem_cache, node) +
5047 				nr_node_ids * sizeof(struct kmem_cache_node *),
5048 		       SLAB_HWCACHE_ALIGN, 0, 0);
5049 
5050 	kmem_cache = bootstrap(&boot_kmem_cache);
5051 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5052 
5053 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5054 	setup_kmalloc_cache_index_table();
5055 	create_kmalloc_caches(0);
5056 
5057 	/* Setup random freelists for each cache */
5058 	init_freelist_randomization();
5059 
5060 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5061 				  slub_cpu_dead);
5062 
5063 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5064 		cache_line_size(),
5065 		slub_min_order, slub_max_order, slub_min_objects,
5066 		nr_cpu_ids, nr_node_ids);
5067 }
5068 
5069 void __init kmem_cache_init_late(void)
5070 {
5071 #ifndef CONFIG_SLUB_TINY
5072 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5073 	WARN_ON(!flushwq);
5074 #endif
5075 }
5076 
5077 struct kmem_cache *
5078 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5079 		   slab_flags_t flags, void (*ctor)(void *))
5080 {
5081 	struct kmem_cache *s;
5082 
5083 	s = find_mergeable(size, align, flags, name, ctor);
5084 	if (s) {
5085 		if (sysfs_slab_alias(s, name))
5086 			return NULL;
5087 
5088 		s->refcount++;
5089 
5090 		/*
5091 		 * Adjust the object sizes so that we clear
5092 		 * the complete object on kzalloc.
5093 		 */
5094 		s->object_size = max(s->object_size, size);
5095 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5096 	}
5097 
5098 	return s;
5099 }
5100 
5101 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5102 {
5103 	int err;
5104 
5105 	err = kmem_cache_open(s, flags);
5106 	if (err)
5107 		return err;
5108 
5109 	/* Mutex is not taken during early boot */
5110 	if (slab_state <= UP)
5111 		return 0;
5112 
5113 	err = sysfs_slab_add(s);
5114 	if (err) {
5115 		__kmem_cache_release(s);
5116 		return err;
5117 	}
5118 
5119 	if (s->flags & SLAB_STORE_USER)
5120 		debugfs_slab_add(s);
5121 
5122 	return 0;
5123 }
5124 
5125 #ifdef SLAB_SUPPORTS_SYSFS
5126 static int count_inuse(struct slab *slab)
5127 {
5128 	return slab->inuse;
5129 }
5130 
5131 static int count_total(struct slab *slab)
5132 {
5133 	return slab->objects;
5134 }
5135 #endif
5136 
5137 #ifdef CONFIG_SLUB_DEBUG
5138 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5139 			  unsigned long *obj_map)
5140 {
5141 	void *p;
5142 	void *addr = slab_address(slab);
5143 
5144 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5145 		return;
5146 
5147 	/* Now we know that a valid freelist exists */
5148 	__fill_map(obj_map, s, slab);
5149 	for_each_object(p, s, addr, slab->objects) {
5150 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5151 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5152 
5153 		if (!check_object(s, slab, p, val))
5154 			break;
5155 	}
5156 }
5157 
5158 static int validate_slab_node(struct kmem_cache *s,
5159 		struct kmem_cache_node *n, unsigned long *obj_map)
5160 {
5161 	unsigned long count = 0;
5162 	struct slab *slab;
5163 	unsigned long flags;
5164 
5165 	spin_lock_irqsave(&n->list_lock, flags);
5166 
5167 	list_for_each_entry(slab, &n->partial, slab_list) {
5168 		validate_slab(s, slab, obj_map);
5169 		count++;
5170 	}
5171 	if (count != n->nr_partial) {
5172 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5173 		       s->name, count, n->nr_partial);
5174 		slab_add_kunit_errors();
5175 	}
5176 
5177 	if (!(s->flags & SLAB_STORE_USER))
5178 		goto out;
5179 
5180 	list_for_each_entry(slab, &n->full, slab_list) {
5181 		validate_slab(s, slab, obj_map);
5182 		count++;
5183 	}
5184 	if (count != node_nr_slabs(n)) {
5185 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5186 		       s->name, count, node_nr_slabs(n));
5187 		slab_add_kunit_errors();
5188 	}
5189 
5190 out:
5191 	spin_unlock_irqrestore(&n->list_lock, flags);
5192 	return count;
5193 }
5194 
5195 long validate_slab_cache(struct kmem_cache *s)
5196 {
5197 	int node;
5198 	unsigned long count = 0;
5199 	struct kmem_cache_node *n;
5200 	unsigned long *obj_map;
5201 
5202 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5203 	if (!obj_map)
5204 		return -ENOMEM;
5205 
5206 	flush_all(s);
5207 	for_each_kmem_cache_node(s, node, n)
5208 		count += validate_slab_node(s, n, obj_map);
5209 
5210 	bitmap_free(obj_map);
5211 
5212 	return count;
5213 }
5214 EXPORT_SYMBOL(validate_slab_cache);
5215 
5216 #ifdef CONFIG_DEBUG_FS
5217 /*
5218  * Generate lists of code addresses where slabcache objects are allocated
5219  * and freed.
5220  */
5221 
5222 struct location {
5223 	depot_stack_handle_t handle;
5224 	unsigned long count;
5225 	unsigned long addr;
5226 	unsigned long waste;
5227 	long long sum_time;
5228 	long min_time;
5229 	long max_time;
5230 	long min_pid;
5231 	long max_pid;
5232 	DECLARE_BITMAP(cpus, NR_CPUS);
5233 	nodemask_t nodes;
5234 };
5235 
5236 struct loc_track {
5237 	unsigned long max;
5238 	unsigned long count;
5239 	struct location *loc;
5240 	loff_t idx;
5241 };
5242 
5243 static struct dentry *slab_debugfs_root;
5244 
5245 static void free_loc_track(struct loc_track *t)
5246 {
5247 	if (t->max)
5248 		free_pages((unsigned long)t->loc,
5249 			get_order(sizeof(struct location) * t->max));
5250 }
5251 
5252 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5253 {
5254 	struct location *l;
5255 	int order;
5256 
5257 	order = get_order(sizeof(struct location) * max);
5258 
5259 	l = (void *)__get_free_pages(flags, order);
5260 	if (!l)
5261 		return 0;
5262 
5263 	if (t->count) {
5264 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5265 		free_loc_track(t);
5266 	}
5267 	t->max = max;
5268 	t->loc = l;
5269 	return 1;
5270 }
5271 
5272 static int add_location(struct loc_track *t, struct kmem_cache *s,
5273 				const struct track *track,
5274 				unsigned int orig_size)
5275 {
5276 	long start, end, pos;
5277 	struct location *l;
5278 	unsigned long caddr, chandle, cwaste;
5279 	unsigned long age = jiffies - track->when;
5280 	depot_stack_handle_t handle = 0;
5281 	unsigned int waste = s->object_size - orig_size;
5282 
5283 #ifdef CONFIG_STACKDEPOT
5284 	handle = READ_ONCE(track->handle);
5285 #endif
5286 	start = -1;
5287 	end = t->count;
5288 
5289 	for ( ; ; ) {
5290 		pos = start + (end - start + 1) / 2;
5291 
5292 		/*
5293 		 * There is nothing at "end". If we end up there
5294 		 * we need to add something to before end.
5295 		 */
5296 		if (pos == end)
5297 			break;
5298 
5299 		l = &t->loc[pos];
5300 		caddr = l->addr;
5301 		chandle = l->handle;
5302 		cwaste = l->waste;
5303 		if ((track->addr == caddr) && (handle == chandle) &&
5304 			(waste == cwaste)) {
5305 
5306 			l->count++;
5307 			if (track->when) {
5308 				l->sum_time += age;
5309 				if (age < l->min_time)
5310 					l->min_time = age;
5311 				if (age > l->max_time)
5312 					l->max_time = age;
5313 
5314 				if (track->pid < l->min_pid)
5315 					l->min_pid = track->pid;
5316 				if (track->pid > l->max_pid)
5317 					l->max_pid = track->pid;
5318 
5319 				cpumask_set_cpu(track->cpu,
5320 						to_cpumask(l->cpus));
5321 			}
5322 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5323 			return 1;
5324 		}
5325 
5326 		if (track->addr < caddr)
5327 			end = pos;
5328 		else if (track->addr == caddr && handle < chandle)
5329 			end = pos;
5330 		else if (track->addr == caddr && handle == chandle &&
5331 				waste < cwaste)
5332 			end = pos;
5333 		else
5334 			start = pos;
5335 	}
5336 
5337 	/*
5338 	 * Not found. Insert new tracking element.
5339 	 */
5340 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5341 		return 0;
5342 
5343 	l = t->loc + pos;
5344 	if (pos < t->count)
5345 		memmove(l + 1, l,
5346 			(t->count - pos) * sizeof(struct location));
5347 	t->count++;
5348 	l->count = 1;
5349 	l->addr = track->addr;
5350 	l->sum_time = age;
5351 	l->min_time = age;
5352 	l->max_time = age;
5353 	l->min_pid = track->pid;
5354 	l->max_pid = track->pid;
5355 	l->handle = handle;
5356 	l->waste = waste;
5357 	cpumask_clear(to_cpumask(l->cpus));
5358 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5359 	nodes_clear(l->nodes);
5360 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5361 	return 1;
5362 }
5363 
5364 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5365 		struct slab *slab, enum track_item alloc,
5366 		unsigned long *obj_map)
5367 {
5368 	void *addr = slab_address(slab);
5369 	bool is_alloc = (alloc == TRACK_ALLOC);
5370 	void *p;
5371 
5372 	__fill_map(obj_map, s, slab);
5373 
5374 	for_each_object(p, s, addr, slab->objects)
5375 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5376 			add_location(t, s, get_track(s, p, alloc),
5377 				     is_alloc ? get_orig_size(s, p) :
5378 						s->object_size);
5379 }
5380 #endif  /* CONFIG_DEBUG_FS   */
5381 #endif	/* CONFIG_SLUB_DEBUG */
5382 
5383 #ifdef SLAB_SUPPORTS_SYSFS
5384 enum slab_stat_type {
5385 	SL_ALL,			/* All slabs */
5386 	SL_PARTIAL,		/* Only partially allocated slabs */
5387 	SL_CPU,			/* Only slabs used for cpu caches */
5388 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5389 	SL_TOTAL		/* Determine object capacity not slabs */
5390 };
5391 
5392 #define SO_ALL		(1 << SL_ALL)
5393 #define SO_PARTIAL	(1 << SL_PARTIAL)
5394 #define SO_CPU		(1 << SL_CPU)
5395 #define SO_OBJECTS	(1 << SL_OBJECTS)
5396 #define SO_TOTAL	(1 << SL_TOTAL)
5397 
5398 static ssize_t show_slab_objects(struct kmem_cache *s,
5399 				 char *buf, unsigned long flags)
5400 {
5401 	unsigned long total = 0;
5402 	int node;
5403 	int x;
5404 	unsigned long *nodes;
5405 	int len = 0;
5406 
5407 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5408 	if (!nodes)
5409 		return -ENOMEM;
5410 
5411 	if (flags & SO_CPU) {
5412 		int cpu;
5413 
5414 		for_each_possible_cpu(cpu) {
5415 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5416 							       cpu);
5417 			int node;
5418 			struct slab *slab;
5419 
5420 			slab = READ_ONCE(c->slab);
5421 			if (!slab)
5422 				continue;
5423 
5424 			node = slab_nid(slab);
5425 			if (flags & SO_TOTAL)
5426 				x = slab->objects;
5427 			else if (flags & SO_OBJECTS)
5428 				x = slab->inuse;
5429 			else
5430 				x = 1;
5431 
5432 			total += x;
5433 			nodes[node] += x;
5434 
5435 #ifdef CONFIG_SLUB_CPU_PARTIAL
5436 			slab = slub_percpu_partial_read_once(c);
5437 			if (slab) {
5438 				node = slab_nid(slab);
5439 				if (flags & SO_TOTAL)
5440 					WARN_ON_ONCE(1);
5441 				else if (flags & SO_OBJECTS)
5442 					WARN_ON_ONCE(1);
5443 				else
5444 					x = slab->slabs;
5445 				total += x;
5446 				nodes[node] += x;
5447 			}
5448 #endif
5449 		}
5450 	}
5451 
5452 	/*
5453 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5454 	 * already held which will conflict with an existing lock order:
5455 	 *
5456 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5457 	 *
5458 	 * We don't really need mem_hotplug_lock (to hold off
5459 	 * slab_mem_going_offline_callback) here because slab's memory hot
5460 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5461 	 */
5462 
5463 #ifdef CONFIG_SLUB_DEBUG
5464 	if (flags & SO_ALL) {
5465 		struct kmem_cache_node *n;
5466 
5467 		for_each_kmem_cache_node(s, node, n) {
5468 
5469 			if (flags & SO_TOTAL)
5470 				x = node_nr_objs(n);
5471 			else if (flags & SO_OBJECTS)
5472 				x = node_nr_objs(n) - count_partial(n, count_free);
5473 			else
5474 				x = node_nr_slabs(n);
5475 			total += x;
5476 			nodes[node] += x;
5477 		}
5478 
5479 	} else
5480 #endif
5481 	if (flags & SO_PARTIAL) {
5482 		struct kmem_cache_node *n;
5483 
5484 		for_each_kmem_cache_node(s, node, n) {
5485 			if (flags & SO_TOTAL)
5486 				x = count_partial(n, count_total);
5487 			else if (flags & SO_OBJECTS)
5488 				x = count_partial(n, count_inuse);
5489 			else
5490 				x = n->nr_partial;
5491 			total += x;
5492 			nodes[node] += x;
5493 		}
5494 	}
5495 
5496 	len += sysfs_emit_at(buf, len, "%lu", total);
5497 #ifdef CONFIG_NUMA
5498 	for (node = 0; node < nr_node_ids; node++) {
5499 		if (nodes[node])
5500 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5501 					     node, nodes[node]);
5502 	}
5503 #endif
5504 	len += sysfs_emit_at(buf, len, "\n");
5505 	kfree(nodes);
5506 
5507 	return len;
5508 }
5509 
5510 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5511 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5512 
5513 struct slab_attribute {
5514 	struct attribute attr;
5515 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5516 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5517 };
5518 
5519 #define SLAB_ATTR_RO(_name) \
5520 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5521 
5522 #define SLAB_ATTR(_name) \
5523 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5524 
5525 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5526 {
5527 	return sysfs_emit(buf, "%u\n", s->size);
5528 }
5529 SLAB_ATTR_RO(slab_size);
5530 
5531 static ssize_t align_show(struct kmem_cache *s, char *buf)
5532 {
5533 	return sysfs_emit(buf, "%u\n", s->align);
5534 }
5535 SLAB_ATTR_RO(align);
5536 
5537 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5538 {
5539 	return sysfs_emit(buf, "%u\n", s->object_size);
5540 }
5541 SLAB_ATTR_RO(object_size);
5542 
5543 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5544 {
5545 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5546 }
5547 SLAB_ATTR_RO(objs_per_slab);
5548 
5549 static ssize_t order_show(struct kmem_cache *s, char *buf)
5550 {
5551 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5552 }
5553 SLAB_ATTR_RO(order);
5554 
5555 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5556 {
5557 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5558 }
5559 
5560 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5561 				 size_t length)
5562 {
5563 	unsigned long min;
5564 	int err;
5565 
5566 	err = kstrtoul(buf, 10, &min);
5567 	if (err)
5568 		return err;
5569 
5570 	s->min_partial = min;
5571 	return length;
5572 }
5573 SLAB_ATTR(min_partial);
5574 
5575 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5576 {
5577 	unsigned int nr_partial = 0;
5578 #ifdef CONFIG_SLUB_CPU_PARTIAL
5579 	nr_partial = s->cpu_partial;
5580 #endif
5581 
5582 	return sysfs_emit(buf, "%u\n", nr_partial);
5583 }
5584 
5585 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5586 				 size_t length)
5587 {
5588 	unsigned int objects;
5589 	int err;
5590 
5591 	err = kstrtouint(buf, 10, &objects);
5592 	if (err)
5593 		return err;
5594 	if (objects && !kmem_cache_has_cpu_partial(s))
5595 		return -EINVAL;
5596 
5597 	slub_set_cpu_partial(s, objects);
5598 	flush_all(s);
5599 	return length;
5600 }
5601 SLAB_ATTR(cpu_partial);
5602 
5603 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5604 {
5605 	if (!s->ctor)
5606 		return 0;
5607 	return sysfs_emit(buf, "%pS\n", s->ctor);
5608 }
5609 SLAB_ATTR_RO(ctor);
5610 
5611 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5612 {
5613 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5614 }
5615 SLAB_ATTR_RO(aliases);
5616 
5617 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5618 {
5619 	return show_slab_objects(s, buf, SO_PARTIAL);
5620 }
5621 SLAB_ATTR_RO(partial);
5622 
5623 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5624 {
5625 	return show_slab_objects(s, buf, SO_CPU);
5626 }
5627 SLAB_ATTR_RO(cpu_slabs);
5628 
5629 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5630 {
5631 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5632 }
5633 SLAB_ATTR_RO(objects_partial);
5634 
5635 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5636 {
5637 	int objects = 0;
5638 	int slabs = 0;
5639 	int cpu __maybe_unused;
5640 	int len = 0;
5641 
5642 #ifdef CONFIG_SLUB_CPU_PARTIAL
5643 	for_each_online_cpu(cpu) {
5644 		struct slab *slab;
5645 
5646 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5647 
5648 		if (slab)
5649 			slabs += slab->slabs;
5650 	}
5651 #endif
5652 
5653 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5654 	objects = (slabs * oo_objects(s->oo)) / 2;
5655 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5656 
5657 #ifdef CONFIG_SLUB_CPU_PARTIAL
5658 	for_each_online_cpu(cpu) {
5659 		struct slab *slab;
5660 
5661 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5662 		if (slab) {
5663 			slabs = READ_ONCE(slab->slabs);
5664 			objects = (slabs * oo_objects(s->oo)) / 2;
5665 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5666 					     cpu, objects, slabs);
5667 		}
5668 	}
5669 #endif
5670 	len += sysfs_emit_at(buf, len, "\n");
5671 
5672 	return len;
5673 }
5674 SLAB_ATTR_RO(slabs_cpu_partial);
5675 
5676 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5677 {
5678 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5679 }
5680 SLAB_ATTR_RO(reclaim_account);
5681 
5682 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5683 {
5684 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5685 }
5686 SLAB_ATTR_RO(hwcache_align);
5687 
5688 #ifdef CONFIG_ZONE_DMA
5689 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5690 {
5691 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5692 }
5693 SLAB_ATTR_RO(cache_dma);
5694 #endif
5695 
5696 #ifdef CONFIG_HARDENED_USERCOPY
5697 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5698 {
5699 	return sysfs_emit(buf, "%u\n", s->usersize);
5700 }
5701 SLAB_ATTR_RO(usersize);
5702 #endif
5703 
5704 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5705 {
5706 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5707 }
5708 SLAB_ATTR_RO(destroy_by_rcu);
5709 
5710 #ifdef CONFIG_SLUB_DEBUG
5711 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5712 {
5713 	return show_slab_objects(s, buf, SO_ALL);
5714 }
5715 SLAB_ATTR_RO(slabs);
5716 
5717 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5718 {
5719 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5720 }
5721 SLAB_ATTR_RO(total_objects);
5722 
5723 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5724 {
5725 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5726 }
5727 SLAB_ATTR_RO(objects);
5728 
5729 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5730 {
5731 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5732 }
5733 SLAB_ATTR_RO(sanity_checks);
5734 
5735 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5736 {
5737 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5738 }
5739 SLAB_ATTR_RO(trace);
5740 
5741 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5742 {
5743 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5744 }
5745 
5746 SLAB_ATTR_RO(red_zone);
5747 
5748 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5749 {
5750 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5751 }
5752 
5753 SLAB_ATTR_RO(poison);
5754 
5755 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5756 {
5757 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5758 }
5759 
5760 SLAB_ATTR_RO(store_user);
5761 
5762 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5763 {
5764 	return 0;
5765 }
5766 
5767 static ssize_t validate_store(struct kmem_cache *s,
5768 			const char *buf, size_t length)
5769 {
5770 	int ret = -EINVAL;
5771 
5772 	if (buf[0] == '1' && kmem_cache_debug(s)) {
5773 		ret = validate_slab_cache(s);
5774 		if (ret >= 0)
5775 			ret = length;
5776 	}
5777 	return ret;
5778 }
5779 SLAB_ATTR(validate);
5780 
5781 #endif /* CONFIG_SLUB_DEBUG */
5782 
5783 #ifdef CONFIG_FAILSLAB
5784 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5785 {
5786 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5787 }
5788 
5789 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5790 				size_t length)
5791 {
5792 	if (s->refcount > 1)
5793 		return -EINVAL;
5794 
5795 	if (buf[0] == '1')
5796 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5797 	else
5798 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5799 
5800 	return length;
5801 }
5802 SLAB_ATTR(failslab);
5803 #endif
5804 
5805 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5806 {
5807 	return 0;
5808 }
5809 
5810 static ssize_t shrink_store(struct kmem_cache *s,
5811 			const char *buf, size_t length)
5812 {
5813 	if (buf[0] == '1')
5814 		kmem_cache_shrink(s);
5815 	else
5816 		return -EINVAL;
5817 	return length;
5818 }
5819 SLAB_ATTR(shrink);
5820 
5821 #ifdef CONFIG_NUMA
5822 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5823 {
5824 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5825 }
5826 
5827 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5828 				const char *buf, size_t length)
5829 {
5830 	unsigned int ratio;
5831 	int err;
5832 
5833 	err = kstrtouint(buf, 10, &ratio);
5834 	if (err)
5835 		return err;
5836 	if (ratio > 100)
5837 		return -ERANGE;
5838 
5839 	s->remote_node_defrag_ratio = ratio * 10;
5840 
5841 	return length;
5842 }
5843 SLAB_ATTR(remote_node_defrag_ratio);
5844 #endif
5845 
5846 #ifdef CONFIG_SLUB_STATS
5847 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5848 {
5849 	unsigned long sum  = 0;
5850 	int cpu;
5851 	int len = 0;
5852 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5853 
5854 	if (!data)
5855 		return -ENOMEM;
5856 
5857 	for_each_online_cpu(cpu) {
5858 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5859 
5860 		data[cpu] = x;
5861 		sum += x;
5862 	}
5863 
5864 	len += sysfs_emit_at(buf, len, "%lu", sum);
5865 
5866 #ifdef CONFIG_SMP
5867 	for_each_online_cpu(cpu) {
5868 		if (data[cpu])
5869 			len += sysfs_emit_at(buf, len, " C%d=%u",
5870 					     cpu, data[cpu]);
5871 	}
5872 #endif
5873 	kfree(data);
5874 	len += sysfs_emit_at(buf, len, "\n");
5875 
5876 	return len;
5877 }
5878 
5879 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5880 {
5881 	int cpu;
5882 
5883 	for_each_online_cpu(cpu)
5884 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5885 }
5886 
5887 #define STAT_ATTR(si, text) 					\
5888 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5889 {								\
5890 	return show_stat(s, buf, si);				\
5891 }								\
5892 static ssize_t text##_store(struct kmem_cache *s,		\
5893 				const char *buf, size_t length)	\
5894 {								\
5895 	if (buf[0] != '0')					\
5896 		return -EINVAL;					\
5897 	clear_stat(s, si);					\
5898 	return length;						\
5899 }								\
5900 SLAB_ATTR(text);						\
5901 
5902 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5903 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5904 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5905 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5906 STAT_ATTR(FREE_FROZEN, free_frozen);
5907 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5908 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5909 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5910 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5911 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5912 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5913 STAT_ATTR(FREE_SLAB, free_slab);
5914 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5915 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5916 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5917 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5918 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5919 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5920 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5921 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5922 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5923 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5924 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5925 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5926 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5927 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5928 #endif	/* CONFIG_SLUB_STATS */
5929 
5930 #ifdef CONFIG_KFENCE
5931 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5932 {
5933 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5934 }
5935 
5936 static ssize_t skip_kfence_store(struct kmem_cache *s,
5937 			const char *buf, size_t length)
5938 {
5939 	int ret = length;
5940 
5941 	if (buf[0] == '0')
5942 		s->flags &= ~SLAB_SKIP_KFENCE;
5943 	else if (buf[0] == '1')
5944 		s->flags |= SLAB_SKIP_KFENCE;
5945 	else
5946 		ret = -EINVAL;
5947 
5948 	return ret;
5949 }
5950 SLAB_ATTR(skip_kfence);
5951 #endif
5952 
5953 static struct attribute *slab_attrs[] = {
5954 	&slab_size_attr.attr,
5955 	&object_size_attr.attr,
5956 	&objs_per_slab_attr.attr,
5957 	&order_attr.attr,
5958 	&min_partial_attr.attr,
5959 	&cpu_partial_attr.attr,
5960 	&objects_partial_attr.attr,
5961 	&partial_attr.attr,
5962 	&cpu_slabs_attr.attr,
5963 	&ctor_attr.attr,
5964 	&aliases_attr.attr,
5965 	&align_attr.attr,
5966 	&hwcache_align_attr.attr,
5967 	&reclaim_account_attr.attr,
5968 	&destroy_by_rcu_attr.attr,
5969 	&shrink_attr.attr,
5970 	&slabs_cpu_partial_attr.attr,
5971 #ifdef CONFIG_SLUB_DEBUG
5972 	&total_objects_attr.attr,
5973 	&objects_attr.attr,
5974 	&slabs_attr.attr,
5975 	&sanity_checks_attr.attr,
5976 	&trace_attr.attr,
5977 	&red_zone_attr.attr,
5978 	&poison_attr.attr,
5979 	&store_user_attr.attr,
5980 	&validate_attr.attr,
5981 #endif
5982 #ifdef CONFIG_ZONE_DMA
5983 	&cache_dma_attr.attr,
5984 #endif
5985 #ifdef CONFIG_NUMA
5986 	&remote_node_defrag_ratio_attr.attr,
5987 #endif
5988 #ifdef CONFIG_SLUB_STATS
5989 	&alloc_fastpath_attr.attr,
5990 	&alloc_slowpath_attr.attr,
5991 	&free_fastpath_attr.attr,
5992 	&free_slowpath_attr.attr,
5993 	&free_frozen_attr.attr,
5994 	&free_add_partial_attr.attr,
5995 	&free_remove_partial_attr.attr,
5996 	&alloc_from_partial_attr.attr,
5997 	&alloc_slab_attr.attr,
5998 	&alloc_refill_attr.attr,
5999 	&alloc_node_mismatch_attr.attr,
6000 	&free_slab_attr.attr,
6001 	&cpuslab_flush_attr.attr,
6002 	&deactivate_full_attr.attr,
6003 	&deactivate_empty_attr.attr,
6004 	&deactivate_to_head_attr.attr,
6005 	&deactivate_to_tail_attr.attr,
6006 	&deactivate_remote_frees_attr.attr,
6007 	&deactivate_bypass_attr.attr,
6008 	&order_fallback_attr.attr,
6009 	&cmpxchg_double_fail_attr.attr,
6010 	&cmpxchg_double_cpu_fail_attr.attr,
6011 	&cpu_partial_alloc_attr.attr,
6012 	&cpu_partial_free_attr.attr,
6013 	&cpu_partial_node_attr.attr,
6014 	&cpu_partial_drain_attr.attr,
6015 #endif
6016 #ifdef CONFIG_FAILSLAB
6017 	&failslab_attr.attr,
6018 #endif
6019 #ifdef CONFIG_HARDENED_USERCOPY
6020 	&usersize_attr.attr,
6021 #endif
6022 #ifdef CONFIG_KFENCE
6023 	&skip_kfence_attr.attr,
6024 #endif
6025 
6026 	NULL
6027 };
6028 
6029 static const struct attribute_group slab_attr_group = {
6030 	.attrs = slab_attrs,
6031 };
6032 
6033 static ssize_t slab_attr_show(struct kobject *kobj,
6034 				struct attribute *attr,
6035 				char *buf)
6036 {
6037 	struct slab_attribute *attribute;
6038 	struct kmem_cache *s;
6039 
6040 	attribute = to_slab_attr(attr);
6041 	s = to_slab(kobj);
6042 
6043 	if (!attribute->show)
6044 		return -EIO;
6045 
6046 	return attribute->show(s, buf);
6047 }
6048 
6049 static ssize_t slab_attr_store(struct kobject *kobj,
6050 				struct attribute *attr,
6051 				const char *buf, size_t len)
6052 {
6053 	struct slab_attribute *attribute;
6054 	struct kmem_cache *s;
6055 
6056 	attribute = to_slab_attr(attr);
6057 	s = to_slab(kobj);
6058 
6059 	if (!attribute->store)
6060 		return -EIO;
6061 
6062 	return attribute->store(s, buf, len);
6063 }
6064 
6065 static void kmem_cache_release(struct kobject *k)
6066 {
6067 	slab_kmem_cache_release(to_slab(k));
6068 }
6069 
6070 static const struct sysfs_ops slab_sysfs_ops = {
6071 	.show = slab_attr_show,
6072 	.store = slab_attr_store,
6073 };
6074 
6075 static const struct kobj_type slab_ktype = {
6076 	.sysfs_ops = &slab_sysfs_ops,
6077 	.release = kmem_cache_release,
6078 };
6079 
6080 static struct kset *slab_kset;
6081 
6082 static inline struct kset *cache_kset(struct kmem_cache *s)
6083 {
6084 	return slab_kset;
6085 }
6086 
6087 #define ID_STR_LENGTH 32
6088 
6089 /* Create a unique string id for a slab cache:
6090  *
6091  * Format	:[flags-]size
6092  */
6093 static char *create_unique_id(struct kmem_cache *s)
6094 {
6095 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6096 	char *p = name;
6097 
6098 	if (!name)
6099 		return ERR_PTR(-ENOMEM);
6100 
6101 	*p++ = ':';
6102 	/*
6103 	 * First flags affecting slabcache operations. We will only
6104 	 * get here for aliasable slabs so we do not need to support
6105 	 * too many flags. The flags here must cover all flags that
6106 	 * are matched during merging to guarantee that the id is
6107 	 * unique.
6108 	 */
6109 	if (s->flags & SLAB_CACHE_DMA)
6110 		*p++ = 'd';
6111 	if (s->flags & SLAB_CACHE_DMA32)
6112 		*p++ = 'D';
6113 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6114 		*p++ = 'a';
6115 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6116 		*p++ = 'F';
6117 	if (s->flags & SLAB_ACCOUNT)
6118 		*p++ = 'A';
6119 	if (p != name + 1)
6120 		*p++ = '-';
6121 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6122 
6123 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6124 		kfree(name);
6125 		return ERR_PTR(-EINVAL);
6126 	}
6127 	kmsan_unpoison_memory(name, p - name);
6128 	return name;
6129 }
6130 
6131 static int sysfs_slab_add(struct kmem_cache *s)
6132 {
6133 	int err;
6134 	const char *name;
6135 	struct kset *kset = cache_kset(s);
6136 	int unmergeable = slab_unmergeable(s);
6137 
6138 	if (!unmergeable && disable_higher_order_debug &&
6139 			(slub_debug & DEBUG_METADATA_FLAGS))
6140 		unmergeable = 1;
6141 
6142 	if (unmergeable) {
6143 		/*
6144 		 * Slabcache can never be merged so we can use the name proper.
6145 		 * This is typically the case for debug situations. In that
6146 		 * case we can catch duplicate names easily.
6147 		 */
6148 		sysfs_remove_link(&slab_kset->kobj, s->name);
6149 		name = s->name;
6150 	} else {
6151 		/*
6152 		 * Create a unique name for the slab as a target
6153 		 * for the symlinks.
6154 		 */
6155 		name = create_unique_id(s);
6156 		if (IS_ERR(name))
6157 			return PTR_ERR(name);
6158 	}
6159 
6160 	s->kobj.kset = kset;
6161 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6162 	if (err)
6163 		goto out;
6164 
6165 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6166 	if (err)
6167 		goto out_del_kobj;
6168 
6169 	if (!unmergeable) {
6170 		/* Setup first alias */
6171 		sysfs_slab_alias(s, s->name);
6172 	}
6173 out:
6174 	if (!unmergeable)
6175 		kfree(name);
6176 	return err;
6177 out_del_kobj:
6178 	kobject_del(&s->kobj);
6179 	goto out;
6180 }
6181 
6182 void sysfs_slab_unlink(struct kmem_cache *s)
6183 {
6184 	if (slab_state >= FULL)
6185 		kobject_del(&s->kobj);
6186 }
6187 
6188 void sysfs_slab_release(struct kmem_cache *s)
6189 {
6190 	if (slab_state >= FULL)
6191 		kobject_put(&s->kobj);
6192 }
6193 
6194 /*
6195  * Need to buffer aliases during bootup until sysfs becomes
6196  * available lest we lose that information.
6197  */
6198 struct saved_alias {
6199 	struct kmem_cache *s;
6200 	const char *name;
6201 	struct saved_alias *next;
6202 };
6203 
6204 static struct saved_alias *alias_list;
6205 
6206 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6207 {
6208 	struct saved_alias *al;
6209 
6210 	if (slab_state == FULL) {
6211 		/*
6212 		 * If we have a leftover link then remove it.
6213 		 */
6214 		sysfs_remove_link(&slab_kset->kobj, name);
6215 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6216 	}
6217 
6218 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6219 	if (!al)
6220 		return -ENOMEM;
6221 
6222 	al->s = s;
6223 	al->name = name;
6224 	al->next = alias_list;
6225 	alias_list = al;
6226 	kmsan_unpoison_memory(al, sizeof(*al));
6227 	return 0;
6228 }
6229 
6230 static int __init slab_sysfs_init(void)
6231 {
6232 	struct kmem_cache *s;
6233 	int err;
6234 
6235 	mutex_lock(&slab_mutex);
6236 
6237 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6238 	if (!slab_kset) {
6239 		mutex_unlock(&slab_mutex);
6240 		pr_err("Cannot register slab subsystem.\n");
6241 		return -ENOMEM;
6242 	}
6243 
6244 	slab_state = FULL;
6245 
6246 	list_for_each_entry(s, &slab_caches, list) {
6247 		err = sysfs_slab_add(s);
6248 		if (err)
6249 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6250 			       s->name);
6251 	}
6252 
6253 	while (alias_list) {
6254 		struct saved_alias *al = alias_list;
6255 
6256 		alias_list = alias_list->next;
6257 		err = sysfs_slab_alias(al->s, al->name);
6258 		if (err)
6259 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6260 			       al->name);
6261 		kfree(al);
6262 	}
6263 
6264 	mutex_unlock(&slab_mutex);
6265 	return 0;
6266 }
6267 late_initcall(slab_sysfs_init);
6268 #endif /* SLAB_SUPPORTS_SYSFS */
6269 
6270 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6271 static int slab_debugfs_show(struct seq_file *seq, void *v)
6272 {
6273 	struct loc_track *t = seq->private;
6274 	struct location *l;
6275 	unsigned long idx;
6276 
6277 	idx = (unsigned long) t->idx;
6278 	if (idx < t->count) {
6279 		l = &t->loc[idx];
6280 
6281 		seq_printf(seq, "%7ld ", l->count);
6282 
6283 		if (l->addr)
6284 			seq_printf(seq, "%pS", (void *)l->addr);
6285 		else
6286 			seq_puts(seq, "<not-available>");
6287 
6288 		if (l->waste)
6289 			seq_printf(seq, " waste=%lu/%lu",
6290 				l->count * l->waste, l->waste);
6291 
6292 		if (l->sum_time != l->min_time) {
6293 			seq_printf(seq, " age=%ld/%llu/%ld",
6294 				l->min_time, div_u64(l->sum_time, l->count),
6295 				l->max_time);
6296 		} else
6297 			seq_printf(seq, " age=%ld", l->min_time);
6298 
6299 		if (l->min_pid != l->max_pid)
6300 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6301 		else
6302 			seq_printf(seq, " pid=%ld",
6303 				l->min_pid);
6304 
6305 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6306 			seq_printf(seq, " cpus=%*pbl",
6307 				 cpumask_pr_args(to_cpumask(l->cpus)));
6308 
6309 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6310 			seq_printf(seq, " nodes=%*pbl",
6311 				 nodemask_pr_args(&l->nodes));
6312 
6313 #ifdef CONFIG_STACKDEPOT
6314 		{
6315 			depot_stack_handle_t handle;
6316 			unsigned long *entries;
6317 			unsigned int nr_entries, j;
6318 
6319 			handle = READ_ONCE(l->handle);
6320 			if (handle) {
6321 				nr_entries = stack_depot_fetch(handle, &entries);
6322 				seq_puts(seq, "\n");
6323 				for (j = 0; j < nr_entries; j++)
6324 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6325 			}
6326 		}
6327 #endif
6328 		seq_puts(seq, "\n");
6329 	}
6330 
6331 	if (!idx && !t->count)
6332 		seq_puts(seq, "No data\n");
6333 
6334 	return 0;
6335 }
6336 
6337 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6338 {
6339 }
6340 
6341 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6342 {
6343 	struct loc_track *t = seq->private;
6344 
6345 	t->idx = ++(*ppos);
6346 	if (*ppos <= t->count)
6347 		return ppos;
6348 
6349 	return NULL;
6350 }
6351 
6352 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6353 {
6354 	struct location *loc1 = (struct location *)a;
6355 	struct location *loc2 = (struct location *)b;
6356 
6357 	if (loc1->count > loc2->count)
6358 		return -1;
6359 	else
6360 		return 1;
6361 }
6362 
6363 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6364 {
6365 	struct loc_track *t = seq->private;
6366 
6367 	t->idx = *ppos;
6368 	return ppos;
6369 }
6370 
6371 static const struct seq_operations slab_debugfs_sops = {
6372 	.start  = slab_debugfs_start,
6373 	.next   = slab_debugfs_next,
6374 	.stop   = slab_debugfs_stop,
6375 	.show   = slab_debugfs_show,
6376 };
6377 
6378 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6379 {
6380 
6381 	struct kmem_cache_node *n;
6382 	enum track_item alloc;
6383 	int node;
6384 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6385 						sizeof(struct loc_track));
6386 	struct kmem_cache *s = file_inode(filep)->i_private;
6387 	unsigned long *obj_map;
6388 
6389 	if (!t)
6390 		return -ENOMEM;
6391 
6392 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6393 	if (!obj_map) {
6394 		seq_release_private(inode, filep);
6395 		return -ENOMEM;
6396 	}
6397 
6398 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6399 		alloc = TRACK_ALLOC;
6400 	else
6401 		alloc = TRACK_FREE;
6402 
6403 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6404 		bitmap_free(obj_map);
6405 		seq_release_private(inode, filep);
6406 		return -ENOMEM;
6407 	}
6408 
6409 	for_each_kmem_cache_node(s, node, n) {
6410 		unsigned long flags;
6411 		struct slab *slab;
6412 
6413 		if (!node_nr_slabs(n))
6414 			continue;
6415 
6416 		spin_lock_irqsave(&n->list_lock, flags);
6417 		list_for_each_entry(slab, &n->partial, slab_list)
6418 			process_slab(t, s, slab, alloc, obj_map);
6419 		list_for_each_entry(slab, &n->full, slab_list)
6420 			process_slab(t, s, slab, alloc, obj_map);
6421 		spin_unlock_irqrestore(&n->list_lock, flags);
6422 	}
6423 
6424 	/* Sort locations by count */
6425 	sort_r(t->loc, t->count, sizeof(struct location),
6426 		cmp_loc_by_count, NULL, NULL);
6427 
6428 	bitmap_free(obj_map);
6429 	return 0;
6430 }
6431 
6432 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6433 {
6434 	struct seq_file *seq = file->private_data;
6435 	struct loc_track *t = seq->private;
6436 
6437 	free_loc_track(t);
6438 	return seq_release_private(inode, file);
6439 }
6440 
6441 static const struct file_operations slab_debugfs_fops = {
6442 	.open    = slab_debug_trace_open,
6443 	.read    = seq_read,
6444 	.llseek  = seq_lseek,
6445 	.release = slab_debug_trace_release,
6446 };
6447 
6448 static void debugfs_slab_add(struct kmem_cache *s)
6449 {
6450 	struct dentry *slab_cache_dir;
6451 
6452 	if (unlikely(!slab_debugfs_root))
6453 		return;
6454 
6455 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6456 
6457 	debugfs_create_file("alloc_traces", 0400,
6458 		slab_cache_dir, s, &slab_debugfs_fops);
6459 
6460 	debugfs_create_file("free_traces", 0400,
6461 		slab_cache_dir, s, &slab_debugfs_fops);
6462 }
6463 
6464 void debugfs_slab_release(struct kmem_cache *s)
6465 {
6466 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6467 }
6468 
6469 static int __init slab_debugfs_init(void)
6470 {
6471 	struct kmem_cache *s;
6472 
6473 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6474 
6475 	list_for_each_entry(s, &slab_caches, list)
6476 		if (s->flags & SLAB_STORE_USER)
6477 			debugfs_slab_add(s);
6478 
6479 	return 0;
6480 
6481 }
6482 __initcall(slab_debugfs_init);
6483 #endif
6484 /*
6485  * The /proc/slabinfo ABI
6486  */
6487 #ifdef CONFIG_SLUB_DEBUG
6488 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6489 {
6490 	unsigned long nr_slabs = 0;
6491 	unsigned long nr_objs = 0;
6492 	unsigned long nr_free = 0;
6493 	int node;
6494 	struct kmem_cache_node *n;
6495 
6496 	for_each_kmem_cache_node(s, node, n) {
6497 		nr_slabs += node_nr_slabs(n);
6498 		nr_objs += node_nr_objs(n);
6499 		nr_free += count_partial(n, count_free);
6500 	}
6501 
6502 	sinfo->active_objs = nr_objs - nr_free;
6503 	sinfo->num_objs = nr_objs;
6504 	sinfo->active_slabs = nr_slabs;
6505 	sinfo->num_slabs = nr_slabs;
6506 	sinfo->objects_per_slab = oo_objects(s->oo);
6507 	sinfo->cache_order = oo_order(s->oo);
6508 }
6509 
6510 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6511 {
6512 }
6513 
6514 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6515 		       size_t count, loff_t *ppos)
6516 {
6517 	return -EIO;
6518 }
6519 #endif /* CONFIG_SLUB_DEBUG */
6520