1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * page->frozen The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 void *fixup_red_left(struct kmem_cache *s, void *p) 127 { 128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 129 p += s->red_left_pad; 130 131 return p; 132 } 133 134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 135 { 136 #ifdef CONFIG_SLUB_CPU_PARTIAL 137 return !kmem_cache_debug(s); 138 #else 139 return false; 140 #endif 141 } 142 143 /* 144 * Issues still to be resolved: 145 * 146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 147 * 148 * - Variable sizing of the per node arrays 149 */ 150 151 /* Enable to test recovery from slab corruption on boot */ 152 #undef SLUB_RESILIENCY_TEST 153 154 /* Enable to log cmpxchg failures */ 155 #undef SLUB_DEBUG_CMPXCHG 156 157 /* 158 * Mininum number of partial slabs. These will be left on the partial 159 * lists even if they are empty. kmem_cache_shrink may reclaim them. 160 */ 161 #define MIN_PARTIAL 5 162 163 /* 164 * Maximum number of desirable partial slabs. 165 * The existence of more partial slabs makes kmem_cache_shrink 166 * sort the partial list by the number of objects in use. 167 */ 168 #define MAX_PARTIAL 10 169 170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 171 SLAB_POISON | SLAB_STORE_USER) 172 173 /* 174 * These debug flags cannot use CMPXCHG because there might be consistency 175 * issues when checking or reading debug information 176 */ 177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 178 SLAB_TRACE) 179 180 181 /* 182 * Debugging flags that require metadata to be stored in the slab. These get 183 * disabled when slub_debug=O is used and a cache's min order increases with 184 * metadata. 185 */ 186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 187 188 #define OO_SHIFT 16 189 #define OO_MASK ((1 << OO_SHIFT) - 1) 190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 191 192 /* Internal SLUB flags */ 193 /* Poison object */ 194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 195 /* Use cmpxchg_double */ 196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 197 198 /* 199 * Tracking user of a slab. 200 */ 201 #define TRACK_ADDRS_COUNT 16 202 struct track { 203 unsigned long addr; /* Called from address */ 204 #ifdef CONFIG_STACKTRACE 205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 206 #endif 207 int cpu; /* Was running on cpu */ 208 int pid; /* Pid context */ 209 unsigned long when; /* When did the operation occur */ 210 }; 211 212 enum track_item { TRACK_ALLOC, TRACK_FREE }; 213 214 #ifdef CONFIG_SYSFS 215 static int sysfs_slab_add(struct kmem_cache *); 216 static int sysfs_slab_alias(struct kmem_cache *, const char *); 217 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 218 static void sysfs_slab_remove(struct kmem_cache *s); 219 #else 220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 222 { return 0; } 223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 224 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 225 #endif 226 227 static inline void stat(const struct kmem_cache *s, enum stat_item si) 228 { 229 #ifdef CONFIG_SLUB_STATS 230 /* 231 * The rmw is racy on a preemptible kernel but this is acceptable, so 232 * avoid this_cpu_add()'s irq-disable overhead. 233 */ 234 raw_cpu_inc(s->cpu_slab->stat[si]); 235 #endif 236 } 237 238 /******************************************************************** 239 * Core slab cache functions 240 *******************************************************************/ 241 242 /* 243 * Returns freelist pointer (ptr). With hardening, this is obfuscated 244 * with an XOR of the address where the pointer is held and a per-cache 245 * random number. 246 */ 247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 248 unsigned long ptr_addr) 249 { 250 #ifdef CONFIG_SLAB_FREELIST_HARDENED 251 /* 252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 253 * Normally, this doesn't cause any issues, as both set_freepointer() 254 * and get_freepointer() are called with a pointer with the same tag. 255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 256 * example, when __free_slub() iterates over objects in a cache, it 257 * passes untagged pointers to check_object(). check_object() in turns 258 * calls get_freepointer() with an untagged pointer, which causes the 259 * freepointer to be restored incorrectly. 260 */ 261 return (void *)((unsigned long)ptr ^ s->random ^ 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 263 #else 264 return ptr; 265 #endif 266 } 267 268 /* Returns the freelist pointer recorded at location ptr_addr. */ 269 static inline void *freelist_dereference(const struct kmem_cache *s, 270 void *ptr_addr) 271 { 272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 273 (unsigned long)ptr_addr); 274 } 275 276 static inline void *get_freepointer(struct kmem_cache *s, void *object) 277 { 278 return freelist_dereference(s, object + s->offset); 279 } 280 281 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 282 { 283 prefetch(object + s->offset); 284 } 285 286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 287 { 288 unsigned long freepointer_addr; 289 void *p; 290 291 if (!debug_pagealloc_enabled_static()) 292 return get_freepointer(s, object); 293 294 freepointer_addr = (unsigned long)object + s->offset; 295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 296 return freelist_ptr(s, p, freepointer_addr); 297 } 298 299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 300 { 301 unsigned long freeptr_addr = (unsigned long)object + s->offset; 302 303 #ifdef CONFIG_SLAB_FREELIST_HARDENED 304 BUG_ON(object == fp); /* naive detection of double free or corruption */ 305 #endif 306 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 308 } 309 310 /* Loop over all objects in a slab */ 311 #define for_each_object(__p, __s, __addr, __objects) \ 312 for (__p = fixup_red_left(__s, __addr); \ 313 __p < (__addr) + (__objects) * (__s)->size; \ 314 __p += (__s)->size) 315 316 /* Determine object index from a given position */ 317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 318 { 319 return (kasan_reset_tag(p) - addr) / s->size; 320 } 321 322 static inline unsigned int order_objects(unsigned int order, unsigned int size) 323 { 324 return ((unsigned int)PAGE_SIZE << order) / size; 325 } 326 327 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 328 unsigned int size) 329 { 330 struct kmem_cache_order_objects x = { 331 (order << OO_SHIFT) + order_objects(order, size) 332 }; 333 334 return x; 335 } 336 337 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 338 { 339 return x.x >> OO_SHIFT; 340 } 341 342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 343 { 344 return x.x & OO_MASK; 345 } 346 347 /* 348 * Per slab locking using the pagelock 349 */ 350 static __always_inline void slab_lock(struct page *page) 351 { 352 VM_BUG_ON_PAGE(PageTail(page), page); 353 bit_spin_lock(PG_locked, &page->flags); 354 } 355 356 static __always_inline void slab_unlock(struct page *page) 357 { 358 VM_BUG_ON_PAGE(PageTail(page), page); 359 __bit_spin_unlock(PG_locked, &page->flags); 360 } 361 362 /* Interrupts must be disabled (for the fallback code to work right) */ 363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 364 void *freelist_old, unsigned long counters_old, 365 void *freelist_new, unsigned long counters_new, 366 const char *n) 367 { 368 VM_BUG_ON(!irqs_disabled()); 369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 371 if (s->flags & __CMPXCHG_DOUBLE) { 372 if (cmpxchg_double(&page->freelist, &page->counters, 373 freelist_old, counters_old, 374 freelist_new, counters_new)) 375 return true; 376 } else 377 #endif 378 { 379 slab_lock(page); 380 if (page->freelist == freelist_old && 381 page->counters == counters_old) { 382 page->freelist = freelist_new; 383 page->counters = counters_new; 384 slab_unlock(page); 385 return true; 386 } 387 slab_unlock(page); 388 } 389 390 cpu_relax(); 391 stat(s, CMPXCHG_DOUBLE_FAIL); 392 393 #ifdef SLUB_DEBUG_CMPXCHG 394 pr_info("%s %s: cmpxchg double redo ", n, s->name); 395 #endif 396 397 return false; 398 } 399 400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 401 void *freelist_old, unsigned long counters_old, 402 void *freelist_new, unsigned long counters_new, 403 const char *n) 404 { 405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 407 if (s->flags & __CMPXCHG_DOUBLE) { 408 if (cmpxchg_double(&page->freelist, &page->counters, 409 freelist_old, counters_old, 410 freelist_new, counters_new)) 411 return true; 412 } else 413 #endif 414 { 415 unsigned long flags; 416 417 local_irq_save(flags); 418 slab_lock(page); 419 if (page->freelist == freelist_old && 420 page->counters == counters_old) { 421 page->freelist = freelist_new; 422 page->counters = counters_new; 423 slab_unlock(page); 424 local_irq_restore(flags); 425 return true; 426 } 427 slab_unlock(page); 428 local_irq_restore(flags); 429 } 430 431 cpu_relax(); 432 stat(s, CMPXCHG_DOUBLE_FAIL); 433 434 #ifdef SLUB_DEBUG_CMPXCHG 435 pr_info("%s %s: cmpxchg double redo ", n, s->name); 436 #endif 437 438 return false; 439 } 440 441 #ifdef CONFIG_SLUB_DEBUG 442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 443 static DEFINE_SPINLOCK(object_map_lock); 444 445 /* 446 * Determine a map of object in use on a page. 447 * 448 * Node listlock must be held to guarantee that the page does 449 * not vanish from under us. 450 */ 451 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 452 __acquires(&object_map_lock) 453 { 454 void *p; 455 void *addr = page_address(page); 456 457 VM_BUG_ON(!irqs_disabled()); 458 459 spin_lock(&object_map_lock); 460 461 bitmap_zero(object_map, page->objects); 462 463 for (p = page->freelist; p; p = get_freepointer(s, p)) 464 set_bit(slab_index(p, s, addr), object_map); 465 466 return object_map; 467 } 468 469 static void put_map(unsigned long *map) __releases(&object_map_lock) 470 { 471 VM_BUG_ON(map != object_map); 472 lockdep_assert_held(&object_map_lock); 473 474 spin_unlock(&object_map_lock); 475 } 476 477 static inline unsigned int size_from_object(struct kmem_cache *s) 478 { 479 if (s->flags & SLAB_RED_ZONE) 480 return s->size - s->red_left_pad; 481 482 return s->size; 483 } 484 485 static inline void *restore_red_left(struct kmem_cache *s, void *p) 486 { 487 if (s->flags & SLAB_RED_ZONE) 488 p -= s->red_left_pad; 489 490 return p; 491 } 492 493 /* 494 * Debug settings: 495 */ 496 #if defined(CONFIG_SLUB_DEBUG_ON) 497 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 498 #else 499 static slab_flags_t slub_debug; 500 #endif 501 502 static char *slub_debug_slabs; 503 static int disable_higher_order_debug; 504 505 /* 506 * slub is about to manipulate internal object metadata. This memory lies 507 * outside the range of the allocated object, so accessing it would normally 508 * be reported by kasan as a bounds error. metadata_access_enable() is used 509 * to tell kasan that these accesses are OK. 510 */ 511 static inline void metadata_access_enable(void) 512 { 513 kasan_disable_current(); 514 } 515 516 static inline void metadata_access_disable(void) 517 { 518 kasan_enable_current(); 519 } 520 521 /* 522 * Object debugging 523 */ 524 525 /* Verify that a pointer has an address that is valid within a slab page */ 526 static inline int check_valid_pointer(struct kmem_cache *s, 527 struct page *page, void *object) 528 { 529 void *base; 530 531 if (!object) 532 return 1; 533 534 base = page_address(page); 535 object = kasan_reset_tag(object); 536 object = restore_red_left(s, object); 537 if (object < base || object >= base + page->objects * s->size || 538 (object - base) % s->size) { 539 return 0; 540 } 541 542 return 1; 543 } 544 545 static void print_section(char *level, char *text, u8 *addr, 546 unsigned int length) 547 { 548 metadata_access_enable(); 549 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 550 length, 1); 551 metadata_access_disable(); 552 } 553 554 static struct track *get_track(struct kmem_cache *s, void *object, 555 enum track_item alloc) 556 { 557 struct track *p; 558 559 if (s->offset) 560 p = object + s->offset + sizeof(void *); 561 else 562 p = object + s->inuse; 563 564 return p + alloc; 565 } 566 567 static void set_track(struct kmem_cache *s, void *object, 568 enum track_item alloc, unsigned long addr) 569 { 570 struct track *p = get_track(s, object, alloc); 571 572 if (addr) { 573 #ifdef CONFIG_STACKTRACE 574 unsigned int nr_entries; 575 576 metadata_access_enable(); 577 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 578 metadata_access_disable(); 579 580 if (nr_entries < TRACK_ADDRS_COUNT) 581 p->addrs[nr_entries] = 0; 582 #endif 583 p->addr = addr; 584 p->cpu = smp_processor_id(); 585 p->pid = current->pid; 586 p->when = jiffies; 587 } else { 588 memset(p, 0, sizeof(struct track)); 589 } 590 } 591 592 static void init_tracking(struct kmem_cache *s, void *object) 593 { 594 if (!(s->flags & SLAB_STORE_USER)) 595 return; 596 597 set_track(s, object, TRACK_FREE, 0UL); 598 set_track(s, object, TRACK_ALLOC, 0UL); 599 } 600 601 static void print_track(const char *s, struct track *t, unsigned long pr_time) 602 { 603 if (!t->addr) 604 return; 605 606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 607 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 608 #ifdef CONFIG_STACKTRACE 609 { 610 int i; 611 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 612 if (t->addrs[i]) 613 pr_err("\t%pS\n", (void *)t->addrs[i]); 614 else 615 break; 616 } 617 #endif 618 } 619 620 static void print_tracking(struct kmem_cache *s, void *object) 621 { 622 unsigned long pr_time = jiffies; 623 if (!(s->flags & SLAB_STORE_USER)) 624 return; 625 626 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 627 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 628 } 629 630 static void print_page_info(struct page *page) 631 { 632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 633 page, page->objects, page->inuse, page->freelist, page->flags); 634 635 } 636 637 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 638 { 639 struct va_format vaf; 640 va_list args; 641 642 va_start(args, fmt); 643 vaf.fmt = fmt; 644 vaf.va = &args; 645 pr_err("=============================================================================\n"); 646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 647 pr_err("-----------------------------------------------------------------------------\n\n"); 648 649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 650 va_end(args); 651 } 652 653 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 654 { 655 struct va_format vaf; 656 va_list args; 657 658 va_start(args, fmt); 659 vaf.fmt = fmt; 660 vaf.va = &args; 661 pr_err("FIX %s: %pV\n", s->name, &vaf); 662 va_end(args); 663 } 664 665 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 666 { 667 unsigned int off; /* Offset of last byte */ 668 u8 *addr = page_address(page); 669 670 print_tracking(s, p); 671 672 print_page_info(page); 673 674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 675 p, p - addr, get_freepointer(s, p)); 676 677 if (s->flags & SLAB_RED_ZONE) 678 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 679 s->red_left_pad); 680 else if (p > addr + 16) 681 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 682 683 print_section(KERN_ERR, "Object ", p, 684 min_t(unsigned int, s->object_size, PAGE_SIZE)); 685 if (s->flags & SLAB_RED_ZONE) 686 print_section(KERN_ERR, "Redzone ", p + s->object_size, 687 s->inuse - s->object_size); 688 689 if (s->offset) 690 off = s->offset + sizeof(void *); 691 else 692 off = s->inuse; 693 694 if (s->flags & SLAB_STORE_USER) 695 off += 2 * sizeof(struct track); 696 697 off += kasan_metadata_size(s); 698 699 if (off != size_from_object(s)) 700 /* Beginning of the filler is the free pointer */ 701 print_section(KERN_ERR, "Padding ", p + off, 702 size_from_object(s) - off); 703 704 dump_stack(); 705 } 706 707 void object_err(struct kmem_cache *s, struct page *page, 708 u8 *object, char *reason) 709 { 710 slab_bug(s, "%s", reason); 711 print_trailer(s, page, object); 712 } 713 714 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 715 const char *fmt, ...) 716 { 717 va_list args; 718 char buf[100]; 719 720 va_start(args, fmt); 721 vsnprintf(buf, sizeof(buf), fmt, args); 722 va_end(args); 723 slab_bug(s, "%s", buf); 724 print_page_info(page); 725 dump_stack(); 726 } 727 728 static void init_object(struct kmem_cache *s, void *object, u8 val) 729 { 730 u8 *p = object; 731 732 if (s->flags & SLAB_RED_ZONE) 733 memset(p - s->red_left_pad, val, s->red_left_pad); 734 735 if (s->flags & __OBJECT_POISON) { 736 memset(p, POISON_FREE, s->object_size - 1); 737 p[s->object_size - 1] = POISON_END; 738 } 739 740 if (s->flags & SLAB_RED_ZONE) 741 memset(p + s->object_size, val, s->inuse - s->object_size); 742 } 743 744 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 745 void *from, void *to) 746 { 747 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 748 memset(from, data, to - from); 749 } 750 751 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 752 u8 *object, char *what, 753 u8 *start, unsigned int value, unsigned int bytes) 754 { 755 u8 *fault; 756 u8 *end; 757 u8 *addr = page_address(page); 758 759 metadata_access_enable(); 760 fault = memchr_inv(start, value, bytes); 761 metadata_access_disable(); 762 if (!fault) 763 return 1; 764 765 end = start + bytes; 766 while (end > fault && end[-1] == value) 767 end--; 768 769 slab_bug(s, "%s overwritten", what); 770 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 771 fault, end - 1, fault - addr, 772 fault[0], value); 773 print_trailer(s, page, object); 774 775 restore_bytes(s, what, value, fault, end); 776 return 0; 777 } 778 779 /* 780 * Object layout: 781 * 782 * object address 783 * Bytes of the object to be managed. 784 * If the freepointer may overlay the object then the free 785 * pointer is the first word of the object. 786 * 787 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 788 * 0xa5 (POISON_END) 789 * 790 * object + s->object_size 791 * Padding to reach word boundary. This is also used for Redzoning. 792 * Padding is extended by another word if Redzoning is enabled and 793 * object_size == inuse. 794 * 795 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 796 * 0xcc (RED_ACTIVE) for objects in use. 797 * 798 * object + s->inuse 799 * Meta data starts here. 800 * 801 * A. Free pointer (if we cannot overwrite object on free) 802 * B. Tracking data for SLAB_STORE_USER 803 * C. Padding to reach required alignment boundary or at mininum 804 * one word if debugging is on to be able to detect writes 805 * before the word boundary. 806 * 807 * Padding is done using 0x5a (POISON_INUSE) 808 * 809 * object + s->size 810 * Nothing is used beyond s->size. 811 * 812 * If slabcaches are merged then the object_size and inuse boundaries are mostly 813 * ignored. And therefore no slab options that rely on these boundaries 814 * may be used with merged slabcaches. 815 */ 816 817 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 818 { 819 unsigned long off = s->inuse; /* The end of info */ 820 821 if (s->offset) 822 /* Freepointer is placed after the object. */ 823 off += sizeof(void *); 824 825 if (s->flags & SLAB_STORE_USER) 826 /* We also have user information there */ 827 off += 2 * sizeof(struct track); 828 829 off += kasan_metadata_size(s); 830 831 if (size_from_object(s) == off) 832 return 1; 833 834 return check_bytes_and_report(s, page, p, "Object padding", 835 p + off, POISON_INUSE, size_from_object(s) - off); 836 } 837 838 /* Check the pad bytes at the end of a slab page */ 839 static int slab_pad_check(struct kmem_cache *s, struct page *page) 840 { 841 u8 *start; 842 u8 *fault; 843 u8 *end; 844 u8 *pad; 845 int length; 846 int remainder; 847 848 if (!(s->flags & SLAB_POISON)) 849 return 1; 850 851 start = page_address(page); 852 length = page_size(page); 853 end = start + length; 854 remainder = length % s->size; 855 if (!remainder) 856 return 1; 857 858 pad = end - remainder; 859 metadata_access_enable(); 860 fault = memchr_inv(pad, POISON_INUSE, remainder); 861 metadata_access_disable(); 862 if (!fault) 863 return 1; 864 while (end > fault && end[-1] == POISON_INUSE) 865 end--; 866 867 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 868 fault, end - 1, fault - start); 869 print_section(KERN_ERR, "Padding ", pad, remainder); 870 871 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 872 return 0; 873 } 874 875 static int check_object(struct kmem_cache *s, struct page *page, 876 void *object, u8 val) 877 { 878 u8 *p = object; 879 u8 *endobject = object + s->object_size; 880 881 if (s->flags & SLAB_RED_ZONE) { 882 if (!check_bytes_and_report(s, page, object, "Redzone", 883 object - s->red_left_pad, val, s->red_left_pad)) 884 return 0; 885 886 if (!check_bytes_and_report(s, page, object, "Redzone", 887 endobject, val, s->inuse - s->object_size)) 888 return 0; 889 } else { 890 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 891 check_bytes_and_report(s, page, p, "Alignment padding", 892 endobject, POISON_INUSE, 893 s->inuse - s->object_size); 894 } 895 } 896 897 if (s->flags & SLAB_POISON) { 898 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 899 (!check_bytes_and_report(s, page, p, "Poison", p, 900 POISON_FREE, s->object_size - 1) || 901 !check_bytes_and_report(s, page, p, "Poison", 902 p + s->object_size - 1, POISON_END, 1))) 903 return 0; 904 /* 905 * check_pad_bytes cleans up on its own. 906 */ 907 check_pad_bytes(s, page, p); 908 } 909 910 if (!s->offset && val == SLUB_RED_ACTIVE) 911 /* 912 * Object and freepointer overlap. Cannot check 913 * freepointer while object is allocated. 914 */ 915 return 1; 916 917 /* Check free pointer validity */ 918 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 919 object_err(s, page, p, "Freepointer corrupt"); 920 /* 921 * No choice but to zap it and thus lose the remainder 922 * of the free objects in this slab. May cause 923 * another error because the object count is now wrong. 924 */ 925 set_freepointer(s, p, NULL); 926 return 0; 927 } 928 return 1; 929 } 930 931 static int check_slab(struct kmem_cache *s, struct page *page) 932 { 933 int maxobj; 934 935 VM_BUG_ON(!irqs_disabled()); 936 937 if (!PageSlab(page)) { 938 slab_err(s, page, "Not a valid slab page"); 939 return 0; 940 } 941 942 maxobj = order_objects(compound_order(page), s->size); 943 if (page->objects > maxobj) { 944 slab_err(s, page, "objects %u > max %u", 945 page->objects, maxobj); 946 return 0; 947 } 948 if (page->inuse > page->objects) { 949 slab_err(s, page, "inuse %u > max %u", 950 page->inuse, page->objects); 951 return 0; 952 } 953 /* Slab_pad_check fixes things up after itself */ 954 slab_pad_check(s, page); 955 return 1; 956 } 957 958 /* 959 * Determine if a certain object on a page is on the freelist. Must hold the 960 * slab lock to guarantee that the chains are in a consistent state. 961 */ 962 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 963 { 964 int nr = 0; 965 void *fp; 966 void *object = NULL; 967 int max_objects; 968 969 fp = page->freelist; 970 while (fp && nr <= page->objects) { 971 if (fp == search) 972 return 1; 973 if (!check_valid_pointer(s, page, fp)) { 974 if (object) { 975 object_err(s, page, object, 976 "Freechain corrupt"); 977 set_freepointer(s, object, NULL); 978 } else { 979 slab_err(s, page, "Freepointer corrupt"); 980 page->freelist = NULL; 981 page->inuse = page->objects; 982 slab_fix(s, "Freelist cleared"); 983 return 0; 984 } 985 break; 986 } 987 object = fp; 988 fp = get_freepointer(s, object); 989 nr++; 990 } 991 992 max_objects = order_objects(compound_order(page), s->size); 993 if (max_objects > MAX_OBJS_PER_PAGE) 994 max_objects = MAX_OBJS_PER_PAGE; 995 996 if (page->objects != max_objects) { 997 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 998 page->objects, max_objects); 999 page->objects = max_objects; 1000 slab_fix(s, "Number of objects adjusted."); 1001 } 1002 if (page->inuse != page->objects - nr) { 1003 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1004 page->inuse, page->objects - nr); 1005 page->inuse = page->objects - nr; 1006 slab_fix(s, "Object count adjusted."); 1007 } 1008 return search == NULL; 1009 } 1010 1011 static void trace(struct kmem_cache *s, struct page *page, void *object, 1012 int alloc) 1013 { 1014 if (s->flags & SLAB_TRACE) { 1015 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1016 s->name, 1017 alloc ? "alloc" : "free", 1018 object, page->inuse, 1019 page->freelist); 1020 1021 if (!alloc) 1022 print_section(KERN_INFO, "Object ", (void *)object, 1023 s->object_size); 1024 1025 dump_stack(); 1026 } 1027 } 1028 1029 /* 1030 * Tracking of fully allocated slabs for debugging purposes. 1031 */ 1032 static void add_full(struct kmem_cache *s, 1033 struct kmem_cache_node *n, struct page *page) 1034 { 1035 if (!(s->flags & SLAB_STORE_USER)) 1036 return; 1037 1038 lockdep_assert_held(&n->list_lock); 1039 list_add(&page->slab_list, &n->full); 1040 } 1041 1042 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1043 { 1044 if (!(s->flags & SLAB_STORE_USER)) 1045 return; 1046 1047 lockdep_assert_held(&n->list_lock); 1048 list_del(&page->slab_list); 1049 } 1050 1051 /* Tracking of the number of slabs for debugging purposes */ 1052 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1053 { 1054 struct kmem_cache_node *n = get_node(s, node); 1055 1056 return atomic_long_read(&n->nr_slabs); 1057 } 1058 1059 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1060 { 1061 return atomic_long_read(&n->nr_slabs); 1062 } 1063 1064 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1065 { 1066 struct kmem_cache_node *n = get_node(s, node); 1067 1068 /* 1069 * May be called early in order to allocate a slab for the 1070 * kmem_cache_node structure. Solve the chicken-egg 1071 * dilemma by deferring the increment of the count during 1072 * bootstrap (see early_kmem_cache_node_alloc). 1073 */ 1074 if (likely(n)) { 1075 atomic_long_inc(&n->nr_slabs); 1076 atomic_long_add(objects, &n->total_objects); 1077 } 1078 } 1079 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1080 { 1081 struct kmem_cache_node *n = get_node(s, node); 1082 1083 atomic_long_dec(&n->nr_slabs); 1084 atomic_long_sub(objects, &n->total_objects); 1085 } 1086 1087 /* Object debug checks for alloc/free paths */ 1088 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1089 void *object) 1090 { 1091 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1092 return; 1093 1094 init_object(s, object, SLUB_RED_INACTIVE); 1095 init_tracking(s, object); 1096 } 1097 1098 static 1099 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1100 { 1101 if (!(s->flags & SLAB_POISON)) 1102 return; 1103 1104 metadata_access_enable(); 1105 memset(addr, POISON_INUSE, page_size(page)); 1106 metadata_access_disable(); 1107 } 1108 1109 static inline int alloc_consistency_checks(struct kmem_cache *s, 1110 struct page *page, void *object) 1111 { 1112 if (!check_slab(s, page)) 1113 return 0; 1114 1115 if (!check_valid_pointer(s, page, object)) { 1116 object_err(s, page, object, "Freelist Pointer check fails"); 1117 return 0; 1118 } 1119 1120 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1121 return 0; 1122 1123 return 1; 1124 } 1125 1126 static noinline int alloc_debug_processing(struct kmem_cache *s, 1127 struct page *page, 1128 void *object, unsigned long addr) 1129 { 1130 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1131 if (!alloc_consistency_checks(s, page, object)) 1132 goto bad; 1133 } 1134 1135 /* Success perform special debug activities for allocs */ 1136 if (s->flags & SLAB_STORE_USER) 1137 set_track(s, object, TRACK_ALLOC, addr); 1138 trace(s, page, object, 1); 1139 init_object(s, object, SLUB_RED_ACTIVE); 1140 return 1; 1141 1142 bad: 1143 if (PageSlab(page)) { 1144 /* 1145 * If this is a slab page then lets do the best we can 1146 * to avoid issues in the future. Marking all objects 1147 * as used avoids touching the remaining objects. 1148 */ 1149 slab_fix(s, "Marking all objects used"); 1150 page->inuse = page->objects; 1151 page->freelist = NULL; 1152 } 1153 return 0; 1154 } 1155 1156 static inline int free_consistency_checks(struct kmem_cache *s, 1157 struct page *page, void *object, unsigned long addr) 1158 { 1159 if (!check_valid_pointer(s, page, object)) { 1160 slab_err(s, page, "Invalid object pointer 0x%p", object); 1161 return 0; 1162 } 1163 1164 if (on_freelist(s, page, object)) { 1165 object_err(s, page, object, "Object already free"); 1166 return 0; 1167 } 1168 1169 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1170 return 0; 1171 1172 if (unlikely(s != page->slab_cache)) { 1173 if (!PageSlab(page)) { 1174 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1175 object); 1176 } else if (!page->slab_cache) { 1177 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1178 object); 1179 dump_stack(); 1180 } else 1181 object_err(s, page, object, 1182 "page slab pointer corrupt."); 1183 return 0; 1184 } 1185 return 1; 1186 } 1187 1188 /* Supports checking bulk free of a constructed freelist */ 1189 static noinline int free_debug_processing( 1190 struct kmem_cache *s, struct page *page, 1191 void *head, void *tail, int bulk_cnt, 1192 unsigned long addr) 1193 { 1194 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1195 void *object = head; 1196 int cnt = 0; 1197 unsigned long uninitialized_var(flags); 1198 int ret = 0; 1199 1200 spin_lock_irqsave(&n->list_lock, flags); 1201 slab_lock(page); 1202 1203 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1204 if (!check_slab(s, page)) 1205 goto out; 1206 } 1207 1208 next_object: 1209 cnt++; 1210 1211 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1212 if (!free_consistency_checks(s, page, object, addr)) 1213 goto out; 1214 } 1215 1216 if (s->flags & SLAB_STORE_USER) 1217 set_track(s, object, TRACK_FREE, addr); 1218 trace(s, page, object, 0); 1219 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1220 init_object(s, object, SLUB_RED_INACTIVE); 1221 1222 /* Reached end of constructed freelist yet? */ 1223 if (object != tail) { 1224 object = get_freepointer(s, object); 1225 goto next_object; 1226 } 1227 ret = 1; 1228 1229 out: 1230 if (cnt != bulk_cnt) 1231 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1232 bulk_cnt, cnt); 1233 1234 slab_unlock(page); 1235 spin_unlock_irqrestore(&n->list_lock, flags); 1236 if (!ret) 1237 slab_fix(s, "Object at 0x%p not freed", object); 1238 return ret; 1239 } 1240 1241 static int __init setup_slub_debug(char *str) 1242 { 1243 slub_debug = DEBUG_DEFAULT_FLAGS; 1244 if (*str++ != '=' || !*str) 1245 /* 1246 * No options specified. Switch on full debugging. 1247 */ 1248 goto out; 1249 1250 if (*str == ',') 1251 /* 1252 * No options but restriction on slabs. This means full 1253 * debugging for slabs matching a pattern. 1254 */ 1255 goto check_slabs; 1256 1257 slub_debug = 0; 1258 if (*str == '-') 1259 /* 1260 * Switch off all debugging measures. 1261 */ 1262 goto out; 1263 1264 /* 1265 * Determine which debug features should be switched on 1266 */ 1267 for (; *str && *str != ','; str++) { 1268 switch (tolower(*str)) { 1269 case 'f': 1270 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1271 break; 1272 case 'z': 1273 slub_debug |= SLAB_RED_ZONE; 1274 break; 1275 case 'p': 1276 slub_debug |= SLAB_POISON; 1277 break; 1278 case 'u': 1279 slub_debug |= SLAB_STORE_USER; 1280 break; 1281 case 't': 1282 slub_debug |= SLAB_TRACE; 1283 break; 1284 case 'a': 1285 slub_debug |= SLAB_FAILSLAB; 1286 break; 1287 case 'o': 1288 /* 1289 * Avoid enabling debugging on caches if its minimum 1290 * order would increase as a result. 1291 */ 1292 disable_higher_order_debug = 1; 1293 break; 1294 default: 1295 pr_err("slub_debug option '%c' unknown. skipped\n", 1296 *str); 1297 } 1298 } 1299 1300 check_slabs: 1301 if (*str == ',') 1302 slub_debug_slabs = str + 1; 1303 out: 1304 if ((static_branch_unlikely(&init_on_alloc) || 1305 static_branch_unlikely(&init_on_free)) && 1306 (slub_debug & SLAB_POISON)) 1307 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1308 return 1; 1309 } 1310 1311 __setup("slub_debug", setup_slub_debug); 1312 1313 /* 1314 * kmem_cache_flags - apply debugging options to the cache 1315 * @object_size: the size of an object without meta data 1316 * @flags: flags to set 1317 * @name: name of the cache 1318 * @ctor: constructor function 1319 * 1320 * Debug option(s) are applied to @flags. In addition to the debug 1321 * option(s), if a slab name (or multiple) is specified i.e. 1322 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1323 * then only the select slabs will receive the debug option(s). 1324 */ 1325 slab_flags_t kmem_cache_flags(unsigned int object_size, 1326 slab_flags_t flags, const char *name, 1327 void (*ctor)(void *)) 1328 { 1329 char *iter; 1330 size_t len; 1331 1332 /* If slub_debug = 0, it folds into the if conditional. */ 1333 if (!slub_debug_slabs) 1334 return flags | slub_debug; 1335 1336 len = strlen(name); 1337 iter = slub_debug_slabs; 1338 while (*iter) { 1339 char *end, *glob; 1340 size_t cmplen; 1341 1342 end = strchrnul(iter, ','); 1343 1344 glob = strnchr(iter, end - iter, '*'); 1345 if (glob) 1346 cmplen = glob - iter; 1347 else 1348 cmplen = max_t(size_t, len, (end - iter)); 1349 1350 if (!strncmp(name, iter, cmplen)) { 1351 flags |= slub_debug; 1352 break; 1353 } 1354 1355 if (!*end) 1356 break; 1357 iter = end + 1; 1358 } 1359 1360 return flags; 1361 } 1362 #else /* !CONFIG_SLUB_DEBUG */ 1363 static inline void setup_object_debug(struct kmem_cache *s, 1364 struct page *page, void *object) {} 1365 static inline 1366 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1367 1368 static inline int alloc_debug_processing(struct kmem_cache *s, 1369 struct page *page, void *object, unsigned long addr) { return 0; } 1370 1371 static inline int free_debug_processing( 1372 struct kmem_cache *s, struct page *page, 1373 void *head, void *tail, int bulk_cnt, 1374 unsigned long addr) { return 0; } 1375 1376 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1377 { return 1; } 1378 static inline int check_object(struct kmem_cache *s, struct page *page, 1379 void *object, u8 val) { return 1; } 1380 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1381 struct page *page) {} 1382 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1383 struct page *page) {} 1384 slab_flags_t kmem_cache_flags(unsigned int object_size, 1385 slab_flags_t flags, const char *name, 1386 void (*ctor)(void *)) 1387 { 1388 return flags; 1389 } 1390 #define slub_debug 0 1391 1392 #define disable_higher_order_debug 0 1393 1394 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1395 { return 0; } 1396 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1397 { return 0; } 1398 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1399 int objects) {} 1400 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1401 int objects) {} 1402 1403 #endif /* CONFIG_SLUB_DEBUG */ 1404 1405 /* 1406 * Hooks for other subsystems that check memory allocations. In a typical 1407 * production configuration these hooks all should produce no code at all. 1408 */ 1409 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1410 { 1411 ptr = kasan_kmalloc_large(ptr, size, flags); 1412 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1413 kmemleak_alloc(ptr, size, 1, flags); 1414 return ptr; 1415 } 1416 1417 static __always_inline void kfree_hook(void *x) 1418 { 1419 kmemleak_free(x); 1420 kasan_kfree_large(x, _RET_IP_); 1421 } 1422 1423 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1424 { 1425 kmemleak_free_recursive(x, s->flags); 1426 1427 /* 1428 * Trouble is that we may no longer disable interrupts in the fast path 1429 * So in order to make the debug calls that expect irqs to be 1430 * disabled we need to disable interrupts temporarily. 1431 */ 1432 #ifdef CONFIG_LOCKDEP 1433 { 1434 unsigned long flags; 1435 1436 local_irq_save(flags); 1437 debug_check_no_locks_freed(x, s->object_size); 1438 local_irq_restore(flags); 1439 } 1440 #endif 1441 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1442 debug_check_no_obj_freed(x, s->object_size); 1443 1444 /* KASAN might put x into memory quarantine, delaying its reuse */ 1445 return kasan_slab_free(s, x, _RET_IP_); 1446 } 1447 1448 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1449 void **head, void **tail) 1450 { 1451 1452 void *object; 1453 void *next = *head; 1454 void *old_tail = *tail ? *tail : *head; 1455 int rsize; 1456 1457 /* Head and tail of the reconstructed freelist */ 1458 *head = NULL; 1459 *tail = NULL; 1460 1461 do { 1462 object = next; 1463 next = get_freepointer(s, object); 1464 1465 if (slab_want_init_on_free(s)) { 1466 /* 1467 * Clear the object and the metadata, but don't touch 1468 * the redzone. 1469 */ 1470 memset(object, 0, s->object_size); 1471 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1472 : 0; 1473 memset((char *)object + s->inuse, 0, 1474 s->size - s->inuse - rsize); 1475 1476 } 1477 /* If object's reuse doesn't have to be delayed */ 1478 if (!slab_free_hook(s, object)) { 1479 /* Move object to the new freelist */ 1480 set_freepointer(s, object, *head); 1481 *head = object; 1482 if (!*tail) 1483 *tail = object; 1484 } 1485 } while (object != old_tail); 1486 1487 if (*head == *tail) 1488 *tail = NULL; 1489 1490 return *head != NULL; 1491 } 1492 1493 static void *setup_object(struct kmem_cache *s, struct page *page, 1494 void *object) 1495 { 1496 setup_object_debug(s, page, object); 1497 object = kasan_init_slab_obj(s, object); 1498 if (unlikely(s->ctor)) { 1499 kasan_unpoison_object_data(s, object); 1500 s->ctor(object); 1501 kasan_poison_object_data(s, object); 1502 } 1503 return object; 1504 } 1505 1506 /* 1507 * Slab allocation and freeing 1508 */ 1509 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1510 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1511 { 1512 struct page *page; 1513 unsigned int order = oo_order(oo); 1514 1515 if (node == NUMA_NO_NODE) 1516 page = alloc_pages(flags, order); 1517 else 1518 page = __alloc_pages_node(node, flags, order); 1519 1520 if (page && charge_slab_page(page, flags, order, s)) { 1521 __free_pages(page, order); 1522 page = NULL; 1523 } 1524 1525 return page; 1526 } 1527 1528 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1529 /* Pre-initialize the random sequence cache */ 1530 static int init_cache_random_seq(struct kmem_cache *s) 1531 { 1532 unsigned int count = oo_objects(s->oo); 1533 int err; 1534 1535 /* Bailout if already initialised */ 1536 if (s->random_seq) 1537 return 0; 1538 1539 err = cache_random_seq_create(s, count, GFP_KERNEL); 1540 if (err) { 1541 pr_err("SLUB: Unable to initialize free list for %s\n", 1542 s->name); 1543 return err; 1544 } 1545 1546 /* Transform to an offset on the set of pages */ 1547 if (s->random_seq) { 1548 unsigned int i; 1549 1550 for (i = 0; i < count; i++) 1551 s->random_seq[i] *= s->size; 1552 } 1553 return 0; 1554 } 1555 1556 /* Initialize each random sequence freelist per cache */ 1557 static void __init init_freelist_randomization(void) 1558 { 1559 struct kmem_cache *s; 1560 1561 mutex_lock(&slab_mutex); 1562 1563 list_for_each_entry(s, &slab_caches, list) 1564 init_cache_random_seq(s); 1565 1566 mutex_unlock(&slab_mutex); 1567 } 1568 1569 /* Get the next entry on the pre-computed freelist randomized */ 1570 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1571 unsigned long *pos, void *start, 1572 unsigned long page_limit, 1573 unsigned long freelist_count) 1574 { 1575 unsigned int idx; 1576 1577 /* 1578 * If the target page allocation failed, the number of objects on the 1579 * page might be smaller than the usual size defined by the cache. 1580 */ 1581 do { 1582 idx = s->random_seq[*pos]; 1583 *pos += 1; 1584 if (*pos >= freelist_count) 1585 *pos = 0; 1586 } while (unlikely(idx >= page_limit)); 1587 1588 return (char *)start + idx; 1589 } 1590 1591 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1592 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1593 { 1594 void *start; 1595 void *cur; 1596 void *next; 1597 unsigned long idx, pos, page_limit, freelist_count; 1598 1599 if (page->objects < 2 || !s->random_seq) 1600 return false; 1601 1602 freelist_count = oo_objects(s->oo); 1603 pos = get_random_int() % freelist_count; 1604 1605 page_limit = page->objects * s->size; 1606 start = fixup_red_left(s, page_address(page)); 1607 1608 /* First entry is used as the base of the freelist */ 1609 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1610 freelist_count); 1611 cur = setup_object(s, page, cur); 1612 page->freelist = cur; 1613 1614 for (idx = 1; idx < page->objects; idx++) { 1615 next = next_freelist_entry(s, page, &pos, start, page_limit, 1616 freelist_count); 1617 next = setup_object(s, page, next); 1618 set_freepointer(s, cur, next); 1619 cur = next; 1620 } 1621 set_freepointer(s, cur, NULL); 1622 1623 return true; 1624 } 1625 #else 1626 static inline int init_cache_random_seq(struct kmem_cache *s) 1627 { 1628 return 0; 1629 } 1630 static inline void init_freelist_randomization(void) { } 1631 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1632 { 1633 return false; 1634 } 1635 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1636 1637 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1638 { 1639 struct page *page; 1640 struct kmem_cache_order_objects oo = s->oo; 1641 gfp_t alloc_gfp; 1642 void *start, *p, *next; 1643 int idx; 1644 bool shuffle; 1645 1646 flags &= gfp_allowed_mask; 1647 1648 if (gfpflags_allow_blocking(flags)) 1649 local_irq_enable(); 1650 1651 flags |= s->allocflags; 1652 1653 /* 1654 * Let the initial higher-order allocation fail under memory pressure 1655 * so we fall-back to the minimum order allocation. 1656 */ 1657 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1658 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1659 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1660 1661 page = alloc_slab_page(s, alloc_gfp, node, oo); 1662 if (unlikely(!page)) { 1663 oo = s->min; 1664 alloc_gfp = flags; 1665 /* 1666 * Allocation may have failed due to fragmentation. 1667 * Try a lower order alloc if possible 1668 */ 1669 page = alloc_slab_page(s, alloc_gfp, node, oo); 1670 if (unlikely(!page)) 1671 goto out; 1672 stat(s, ORDER_FALLBACK); 1673 } 1674 1675 page->objects = oo_objects(oo); 1676 1677 page->slab_cache = s; 1678 __SetPageSlab(page); 1679 if (page_is_pfmemalloc(page)) 1680 SetPageSlabPfmemalloc(page); 1681 1682 kasan_poison_slab(page); 1683 1684 start = page_address(page); 1685 1686 setup_page_debug(s, page, start); 1687 1688 shuffle = shuffle_freelist(s, page); 1689 1690 if (!shuffle) { 1691 start = fixup_red_left(s, start); 1692 start = setup_object(s, page, start); 1693 page->freelist = start; 1694 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1695 next = p + s->size; 1696 next = setup_object(s, page, next); 1697 set_freepointer(s, p, next); 1698 p = next; 1699 } 1700 set_freepointer(s, p, NULL); 1701 } 1702 1703 page->inuse = page->objects; 1704 page->frozen = 1; 1705 1706 out: 1707 if (gfpflags_allow_blocking(flags)) 1708 local_irq_disable(); 1709 if (!page) 1710 return NULL; 1711 1712 inc_slabs_node(s, page_to_nid(page), page->objects); 1713 1714 return page; 1715 } 1716 1717 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1718 { 1719 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1720 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1721 flags &= ~GFP_SLAB_BUG_MASK; 1722 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1723 invalid_mask, &invalid_mask, flags, &flags); 1724 dump_stack(); 1725 } 1726 1727 return allocate_slab(s, 1728 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1729 } 1730 1731 static void __free_slab(struct kmem_cache *s, struct page *page) 1732 { 1733 int order = compound_order(page); 1734 int pages = 1 << order; 1735 1736 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1737 void *p; 1738 1739 slab_pad_check(s, page); 1740 for_each_object(p, s, page_address(page), 1741 page->objects) 1742 check_object(s, page, p, SLUB_RED_INACTIVE); 1743 } 1744 1745 __ClearPageSlabPfmemalloc(page); 1746 __ClearPageSlab(page); 1747 1748 page->mapping = NULL; 1749 if (current->reclaim_state) 1750 current->reclaim_state->reclaimed_slab += pages; 1751 uncharge_slab_page(page, order, s); 1752 __free_pages(page, order); 1753 } 1754 1755 static void rcu_free_slab(struct rcu_head *h) 1756 { 1757 struct page *page = container_of(h, struct page, rcu_head); 1758 1759 __free_slab(page->slab_cache, page); 1760 } 1761 1762 static void free_slab(struct kmem_cache *s, struct page *page) 1763 { 1764 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1765 call_rcu(&page->rcu_head, rcu_free_slab); 1766 } else 1767 __free_slab(s, page); 1768 } 1769 1770 static void discard_slab(struct kmem_cache *s, struct page *page) 1771 { 1772 dec_slabs_node(s, page_to_nid(page), page->objects); 1773 free_slab(s, page); 1774 } 1775 1776 /* 1777 * Management of partially allocated slabs. 1778 */ 1779 static inline void 1780 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1781 { 1782 n->nr_partial++; 1783 if (tail == DEACTIVATE_TO_TAIL) 1784 list_add_tail(&page->slab_list, &n->partial); 1785 else 1786 list_add(&page->slab_list, &n->partial); 1787 } 1788 1789 static inline void add_partial(struct kmem_cache_node *n, 1790 struct page *page, int tail) 1791 { 1792 lockdep_assert_held(&n->list_lock); 1793 __add_partial(n, page, tail); 1794 } 1795 1796 static inline void remove_partial(struct kmem_cache_node *n, 1797 struct page *page) 1798 { 1799 lockdep_assert_held(&n->list_lock); 1800 list_del(&page->slab_list); 1801 n->nr_partial--; 1802 } 1803 1804 /* 1805 * Remove slab from the partial list, freeze it and 1806 * return the pointer to the freelist. 1807 * 1808 * Returns a list of objects or NULL if it fails. 1809 */ 1810 static inline void *acquire_slab(struct kmem_cache *s, 1811 struct kmem_cache_node *n, struct page *page, 1812 int mode, int *objects) 1813 { 1814 void *freelist; 1815 unsigned long counters; 1816 struct page new; 1817 1818 lockdep_assert_held(&n->list_lock); 1819 1820 /* 1821 * Zap the freelist and set the frozen bit. 1822 * The old freelist is the list of objects for the 1823 * per cpu allocation list. 1824 */ 1825 freelist = page->freelist; 1826 counters = page->counters; 1827 new.counters = counters; 1828 *objects = new.objects - new.inuse; 1829 if (mode) { 1830 new.inuse = page->objects; 1831 new.freelist = NULL; 1832 } else { 1833 new.freelist = freelist; 1834 } 1835 1836 VM_BUG_ON(new.frozen); 1837 new.frozen = 1; 1838 1839 if (!__cmpxchg_double_slab(s, page, 1840 freelist, counters, 1841 new.freelist, new.counters, 1842 "acquire_slab")) 1843 return NULL; 1844 1845 remove_partial(n, page); 1846 WARN_ON(!freelist); 1847 return freelist; 1848 } 1849 1850 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1851 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1852 1853 /* 1854 * Try to allocate a partial slab from a specific node. 1855 */ 1856 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1857 struct kmem_cache_cpu *c, gfp_t flags) 1858 { 1859 struct page *page, *page2; 1860 void *object = NULL; 1861 unsigned int available = 0; 1862 int objects; 1863 1864 /* 1865 * Racy check. If we mistakenly see no partial slabs then we 1866 * just allocate an empty slab. If we mistakenly try to get a 1867 * partial slab and there is none available then get_partials() 1868 * will return NULL. 1869 */ 1870 if (!n || !n->nr_partial) 1871 return NULL; 1872 1873 spin_lock(&n->list_lock); 1874 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1875 void *t; 1876 1877 if (!pfmemalloc_match(page, flags)) 1878 continue; 1879 1880 t = acquire_slab(s, n, page, object == NULL, &objects); 1881 if (!t) 1882 break; 1883 1884 available += objects; 1885 if (!object) { 1886 c->page = page; 1887 stat(s, ALLOC_FROM_PARTIAL); 1888 object = t; 1889 } else { 1890 put_cpu_partial(s, page, 0); 1891 stat(s, CPU_PARTIAL_NODE); 1892 } 1893 if (!kmem_cache_has_cpu_partial(s) 1894 || available > slub_cpu_partial(s) / 2) 1895 break; 1896 1897 } 1898 spin_unlock(&n->list_lock); 1899 return object; 1900 } 1901 1902 /* 1903 * Get a page from somewhere. Search in increasing NUMA distances. 1904 */ 1905 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1906 struct kmem_cache_cpu *c) 1907 { 1908 #ifdef CONFIG_NUMA 1909 struct zonelist *zonelist; 1910 struct zoneref *z; 1911 struct zone *zone; 1912 enum zone_type high_zoneidx = gfp_zone(flags); 1913 void *object; 1914 unsigned int cpuset_mems_cookie; 1915 1916 /* 1917 * The defrag ratio allows a configuration of the tradeoffs between 1918 * inter node defragmentation and node local allocations. A lower 1919 * defrag_ratio increases the tendency to do local allocations 1920 * instead of attempting to obtain partial slabs from other nodes. 1921 * 1922 * If the defrag_ratio is set to 0 then kmalloc() always 1923 * returns node local objects. If the ratio is higher then kmalloc() 1924 * may return off node objects because partial slabs are obtained 1925 * from other nodes and filled up. 1926 * 1927 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1928 * (which makes defrag_ratio = 1000) then every (well almost) 1929 * allocation will first attempt to defrag slab caches on other nodes. 1930 * This means scanning over all nodes to look for partial slabs which 1931 * may be expensive if we do it every time we are trying to find a slab 1932 * with available objects. 1933 */ 1934 if (!s->remote_node_defrag_ratio || 1935 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1936 return NULL; 1937 1938 do { 1939 cpuset_mems_cookie = read_mems_allowed_begin(); 1940 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1941 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1942 struct kmem_cache_node *n; 1943 1944 n = get_node(s, zone_to_nid(zone)); 1945 1946 if (n && cpuset_zone_allowed(zone, flags) && 1947 n->nr_partial > s->min_partial) { 1948 object = get_partial_node(s, n, c, flags); 1949 if (object) { 1950 /* 1951 * Don't check read_mems_allowed_retry() 1952 * here - if mems_allowed was updated in 1953 * parallel, that was a harmless race 1954 * between allocation and the cpuset 1955 * update 1956 */ 1957 return object; 1958 } 1959 } 1960 } 1961 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1962 #endif /* CONFIG_NUMA */ 1963 return NULL; 1964 } 1965 1966 /* 1967 * Get a partial page, lock it and return it. 1968 */ 1969 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1970 struct kmem_cache_cpu *c) 1971 { 1972 void *object; 1973 int searchnode = node; 1974 1975 if (node == NUMA_NO_NODE) 1976 searchnode = numa_mem_id(); 1977 1978 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1979 if (object || node != NUMA_NO_NODE) 1980 return object; 1981 1982 return get_any_partial(s, flags, c); 1983 } 1984 1985 #ifdef CONFIG_PREEMPTION 1986 /* 1987 * Calculate the next globally unique transaction for disambiguiation 1988 * during cmpxchg. The transactions start with the cpu number and are then 1989 * incremented by CONFIG_NR_CPUS. 1990 */ 1991 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1992 #else 1993 /* 1994 * No preemption supported therefore also no need to check for 1995 * different cpus. 1996 */ 1997 #define TID_STEP 1 1998 #endif 1999 2000 static inline unsigned long next_tid(unsigned long tid) 2001 { 2002 return tid + TID_STEP; 2003 } 2004 2005 #ifdef SLUB_DEBUG_CMPXCHG 2006 static inline unsigned int tid_to_cpu(unsigned long tid) 2007 { 2008 return tid % TID_STEP; 2009 } 2010 2011 static inline unsigned long tid_to_event(unsigned long tid) 2012 { 2013 return tid / TID_STEP; 2014 } 2015 #endif 2016 2017 static inline unsigned int init_tid(int cpu) 2018 { 2019 return cpu; 2020 } 2021 2022 static inline void note_cmpxchg_failure(const char *n, 2023 const struct kmem_cache *s, unsigned long tid) 2024 { 2025 #ifdef SLUB_DEBUG_CMPXCHG 2026 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2027 2028 pr_info("%s %s: cmpxchg redo ", n, s->name); 2029 2030 #ifdef CONFIG_PREEMPTION 2031 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2032 pr_warn("due to cpu change %d -> %d\n", 2033 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2034 else 2035 #endif 2036 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2037 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2038 tid_to_event(tid), tid_to_event(actual_tid)); 2039 else 2040 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2041 actual_tid, tid, next_tid(tid)); 2042 #endif 2043 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2044 } 2045 2046 static void init_kmem_cache_cpus(struct kmem_cache *s) 2047 { 2048 int cpu; 2049 2050 for_each_possible_cpu(cpu) 2051 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2052 } 2053 2054 /* 2055 * Remove the cpu slab 2056 */ 2057 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2058 void *freelist, struct kmem_cache_cpu *c) 2059 { 2060 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2061 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2062 int lock = 0; 2063 enum slab_modes l = M_NONE, m = M_NONE; 2064 void *nextfree; 2065 int tail = DEACTIVATE_TO_HEAD; 2066 struct page new; 2067 struct page old; 2068 2069 if (page->freelist) { 2070 stat(s, DEACTIVATE_REMOTE_FREES); 2071 tail = DEACTIVATE_TO_TAIL; 2072 } 2073 2074 /* 2075 * Stage one: Free all available per cpu objects back 2076 * to the page freelist while it is still frozen. Leave the 2077 * last one. 2078 * 2079 * There is no need to take the list->lock because the page 2080 * is still frozen. 2081 */ 2082 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2083 void *prior; 2084 unsigned long counters; 2085 2086 do { 2087 prior = page->freelist; 2088 counters = page->counters; 2089 set_freepointer(s, freelist, prior); 2090 new.counters = counters; 2091 new.inuse--; 2092 VM_BUG_ON(!new.frozen); 2093 2094 } while (!__cmpxchg_double_slab(s, page, 2095 prior, counters, 2096 freelist, new.counters, 2097 "drain percpu freelist")); 2098 2099 freelist = nextfree; 2100 } 2101 2102 /* 2103 * Stage two: Ensure that the page is unfrozen while the 2104 * list presence reflects the actual number of objects 2105 * during unfreeze. 2106 * 2107 * We setup the list membership and then perform a cmpxchg 2108 * with the count. If there is a mismatch then the page 2109 * is not unfrozen but the page is on the wrong list. 2110 * 2111 * Then we restart the process which may have to remove 2112 * the page from the list that we just put it on again 2113 * because the number of objects in the slab may have 2114 * changed. 2115 */ 2116 redo: 2117 2118 old.freelist = page->freelist; 2119 old.counters = page->counters; 2120 VM_BUG_ON(!old.frozen); 2121 2122 /* Determine target state of the slab */ 2123 new.counters = old.counters; 2124 if (freelist) { 2125 new.inuse--; 2126 set_freepointer(s, freelist, old.freelist); 2127 new.freelist = freelist; 2128 } else 2129 new.freelist = old.freelist; 2130 2131 new.frozen = 0; 2132 2133 if (!new.inuse && n->nr_partial >= s->min_partial) 2134 m = M_FREE; 2135 else if (new.freelist) { 2136 m = M_PARTIAL; 2137 if (!lock) { 2138 lock = 1; 2139 /* 2140 * Taking the spinlock removes the possibility 2141 * that acquire_slab() will see a slab page that 2142 * is frozen 2143 */ 2144 spin_lock(&n->list_lock); 2145 } 2146 } else { 2147 m = M_FULL; 2148 if (kmem_cache_debug(s) && !lock) { 2149 lock = 1; 2150 /* 2151 * This also ensures that the scanning of full 2152 * slabs from diagnostic functions will not see 2153 * any frozen slabs. 2154 */ 2155 spin_lock(&n->list_lock); 2156 } 2157 } 2158 2159 if (l != m) { 2160 if (l == M_PARTIAL) 2161 remove_partial(n, page); 2162 else if (l == M_FULL) 2163 remove_full(s, n, page); 2164 2165 if (m == M_PARTIAL) 2166 add_partial(n, page, tail); 2167 else if (m == M_FULL) 2168 add_full(s, n, page); 2169 } 2170 2171 l = m; 2172 if (!__cmpxchg_double_slab(s, page, 2173 old.freelist, old.counters, 2174 new.freelist, new.counters, 2175 "unfreezing slab")) 2176 goto redo; 2177 2178 if (lock) 2179 spin_unlock(&n->list_lock); 2180 2181 if (m == M_PARTIAL) 2182 stat(s, tail); 2183 else if (m == M_FULL) 2184 stat(s, DEACTIVATE_FULL); 2185 else if (m == M_FREE) { 2186 stat(s, DEACTIVATE_EMPTY); 2187 discard_slab(s, page); 2188 stat(s, FREE_SLAB); 2189 } 2190 2191 c->page = NULL; 2192 c->freelist = NULL; 2193 } 2194 2195 /* 2196 * Unfreeze all the cpu partial slabs. 2197 * 2198 * This function must be called with interrupts disabled 2199 * for the cpu using c (or some other guarantee must be there 2200 * to guarantee no concurrent accesses). 2201 */ 2202 static void unfreeze_partials(struct kmem_cache *s, 2203 struct kmem_cache_cpu *c) 2204 { 2205 #ifdef CONFIG_SLUB_CPU_PARTIAL 2206 struct kmem_cache_node *n = NULL, *n2 = NULL; 2207 struct page *page, *discard_page = NULL; 2208 2209 while ((page = slub_percpu_partial(c))) { 2210 struct page new; 2211 struct page old; 2212 2213 slub_set_percpu_partial(c, page); 2214 2215 n2 = get_node(s, page_to_nid(page)); 2216 if (n != n2) { 2217 if (n) 2218 spin_unlock(&n->list_lock); 2219 2220 n = n2; 2221 spin_lock(&n->list_lock); 2222 } 2223 2224 do { 2225 2226 old.freelist = page->freelist; 2227 old.counters = page->counters; 2228 VM_BUG_ON(!old.frozen); 2229 2230 new.counters = old.counters; 2231 new.freelist = old.freelist; 2232 2233 new.frozen = 0; 2234 2235 } while (!__cmpxchg_double_slab(s, page, 2236 old.freelist, old.counters, 2237 new.freelist, new.counters, 2238 "unfreezing slab")); 2239 2240 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2241 page->next = discard_page; 2242 discard_page = page; 2243 } else { 2244 add_partial(n, page, DEACTIVATE_TO_TAIL); 2245 stat(s, FREE_ADD_PARTIAL); 2246 } 2247 } 2248 2249 if (n) 2250 spin_unlock(&n->list_lock); 2251 2252 while (discard_page) { 2253 page = discard_page; 2254 discard_page = discard_page->next; 2255 2256 stat(s, DEACTIVATE_EMPTY); 2257 discard_slab(s, page); 2258 stat(s, FREE_SLAB); 2259 } 2260 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2261 } 2262 2263 /* 2264 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2265 * partial page slot if available. 2266 * 2267 * If we did not find a slot then simply move all the partials to the 2268 * per node partial list. 2269 */ 2270 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2271 { 2272 #ifdef CONFIG_SLUB_CPU_PARTIAL 2273 struct page *oldpage; 2274 int pages; 2275 int pobjects; 2276 2277 preempt_disable(); 2278 do { 2279 pages = 0; 2280 pobjects = 0; 2281 oldpage = this_cpu_read(s->cpu_slab->partial); 2282 2283 if (oldpage) { 2284 pobjects = oldpage->pobjects; 2285 pages = oldpage->pages; 2286 if (drain && pobjects > slub_cpu_partial(s)) { 2287 unsigned long flags; 2288 /* 2289 * partial array is full. Move the existing 2290 * set to the per node partial list. 2291 */ 2292 local_irq_save(flags); 2293 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2294 local_irq_restore(flags); 2295 oldpage = NULL; 2296 pobjects = 0; 2297 pages = 0; 2298 stat(s, CPU_PARTIAL_DRAIN); 2299 } 2300 } 2301 2302 pages++; 2303 pobjects += page->objects - page->inuse; 2304 2305 page->pages = pages; 2306 page->pobjects = pobjects; 2307 page->next = oldpage; 2308 2309 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2310 != oldpage); 2311 if (unlikely(!slub_cpu_partial(s))) { 2312 unsigned long flags; 2313 2314 local_irq_save(flags); 2315 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2316 local_irq_restore(flags); 2317 } 2318 preempt_enable(); 2319 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2320 } 2321 2322 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2323 { 2324 stat(s, CPUSLAB_FLUSH); 2325 deactivate_slab(s, c->page, c->freelist, c); 2326 2327 c->tid = next_tid(c->tid); 2328 } 2329 2330 /* 2331 * Flush cpu slab. 2332 * 2333 * Called from IPI handler with interrupts disabled. 2334 */ 2335 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2336 { 2337 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2338 2339 if (c->page) 2340 flush_slab(s, c); 2341 2342 unfreeze_partials(s, c); 2343 } 2344 2345 static void flush_cpu_slab(void *d) 2346 { 2347 struct kmem_cache *s = d; 2348 2349 __flush_cpu_slab(s, smp_processor_id()); 2350 } 2351 2352 static bool has_cpu_slab(int cpu, void *info) 2353 { 2354 struct kmem_cache *s = info; 2355 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2356 2357 return c->page || slub_percpu_partial(c); 2358 } 2359 2360 static void flush_all(struct kmem_cache *s) 2361 { 2362 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); 2363 } 2364 2365 /* 2366 * Use the cpu notifier to insure that the cpu slabs are flushed when 2367 * necessary. 2368 */ 2369 static int slub_cpu_dead(unsigned int cpu) 2370 { 2371 struct kmem_cache *s; 2372 unsigned long flags; 2373 2374 mutex_lock(&slab_mutex); 2375 list_for_each_entry(s, &slab_caches, list) { 2376 local_irq_save(flags); 2377 __flush_cpu_slab(s, cpu); 2378 local_irq_restore(flags); 2379 } 2380 mutex_unlock(&slab_mutex); 2381 return 0; 2382 } 2383 2384 /* 2385 * Check if the objects in a per cpu structure fit numa 2386 * locality expectations. 2387 */ 2388 static inline int node_match(struct page *page, int node) 2389 { 2390 #ifdef CONFIG_NUMA 2391 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2392 return 0; 2393 #endif 2394 return 1; 2395 } 2396 2397 #ifdef CONFIG_SLUB_DEBUG 2398 static int count_free(struct page *page) 2399 { 2400 return page->objects - page->inuse; 2401 } 2402 2403 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2404 { 2405 return atomic_long_read(&n->total_objects); 2406 } 2407 #endif /* CONFIG_SLUB_DEBUG */ 2408 2409 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2410 static unsigned long count_partial(struct kmem_cache_node *n, 2411 int (*get_count)(struct page *)) 2412 { 2413 unsigned long flags; 2414 unsigned long x = 0; 2415 struct page *page; 2416 2417 spin_lock_irqsave(&n->list_lock, flags); 2418 list_for_each_entry(page, &n->partial, slab_list) 2419 x += get_count(page); 2420 spin_unlock_irqrestore(&n->list_lock, flags); 2421 return x; 2422 } 2423 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2424 2425 static noinline void 2426 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2427 { 2428 #ifdef CONFIG_SLUB_DEBUG 2429 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2430 DEFAULT_RATELIMIT_BURST); 2431 int node; 2432 struct kmem_cache_node *n; 2433 2434 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2435 return; 2436 2437 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2438 nid, gfpflags, &gfpflags); 2439 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2440 s->name, s->object_size, s->size, oo_order(s->oo), 2441 oo_order(s->min)); 2442 2443 if (oo_order(s->min) > get_order(s->object_size)) 2444 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2445 s->name); 2446 2447 for_each_kmem_cache_node(s, node, n) { 2448 unsigned long nr_slabs; 2449 unsigned long nr_objs; 2450 unsigned long nr_free; 2451 2452 nr_free = count_partial(n, count_free); 2453 nr_slabs = node_nr_slabs(n); 2454 nr_objs = node_nr_objs(n); 2455 2456 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2457 node, nr_slabs, nr_objs, nr_free); 2458 } 2459 #endif 2460 } 2461 2462 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2463 int node, struct kmem_cache_cpu **pc) 2464 { 2465 void *freelist; 2466 struct kmem_cache_cpu *c = *pc; 2467 struct page *page; 2468 2469 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2470 2471 freelist = get_partial(s, flags, node, c); 2472 2473 if (freelist) 2474 return freelist; 2475 2476 page = new_slab(s, flags, node); 2477 if (page) { 2478 c = raw_cpu_ptr(s->cpu_slab); 2479 if (c->page) 2480 flush_slab(s, c); 2481 2482 /* 2483 * No other reference to the page yet so we can 2484 * muck around with it freely without cmpxchg 2485 */ 2486 freelist = page->freelist; 2487 page->freelist = NULL; 2488 2489 stat(s, ALLOC_SLAB); 2490 c->page = page; 2491 *pc = c; 2492 } 2493 2494 return freelist; 2495 } 2496 2497 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2498 { 2499 if (unlikely(PageSlabPfmemalloc(page))) 2500 return gfp_pfmemalloc_allowed(gfpflags); 2501 2502 return true; 2503 } 2504 2505 /* 2506 * Check the page->freelist of a page and either transfer the freelist to the 2507 * per cpu freelist or deactivate the page. 2508 * 2509 * The page is still frozen if the return value is not NULL. 2510 * 2511 * If this function returns NULL then the page has been unfrozen. 2512 * 2513 * This function must be called with interrupt disabled. 2514 */ 2515 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2516 { 2517 struct page new; 2518 unsigned long counters; 2519 void *freelist; 2520 2521 do { 2522 freelist = page->freelist; 2523 counters = page->counters; 2524 2525 new.counters = counters; 2526 VM_BUG_ON(!new.frozen); 2527 2528 new.inuse = page->objects; 2529 new.frozen = freelist != NULL; 2530 2531 } while (!__cmpxchg_double_slab(s, page, 2532 freelist, counters, 2533 NULL, new.counters, 2534 "get_freelist")); 2535 2536 return freelist; 2537 } 2538 2539 /* 2540 * Slow path. The lockless freelist is empty or we need to perform 2541 * debugging duties. 2542 * 2543 * Processing is still very fast if new objects have been freed to the 2544 * regular freelist. In that case we simply take over the regular freelist 2545 * as the lockless freelist and zap the regular freelist. 2546 * 2547 * If that is not working then we fall back to the partial lists. We take the 2548 * first element of the freelist as the object to allocate now and move the 2549 * rest of the freelist to the lockless freelist. 2550 * 2551 * And if we were unable to get a new slab from the partial slab lists then 2552 * we need to allocate a new slab. This is the slowest path since it involves 2553 * a call to the page allocator and the setup of a new slab. 2554 * 2555 * Version of __slab_alloc to use when we know that interrupts are 2556 * already disabled (which is the case for bulk allocation). 2557 */ 2558 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2559 unsigned long addr, struct kmem_cache_cpu *c) 2560 { 2561 void *freelist; 2562 struct page *page; 2563 2564 page = c->page; 2565 if (!page) { 2566 /* 2567 * if the node is not online or has no normal memory, just 2568 * ignore the node constraint 2569 */ 2570 if (unlikely(node != NUMA_NO_NODE && 2571 !node_state(node, N_NORMAL_MEMORY))) 2572 node = NUMA_NO_NODE; 2573 goto new_slab; 2574 } 2575 redo: 2576 2577 if (unlikely(!node_match(page, node))) { 2578 /* 2579 * same as above but node_match() being false already 2580 * implies node != NUMA_NO_NODE 2581 */ 2582 if (!node_state(node, N_NORMAL_MEMORY)) { 2583 node = NUMA_NO_NODE; 2584 goto redo; 2585 } else { 2586 stat(s, ALLOC_NODE_MISMATCH); 2587 deactivate_slab(s, page, c->freelist, c); 2588 goto new_slab; 2589 } 2590 } 2591 2592 /* 2593 * By rights, we should be searching for a slab page that was 2594 * PFMEMALLOC but right now, we are losing the pfmemalloc 2595 * information when the page leaves the per-cpu allocator 2596 */ 2597 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2598 deactivate_slab(s, page, c->freelist, c); 2599 goto new_slab; 2600 } 2601 2602 /* must check again c->freelist in case of cpu migration or IRQ */ 2603 freelist = c->freelist; 2604 if (freelist) 2605 goto load_freelist; 2606 2607 freelist = get_freelist(s, page); 2608 2609 if (!freelist) { 2610 c->page = NULL; 2611 stat(s, DEACTIVATE_BYPASS); 2612 goto new_slab; 2613 } 2614 2615 stat(s, ALLOC_REFILL); 2616 2617 load_freelist: 2618 /* 2619 * freelist is pointing to the list of objects to be used. 2620 * page is pointing to the page from which the objects are obtained. 2621 * That page must be frozen for per cpu allocations to work. 2622 */ 2623 VM_BUG_ON(!c->page->frozen); 2624 c->freelist = get_freepointer(s, freelist); 2625 c->tid = next_tid(c->tid); 2626 return freelist; 2627 2628 new_slab: 2629 2630 if (slub_percpu_partial(c)) { 2631 page = c->page = slub_percpu_partial(c); 2632 slub_set_percpu_partial(c, page); 2633 stat(s, CPU_PARTIAL_ALLOC); 2634 goto redo; 2635 } 2636 2637 freelist = new_slab_objects(s, gfpflags, node, &c); 2638 2639 if (unlikely(!freelist)) { 2640 slab_out_of_memory(s, gfpflags, node); 2641 return NULL; 2642 } 2643 2644 page = c->page; 2645 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2646 goto load_freelist; 2647 2648 /* Only entered in the debug case */ 2649 if (kmem_cache_debug(s) && 2650 !alloc_debug_processing(s, page, freelist, addr)) 2651 goto new_slab; /* Slab failed checks. Next slab needed */ 2652 2653 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2654 return freelist; 2655 } 2656 2657 /* 2658 * Another one that disabled interrupt and compensates for possible 2659 * cpu changes by refetching the per cpu area pointer. 2660 */ 2661 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2662 unsigned long addr, struct kmem_cache_cpu *c) 2663 { 2664 void *p; 2665 unsigned long flags; 2666 2667 local_irq_save(flags); 2668 #ifdef CONFIG_PREEMPTION 2669 /* 2670 * We may have been preempted and rescheduled on a different 2671 * cpu before disabling interrupts. Need to reload cpu area 2672 * pointer. 2673 */ 2674 c = this_cpu_ptr(s->cpu_slab); 2675 #endif 2676 2677 p = ___slab_alloc(s, gfpflags, node, addr, c); 2678 local_irq_restore(flags); 2679 return p; 2680 } 2681 2682 /* 2683 * If the object has been wiped upon free, make sure it's fully initialized by 2684 * zeroing out freelist pointer. 2685 */ 2686 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2687 void *obj) 2688 { 2689 if (unlikely(slab_want_init_on_free(s)) && obj) 2690 memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); 2691 } 2692 2693 /* 2694 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2695 * have the fastpath folded into their functions. So no function call 2696 * overhead for requests that can be satisfied on the fastpath. 2697 * 2698 * The fastpath works by first checking if the lockless freelist can be used. 2699 * If not then __slab_alloc is called for slow processing. 2700 * 2701 * Otherwise we can simply pick the next object from the lockless free list. 2702 */ 2703 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2704 gfp_t gfpflags, int node, unsigned long addr) 2705 { 2706 void *object; 2707 struct kmem_cache_cpu *c; 2708 struct page *page; 2709 unsigned long tid; 2710 2711 s = slab_pre_alloc_hook(s, gfpflags); 2712 if (!s) 2713 return NULL; 2714 redo: 2715 /* 2716 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2717 * enabled. We may switch back and forth between cpus while 2718 * reading from one cpu area. That does not matter as long 2719 * as we end up on the original cpu again when doing the cmpxchg. 2720 * 2721 * We should guarantee that tid and kmem_cache are retrieved on 2722 * the same cpu. It could be different if CONFIG_PREEMPTION so we need 2723 * to check if it is matched or not. 2724 */ 2725 do { 2726 tid = this_cpu_read(s->cpu_slab->tid); 2727 c = raw_cpu_ptr(s->cpu_slab); 2728 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2729 unlikely(tid != READ_ONCE(c->tid))); 2730 2731 /* 2732 * Irqless object alloc/free algorithm used here depends on sequence 2733 * of fetching cpu_slab's data. tid should be fetched before anything 2734 * on c to guarantee that object and page associated with previous tid 2735 * won't be used with current tid. If we fetch tid first, object and 2736 * page could be one associated with next tid and our alloc/free 2737 * request will be failed. In this case, we will retry. So, no problem. 2738 */ 2739 barrier(); 2740 2741 /* 2742 * The transaction ids are globally unique per cpu and per operation on 2743 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2744 * occurs on the right processor and that there was no operation on the 2745 * linked list in between. 2746 */ 2747 2748 object = c->freelist; 2749 page = c->page; 2750 if (unlikely(!object || !node_match(page, node))) { 2751 object = __slab_alloc(s, gfpflags, node, addr, c); 2752 stat(s, ALLOC_SLOWPATH); 2753 } else { 2754 void *next_object = get_freepointer_safe(s, object); 2755 2756 /* 2757 * The cmpxchg will only match if there was no additional 2758 * operation and if we are on the right processor. 2759 * 2760 * The cmpxchg does the following atomically (without lock 2761 * semantics!) 2762 * 1. Relocate first pointer to the current per cpu area. 2763 * 2. Verify that tid and freelist have not been changed 2764 * 3. If they were not changed replace tid and freelist 2765 * 2766 * Since this is without lock semantics the protection is only 2767 * against code executing on this cpu *not* from access by 2768 * other cpus. 2769 */ 2770 if (unlikely(!this_cpu_cmpxchg_double( 2771 s->cpu_slab->freelist, s->cpu_slab->tid, 2772 object, tid, 2773 next_object, next_tid(tid)))) { 2774 2775 note_cmpxchg_failure("slab_alloc", s, tid); 2776 goto redo; 2777 } 2778 prefetch_freepointer(s, next_object); 2779 stat(s, ALLOC_FASTPATH); 2780 } 2781 2782 maybe_wipe_obj_freeptr(s, object); 2783 2784 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2785 memset(object, 0, s->object_size); 2786 2787 slab_post_alloc_hook(s, gfpflags, 1, &object); 2788 2789 return object; 2790 } 2791 2792 static __always_inline void *slab_alloc(struct kmem_cache *s, 2793 gfp_t gfpflags, unsigned long addr) 2794 { 2795 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2796 } 2797 2798 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2799 { 2800 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2801 2802 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2803 s->size, gfpflags); 2804 2805 return ret; 2806 } 2807 EXPORT_SYMBOL(kmem_cache_alloc); 2808 2809 #ifdef CONFIG_TRACING 2810 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2811 { 2812 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2813 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2814 ret = kasan_kmalloc(s, ret, size, gfpflags); 2815 return ret; 2816 } 2817 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2818 #endif 2819 2820 #ifdef CONFIG_NUMA 2821 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2822 { 2823 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2824 2825 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2826 s->object_size, s->size, gfpflags, node); 2827 2828 return ret; 2829 } 2830 EXPORT_SYMBOL(kmem_cache_alloc_node); 2831 2832 #ifdef CONFIG_TRACING 2833 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2834 gfp_t gfpflags, 2835 int node, size_t size) 2836 { 2837 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2838 2839 trace_kmalloc_node(_RET_IP_, ret, 2840 size, s->size, gfpflags, node); 2841 2842 ret = kasan_kmalloc(s, ret, size, gfpflags); 2843 return ret; 2844 } 2845 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2846 #endif 2847 #endif /* CONFIG_NUMA */ 2848 2849 /* 2850 * Slow path handling. This may still be called frequently since objects 2851 * have a longer lifetime than the cpu slabs in most processing loads. 2852 * 2853 * So we still attempt to reduce cache line usage. Just take the slab 2854 * lock and free the item. If there is no additional partial page 2855 * handling required then we can return immediately. 2856 */ 2857 static void __slab_free(struct kmem_cache *s, struct page *page, 2858 void *head, void *tail, int cnt, 2859 unsigned long addr) 2860 2861 { 2862 void *prior; 2863 int was_frozen; 2864 struct page new; 2865 unsigned long counters; 2866 struct kmem_cache_node *n = NULL; 2867 unsigned long uninitialized_var(flags); 2868 2869 stat(s, FREE_SLOWPATH); 2870 2871 if (kmem_cache_debug(s) && 2872 !free_debug_processing(s, page, head, tail, cnt, addr)) 2873 return; 2874 2875 do { 2876 if (unlikely(n)) { 2877 spin_unlock_irqrestore(&n->list_lock, flags); 2878 n = NULL; 2879 } 2880 prior = page->freelist; 2881 counters = page->counters; 2882 set_freepointer(s, tail, prior); 2883 new.counters = counters; 2884 was_frozen = new.frozen; 2885 new.inuse -= cnt; 2886 if ((!new.inuse || !prior) && !was_frozen) { 2887 2888 if (kmem_cache_has_cpu_partial(s) && !prior) { 2889 2890 /* 2891 * Slab was on no list before and will be 2892 * partially empty 2893 * We can defer the list move and instead 2894 * freeze it. 2895 */ 2896 new.frozen = 1; 2897 2898 } else { /* Needs to be taken off a list */ 2899 2900 n = get_node(s, page_to_nid(page)); 2901 /* 2902 * Speculatively acquire the list_lock. 2903 * If the cmpxchg does not succeed then we may 2904 * drop the list_lock without any processing. 2905 * 2906 * Otherwise the list_lock will synchronize with 2907 * other processors updating the list of slabs. 2908 */ 2909 spin_lock_irqsave(&n->list_lock, flags); 2910 2911 } 2912 } 2913 2914 } while (!cmpxchg_double_slab(s, page, 2915 prior, counters, 2916 head, new.counters, 2917 "__slab_free")); 2918 2919 if (likely(!n)) { 2920 2921 /* 2922 * If we just froze the page then put it onto the 2923 * per cpu partial list. 2924 */ 2925 if (new.frozen && !was_frozen) { 2926 put_cpu_partial(s, page, 1); 2927 stat(s, CPU_PARTIAL_FREE); 2928 } 2929 /* 2930 * The list lock was not taken therefore no list 2931 * activity can be necessary. 2932 */ 2933 if (was_frozen) 2934 stat(s, FREE_FROZEN); 2935 return; 2936 } 2937 2938 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2939 goto slab_empty; 2940 2941 /* 2942 * Objects left in the slab. If it was not on the partial list before 2943 * then add it. 2944 */ 2945 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2946 remove_full(s, n, page); 2947 add_partial(n, page, DEACTIVATE_TO_TAIL); 2948 stat(s, FREE_ADD_PARTIAL); 2949 } 2950 spin_unlock_irqrestore(&n->list_lock, flags); 2951 return; 2952 2953 slab_empty: 2954 if (prior) { 2955 /* 2956 * Slab on the partial list. 2957 */ 2958 remove_partial(n, page); 2959 stat(s, FREE_REMOVE_PARTIAL); 2960 } else { 2961 /* Slab must be on the full list */ 2962 remove_full(s, n, page); 2963 } 2964 2965 spin_unlock_irqrestore(&n->list_lock, flags); 2966 stat(s, FREE_SLAB); 2967 discard_slab(s, page); 2968 } 2969 2970 /* 2971 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2972 * can perform fastpath freeing without additional function calls. 2973 * 2974 * The fastpath is only possible if we are freeing to the current cpu slab 2975 * of this processor. This typically the case if we have just allocated 2976 * the item before. 2977 * 2978 * If fastpath is not possible then fall back to __slab_free where we deal 2979 * with all sorts of special processing. 2980 * 2981 * Bulk free of a freelist with several objects (all pointing to the 2982 * same page) possible by specifying head and tail ptr, plus objects 2983 * count (cnt). Bulk free indicated by tail pointer being set. 2984 */ 2985 static __always_inline void do_slab_free(struct kmem_cache *s, 2986 struct page *page, void *head, void *tail, 2987 int cnt, unsigned long addr) 2988 { 2989 void *tail_obj = tail ? : head; 2990 struct kmem_cache_cpu *c; 2991 unsigned long tid; 2992 redo: 2993 /* 2994 * Determine the currently cpus per cpu slab. 2995 * The cpu may change afterward. However that does not matter since 2996 * data is retrieved via this pointer. If we are on the same cpu 2997 * during the cmpxchg then the free will succeed. 2998 */ 2999 do { 3000 tid = this_cpu_read(s->cpu_slab->tid); 3001 c = raw_cpu_ptr(s->cpu_slab); 3002 } while (IS_ENABLED(CONFIG_PREEMPTION) && 3003 unlikely(tid != READ_ONCE(c->tid))); 3004 3005 /* Same with comment on barrier() in slab_alloc_node() */ 3006 barrier(); 3007 3008 if (likely(page == c->page)) { 3009 void **freelist = READ_ONCE(c->freelist); 3010 3011 set_freepointer(s, tail_obj, freelist); 3012 3013 if (unlikely(!this_cpu_cmpxchg_double( 3014 s->cpu_slab->freelist, s->cpu_slab->tid, 3015 freelist, tid, 3016 head, next_tid(tid)))) { 3017 3018 note_cmpxchg_failure("slab_free", s, tid); 3019 goto redo; 3020 } 3021 stat(s, FREE_FASTPATH); 3022 } else 3023 __slab_free(s, page, head, tail_obj, cnt, addr); 3024 3025 } 3026 3027 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3028 void *head, void *tail, int cnt, 3029 unsigned long addr) 3030 { 3031 /* 3032 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3033 * to remove objects, whose reuse must be delayed. 3034 */ 3035 if (slab_free_freelist_hook(s, &head, &tail)) 3036 do_slab_free(s, page, head, tail, cnt, addr); 3037 } 3038 3039 #ifdef CONFIG_KASAN_GENERIC 3040 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3041 { 3042 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3043 } 3044 #endif 3045 3046 void kmem_cache_free(struct kmem_cache *s, void *x) 3047 { 3048 s = cache_from_obj(s, x); 3049 if (!s) 3050 return; 3051 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3052 trace_kmem_cache_free(_RET_IP_, x); 3053 } 3054 EXPORT_SYMBOL(kmem_cache_free); 3055 3056 struct detached_freelist { 3057 struct page *page; 3058 void *tail; 3059 void *freelist; 3060 int cnt; 3061 struct kmem_cache *s; 3062 }; 3063 3064 /* 3065 * This function progressively scans the array with free objects (with 3066 * a limited look ahead) and extract objects belonging to the same 3067 * page. It builds a detached freelist directly within the given 3068 * page/objects. This can happen without any need for 3069 * synchronization, because the objects are owned by running process. 3070 * The freelist is build up as a single linked list in the objects. 3071 * The idea is, that this detached freelist can then be bulk 3072 * transferred to the real freelist(s), but only requiring a single 3073 * synchronization primitive. Look ahead in the array is limited due 3074 * to performance reasons. 3075 */ 3076 static inline 3077 int build_detached_freelist(struct kmem_cache *s, size_t size, 3078 void **p, struct detached_freelist *df) 3079 { 3080 size_t first_skipped_index = 0; 3081 int lookahead = 3; 3082 void *object; 3083 struct page *page; 3084 3085 /* Always re-init detached_freelist */ 3086 df->page = NULL; 3087 3088 do { 3089 object = p[--size]; 3090 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3091 } while (!object && size); 3092 3093 if (!object) 3094 return 0; 3095 3096 page = virt_to_head_page(object); 3097 if (!s) { 3098 /* Handle kalloc'ed objects */ 3099 if (unlikely(!PageSlab(page))) { 3100 BUG_ON(!PageCompound(page)); 3101 kfree_hook(object); 3102 __free_pages(page, compound_order(page)); 3103 p[size] = NULL; /* mark object processed */ 3104 return size; 3105 } 3106 /* Derive kmem_cache from object */ 3107 df->s = page->slab_cache; 3108 } else { 3109 df->s = cache_from_obj(s, object); /* Support for memcg */ 3110 } 3111 3112 /* Start new detached freelist */ 3113 df->page = page; 3114 set_freepointer(df->s, object, NULL); 3115 df->tail = object; 3116 df->freelist = object; 3117 p[size] = NULL; /* mark object processed */ 3118 df->cnt = 1; 3119 3120 while (size) { 3121 object = p[--size]; 3122 if (!object) 3123 continue; /* Skip processed objects */ 3124 3125 /* df->page is always set at this point */ 3126 if (df->page == virt_to_head_page(object)) { 3127 /* Opportunity build freelist */ 3128 set_freepointer(df->s, object, df->freelist); 3129 df->freelist = object; 3130 df->cnt++; 3131 p[size] = NULL; /* mark object processed */ 3132 3133 continue; 3134 } 3135 3136 /* Limit look ahead search */ 3137 if (!--lookahead) 3138 break; 3139 3140 if (!first_skipped_index) 3141 first_skipped_index = size + 1; 3142 } 3143 3144 return first_skipped_index; 3145 } 3146 3147 /* Note that interrupts must be enabled when calling this function. */ 3148 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3149 { 3150 if (WARN_ON(!size)) 3151 return; 3152 3153 do { 3154 struct detached_freelist df; 3155 3156 size = build_detached_freelist(s, size, p, &df); 3157 if (!df.page) 3158 continue; 3159 3160 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3161 } while (likely(size)); 3162 } 3163 EXPORT_SYMBOL(kmem_cache_free_bulk); 3164 3165 /* Note that interrupts must be enabled when calling this function. */ 3166 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3167 void **p) 3168 { 3169 struct kmem_cache_cpu *c; 3170 int i; 3171 3172 /* memcg and kmem_cache debug support */ 3173 s = slab_pre_alloc_hook(s, flags); 3174 if (unlikely(!s)) 3175 return false; 3176 /* 3177 * Drain objects in the per cpu slab, while disabling local 3178 * IRQs, which protects against PREEMPT and interrupts 3179 * handlers invoking normal fastpath. 3180 */ 3181 local_irq_disable(); 3182 c = this_cpu_ptr(s->cpu_slab); 3183 3184 for (i = 0; i < size; i++) { 3185 void *object = c->freelist; 3186 3187 if (unlikely(!object)) { 3188 /* 3189 * We may have removed an object from c->freelist using 3190 * the fastpath in the previous iteration; in that case, 3191 * c->tid has not been bumped yet. 3192 * Since ___slab_alloc() may reenable interrupts while 3193 * allocating memory, we should bump c->tid now. 3194 */ 3195 c->tid = next_tid(c->tid); 3196 3197 /* 3198 * Invoking slow path likely have side-effect 3199 * of re-populating per CPU c->freelist 3200 */ 3201 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3202 _RET_IP_, c); 3203 if (unlikely(!p[i])) 3204 goto error; 3205 3206 c = this_cpu_ptr(s->cpu_slab); 3207 maybe_wipe_obj_freeptr(s, p[i]); 3208 3209 continue; /* goto for-loop */ 3210 } 3211 c->freelist = get_freepointer(s, object); 3212 p[i] = object; 3213 maybe_wipe_obj_freeptr(s, p[i]); 3214 } 3215 c->tid = next_tid(c->tid); 3216 local_irq_enable(); 3217 3218 /* Clear memory outside IRQ disabled fastpath loop */ 3219 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3220 int j; 3221 3222 for (j = 0; j < i; j++) 3223 memset(p[j], 0, s->object_size); 3224 } 3225 3226 /* memcg and kmem_cache debug support */ 3227 slab_post_alloc_hook(s, flags, size, p); 3228 return i; 3229 error: 3230 local_irq_enable(); 3231 slab_post_alloc_hook(s, flags, i, p); 3232 __kmem_cache_free_bulk(s, i, p); 3233 return 0; 3234 } 3235 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3236 3237 3238 /* 3239 * Object placement in a slab is made very easy because we always start at 3240 * offset 0. If we tune the size of the object to the alignment then we can 3241 * get the required alignment by putting one properly sized object after 3242 * another. 3243 * 3244 * Notice that the allocation order determines the sizes of the per cpu 3245 * caches. Each processor has always one slab available for allocations. 3246 * Increasing the allocation order reduces the number of times that slabs 3247 * must be moved on and off the partial lists and is therefore a factor in 3248 * locking overhead. 3249 */ 3250 3251 /* 3252 * Mininum / Maximum order of slab pages. This influences locking overhead 3253 * and slab fragmentation. A higher order reduces the number of partial slabs 3254 * and increases the number of allocations possible without having to 3255 * take the list_lock. 3256 */ 3257 static unsigned int slub_min_order; 3258 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3259 static unsigned int slub_min_objects; 3260 3261 /* 3262 * Calculate the order of allocation given an slab object size. 3263 * 3264 * The order of allocation has significant impact on performance and other 3265 * system components. Generally order 0 allocations should be preferred since 3266 * order 0 does not cause fragmentation in the page allocator. Larger objects 3267 * be problematic to put into order 0 slabs because there may be too much 3268 * unused space left. We go to a higher order if more than 1/16th of the slab 3269 * would be wasted. 3270 * 3271 * In order to reach satisfactory performance we must ensure that a minimum 3272 * number of objects is in one slab. Otherwise we may generate too much 3273 * activity on the partial lists which requires taking the list_lock. This is 3274 * less a concern for large slabs though which are rarely used. 3275 * 3276 * slub_max_order specifies the order where we begin to stop considering the 3277 * number of objects in a slab as critical. If we reach slub_max_order then 3278 * we try to keep the page order as low as possible. So we accept more waste 3279 * of space in favor of a small page order. 3280 * 3281 * Higher order allocations also allow the placement of more objects in a 3282 * slab and thereby reduce object handling overhead. If the user has 3283 * requested a higher mininum order then we start with that one instead of 3284 * the smallest order which will fit the object. 3285 */ 3286 static inline unsigned int slab_order(unsigned int size, 3287 unsigned int min_objects, unsigned int max_order, 3288 unsigned int fract_leftover) 3289 { 3290 unsigned int min_order = slub_min_order; 3291 unsigned int order; 3292 3293 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3294 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3295 3296 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3297 order <= max_order; order++) { 3298 3299 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3300 unsigned int rem; 3301 3302 rem = slab_size % size; 3303 3304 if (rem <= slab_size / fract_leftover) 3305 break; 3306 } 3307 3308 return order; 3309 } 3310 3311 static inline int calculate_order(unsigned int size) 3312 { 3313 unsigned int order; 3314 unsigned int min_objects; 3315 unsigned int max_objects; 3316 3317 /* 3318 * Attempt to find best configuration for a slab. This 3319 * works by first attempting to generate a layout with 3320 * the best configuration and backing off gradually. 3321 * 3322 * First we increase the acceptable waste in a slab. Then 3323 * we reduce the minimum objects required in a slab. 3324 */ 3325 min_objects = slub_min_objects; 3326 if (!min_objects) 3327 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3328 max_objects = order_objects(slub_max_order, size); 3329 min_objects = min(min_objects, max_objects); 3330 3331 while (min_objects > 1) { 3332 unsigned int fraction; 3333 3334 fraction = 16; 3335 while (fraction >= 4) { 3336 order = slab_order(size, min_objects, 3337 slub_max_order, fraction); 3338 if (order <= slub_max_order) 3339 return order; 3340 fraction /= 2; 3341 } 3342 min_objects--; 3343 } 3344 3345 /* 3346 * We were unable to place multiple objects in a slab. Now 3347 * lets see if we can place a single object there. 3348 */ 3349 order = slab_order(size, 1, slub_max_order, 1); 3350 if (order <= slub_max_order) 3351 return order; 3352 3353 /* 3354 * Doh this slab cannot be placed using slub_max_order. 3355 */ 3356 order = slab_order(size, 1, MAX_ORDER, 1); 3357 if (order < MAX_ORDER) 3358 return order; 3359 return -ENOSYS; 3360 } 3361 3362 static void 3363 init_kmem_cache_node(struct kmem_cache_node *n) 3364 { 3365 n->nr_partial = 0; 3366 spin_lock_init(&n->list_lock); 3367 INIT_LIST_HEAD(&n->partial); 3368 #ifdef CONFIG_SLUB_DEBUG 3369 atomic_long_set(&n->nr_slabs, 0); 3370 atomic_long_set(&n->total_objects, 0); 3371 INIT_LIST_HEAD(&n->full); 3372 #endif 3373 } 3374 3375 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3376 { 3377 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3378 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3379 3380 /* 3381 * Must align to double word boundary for the double cmpxchg 3382 * instructions to work; see __pcpu_double_call_return_bool(). 3383 */ 3384 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3385 2 * sizeof(void *)); 3386 3387 if (!s->cpu_slab) 3388 return 0; 3389 3390 init_kmem_cache_cpus(s); 3391 3392 return 1; 3393 } 3394 3395 static struct kmem_cache *kmem_cache_node; 3396 3397 /* 3398 * No kmalloc_node yet so do it by hand. We know that this is the first 3399 * slab on the node for this slabcache. There are no concurrent accesses 3400 * possible. 3401 * 3402 * Note that this function only works on the kmem_cache_node 3403 * when allocating for the kmem_cache_node. This is used for bootstrapping 3404 * memory on a fresh node that has no slab structures yet. 3405 */ 3406 static void early_kmem_cache_node_alloc(int node) 3407 { 3408 struct page *page; 3409 struct kmem_cache_node *n; 3410 3411 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3412 3413 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3414 3415 BUG_ON(!page); 3416 if (page_to_nid(page) != node) { 3417 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3418 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3419 } 3420 3421 n = page->freelist; 3422 BUG_ON(!n); 3423 #ifdef CONFIG_SLUB_DEBUG 3424 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3425 init_tracking(kmem_cache_node, n); 3426 #endif 3427 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3428 GFP_KERNEL); 3429 page->freelist = get_freepointer(kmem_cache_node, n); 3430 page->inuse = 1; 3431 page->frozen = 0; 3432 kmem_cache_node->node[node] = n; 3433 init_kmem_cache_node(n); 3434 inc_slabs_node(kmem_cache_node, node, page->objects); 3435 3436 /* 3437 * No locks need to be taken here as it has just been 3438 * initialized and there is no concurrent access. 3439 */ 3440 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3441 } 3442 3443 static void free_kmem_cache_nodes(struct kmem_cache *s) 3444 { 3445 int node; 3446 struct kmem_cache_node *n; 3447 3448 for_each_kmem_cache_node(s, node, n) { 3449 s->node[node] = NULL; 3450 kmem_cache_free(kmem_cache_node, n); 3451 } 3452 } 3453 3454 void __kmem_cache_release(struct kmem_cache *s) 3455 { 3456 cache_random_seq_destroy(s); 3457 free_percpu(s->cpu_slab); 3458 free_kmem_cache_nodes(s); 3459 } 3460 3461 static int init_kmem_cache_nodes(struct kmem_cache *s) 3462 { 3463 int node; 3464 3465 for_each_node_state(node, N_NORMAL_MEMORY) { 3466 struct kmem_cache_node *n; 3467 3468 if (slab_state == DOWN) { 3469 early_kmem_cache_node_alloc(node); 3470 continue; 3471 } 3472 n = kmem_cache_alloc_node(kmem_cache_node, 3473 GFP_KERNEL, node); 3474 3475 if (!n) { 3476 free_kmem_cache_nodes(s); 3477 return 0; 3478 } 3479 3480 init_kmem_cache_node(n); 3481 s->node[node] = n; 3482 } 3483 return 1; 3484 } 3485 3486 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3487 { 3488 if (min < MIN_PARTIAL) 3489 min = MIN_PARTIAL; 3490 else if (min > MAX_PARTIAL) 3491 min = MAX_PARTIAL; 3492 s->min_partial = min; 3493 } 3494 3495 static void set_cpu_partial(struct kmem_cache *s) 3496 { 3497 #ifdef CONFIG_SLUB_CPU_PARTIAL 3498 /* 3499 * cpu_partial determined the maximum number of objects kept in the 3500 * per cpu partial lists of a processor. 3501 * 3502 * Per cpu partial lists mainly contain slabs that just have one 3503 * object freed. If they are used for allocation then they can be 3504 * filled up again with minimal effort. The slab will never hit the 3505 * per node partial lists and therefore no locking will be required. 3506 * 3507 * This setting also determines 3508 * 3509 * A) The number of objects from per cpu partial slabs dumped to the 3510 * per node list when we reach the limit. 3511 * B) The number of objects in cpu partial slabs to extract from the 3512 * per node list when we run out of per cpu objects. We only fetch 3513 * 50% to keep some capacity around for frees. 3514 */ 3515 if (!kmem_cache_has_cpu_partial(s)) 3516 slub_set_cpu_partial(s, 0); 3517 else if (s->size >= PAGE_SIZE) 3518 slub_set_cpu_partial(s, 2); 3519 else if (s->size >= 1024) 3520 slub_set_cpu_partial(s, 6); 3521 else if (s->size >= 256) 3522 slub_set_cpu_partial(s, 13); 3523 else 3524 slub_set_cpu_partial(s, 30); 3525 #endif 3526 } 3527 3528 /* 3529 * calculate_sizes() determines the order and the distribution of data within 3530 * a slab object. 3531 */ 3532 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3533 { 3534 slab_flags_t flags = s->flags; 3535 unsigned int size = s->object_size; 3536 unsigned int freepointer_area; 3537 unsigned int order; 3538 3539 /* 3540 * Round up object size to the next word boundary. We can only 3541 * place the free pointer at word boundaries and this determines 3542 * the possible location of the free pointer. 3543 */ 3544 size = ALIGN(size, sizeof(void *)); 3545 /* 3546 * This is the area of the object where a freepointer can be 3547 * safely written. If redzoning adds more to the inuse size, we 3548 * can't use that portion for writing the freepointer, so 3549 * s->offset must be limited within this for the general case. 3550 */ 3551 freepointer_area = size; 3552 3553 #ifdef CONFIG_SLUB_DEBUG 3554 /* 3555 * Determine if we can poison the object itself. If the user of 3556 * the slab may touch the object after free or before allocation 3557 * then we should never poison the object itself. 3558 */ 3559 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3560 !s->ctor) 3561 s->flags |= __OBJECT_POISON; 3562 else 3563 s->flags &= ~__OBJECT_POISON; 3564 3565 3566 /* 3567 * If we are Redzoning then check if there is some space between the 3568 * end of the object and the free pointer. If not then add an 3569 * additional word to have some bytes to store Redzone information. 3570 */ 3571 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3572 size += sizeof(void *); 3573 #endif 3574 3575 /* 3576 * With that we have determined the number of bytes in actual use 3577 * by the object. This is the potential offset to the free pointer. 3578 */ 3579 s->inuse = size; 3580 3581 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3582 s->ctor)) { 3583 /* 3584 * Relocate free pointer after the object if it is not 3585 * permitted to overwrite the first word of the object on 3586 * kmem_cache_free. 3587 * 3588 * This is the case if we do RCU, have a constructor or 3589 * destructor or are poisoning the objects. 3590 */ 3591 s->offset = size; 3592 size += sizeof(void *); 3593 } else if (freepointer_area > sizeof(void *)) { 3594 /* 3595 * Store freelist pointer near middle of object to keep 3596 * it away from the edges of the object to avoid small 3597 * sized over/underflows from neighboring allocations. 3598 */ 3599 s->offset = ALIGN(freepointer_area / 2, sizeof(void *)); 3600 } 3601 3602 #ifdef CONFIG_SLUB_DEBUG 3603 if (flags & SLAB_STORE_USER) 3604 /* 3605 * Need to store information about allocs and frees after 3606 * the object. 3607 */ 3608 size += 2 * sizeof(struct track); 3609 #endif 3610 3611 kasan_cache_create(s, &size, &s->flags); 3612 #ifdef CONFIG_SLUB_DEBUG 3613 if (flags & SLAB_RED_ZONE) { 3614 /* 3615 * Add some empty padding so that we can catch 3616 * overwrites from earlier objects rather than let 3617 * tracking information or the free pointer be 3618 * corrupted if a user writes before the start 3619 * of the object. 3620 */ 3621 size += sizeof(void *); 3622 3623 s->red_left_pad = sizeof(void *); 3624 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3625 size += s->red_left_pad; 3626 } 3627 #endif 3628 3629 /* 3630 * SLUB stores one object immediately after another beginning from 3631 * offset 0. In order to align the objects we have to simply size 3632 * each object to conform to the alignment. 3633 */ 3634 size = ALIGN(size, s->align); 3635 s->size = size; 3636 if (forced_order >= 0) 3637 order = forced_order; 3638 else 3639 order = calculate_order(size); 3640 3641 if ((int)order < 0) 3642 return 0; 3643 3644 s->allocflags = 0; 3645 if (order) 3646 s->allocflags |= __GFP_COMP; 3647 3648 if (s->flags & SLAB_CACHE_DMA) 3649 s->allocflags |= GFP_DMA; 3650 3651 if (s->flags & SLAB_CACHE_DMA32) 3652 s->allocflags |= GFP_DMA32; 3653 3654 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3655 s->allocflags |= __GFP_RECLAIMABLE; 3656 3657 /* 3658 * Determine the number of objects per slab 3659 */ 3660 s->oo = oo_make(order, size); 3661 s->min = oo_make(get_order(size), size); 3662 if (oo_objects(s->oo) > oo_objects(s->max)) 3663 s->max = s->oo; 3664 3665 return !!oo_objects(s->oo); 3666 } 3667 3668 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3669 { 3670 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3671 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3672 s->random = get_random_long(); 3673 #endif 3674 3675 if (!calculate_sizes(s, -1)) 3676 goto error; 3677 if (disable_higher_order_debug) { 3678 /* 3679 * Disable debugging flags that store metadata if the min slab 3680 * order increased. 3681 */ 3682 if (get_order(s->size) > get_order(s->object_size)) { 3683 s->flags &= ~DEBUG_METADATA_FLAGS; 3684 s->offset = 0; 3685 if (!calculate_sizes(s, -1)) 3686 goto error; 3687 } 3688 } 3689 3690 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3691 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3692 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3693 /* Enable fast mode */ 3694 s->flags |= __CMPXCHG_DOUBLE; 3695 #endif 3696 3697 /* 3698 * The larger the object size is, the more pages we want on the partial 3699 * list to avoid pounding the page allocator excessively. 3700 */ 3701 set_min_partial(s, ilog2(s->size) / 2); 3702 3703 set_cpu_partial(s); 3704 3705 #ifdef CONFIG_NUMA 3706 s->remote_node_defrag_ratio = 1000; 3707 #endif 3708 3709 /* Initialize the pre-computed randomized freelist if slab is up */ 3710 if (slab_state >= UP) { 3711 if (init_cache_random_seq(s)) 3712 goto error; 3713 } 3714 3715 if (!init_kmem_cache_nodes(s)) 3716 goto error; 3717 3718 if (alloc_kmem_cache_cpus(s)) 3719 return 0; 3720 3721 free_kmem_cache_nodes(s); 3722 error: 3723 return -EINVAL; 3724 } 3725 3726 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3727 const char *text) 3728 { 3729 #ifdef CONFIG_SLUB_DEBUG 3730 void *addr = page_address(page); 3731 void *p; 3732 unsigned long *map; 3733 3734 slab_err(s, page, text, s->name); 3735 slab_lock(page); 3736 3737 map = get_map(s, page); 3738 for_each_object(p, s, addr, page->objects) { 3739 3740 if (!test_bit(slab_index(p, s, addr), map)) { 3741 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3742 print_tracking(s, p); 3743 } 3744 } 3745 put_map(map); 3746 3747 slab_unlock(page); 3748 #endif 3749 } 3750 3751 /* 3752 * Attempt to free all partial slabs on a node. 3753 * This is called from __kmem_cache_shutdown(). We must take list_lock 3754 * because sysfs file might still access partial list after the shutdowning. 3755 */ 3756 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3757 { 3758 LIST_HEAD(discard); 3759 struct page *page, *h; 3760 3761 BUG_ON(irqs_disabled()); 3762 spin_lock_irq(&n->list_lock); 3763 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3764 if (!page->inuse) { 3765 remove_partial(n, page); 3766 list_add(&page->slab_list, &discard); 3767 } else { 3768 list_slab_objects(s, page, 3769 "Objects remaining in %s on __kmem_cache_shutdown()"); 3770 } 3771 } 3772 spin_unlock_irq(&n->list_lock); 3773 3774 list_for_each_entry_safe(page, h, &discard, slab_list) 3775 discard_slab(s, page); 3776 } 3777 3778 bool __kmem_cache_empty(struct kmem_cache *s) 3779 { 3780 int node; 3781 struct kmem_cache_node *n; 3782 3783 for_each_kmem_cache_node(s, node, n) 3784 if (n->nr_partial || slabs_node(s, node)) 3785 return false; 3786 return true; 3787 } 3788 3789 /* 3790 * Release all resources used by a slab cache. 3791 */ 3792 int __kmem_cache_shutdown(struct kmem_cache *s) 3793 { 3794 int node; 3795 struct kmem_cache_node *n; 3796 3797 flush_all(s); 3798 /* Attempt to free all objects */ 3799 for_each_kmem_cache_node(s, node, n) { 3800 free_partial(s, n); 3801 if (n->nr_partial || slabs_node(s, node)) 3802 return 1; 3803 } 3804 sysfs_slab_remove(s); 3805 return 0; 3806 } 3807 3808 /******************************************************************** 3809 * Kmalloc subsystem 3810 *******************************************************************/ 3811 3812 static int __init setup_slub_min_order(char *str) 3813 { 3814 get_option(&str, (int *)&slub_min_order); 3815 3816 return 1; 3817 } 3818 3819 __setup("slub_min_order=", setup_slub_min_order); 3820 3821 static int __init setup_slub_max_order(char *str) 3822 { 3823 get_option(&str, (int *)&slub_max_order); 3824 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3825 3826 return 1; 3827 } 3828 3829 __setup("slub_max_order=", setup_slub_max_order); 3830 3831 static int __init setup_slub_min_objects(char *str) 3832 { 3833 get_option(&str, (int *)&slub_min_objects); 3834 3835 return 1; 3836 } 3837 3838 __setup("slub_min_objects=", setup_slub_min_objects); 3839 3840 void *__kmalloc(size_t size, gfp_t flags) 3841 { 3842 struct kmem_cache *s; 3843 void *ret; 3844 3845 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3846 return kmalloc_large(size, flags); 3847 3848 s = kmalloc_slab(size, flags); 3849 3850 if (unlikely(ZERO_OR_NULL_PTR(s))) 3851 return s; 3852 3853 ret = slab_alloc(s, flags, _RET_IP_); 3854 3855 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3856 3857 ret = kasan_kmalloc(s, ret, size, flags); 3858 3859 return ret; 3860 } 3861 EXPORT_SYMBOL(__kmalloc); 3862 3863 #ifdef CONFIG_NUMA 3864 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3865 { 3866 struct page *page; 3867 void *ptr = NULL; 3868 unsigned int order = get_order(size); 3869 3870 flags |= __GFP_COMP; 3871 page = alloc_pages_node(node, flags, order); 3872 if (page) { 3873 ptr = page_address(page); 3874 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3875 1 << order); 3876 } 3877 3878 return kmalloc_large_node_hook(ptr, size, flags); 3879 } 3880 3881 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3882 { 3883 struct kmem_cache *s; 3884 void *ret; 3885 3886 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3887 ret = kmalloc_large_node(size, flags, node); 3888 3889 trace_kmalloc_node(_RET_IP_, ret, 3890 size, PAGE_SIZE << get_order(size), 3891 flags, node); 3892 3893 return ret; 3894 } 3895 3896 s = kmalloc_slab(size, flags); 3897 3898 if (unlikely(ZERO_OR_NULL_PTR(s))) 3899 return s; 3900 3901 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3902 3903 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3904 3905 ret = kasan_kmalloc(s, ret, size, flags); 3906 3907 return ret; 3908 } 3909 EXPORT_SYMBOL(__kmalloc_node); 3910 #endif /* CONFIG_NUMA */ 3911 3912 #ifdef CONFIG_HARDENED_USERCOPY 3913 /* 3914 * Rejects incorrectly sized objects and objects that are to be copied 3915 * to/from userspace but do not fall entirely within the containing slab 3916 * cache's usercopy region. 3917 * 3918 * Returns NULL if check passes, otherwise const char * to name of cache 3919 * to indicate an error. 3920 */ 3921 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3922 bool to_user) 3923 { 3924 struct kmem_cache *s; 3925 unsigned int offset; 3926 size_t object_size; 3927 3928 ptr = kasan_reset_tag(ptr); 3929 3930 /* Find object and usable object size. */ 3931 s = page->slab_cache; 3932 3933 /* Reject impossible pointers. */ 3934 if (ptr < page_address(page)) 3935 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3936 to_user, 0, n); 3937 3938 /* Find offset within object. */ 3939 offset = (ptr - page_address(page)) % s->size; 3940 3941 /* Adjust for redzone and reject if within the redzone. */ 3942 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3943 if (offset < s->red_left_pad) 3944 usercopy_abort("SLUB object in left red zone", 3945 s->name, to_user, offset, n); 3946 offset -= s->red_left_pad; 3947 } 3948 3949 /* Allow address range falling entirely within usercopy region. */ 3950 if (offset >= s->useroffset && 3951 offset - s->useroffset <= s->usersize && 3952 n <= s->useroffset - offset + s->usersize) 3953 return; 3954 3955 /* 3956 * If the copy is still within the allocated object, produce 3957 * a warning instead of rejecting the copy. This is intended 3958 * to be a temporary method to find any missing usercopy 3959 * whitelists. 3960 */ 3961 object_size = slab_ksize(s); 3962 if (usercopy_fallback && 3963 offset <= object_size && n <= object_size - offset) { 3964 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3965 return; 3966 } 3967 3968 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3969 } 3970 #endif /* CONFIG_HARDENED_USERCOPY */ 3971 3972 size_t __ksize(const void *object) 3973 { 3974 struct page *page; 3975 3976 if (unlikely(object == ZERO_SIZE_PTR)) 3977 return 0; 3978 3979 page = virt_to_head_page(object); 3980 3981 if (unlikely(!PageSlab(page))) { 3982 WARN_ON(!PageCompound(page)); 3983 return page_size(page); 3984 } 3985 3986 return slab_ksize(page->slab_cache); 3987 } 3988 EXPORT_SYMBOL(__ksize); 3989 3990 void kfree(const void *x) 3991 { 3992 struct page *page; 3993 void *object = (void *)x; 3994 3995 trace_kfree(_RET_IP_, x); 3996 3997 if (unlikely(ZERO_OR_NULL_PTR(x))) 3998 return; 3999 4000 page = virt_to_head_page(x); 4001 if (unlikely(!PageSlab(page))) { 4002 unsigned int order = compound_order(page); 4003 4004 BUG_ON(!PageCompound(page)); 4005 kfree_hook(object); 4006 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 4007 -(1 << order)); 4008 __free_pages(page, order); 4009 return; 4010 } 4011 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 4012 } 4013 EXPORT_SYMBOL(kfree); 4014 4015 #define SHRINK_PROMOTE_MAX 32 4016 4017 /* 4018 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4019 * up most to the head of the partial lists. New allocations will then 4020 * fill those up and thus they can be removed from the partial lists. 4021 * 4022 * The slabs with the least items are placed last. This results in them 4023 * being allocated from last increasing the chance that the last objects 4024 * are freed in them. 4025 */ 4026 int __kmem_cache_shrink(struct kmem_cache *s) 4027 { 4028 int node; 4029 int i; 4030 struct kmem_cache_node *n; 4031 struct page *page; 4032 struct page *t; 4033 struct list_head discard; 4034 struct list_head promote[SHRINK_PROMOTE_MAX]; 4035 unsigned long flags; 4036 int ret = 0; 4037 4038 flush_all(s); 4039 for_each_kmem_cache_node(s, node, n) { 4040 INIT_LIST_HEAD(&discard); 4041 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4042 INIT_LIST_HEAD(promote + i); 4043 4044 spin_lock_irqsave(&n->list_lock, flags); 4045 4046 /* 4047 * Build lists of slabs to discard or promote. 4048 * 4049 * Note that concurrent frees may occur while we hold the 4050 * list_lock. page->inuse here is the upper limit. 4051 */ 4052 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4053 int free = page->objects - page->inuse; 4054 4055 /* Do not reread page->inuse */ 4056 barrier(); 4057 4058 /* We do not keep full slabs on the list */ 4059 BUG_ON(free <= 0); 4060 4061 if (free == page->objects) { 4062 list_move(&page->slab_list, &discard); 4063 n->nr_partial--; 4064 } else if (free <= SHRINK_PROMOTE_MAX) 4065 list_move(&page->slab_list, promote + free - 1); 4066 } 4067 4068 /* 4069 * Promote the slabs filled up most to the head of the 4070 * partial list. 4071 */ 4072 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4073 list_splice(promote + i, &n->partial); 4074 4075 spin_unlock_irqrestore(&n->list_lock, flags); 4076 4077 /* Release empty slabs */ 4078 list_for_each_entry_safe(page, t, &discard, slab_list) 4079 discard_slab(s, page); 4080 4081 if (slabs_node(s, node)) 4082 ret = 1; 4083 } 4084 4085 return ret; 4086 } 4087 4088 #ifdef CONFIG_MEMCG 4089 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 4090 { 4091 /* 4092 * Called with all the locks held after a sched RCU grace period. 4093 * Even if @s becomes empty after shrinking, we can't know that @s 4094 * doesn't have allocations already in-flight and thus can't 4095 * destroy @s until the associated memcg is released. 4096 * 4097 * However, let's remove the sysfs files for empty caches here. 4098 * Each cache has a lot of interface files which aren't 4099 * particularly useful for empty draining caches; otherwise, we can 4100 * easily end up with millions of unnecessary sysfs files on 4101 * systems which have a lot of memory and transient cgroups. 4102 */ 4103 if (!__kmem_cache_shrink(s)) 4104 sysfs_slab_remove(s); 4105 } 4106 4107 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4108 { 4109 /* 4110 * Disable empty slabs caching. Used to avoid pinning offline 4111 * memory cgroups by kmem pages that can be freed. 4112 */ 4113 slub_set_cpu_partial(s, 0); 4114 s->min_partial = 0; 4115 } 4116 #endif /* CONFIG_MEMCG */ 4117 4118 static int slab_mem_going_offline_callback(void *arg) 4119 { 4120 struct kmem_cache *s; 4121 4122 mutex_lock(&slab_mutex); 4123 list_for_each_entry(s, &slab_caches, list) 4124 __kmem_cache_shrink(s); 4125 mutex_unlock(&slab_mutex); 4126 4127 return 0; 4128 } 4129 4130 static void slab_mem_offline_callback(void *arg) 4131 { 4132 struct kmem_cache_node *n; 4133 struct kmem_cache *s; 4134 struct memory_notify *marg = arg; 4135 int offline_node; 4136 4137 offline_node = marg->status_change_nid_normal; 4138 4139 /* 4140 * If the node still has available memory. we need kmem_cache_node 4141 * for it yet. 4142 */ 4143 if (offline_node < 0) 4144 return; 4145 4146 mutex_lock(&slab_mutex); 4147 list_for_each_entry(s, &slab_caches, list) { 4148 n = get_node(s, offline_node); 4149 if (n) { 4150 /* 4151 * if n->nr_slabs > 0, slabs still exist on the node 4152 * that is going down. We were unable to free them, 4153 * and offline_pages() function shouldn't call this 4154 * callback. So, we must fail. 4155 */ 4156 BUG_ON(slabs_node(s, offline_node)); 4157 4158 s->node[offline_node] = NULL; 4159 kmem_cache_free(kmem_cache_node, n); 4160 } 4161 } 4162 mutex_unlock(&slab_mutex); 4163 } 4164 4165 static int slab_mem_going_online_callback(void *arg) 4166 { 4167 struct kmem_cache_node *n; 4168 struct kmem_cache *s; 4169 struct memory_notify *marg = arg; 4170 int nid = marg->status_change_nid_normal; 4171 int ret = 0; 4172 4173 /* 4174 * If the node's memory is already available, then kmem_cache_node is 4175 * already created. Nothing to do. 4176 */ 4177 if (nid < 0) 4178 return 0; 4179 4180 /* 4181 * We are bringing a node online. No memory is available yet. We must 4182 * allocate a kmem_cache_node structure in order to bring the node 4183 * online. 4184 */ 4185 mutex_lock(&slab_mutex); 4186 list_for_each_entry(s, &slab_caches, list) { 4187 /* 4188 * XXX: kmem_cache_alloc_node will fallback to other nodes 4189 * since memory is not yet available from the node that 4190 * is brought up. 4191 */ 4192 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4193 if (!n) { 4194 ret = -ENOMEM; 4195 goto out; 4196 } 4197 init_kmem_cache_node(n); 4198 s->node[nid] = n; 4199 } 4200 out: 4201 mutex_unlock(&slab_mutex); 4202 return ret; 4203 } 4204 4205 static int slab_memory_callback(struct notifier_block *self, 4206 unsigned long action, void *arg) 4207 { 4208 int ret = 0; 4209 4210 switch (action) { 4211 case MEM_GOING_ONLINE: 4212 ret = slab_mem_going_online_callback(arg); 4213 break; 4214 case MEM_GOING_OFFLINE: 4215 ret = slab_mem_going_offline_callback(arg); 4216 break; 4217 case MEM_OFFLINE: 4218 case MEM_CANCEL_ONLINE: 4219 slab_mem_offline_callback(arg); 4220 break; 4221 case MEM_ONLINE: 4222 case MEM_CANCEL_OFFLINE: 4223 break; 4224 } 4225 if (ret) 4226 ret = notifier_from_errno(ret); 4227 else 4228 ret = NOTIFY_OK; 4229 return ret; 4230 } 4231 4232 static struct notifier_block slab_memory_callback_nb = { 4233 .notifier_call = slab_memory_callback, 4234 .priority = SLAB_CALLBACK_PRI, 4235 }; 4236 4237 /******************************************************************** 4238 * Basic setup of slabs 4239 *******************************************************************/ 4240 4241 /* 4242 * Used for early kmem_cache structures that were allocated using 4243 * the page allocator. Allocate them properly then fix up the pointers 4244 * that may be pointing to the wrong kmem_cache structure. 4245 */ 4246 4247 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4248 { 4249 int node; 4250 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4251 struct kmem_cache_node *n; 4252 4253 memcpy(s, static_cache, kmem_cache->object_size); 4254 4255 /* 4256 * This runs very early, and only the boot processor is supposed to be 4257 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4258 * IPIs around. 4259 */ 4260 __flush_cpu_slab(s, smp_processor_id()); 4261 for_each_kmem_cache_node(s, node, n) { 4262 struct page *p; 4263 4264 list_for_each_entry(p, &n->partial, slab_list) 4265 p->slab_cache = s; 4266 4267 #ifdef CONFIG_SLUB_DEBUG 4268 list_for_each_entry(p, &n->full, slab_list) 4269 p->slab_cache = s; 4270 #endif 4271 } 4272 slab_init_memcg_params(s); 4273 list_add(&s->list, &slab_caches); 4274 memcg_link_cache(s, NULL); 4275 return s; 4276 } 4277 4278 void __init kmem_cache_init(void) 4279 { 4280 static __initdata struct kmem_cache boot_kmem_cache, 4281 boot_kmem_cache_node; 4282 4283 if (debug_guardpage_minorder()) 4284 slub_max_order = 0; 4285 4286 kmem_cache_node = &boot_kmem_cache_node; 4287 kmem_cache = &boot_kmem_cache; 4288 4289 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4290 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4291 4292 register_hotmemory_notifier(&slab_memory_callback_nb); 4293 4294 /* Able to allocate the per node structures */ 4295 slab_state = PARTIAL; 4296 4297 create_boot_cache(kmem_cache, "kmem_cache", 4298 offsetof(struct kmem_cache, node) + 4299 nr_node_ids * sizeof(struct kmem_cache_node *), 4300 SLAB_HWCACHE_ALIGN, 0, 0); 4301 4302 kmem_cache = bootstrap(&boot_kmem_cache); 4303 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4304 4305 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4306 setup_kmalloc_cache_index_table(); 4307 create_kmalloc_caches(0); 4308 4309 /* Setup random freelists for each cache */ 4310 init_freelist_randomization(); 4311 4312 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4313 slub_cpu_dead); 4314 4315 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4316 cache_line_size(), 4317 slub_min_order, slub_max_order, slub_min_objects, 4318 nr_cpu_ids, nr_node_ids); 4319 } 4320 4321 void __init kmem_cache_init_late(void) 4322 { 4323 } 4324 4325 struct kmem_cache * 4326 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4327 slab_flags_t flags, void (*ctor)(void *)) 4328 { 4329 struct kmem_cache *s, *c; 4330 4331 s = find_mergeable(size, align, flags, name, ctor); 4332 if (s) { 4333 s->refcount++; 4334 4335 /* 4336 * Adjust the object sizes so that we clear 4337 * the complete object on kzalloc. 4338 */ 4339 s->object_size = max(s->object_size, size); 4340 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4341 4342 for_each_memcg_cache(c, s) { 4343 c->object_size = s->object_size; 4344 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4345 } 4346 4347 if (sysfs_slab_alias(s, name)) { 4348 s->refcount--; 4349 s = NULL; 4350 } 4351 } 4352 4353 return s; 4354 } 4355 4356 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4357 { 4358 int err; 4359 4360 err = kmem_cache_open(s, flags); 4361 if (err) 4362 return err; 4363 4364 /* Mutex is not taken during early boot */ 4365 if (slab_state <= UP) 4366 return 0; 4367 4368 memcg_propagate_slab_attrs(s); 4369 err = sysfs_slab_add(s); 4370 if (err) 4371 __kmem_cache_release(s); 4372 4373 return err; 4374 } 4375 4376 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4377 { 4378 struct kmem_cache *s; 4379 void *ret; 4380 4381 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4382 return kmalloc_large(size, gfpflags); 4383 4384 s = kmalloc_slab(size, gfpflags); 4385 4386 if (unlikely(ZERO_OR_NULL_PTR(s))) 4387 return s; 4388 4389 ret = slab_alloc(s, gfpflags, caller); 4390 4391 /* Honor the call site pointer we received. */ 4392 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4393 4394 return ret; 4395 } 4396 4397 #ifdef CONFIG_NUMA 4398 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4399 int node, unsigned long caller) 4400 { 4401 struct kmem_cache *s; 4402 void *ret; 4403 4404 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4405 ret = kmalloc_large_node(size, gfpflags, node); 4406 4407 trace_kmalloc_node(caller, ret, 4408 size, PAGE_SIZE << get_order(size), 4409 gfpflags, node); 4410 4411 return ret; 4412 } 4413 4414 s = kmalloc_slab(size, gfpflags); 4415 4416 if (unlikely(ZERO_OR_NULL_PTR(s))) 4417 return s; 4418 4419 ret = slab_alloc_node(s, gfpflags, node, caller); 4420 4421 /* Honor the call site pointer we received. */ 4422 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4423 4424 return ret; 4425 } 4426 #endif 4427 4428 #ifdef CONFIG_SYSFS 4429 static int count_inuse(struct page *page) 4430 { 4431 return page->inuse; 4432 } 4433 4434 static int count_total(struct page *page) 4435 { 4436 return page->objects; 4437 } 4438 #endif 4439 4440 #ifdef CONFIG_SLUB_DEBUG 4441 static void validate_slab(struct kmem_cache *s, struct page *page) 4442 { 4443 void *p; 4444 void *addr = page_address(page); 4445 unsigned long *map; 4446 4447 slab_lock(page); 4448 4449 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4450 goto unlock; 4451 4452 /* Now we know that a valid freelist exists */ 4453 map = get_map(s, page); 4454 for_each_object(p, s, addr, page->objects) { 4455 u8 val = test_bit(slab_index(p, s, addr), map) ? 4456 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4457 4458 if (!check_object(s, page, p, val)) 4459 break; 4460 } 4461 put_map(map); 4462 unlock: 4463 slab_unlock(page); 4464 } 4465 4466 static int validate_slab_node(struct kmem_cache *s, 4467 struct kmem_cache_node *n) 4468 { 4469 unsigned long count = 0; 4470 struct page *page; 4471 unsigned long flags; 4472 4473 spin_lock_irqsave(&n->list_lock, flags); 4474 4475 list_for_each_entry(page, &n->partial, slab_list) { 4476 validate_slab(s, page); 4477 count++; 4478 } 4479 if (count != n->nr_partial) 4480 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4481 s->name, count, n->nr_partial); 4482 4483 if (!(s->flags & SLAB_STORE_USER)) 4484 goto out; 4485 4486 list_for_each_entry(page, &n->full, slab_list) { 4487 validate_slab(s, page); 4488 count++; 4489 } 4490 if (count != atomic_long_read(&n->nr_slabs)) 4491 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4492 s->name, count, atomic_long_read(&n->nr_slabs)); 4493 4494 out: 4495 spin_unlock_irqrestore(&n->list_lock, flags); 4496 return count; 4497 } 4498 4499 static long validate_slab_cache(struct kmem_cache *s) 4500 { 4501 int node; 4502 unsigned long count = 0; 4503 struct kmem_cache_node *n; 4504 4505 flush_all(s); 4506 for_each_kmem_cache_node(s, node, n) 4507 count += validate_slab_node(s, n); 4508 4509 return count; 4510 } 4511 /* 4512 * Generate lists of code addresses where slabcache objects are allocated 4513 * and freed. 4514 */ 4515 4516 struct location { 4517 unsigned long count; 4518 unsigned long addr; 4519 long long sum_time; 4520 long min_time; 4521 long max_time; 4522 long min_pid; 4523 long max_pid; 4524 DECLARE_BITMAP(cpus, NR_CPUS); 4525 nodemask_t nodes; 4526 }; 4527 4528 struct loc_track { 4529 unsigned long max; 4530 unsigned long count; 4531 struct location *loc; 4532 }; 4533 4534 static void free_loc_track(struct loc_track *t) 4535 { 4536 if (t->max) 4537 free_pages((unsigned long)t->loc, 4538 get_order(sizeof(struct location) * t->max)); 4539 } 4540 4541 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4542 { 4543 struct location *l; 4544 int order; 4545 4546 order = get_order(sizeof(struct location) * max); 4547 4548 l = (void *)__get_free_pages(flags, order); 4549 if (!l) 4550 return 0; 4551 4552 if (t->count) { 4553 memcpy(l, t->loc, sizeof(struct location) * t->count); 4554 free_loc_track(t); 4555 } 4556 t->max = max; 4557 t->loc = l; 4558 return 1; 4559 } 4560 4561 static int add_location(struct loc_track *t, struct kmem_cache *s, 4562 const struct track *track) 4563 { 4564 long start, end, pos; 4565 struct location *l; 4566 unsigned long caddr; 4567 unsigned long age = jiffies - track->when; 4568 4569 start = -1; 4570 end = t->count; 4571 4572 for ( ; ; ) { 4573 pos = start + (end - start + 1) / 2; 4574 4575 /* 4576 * There is nothing at "end". If we end up there 4577 * we need to add something to before end. 4578 */ 4579 if (pos == end) 4580 break; 4581 4582 caddr = t->loc[pos].addr; 4583 if (track->addr == caddr) { 4584 4585 l = &t->loc[pos]; 4586 l->count++; 4587 if (track->when) { 4588 l->sum_time += age; 4589 if (age < l->min_time) 4590 l->min_time = age; 4591 if (age > l->max_time) 4592 l->max_time = age; 4593 4594 if (track->pid < l->min_pid) 4595 l->min_pid = track->pid; 4596 if (track->pid > l->max_pid) 4597 l->max_pid = track->pid; 4598 4599 cpumask_set_cpu(track->cpu, 4600 to_cpumask(l->cpus)); 4601 } 4602 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4603 return 1; 4604 } 4605 4606 if (track->addr < caddr) 4607 end = pos; 4608 else 4609 start = pos; 4610 } 4611 4612 /* 4613 * Not found. Insert new tracking element. 4614 */ 4615 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4616 return 0; 4617 4618 l = t->loc + pos; 4619 if (pos < t->count) 4620 memmove(l + 1, l, 4621 (t->count - pos) * sizeof(struct location)); 4622 t->count++; 4623 l->count = 1; 4624 l->addr = track->addr; 4625 l->sum_time = age; 4626 l->min_time = age; 4627 l->max_time = age; 4628 l->min_pid = track->pid; 4629 l->max_pid = track->pid; 4630 cpumask_clear(to_cpumask(l->cpus)); 4631 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4632 nodes_clear(l->nodes); 4633 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4634 return 1; 4635 } 4636 4637 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4638 struct page *page, enum track_item alloc) 4639 { 4640 void *addr = page_address(page); 4641 void *p; 4642 unsigned long *map; 4643 4644 map = get_map(s, page); 4645 for_each_object(p, s, addr, page->objects) 4646 if (!test_bit(slab_index(p, s, addr), map)) 4647 add_location(t, s, get_track(s, p, alloc)); 4648 put_map(map); 4649 } 4650 4651 static int list_locations(struct kmem_cache *s, char *buf, 4652 enum track_item alloc) 4653 { 4654 int len = 0; 4655 unsigned long i; 4656 struct loc_track t = { 0, 0, NULL }; 4657 int node; 4658 struct kmem_cache_node *n; 4659 4660 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4661 GFP_KERNEL)) { 4662 return sprintf(buf, "Out of memory\n"); 4663 } 4664 /* Push back cpu slabs */ 4665 flush_all(s); 4666 4667 for_each_kmem_cache_node(s, node, n) { 4668 unsigned long flags; 4669 struct page *page; 4670 4671 if (!atomic_long_read(&n->nr_slabs)) 4672 continue; 4673 4674 spin_lock_irqsave(&n->list_lock, flags); 4675 list_for_each_entry(page, &n->partial, slab_list) 4676 process_slab(&t, s, page, alloc); 4677 list_for_each_entry(page, &n->full, slab_list) 4678 process_slab(&t, s, page, alloc); 4679 spin_unlock_irqrestore(&n->list_lock, flags); 4680 } 4681 4682 for (i = 0; i < t.count; i++) { 4683 struct location *l = &t.loc[i]; 4684 4685 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4686 break; 4687 len += sprintf(buf + len, "%7ld ", l->count); 4688 4689 if (l->addr) 4690 len += sprintf(buf + len, "%pS", (void *)l->addr); 4691 else 4692 len += sprintf(buf + len, "<not-available>"); 4693 4694 if (l->sum_time != l->min_time) { 4695 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4696 l->min_time, 4697 (long)div_u64(l->sum_time, l->count), 4698 l->max_time); 4699 } else 4700 len += sprintf(buf + len, " age=%ld", 4701 l->min_time); 4702 4703 if (l->min_pid != l->max_pid) 4704 len += sprintf(buf + len, " pid=%ld-%ld", 4705 l->min_pid, l->max_pid); 4706 else 4707 len += sprintf(buf + len, " pid=%ld", 4708 l->min_pid); 4709 4710 if (num_online_cpus() > 1 && 4711 !cpumask_empty(to_cpumask(l->cpus)) && 4712 len < PAGE_SIZE - 60) 4713 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4714 " cpus=%*pbl", 4715 cpumask_pr_args(to_cpumask(l->cpus))); 4716 4717 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4718 len < PAGE_SIZE - 60) 4719 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4720 " nodes=%*pbl", 4721 nodemask_pr_args(&l->nodes)); 4722 4723 len += sprintf(buf + len, "\n"); 4724 } 4725 4726 free_loc_track(&t); 4727 if (!t.count) 4728 len += sprintf(buf, "No data\n"); 4729 return len; 4730 } 4731 #endif /* CONFIG_SLUB_DEBUG */ 4732 4733 #ifdef SLUB_RESILIENCY_TEST 4734 static void __init resiliency_test(void) 4735 { 4736 u8 *p; 4737 int type = KMALLOC_NORMAL; 4738 4739 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4740 4741 pr_err("SLUB resiliency testing\n"); 4742 pr_err("-----------------------\n"); 4743 pr_err("A. Corruption after allocation\n"); 4744 4745 p = kzalloc(16, GFP_KERNEL); 4746 p[16] = 0x12; 4747 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4748 p + 16); 4749 4750 validate_slab_cache(kmalloc_caches[type][4]); 4751 4752 /* Hmmm... The next two are dangerous */ 4753 p = kzalloc(32, GFP_KERNEL); 4754 p[32 + sizeof(void *)] = 0x34; 4755 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4756 p); 4757 pr_err("If allocated object is overwritten then not detectable\n\n"); 4758 4759 validate_slab_cache(kmalloc_caches[type][5]); 4760 p = kzalloc(64, GFP_KERNEL); 4761 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4762 *p = 0x56; 4763 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4764 p); 4765 pr_err("If allocated object is overwritten then not detectable\n\n"); 4766 validate_slab_cache(kmalloc_caches[type][6]); 4767 4768 pr_err("\nB. Corruption after free\n"); 4769 p = kzalloc(128, GFP_KERNEL); 4770 kfree(p); 4771 *p = 0x78; 4772 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4773 validate_slab_cache(kmalloc_caches[type][7]); 4774 4775 p = kzalloc(256, GFP_KERNEL); 4776 kfree(p); 4777 p[50] = 0x9a; 4778 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4779 validate_slab_cache(kmalloc_caches[type][8]); 4780 4781 p = kzalloc(512, GFP_KERNEL); 4782 kfree(p); 4783 p[512] = 0xab; 4784 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4785 validate_slab_cache(kmalloc_caches[type][9]); 4786 } 4787 #else 4788 #ifdef CONFIG_SYSFS 4789 static void resiliency_test(void) {}; 4790 #endif 4791 #endif /* SLUB_RESILIENCY_TEST */ 4792 4793 #ifdef CONFIG_SYSFS 4794 enum slab_stat_type { 4795 SL_ALL, /* All slabs */ 4796 SL_PARTIAL, /* Only partially allocated slabs */ 4797 SL_CPU, /* Only slabs used for cpu caches */ 4798 SL_OBJECTS, /* Determine allocated objects not slabs */ 4799 SL_TOTAL /* Determine object capacity not slabs */ 4800 }; 4801 4802 #define SO_ALL (1 << SL_ALL) 4803 #define SO_PARTIAL (1 << SL_PARTIAL) 4804 #define SO_CPU (1 << SL_CPU) 4805 #define SO_OBJECTS (1 << SL_OBJECTS) 4806 #define SO_TOTAL (1 << SL_TOTAL) 4807 4808 #ifdef CONFIG_MEMCG 4809 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4810 4811 static int __init setup_slub_memcg_sysfs(char *str) 4812 { 4813 int v; 4814 4815 if (get_option(&str, &v) > 0) 4816 memcg_sysfs_enabled = v; 4817 4818 return 1; 4819 } 4820 4821 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4822 #endif 4823 4824 static ssize_t show_slab_objects(struct kmem_cache *s, 4825 char *buf, unsigned long flags) 4826 { 4827 unsigned long total = 0; 4828 int node; 4829 int x; 4830 unsigned long *nodes; 4831 4832 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4833 if (!nodes) 4834 return -ENOMEM; 4835 4836 if (flags & SO_CPU) { 4837 int cpu; 4838 4839 for_each_possible_cpu(cpu) { 4840 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4841 cpu); 4842 int node; 4843 struct page *page; 4844 4845 page = READ_ONCE(c->page); 4846 if (!page) 4847 continue; 4848 4849 node = page_to_nid(page); 4850 if (flags & SO_TOTAL) 4851 x = page->objects; 4852 else if (flags & SO_OBJECTS) 4853 x = page->inuse; 4854 else 4855 x = 1; 4856 4857 total += x; 4858 nodes[node] += x; 4859 4860 page = slub_percpu_partial_read_once(c); 4861 if (page) { 4862 node = page_to_nid(page); 4863 if (flags & SO_TOTAL) 4864 WARN_ON_ONCE(1); 4865 else if (flags & SO_OBJECTS) 4866 WARN_ON_ONCE(1); 4867 else 4868 x = page->pages; 4869 total += x; 4870 nodes[node] += x; 4871 } 4872 } 4873 } 4874 4875 /* 4876 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 4877 * already held which will conflict with an existing lock order: 4878 * 4879 * mem_hotplug_lock->slab_mutex->kernfs_mutex 4880 * 4881 * We don't really need mem_hotplug_lock (to hold off 4882 * slab_mem_going_offline_callback) here because slab's memory hot 4883 * unplug code doesn't destroy the kmem_cache->node[] data. 4884 */ 4885 4886 #ifdef CONFIG_SLUB_DEBUG 4887 if (flags & SO_ALL) { 4888 struct kmem_cache_node *n; 4889 4890 for_each_kmem_cache_node(s, node, n) { 4891 4892 if (flags & SO_TOTAL) 4893 x = atomic_long_read(&n->total_objects); 4894 else if (flags & SO_OBJECTS) 4895 x = atomic_long_read(&n->total_objects) - 4896 count_partial(n, count_free); 4897 else 4898 x = atomic_long_read(&n->nr_slabs); 4899 total += x; 4900 nodes[node] += x; 4901 } 4902 4903 } else 4904 #endif 4905 if (flags & SO_PARTIAL) { 4906 struct kmem_cache_node *n; 4907 4908 for_each_kmem_cache_node(s, node, n) { 4909 if (flags & SO_TOTAL) 4910 x = count_partial(n, count_total); 4911 else if (flags & SO_OBJECTS) 4912 x = count_partial(n, count_inuse); 4913 else 4914 x = n->nr_partial; 4915 total += x; 4916 nodes[node] += x; 4917 } 4918 } 4919 x = sprintf(buf, "%lu", total); 4920 #ifdef CONFIG_NUMA 4921 for (node = 0; node < nr_node_ids; node++) 4922 if (nodes[node]) 4923 x += sprintf(buf + x, " N%d=%lu", 4924 node, nodes[node]); 4925 #endif 4926 kfree(nodes); 4927 return x + sprintf(buf + x, "\n"); 4928 } 4929 4930 #ifdef CONFIG_SLUB_DEBUG 4931 static int any_slab_objects(struct kmem_cache *s) 4932 { 4933 int node; 4934 struct kmem_cache_node *n; 4935 4936 for_each_kmem_cache_node(s, node, n) 4937 if (atomic_long_read(&n->total_objects)) 4938 return 1; 4939 4940 return 0; 4941 } 4942 #endif 4943 4944 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4945 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4946 4947 struct slab_attribute { 4948 struct attribute attr; 4949 ssize_t (*show)(struct kmem_cache *s, char *buf); 4950 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4951 }; 4952 4953 #define SLAB_ATTR_RO(_name) \ 4954 static struct slab_attribute _name##_attr = \ 4955 __ATTR(_name, 0400, _name##_show, NULL) 4956 4957 #define SLAB_ATTR(_name) \ 4958 static struct slab_attribute _name##_attr = \ 4959 __ATTR(_name, 0600, _name##_show, _name##_store) 4960 4961 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4962 { 4963 return sprintf(buf, "%u\n", s->size); 4964 } 4965 SLAB_ATTR_RO(slab_size); 4966 4967 static ssize_t align_show(struct kmem_cache *s, char *buf) 4968 { 4969 return sprintf(buf, "%u\n", s->align); 4970 } 4971 SLAB_ATTR_RO(align); 4972 4973 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4974 { 4975 return sprintf(buf, "%u\n", s->object_size); 4976 } 4977 SLAB_ATTR_RO(object_size); 4978 4979 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4980 { 4981 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4982 } 4983 SLAB_ATTR_RO(objs_per_slab); 4984 4985 static ssize_t order_store(struct kmem_cache *s, 4986 const char *buf, size_t length) 4987 { 4988 unsigned int order; 4989 int err; 4990 4991 err = kstrtouint(buf, 10, &order); 4992 if (err) 4993 return err; 4994 4995 if (order > slub_max_order || order < slub_min_order) 4996 return -EINVAL; 4997 4998 calculate_sizes(s, order); 4999 return length; 5000 } 5001 5002 static ssize_t order_show(struct kmem_cache *s, char *buf) 5003 { 5004 return sprintf(buf, "%u\n", oo_order(s->oo)); 5005 } 5006 SLAB_ATTR(order); 5007 5008 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5009 { 5010 return sprintf(buf, "%lu\n", s->min_partial); 5011 } 5012 5013 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5014 size_t length) 5015 { 5016 unsigned long min; 5017 int err; 5018 5019 err = kstrtoul(buf, 10, &min); 5020 if (err) 5021 return err; 5022 5023 set_min_partial(s, min); 5024 return length; 5025 } 5026 SLAB_ATTR(min_partial); 5027 5028 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5029 { 5030 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 5031 } 5032 5033 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5034 size_t length) 5035 { 5036 unsigned int objects; 5037 int err; 5038 5039 err = kstrtouint(buf, 10, &objects); 5040 if (err) 5041 return err; 5042 if (objects && !kmem_cache_has_cpu_partial(s)) 5043 return -EINVAL; 5044 5045 slub_set_cpu_partial(s, objects); 5046 flush_all(s); 5047 return length; 5048 } 5049 SLAB_ATTR(cpu_partial); 5050 5051 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5052 { 5053 if (!s->ctor) 5054 return 0; 5055 return sprintf(buf, "%pS\n", s->ctor); 5056 } 5057 SLAB_ATTR_RO(ctor); 5058 5059 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5060 { 5061 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5062 } 5063 SLAB_ATTR_RO(aliases); 5064 5065 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5066 { 5067 return show_slab_objects(s, buf, SO_PARTIAL); 5068 } 5069 SLAB_ATTR_RO(partial); 5070 5071 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5072 { 5073 return show_slab_objects(s, buf, SO_CPU); 5074 } 5075 SLAB_ATTR_RO(cpu_slabs); 5076 5077 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5078 { 5079 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5080 } 5081 SLAB_ATTR_RO(objects); 5082 5083 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5084 { 5085 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5086 } 5087 SLAB_ATTR_RO(objects_partial); 5088 5089 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5090 { 5091 int objects = 0; 5092 int pages = 0; 5093 int cpu; 5094 int len; 5095 5096 for_each_online_cpu(cpu) { 5097 struct page *page; 5098 5099 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5100 5101 if (page) { 5102 pages += page->pages; 5103 objects += page->pobjects; 5104 } 5105 } 5106 5107 len = sprintf(buf, "%d(%d)", objects, pages); 5108 5109 #ifdef CONFIG_SMP 5110 for_each_online_cpu(cpu) { 5111 struct page *page; 5112 5113 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5114 5115 if (page && len < PAGE_SIZE - 20) 5116 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5117 page->pobjects, page->pages); 5118 } 5119 #endif 5120 return len + sprintf(buf + len, "\n"); 5121 } 5122 SLAB_ATTR_RO(slabs_cpu_partial); 5123 5124 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5125 { 5126 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5127 } 5128 5129 static ssize_t reclaim_account_store(struct kmem_cache *s, 5130 const char *buf, size_t length) 5131 { 5132 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5133 if (buf[0] == '1') 5134 s->flags |= SLAB_RECLAIM_ACCOUNT; 5135 return length; 5136 } 5137 SLAB_ATTR(reclaim_account); 5138 5139 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5140 { 5141 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5142 } 5143 SLAB_ATTR_RO(hwcache_align); 5144 5145 #ifdef CONFIG_ZONE_DMA 5146 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5147 { 5148 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5149 } 5150 SLAB_ATTR_RO(cache_dma); 5151 #endif 5152 5153 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5154 { 5155 return sprintf(buf, "%u\n", s->usersize); 5156 } 5157 SLAB_ATTR_RO(usersize); 5158 5159 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5160 { 5161 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5162 } 5163 SLAB_ATTR_RO(destroy_by_rcu); 5164 5165 #ifdef CONFIG_SLUB_DEBUG 5166 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5167 { 5168 return show_slab_objects(s, buf, SO_ALL); 5169 } 5170 SLAB_ATTR_RO(slabs); 5171 5172 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5173 { 5174 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5175 } 5176 SLAB_ATTR_RO(total_objects); 5177 5178 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5179 { 5180 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5181 } 5182 5183 static ssize_t sanity_checks_store(struct kmem_cache *s, 5184 const char *buf, size_t length) 5185 { 5186 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5187 if (buf[0] == '1') { 5188 s->flags &= ~__CMPXCHG_DOUBLE; 5189 s->flags |= SLAB_CONSISTENCY_CHECKS; 5190 } 5191 return length; 5192 } 5193 SLAB_ATTR(sanity_checks); 5194 5195 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5196 { 5197 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5198 } 5199 5200 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5201 size_t length) 5202 { 5203 /* 5204 * Tracing a merged cache is going to give confusing results 5205 * as well as cause other issues like converting a mergeable 5206 * cache into an umergeable one. 5207 */ 5208 if (s->refcount > 1) 5209 return -EINVAL; 5210 5211 s->flags &= ~SLAB_TRACE; 5212 if (buf[0] == '1') { 5213 s->flags &= ~__CMPXCHG_DOUBLE; 5214 s->flags |= SLAB_TRACE; 5215 } 5216 return length; 5217 } 5218 SLAB_ATTR(trace); 5219 5220 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5221 { 5222 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5223 } 5224 5225 static ssize_t red_zone_store(struct kmem_cache *s, 5226 const char *buf, size_t length) 5227 { 5228 if (any_slab_objects(s)) 5229 return -EBUSY; 5230 5231 s->flags &= ~SLAB_RED_ZONE; 5232 if (buf[0] == '1') { 5233 s->flags |= SLAB_RED_ZONE; 5234 } 5235 calculate_sizes(s, -1); 5236 return length; 5237 } 5238 SLAB_ATTR(red_zone); 5239 5240 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5241 { 5242 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5243 } 5244 5245 static ssize_t poison_store(struct kmem_cache *s, 5246 const char *buf, size_t length) 5247 { 5248 if (any_slab_objects(s)) 5249 return -EBUSY; 5250 5251 s->flags &= ~SLAB_POISON; 5252 if (buf[0] == '1') { 5253 s->flags |= SLAB_POISON; 5254 } 5255 calculate_sizes(s, -1); 5256 return length; 5257 } 5258 SLAB_ATTR(poison); 5259 5260 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5261 { 5262 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5263 } 5264 5265 static ssize_t store_user_store(struct kmem_cache *s, 5266 const char *buf, size_t length) 5267 { 5268 if (any_slab_objects(s)) 5269 return -EBUSY; 5270 5271 s->flags &= ~SLAB_STORE_USER; 5272 if (buf[0] == '1') { 5273 s->flags &= ~__CMPXCHG_DOUBLE; 5274 s->flags |= SLAB_STORE_USER; 5275 } 5276 calculate_sizes(s, -1); 5277 return length; 5278 } 5279 SLAB_ATTR(store_user); 5280 5281 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5282 { 5283 return 0; 5284 } 5285 5286 static ssize_t validate_store(struct kmem_cache *s, 5287 const char *buf, size_t length) 5288 { 5289 int ret = -EINVAL; 5290 5291 if (buf[0] == '1') { 5292 ret = validate_slab_cache(s); 5293 if (ret >= 0) 5294 ret = length; 5295 } 5296 return ret; 5297 } 5298 SLAB_ATTR(validate); 5299 5300 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5301 { 5302 if (!(s->flags & SLAB_STORE_USER)) 5303 return -ENOSYS; 5304 return list_locations(s, buf, TRACK_ALLOC); 5305 } 5306 SLAB_ATTR_RO(alloc_calls); 5307 5308 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5309 { 5310 if (!(s->flags & SLAB_STORE_USER)) 5311 return -ENOSYS; 5312 return list_locations(s, buf, TRACK_FREE); 5313 } 5314 SLAB_ATTR_RO(free_calls); 5315 #endif /* CONFIG_SLUB_DEBUG */ 5316 5317 #ifdef CONFIG_FAILSLAB 5318 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5319 { 5320 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5321 } 5322 5323 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5324 size_t length) 5325 { 5326 if (s->refcount > 1) 5327 return -EINVAL; 5328 5329 s->flags &= ~SLAB_FAILSLAB; 5330 if (buf[0] == '1') 5331 s->flags |= SLAB_FAILSLAB; 5332 return length; 5333 } 5334 SLAB_ATTR(failslab); 5335 #endif 5336 5337 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5338 { 5339 return 0; 5340 } 5341 5342 static ssize_t shrink_store(struct kmem_cache *s, 5343 const char *buf, size_t length) 5344 { 5345 if (buf[0] == '1') 5346 kmem_cache_shrink_all(s); 5347 else 5348 return -EINVAL; 5349 return length; 5350 } 5351 SLAB_ATTR(shrink); 5352 5353 #ifdef CONFIG_NUMA 5354 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5355 { 5356 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5357 } 5358 5359 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5360 const char *buf, size_t length) 5361 { 5362 unsigned int ratio; 5363 int err; 5364 5365 err = kstrtouint(buf, 10, &ratio); 5366 if (err) 5367 return err; 5368 if (ratio > 100) 5369 return -ERANGE; 5370 5371 s->remote_node_defrag_ratio = ratio * 10; 5372 5373 return length; 5374 } 5375 SLAB_ATTR(remote_node_defrag_ratio); 5376 #endif 5377 5378 #ifdef CONFIG_SLUB_STATS 5379 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5380 { 5381 unsigned long sum = 0; 5382 int cpu; 5383 int len; 5384 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5385 5386 if (!data) 5387 return -ENOMEM; 5388 5389 for_each_online_cpu(cpu) { 5390 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5391 5392 data[cpu] = x; 5393 sum += x; 5394 } 5395 5396 len = sprintf(buf, "%lu", sum); 5397 5398 #ifdef CONFIG_SMP 5399 for_each_online_cpu(cpu) { 5400 if (data[cpu] && len < PAGE_SIZE - 20) 5401 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5402 } 5403 #endif 5404 kfree(data); 5405 return len + sprintf(buf + len, "\n"); 5406 } 5407 5408 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5409 { 5410 int cpu; 5411 5412 for_each_online_cpu(cpu) 5413 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5414 } 5415 5416 #define STAT_ATTR(si, text) \ 5417 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5418 { \ 5419 return show_stat(s, buf, si); \ 5420 } \ 5421 static ssize_t text##_store(struct kmem_cache *s, \ 5422 const char *buf, size_t length) \ 5423 { \ 5424 if (buf[0] != '0') \ 5425 return -EINVAL; \ 5426 clear_stat(s, si); \ 5427 return length; \ 5428 } \ 5429 SLAB_ATTR(text); \ 5430 5431 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5432 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5433 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5434 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5435 STAT_ATTR(FREE_FROZEN, free_frozen); 5436 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5437 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5438 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5439 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5440 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5441 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5442 STAT_ATTR(FREE_SLAB, free_slab); 5443 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5444 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5445 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5446 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5447 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5448 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5449 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5450 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5451 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5452 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5453 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5454 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5455 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5456 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5457 #endif /* CONFIG_SLUB_STATS */ 5458 5459 static struct attribute *slab_attrs[] = { 5460 &slab_size_attr.attr, 5461 &object_size_attr.attr, 5462 &objs_per_slab_attr.attr, 5463 &order_attr.attr, 5464 &min_partial_attr.attr, 5465 &cpu_partial_attr.attr, 5466 &objects_attr.attr, 5467 &objects_partial_attr.attr, 5468 &partial_attr.attr, 5469 &cpu_slabs_attr.attr, 5470 &ctor_attr.attr, 5471 &aliases_attr.attr, 5472 &align_attr.attr, 5473 &hwcache_align_attr.attr, 5474 &reclaim_account_attr.attr, 5475 &destroy_by_rcu_attr.attr, 5476 &shrink_attr.attr, 5477 &slabs_cpu_partial_attr.attr, 5478 #ifdef CONFIG_SLUB_DEBUG 5479 &total_objects_attr.attr, 5480 &slabs_attr.attr, 5481 &sanity_checks_attr.attr, 5482 &trace_attr.attr, 5483 &red_zone_attr.attr, 5484 &poison_attr.attr, 5485 &store_user_attr.attr, 5486 &validate_attr.attr, 5487 &alloc_calls_attr.attr, 5488 &free_calls_attr.attr, 5489 #endif 5490 #ifdef CONFIG_ZONE_DMA 5491 &cache_dma_attr.attr, 5492 #endif 5493 #ifdef CONFIG_NUMA 5494 &remote_node_defrag_ratio_attr.attr, 5495 #endif 5496 #ifdef CONFIG_SLUB_STATS 5497 &alloc_fastpath_attr.attr, 5498 &alloc_slowpath_attr.attr, 5499 &free_fastpath_attr.attr, 5500 &free_slowpath_attr.attr, 5501 &free_frozen_attr.attr, 5502 &free_add_partial_attr.attr, 5503 &free_remove_partial_attr.attr, 5504 &alloc_from_partial_attr.attr, 5505 &alloc_slab_attr.attr, 5506 &alloc_refill_attr.attr, 5507 &alloc_node_mismatch_attr.attr, 5508 &free_slab_attr.attr, 5509 &cpuslab_flush_attr.attr, 5510 &deactivate_full_attr.attr, 5511 &deactivate_empty_attr.attr, 5512 &deactivate_to_head_attr.attr, 5513 &deactivate_to_tail_attr.attr, 5514 &deactivate_remote_frees_attr.attr, 5515 &deactivate_bypass_attr.attr, 5516 &order_fallback_attr.attr, 5517 &cmpxchg_double_fail_attr.attr, 5518 &cmpxchg_double_cpu_fail_attr.attr, 5519 &cpu_partial_alloc_attr.attr, 5520 &cpu_partial_free_attr.attr, 5521 &cpu_partial_node_attr.attr, 5522 &cpu_partial_drain_attr.attr, 5523 #endif 5524 #ifdef CONFIG_FAILSLAB 5525 &failslab_attr.attr, 5526 #endif 5527 &usersize_attr.attr, 5528 5529 NULL 5530 }; 5531 5532 static const struct attribute_group slab_attr_group = { 5533 .attrs = slab_attrs, 5534 }; 5535 5536 static ssize_t slab_attr_show(struct kobject *kobj, 5537 struct attribute *attr, 5538 char *buf) 5539 { 5540 struct slab_attribute *attribute; 5541 struct kmem_cache *s; 5542 int err; 5543 5544 attribute = to_slab_attr(attr); 5545 s = to_slab(kobj); 5546 5547 if (!attribute->show) 5548 return -EIO; 5549 5550 err = attribute->show(s, buf); 5551 5552 return err; 5553 } 5554 5555 static ssize_t slab_attr_store(struct kobject *kobj, 5556 struct attribute *attr, 5557 const char *buf, size_t len) 5558 { 5559 struct slab_attribute *attribute; 5560 struct kmem_cache *s; 5561 int err; 5562 5563 attribute = to_slab_attr(attr); 5564 s = to_slab(kobj); 5565 5566 if (!attribute->store) 5567 return -EIO; 5568 5569 err = attribute->store(s, buf, len); 5570 #ifdef CONFIG_MEMCG 5571 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5572 struct kmem_cache *c; 5573 5574 mutex_lock(&slab_mutex); 5575 if (s->max_attr_size < len) 5576 s->max_attr_size = len; 5577 5578 /* 5579 * This is a best effort propagation, so this function's return 5580 * value will be determined by the parent cache only. This is 5581 * basically because not all attributes will have a well 5582 * defined semantics for rollbacks - most of the actions will 5583 * have permanent effects. 5584 * 5585 * Returning the error value of any of the children that fail 5586 * is not 100 % defined, in the sense that users seeing the 5587 * error code won't be able to know anything about the state of 5588 * the cache. 5589 * 5590 * Only returning the error code for the parent cache at least 5591 * has well defined semantics. The cache being written to 5592 * directly either failed or succeeded, in which case we loop 5593 * through the descendants with best-effort propagation. 5594 */ 5595 for_each_memcg_cache(c, s) 5596 attribute->store(c, buf, len); 5597 mutex_unlock(&slab_mutex); 5598 } 5599 #endif 5600 return err; 5601 } 5602 5603 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5604 { 5605 #ifdef CONFIG_MEMCG 5606 int i; 5607 char *buffer = NULL; 5608 struct kmem_cache *root_cache; 5609 5610 if (is_root_cache(s)) 5611 return; 5612 5613 root_cache = s->memcg_params.root_cache; 5614 5615 /* 5616 * This mean this cache had no attribute written. Therefore, no point 5617 * in copying default values around 5618 */ 5619 if (!root_cache->max_attr_size) 5620 return; 5621 5622 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5623 char mbuf[64]; 5624 char *buf; 5625 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5626 ssize_t len; 5627 5628 if (!attr || !attr->store || !attr->show) 5629 continue; 5630 5631 /* 5632 * It is really bad that we have to allocate here, so we will 5633 * do it only as a fallback. If we actually allocate, though, 5634 * we can just use the allocated buffer until the end. 5635 * 5636 * Most of the slub attributes will tend to be very small in 5637 * size, but sysfs allows buffers up to a page, so they can 5638 * theoretically happen. 5639 */ 5640 if (buffer) 5641 buf = buffer; 5642 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5643 buf = mbuf; 5644 else { 5645 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5646 if (WARN_ON(!buffer)) 5647 continue; 5648 buf = buffer; 5649 } 5650 5651 len = attr->show(root_cache, buf); 5652 if (len > 0) 5653 attr->store(s, buf, len); 5654 } 5655 5656 if (buffer) 5657 free_page((unsigned long)buffer); 5658 #endif /* CONFIG_MEMCG */ 5659 } 5660 5661 static void kmem_cache_release(struct kobject *k) 5662 { 5663 slab_kmem_cache_release(to_slab(k)); 5664 } 5665 5666 static const struct sysfs_ops slab_sysfs_ops = { 5667 .show = slab_attr_show, 5668 .store = slab_attr_store, 5669 }; 5670 5671 static struct kobj_type slab_ktype = { 5672 .sysfs_ops = &slab_sysfs_ops, 5673 .release = kmem_cache_release, 5674 }; 5675 5676 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5677 { 5678 struct kobj_type *ktype = get_ktype(kobj); 5679 5680 if (ktype == &slab_ktype) 5681 return 1; 5682 return 0; 5683 } 5684 5685 static const struct kset_uevent_ops slab_uevent_ops = { 5686 .filter = uevent_filter, 5687 }; 5688 5689 static struct kset *slab_kset; 5690 5691 static inline struct kset *cache_kset(struct kmem_cache *s) 5692 { 5693 #ifdef CONFIG_MEMCG 5694 if (!is_root_cache(s)) 5695 return s->memcg_params.root_cache->memcg_kset; 5696 #endif 5697 return slab_kset; 5698 } 5699 5700 #define ID_STR_LENGTH 64 5701 5702 /* Create a unique string id for a slab cache: 5703 * 5704 * Format :[flags-]size 5705 */ 5706 static char *create_unique_id(struct kmem_cache *s) 5707 { 5708 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5709 char *p = name; 5710 5711 BUG_ON(!name); 5712 5713 *p++ = ':'; 5714 /* 5715 * First flags affecting slabcache operations. We will only 5716 * get here for aliasable slabs so we do not need to support 5717 * too many flags. The flags here must cover all flags that 5718 * are matched during merging to guarantee that the id is 5719 * unique. 5720 */ 5721 if (s->flags & SLAB_CACHE_DMA) 5722 *p++ = 'd'; 5723 if (s->flags & SLAB_CACHE_DMA32) 5724 *p++ = 'D'; 5725 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5726 *p++ = 'a'; 5727 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5728 *p++ = 'F'; 5729 if (s->flags & SLAB_ACCOUNT) 5730 *p++ = 'A'; 5731 if (p != name + 1) 5732 *p++ = '-'; 5733 p += sprintf(p, "%07u", s->size); 5734 5735 BUG_ON(p > name + ID_STR_LENGTH - 1); 5736 return name; 5737 } 5738 5739 static void sysfs_slab_remove_workfn(struct work_struct *work) 5740 { 5741 struct kmem_cache *s = 5742 container_of(work, struct kmem_cache, kobj_remove_work); 5743 5744 if (!s->kobj.state_in_sysfs) 5745 /* 5746 * For a memcg cache, this may be called during 5747 * deactivation and again on shutdown. Remove only once. 5748 * A cache is never shut down before deactivation is 5749 * complete, so no need to worry about synchronization. 5750 */ 5751 goto out; 5752 5753 #ifdef CONFIG_MEMCG 5754 kset_unregister(s->memcg_kset); 5755 #endif 5756 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5757 out: 5758 kobject_put(&s->kobj); 5759 } 5760 5761 static int sysfs_slab_add(struct kmem_cache *s) 5762 { 5763 int err; 5764 const char *name; 5765 struct kset *kset = cache_kset(s); 5766 int unmergeable = slab_unmergeable(s); 5767 5768 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5769 5770 if (!kset) { 5771 kobject_init(&s->kobj, &slab_ktype); 5772 return 0; 5773 } 5774 5775 if (!unmergeable && disable_higher_order_debug && 5776 (slub_debug & DEBUG_METADATA_FLAGS)) 5777 unmergeable = 1; 5778 5779 if (unmergeable) { 5780 /* 5781 * Slabcache can never be merged so we can use the name proper. 5782 * This is typically the case for debug situations. In that 5783 * case we can catch duplicate names easily. 5784 */ 5785 sysfs_remove_link(&slab_kset->kobj, s->name); 5786 name = s->name; 5787 } else { 5788 /* 5789 * Create a unique name for the slab as a target 5790 * for the symlinks. 5791 */ 5792 name = create_unique_id(s); 5793 } 5794 5795 s->kobj.kset = kset; 5796 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5797 if (err) 5798 goto out; 5799 5800 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5801 if (err) 5802 goto out_del_kobj; 5803 5804 #ifdef CONFIG_MEMCG 5805 if (is_root_cache(s) && memcg_sysfs_enabled) { 5806 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5807 if (!s->memcg_kset) { 5808 err = -ENOMEM; 5809 goto out_del_kobj; 5810 } 5811 } 5812 #endif 5813 5814 kobject_uevent(&s->kobj, KOBJ_ADD); 5815 if (!unmergeable) { 5816 /* Setup first alias */ 5817 sysfs_slab_alias(s, s->name); 5818 } 5819 out: 5820 if (!unmergeable) 5821 kfree(name); 5822 return err; 5823 out_del_kobj: 5824 kobject_del(&s->kobj); 5825 goto out; 5826 } 5827 5828 static void sysfs_slab_remove(struct kmem_cache *s) 5829 { 5830 if (slab_state < FULL) 5831 /* 5832 * Sysfs has not been setup yet so no need to remove the 5833 * cache from sysfs. 5834 */ 5835 return; 5836 5837 kobject_get(&s->kobj); 5838 schedule_work(&s->kobj_remove_work); 5839 } 5840 5841 void sysfs_slab_unlink(struct kmem_cache *s) 5842 { 5843 if (slab_state >= FULL) 5844 kobject_del(&s->kobj); 5845 } 5846 5847 void sysfs_slab_release(struct kmem_cache *s) 5848 { 5849 if (slab_state >= FULL) 5850 kobject_put(&s->kobj); 5851 } 5852 5853 /* 5854 * Need to buffer aliases during bootup until sysfs becomes 5855 * available lest we lose that information. 5856 */ 5857 struct saved_alias { 5858 struct kmem_cache *s; 5859 const char *name; 5860 struct saved_alias *next; 5861 }; 5862 5863 static struct saved_alias *alias_list; 5864 5865 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5866 { 5867 struct saved_alias *al; 5868 5869 if (slab_state == FULL) { 5870 /* 5871 * If we have a leftover link then remove it. 5872 */ 5873 sysfs_remove_link(&slab_kset->kobj, name); 5874 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5875 } 5876 5877 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5878 if (!al) 5879 return -ENOMEM; 5880 5881 al->s = s; 5882 al->name = name; 5883 al->next = alias_list; 5884 alias_list = al; 5885 return 0; 5886 } 5887 5888 static int __init slab_sysfs_init(void) 5889 { 5890 struct kmem_cache *s; 5891 int err; 5892 5893 mutex_lock(&slab_mutex); 5894 5895 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5896 if (!slab_kset) { 5897 mutex_unlock(&slab_mutex); 5898 pr_err("Cannot register slab subsystem.\n"); 5899 return -ENOSYS; 5900 } 5901 5902 slab_state = FULL; 5903 5904 list_for_each_entry(s, &slab_caches, list) { 5905 err = sysfs_slab_add(s); 5906 if (err) 5907 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5908 s->name); 5909 } 5910 5911 while (alias_list) { 5912 struct saved_alias *al = alias_list; 5913 5914 alias_list = alias_list->next; 5915 err = sysfs_slab_alias(al->s, al->name); 5916 if (err) 5917 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5918 al->name); 5919 kfree(al); 5920 } 5921 5922 mutex_unlock(&slab_mutex); 5923 resiliency_test(); 5924 return 0; 5925 } 5926 5927 __initcall(slab_sysfs_init); 5928 #endif /* CONFIG_SYSFS */ 5929 5930 /* 5931 * The /proc/slabinfo ABI 5932 */ 5933 #ifdef CONFIG_SLUB_DEBUG 5934 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5935 { 5936 unsigned long nr_slabs = 0; 5937 unsigned long nr_objs = 0; 5938 unsigned long nr_free = 0; 5939 int node; 5940 struct kmem_cache_node *n; 5941 5942 for_each_kmem_cache_node(s, node, n) { 5943 nr_slabs += node_nr_slabs(n); 5944 nr_objs += node_nr_objs(n); 5945 nr_free += count_partial(n, count_free); 5946 } 5947 5948 sinfo->active_objs = nr_objs - nr_free; 5949 sinfo->num_objs = nr_objs; 5950 sinfo->active_slabs = nr_slabs; 5951 sinfo->num_slabs = nr_slabs; 5952 sinfo->objects_per_slab = oo_objects(s->oo); 5953 sinfo->cache_order = oo_order(s->oo); 5954 } 5955 5956 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5957 { 5958 } 5959 5960 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5961 size_t count, loff_t *ppos) 5962 { 5963 return -EIO; 5964 } 5965 #endif /* CONFIG_SLUB_DEBUG */ 5966