xref: /openbmc/linux/mm/slub.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
40 
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
43 
44 #include "internal.h"
45 
46 /*
47  * Lock order:
48  *   1. slab_mutex (Global Mutex)
49  *   2. node->list_lock
50  *   3. slab_lock(page) (Only on some arches and for debugging)
51  *
52  *   slab_mutex
53  *
54  *   The role of the slab_mutex is to protect the list of all the slabs
55  *   and to synchronize major metadata changes to slab cache structures.
56  *
57  *   The slab_lock is only used for debugging and on arches that do not
58  *   have the ability to do a cmpxchg_double. It only protects:
59  *	A. page->freelist	-> List of object free in a page
60  *	B. page->inuse		-> Number of objects in use
61  *	C. page->objects	-> Number of objects in page
62  *	D. page->frozen		-> frozen state
63  *
64  *   If a slab is frozen then it is exempt from list management. It is not
65  *   on any list except per cpu partial list. The processor that froze the
66  *   slab is the one who can perform list operations on the page. Other
67  *   processors may put objects onto the freelist but the processor that
68  *   froze the slab is the only one that can retrieve the objects from the
69  *   page's freelist.
70  *
71  *   The list_lock protects the partial and full list on each node and
72  *   the partial slab counter. If taken then no new slabs may be added or
73  *   removed from the lists nor make the number of partial slabs be modified.
74  *   (Note that the total number of slabs is an atomic value that may be
75  *   modified without taking the list lock).
76  *
77  *   The list_lock is a centralized lock and thus we avoid taking it as
78  *   much as possible. As long as SLUB does not have to handle partial
79  *   slabs, operations can continue without any centralized lock. F.e.
80  *   allocating a long series of objects that fill up slabs does not require
81  *   the list lock.
82  *   Interrupts are disabled during allocation and deallocation in order to
83  *   make the slab allocator safe to use in the context of an irq. In addition
84  *   interrupts are disabled to ensure that the processor does not change
85  *   while handling per_cpu slabs, due to kernel preemption.
86  *
87  * SLUB assigns one slab for allocation to each processor.
88  * Allocations only occur from these slabs called cpu slabs.
89  *
90  * Slabs with free elements are kept on a partial list and during regular
91  * operations no list for full slabs is used. If an object in a full slab is
92  * freed then the slab will show up again on the partial lists.
93  * We track full slabs for debugging purposes though because otherwise we
94  * cannot scan all objects.
95  *
96  * Slabs are freed when they become empty. Teardown and setup is
97  * minimal so we rely on the page allocators per cpu caches for
98  * fast frees and allocs.
99  *
100  * page->frozen		The slab is frozen and exempt from list processing.
101  * 			This means that the slab is dedicated to a purpose
102  * 			such as satisfying allocations for a specific
103  * 			processor. Objects may be freed in the slab while
104  * 			it is frozen but slab_free will then skip the usual
105  * 			list operations. It is up to the processor holding
106  * 			the slab to integrate the slab into the slab lists
107  * 			when the slab is no longer needed.
108  *
109  * 			One use of this flag is to mark slabs that are
110  * 			used for allocations. Then such a slab becomes a cpu
111  * 			slab. The cpu slab may be equipped with an additional
112  * 			freelist that allows lockless access to
113  * 			free objects in addition to the regular freelist
114  * 			that requires the slab lock.
115  *
116  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
117  * 			options set. This moves	slab handling out of
118  * 			the fast path and disables lockless freelists.
119  */
120 
121 #ifdef CONFIG_SLUB_DEBUG
122 #ifdef CONFIG_SLUB_DEBUG_ON
123 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
124 #else
125 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
126 #endif
127 #endif		/* CONFIG_SLUB_DEBUG */
128 
129 static inline bool kmem_cache_debug(struct kmem_cache *s)
130 {
131 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
132 }
133 
134 void *fixup_red_left(struct kmem_cache *s, void *p)
135 {
136 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
137 		p += s->red_left_pad;
138 
139 	return p;
140 }
141 
142 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143 {
144 #ifdef CONFIG_SLUB_CPU_PARTIAL
145 	return !kmem_cache_debug(s);
146 #else
147 	return false;
148 #endif
149 }
150 
151 /*
152  * Issues still to be resolved:
153  *
154  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155  *
156  * - Variable sizing of the per node arrays
157  */
158 
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
161 
162 /*
163  * Minimum number of partial slabs. These will be left on the partial
164  * lists even if they are empty. kmem_cache_shrink may reclaim them.
165  */
166 #define MIN_PARTIAL 5
167 
168 /*
169  * Maximum number of desirable partial slabs.
170  * The existence of more partial slabs makes kmem_cache_shrink
171  * sort the partial list by the number of objects in use.
172  */
173 #define MAX_PARTIAL 10
174 
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 				SLAB_POISON | SLAB_STORE_USER)
177 
178 /*
179  * These debug flags cannot use CMPXCHG because there might be consistency
180  * issues when checking or reading debug information
181  */
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 				SLAB_TRACE)
184 
185 
186 /*
187  * Debugging flags that require metadata to be stored in the slab.  These get
188  * disabled when slub_debug=O is used and a cache's min order increases with
189  * metadata.
190  */
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192 
193 #define OO_SHIFT	16
194 #define OO_MASK		((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
196 
197 /* Internal SLUB flags */
198 /* Poison object */
199 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
202 
203 /*
204  * Tracking user of a slab.
205  */
206 #define TRACK_ADDRS_COUNT 16
207 struct track {
208 	unsigned long addr;	/* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
211 #endif
212 	int cpu;		/* Was running on cpu */
213 	int pid;		/* Pid context */
214 	unsigned long when;	/* When did the operation occur */
215 };
216 
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
218 
219 #ifdef CONFIG_SYSFS
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 #else
223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 							{ return 0; }
226 #endif
227 
228 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
229 static void debugfs_slab_add(struct kmem_cache *);
230 #else
231 static inline void debugfs_slab_add(struct kmem_cache *s) { }
232 #endif
233 
234 static inline void stat(const struct kmem_cache *s, enum stat_item si)
235 {
236 #ifdef CONFIG_SLUB_STATS
237 	/*
238 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
239 	 * avoid this_cpu_add()'s irq-disable overhead.
240 	 */
241 	raw_cpu_inc(s->cpu_slab->stat[si]);
242 #endif
243 }
244 
245 /*
246  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
247  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
248  * differ during memory hotplug/hotremove operations.
249  * Protected by slab_mutex.
250  */
251 static nodemask_t slab_nodes;
252 
253 /********************************************************************
254  * 			Core slab cache functions
255  *******************************************************************/
256 
257 /*
258  * Returns freelist pointer (ptr). With hardening, this is obfuscated
259  * with an XOR of the address where the pointer is held and a per-cache
260  * random number.
261  */
262 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
263 				 unsigned long ptr_addr)
264 {
265 #ifdef CONFIG_SLAB_FREELIST_HARDENED
266 	/*
267 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
268 	 * Normally, this doesn't cause any issues, as both set_freepointer()
269 	 * and get_freepointer() are called with a pointer with the same tag.
270 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
271 	 * example, when __free_slub() iterates over objects in a cache, it
272 	 * passes untagged pointers to check_object(). check_object() in turns
273 	 * calls get_freepointer() with an untagged pointer, which causes the
274 	 * freepointer to be restored incorrectly.
275 	 */
276 	return (void *)((unsigned long)ptr ^ s->random ^
277 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
278 #else
279 	return ptr;
280 #endif
281 }
282 
283 /* Returns the freelist pointer recorded at location ptr_addr. */
284 static inline void *freelist_dereference(const struct kmem_cache *s,
285 					 void *ptr_addr)
286 {
287 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
288 			    (unsigned long)ptr_addr);
289 }
290 
291 static inline void *get_freepointer(struct kmem_cache *s, void *object)
292 {
293 	object = kasan_reset_tag(object);
294 	return freelist_dereference(s, object + s->offset);
295 }
296 
297 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
298 {
299 	prefetch(object + s->offset);
300 }
301 
302 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
303 {
304 	unsigned long freepointer_addr;
305 	void *p;
306 
307 	if (!debug_pagealloc_enabled_static())
308 		return get_freepointer(s, object);
309 
310 	object = kasan_reset_tag(object);
311 	freepointer_addr = (unsigned long)object + s->offset;
312 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
313 	return freelist_ptr(s, p, freepointer_addr);
314 }
315 
316 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
317 {
318 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
319 
320 #ifdef CONFIG_SLAB_FREELIST_HARDENED
321 	BUG_ON(object == fp); /* naive detection of double free or corruption */
322 #endif
323 
324 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
325 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
326 }
327 
328 /* Loop over all objects in a slab */
329 #define for_each_object(__p, __s, __addr, __objects) \
330 	for (__p = fixup_red_left(__s, __addr); \
331 		__p < (__addr) + (__objects) * (__s)->size; \
332 		__p += (__s)->size)
333 
334 static inline unsigned int order_objects(unsigned int order, unsigned int size)
335 {
336 	return ((unsigned int)PAGE_SIZE << order) / size;
337 }
338 
339 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
340 		unsigned int size)
341 {
342 	struct kmem_cache_order_objects x = {
343 		(order << OO_SHIFT) + order_objects(order, size)
344 	};
345 
346 	return x;
347 }
348 
349 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
350 {
351 	return x.x >> OO_SHIFT;
352 }
353 
354 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
355 {
356 	return x.x & OO_MASK;
357 }
358 
359 /*
360  * Per slab locking using the pagelock
361  */
362 static __always_inline void slab_lock(struct page *page)
363 {
364 	VM_BUG_ON_PAGE(PageTail(page), page);
365 	bit_spin_lock(PG_locked, &page->flags);
366 }
367 
368 static __always_inline void slab_unlock(struct page *page)
369 {
370 	VM_BUG_ON_PAGE(PageTail(page), page);
371 	__bit_spin_unlock(PG_locked, &page->flags);
372 }
373 
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 		void *freelist_old, unsigned long counters_old,
377 		void *freelist_new, unsigned long counters_new,
378 		const char *n)
379 {
380 	VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 	if (s->flags & __CMPXCHG_DOUBLE) {
384 		if (cmpxchg_double(&page->freelist, &page->counters,
385 				   freelist_old, counters_old,
386 				   freelist_new, counters_new))
387 			return true;
388 	} else
389 #endif
390 	{
391 		slab_lock(page);
392 		if (page->freelist == freelist_old &&
393 					page->counters == counters_old) {
394 			page->freelist = freelist_new;
395 			page->counters = counters_new;
396 			slab_unlock(page);
397 			return true;
398 		}
399 		slab_unlock(page);
400 	}
401 
402 	cpu_relax();
403 	stat(s, CMPXCHG_DOUBLE_FAIL);
404 
405 #ifdef SLUB_DEBUG_CMPXCHG
406 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408 
409 	return false;
410 }
411 
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 		void *freelist_old, unsigned long counters_old,
414 		void *freelist_new, unsigned long counters_new,
415 		const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 	if (s->flags & __CMPXCHG_DOUBLE) {
420 		if (cmpxchg_double(&page->freelist, &page->counters,
421 				   freelist_old, counters_old,
422 				   freelist_new, counters_new))
423 			return true;
424 	} else
425 #endif
426 	{
427 		unsigned long flags;
428 
429 		local_irq_save(flags);
430 		slab_lock(page);
431 		if (page->freelist == freelist_old &&
432 					page->counters == counters_old) {
433 			page->freelist = freelist_new;
434 			page->counters = counters_new;
435 			slab_unlock(page);
436 			local_irq_restore(flags);
437 			return true;
438 		}
439 		slab_unlock(page);
440 		local_irq_restore(flags);
441 	}
442 
443 	cpu_relax();
444 	stat(s, CMPXCHG_DOUBLE_FAIL);
445 
446 #ifdef SLUB_DEBUG_CMPXCHG
447 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449 
450 	return false;
451 }
452 
453 #ifdef CONFIG_SLUB_DEBUG
454 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
455 static DEFINE_SPINLOCK(object_map_lock);
456 
457 #if IS_ENABLED(CONFIG_KUNIT)
458 static bool slab_add_kunit_errors(void)
459 {
460 	struct kunit_resource *resource;
461 
462 	if (likely(!current->kunit_test))
463 		return false;
464 
465 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
466 	if (!resource)
467 		return false;
468 
469 	(*(int *)resource->data)++;
470 	kunit_put_resource(resource);
471 	return true;
472 }
473 #else
474 static inline bool slab_add_kunit_errors(void) { return false; }
475 #endif
476 
477 /*
478  * Determine a map of object in use on a page.
479  *
480  * Node listlock must be held to guarantee that the page does
481  * not vanish from under us.
482  */
483 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
484 	__acquires(&object_map_lock)
485 {
486 	void *p;
487 	void *addr = page_address(page);
488 
489 	VM_BUG_ON(!irqs_disabled());
490 
491 	spin_lock(&object_map_lock);
492 
493 	bitmap_zero(object_map, page->objects);
494 
495 	for (p = page->freelist; p; p = get_freepointer(s, p))
496 		set_bit(__obj_to_index(s, addr, p), object_map);
497 
498 	return object_map;
499 }
500 
501 static void put_map(unsigned long *map) __releases(&object_map_lock)
502 {
503 	VM_BUG_ON(map != object_map);
504 	spin_unlock(&object_map_lock);
505 }
506 
507 static inline unsigned int size_from_object(struct kmem_cache *s)
508 {
509 	if (s->flags & SLAB_RED_ZONE)
510 		return s->size - s->red_left_pad;
511 
512 	return s->size;
513 }
514 
515 static inline void *restore_red_left(struct kmem_cache *s, void *p)
516 {
517 	if (s->flags & SLAB_RED_ZONE)
518 		p -= s->red_left_pad;
519 
520 	return p;
521 }
522 
523 /*
524  * Debug settings:
525  */
526 #if defined(CONFIG_SLUB_DEBUG_ON)
527 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
528 #else
529 static slab_flags_t slub_debug;
530 #endif
531 
532 static char *slub_debug_string;
533 static int disable_higher_order_debug;
534 
535 /*
536  * slub is about to manipulate internal object metadata.  This memory lies
537  * outside the range of the allocated object, so accessing it would normally
538  * be reported by kasan as a bounds error.  metadata_access_enable() is used
539  * to tell kasan that these accesses are OK.
540  */
541 static inline void metadata_access_enable(void)
542 {
543 	kasan_disable_current();
544 }
545 
546 static inline void metadata_access_disable(void)
547 {
548 	kasan_enable_current();
549 }
550 
551 /*
552  * Object debugging
553  */
554 
555 /* Verify that a pointer has an address that is valid within a slab page */
556 static inline int check_valid_pointer(struct kmem_cache *s,
557 				struct page *page, void *object)
558 {
559 	void *base;
560 
561 	if (!object)
562 		return 1;
563 
564 	base = page_address(page);
565 	object = kasan_reset_tag(object);
566 	object = restore_red_left(s, object);
567 	if (object < base || object >= base + page->objects * s->size ||
568 		(object - base) % s->size) {
569 		return 0;
570 	}
571 
572 	return 1;
573 }
574 
575 static void print_section(char *level, char *text, u8 *addr,
576 			  unsigned int length)
577 {
578 	metadata_access_enable();
579 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
580 			16, 1, kasan_reset_tag((void *)addr), length, 1);
581 	metadata_access_disable();
582 }
583 
584 /*
585  * See comment in calculate_sizes().
586  */
587 static inline bool freeptr_outside_object(struct kmem_cache *s)
588 {
589 	return s->offset >= s->inuse;
590 }
591 
592 /*
593  * Return offset of the end of info block which is inuse + free pointer if
594  * not overlapping with object.
595  */
596 static inline unsigned int get_info_end(struct kmem_cache *s)
597 {
598 	if (freeptr_outside_object(s))
599 		return s->inuse + sizeof(void *);
600 	else
601 		return s->inuse;
602 }
603 
604 static struct track *get_track(struct kmem_cache *s, void *object,
605 	enum track_item alloc)
606 {
607 	struct track *p;
608 
609 	p = object + get_info_end(s);
610 
611 	return kasan_reset_tag(p + alloc);
612 }
613 
614 static void set_track(struct kmem_cache *s, void *object,
615 			enum track_item alloc, unsigned long addr)
616 {
617 	struct track *p = get_track(s, object, alloc);
618 
619 	if (addr) {
620 #ifdef CONFIG_STACKTRACE
621 		unsigned int nr_entries;
622 
623 		metadata_access_enable();
624 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
625 					      TRACK_ADDRS_COUNT, 3);
626 		metadata_access_disable();
627 
628 		if (nr_entries < TRACK_ADDRS_COUNT)
629 			p->addrs[nr_entries] = 0;
630 #endif
631 		p->addr = addr;
632 		p->cpu = smp_processor_id();
633 		p->pid = current->pid;
634 		p->when = jiffies;
635 	} else {
636 		memset(p, 0, sizeof(struct track));
637 	}
638 }
639 
640 static void init_tracking(struct kmem_cache *s, void *object)
641 {
642 	if (!(s->flags & SLAB_STORE_USER))
643 		return;
644 
645 	set_track(s, object, TRACK_FREE, 0UL);
646 	set_track(s, object, TRACK_ALLOC, 0UL);
647 }
648 
649 static void print_track(const char *s, struct track *t, unsigned long pr_time)
650 {
651 	if (!t->addr)
652 		return;
653 
654 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
655 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
656 #ifdef CONFIG_STACKTRACE
657 	{
658 		int i;
659 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
660 			if (t->addrs[i])
661 				pr_err("\t%pS\n", (void *)t->addrs[i]);
662 			else
663 				break;
664 	}
665 #endif
666 }
667 
668 void print_tracking(struct kmem_cache *s, void *object)
669 {
670 	unsigned long pr_time = jiffies;
671 	if (!(s->flags & SLAB_STORE_USER))
672 		return;
673 
674 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
675 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
676 }
677 
678 static void print_page_info(struct page *page)
679 {
680 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
681 	       page, page->objects, page->inuse, page->freelist,
682 	       page->flags, &page->flags);
683 
684 }
685 
686 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
687 {
688 	struct va_format vaf;
689 	va_list args;
690 
691 	va_start(args, fmt);
692 	vaf.fmt = fmt;
693 	vaf.va = &args;
694 	pr_err("=============================================================================\n");
695 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
696 	pr_err("-----------------------------------------------------------------------------\n\n");
697 	va_end(args);
698 }
699 
700 __printf(2, 3)
701 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
702 {
703 	struct va_format vaf;
704 	va_list args;
705 
706 	if (slab_add_kunit_errors())
707 		return;
708 
709 	va_start(args, fmt);
710 	vaf.fmt = fmt;
711 	vaf.va = &args;
712 	pr_err("FIX %s: %pV\n", s->name, &vaf);
713 	va_end(args);
714 }
715 
716 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
717 			       void **freelist, void *nextfree)
718 {
719 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
720 	    !check_valid_pointer(s, page, nextfree) && freelist) {
721 		object_err(s, page, *freelist, "Freechain corrupt");
722 		*freelist = NULL;
723 		slab_fix(s, "Isolate corrupted freechain");
724 		return true;
725 	}
726 
727 	return false;
728 }
729 
730 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
731 {
732 	unsigned int off;	/* Offset of last byte */
733 	u8 *addr = page_address(page);
734 
735 	print_tracking(s, p);
736 
737 	print_page_info(page);
738 
739 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
740 	       p, p - addr, get_freepointer(s, p));
741 
742 	if (s->flags & SLAB_RED_ZONE)
743 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
744 			      s->red_left_pad);
745 	else if (p > addr + 16)
746 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
747 
748 	print_section(KERN_ERR,         "Object   ", p,
749 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
750 	if (s->flags & SLAB_RED_ZONE)
751 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
752 			s->inuse - s->object_size);
753 
754 	off = get_info_end(s);
755 
756 	if (s->flags & SLAB_STORE_USER)
757 		off += 2 * sizeof(struct track);
758 
759 	off += kasan_metadata_size(s);
760 
761 	if (off != size_from_object(s))
762 		/* Beginning of the filler is the free pointer */
763 		print_section(KERN_ERR, "Padding  ", p + off,
764 			      size_from_object(s) - off);
765 
766 	dump_stack();
767 }
768 
769 void object_err(struct kmem_cache *s, struct page *page,
770 			u8 *object, char *reason)
771 {
772 	if (slab_add_kunit_errors())
773 		return;
774 
775 	slab_bug(s, "%s", reason);
776 	print_trailer(s, page, object);
777 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
778 }
779 
780 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
781 			const char *fmt, ...)
782 {
783 	va_list args;
784 	char buf[100];
785 
786 	if (slab_add_kunit_errors())
787 		return;
788 
789 	va_start(args, fmt);
790 	vsnprintf(buf, sizeof(buf), fmt, args);
791 	va_end(args);
792 	slab_bug(s, "%s", buf);
793 	print_page_info(page);
794 	dump_stack();
795 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
796 }
797 
798 static void init_object(struct kmem_cache *s, void *object, u8 val)
799 {
800 	u8 *p = kasan_reset_tag(object);
801 
802 	if (s->flags & SLAB_RED_ZONE)
803 		memset(p - s->red_left_pad, val, s->red_left_pad);
804 
805 	if (s->flags & __OBJECT_POISON) {
806 		memset(p, POISON_FREE, s->object_size - 1);
807 		p[s->object_size - 1] = POISON_END;
808 	}
809 
810 	if (s->flags & SLAB_RED_ZONE)
811 		memset(p + s->object_size, val, s->inuse - s->object_size);
812 }
813 
814 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
815 						void *from, void *to)
816 {
817 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
818 	memset(from, data, to - from);
819 }
820 
821 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
822 			u8 *object, char *what,
823 			u8 *start, unsigned int value, unsigned int bytes)
824 {
825 	u8 *fault;
826 	u8 *end;
827 	u8 *addr = page_address(page);
828 
829 	metadata_access_enable();
830 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
831 	metadata_access_disable();
832 	if (!fault)
833 		return 1;
834 
835 	end = start + bytes;
836 	while (end > fault && end[-1] == value)
837 		end--;
838 
839 	if (slab_add_kunit_errors())
840 		goto skip_bug_print;
841 
842 	slab_bug(s, "%s overwritten", what);
843 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
844 					fault, end - 1, fault - addr,
845 					fault[0], value);
846 	print_trailer(s, page, object);
847 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
848 
849 skip_bug_print:
850 	restore_bytes(s, what, value, fault, end);
851 	return 0;
852 }
853 
854 /*
855  * Object layout:
856  *
857  * object address
858  * 	Bytes of the object to be managed.
859  * 	If the freepointer may overlay the object then the free
860  *	pointer is at the middle of the object.
861  *
862  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
863  * 	0xa5 (POISON_END)
864  *
865  * object + s->object_size
866  * 	Padding to reach word boundary. This is also used for Redzoning.
867  * 	Padding is extended by another word if Redzoning is enabled and
868  * 	object_size == inuse.
869  *
870  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
871  * 	0xcc (RED_ACTIVE) for objects in use.
872  *
873  * object + s->inuse
874  * 	Meta data starts here.
875  *
876  * 	A. Free pointer (if we cannot overwrite object on free)
877  * 	B. Tracking data for SLAB_STORE_USER
878  *	C. Padding to reach required alignment boundary or at minimum
879  * 		one word if debugging is on to be able to detect writes
880  * 		before the word boundary.
881  *
882  *	Padding is done using 0x5a (POISON_INUSE)
883  *
884  * object + s->size
885  * 	Nothing is used beyond s->size.
886  *
887  * If slabcaches are merged then the object_size and inuse boundaries are mostly
888  * ignored. And therefore no slab options that rely on these boundaries
889  * may be used with merged slabcaches.
890  */
891 
892 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
893 {
894 	unsigned long off = get_info_end(s);	/* The end of info */
895 
896 	if (s->flags & SLAB_STORE_USER)
897 		/* We also have user information there */
898 		off += 2 * sizeof(struct track);
899 
900 	off += kasan_metadata_size(s);
901 
902 	if (size_from_object(s) == off)
903 		return 1;
904 
905 	return check_bytes_and_report(s, page, p, "Object padding",
906 			p + off, POISON_INUSE, size_from_object(s) - off);
907 }
908 
909 /* Check the pad bytes at the end of a slab page */
910 static int slab_pad_check(struct kmem_cache *s, struct page *page)
911 {
912 	u8 *start;
913 	u8 *fault;
914 	u8 *end;
915 	u8 *pad;
916 	int length;
917 	int remainder;
918 
919 	if (!(s->flags & SLAB_POISON))
920 		return 1;
921 
922 	start = page_address(page);
923 	length = page_size(page);
924 	end = start + length;
925 	remainder = length % s->size;
926 	if (!remainder)
927 		return 1;
928 
929 	pad = end - remainder;
930 	metadata_access_enable();
931 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
932 	metadata_access_disable();
933 	if (!fault)
934 		return 1;
935 	while (end > fault && end[-1] == POISON_INUSE)
936 		end--;
937 
938 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
939 			fault, end - 1, fault - start);
940 	print_section(KERN_ERR, "Padding ", pad, remainder);
941 
942 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
943 	return 0;
944 }
945 
946 static int check_object(struct kmem_cache *s, struct page *page,
947 					void *object, u8 val)
948 {
949 	u8 *p = object;
950 	u8 *endobject = object + s->object_size;
951 
952 	if (s->flags & SLAB_RED_ZONE) {
953 		if (!check_bytes_and_report(s, page, object, "Left Redzone",
954 			object - s->red_left_pad, val, s->red_left_pad))
955 			return 0;
956 
957 		if (!check_bytes_and_report(s, page, object, "Right Redzone",
958 			endobject, val, s->inuse - s->object_size))
959 			return 0;
960 	} else {
961 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
962 			check_bytes_and_report(s, page, p, "Alignment padding",
963 				endobject, POISON_INUSE,
964 				s->inuse - s->object_size);
965 		}
966 	}
967 
968 	if (s->flags & SLAB_POISON) {
969 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
970 			(!check_bytes_and_report(s, page, p, "Poison", p,
971 					POISON_FREE, s->object_size - 1) ||
972 			 !check_bytes_and_report(s, page, p, "End Poison",
973 				p + s->object_size - 1, POISON_END, 1)))
974 			return 0;
975 		/*
976 		 * check_pad_bytes cleans up on its own.
977 		 */
978 		check_pad_bytes(s, page, p);
979 	}
980 
981 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
982 		/*
983 		 * Object and freepointer overlap. Cannot check
984 		 * freepointer while object is allocated.
985 		 */
986 		return 1;
987 
988 	/* Check free pointer validity */
989 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
990 		object_err(s, page, p, "Freepointer corrupt");
991 		/*
992 		 * No choice but to zap it and thus lose the remainder
993 		 * of the free objects in this slab. May cause
994 		 * another error because the object count is now wrong.
995 		 */
996 		set_freepointer(s, p, NULL);
997 		return 0;
998 	}
999 	return 1;
1000 }
1001 
1002 static int check_slab(struct kmem_cache *s, struct page *page)
1003 {
1004 	int maxobj;
1005 
1006 	VM_BUG_ON(!irqs_disabled());
1007 
1008 	if (!PageSlab(page)) {
1009 		slab_err(s, page, "Not a valid slab page");
1010 		return 0;
1011 	}
1012 
1013 	maxobj = order_objects(compound_order(page), s->size);
1014 	if (page->objects > maxobj) {
1015 		slab_err(s, page, "objects %u > max %u",
1016 			page->objects, maxobj);
1017 		return 0;
1018 	}
1019 	if (page->inuse > page->objects) {
1020 		slab_err(s, page, "inuse %u > max %u",
1021 			page->inuse, page->objects);
1022 		return 0;
1023 	}
1024 	/* Slab_pad_check fixes things up after itself */
1025 	slab_pad_check(s, page);
1026 	return 1;
1027 }
1028 
1029 /*
1030  * Determine if a certain object on a page is on the freelist. Must hold the
1031  * slab lock to guarantee that the chains are in a consistent state.
1032  */
1033 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1034 {
1035 	int nr = 0;
1036 	void *fp;
1037 	void *object = NULL;
1038 	int max_objects;
1039 
1040 	fp = page->freelist;
1041 	while (fp && nr <= page->objects) {
1042 		if (fp == search)
1043 			return 1;
1044 		if (!check_valid_pointer(s, page, fp)) {
1045 			if (object) {
1046 				object_err(s, page, object,
1047 					"Freechain corrupt");
1048 				set_freepointer(s, object, NULL);
1049 			} else {
1050 				slab_err(s, page, "Freepointer corrupt");
1051 				page->freelist = NULL;
1052 				page->inuse = page->objects;
1053 				slab_fix(s, "Freelist cleared");
1054 				return 0;
1055 			}
1056 			break;
1057 		}
1058 		object = fp;
1059 		fp = get_freepointer(s, object);
1060 		nr++;
1061 	}
1062 
1063 	max_objects = order_objects(compound_order(page), s->size);
1064 	if (max_objects > MAX_OBJS_PER_PAGE)
1065 		max_objects = MAX_OBJS_PER_PAGE;
1066 
1067 	if (page->objects != max_objects) {
1068 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1069 			 page->objects, max_objects);
1070 		page->objects = max_objects;
1071 		slab_fix(s, "Number of objects adjusted");
1072 	}
1073 	if (page->inuse != page->objects - nr) {
1074 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1075 			 page->inuse, page->objects - nr);
1076 		page->inuse = page->objects - nr;
1077 		slab_fix(s, "Object count adjusted");
1078 	}
1079 	return search == NULL;
1080 }
1081 
1082 static void trace(struct kmem_cache *s, struct page *page, void *object,
1083 								int alloc)
1084 {
1085 	if (s->flags & SLAB_TRACE) {
1086 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1087 			s->name,
1088 			alloc ? "alloc" : "free",
1089 			object, page->inuse,
1090 			page->freelist);
1091 
1092 		if (!alloc)
1093 			print_section(KERN_INFO, "Object ", (void *)object,
1094 					s->object_size);
1095 
1096 		dump_stack();
1097 	}
1098 }
1099 
1100 /*
1101  * Tracking of fully allocated slabs for debugging purposes.
1102  */
1103 static void add_full(struct kmem_cache *s,
1104 	struct kmem_cache_node *n, struct page *page)
1105 {
1106 	if (!(s->flags & SLAB_STORE_USER))
1107 		return;
1108 
1109 	lockdep_assert_held(&n->list_lock);
1110 	list_add(&page->slab_list, &n->full);
1111 }
1112 
1113 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1114 {
1115 	if (!(s->flags & SLAB_STORE_USER))
1116 		return;
1117 
1118 	lockdep_assert_held(&n->list_lock);
1119 	list_del(&page->slab_list);
1120 }
1121 
1122 /* Tracking of the number of slabs for debugging purposes */
1123 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1124 {
1125 	struct kmem_cache_node *n = get_node(s, node);
1126 
1127 	return atomic_long_read(&n->nr_slabs);
1128 }
1129 
1130 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1131 {
1132 	return atomic_long_read(&n->nr_slabs);
1133 }
1134 
1135 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1136 {
1137 	struct kmem_cache_node *n = get_node(s, node);
1138 
1139 	/*
1140 	 * May be called early in order to allocate a slab for the
1141 	 * kmem_cache_node structure. Solve the chicken-egg
1142 	 * dilemma by deferring the increment of the count during
1143 	 * bootstrap (see early_kmem_cache_node_alloc).
1144 	 */
1145 	if (likely(n)) {
1146 		atomic_long_inc(&n->nr_slabs);
1147 		atomic_long_add(objects, &n->total_objects);
1148 	}
1149 }
1150 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1151 {
1152 	struct kmem_cache_node *n = get_node(s, node);
1153 
1154 	atomic_long_dec(&n->nr_slabs);
1155 	atomic_long_sub(objects, &n->total_objects);
1156 }
1157 
1158 /* Object debug checks for alloc/free paths */
1159 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1160 								void *object)
1161 {
1162 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1163 		return;
1164 
1165 	init_object(s, object, SLUB_RED_INACTIVE);
1166 	init_tracking(s, object);
1167 }
1168 
1169 static
1170 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1171 {
1172 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1173 		return;
1174 
1175 	metadata_access_enable();
1176 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1177 	metadata_access_disable();
1178 }
1179 
1180 static inline int alloc_consistency_checks(struct kmem_cache *s,
1181 					struct page *page, void *object)
1182 {
1183 	if (!check_slab(s, page))
1184 		return 0;
1185 
1186 	if (!check_valid_pointer(s, page, object)) {
1187 		object_err(s, page, object, "Freelist Pointer check fails");
1188 		return 0;
1189 	}
1190 
1191 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1192 		return 0;
1193 
1194 	return 1;
1195 }
1196 
1197 static noinline int alloc_debug_processing(struct kmem_cache *s,
1198 					struct page *page,
1199 					void *object, unsigned long addr)
1200 {
1201 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1202 		if (!alloc_consistency_checks(s, page, object))
1203 			goto bad;
1204 	}
1205 
1206 	/* Success perform special debug activities for allocs */
1207 	if (s->flags & SLAB_STORE_USER)
1208 		set_track(s, object, TRACK_ALLOC, addr);
1209 	trace(s, page, object, 1);
1210 	init_object(s, object, SLUB_RED_ACTIVE);
1211 	return 1;
1212 
1213 bad:
1214 	if (PageSlab(page)) {
1215 		/*
1216 		 * If this is a slab page then lets do the best we can
1217 		 * to avoid issues in the future. Marking all objects
1218 		 * as used avoids touching the remaining objects.
1219 		 */
1220 		slab_fix(s, "Marking all objects used");
1221 		page->inuse = page->objects;
1222 		page->freelist = NULL;
1223 	}
1224 	return 0;
1225 }
1226 
1227 static inline int free_consistency_checks(struct kmem_cache *s,
1228 		struct page *page, void *object, unsigned long addr)
1229 {
1230 	if (!check_valid_pointer(s, page, object)) {
1231 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1232 		return 0;
1233 	}
1234 
1235 	if (on_freelist(s, page, object)) {
1236 		object_err(s, page, object, "Object already free");
1237 		return 0;
1238 	}
1239 
1240 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1241 		return 0;
1242 
1243 	if (unlikely(s != page->slab_cache)) {
1244 		if (!PageSlab(page)) {
1245 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1246 				 object);
1247 		} else if (!page->slab_cache) {
1248 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1249 			       object);
1250 			dump_stack();
1251 		} else
1252 			object_err(s, page, object,
1253 					"page slab pointer corrupt.");
1254 		return 0;
1255 	}
1256 	return 1;
1257 }
1258 
1259 /* Supports checking bulk free of a constructed freelist */
1260 static noinline int free_debug_processing(
1261 	struct kmem_cache *s, struct page *page,
1262 	void *head, void *tail, int bulk_cnt,
1263 	unsigned long addr)
1264 {
1265 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1266 	void *object = head;
1267 	int cnt = 0;
1268 	unsigned long flags;
1269 	int ret = 0;
1270 
1271 	spin_lock_irqsave(&n->list_lock, flags);
1272 	slab_lock(page);
1273 
1274 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1275 		if (!check_slab(s, page))
1276 			goto out;
1277 	}
1278 
1279 next_object:
1280 	cnt++;
1281 
1282 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1283 		if (!free_consistency_checks(s, page, object, addr))
1284 			goto out;
1285 	}
1286 
1287 	if (s->flags & SLAB_STORE_USER)
1288 		set_track(s, object, TRACK_FREE, addr);
1289 	trace(s, page, object, 0);
1290 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1291 	init_object(s, object, SLUB_RED_INACTIVE);
1292 
1293 	/* Reached end of constructed freelist yet? */
1294 	if (object != tail) {
1295 		object = get_freepointer(s, object);
1296 		goto next_object;
1297 	}
1298 	ret = 1;
1299 
1300 out:
1301 	if (cnt != bulk_cnt)
1302 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1303 			 bulk_cnt, cnt);
1304 
1305 	slab_unlock(page);
1306 	spin_unlock_irqrestore(&n->list_lock, flags);
1307 	if (!ret)
1308 		slab_fix(s, "Object at 0x%p not freed", object);
1309 	return ret;
1310 }
1311 
1312 /*
1313  * Parse a block of slub_debug options. Blocks are delimited by ';'
1314  *
1315  * @str:    start of block
1316  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1317  * @slabs:  return start of list of slabs, or NULL when there's no list
1318  * @init:   assume this is initial parsing and not per-kmem-create parsing
1319  *
1320  * returns the start of next block if there's any, or NULL
1321  */
1322 static char *
1323 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1324 {
1325 	bool higher_order_disable = false;
1326 
1327 	/* Skip any completely empty blocks */
1328 	while (*str && *str == ';')
1329 		str++;
1330 
1331 	if (*str == ',') {
1332 		/*
1333 		 * No options but restriction on slabs. This means full
1334 		 * debugging for slabs matching a pattern.
1335 		 */
1336 		*flags = DEBUG_DEFAULT_FLAGS;
1337 		goto check_slabs;
1338 	}
1339 	*flags = 0;
1340 
1341 	/* Determine which debug features should be switched on */
1342 	for (; *str && *str != ',' && *str != ';'; str++) {
1343 		switch (tolower(*str)) {
1344 		case '-':
1345 			*flags = 0;
1346 			break;
1347 		case 'f':
1348 			*flags |= SLAB_CONSISTENCY_CHECKS;
1349 			break;
1350 		case 'z':
1351 			*flags |= SLAB_RED_ZONE;
1352 			break;
1353 		case 'p':
1354 			*flags |= SLAB_POISON;
1355 			break;
1356 		case 'u':
1357 			*flags |= SLAB_STORE_USER;
1358 			break;
1359 		case 't':
1360 			*flags |= SLAB_TRACE;
1361 			break;
1362 		case 'a':
1363 			*flags |= SLAB_FAILSLAB;
1364 			break;
1365 		case 'o':
1366 			/*
1367 			 * Avoid enabling debugging on caches if its minimum
1368 			 * order would increase as a result.
1369 			 */
1370 			higher_order_disable = true;
1371 			break;
1372 		default:
1373 			if (init)
1374 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1375 		}
1376 	}
1377 check_slabs:
1378 	if (*str == ',')
1379 		*slabs = ++str;
1380 	else
1381 		*slabs = NULL;
1382 
1383 	/* Skip over the slab list */
1384 	while (*str && *str != ';')
1385 		str++;
1386 
1387 	/* Skip any completely empty blocks */
1388 	while (*str && *str == ';')
1389 		str++;
1390 
1391 	if (init && higher_order_disable)
1392 		disable_higher_order_debug = 1;
1393 
1394 	if (*str)
1395 		return str;
1396 	else
1397 		return NULL;
1398 }
1399 
1400 static int __init setup_slub_debug(char *str)
1401 {
1402 	slab_flags_t flags;
1403 	slab_flags_t global_flags;
1404 	char *saved_str;
1405 	char *slab_list;
1406 	bool global_slub_debug_changed = false;
1407 	bool slab_list_specified = false;
1408 
1409 	global_flags = DEBUG_DEFAULT_FLAGS;
1410 	if (*str++ != '=' || !*str)
1411 		/*
1412 		 * No options specified. Switch on full debugging.
1413 		 */
1414 		goto out;
1415 
1416 	saved_str = str;
1417 	while (str) {
1418 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1419 
1420 		if (!slab_list) {
1421 			global_flags = flags;
1422 			global_slub_debug_changed = true;
1423 		} else {
1424 			slab_list_specified = true;
1425 		}
1426 	}
1427 
1428 	/*
1429 	 * For backwards compatibility, a single list of flags with list of
1430 	 * slabs means debugging is only changed for those slabs, so the global
1431 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1432 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1433 	 * long as there is no option specifying flags without a slab list.
1434 	 */
1435 	if (slab_list_specified) {
1436 		if (!global_slub_debug_changed)
1437 			global_flags = slub_debug;
1438 		slub_debug_string = saved_str;
1439 	}
1440 out:
1441 	slub_debug = global_flags;
1442 	if (slub_debug != 0 || slub_debug_string)
1443 		static_branch_enable(&slub_debug_enabled);
1444 	else
1445 		static_branch_disable(&slub_debug_enabled);
1446 	if ((static_branch_unlikely(&init_on_alloc) ||
1447 	     static_branch_unlikely(&init_on_free)) &&
1448 	    (slub_debug & SLAB_POISON))
1449 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1450 	return 1;
1451 }
1452 
1453 __setup("slub_debug", setup_slub_debug);
1454 
1455 /*
1456  * kmem_cache_flags - apply debugging options to the cache
1457  * @object_size:	the size of an object without meta data
1458  * @flags:		flags to set
1459  * @name:		name of the cache
1460  *
1461  * Debug option(s) are applied to @flags. In addition to the debug
1462  * option(s), if a slab name (or multiple) is specified i.e.
1463  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1464  * then only the select slabs will receive the debug option(s).
1465  */
1466 slab_flags_t kmem_cache_flags(unsigned int object_size,
1467 	slab_flags_t flags, const char *name)
1468 {
1469 	char *iter;
1470 	size_t len;
1471 	char *next_block;
1472 	slab_flags_t block_flags;
1473 	slab_flags_t slub_debug_local = slub_debug;
1474 
1475 	/*
1476 	 * If the slab cache is for debugging (e.g. kmemleak) then
1477 	 * don't store user (stack trace) information by default,
1478 	 * but let the user enable it via the command line below.
1479 	 */
1480 	if (flags & SLAB_NOLEAKTRACE)
1481 		slub_debug_local &= ~SLAB_STORE_USER;
1482 
1483 	len = strlen(name);
1484 	next_block = slub_debug_string;
1485 	/* Go through all blocks of debug options, see if any matches our slab's name */
1486 	while (next_block) {
1487 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1488 		if (!iter)
1489 			continue;
1490 		/* Found a block that has a slab list, search it */
1491 		while (*iter) {
1492 			char *end, *glob;
1493 			size_t cmplen;
1494 
1495 			end = strchrnul(iter, ',');
1496 			if (next_block && next_block < end)
1497 				end = next_block - 1;
1498 
1499 			glob = strnchr(iter, end - iter, '*');
1500 			if (glob)
1501 				cmplen = glob - iter;
1502 			else
1503 				cmplen = max_t(size_t, len, (end - iter));
1504 
1505 			if (!strncmp(name, iter, cmplen)) {
1506 				flags |= block_flags;
1507 				return flags;
1508 			}
1509 
1510 			if (!*end || *end == ';')
1511 				break;
1512 			iter = end + 1;
1513 		}
1514 	}
1515 
1516 	return flags | slub_debug_local;
1517 }
1518 #else /* !CONFIG_SLUB_DEBUG */
1519 static inline void setup_object_debug(struct kmem_cache *s,
1520 			struct page *page, void *object) {}
1521 static inline
1522 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1523 
1524 static inline int alloc_debug_processing(struct kmem_cache *s,
1525 	struct page *page, void *object, unsigned long addr) { return 0; }
1526 
1527 static inline int free_debug_processing(
1528 	struct kmem_cache *s, struct page *page,
1529 	void *head, void *tail, int bulk_cnt,
1530 	unsigned long addr) { return 0; }
1531 
1532 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1533 			{ return 1; }
1534 static inline int check_object(struct kmem_cache *s, struct page *page,
1535 			void *object, u8 val) { return 1; }
1536 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1537 					struct page *page) {}
1538 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1539 					struct page *page) {}
1540 slab_flags_t kmem_cache_flags(unsigned int object_size,
1541 	slab_flags_t flags, const char *name)
1542 {
1543 	return flags;
1544 }
1545 #define slub_debug 0
1546 
1547 #define disable_higher_order_debug 0
1548 
1549 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1550 							{ return 0; }
1551 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1552 							{ return 0; }
1553 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1554 							int objects) {}
1555 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1556 							int objects) {}
1557 
1558 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1559 			       void **freelist, void *nextfree)
1560 {
1561 	return false;
1562 }
1563 #endif /* CONFIG_SLUB_DEBUG */
1564 
1565 /*
1566  * Hooks for other subsystems that check memory allocations. In a typical
1567  * production configuration these hooks all should produce no code at all.
1568  */
1569 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1570 {
1571 	ptr = kasan_kmalloc_large(ptr, size, flags);
1572 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1573 	kmemleak_alloc(ptr, size, 1, flags);
1574 	return ptr;
1575 }
1576 
1577 static __always_inline void kfree_hook(void *x)
1578 {
1579 	kmemleak_free(x);
1580 	kasan_kfree_large(x);
1581 }
1582 
1583 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1584 						void *x, bool init)
1585 {
1586 	kmemleak_free_recursive(x, s->flags);
1587 
1588 	/*
1589 	 * Trouble is that we may no longer disable interrupts in the fast path
1590 	 * So in order to make the debug calls that expect irqs to be
1591 	 * disabled we need to disable interrupts temporarily.
1592 	 */
1593 #ifdef CONFIG_LOCKDEP
1594 	{
1595 		unsigned long flags;
1596 
1597 		local_irq_save(flags);
1598 		debug_check_no_locks_freed(x, s->object_size);
1599 		local_irq_restore(flags);
1600 	}
1601 #endif
1602 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1603 		debug_check_no_obj_freed(x, s->object_size);
1604 
1605 	/* Use KCSAN to help debug racy use-after-free. */
1606 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1607 		__kcsan_check_access(x, s->object_size,
1608 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1609 
1610 	/*
1611 	 * As memory initialization might be integrated into KASAN,
1612 	 * kasan_slab_free and initialization memset's must be
1613 	 * kept together to avoid discrepancies in behavior.
1614 	 *
1615 	 * The initialization memset's clear the object and the metadata,
1616 	 * but don't touch the SLAB redzone.
1617 	 */
1618 	if (init) {
1619 		int rsize;
1620 
1621 		if (!kasan_has_integrated_init())
1622 			memset(kasan_reset_tag(x), 0, s->object_size);
1623 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1624 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1625 		       s->size - s->inuse - rsize);
1626 	}
1627 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1628 	return kasan_slab_free(s, x, init);
1629 }
1630 
1631 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1632 					   void **head, void **tail)
1633 {
1634 
1635 	void *object;
1636 	void *next = *head;
1637 	void *old_tail = *tail ? *tail : *head;
1638 
1639 	if (is_kfence_address(next)) {
1640 		slab_free_hook(s, next, false);
1641 		return true;
1642 	}
1643 
1644 	/* Head and tail of the reconstructed freelist */
1645 	*head = NULL;
1646 	*tail = NULL;
1647 
1648 	do {
1649 		object = next;
1650 		next = get_freepointer(s, object);
1651 
1652 		/* If object's reuse doesn't have to be delayed */
1653 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1654 			/* Move object to the new freelist */
1655 			set_freepointer(s, object, *head);
1656 			*head = object;
1657 			if (!*tail)
1658 				*tail = object;
1659 		}
1660 	} while (object != old_tail);
1661 
1662 	if (*head == *tail)
1663 		*tail = NULL;
1664 
1665 	return *head != NULL;
1666 }
1667 
1668 static void *setup_object(struct kmem_cache *s, struct page *page,
1669 				void *object)
1670 {
1671 	setup_object_debug(s, page, object);
1672 	object = kasan_init_slab_obj(s, object);
1673 	if (unlikely(s->ctor)) {
1674 		kasan_unpoison_object_data(s, object);
1675 		s->ctor(object);
1676 		kasan_poison_object_data(s, object);
1677 	}
1678 	return object;
1679 }
1680 
1681 /*
1682  * Slab allocation and freeing
1683  */
1684 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1685 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1686 {
1687 	struct page *page;
1688 	unsigned int order = oo_order(oo);
1689 
1690 	if (node == NUMA_NO_NODE)
1691 		page = alloc_pages(flags, order);
1692 	else
1693 		page = __alloc_pages_node(node, flags, order);
1694 
1695 	return page;
1696 }
1697 
1698 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1699 /* Pre-initialize the random sequence cache */
1700 static int init_cache_random_seq(struct kmem_cache *s)
1701 {
1702 	unsigned int count = oo_objects(s->oo);
1703 	int err;
1704 
1705 	/* Bailout if already initialised */
1706 	if (s->random_seq)
1707 		return 0;
1708 
1709 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1710 	if (err) {
1711 		pr_err("SLUB: Unable to initialize free list for %s\n",
1712 			s->name);
1713 		return err;
1714 	}
1715 
1716 	/* Transform to an offset on the set of pages */
1717 	if (s->random_seq) {
1718 		unsigned int i;
1719 
1720 		for (i = 0; i < count; i++)
1721 			s->random_seq[i] *= s->size;
1722 	}
1723 	return 0;
1724 }
1725 
1726 /* Initialize each random sequence freelist per cache */
1727 static void __init init_freelist_randomization(void)
1728 {
1729 	struct kmem_cache *s;
1730 
1731 	mutex_lock(&slab_mutex);
1732 
1733 	list_for_each_entry(s, &slab_caches, list)
1734 		init_cache_random_seq(s);
1735 
1736 	mutex_unlock(&slab_mutex);
1737 }
1738 
1739 /* Get the next entry on the pre-computed freelist randomized */
1740 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1741 				unsigned long *pos, void *start,
1742 				unsigned long page_limit,
1743 				unsigned long freelist_count)
1744 {
1745 	unsigned int idx;
1746 
1747 	/*
1748 	 * If the target page allocation failed, the number of objects on the
1749 	 * page might be smaller than the usual size defined by the cache.
1750 	 */
1751 	do {
1752 		idx = s->random_seq[*pos];
1753 		*pos += 1;
1754 		if (*pos >= freelist_count)
1755 			*pos = 0;
1756 	} while (unlikely(idx >= page_limit));
1757 
1758 	return (char *)start + idx;
1759 }
1760 
1761 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1762 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1763 {
1764 	void *start;
1765 	void *cur;
1766 	void *next;
1767 	unsigned long idx, pos, page_limit, freelist_count;
1768 
1769 	if (page->objects < 2 || !s->random_seq)
1770 		return false;
1771 
1772 	freelist_count = oo_objects(s->oo);
1773 	pos = get_random_int() % freelist_count;
1774 
1775 	page_limit = page->objects * s->size;
1776 	start = fixup_red_left(s, page_address(page));
1777 
1778 	/* First entry is used as the base of the freelist */
1779 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1780 				freelist_count);
1781 	cur = setup_object(s, page, cur);
1782 	page->freelist = cur;
1783 
1784 	for (idx = 1; idx < page->objects; idx++) {
1785 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1786 			freelist_count);
1787 		next = setup_object(s, page, next);
1788 		set_freepointer(s, cur, next);
1789 		cur = next;
1790 	}
1791 	set_freepointer(s, cur, NULL);
1792 
1793 	return true;
1794 }
1795 #else
1796 static inline int init_cache_random_seq(struct kmem_cache *s)
1797 {
1798 	return 0;
1799 }
1800 static inline void init_freelist_randomization(void) { }
1801 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1802 {
1803 	return false;
1804 }
1805 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1806 
1807 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1808 {
1809 	struct page *page;
1810 	struct kmem_cache_order_objects oo = s->oo;
1811 	gfp_t alloc_gfp;
1812 	void *start, *p, *next;
1813 	int idx;
1814 	bool shuffle;
1815 
1816 	flags &= gfp_allowed_mask;
1817 
1818 	if (gfpflags_allow_blocking(flags))
1819 		local_irq_enable();
1820 
1821 	flags |= s->allocflags;
1822 
1823 	/*
1824 	 * Let the initial higher-order allocation fail under memory pressure
1825 	 * so we fall-back to the minimum order allocation.
1826 	 */
1827 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1828 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1829 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1830 
1831 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1832 	if (unlikely(!page)) {
1833 		oo = s->min;
1834 		alloc_gfp = flags;
1835 		/*
1836 		 * Allocation may have failed due to fragmentation.
1837 		 * Try a lower order alloc if possible
1838 		 */
1839 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1840 		if (unlikely(!page))
1841 			goto out;
1842 		stat(s, ORDER_FALLBACK);
1843 	}
1844 
1845 	page->objects = oo_objects(oo);
1846 
1847 	account_slab_page(page, oo_order(oo), s, flags);
1848 
1849 	page->slab_cache = s;
1850 	__SetPageSlab(page);
1851 	if (page_is_pfmemalloc(page))
1852 		SetPageSlabPfmemalloc(page);
1853 
1854 	kasan_poison_slab(page);
1855 
1856 	start = page_address(page);
1857 
1858 	setup_page_debug(s, page, start);
1859 
1860 	shuffle = shuffle_freelist(s, page);
1861 
1862 	if (!shuffle) {
1863 		start = fixup_red_left(s, start);
1864 		start = setup_object(s, page, start);
1865 		page->freelist = start;
1866 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1867 			next = p + s->size;
1868 			next = setup_object(s, page, next);
1869 			set_freepointer(s, p, next);
1870 			p = next;
1871 		}
1872 		set_freepointer(s, p, NULL);
1873 	}
1874 
1875 	page->inuse = page->objects;
1876 	page->frozen = 1;
1877 
1878 out:
1879 	if (gfpflags_allow_blocking(flags))
1880 		local_irq_disable();
1881 	if (!page)
1882 		return NULL;
1883 
1884 	inc_slabs_node(s, page_to_nid(page), page->objects);
1885 
1886 	return page;
1887 }
1888 
1889 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1890 {
1891 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1892 		flags = kmalloc_fix_flags(flags);
1893 
1894 	return allocate_slab(s,
1895 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1896 }
1897 
1898 static void __free_slab(struct kmem_cache *s, struct page *page)
1899 {
1900 	int order = compound_order(page);
1901 	int pages = 1 << order;
1902 
1903 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1904 		void *p;
1905 
1906 		slab_pad_check(s, page);
1907 		for_each_object(p, s, page_address(page),
1908 						page->objects)
1909 			check_object(s, page, p, SLUB_RED_INACTIVE);
1910 	}
1911 
1912 	__ClearPageSlabPfmemalloc(page);
1913 	__ClearPageSlab(page);
1914 	/* In union with page->mapping where page allocator expects NULL */
1915 	page->slab_cache = NULL;
1916 	if (current->reclaim_state)
1917 		current->reclaim_state->reclaimed_slab += pages;
1918 	unaccount_slab_page(page, order, s);
1919 	__free_pages(page, order);
1920 }
1921 
1922 static void rcu_free_slab(struct rcu_head *h)
1923 {
1924 	struct page *page = container_of(h, struct page, rcu_head);
1925 
1926 	__free_slab(page->slab_cache, page);
1927 }
1928 
1929 static void free_slab(struct kmem_cache *s, struct page *page)
1930 {
1931 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1932 		call_rcu(&page->rcu_head, rcu_free_slab);
1933 	} else
1934 		__free_slab(s, page);
1935 }
1936 
1937 static void discard_slab(struct kmem_cache *s, struct page *page)
1938 {
1939 	dec_slabs_node(s, page_to_nid(page), page->objects);
1940 	free_slab(s, page);
1941 }
1942 
1943 /*
1944  * Management of partially allocated slabs.
1945  */
1946 static inline void
1947 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1948 {
1949 	n->nr_partial++;
1950 	if (tail == DEACTIVATE_TO_TAIL)
1951 		list_add_tail(&page->slab_list, &n->partial);
1952 	else
1953 		list_add(&page->slab_list, &n->partial);
1954 }
1955 
1956 static inline void add_partial(struct kmem_cache_node *n,
1957 				struct page *page, int tail)
1958 {
1959 	lockdep_assert_held(&n->list_lock);
1960 	__add_partial(n, page, tail);
1961 }
1962 
1963 static inline void remove_partial(struct kmem_cache_node *n,
1964 					struct page *page)
1965 {
1966 	lockdep_assert_held(&n->list_lock);
1967 	list_del(&page->slab_list);
1968 	n->nr_partial--;
1969 }
1970 
1971 /*
1972  * Remove slab from the partial list, freeze it and
1973  * return the pointer to the freelist.
1974  *
1975  * Returns a list of objects or NULL if it fails.
1976  */
1977 static inline void *acquire_slab(struct kmem_cache *s,
1978 		struct kmem_cache_node *n, struct page *page,
1979 		int mode, int *objects)
1980 {
1981 	void *freelist;
1982 	unsigned long counters;
1983 	struct page new;
1984 
1985 	lockdep_assert_held(&n->list_lock);
1986 
1987 	/*
1988 	 * Zap the freelist and set the frozen bit.
1989 	 * The old freelist is the list of objects for the
1990 	 * per cpu allocation list.
1991 	 */
1992 	freelist = page->freelist;
1993 	counters = page->counters;
1994 	new.counters = counters;
1995 	*objects = new.objects - new.inuse;
1996 	if (mode) {
1997 		new.inuse = page->objects;
1998 		new.freelist = NULL;
1999 	} else {
2000 		new.freelist = freelist;
2001 	}
2002 
2003 	VM_BUG_ON(new.frozen);
2004 	new.frozen = 1;
2005 
2006 	if (!__cmpxchg_double_slab(s, page,
2007 			freelist, counters,
2008 			new.freelist, new.counters,
2009 			"acquire_slab"))
2010 		return NULL;
2011 
2012 	remove_partial(n, page);
2013 	WARN_ON(!freelist);
2014 	return freelist;
2015 }
2016 
2017 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2018 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2019 
2020 /*
2021  * Try to allocate a partial slab from a specific node.
2022  */
2023 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2024 				struct kmem_cache_cpu *c, gfp_t flags)
2025 {
2026 	struct page *page, *page2;
2027 	void *object = NULL;
2028 	unsigned int available = 0;
2029 	int objects;
2030 
2031 	/*
2032 	 * Racy check. If we mistakenly see no partial slabs then we
2033 	 * just allocate an empty slab. If we mistakenly try to get a
2034 	 * partial slab and there is none available then get_partial()
2035 	 * will return NULL.
2036 	 */
2037 	if (!n || !n->nr_partial)
2038 		return NULL;
2039 
2040 	spin_lock(&n->list_lock);
2041 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2042 		void *t;
2043 
2044 		if (!pfmemalloc_match(page, flags))
2045 			continue;
2046 
2047 		t = acquire_slab(s, n, page, object == NULL, &objects);
2048 		if (!t)
2049 			break;
2050 
2051 		available += objects;
2052 		if (!object) {
2053 			c->page = page;
2054 			stat(s, ALLOC_FROM_PARTIAL);
2055 			object = t;
2056 		} else {
2057 			put_cpu_partial(s, page, 0);
2058 			stat(s, CPU_PARTIAL_NODE);
2059 		}
2060 		if (!kmem_cache_has_cpu_partial(s)
2061 			|| available > slub_cpu_partial(s) / 2)
2062 			break;
2063 
2064 	}
2065 	spin_unlock(&n->list_lock);
2066 	return object;
2067 }
2068 
2069 /*
2070  * Get a page from somewhere. Search in increasing NUMA distances.
2071  */
2072 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2073 		struct kmem_cache_cpu *c)
2074 {
2075 #ifdef CONFIG_NUMA
2076 	struct zonelist *zonelist;
2077 	struct zoneref *z;
2078 	struct zone *zone;
2079 	enum zone_type highest_zoneidx = gfp_zone(flags);
2080 	void *object;
2081 	unsigned int cpuset_mems_cookie;
2082 
2083 	/*
2084 	 * The defrag ratio allows a configuration of the tradeoffs between
2085 	 * inter node defragmentation and node local allocations. A lower
2086 	 * defrag_ratio increases the tendency to do local allocations
2087 	 * instead of attempting to obtain partial slabs from other nodes.
2088 	 *
2089 	 * If the defrag_ratio is set to 0 then kmalloc() always
2090 	 * returns node local objects. If the ratio is higher then kmalloc()
2091 	 * may return off node objects because partial slabs are obtained
2092 	 * from other nodes and filled up.
2093 	 *
2094 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2095 	 * (which makes defrag_ratio = 1000) then every (well almost)
2096 	 * allocation will first attempt to defrag slab caches on other nodes.
2097 	 * This means scanning over all nodes to look for partial slabs which
2098 	 * may be expensive if we do it every time we are trying to find a slab
2099 	 * with available objects.
2100 	 */
2101 	if (!s->remote_node_defrag_ratio ||
2102 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2103 		return NULL;
2104 
2105 	do {
2106 		cpuset_mems_cookie = read_mems_allowed_begin();
2107 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2108 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2109 			struct kmem_cache_node *n;
2110 
2111 			n = get_node(s, zone_to_nid(zone));
2112 
2113 			if (n && cpuset_zone_allowed(zone, flags) &&
2114 					n->nr_partial > s->min_partial) {
2115 				object = get_partial_node(s, n, c, flags);
2116 				if (object) {
2117 					/*
2118 					 * Don't check read_mems_allowed_retry()
2119 					 * here - if mems_allowed was updated in
2120 					 * parallel, that was a harmless race
2121 					 * between allocation and the cpuset
2122 					 * update
2123 					 */
2124 					return object;
2125 				}
2126 			}
2127 		}
2128 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2129 #endif	/* CONFIG_NUMA */
2130 	return NULL;
2131 }
2132 
2133 /*
2134  * Get a partial page, lock it and return it.
2135  */
2136 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2137 		struct kmem_cache_cpu *c)
2138 {
2139 	void *object;
2140 	int searchnode = node;
2141 
2142 	if (node == NUMA_NO_NODE)
2143 		searchnode = numa_mem_id();
2144 
2145 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2146 	if (object || node != NUMA_NO_NODE)
2147 		return object;
2148 
2149 	return get_any_partial(s, flags, c);
2150 }
2151 
2152 #ifdef CONFIG_PREEMPTION
2153 /*
2154  * Calculate the next globally unique transaction for disambiguation
2155  * during cmpxchg. The transactions start with the cpu number and are then
2156  * incremented by CONFIG_NR_CPUS.
2157  */
2158 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2159 #else
2160 /*
2161  * No preemption supported therefore also no need to check for
2162  * different cpus.
2163  */
2164 #define TID_STEP 1
2165 #endif
2166 
2167 static inline unsigned long next_tid(unsigned long tid)
2168 {
2169 	return tid + TID_STEP;
2170 }
2171 
2172 #ifdef SLUB_DEBUG_CMPXCHG
2173 static inline unsigned int tid_to_cpu(unsigned long tid)
2174 {
2175 	return tid % TID_STEP;
2176 }
2177 
2178 static inline unsigned long tid_to_event(unsigned long tid)
2179 {
2180 	return tid / TID_STEP;
2181 }
2182 #endif
2183 
2184 static inline unsigned int init_tid(int cpu)
2185 {
2186 	return cpu;
2187 }
2188 
2189 static inline void note_cmpxchg_failure(const char *n,
2190 		const struct kmem_cache *s, unsigned long tid)
2191 {
2192 #ifdef SLUB_DEBUG_CMPXCHG
2193 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2194 
2195 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2196 
2197 #ifdef CONFIG_PREEMPTION
2198 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2199 		pr_warn("due to cpu change %d -> %d\n",
2200 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2201 	else
2202 #endif
2203 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2204 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2205 			tid_to_event(tid), tid_to_event(actual_tid));
2206 	else
2207 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2208 			actual_tid, tid, next_tid(tid));
2209 #endif
2210 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2211 }
2212 
2213 static void init_kmem_cache_cpus(struct kmem_cache *s)
2214 {
2215 	int cpu;
2216 
2217 	for_each_possible_cpu(cpu)
2218 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2219 }
2220 
2221 /*
2222  * Remove the cpu slab
2223  */
2224 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2225 				void *freelist, struct kmem_cache_cpu *c)
2226 {
2227 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2228 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2229 	int lock = 0, free_delta = 0;
2230 	enum slab_modes l = M_NONE, m = M_NONE;
2231 	void *nextfree, *freelist_iter, *freelist_tail;
2232 	int tail = DEACTIVATE_TO_HEAD;
2233 	struct page new;
2234 	struct page old;
2235 
2236 	if (page->freelist) {
2237 		stat(s, DEACTIVATE_REMOTE_FREES);
2238 		tail = DEACTIVATE_TO_TAIL;
2239 	}
2240 
2241 	/*
2242 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2243 	 * remember the last object in freelist_tail for later splicing.
2244 	 */
2245 	freelist_tail = NULL;
2246 	freelist_iter = freelist;
2247 	while (freelist_iter) {
2248 		nextfree = get_freepointer(s, freelist_iter);
2249 
2250 		/*
2251 		 * If 'nextfree' is invalid, it is possible that the object at
2252 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2253 		 * starting at 'freelist_iter' by skipping them.
2254 		 */
2255 		if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2256 			break;
2257 
2258 		freelist_tail = freelist_iter;
2259 		free_delta++;
2260 
2261 		freelist_iter = nextfree;
2262 	}
2263 
2264 	/*
2265 	 * Stage two: Unfreeze the page while splicing the per-cpu
2266 	 * freelist to the head of page's freelist.
2267 	 *
2268 	 * Ensure that the page is unfrozen while the list presence
2269 	 * reflects the actual number of objects during unfreeze.
2270 	 *
2271 	 * We setup the list membership and then perform a cmpxchg
2272 	 * with the count. If there is a mismatch then the page
2273 	 * is not unfrozen but the page is on the wrong list.
2274 	 *
2275 	 * Then we restart the process which may have to remove
2276 	 * the page from the list that we just put it on again
2277 	 * because the number of objects in the slab may have
2278 	 * changed.
2279 	 */
2280 redo:
2281 
2282 	old.freelist = READ_ONCE(page->freelist);
2283 	old.counters = READ_ONCE(page->counters);
2284 	VM_BUG_ON(!old.frozen);
2285 
2286 	/* Determine target state of the slab */
2287 	new.counters = old.counters;
2288 	if (freelist_tail) {
2289 		new.inuse -= free_delta;
2290 		set_freepointer(s, freelist_tail, old.freelist);
2291 		new.freelist = freelist;
2292 	} else
2293 		new.freelist = old.freelist;
2294 
2295 	new.frozen = 0;
2296 
2297 	if (!new.inuse && n->nr_partial >= s->min_partial)
2298 		m = M_FREE;
2299 	else if (new.freelist) {
2300 		m = M_PARTIAL;
2301 		if (!lock) {
2302 			lock = 1;
2303 			/*
2304 			 * Taking the spinlock removes the possibility
2305 			 * that acquire_slab() will see a slab page that
2306 			 * is frozen
2307 			 */
2308 			spin_lock(&n->list_lock);
2309 		}
2310 	} else {
2311 		m = M_FULL;
2312 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2313 			lock = 1;
2314 			/*
2315 			 * This also ensures that the scanning of full
2316 			 * slabs from diagnostic functions will not see
2317 			 * any frozen slabs.
2318 			 */
2319 			spin_lock(&n->list_lock);
2320 		}
2321 	}
2322 
2323 	if (l != m) {
2324 		if (l == M_PARTIAL)
2325 			remove_partial(n, page);
2326 		else if (l == M_FULL)
2327 			remove_full(s, n, page);
2328 
2329 		if (m == M_PARTIAL)
2330 			add_partial(n, page, tail);
2331 		else if (m == M_FULL)
2332 			add_full(s, n, page);
2333 	}
2334 
2335 	l = m;
2336 	if (!__cmpxchg_double_slab(s, page,
2337 				old.freelist, old.counters,
2338 				new.freelist, new.counters,
2339 				"unfreezing slab"))
2340 		goto redo;
2341 
2342 	if (lock)
2343 		spin_unlock(&n->list_lock);
2344 
2345 	if (m == M_PARTIAL)
2346 		stat(s, tail);
2347 	else if (m == M_FULL)
2348 		stat(s, DEACTIVATE_FULL);
2349 	else if (m == M_FREE) {
2350 		stat(s, DEACTIVATE_EMPTY);
2351 		discard_slab(s, page);
2352 		stat(s, FREE_SLAB);
2353 	}
2354 
2355 	c->page = NULL;
2356 	c->freelist = NULL;
2357 }
2358 
2359 /*
2360  * Unfreeze all the cpu partial slabs.
2361  *
2362  * This function must be called with interrupts disabled
2363  * for the cpu using c (or some other guarantee must be there
2364  * to guarantee no concurrent accesses).
2365  */
2366 static void unfreeze_partials(struct kmem_cache *s,
2367 		struct kmem_cache_cpu *c)
2368 {
2369 #ifdef CONFIG_SLUB_CPU_PARTIAL
2370 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2371 	struct page *page, *discard_page = NULL;
2372 
2373 	while ((page = slub_percpu_partial(c))) {
2374 		struct page new;
2375 		struct page old;
2376 
2377 		slub_set_percpu_partial(c, page);
2378 
2379 		n2 = get_node(s, page_to_nid(page));
2380 		if (n != n2) {
2381 			if (n)
2382 				spin_unlock(&n->list_lock);
2383 
2384 			n = n2;
2385 			spin_lock(&n->list_lock);
2386 		}
2387 
2388 		do {
2389 
2390 			old.freelist = page->freelist;
2391 			old.counters = page->counters;
2392 			VM_BUG_ON(!old.frozen);
2393 
2394 			new.counters = old.counters;
2395 			new.freelist = old.freelist;
2396 
2397 			new.frozen = 0;
2398 
2399 		} while (!__cmpxchg_double_slab(s, page,
2400 				old.freelist, old.counters,
2401 				new.freelist, new.counters,
2402 				"unfreezing slab"));
2403 
2404 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2405 			page->next = discard_page;
2406 			discard_page = page;
2407 		} else {
2408 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2409 			stat(s, FREE_ADD_PARTIAL);
2410 		}
2411 	}
2412 
2413 	if (n)
2414 		spin_unlock(&n->list_lock);
2415 
2416 	while (discard_page) {
2417 		page = discard_page;
2418 		discard_page = discard_page->next;
2419 
2420 		stat(s, DEACTIVATE_EMPTY);
2421 		discard_slab(s, page);
2422 		stat(s, FREE_SLAB);
2423 	}
2424 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2425 }
2426 
2427 /*
2428  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2429  * partial page slot if available.
2430  *
2431  * If we did not find a slot then simply move all the partials to the
2432  * per node partial list.
2433  */
2434 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2435 {
2436 #ifdef CONFIG_SLUB_CPU_PARTIAL
2437 	struct page *oldpage;
2438 	int pages;
2439 	int pobjects;
2440 
2441 	preempt_disable();
2442 	do {
2443 		pages = 0;
2444 		pobjects = 0;
2445 		oldpage = this_cpu_read(s->cpu_slab->partial);
2446 
2447 		if (oldpage) {
2448 			pobjects = oldpage->pobjects;
2449 			pages = oldpage->pages;
2450 			if (drain && pobjects > slub_cpu_partial(s)) {
2451 				unsigned long flags;
2452 				/*
2453 				 * partial array is full. Move the existing
2454 				 * set to the per node partial list.
2455 				 */
2456 				local_irq_save(flags);
2457 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2458 				local_irq_restore(flags);
2459 				oldpage = NULL;
2460 				pobjects = 0;
2461 				pages = 0;
2462 				stat(s, CPU_PARTIAL_DRAIN);
2463 			}
2464 		}
2465 
2466 		pages++;
2467 		pobjects += page->objects - page->inuse;
2468 
2469 		page->pages = pages;
2470 		page->pobjects = pobjects;
2471 		page->next = oldpage;
2472 
2473 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2474 								!= oldpage);
2475 	if (unlikely(!slub_cpu_partial(s))) {
2476 		unsigned long flags;
2477 
2478 		local_irq_save(flags);
2479 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2480 		local_irq_restore(flags);
2481 	}
2482 	preempt_enable();
2483 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2484 }
2485 
2486 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2487 {
2488 	stat(s, CPUSLAB_FLUSH);
2489 	deactivate_slab(s, c->page, c->freelist, c);
2490 
2491 	c->tid = next_tid(c->tid);
2492 }
2493 
2494 /*
2495  * Flush cpu slab.
2496  *
2497  * Called from IPI handler with interrupts disabled.
2498  */
2499 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2500 {
2501 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2502 
2503 	if (c->page)
2504 		flush_slab(s, c);
2505 
2506 	unfreeze_partials(s, c);
2507 }
2508 
2509 static void flush_cpu_slab(void *d)
2510 {
2511 	struct kmem_cache *s = d;
2512 
2513 	__flush_cpu_slab(s, smp_processor_id());
2514 }
2515 
2516 static bool has_cpu_slab(int cpu, void *info)
2517 {
2518 	struct kmem_cache *s = info;
2519 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2520 
2521 	return c->page || slub_percpu_partial(c);
2522 }
2523 
2524 static void flush_all(struct kmem_cache *s)
2525 {
2526 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2527 }
2528 
2529 /*
2530  * Use the cpu notifier to insure that the cpu slabs are flushed when
2531  * necessary.
2532  */
2533 static int slub_cpu_dead(unsigned int cpu)
2534 {
2535 	struct kmem_cache *s;
2536 	unsigned long flags;
2537 
2538 	mutex_lock(&slab_mutex);
2539 	list_for_each_entry(s, &slab_caches, list) {
2540 		local_irq_save(flags);
2541 		__flush_cpu_slab(s, cpu);
2542 		local_irq_restore(flags);
2543 	}
2544 	mutex_unlock(&slab_mutex);
2545 	return 0;
2546 }
2547 
2548 /*
2549  * Check if the objects in a per cpu structure fit numa
2550  * locality expectations.
2551  */
2552 static inline int node_match(struct page *page, int node)
2553 {
2554 #ifdef CONFIG_NUMA
2555 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2556 		return 0;
2557 #endif
2558 	return 1;
2559 }
2560 
2561 #ifdef CONFIG_SLUB_DEBUG
2562 static int count_free(struct page *page)
2563 {
2564 	return page->objects - page->inuse;
2565 }
2566 
2567 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2568 {
2569 	return atomic_long_read(&n->total_objects);
2570 }
2571 #endif /* CONFIG_SLUB_DEBUG */
2572 
2573 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2574 static unsigned long count_partial(struct kmem_cache_node *n,
2575 					int (*get_count)(struct page *))
2576 {
2577 	unsigned long flags;
2578 	unsigned long x = 0;
2579 	struct page *page;
2580 
2581 	spin_lock_irqsave(&n->list_lock, flags);
2582 	list_for_each_entry(page, &n->partial, slab_list)
2583 		x += get_count(page);
2584 	spin_unlock_irqrestore(&n->list_lock, flags);
2585 	return x;
2586 }
2587 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2588 
2589 static noinline void
2590 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2591 {
2592 #ifdef CONFIG_SLUB_DEBUG
2593 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2594 				      DEFAULT_RATELIMIT_BURST);
2595 	int node;
2596 	struct kmem_cache_node *n;
2597 
2598 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2599 		return;
2600 
2601 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2602 		nid, gfpflags, &gfpflags);
2603 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2604 		s->name, s->object_size, s->size, oo_order(s->oo),
2605 		oo_order(s->min));
2606 
2607 	if (oo_order(s->min) > get_order(s->object_size))
2608 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2609 			s->name);
2610 
2611 	for_each_kmem_cache_node(s, node, n) {
2612 		unsigned long nr_slabs;
2613 		unsigned long nr_objs;
2614 		unsigned long nr_free;
2615 
2616 		nr_free  = count_partial(n, count_free);
2617 		nr_slabs = node_nr_slabs(n);
2618 		nr_objs  = node_nr_objs(n);
2619 
2620 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2621 			node, nr_slabs, nr_objs, nr_free);
2622 	}
2623 #endif
2624 }
2625 
2626 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2627 			int node, struct kmem_cache_cpu **pc)
2628 {
2629 	void *freelist;
2630 	struct kmem_cache_cpu *c = *pc;
2631 	struct page *page;
2632 
2633 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2634 
2635 	freelist = get_partial(s, flags, node, c);
2636 
2637 	if (freelist)
2638 		return freelist;
2639 
2640 	page = new_slab(s, flags, node);
2641 	if (page) {
2642 		c = raw_cpu_ptr(s->cpu_slab);
2643 		if (c->page)
2644 			flush_slab(s, c);
2645 
2646 		/*
2647 		 * No other reference to the page yet so we can
2648 		 * muck around with it freely without cmpxchg
2649 		 */
2650 		freelist = page->freelist;
2651 		page->freelist = NULL;
2652 
2653 		stat(s, ALLOC_SLAB);
2654 		c->page = page;
2655 		*pc = c;
2656 	}
2657 
2658 	return freelist;
2659 }
2660 
2661 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2662 {
2663 	if (unlikely(PageSlabPfmemalloc(page)))
2664 		return gfp_pfmemalloc_allowed(gfpflags);
2665 
2666 	return true;
2667 }
2668 
2669 /*
2670  * Check the page->freelist of a page and either transfer the freelist to the
2671  * per cpu freelist or deactivate the page.
2672  *
2673  * The page is still frozen if the return value is not NULL.
2674  *
2675  * If this function returns NULL then the page has been unfrozen.
2676  *
2677  * This function must be called with interrupt disabled.
2678  */
2679 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2680 {
2681 	struct page new;
2682 	unsigned long counters;
2683 	void *freelist;
2684 
2685 	do {
2686 		freelist = page->freelist;
2687 		counters = page->counters;
2688 
2689 		new.counters = counters;
2690 		VM_BUG_ON(!new.frozen);
2691 
2692 		new.inuse = page->objects;
2693 		new.frozen = freelist != NULL;
2694 
2695 	} while (!__cmpxchg_double_slab(s, page,
2696 		freelist, counters,
2697 		NULL, new.counters,
2698 		"get_freelist"));
2699 
2700 	return freelist;
2701 }
2702 
2703 /*
2704  * Slow path. The lockless freelist is empty or we need to perform
2705  * debugging duties.
2706  *
2707  * Processing is still very fast if new objects have been freed to the
2708  * regular freelist. In that case we simply take over the regular freelist
2709  * as the lockless freelist and zap the regular freelist.
2710  *
2711  * If that is not working then we fall back to the partial lists. We take the
2712  * first element of the freelist as the object to allocate now and move the
2713  * rest of the freelist to the lockless freelist.
2714  *
2715  * And if we were unable to get a new slab from the partial slab lists then
2716  * we need to allocate a new slab. This is the slowest path since it involves
2717  * a call to the page allocator and the setup of a new slab.
2718  *
2719  * Version of __slab_alloc to use when we know that interrupts are
2720  * already disabled (which is the case for bulk allocation).
2721  */
2722 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2723 			  unsigned long addr, struct kmem_cache_cpu *c)
2724 {
2725 	void *freelist;
2726 	struct page *page;
2727 
2728 	stat(s, ALLOC_SLOWPATH);
2729 
2730 	page = c->page;
2731 	if (!page) {
2732 		/*
2733 		 * if the node is not online or has no normal memory, just
2734 		 * ignore the node constraint
2735 		 */
2736 		if (unlikely(node != NUMA_NO_NODE &&
2737 			     !node_isset(node, slab_nodes)))
2738 			node = NUMA_NO_NODE;
2739 		goto new_slab;
2740 	}
2741 redo:
2742 
2743 	if (unlikely(!node_match(page, node))) {
2744 		/*
2745 		 * same as above but node_match() being false already
2746 		 * implies node != NUMA_NO_NODE
2747 		 */
2748 		if (!node_isset(node, slab_nodes)) {
2749 			node = NUMA_NO_NODE;
2750 			goto redo;
2751 		} else {
2752 			stat(s, ALLOC_NODE_MISMATCH);
2753 			deactivate_slab(s, page, c->freelist, c);
2754 			goto new_slab;
2755 		}
2756 	}
2757 
2758 	/*
2759 	 * By rights, we should be searching for a slab page that was
2760 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2761 	 * information when the page leaves the per-cpu allocator
2762 	 */
2763 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2764 		deactivate_slab(s, page, c->freelist, c);
2765 		goto new_slab;
2766 	}
2767 
2768 	/* must check again c->freelist in case of cpu migration or IRQ */
2769 	freelist = c->freelist;
2770 	if (freelist)
2771 		goto load_freelist;
2772 
2773 	freelist = get_freelist(s, page);
2774 
2775 	if (!freelist) {
2776 		c->page = NULL;
2777 		stat(s, DEACTIVATE_BYPASS);
2778 		goto new_slab;
2779 	}
2780 
2781 	stat(s, ALLOC_REFILL);
2782 
2783 load_freelist:
2784 	/*
2785 	 * freelist is pointing to the list of objects to be used.
2786 	 * page is pointing to the page from which the objects are obtained.
2787 	 * That page must be frozen for per cpu allocations to work.
2788 	 */
2789 	VM_BUG_ON(!c->page->frozen);
2790 	c->freelist = get_freepointer(s, freelist);
2791 	c->tid = next_tid(c->tid);
2792 	return freelist;
2793 
2794 new_slab:
2795 
2796 	if (slub_percpu_partial(c)) {
2797 		page = c->page = slub_percpu_partial(c);
2798 		slub_set_percpu_partial(c, page);
2799 		stat(s, CPU_PARTIAL_ALLOC);
2800 		goto redo;
2801 	}
2802 
2803 	freelist = new_slab_objects(s, gfpflags, node, &c);
2804 
2805 	if (unlikely(!freelist)) {
2806 		slab_out_of_memory(s, gfpflags, node);
2807 		return NULL;
2808 	}
2809 
2810 	page = c->page;
2811 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2812 		goto load_freelist;
2813 
2814 	/* Only entered in the debug case */
2815 	if (kmem_cache_debug(s) &&
2816 			!alloc_debug_processing(s, page, freelist, addr))
2817 		goto new_slab;	/* Slab failed checks. Next slab needed */
2818 
2819 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2820 	return freelist;
2821 }
2822 
2823 /*
2824  * Another one that disabled interrupt and compensates for possible
2825  * cpu changes by refetching the per cpu area pointer.
2826  */
2827 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2828 			  unsigned long addr, struct kmem_cache_cpu *c)
2829 {
2830 	void *p;
2831 	unsigned long flags;
2832 
2833 	local_irq_save(flags);
2834 #ifdef CONFIG_PREEMPTION
2835 	/*
2836 	 * We may have been preempted and rescheduled on a different
2837 	 * cpu before disabling interrupts. Need to reload cpu area
2838 	 * pointer.
2839 	 */
2840 	c = this_cpu_ptr(s->cpu_slab);
2841 #endif
2842 
2843 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2844 	local_irq_restore(flags);
2845 	return p;
2846 }
2847 
2848 /*
2849  * If the object has been wiped upon free, make sure it's fully initialized by
2850  * zeroing out freelist pointer.
2851  */
2852 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2853 						   void *obj)
2854 {
2855 	if (unlikely(slab_want_init_on_free(s)) && obj)
2856 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2857 			0, sizeof(void *));
2858 }
2859 
2860 /*
2861  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2862  * have the fastpath folded into their functions. So no function call
2863  * overhead for requests that can be satisfied on the fastpath.
2864  *
2865  * The fastpath works by first checking if the lockless freelist can be used.
2866  * If not then __slab_alloc is called for slow processing.
2867  *
2868  * Otherwise we can simply pick the next object from the lockless free list.
2869  */
2870 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2871 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2872 {
2873 	void *object;
2874 	struct kmem_cache_cpu *c;
2875 	struct page *page;
2876 	unsigned long tid;
2877 	struct obj_cgroup *objcg = NULL;
2878 	bool init = false;
2879 
2880 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2881 	if (!s)
2882 		return NULL;
2883 
2884 	object = kfence_alloc(s, orig_size, gfpflags);
2885 	if (unlikely(object))
2886 		goto out;
2887 
2888 redo:
2889 	/*
2890 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2891 	 * enabled. We may switch back and forth between cpus while
2892 	 * reading from one cpu area. That does not matter as long
2893 	 * as we end up on the original cpu again when doing the cmpxchg.
2894 	 *
2895 	 * We should guarantee that tid and kmem_cache are retrieved on
2896 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2897 	 * to check if it is matched or not.
2898 	 */
2899 	do {
2900 		tid = this_cpu_read(s->cpu_slab->tid);
2901 		c = raw_cpu_ptr(s->cpu_slab);
2902 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2903 		 unlikely(tid != READ_ONCE(c->tid)));
2904 
2905 	/*
2906 	 * Irqless object alloc/free algorithm used here depends on sequence
2907 	 * of fetching cpu_slab's data. tid should be fetched before anything
2908 	 * on c to guarantee that object and page associated with previous tid
2909 	 * won't be used with current tid. If we fetch tid first, object and
2910 	 * page could be one associated with next tid and our alloc/free
2911 	 * request will be failed. In this case, we will retry. So, no problem.
2912 	 */
2913 	barrier();
2914 
2915 	/*
2916 	 * The transaction ids are globally unique per cpu and per operation on
2917 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2918 	 * occurs on the right processor and that there was no operation on the
2919 	 * linked list in between.
2920 	 */
2921 
2922 	object = c->freelist;
2923 	page = c->page;
2924 	if (unlikely(!object || !page || !node_match(page, node))) {
2925 		object = __slab_alloc(s, gfpflags, node, addr, c);
2926 	} else {
2927 		void *next_object = get_freepointer_safe(s, object);
2928 
2929 		/*
2930 		 * The cmpxchg will only match if there was no additional
2931 		 * operation and if we are on the right processor.
2932 		 *
2933 		 * The cmpxchg does the following atomically (without lock
2934 		 * semantics!)
2935 		 * 1. Relocate first pointer to the current per cpu area.
2936 		 * 2. Verify that tid and freelist have not been changed
2937 		 * 3. If they were not changed replace tid and freelist
2938 		 *
2939 		 * Since this is without lock semantics the protection is only
2940 		 * against code executing on this cpu *not* from access by
2941 		 * other cpus.
2942 		 */
2943 		if (unlikely(!this_cpu_cmpxchg_double(
2944 				s->cpu_slab->freelist, s->cpu_slab->tid,
2945 				object, tid,
2946 				next_object, next_tid(tid)))) {
2947 
2948 			note_cmpxchg_failure("slab_alloc", s, tid);
2949 			goto redo;
2950 		}
2951 		prefetch_freepointer(s, next_object);
2952 		stat(s, ALLOC_FASTPATH);
2953 	}
2954 
2955 	maybe_wipe_obj_freeptr(s, object);
2956 	init = slab_want_init_on_alloc(gfpflags, s);
2957 
2958 out:
2959 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2960 
2961 	return object;
2962 }
2963 
2964 static __always_inline void *slab_alloc(struct kmem_cache *s,
2965 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
2966 {
2967 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2968 }
2969 
2970 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2971 {
2972 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2973 
2974 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2975 				s->size, gfpflags);
2976 
2977 	return ret;
2978 }
2979 EXPORT_SYMBOL(kmem_cache_alloc);
2980 
2981 #ifdef CONFIG_TRACING
2982 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2983 {
2984 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2985 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2986 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2987 	return ret;
2988 }
2989 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2990 #endif
2991 
2992 #ifdef CONFIG_NUMA
2993 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2994 {
2995 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
2996 
2997 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2998 				    s->object_size, s->size, gfpflags, node);
2999 
3000 	return ret;
3001 }
3002 EXPORT_SYMBOL(kmem_cache_alloc_node);
3003 
3004 #ifdef CONFIG_TRACING
3005 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3006 				    gfp_t gfpflags,
3007 				    int node, size_t size)
3008 {
3009 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3010 
3011 	trace_kmalloc_node(_RET_IP_, ret,
3012 			   size, s->size, gfpflags, node);
3013 
3014 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3015 	return ret;
3016 }
3017 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3018 #endif
3019 #endif	/* CONFIG_NUMA */
3020 
3021 /*
3022  * Slow path handling. This may still be called frequently since objects
3023  * have a longer lifetime than the cpu slabs in most processing loads.
3024  *
3025  * So we still attempt to reduce cache line usage. Just take the slab
3026  * lock and free the item. If there is no additional partial page
3027  * handling required then we can return immediately.
3028  */
3029 static void __slab_free(struct kmem_cache *s, struct page *page,
3030 			void *head, void *tail, int cnt,
3031 			unsigned long addr)
3032 
3033 {
3034 	void *prior;
3035 	int was_frozen;
3036 	struct page new;
3037 	unsigned long counters;
3038 	struct kmem_cache_node *n = NULL;
3039 	unsigned long flags;
3040 
3041 	stat(s, FREE_SLOWPATH);
3042 
3043 	if (kfence_free(head))
3044 		return;
3045 
3046 	if (kmem_cache_debug(s) &&
3047 	    !free_debug_processing(s, page, head, tail, cnt, addr))
3048 		return;
3049 
3050 	do {
3051 		if (unlikely(n)) {
3052 			spin_unlock_irqrestore(&n->list_lock, flags);
3053 			n = NULL;
3054 		}
3055 		prior = page->freelist;
3056 		counters = page->counters;
3057 		set_freepointer(s, tail, prior);
3058 		new.counters = counters;
3059 		was_frozen = new.frozen;
3060 		new.inuse -= cnt;
3061 		if ((!new.inuse || !prior) && !was_frozen) {
3062 
3063 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3064 
3065 				/*
3066 				 * Slab was on no list before and will be
3067 				 * partially empty
3068 				 * We can defer the list move and instead
3069 				 * freeze it.
3070 				 */
3071 				new.frozen = 1;
3072 
3073 			} else { /* Needs to be taken off a list */
3074 
3075 				n = get_node(s, page_to_nid(page));
3076 				/*
3077 				 * Speculatively acquire the list_lock.
3078 				 * If the cmpxchg does not succeed then we may
3079 				 * drop the list_lock without any processing.
3080 				 *
3081 				 * Otherwise the list_lock will synchronize with
3082 				 * other processors updating the list of slabs.
3083 				 */
3084 				spin_lock_irqsave(&n->list_lock, flags);
3085 
3086 			}
3087 		}
3088 
3089 	} while (!cmpxchg_double_slab(s, page,
3090 		prior, counters,
3091 		head, new.counters,
3092 		"__slab_free"));
3093 
3094 	if (likely(!n)) {
3095 
3096 		if (likely(was_frozen)) {
3097 			/*
3098 			 * The list lock was not taken therefore no list
3099 			 * activity can be necessary.
3100 			 */
3101 			stat(s, FREE_FROZEN);
3102 		} else if (new.frozen) {
3103 			/*
3104 			 * If we just froze the page then put it onto the
3105 			 * per cpu partial list.
3106 			 */
3107 			put_cpu_partial(s, page, 1);
3108 			stat(s, CPU_PARTIAL_FREE);
3109 		}
3110 
3111 		return;
3112 	}
3113 
3114 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3115 		goto slab_empty;
3116 
3117 	/*
3118 	 * Objects left in the slab. If it was not on the partial list before
3119 	 * then add it.
3120 	 */
3121 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3122 		remove_full(s, n, page);
3123 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3124 		stat(s, FREE_ADD_PARTIAL);
3125 	}
3126 	spin_unlock_irqrestore(&n->list_lock, flags);
3127 	return;
3128 
3129 slab_empty:
3130 	if (prior) {
3131 		/*
3132 		 * Slab on the partial list.
3133 		 */
3134 		remove_partial(n, page);
3135 		stat(s, FREE_REMOVE_PARTIAL);
3136 	} else {
3137 		/* Slab must be on the full list */
3138 		remove_full(s, n, page);
3139 	}
3140 
3141 	spin_unlock_irqrestore(&n->list_lock, flags);
3142 	stat(s, FREE_SLAB);
3143 	discard_slab(s, page);
3144 }
3145 
3146 /*
3147  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3148  * can perform fastpath freeing without additional function calls.
3149  *
3150  * The fastpath is only possible if we are freeing to the current cpu slab
3151  * of this processor. This typically the case if we have just allocated
3152  * the item before.
3153  *
3154  * If fastpath is not possible then fall back to __slab_free where we deal
3155  * with all sorts of special processing.
3156  *
3157  * Bulk free of a freelist with several objects (all pointing to the
3158  * same page) possible by specifying head and tail ptr, plus objects
3159  * count (cnt). Bulk free indicated by tail pointer being set.
3160  */
3161 static __always_inline void do_slab_free(struct kmem_cache *s,
3162 				struct page *page, void *head, void *tail,
3163 				int cnt, unsigned long addr)
3164 {
3165 	void *tail_obj = tail ? : head;
3166 	struct kmem_cache_cpu *c;
3167 	unsigned long tid;
3168 
3169 	memcg_slab_free_hook(s, &head, 1);
3170 redo:
3171 	/*
3172 	 * Determine the currently cpus per cpu slab.
3173 	 * The cpu may change afterward. However that does not matter since
3174 	 * data is retrieved via this pointer. If we are on the same cpu
3175 	 * during the cmpxchg then the free will succeed.
3176 	 */
3177 	do {
3178 		tid = this_cpu_read(s->cpu_slab->tid);
3179 		c = raw_cpu_ptr(s->cpu_slab);
3180 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3181 		 unlikely(tid != READ_ONCE(c->tid)));
3182 
3183 	/* Same with comment on barrier() in slab_alloc_node() */
3184 	barrier();
3185 
3186 	if (likely(page == c->page)) {
3187 		void **freelist = READ_ONCE(c->freelist);
3188 
3189 		set_freepointer(s, tail_obj, freelist);
3190 
3191 		if (unlikely(!this_cpu_cmpxchg_double(
3192 				s->cpu_slab->freelist, s->cpu_slab->tid,
3193 				freelist, tid,
3194 				head, next_tid(tid)))) {
3195 
3196 			note_cmpxchg_failure("slab_free", s, tid);
3197 			goto redo;
3198 		}
3199 		stat(s, FREE_FASTPATH);
3200 	} else
3201 		__slab_free(s, page, head, tail_obj, cnt, addr);
3202 
3203 }
3204 
3205 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3206 				      void *head, void *tail, int cnt,
3207 				      unsigned long addr)
3208 {
3209 	/*
3210 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3211 	 * to remove objects, whose reuse must be delayed.
3212 	 */
3213 	if (slab_free_freelist_hook(s, &head, &tail))
3214 		do_slab_free(s, page, head, tail, cnt, addr);
3215 }
3216 
3217 #ifdef CONFIG_KASAN_GENERIC
3218 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3219 {
3220 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3221 }
3222 #endif
3223 
3224 void kmem_cache_free(struct kmem_cache *s, void *x)
3225 {
3226 	s = cache_from_obj(s, x);
3227 	if (!s)
3228 		return;
3229 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3230 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3231 }
3232 EXPORT_SYMBOL(kmem_cache_free);
3233 
3234 struct detached_freelist {
3235 	struct page *page;
3236 	void *tail;
3237 	void *freelist;
3238 	int cnt;
3239 	struct kmem_cache *s;
3240 };
3241 
3242 static inline void free_nonslab_page(struct page *page, void *object)
3243 {
3244 	unsigned int order = compound_order(page);
3245 
3246 	VM_BUG_ON_PAGE(!PageCompound(page), page);
3247 	kfree_hook(object);
3248 	mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3249 	__free_pages(page, order);
3250 }
3251 
3252 /*
3253  * This function progressively scans the array with free objects (with
3254  * a limited look ahead) and extract objects belonging to the same
3255  * page.  It builds a detached freelist directly within the given
3256  * page/objects.  This can happen without any need for
3257  * synchronization, because the objects are owned by running process.
3258  * The freelist is build up as a single linked list in the objects.
3259  * The idea is, that this detached freelist can then be bulk
3260  * transferred to the real freelist(s), but only requiring a single
3261  * synchronization primitive.  Look ahead in the array is limited due
3262  * to performance reasons.
3263  */
3264 static inline
3265 int build_detached_freelist(struct kmem_cache *s, size_t size,
3266 			    void **p, struct detached_freelist *df)
3267 {
3268 	size_t first_skipped_index = 0;
3269 	int lookahead = 3;
3270 	void *object;
3271 	struct page *page;
3272 
3273 	/* Always re-init detached_freelist */
3274 	df->page = NULL;
3275 
3276 	do {
3277 		object = p[--size];
3278 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3279 	} while (!object && size);
3280 
3281 	if (!object)
3282 		return 0;
3283 
3284 	page = virt_to_head_page(object);
3285 	if (!s) {
3286 		/* Handle kalloc'ed objects */
3287 		if (unlikely(!PageSlab(page))) {
3288 			free_nonslab_page(page, object);
3289 			p[size] = NULL; /* mark object processed */
3290 			return size;
3291 		}
3292 		/* Derive kmem_cache from object */
3293 		df->s = page->slab_cache;
3294 	} else {
3295 		df->s = cache_from_obj(s, object); /* Support for memcg */
3296 	}
3297 
3298 	if (is_kfence_address(object)) {
3299 		slab_free_hook(df->s, object, false);
3300 		__kfence_free(object);
3301 		p[size] = NULL; /* mark object processed */
3302 		return size;
3303 	}
3304 
3305 	/* Start new detached freelist */
3306 	df->page = page;
3307 	set_freepointer(df->s, object, NULL);
3308 	df->tail = object;
3309 	df->freelist = object;
3310 	p[size] = NULL; /* mark object processed */
3311 	df->cnt = 1;
3312 
3313 	while (size) {
3314 		object = p[--size];
3315 		if (!object)
3316 			continue; /* Skip processed objects */
3317 
3318 		/* df->page is always set at this point */
3319 		if (df->page == virt_to_head_page(object)) {
3320 			/* Opportunity build freelist */
3321 			set_freepointer(df->s, object, df->freelist);
3322 			df->freelist = object;
3323 			df->cnt++;
3324 			p[size] = NULL; /* mark object processed */
3325 
3326 			continue;
3327 		}
3328 
3329 		/* Limit look ahead search */
3330 		if (!--lookahead)
3331 			break;
3332 
3333 		if (!first_skipped_index)
3334 			first_skipped_index = size + 1;
3335 	}
3336 
3337 	return first_skipped_index;
3338 }
3339 
3340 /* Note that interrupts must be enabled when calling this function. */
3341 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3342 {
3343 	if (WARN_ON(!size))
3344 		return;
3345 
3346 	memcg_slab_free_hook(s, p, size);
3347 	do {
3348 		struct detached_freelist df;
3349 
3350 		size = build_detached_freelist(s, size, p, &df);
3351 		if (!df.page)
3352 			continue;
3353 
3354 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3355 	} while (likely(size));
3356 }
3357 EXPORT_SYMBOL(kmem_cache_free_bulk);
3358 
3359 /* Note that interrupts must be enabled when calling this function. */
3360 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3361 			  void **p)
3362 {
3363 	struct kmem_cache_cpu *c;
3364 	int i;
3365 	struct obj_cgroup *objcg = NULL;
3366 
3367 	/* memcg and kmem_cache debug support */
3368 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3369 	if (unlikely(!s))
3370 		return false;
3371 	/*
3372 	 * Drain objects in the per cpu slab, while disabling local
3373 	 * IRQs, which protects against PREEMPT and interrupts
3374 	 * handlers invoking normal fastpath.
3375 	 */
3376 	local_irq_disable();
3377 	c = this_cpu_ptr(s->cpu_slab);
3378 
3379 	for (i = 0; i < size; i++) {
3380 		void *object = kfence_alloc(s, s->object_size, flags);
3381 
3382 		if (unlikely(object)) {
3383 			p[i] = object;
3384 			continue;
3385 		}
3386 
3387 		object = c->freelist;
3388 		if (unlikely(!object)) {
3389 			/*
3390 			 * We may have removed an object from c->freelist using
3391 			 * the fastpath in the previous iteration; in that case,
3392 			 * c->tid has not been bumped yet.
3393 			 * Since ___slab_alloc() may reenable interrupts while
3394 			 * allocating memory, we should bump c->tid now.
3395 			 */
3396 			c->tid = next_tid(c->tid);
3397 
3398 			/*
3399 			 * Invoking slow path likely have side-effect
3400 			 * of re-populating per CPU c->freelist
3401 			 */
3402 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3403 					    _RET_IP_, c);
3404 			if (unlikely(!p[i]))
3405 				goto error;
3406 
3407 			c = this_cpu_ptr(s->cpu_slab);
3408 			maybe_wipe_obj_freeptr(s, p[i]);
3409 
3410 			continue; /* goto for-loop */
3411 		}
3412 		c->freelist = get_freepointer(s, object);
3413 		p[i] = object;
3414 		maybe_wipe_obj_freeptr(s, p[i]);
3415 	}
3416 	c->tid = next_tid(c->tid);
3417 	local_irq_enable();
3418 
3419 	/*
3420 	 * memcg and kmem_cache debug support and memory initialization.
3421 	 * Done outside of the IRQ disabled fastpath loop.
3422 	 */
3423 	slab_post_alloc_hook(s, objcg, flags, size, p,
3424 				slab_want_init_on_alloc(flags, s));
3425 	return i;
3426 error:
3427 	local_irq_enable();
3428 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3429 	__kmem_cache_free_bulk(s, i, p);
3430 	return 0;
3431 }
3432 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3433 
3434 
3435 /*
3436  * Object placement in a slab is made very easy because we always start at
3437  * offset 0. If we tune the size of the object to the alignment then we can
3438  * get the required alignment by putting one properly sized object after
3439  * another.
3440  *
3441  * Notice that the allocation order determines the sizes of the per cpu
3442  * caches. Each processor has always one slab available for allocations.
3443  * Increasing the allocation order reduces the number of times that slabs
3444  * must be moved on and off the partial lists and is therefore a factor in
3445  * locking overhead.
3446  */
3447 
3448 /*
3449  * Minimum / Maximum order of slab pages. This influences locking overhead
3450  * and slab fragmentation. A higher order reduces the number of partial slabs
3451  * and increases the number of allocations possible without having to
3452  * take the list_lock.
3453  */
3454 static unsigned int slub_min_order;
3455 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3456 static unsigned int slub_min_objects;
3457 
3458 /*
3459  * Calculate the order of allocation given an slab object size.
3460  *
3461  * The order of allocation has significant impact on performance and other
3462  * system components. Generally order 0 allocations should be preferred since
3463  * order 0 does not cause fragmentation in the page allocator. Larger objects
3464  * be problematic to put into order 0 slabs because there may be too much
3465  * unused space left. We go to a higher order if more than 1/16th of the slab
3466  * would be wasted.
3467  *
3468  * In order to reach satisfactory performance we must ensure that a minimum
3469  * number of objects is in one slab. Otherwise we may generate too much
3470  * activity on the partial lists which requires taking the list_lock. This is
3471  * less a concern for large slabs though which are rarely used.
3472  *
3473  * slub_max_order specifies the order where we begin to stop considering the
3474  * number of objects in a slab as critical. If we reach slub_max_order then
3475  * we try to keep the page order as low as possible. So we accept more waste
3476  * of space in favor of a small page order.
3477  *
3478  * Higher order allocations also allow the placement of more objects in a
3479  * slab and thereby reduce object handling overhead. If the user has
3480  * requested a higher minimum order then we start with that one instead of
3481  * the smallest order which will fit the object.
3482  */
3483 static inline unsigned int slab_order(unsigned int size,
3484 		unsigned int min_objects, unsigned int max_order,
3485 		unsigned int fract_leftover)
3486 {
3487 	unsigned int min_order = slub_min_order;
3488 	unsigned int order;
3489 
3490 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3491 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3492 
3493 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3494 			order <= max_order; order++) {
3495 
3496 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3497 		unsigned int rem;
3498 
3499 		rem = slab_size % size;
3500 
3501 		if (rem <= slab_size / fract_leftover)
3502 			break;
3503 	}
3504 
3505 	return order;
3506 }
3507 
3508 static inline int calculate_order(unsigned int size)
3509 {
3510 	unsigned int order;
3511 	unsigned int min_objects;
3512 	unsigned int max_objects;
3513 	unsigned int nr_cpus;
3514 
3515 	/*
3516 	 * Attempt to find best configuration for a slab. This
3517 	 * works by first attempting to generate a layout with
3518 	 * the best configuration and backing off gradually.
3519 	 *
3520 	 * First we increase the acceptable waste in a slab. Then
3521 	 * we reduce the minimum objects required in a slab.
3522 	 */
3523 	min_objects = slub_min_objects;
3524 	if (!min_objects) {
3525 		/*
3526 		 * Some architectures will only update present cpus when
3527 		 * onlining them, so don't trust the number if it's just 1. But
3528 		 * we also don't want to use nr_cpu_ids always, as on some other
3529 		 * architectures, there can be many possible cpus, but never
3530 		 * onlined. Here we compromise between trying to avoid too high
3531 		 * order on systems that appear larger than they are, and too
3532 		 * low order on systems that appear smaller than they are.
3533 		 */
3534 		nr_cpus = num_present_cpus();
3535 		if (nr_cpus <= 1)
3536 			nr_cpus = nr_cpu_ids;
3537 		min_objects = 4 * (fls(nr_cpus) + 1);
3538 	}
3539 	max_objects = order_objects(slub_max_order, size);
3540 	min_objects = min(min_objects, max_objects);
3541 
3542 	while (min_objects > 1) {
3543 		unsigned int fraction;
3544 
3545 		fraction = 16;
3546 		while (fraction >= 4) {
3547 			order = slab_order(size, min_objects,
3548 					slub_max_order, fraction);
3549 			if (order <= slub_max_order)
3550 				return order;
3551 			fraction /= 2;
3552 		}
3553 		min_objects--;
3554 	}
3555 
3556 	/*
3557 	 * We were unable to place multiple objects in a slab. Now
3558 	 * lets see if we can place a single object there.
3559 	 */
3560 	order = slab_order(size, 1, slub_max_order, 1);
3561 	if (order <= slub_max_order)
3562 		return order;
3563 
3564 	/*
3565 	 * Doh this slab cannot be placed using slub_max_order.
3566 	 */
3567 	order = slab_order(size, 1, MAX_ORDER, 1);
3568 	if (order < MAX_ORDER)
3569 		return order;
3570 	return -ENOSYS;
3571 }
3572 
3573 static void
3574 init_kmem_cache_node(struct kmem_cache_node *n)
3575 {
3576 	n->nr_partial = 0;
3577 	spin_lock_init(&n->list_lock);
3578 	INIT_LIST_HEAD(&n->partial);
3579 #ifdef CONFIG_SLUB_DEBUG
3580 	atomic_long_set(&n->nr_slabs, 0);
3581 	atomic_long_set(&n->total_objects, 0);
3582 	INIT_LIST_HEAD(&n->full);
3583 #endif
3584 }
3585 
3586 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3587 {
3588 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3589 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3590 
3591 	/*
3592 	 * Must align to double word boundary for the double cmpxchg
3593 	 * instructions to work; see __pcpu_double_call_return_bool().
3594 	 */
3595 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3596 				     2 * sizeof(void *));
3597 
3598 	if (!s->cpu_slab)
3599 		return 0;
3600 
3601 	init_kmem_cache_cpus(s);
3602 
3603 	return 1;
3604 }
3605 
3606 static struct kmem_cache *kmem_cache_node;
3607 
3608 /*
3609  * No kmalloc_node yet so do it by hand. We know that this is the first
3610  * slab on the node for this slabcache. There are no concurrent accesses
3611  * possible.
3612  *
3613  * Note that this function only works on the kmem_cache_node
3614  * when allocating for the kmem_cache_node. This is used for bootstrapping
3615  * memory on a fresh node that has no slab structures yet.
3616  */
3617 static void early_kmem_cache_node_alloc(int node)
3618 {
3619 	struct page *page;
3620 	struct kmem_cache_node *n;
3621 
3622 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3623 
3624 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3625 
3626 	BUG_ON(!page);
3627 	if (page_to_nid(page) != node) {
3628 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3629 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3630 	}
3631 
3632 	n = page->freelist;
3633 	BUG_ON(!n);
3634 #ifdef CONFIG_SLUB_DEBUG
3635 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3636 	init_tracking(kmem_cache_node, n);
3637 #endif
3638 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3639 	page->freelist = get_freepointer(kmem_cache_node, n);
3640 	page->inuse = 1;
3641 	page->frozen = 0;
3642 	kmem_cache_node->node[node] = n;
3643 	init_kmem_cache_node(n);
3644 	inc_slabs_node(kmem_cache_node, node, page->objects);
3645 
3646 	/*
3647 	 * No locks need to be taken here as it has just been
3648 	 * initialized and there is no concurrent access.
3649 	 */
3650 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3651 }
3652 
3653 static void free_kmem_cache_nodes(struct kmem_cache *s)
3654 {
3655 	int node;
3656 	struct kmem_cache_node *n;
3657 
3658 	for_each_kmem_cache_node(s, node, n) {
3659 		s->node[node] = NULL;
3660 		kmem_cache_free(kmem_cache_node, n);
3661 	}
3662 }
3663 
3664 void __kmem_cache_release(struct kmem_cache *s)
3665 {
3666 	cache_random_seq_destroy(s);
3667 	free_percpu(s->cpu_slab);
3668 	free_kmem_cache_nodes(s);
3669 }
3670 
3671 static int init_kmem_cache_nodes(struct kmem_cache *s)
3672 {
3673 	int node;
3674 
3675 	for_each_node_mask(node, slab_nodes) {
3676 		struct kmem_cache_node *n;
3677 
3678 		if (slab_state == DOWN) {
3679 			early_kmem_cache_node_alloc(node);
3680 			continue;
3681 		}
3682 		n = kmem_cache_alloc_node(kmem_cache_node,
3683 						GFP_KERNEL, node);
3684 
3685 		if (!n) {
3686 			free_kmem_cache_nodes(s);
3687 			return 0;
3688 		}
3689 
3690 		init_kmem_cache_node(n);
3691 		s->node[node] = n;
3692 	}
3693 	return 1;
3694 }
3695 
3696 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3697 {
3698 	if (min < MIN_PARTIAL)
3699 		min = MIN_PARTIAL;
3700 	else if (min > MAX_PARTIAL)
3701 		min = MAX_PARTIAL;
3702 	s->min_partial = min;
3703 }
3704 
3705 static void set_cpu_partial(struct kmem_cache *s)
3706 {
3707 #ifdef CONFIG_SLUB_CPU_PARTIAL
3708 	/*
3709 	 * cpu_partial determined the maximum number of objects kept in the
3710 	 * per cpu partial lists of a processor.
3711 	 *
3712 	 * Per cpu partial lists mainly contain slabs that just have one
3713 	 * object freed. If they are used for allocation then they can be
3714 	 * filled up again with minimal effort. The slab will never hit the
3715 	 * per node partial lists and therefore no locking will be required.
3716 	 *
3717 	 * This setting also determines
3718 	 *
3719 	 * A) The number of objects from per cpu partial slabs dumped to the
3720 	 *    per node list when we reach the limit.
3721 	 * B) The number of objects in cpu partial slabs to extract from the
3722 	 *    per node list when we run out of per cpu objects. We only fetch
3723 	 *    50% to keep some capacity around for frees.
3724 	 */
3725 	if (!kmem_cache_has_cpu_partial(s))
3726 		slub_set_cpu_partial(s, 0);
3727 	else if (s->size >= PAGE_SIZE)
3728 		slub_set_cpu_partial(s, 2);
3729 	else if (s->size >= 1024)
3730 		slub_set_cpu_partial(s, 6);
3731 	else if (s->size >= 256)
3732 		slub_set_cpu_partial(s, 13);
3733 	else
3734 		slub_set_cpu_partial(s, 30);
3735 #endif
3736 }
3737 
3738 /*
3739  * calculate_sizes() determines the order and the distribution of data within
3740  * a slab object.
3741  */
3742 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3743 {
3744 	slab_flags_t flags = s->flags;
3745 	unsigned int size = s->object_size;
3746 	unsigned int order;
3747 
3748 	/*
3749 	 * Round up object size to the next word boundary. We can only
3750 	 * place the free pointer at word boundaries and this determines
3751 	 * the possible location of the free pointer.
3752 	 */
3753 	size = ALIGN(size, sizeof(void *));
3754 
3755 #ifdef CONFIG_SLUB_DEBUG
3756 	/*
3757 	 * Determine if we can poison the object itself. If the user of
3758 	 * the slab may touch the object after free or before allocation
3759 	 * then we should never poison the object itself.
3760 	 */
3761 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3762 			!s->ctor)
3763 		s->flags |= __OBJECT_POISON;
3764 	else
3765 		s->flags &= ~__OBJECT_POISON;
3766 
3767 
3768 	/*
3769 	 * If we are Redzoning then check if there is some space between the
3770 	 * end of the object and the free pointer. If not then add an
3771 	 * additional word to have some bytes to store Redzone information.
3772 	 */
3773 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3774 		size += sizeof(void *);
3775 #endif
3776 
3777 	/*
3778 	 * With that we have determined the number of bytes in actual use
3779 	 * by the object and redzoning.
3780 	 */
3781 	s->inuse = size;
3782 
3783 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3784 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3785 	    s->ctor) {
3786 		/*
3787 		 * Relocate free pointer after the object if it is not
3788 		 * permitted to overwrite the first word of the object on
3789 		 * kmem_cache_free.
3790 		 *
3791 		 * This is the case if we do RCU, have a constructor or
3792 		 * destructor, are poisoning the objects, or are
3793 		 * redzoning an object smaller than sizeof(void *).
3794 		 *
3795 		 * The assumption that s->offset >= s->inuse means free
3796 		 * pointer is outside of the object is used in the
3797 		 * freeptr_outside_object() function. If that is no
3798 		 * longer true, the function needs to be modified.
3799 		 */
3800 		s->offset = size;
3801 		size += sizeof(void *);
3802 	} else {
3803 		/*
3804 		 * Store freelist pointer near middle of object to keep
3805 		 * it away from the edges of the object to avoid small
3806 		 * sized over/underflows from neighboring allocations.
3807 		 */
3808 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
3809 	}
3810 
3811 #ifdef CONFIG_SLUB_DEBUG
3812 	if (flags & SLAB_STORE_USER)
3813 		/*
3814 		 * Need to store information about allocs and frees after
3815 		 * the object.
3816 		 */
3817 		size += 2 * sizeof(struct track);
3818 #endif
3819 
3820 	kasan_cache_create(s, &size, &s->flags);
3821 #ifdef CONFIG_SLUB_DEBUG
3822 	if (flags & SLAB_RED_ZONE) {
3823 		/*
3824 		 * Add some empty padding so that we can catch
3825 		 * overwrites from earlier objects rather than let
3826 		 * tracking information or the free pointer be
3827 		 * corrupted if a user writes before the start
3828 		 * of the object.
3829 		 */
3830 		size += sizeof(void *);
3831 
3832 		s->red_left_pad = sizeof(void *);
3833 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3834 		size += s->red_left_pad;
3835 	}
3836 #endif
3837 
3838 	/*
3839 	 * SLUB stores one object immediately after another beginning from
3840 	 * offset 0. In order to align the objects we have to simply size
3841 	 * each object to conform to the alignment.
3842 	 */
3843 	size = ALIGN(size, s->align);
3844 	s->size = size;
3845 	s->reciprocal_size = reciprocal_value(size);
3846 	if (forced_order >= 0)
3847 		order = forced_order;
3848 	else
3849 		order = calculate_order(size);
3850 
3851 	if ((int)order < 0)
3852 		return 0;
3853 
3854 	s->allocflags = 0;
3855 	if (order)
3856 		s->allocflags |= __GFP_COMP;
3857 
3858 	if (s->flags & SLAB_CACHE_DMA)
3859 		s->allocflags |= GFP_DMA;
3860 
3861 	if (s->flags & SLAB_CACHE_DMA32)
3862 		s->allocflags |= GFP_DMA32;
3863 
3864 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3865 		s->allocflags |= __GFP_RECLAIMABLE;
3866 
3867 	/*
3868 	 * Determine the number of objects per slab
3869 	 */
3870 	s->oo = oo_make(order, size);
3871 	s->min = oo_make(get_order(size), size);
3872 	if (oo_objects(s->oo) > oo_objects(s->max))
3873 		s->max = s->oo;
3874 
3875 	return !!oo_objects(s->oo);
3876 }
3877 
3878 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3879 {
3880 	s->flags = kmem_cache_flags(s->size, flags, s->name);
3881 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3882 	s->random = get_random_long();
3883 #endif
3884 
3885 	if (!calculate_sizes(s, -1))
3886 		goto error;
3887 	if (disable_higher_order_debug) {
3888 		/*
3889 		 * Disable debugging flags that store metadata if the min slab
3890 		 * order increased.
3891 		 */
3892 		if (get_order(s->size) > get_order(s->object_size)) {
3893 			s->flags &= ~DEBUG_METADATA_FLAGS;
3894 			s->offset = 0;
3895 			if (!calculate_sizes(s, -1))
3896 				goto error;
3897 		}
3898 	}
3899 
3900 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3901     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3902 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3903 		/* Enable fast mode */
3904 		s->flags |= __CMPXCHG_DOUBLE;
3905 #endif
3906 
3907 	/*
3908 	 * The larger the object size is, the more pages we want on the partial
3909 	 * list to avoid pounding the page allocator excessively.
3910 	 */
3911 	set_min_partial(s, ilog2(s->size) / 2);
3912 
3913 	set_cpu_partial(s);
3914 
3915 #ifdef CONFIG_NUMA
3916 	s->remote_node_defrag_ratio = 1000;
3917 #endif
3918 
3919 	/* Initialize the pre-computed randomized freelist if slab is up */
3920 	if (slab_state >= UP) {
3921 		if (init_cache_random_seq(s))
3922 			goto error;
3923 	}
3924 
3925 	if (!init_kmem_cache_nodes(s))
3926 		goto error;
3927 
3928 	if (alloc_kmem_cache_cpus(s))
3929 		return 0;
3930 
3931 	free_kmem_cache_nodes(s);
3932 error:
3933 	return -EINVAL;
3934 }
3935 
3936 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3937 			      const char *text)
3938 {
3939 #ifdef CONFIG_SLUB_DEBUG
3940 	void *addr = page_address(page);
3941 	unsigned long *map;
3942 	void *p;
3943 
3944 	slab_err(s, page, text, s->name);
3945 	slab_lock(page);
3946 
3947 	map = get_map(s, page);
3948 	for_each_object(p, s, addr, page->objects) {
3949 
3950 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3951 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3952 			print_tracking(s, p);
3953 		}
3954 	}
3955 	put_map(map);
3956 	slab_unlock(page);
3957 #endif
3958 }
3959 
3960 /*
3961  * Attempt to free all partial slabs on a node.
3962  * This is called from __kmem_cache_shutdown(). We must take list_lock
3963  * because sysfs file might still access partial list after the shutdowning.
3964  */
3965 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3966 {
3967 	LIST_HEAD(discard);
3968 	struct page *page, *h;
3969 
3970 	BUG_ON(irqs_disabled());
3971 	spin_lock_irq(&n->list_lock);
3972 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3973 		if (!page->inuse) {
3974 			remove_partial(n, page);
3975 			list_add(&page->slab_list, &discard);
3976 		} else {
3977 			list_slab_objects(s, page,
3978 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3979 		}
3980 	}
3981 	spin_unlock_irq(&n->list_lock);
3982 
3983 	list_for_each_entry_safe(page, h, &discard, slab_list)
3984 		discard_slab(s, page);
3985 }
3986 
3987 bool __kmem_cache_empty(struct kmem_cache *s)
3988 {
3989 	int node;
3990 	struct kmem_cache_node *n;
3991 
3992 	for_each_kmem_cache_node(s, node, n)
3993 		if (n->nr_partial || slabs_node(s, node))
3994 			return false;
3995 	return true;
3996 }
3997 
3998 /*
3999  * Release all resources used by a slab cache.
4000  */
4001 int __kmem_cache_shutdown(struct kmem_cache *s)
4002 {
4003 	int node;
4004 	struct kmem_cache_node *n;
4005 
4006 	flush_all(s);
4007 	/* Attempt to free all objects */
4008 	for_each_kmem_cache_node(s, node, n) {
4009 		free_partial(s, n);
4010 		if (n->nr_partial || slabs_node(s, node))
4011 			return 1;
4012 	}
4013 	return 0;
4014 }
4015 
4016 #ifdef CONFIG_PRINTK
4017 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4018 {
4019 	void *base;
4020 	int __maybe_unused i;
4021 	unsigned int objnr;
4022 	void *objp;
4023 	void *objp0;
4024 	struct kmem_cache *s = page->slab_cache;
4025 	struct track __maybe_unused *trackp;
4026 
4027 	kpp->kp_ptr = object;
4028 	kpp->kp_page = page;
4029 	kpp->kp_slab_cache = s;
4030 	base = page_address(page);
4031 	objp0 = kasan_reset_tag(object);
4032 #ifdef CONFIG_SLUB_DEBUG
4033 	objp = restore_red_left(s, objp0);
4034 #else
4035 	objp = objp0;
4036 #endif
4037 	objnr = obj_to_index(s, page, objp);
4038 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4039 	objp = base + s->size * objnr;
4040 	kpp->kp_objp = objp;
4041 	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4042 	    !(s->flags & SLAB_STORE_USER))
4043 		return;
4044 #ifdef CONFIG_SLUB_DEBUG
4045 	objp = fixup_red_left(s, objp);
4046 	trackp = get_track(s, objp, TRACK_ALLOC);
4047 	kpp->kp_ret = (void *)trackp->addr;
4048 #ifdef CONFIG_STACKTRACE
4049 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4050 		kpp->kp_stack[i] = (void *)trackp->addrs[i];
4051 		if (!kpp->kp_stack[i])
4052 			break;
4053 	}
4054 
4055 	trackp = get_track(s, objp, TRACK_FREE);
4056 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4057 		kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4058 		if (!kpp->kp_free_stack[i])
4059 			break;
4060 	}
4061 #endif
4062 #endif
4063 }
4064 #endif
4065 
4066 /********************************************************************
4067  *		Kmalloc subsystem
4068  *******************************************************************/
4069 
4070 static int __init setup_slub_min_order(char *str)
4071 {
4072 	get_option(&str, (int *)&slub_min_order);
4073 
4074 	return 1;
4075 }
4076 
4077 __setup("slub_min_order=", setup_slub_min_order);
4078 
4079 static int __init setup_slub_max_order(char *str)
4080 {
4081 	get_option(&str, (int *)&slub_max_order);
4082 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4083 
4084 	return 1;
4085 }
4086 
4087 __setup("slub_max_order=", setup_slub_max_order);
4088 
4089 static int __init setup_slub_min_objects(char *str)
4090 {
4091 	get_option(&str, (int *)&slub_min_objects);
4092 
4093 	return 1;
4094 }
4095 
4096 __setup("slub_min_objects=", setup_slub_min_objects);
4097 
4098 void *__kmalloc(size_t size, gfp_t flags)
4099 {
4100 	struct kmem_cache *s;
4101 	void *ret;
4102 
4103 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4104 		return kmalloc_large(size, flags);
4105 
4106 	s = kmalloc_slab(size, flags);
4107 
4108 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4109 		return s;
4110 
4111 	ret = slab_alloc(s, flags, _RET_IP_, size);
4112 
4113 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4114 
4115 	ret = kasan_kmalloc(s, ret, size, flags);
4116 
4117 	return ret;
4118 }
4119 EXPORT_SYMBOL(__kmalloc);
4120 
4121 #ifdef CONFIG_NUMA
4122 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4123 {
4124 	struct page *page;
4125 	void *ptr = NULL;
4126 	unsigned int order = get_order(size);
4127 
4128 	flags |= __GFP_COMP;
4129 	page = alloc_pages_node(node, flags, order);
4130 	if (page) {
4131 		ptr = page_address(page);
4132 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4133 				      PAGE_SIZE << order);
4134 	}
4135 
4136 	return kmalloc_large_node_hook(ptr, size, flags);
4137 }
4138 
4139 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4140 {
4141 	struct kmem_cache *s;
4142 	void *ret;
4143 
4144 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4145 		ret = kmalloc_large_node(size, flags, node);
4146 
4147 		trace_kmalloc_node(_RET_IP_, ret,
4148 				   size, PAGE_SIZE << get_order(size),
4149 				   flags, node);
4150 
4151 		return ret;
4152 	}
4153 
4154 	s = kmalloc_slab(size, flags);
4155 
4156 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4157 		return s;
4158 
4159 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4160 
4161 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4162 
4163 	ret = kasan_kmalloc(s, ret, size, flags);
4164 
4165 	return ret;
4166 }
4167 EXPORT_SYMBOL(__kmalloc_node);
4168 #endif	/* CONFIG_NUMA */
4169 
4170 #ifdef CONFIG_HARDENED_USERCOPY
4171 /*
4172  * Rejects incorrectly sized objects and objects that are to be copied
4173  * to/from userspace but do not fall entirely within the containing slab
4174  * cache's usercopy region.
4175  *
4176  * Returns NULL if check passes, otherwise const char * to name of cache
4177  * to indicate an error.
4178  */
4179 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4180 			 bool to_user)
4181 {
4182 	struct kmem_cache *s;
4183 	unsigned int offset;
4184 	size_t object_size;
4185 	bool is_kfence = is_kfence_address(ptr);
4186 
4187 	ptr = kasan_reset_tag(ptr);
4188 
4189 	/* Find object and usable object size. */
4190 	s = page->slab_cache;
4191 
4192 	/* Reject impossible pointers. */
4193 	if (ptr < page_address(page))
4194 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4195 			       to_user, 0, n);
4196 
4197 	/* Find offset within object. */
4198 	if (is_kfence)
4199 		offset = ptr - kfence_object_start(ptr);
4200 	else
4201 		offset = (ptr - page_address(page)) % s->size;
4202 
4203 	/* Adjust for redzone and reject if within the redzone. */
4204 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4205 		if (offset < s->red_left_pad)
4206 			usercopy_abort("SLUB object in left red zone",
4207 				       s->name, to_user, offset, n);
4208 		offset -= s->red_left_pad;
4209 	}
4210 
4211 	/* Allow address range falling entirely within usercopy region. */
4212 	if (offset >= s->useroffset &&
4213 	    offset - s->useroffset <= s->usersize &&
4214 	    n <= s->useroffset - offset + s->usersize)
4215 		return;
4216 
4217 	/*
4218 	 * If the copy is still within the allocated object, produce
4219 	 * a warning instead of rejecting the copy. This is intended
4220 	 * to be a temporary method to find any missing usercopy
4221 	 * whitelists.
4222 	 */
4223 	object_size = slab_ksize(s);
4224 	if (usercopy_fallback &&
4225 	    offset <= object_size && n <= object_size - offset) {
4226 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4227 		return;
4228 	}
4229 
4230 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4231 }
4232 #endif /* CONFIG_HARDENED_USERCOPY */
4233 
4234 size_t __ksize(const void *object)
4235 {
4236 	struct page *page;
4237 
4238 	if (unlikely(object == ZERO_SIZE_PTR))
4239 		return 0;
4240 
4241 	page = virt_to_head_page(object);
4242 
4243 	if (unlikely(!PageSlab(page))) {
4244 		WARN_ON(!PageCompound(page));
4245 		return page_size(page);
4246 	}
4247 
4248 	return slab_ksize(page->slab_cache);
4249 }
4250 EXPORT_SYMBOL(__ksize);
4251 
4252 void kfree(const void *x)
4253 {
4254 	struct page *page;
4255 	void *object = (void *)x;
4256 
4257 	trace_kfree(_RET_IP_, x);
4258 
4259 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4260 		return;
4261 
4262 	page = virt_to_head_page(x);
4263 	if (unlikely(!PageSlab(page))) {
4264 		free_nonslab_page(page, object);
4265 		return;
4266 	}
4267 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4268 }
4269 EXPORT_SYMBOL(kfree);
4270 
4271 #define SHRINK_PROMOTE_MAX 32
4272 
4273 /*
4274  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4275  * up most to the head of the partial lists. New allocations will then
4276  * fill those up and thus they can be removed from the partial lists.
4277  *
4278  * The slabs with the least items are placed last. This results in them
4279  * being allocated from last increasing the chance that the last objects
4280  * are freed in them.
4281  */
4282 int __kmem_cache_shrink(struct kmem_cache *s)
4283 {
4284 	int node;
4285 	int i;
4286 	struct kmem_cache_node *n;
4287 	struct page *page;
4288 	struct page *t;
4289 	struct list_head discard;
4290 	struct list_head promote[SHRINK_PROMOTE_MAX];
4291 	unsigned long flags;
4292 	int ret = 0;
4293 
4294 	flush_all(s);
4295 	for_each_kmem_cache_node(s, node, n) {
4296 		INIT_LIST_HEAD(&discard);
4297 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4298 			INIT_LIST_HEAD(promote + i);
4299 
4300 		spin_lock_irqsave(&n->list_lock, flags);
4301 
4302 		/*
4303 		 * Build lists of slabs to discard or promote.
4304 		 *
4305 		 * Note that concurrent frees may occur while we hold the
4306 		 * list_lock. page->inuse here is the upper limit.
4307 		 */
4308 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4309 			int free = page->objects - page->inuse;
4310 
4311 			/* Do not reread page->inuse */
4312 			barrier();
4313 
4314 			/* We do not keep full slabs on the list */
4315 			BUG_ON(free <= 0);
4316 
4317 			if (free == page->objects) {
4318 				list_move(&page->slab_list, &discard);
4319 				n->nr_partial--;
4320 			} else if (free <= SHRINK_PROMOTE_MAX)
4321 				list_move(&page->slab_list, promote + free - 1);
4322 		}
4323 
4324 		/*
4325 		 * Promote the slabs filled up most to the head of the
4326 		 * partial list.
4327 		 */
4328 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4329 			list_splice(promote + i, &n->partial);
4330 
4331 		spin_unlock_irqrestore(&n->list_lock, flags);
4332 
4333 		/* Release empty slabs */
4334 		list_for_each_entry_safe(page, t, &discard, slab_list)
4335 			discard_slab(s, page);
4336 
4337 		if (slabs_node(s, node))
4338 			ret = 1;
4339 	}
4340 
4341 	return ret;
4342 }
4343 
4344 static int slab_mem_going_offline_callback(void *arg)
4345 {
4346 	struct kmem_cache *s;
4347 
4348 	mutex_lock(&slab_mutex);
4349 	list_for_each_entry(s, &slab_caches, list)
4350 		__kmem_cache_shrink(s);
4351 	mutex_unlock(&slab_mutex);
4352 
4353 	return 0;
4354 }
4355 
4356 static void slab_mem_offline_callback(void *arg)
4357 {
4358 	struct memory_notify *marg = arg;
4359 	int offline_node;
4360 
4361 	offline_node = marg->status_change_nid_normal;
4362 
4363 	/*
4364 	 * If the node still has available memory. we need kmem_cache_node
4365 	 * for it yet.
4366 	 */
4367 	if (offline_node < 0)
4368 		return;
4369 
4370 	mutex_lock(&slab_mutex);
4371 	node_clear(offline_node, slab_nodes);
4372 	/*
4373 	 * We no longer free kmem_cache_node structures here, as it would be
4374 	 * racy with all get_node() users, and infeasible to protect them with
4375 	 * slab_mutex.
4376 	 */
4377 	mutex_unlock(&slab_mutex);
4378 }
4379 
4380 static int slab_mem_going_online_callback(void *arg)
4381 {
4382 	struct kmem_cache_node *n;
4383 	struct kmem_cache *s;
4384 	struct memory_notify *marg = arg;
4385 	int nid = marg->status_change_nid_normal;
4386 	int ret = 0;
4387 
4388 	/*
4389 	 * If the node's memory is already available, then kmem_cache_node is
4390 	 * already created. Nothing to do.
4391 	 */
4392 	if (nid < 0)
4393 		return 0;
4394 
4395 	/*
4396 	 * We are bringing a node online. No memory is available yet. We must
4397 	 * allocate a kmem_cache_node structure in order to bring the node
4398 	 * online.
4399 	 */
4400 	mutex_lock(&slab_mutex);
4401 	list_for_each_entry(s, &slab_caches, list) {
4402 		/*
4403 		 * The structure may already exist if the node was previously
4404 		 * onlined and offlined.
4405 		 */
4406 		if (get_node(s, nid))
4407 			continue;
4408 		/*
4409 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4410 		 *      since memory is not yet available from the node that
4411 		 *      is brought up.
4412 		 */
4413 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4414 		if (!n) {
4415 			ret = -ENOMEM;
4416 			goto out;
4417 		}
4418 		init_kmem_cache_node(n);
4419 		s->node[nid] = n;
4420 	}
4421 	/*
4422 	 * Any cache created after this point will also have kmem_cache_node
4423 	 * initialized for the new node.
4424 	 */
4425 	node_set(nid, slab_nodes);
4426 out:
4427 	mutex_unlock(&slab_mutex);
4428 	return ret;
4429 }
4430 
4431 static int slab_memory_callback(struct notifier_block *self,
4432 				unsigned long action, void *arg)
4433 {
4434 	int ret = 0;
4435 
4436 	switch (action) {
4437 	case MEM_GOING_ONLINE:
4438 		ret = slab_mem_going_online_callback(arg);
4439 		break;
4440 	case MEM_GOING_OFFLINE:
4441 		ret = slab_mem_going_offline_callback(arg);
4442 		break;
4443 	case MEM_OFFLINE:
4444 	case MEM_CANCEL_ONLINE:
4445 		slab_mem_offline_callback(arg);
4446 		break;
4447 	case MEM_ONLINE:
4448 	case MEM_CANCEL_OFFLINE:
4449 		break;
4450 	}
4451 	if (ret)
4452 		ret = notifier_from_errno(ret);
4453 	else
4454 		ret = NOTIFY_OK;
4455 	return ret;
4456 }
4457 
4458 static struct notifier_block slab_memory_callback_nb = {
4459 	.notifier_call = slab_memory_callback,
4460 	.priority = SLAB_CALLBACK_PRI,
4461 };
4462 
4463 /********************************************************************
4464  *			Basic setup of slabs
4465  *******************************************************************/
4466 
4467 /*
4468  * Used for early kmem_cache structures that were allocated using
4469  * the page allocator. Allocate them properly then fix up the pointers
4470  * that may be pointing to the wrong kmem_cache structure.
4471  */
4472 
4473 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4474 {
4475 	int node;
4476 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4477 	struct kmem_cache_node *n;
4478 
4479 	memcpy(s, static_cache, kmem_cache->object_size);
4480 
4481 	/*
4482 	 * This runs very early, and only the boot processor is supposed to be
4483 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4484 	 * IPIs around.
4485 	 */
4486 	__flush_cpu_slab(s, smp_processor_id());
4487 	for_each_kmem_cache_node(s, node, n) {
4488 		struct page *p;
4489 
4490 		list_for_each_entry(p, &n->partial, slab_list)
4491 			p->slab_cache = s;
4492 
4493 #ifdef CONFIG_SLUB_DEBUG
4494 		list_for_each_entry(p, &n->full, slab_list)
4495 			p->slab_cache = s;
4496 #endif
4497 	}
4498 	list_add(&s->list, &slab_caches);
4499 	return s;
4500 }
4501 
4502 void __init kmem_cache_init(void)
4503 {
4504 	static __initdata struct kmem_cache boot_kmem_cache,
4505 		boot_kmem_cache_node;
4506 	int node;
4507 
4508 	if (debug_guardpage_minorder())
4509 		slub_max_order = 0;
4510 
4511 	/* Print slub debugging pointers without hashing */
4512 	if (__slub_debug_enabled())
4513 		no_hash_pointers_enable(NULL);
4514 
4515 	kmem_cache_node = &boot_kmem_cache_node;
4516 	kmem_cache = &boot_kmem_cache;
4517 
4518 	/*
4519 	 * Initialize the nodemask for which we will allocate per node
4520 	 * structures. Here we don't need taking slab_mutex yet.
4521 	 */
4522 	for_each_node_state(node, N_NORMAL_MEMORY)
4523 		node_set(node, slab_nodes);
4524 
4525 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4526 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4527 
4528 	register_hotmemory_notifier(&slab_memory_callback_nb);
4529 
4530 	/* Able to allocate the per node structures */
4531 	slab_state = PARTIAL;
4532 
4533 	create_boot_cache(kmem_cache, "kmem_cache",
4534 			offsetof(struct kmem_cache, node) +
4535 				nr_node_ids * sizeof(struct kmem_cache_node *),
4536 		       SLAB_HWCACHE_ALIGN, 0, 0);
4537 
4538 	kmem_cache = bootstrap(&boot_kmem_cache);
4539 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4540 
4541 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4542 	setup_kmalloc_cache_index_table();
4543 	create_kmalloc_caches(0);
4544 
4545 	/* Setup random freelists for each cache */
4546 	init_freelist_randomization();
4547 
4548 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4549 				  slub_cpu_dead);
4550 
4551 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4552 		cache_line_size(),
4553 		slub_min_order, slub_max_order, slub_min_objects,
4554 		nr_cpu_ids, nr_node_ids);
4555 }
4556 
4557 void __init kmem_cache_init_late(void)
4558 {
4559 }
4560 
4561 struct kmem_cache *
4562 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4563 		   slab_flags_t flags, void (*ctor)(void *))
4564 {
4565 	struct kmem_cache *s;
4566 
4567 	s = find_mergeable(size, align, flags, name, ctor);
4568 	if (s) {
4569 		s->refcount++;
4570 
4571 		/*
4572 		 * Adjust the object sizes so that we clear
4573 		 * the complete object on kzalloc.
4574 		 */
4575 		s->object_size = max(s->object_size, size);
4576 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4577 
4578 		if (sysfs_slab_alias(s, name)) {
4579 			s->refcount--;
4580 			s = NULL;
4581 		}
4582 	}
4583 
4584 	return s;
4585 }
4586 
4587 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4588 {
4589 	int err;
4590 
4591 	err = kmem_cache_open(s, flags);
4592 	if (err)
4593 		return err;
4594 
4595 	/* Mutex is not taken during early boot */
4596 	if (slab_state <= UP)
4597 		return 0;
4598 
4599 	err = sysfs_slab_add(s);
4600 	if (err)
4601 		__kmem_cache_release(s);
4602 
4603 	if (s->flags & SLAB_STORE_USER)
4604 		debugfs_slab_add(s);
4605 
4606 	return err;
4607 }
4608 
4609 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4610 {
4611 	struct kmem_cache *s;
4612 	void *ret;
4613 
4614 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4615 		return kmalloc_large(size, gfpflags);
4616 
4617 	s = kmalloc_slab(size, gfpflags);
4618 
4619 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4620 		return s;
4621 
4622 	ret = slab_alloc(s, gfpflags, caller, size);
4623 
4624 	/* Honor the call site pointer we received. */
4625 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4626 
4627 	return ret;
4628 }
4629 EXPORT_SYMBOL(__kmalloc_track_caller);
4630 
4631 #ifdef CONFIG_NUMA
4632 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4633 					int node, unsigned long caller)
4634 {
4635 	struct kmem_cache *s;
4636 	void *ret;
4637 
4638 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4639 		ret = kmalloc_large_node(size, gfpflags, node);
4640 
4641 		trace_kmalloc_node(caller, ret,
4642 				   size, PAGE_SIZE << get_order(size),
4643 				   gfpflags, node);
4644 
4645 		return ret;
4646 	}
4647 
4648 	s = kmalloc_slab(size, gfpflags);
4649 
4650 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4651 		return s;
4652 
4653 	ret = slab_alloc_node(s, gfpflags, node, caller, size);
4654 
4655 	/* Honor the call site pointer we received. */
4656 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4657 
4658 	return ret;
4659 }
4660 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4661 #endif
4662 
4663 #ifdef CONFIG_SYSFS
4664 static int count_inuse(struct page *page)
4665 {
4666 	return page->inuse;
4667 }
4668 
4669 static int count_total(struct page *page)
4670 {
4671 	return page->objects;
4672 }
4673 #endif
4674 
4675 #ifdef CONFIG_SLUB_DEBUG
4676 static void validate_slab(struct kmem_cache *s, struct page *page)
4677 {
4678 	void *p;
4679 	void *addr = page_address(page);
4680 	unsigned long *map;
4681 
4682 	slab_lock(page);
4683 
4684 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4685 		goto unlock;
4686 
4687 	/* Now we know that a valid freelist exists */
4688 	map = get_map(s, page);
4689 	for_each_object(p, s, addr, page->objects) {
4690 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4691 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4692 
4693 		if (!check_object(s, page, p, val))
4694 			break;
4695 	}
4696 	put_map(map);
4697 unlock:
4698 	slab_unlock(page);
4699 }
4700 
4701 static int validate_slab_node(struct kmem_cache *s,
4702 		struct kmem_cache_node *n)
4703 {
4704 	unsigned long count = 0;
4705 	struct page *page;
4706 	unsigned long flags;
4707 
4708 	spin_lock_irqsave(&n->list_lock, flags);
4709 
4710 	list_for_each_entry(page, &n->partial, slab_list) {
4711 		validate_slab(s, page);
4712 		count++;
4713 	}
4714 	if (count != n->nr_partial) {
4715 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4716 		       s->name, count, n->nr_partial);
4717 		slab_add_kunit_errors();
4718 	}
4719 
4720 	if (!(s->flags & SLAB_STORE_USER))
4721 		goto out;
4722 
4723 	list_for_each_entry(page, &n->full, slab_list) {
4724 		validate_slab(s, page);
4725 		count++;
4726 	}
4727 	if (count != atomic_long_read(&n->nr_slabs)) {
4728 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4729 		       s->name, count, atomic_long_read(&n->nr_slabs));
4730 		slab_add_kunit_errors();
4731 	}
4732 
4733 out:
4734 	spin_unlock_irqrestore(&n->list_lock, flags);
4735 	return count;
4736 }
4737 
4738 long validate_slab_cache(struct kmem_cache *s)
4739 {
4740 	int node;
4741 	unsigned long count = 0;
4742 	struct kmem_cache_node *n;
4743 
4744 	flush_all(s);
4745 	for_each_kmem_cache_node(s, node, n)
4746 		count += validate_slab_node(s, n);
4747 
4748 	return count;
4749 }
4750 EXPORT_SYMBOL(validate_slab_cache);
4751 
4752 #ifdef CONFIG_DEBUG_FS
4753 /*
4754  * Generate lists of code addresses where slabcache objects are allocated
4755  * and freed.
4756  */
4757 
4758 struct location {
4759 	unsigned long count;
4760 	unsigned long addr;
4761 	long long sum_time;
4762 	long min_time;
4763 	long max_time;
4764 	long min_pid;
4765 	long max_pid;
4766 	DECLARE_BITMAP(cpus, NR_CPUS);
4767 	nodemask_t nodes;
4768 };
4769 
4770 struct loc_track {
4771 	unsigned long max;
4772 	unsigned long count;
4773 	struct location *loc;
4774 };
4775 
4776 static struct dentry *slab_debugfs_root;
4777 
4778 static void free_loc_track(struct loc_track *t)
4779 {
4780 	if (t->max)
4781 		free_pages((unsigned long)t->loc,
4782 			get_order(sizeof(struct location) * t->max));
4783 }
4784 
4785 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4786 {
4787 	struct location *l;
4788 	int order;
4789 
4790 	order = get_order(sizeof(struct location) * max);
4791 
4792 	l = (void *)__get_free_pages(flags, order);
4793 	if (!l)
4794 		return 0;
4795 
4796 	if (t->count) {
4797 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4798 		free_loc_track(t);
4799 	}
4800 	t->max = max;
4801 	t->loc = l;
4802 	return 1;
4803 }
4804 
4805 static int add_location(struct loc_track *t, struct kmem_cache *s,
4806 				const struct track *track)
4807 {
4808 	long start, end, pos;
4809 	struct location *l;
4810 	unsigned long caddr;
4811 	unsigned long age = jiffies - track->when;
4812 
4813 	start = -1;
4814 	end = t->count;
4815 
4816 	for ( ; ; ) {
4817 		pos = start + (end - start + 1) / 2;
4818 
4819 		/*
4820 		 * There is nothing at "end". If we end up there
4821 		 * we need to add something to before end.
4822 		 */
4823 		if (pos == end)
4824 			break;
4825 
4826 		caddr = t->loc[pos].addr;
4827 		if (track->addr == caddr) {
4828 
4829 			l = &t->loc[pos];
4830 			l->count++;
4831 			if (track->when) {
4832 				l->sum_time += age;
4833 				if (age < l->min_time)
4834 					l->min_time = age;
4835 				if (age > l->max_time)
4836 					l->max_time = age;
4837 
4838 				if (track->pid < l->min_pid)
4839 					l->min_pid = track->pid;
4840 				if (track->pid > l->max_pid)
4841 					l->max_pid = track->pid;
4842 
4843 				cpumask_set_cpu(track->cpu,
4844 						to_cpumask(l->cpus));
4845 			}
4846 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4847 			return 1;
4848 		}
4849 
4850 		if (track->addr < caddr)
4851 			end = pos;
4852 		else
4853 			start = pos;
4854 	}
4855 
4856 	/*
4857 	 * Not found. Insert new tracking element.
4858 	 */
4859 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4860 		return 0;
4861 
4862 	l = t->loc + pos;
4863 	if (pos < t->count)
4864 		memmove(l + 1, l,
4865 			(t->count - pos) * sizeof(struct location));
4866 	t->count++;
4867 	l->count = 1;
4868 	l->addr = track->addr;
4869 	l->sum_time = age;
4870 	l->min_time = age;
4871 	l->max_time = age;
4872 	l->min_pid = track->pid;
4873 	l->max_pid = track->pid;
4874 	cpumask_clear(to_cpumask(l->cpus));
4875 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4876 	nodes_clear(l->nodes);
4877 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4878 	return 1;
4879 }
4880 
4881 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4882 		struct page *page, enum track_item alloc)
4883 {
4884 	void *addr = page_address(page);
4885 	void *p;
4886 	unsigned long *map;
4887 
4888 	map = get_map(s, page);
4889 	for_each_object(p, s, addr, page->objects)
4890 		if (!test_bit(__obj_to_index(s, addr, p), map))
4891 			add_location(t, s, get_track(s, p, alloc));
4892 	put_map(map);
4893 }
4894 #endif  /* CONFIG_DEBUG_FS   */
4895 #endif	/* CONFIG_SLUB_DEBUG */
4896 
4897 #ifdef CONFIG_SYSFS
4898 enum slab_stat_type {
4899 	SL_ALL,			/* All slabs */
4900 	SL_PARTIAL,		/* Only partially allocated slabs */
4901 	SL_CPU,			/* Only slabs used for cpu caches */
4902 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4903 	SL_TOTAL		/* Determine object capacity not slabs */
4904 };
4905 
4906 #define SO_ALL		(1 << SL_ALL)
4907 #define SO_PARTIAL	(1 << SL_PARTIAL)
4908 #define SO_CPU		(1 << SL_CPU)
4909 #define SO_OBJECTS	(1 << SL_OBJECTS)
4910 #define SO_TOTAL	(1 << SL_TOTAL)
4911 
4912 static ssize_t show_slab_objects(struct kmem_cache *s,
4913 				 char *buf, unsigned long flags)
4914 {
4915 	unsigned long total = 0;
4916 	int node;
4917 	int x;
4918 	unsigned long *nodes;
4919 	int len = 0;
4920 
4921 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4922 	if (!nodes)
4923 		return -ENOMEM;
4924 
4925 	if (flags & SO_CPU) {
4926 		int cpu;
4927 
4928 		for_each_possible_cpu(cpu) {
4929 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4930 							       cpu);
4931 			int node;
4932 			struct page *page;
4933 
4934 			page = READ_ONCE(c->page);
4935 			if (!page)
4936 				continue;
4937 
4938 			node = page_to_nid(page);
4939 			if (flags & SO_TOTAL)
4940 				x = page->objects;
4941 			else if (flags & SO_OBJECTS)
4942 				x = page->inuse;
4943 			else
4944 				x = 1;
4945 
4946 			total += x;
4947 			nodes[node] += x;
4948 
4949 			page = slub_percpu_partial_read_once(c);
4950 			if (page) {
4951 				node = page_to_nid(page);
4952 				if (flags & SO_TOTAL)
4953 					WARN_ON_ONCE(1);
4954 				else if (flags & SO_OBJECTS)
4955 					WARN_ON_ONCE(1);
4956 				else
4957 					x = page->pages;
4958 				total += x;
4959 				nodes[node] += x;
4960 			}
4961 		}
4962 	}
4963 
4964 	/*
4965 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4966 	 * already held which will conflict with an existing lock order:
4967 	 *
4968 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4969 	 *
4970 	 * We don't really need mem_hotplug_lock (to hold off
4971 	 * slab_mem_going_offline_callback) here because slab's memory hot
4972 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4973 	 */
4974 
4975 #ifdef CONFIG_SLUB_DEBUG
4976 	if (flags & SO_ALL) {
4977 		struct kmem_cache_node *n;
4978 
4979 		for_each_kmem_cache_node(s, node, n) {
4980 
4981 			if (flags & SO_TOTAL)
4982 				x = atomic_long_read(&n->total_objects);
4983 			else if (flags & SO_OBJECTS)
4984 				x = atomic_long_read(&n->total_objects) -
4985 					count_partial(n, count_free);
4986 			else
4987 				x = atomic_long_read(&n->nr_slabs);
4988 			total += x;
4989 			nodes[node] += x;
4990 		}
4991 
4992 	} else
4993 #endif
4994 	if (flags & SO_PARTIAL) {
4995 		struct kmem_cache_node *n;
4996 
4997 		for_each_kmem_cache_node(s, node, n) {
4998 			if (flags & SO_TOTAL)
4999 				x = count_partial(n, count_total);
5000 			else if (flags & SO_OBJECTS)
5001 				x = count_partial(n, count_inuse);
5002 			else
5003 				x = n->nr_partial;
5004 			total += x;
5005 			nodes[node] += x;
5006 		}
5007 	}
5008 
5009 	len += sysfs_emit_at(buf, len, "%lu", total);
5010 #ifdef CONFIG_NUMA
5011 	for (node = 0; node < nr_node_ids; node++) {
5012 		if (nodes[node])
5013 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5014 					     node, nodes[node]);
5015 	}
5016 #endif
5017 	len += sysfs_emit_at(buf, len, "\n");
5018 	kfree(nodes);
5019 
5020 	return len;
5021 }
5022 
5023 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5024 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5025 
5026 struct slab_attribute {
5027 	struct attribute attr;
5028 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5029 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5030 };
5031 
5032 #define SLAB_ATTR_RO(_name) \
5033 	static struct slab_attribute _name##_attr = \
5034 	__ATTR(_name, 0400, _name##_show, NULL)
5035 
5036 #define SLAB_ATTR(_name) \
5037 	static struct slab_attribute _name##_attr =  \
5038 	__ATTR(_name, 0600, _name##_show, _name##_store)
5039 
5040 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5041 {
5042 	return sysfs_emit(buf, "%u\n", s->size);
5043 }
5044 SLAB_ATTR_RO(slab_size);
5045 
5046 static ssize_t align_show(struct kmem_cache *s, char *buf)
5047 {
5048 	return sysfs_emit(buf, "%u\n", s->align);
5049 }
5050 SLAB_ATTR_RO(align);
5051 
5052 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5053 {
5054 	return sysfs_emit(buf, "%u\n", s->object_size);
5055 }
5056 SLAB_ATTR_RO(object_size);
5057 
5058 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5059 {
5060 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5061 }
5062 SLAB_ATTR_RO(objs_per_slab);
5063 
5064 static ssize_t order_show(struct kmem_cache *s, char *buf)
5065 {
5066 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5067 }
5068 SLAB_ATTR_RO(order);
5069 
5070 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5071 {
5072 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5073 }
5074 
5075 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5076 				 size_t length)
5077 {
5078 	unsigned long min;
5079 	int err;
5080 
5081 	err = kstrtoul(buf, 10, &min);
5082 	if (err)
5083 		return err;
5084 
5085 	set_min_partial(s, min);
5086 	return length;
5087 }
5088 SLAB_ATTR(min_partial);
5089 
5090 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5091 {
5092 	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5093 }
5094 
5095 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5096 				 size_t length)
5097 {
5098 	unsigned int objects;
5099 	int err;
5100 
5101 	err = kstrtouint(buf, 10, &objects);
5102 	if (err)
5103 		return err;
5104 	if (objects && !kmem_cache_has_cpu_partial(s))
5105 		return -EINVAL;
5106 
5107 	slub_set_cpu_partial(s, objects);
5108 	flush_all(s);
5109 	return length;
5110 }
5111 SLAB_ATTR(cpu_partial);
5112 
5113 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5114 {
5115 	if (!s->ctor)
5116 		return 0;
5117 	return sysfs_emit(buf, "%pS\n", s->ctor);
5118 }
5119 SLAB_ATTR_RO(ctor);
5120 
5121 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5122 {
5123 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5124 }
5125 SLAB_ATTR_RO(aliases);
5126 
5127 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5128 {
5129 	return show_slab_objects(s, buf, SO_PARTIAL);
5130 }
5131 SLAB_ATTR_RO(partial);
5132 
5133 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5134 {
5135 	return show_slab_objects(s, buf, SO_CPU);
5136 }
5137 SLAB_ATTR_RO(cpu_slabs);
5138 
5139 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5140 {
5141 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5142 }
5143 SLAB_ATTR_RO(objects);
5144 
5145 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5146 {
5147 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5148 }
5149 SLAB_ATTR_RO(objects_partial);
5150 
5151 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5152 {
5153 	int objects = 0;
5154 	int pages = 0;
5155 	int cpu;
5156 	int len = 0;
5157 
5158 	for_each_online_cpu(cpu) {
5159 		struct page *page;
5160 
5161 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5162 
5163 		if (page) {
5164 			pages += page->pages;
5165 			objects += page->pobjects;
5166 		}
5167 	}
5168 
5169 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5170 
5171 #ifdef CONFIG_SMP
5172 	for_each_online_cpu(cpu) {
5173 		struct page *page;
5174 
5175 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5176 		if (page)
5177 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5178 					     cpu, page->pobjects, page->pages);
5179 	}
5180 #endif
5181 	len += sysfs_emit_at(buf, len, "\n");
5182 
5183 	return len;
5184 }
5185 SLAB_ATTR_RO(slabs_cpu_partial);
5186 
5187 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5188 {
5189 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5190 }
5191 SLAB_ATTR_RO(reclaim_account);
5192 
5193 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5194 {
5195 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5196 }
5197 SLAB_ATTR_RO(hwcache_align);
5198 
5199 #ifdef CONFIG_ZONE_DMA
5200 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5201 {
5202 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5203 }
5204 SLAB_ATTR_RO(cache_dma);
5205 #endif
5206 
5207 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5208 {
5209 	return sysfs_emit(buf, "%u\n", s->usersize);
5210 }
5211 SLAB_ATTR_RO(usersize);
5212 
5213 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5214 {
5215 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5216 }
5217 SLAB_ATTR_RO(destroy_by_rcu);
5218 
5219 #ifdef CONFIG_SLUB_DEBUG
5220 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5221 {
5222 	return show_slab_objects(s, buf, SO_ALL);
5223 }
5224 SLAB_ATTR_RO(slabs);
5225 
5226 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5227 {
5228 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5229 }
5230 SLAB_ATTR_RO(total_objects);
5231 
5232 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5233 {
5234 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5235 }
5236 SLAB_ATTR_RO(sanity_checks);
5237 
5238 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5239 {
5240 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5241 }
5242 SLAB_ATTR_RO(trace);
5243 
5244 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5245 {
5246 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5247 }
5248 
5249 SLAB_ATTR_RO(red_zone);
5250 
5251 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5252 {
5253 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5254 }
5255 
5256 SLAB_ATTR_RO(poison);
5257 
5258 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5259 {
5260 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5261 }
5262 
5263 SLAB_ATTR_RO(store_user);
5264 
5265 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5266 {
5267 	return 0;
5268 }
5269 
5270 static ssize_t validate_store(struct kmem_cache *s,
5271 			const char *buf, size_t length)
5272 {
5273 	int ret = -EINVAL;
5274 
5275 	if (buf[0] == '1') {
5276 		ret = validate_slab_cache(s);
5277 		if (ret >= 0)
5278 			ret = length;
5279 	}
5280 	return ret;
5281 }
5282 SLAB_ATTR(validate);
5283 
5284 #endif /* CONFIG_SLUB_DEBUG */
5285 
5286 #ifdef CONFIG_FAILSLAB
5287 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5288 {
5289 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5290 }
5291 SLAB_ATTR_RO(failslab);
5292 #endif
5293 
5294 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5295 {
5296 	return 0;
5297 }
5298 
5299 static ssize_t shrink_store(struct kmem_cache *s,
5300 			const char *buf, size_t length)
5301 {
5302 	if (buf[0] == '1')
5303 		kmem_cache_shrink(s);
5304 	else
5305 		return -EINVAL;
5306 	return length;
5307 }
5308 SLAB_ATTR(shrink);
5309 
5310 #ifdef CONFIG_NUMA
5311 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5312 {
5313 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5314 }
5315 
5316 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5317 				const char *buf, size_t length)
5318 {
5319 	unsigned int ratio;
5320 	int err;
5321 
5322 	err = kstrtouint(buf, 10, &ratio);
5323 	if (err)
5324 		return err;
5325 	if (ratio > 100)
5326 		return -ERANGE;
5327 
5328 	s->remote_node_defrag_ratio = ratio * 10;
5329 
5330 	return length;
5331 }
5332 SLAB_ATTR(remote_node_defrag_ratio);
5333 #endif
5334 
5335 #ifdef CONFIG_SLUB_STATS
5336 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5337 {
5338 	unsigned long sum  = 0;
5339 	int cpu;
5340 	int len = 0;
5341 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5342 
5343 	if (!data)
5344 		return -ENOMEM;
5345 
5346 	for_each_online_cpu(cpu) {
5347 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5348 
5349 		data[cpu] = x;
5350 		sum += x;
5351 	}
5352 
5353 	len += sysfs_emit_at(buf, len, "%lu", sum);
5354 
5355 #ifdef CONFIG_SMP
5356 	for_each_online_cpu(cpu) {
5357 		if (data[cpu])
5358 			len += sysfs_emit_at(buf, len, " C%d=%u",
5359 					     cpu, data[cpu]);
5360 	}
5361 #endif
5362 	kfree(data);
5363 	len += sysfs_emit_at(buf, len, "\n");
5364 
5365 	return len;
5366 }
5367 
5368 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5369 {
5370 	int cpu;
5371 
5372 	for_each_online_cpu(cpu)
5373 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5374 }
5375 
5376 #define STAT_ATTR(si, text) 					\
5377 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5378 {								\
5379 	return show_stat(s, buf, si);				\
5380 }								\
5381 static ssize_t text##_store(struct kmem_cache *s,		\
5382 				const char *buf, size_t length)	\
5383 {								\
5384 	if (buf[0] != '0')					\
5385 		return -EINVAL;					\
5386 	clear_stat(s, si);					\
5387 	return length;						\
5388 }								\
5389 SLAB_ATTR(text);						\
5390 
5391 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5392 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5393 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5394 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5395 STAT_ATTR(FREE_FROZEN, free_frozen);
5396 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5397 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5398 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5399 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5400 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5401 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5402 STAT_ATTR(FREE_SLAB, free_slab);
5403 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5404 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5405 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5406 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5407 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5408 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5409 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5410 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5411 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5412 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5413 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5414 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5415 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5416 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5417 #endif	/* CONFIG_SLUB_STATS */
5418 
5419 static struct attribute *slab_attrs[] = {
5420 	&slab_size_attr.attr,
5421 	&object_size_attr.attr,
5422 	&objs_per_slab_attr.attr,
5423 	&order_attr.attr,
5424 	&min_partial_attr.attr,
5425 	&cpu_partial_attr.attr,
5426 	&objects_attr.attr,
5427 	&objects_partial_attr.attr,
5428 	&partial_attr.attr,
5429 	&cpu_slabs_attr.attr,
5430 	&ctor_attr.attr,
5431 	&aliases_attr.attr,
5432 	&align_attr.attr,
5433 	&hwcache_align_attr.attr,
5434 	&reclaim_account_attr.attr,
5435 	&destroy_by_rcu_attr.attr,
5436 	&shrink_attr.attr,
5437 	&slabs_cpu_partial_attr.attr,
5438 #ifdef CONFIG_SLUB_DEBUG
5439 	&total_objects_attr.attr,
5440 	&slabs_attr.attr,
5441 	&sanity_checks_attr.attr,
5442 	&trace_attr.attr,
5443 	&red_zone_attr.attr,
5444 	&poison_attr.attr,
5445 	&store_user_attr.attr,
5446 	&validate_attr.attr,
5447 #endif
5448 #ifdef CONFIG_ZONE_DMA
5449 	&cache_dma_attr.attr,
5450 #endif
5451 #ifdef CONFIG_NUMA
5452 	&remote_node_defrag_ratio_attr.attr,
5453 #endif
5454 #ifdef CONFIG_SLUB_STATS
5455 	&alloc_fastpath_attr.attr,
5456 	&alloc_slowpath_attr.attr,
5457 	&free_fastpath_attr.attr,
5458 	&free_slowpath_attr.attr,
5459 	&free_frozen_attr.attr,
5460 	&free_add_partial_attr.attr,
5461 	&free_remove_partial_attr.attr,
5462 	&alloc_from_partial_attr.attr,
5463 	&alloc_slab_attr.attr,
5464 	&alloc_refill_attr.attr,
5465 	&alloc_node_mismatch_attr.attr,
5466 	&free_slab_attr.attr,
5467 	&cpuslab_flush_attr.attr,
5468 	&deactivate_full_attr.attr,
5469 	&deactivate_empty_attr.attr,
5470 	&deactivate_to_head_attr.attr,
5471 	&deactivate_to_tail_attr.attr,
5472 	&deactivate_remote_frees_attr.attr,
5473 	&deactivate_bypass_attr.attr,
5474 	&order_fallback_attr.attr,
5475 	&cmpxchg_double_fail_attr.attr,
5476 	&cmpxchg_double_cpu_fail_attr.attr,
5477 	&cpu_partial_alloc_attr.attr,
5478 	&cpu_partial_free_attr.attr,
5479 	&cpu_partial_node_attr.attr,
5480 	&cpu_partial_drain_attr.attr,
5481 #endif
5482 #ifdef CONFIG_FAILSLAB
5483 	&failslab_attr.attr,
5484 #endif
5485 	&usersize_attr.attr,
5486 
5487 	NULL
5488 };
5489 
5490 static const struct attribute_group slab_attr_group = {
5491 	.attrs = slab_attrs,
5492 };
5493 
5494 static ssize_t slab_attr_show(struct kobject *kobj,
5495 				struct attribute *attr,
5496 				char *buf)
5497 {
5498 	struct slab_attribute *attribute;
5499 	struct kmem_cache *s;
5500 	int err;
5501 
5502 	attribute = to_slab_attr(attr);
5503 	s = to_slab(kobj);
5504 
5505 	if (!attribute->show)
5506 		return -EIO;
5507 
5508 	err = attribute->show(s, buf);
5509 
5510 	return err;
5511 }
5512 
5513 static ssize_t slab_attr_store(struct kobject *kobj,
5514 				struct attribute *attr,
5515 				const char *buf, size_t len)
5516 {
5517 	struct slab_attribute *attribute;
5518 	struct kmem_cache *s;
5519 	int err;
5520 
5521 	attribute = to_slab_attr(attr);
5522 	s = to_slab(kobj);
5523 
5524 	if (!attribute->store)
5525 		return -EIO;
5526 
5527 	err = attribute->store(s, buf, len);
5528 	return err;
5529 }
5530 
5531 static void kmem_cache_release(struct kobject *k)
5532 {
5533 	slab_kmem_cache_release(to_slab(k));
5534 }
5535 
5536 static const struct sysfs_ops slab_sysfs_ops = {
5537 	.show = slab_attr_show,
5538 	.store = slab_attr_store,
5539 };
5540 
5541 static struct kobj_type slab_ktype = {
5542 	.sysfs_ops = &slab_sysfs_ops,
5543 	.release = kmem_cache_release,
5544 };
5545 
5546 static struct kset *slab_kset;
5547 
5548 static inline struct kset *cache_kset(struct kmem_cache *s)
5549 {
5550 	return slab_kset;
5551 }
5552 
5553 #define ID_STR_LENGTH 64
5554 
5555 /* Create a unique string id for a slab cache:
5556  *
5557  * Format	:[flags-]size
5558  */
5559 static char *create_unique_id(struct kmem_cache *s)
5560 {
5561 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5562 	char *p = name;
5563 
5564 	BUG_ON(!name);
5565 
5566 	*p++ = ':';
5567 	/*
5568 	 * First flags affecting slabcache operations. We will only
5569 	 * get here for aliasable slabs so we do not need to support
5570 	 * too many flags. The flags here must cover all flags that
5571 	 * are matched during merging to guarantee that the id is
5572 	 * unique.
5573 	 */
5574 	if (s->flags & SLAB_CACHE_DMA)
5575 		*p++ = 'd';
5576 	if (s->flags & SLAB_CACHE_DMA32)
5577 		*p++ = 'D';
5578 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5579 		*p++ = 'a';
5580 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5581 		*p++ = 'F';
5582 	if (s->flags & SLAB_ACCOUNT)
5583 		*p++ = 'A';
5584 	if (p != name + 1)
5585 		*p++ = '-';
5586 	p += sprintf(p, "%07u", s->size);
5587 
5588 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5589 	return name;
5590 }
5591 
5592 static int sysfs_slab_add(struct kmem_cache *s)
5593 {
5594 	int err;
5595 	const char *name;
5596 	struct kset *kset = cache_kset(s);
5597 	int unmergeable = slab_unmergeable(s);
5598 
5599 	if (!kset) {
5600 		kobject_init(&s->kobj, &slab_ktype);
5601 		return 0;
5602 	}
5603 
5604 	if (!unmergeable && disable_higher_order_debug &&
5605 			(slub_debug & DEBUG_METADATA_FLAGS))
5606 		unmergeable = 1;
5607 
5608 	if (unmergeable) {
5609 		/*
5610 		 * Slabcache can never be merged so we can use the name proper.
5611 		 * This is typically the case for debug situations. In that
5612 		 * case we can catch duplicate names easily.
5613 		 */
5614 		sysfs_remove_link(&slab_kset->kobj, s->name);
5615 		name = s->name;
5616 	} else {
5617 		/*
5618 		 * Create a unique name for the slab as a target
5619 		 * for the symlinks.
5620 		 */
5621 		name = create_unique_id(s);
5622 	}
5623 
5624 	s->kobj.kset = kset;
5625 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5626 	if (err)
5627 		goto out;
5628 
5629 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5630 	if (err)
5631 		goto out_del_kobj;
5632 
5633 	if (!unmergeable) {
5634 		/* Setup first alias */
5635 		sysfs_slab_alias(s, s->name);
5636 	}
5637 out:
5638 	if (!unmergeable)
5639 		kfree(name);
5640 	return err;
5641 out_del_kobj:
5642 	kobject_del(&s->kobj);
5643 	goto out;
5644 }
5645 
5646 void sysfs_slab_unlink(struct kmem_cache *s)
5647 {
5648 	if (slab_state >= FULL)
5649 		kobject_del(&s->kobj);
5650 }
5651 
5652 void sysfs_slab_release(struct kmem_cache *s)
5653 {
5654 	if (slab_state >= FULL)
5655 		kobject_put(&s->kobj);
5656 }
5657 
5658 /*
5659  * Need to buffer aliases during bootup until sysfs becomes
5660  * available lest we lose that information.
5661  */
5662 struct saved_alias {
5663 	struct kmem_cache *s;
5664 	const char *name;
5665 	struct saved_alias *next;
5666 };
5667 
5668 static struct saved_alias *alias_list;
5669 
5670 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5671 {
5672 	struct saved_alias *al;
5673 
5674 	if (slab_state == FULL) {
5675 		/*
5676 		 * If we have a leftover link then remove it.
5677 		 */
5678 		sysfs_remove_link(&slab_kset->kobj, name);
5679 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5680 	}
5681 
5682 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5683 	if (!al)
5684 		return -ENOMEM;
5685 
5686 	al->s = s;
5687 	al->name = name;
5688 	al->next = alias_list;
5689 	alias_list = al;
5690 	return 0;
5691 }
5692 
5693 static int __init slab_sysfs_init(void)
5694 {
5695 	struct kmem_cache *s;
5696 	int err;
5697 
5698 	mutex_lock(&slab_mutex);
5699 
5700 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5701 	if (!slab_kset) {
5702 		mutex_unlock(&slab_mutex);
5703 		pr_err("Cannot register slab subsystem.\n");
5704 		return -ENOSYS;
5705 	}
5706 
5707 	slab_state = FULL;
5708 
5709 	list_for_each_entry(s, &slab_caches, list) {
5710 		err = sysfs_slab_add(s);
5711 		if (err)
5712 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5713 			       s->name);
5714 	}
5715 
5716 	while (alias_list) {
5717 		struct saved_alias *al = alias_list;
5718 
5719 		alias_list = alias_list->next;
5720 		err = sysfs_slab_alias(al->s, al->name);
5721 		if (err)
5722 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5723 			       al->name);
5724 		kfree(al);
5725 	}
5726 
5727 	mutex_unlock(&slab_mutex);
5728 	return 0;
5729 }
5730 
5731 __initcall(slab_sysfs_init);
5732 #endif /* CONFIG_SYSFS */
5733 
5734 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5735 static int slab_debugfs_show(struct seq_file *seq, void *v)
5736 {
5737 
5738 	struct location *l;
5739 	unsigned int idx = *(unsigned int *)v;
5740 	struct loc_track *t = seq->private;
5741 
5742 	if (idx < t->count) {
5743 		l = &t->loc[idx];
5744 
5745 		seq_printf(seq, "%7ld ", l->count);
5746 
5747 		if (l->addr)
5748 			seq_printf(seq, "%pS", (void *)l->addr);
5749 		else
5750 			seq_puts(seq, "<not-available>");
5751 
5752 		if (l->sum_time != l->min_time) {
5753 			seq_printf(seq, " age=%ld/%llu/%ld",
5754 				l->min_time, div_u64(l->sum_time, l->count),
5755 				l->max_time);
5756 		} else
5757 			seq_printf(seq, " age=%ld", l->min_time);
5758 
5759 		if (l->min_pid != l->max_pid)
5760 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5761 		else
5762 			seq_printf(seq, " pid=%ld",
5763 				l->min_pid);
5764 
5765 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5766 			seq_printf(seq, " cpus=%*pbl",
5767 				 cpumask_pr_args(to_cpumask(l->cpus)));
5768 
5769 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5770 			seq_printf(seq, " nodes=%*pbl",
5771 				 nodemask_pr_args(&l->nodes));
5772 
5773 		seq_puts(seq, "\n");
5774 	}
5775 
5776 	if (!idx && !t->count)
5777 		seq_puts(seq, "No data\n");
5778 
5779 	return 0;
5780 }
5781 
5782 static void slab_debugfs_stop(struct seq_file *seq, void *v)
5783 {
5784 }
5785 
5786 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5787 {
5788 	struct loc_track *t = seq->private;
5789 
5790 	v = ppos;
5791 	++*ppos;
5792 	if (*ppos <= t->count)
5793 		return v;
5794 
5795 	return NULL;
5796 }
5797 
5798 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5799 {
5800 	return ppos;
5801 }
5802 
5803 static const struct seq_operations slab_debugfs_sops = {
5804 	.start  = slab_debugfs_start,
5805 	.next   = slab_debugfs_next,
5806 	.stop   = slab_debugfs_stop,
5807 	.show   = slab_debugfs_show,
5808 };
5809 
5810 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5811 {
5812 
5813 	struct kmem_cache_node *n;
5814 	enum track_item alloc;
5815 	int node;
5816 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5817 						sizeof(struct loc_track));
5818 	struct kmem_cache *s = file_inode(filep)->i_private;
5819 
5820 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5821 		alloc = TRACK_ALLOC;
5822 	else
5823 		alloc = TRACK_FREE;
5824 
5825 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL))
5826 		return -ENOMEM;
5827 
5828 	/* Push back cpu slabs */
5829 	flush_all(s);
5830 
5831 	for_each_kmem_cache_node(s, node, n) {
5832 		unsigned long flags;
5833 		struct page *page;
5834 
5835 		if (!atomic_long_read(&n->nr_slabs))
5836 			continue;
5837 
5838 		spin_lock_irqsave(&n->list_lock, flags);
5839 		list_for_each_entry(page, &n->partial, slab_list)
5840 			process_slab(t, s, page, alloc);
5841 		list_for_each_entry(page, &n->full, slab_list)
5842 			process_slab(t, s, page, alloc);
5843 		spin_unlock_irqrestore(&n->list_lock, flags);
5844 	}
5845 
5846 	return 0;
5847 }
5848 
5849 static int slab_debug_trace_release(struct inode *inode, struct file *file)
5850 {
5851 	struct seq_file *seq = file->private_data;
5852 	struct loc_track *t = seq->private;
5853 
5854 	free_loc_track(t);
5855 	return seq_release_private(inode, file);
5856 }
5857 
5858 static const struct file_operations slab_debugfs_fops = {
5859 	.open    = slab_debug_trace_open,
5860 	.read    = seq_read,
5861 	.llseek  = seq_lseek,
5862 	.release = slab_debug_trace_release,
5863 };
5864 
5865 static void debugfs_slab_add(struct kmem_cache *s)
5866 {
5867 	struct dentry *slab_cache_dir;
5868 
5869 	if (unlikely(!slab_debugfs_root))
5870 		return;
5871 
5872 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5873 
5874 	debugfs_create_file("alloc_traces", 0400,
5875 		slab_cache_dir, s, &slab_debugfs_fops);
5876 
5877 	debugfs_create_file("free_traces", 0400,
5878 		slab_cache_dir, s, &slab_debugfs_fops);
5879 }
5880 
5881 void debugfs_slab_release(struct kmem_cache *s)
5882 {
5883 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5884 }
5885 
5886 static int __init slab_debugfs_init(void)
5887 {
5888 	struct kmem_cache *s;
5889 
5890 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
5891 
5892 	list_for_each_entry(s, &slab_caches, list)
5893 		if (s->flags & SLAB_STORE_USER)
5894 			debugfs_slab_add(s);
5895 
5896 	return 0;
5897 
5898 }
5899 __initcall(slab_debugfs_init);
5900 #endif
5901 /*
5902  * The /proc/slabinfo ABI
5903  */
5904 #ifdef CONFIG_SLUB_DEBUG
5905 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5906 {
5907 	unsigned long nr_slabs = 0;
5908 	unsigned long nr_objs = 0;
5909 	unsigned long nr_free = 0;
5910 	int node;
5911 	struct kmem_cache_node *n;
5912 
5913 	for_each_kmem_cache_node(s, node, n) {
5914 		nr_slabs += node_nr_slabs(n);
5915 		nr_objs += node_nr_objs(n);
5916 		nr_free += count_partial(n, count_free);
5917 	}
5918 
5919 	sinfo->active_objs = nr_objs - nr_free;
5920 	sinfo->num_objs = nr_objs;
5921 	sinfo->active_slabs = nr_slabs;
5922 	sinfo->num_slabs = nr_slabs;
5923 	sinfo->objects_per_slab = oo_objects(s->oo);
5924 	sinfo->cache_order = oo_order(s->oo);
5925 }
5926 
5927 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5928 {
5929 }
5930 
5931 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5932 		       size_t count, loff_t *ppos)
5933 {
5934 	return -EIO;
5935 }
5936 #endif /* CONFIG_SLUB_DEBUG */
5937