1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/kmemcheck.h> 22 #include <linux/cpu.h> 23 #include <linux/cpuset.h> 24 #include <linux/mempolicy.h> 25 #include <linux/ctype.h> 26 #include <linux/debugobjects.h> 27 #include <linux/kallsyms.h> 28 #include <linux/memory.h> 29 #include <linux/math64.h> 30 #include <linux/fault-inject.h> 31 #include <linux/stacktrace.h> 32 #include <linux/prefetch.h> 33 34 #include <trace/events/kmem.h> 35 36 /* 37 * Lock order: 38 * 1. slub_lock (Global Semaphore) 39 * 2. node->list_lock 40 * 3. slab_lock(page) (Only on some arches and for debugging) 41 * 42 * slub_lock 43 * 44 * The role of the slub_lock is to protect the list of all the slabs 45 * and to synchronize major metadata changes to slab cache structures. 46 * 47 * The slab_lock is only used for debugging and on arches that do not 48 * have the ability to do a cmpxchg_double. It only protects the second 49 * double word in the page struct. Meaning 50 * A. page->freelist -> List of object free in a page 51 * B. page->counters -> Counters of objects 52 * C. page->frozen -> frozen state 53 * 54 * If a slab is frozen then it is exempt from list management. It is not 55 * on any list. The processor that froze the slab is the one who can 56 * perform list operations on the page. Other processors may put objects 57 * onto the freelist but the processor that froze the slab is the only 58 * one that can retrieve the objects from the page's freelist. 59 * 60 * The list_lock protects the partial and full list on each node and 61 * the partial slab counter. If taken then no new slabs may be added or 62 * removed from the lists nor make the number of partial slabs be modified. 63 * (Note that the total number of slabs is an atomic value that may be 64 * modified without taking the list lock). 65 * 66 * The list_lock is a centralized lock and thus we avoid taking it as 67 * much as possible. As long as SLUB does not have to handle partial 68 * slabs, operations can continue without any centralized lock. F.e. 69 * allocating a long series of objects that fill up slabs does not require 70 * the list lock. 71 * Interrupts are disabled during allocation and deallocation in order to 72 * make the slab allocator safe to use in the context of an irq. In addition 73 * interrupts are disabled to ensure that the processor does not change 74 * while handling per_cpu slabs, due to kernel preemption. 75 * 76 * SLUB assigns one slab for allocation to each processor. 77 * Allocations only occur from these slabs called cpu slabs. 78 * 79 * Slabs with free elements are kept on a partial list and during regular 80 * operations no list for full slabs is used. If an object in a full slab is 81 * freed then the slab will show up again on the partial lists. 82 * We track full slabs for debugging purposes though because otherwise we 83 * cannot scan all objects. 84 * 85 * Slabs are freed when they become empty. Teardown and setup is 86 * minimal so we rely on the page allocators per cpu caches for 87 * fast frees and allocs. 88 * 89 * Overloading of page flags that are otherwise used for LRU management. 90 * 91 * PageActive The slab is frozen and exempt from list processing. 92 * This means that the slab is dedicated to a purpose 93 * such as satisfying allocations for a specific 94 * processor. Objects may be freed in the slab while 95 * it is frozen but slab_free will then skip the usual 96 * list operations. It is up to the processor holding 97 * the slab to integrate the slab into the slab lists 98 * when the slab is no longer needed. 99 * 100 * One use of this flag is to mark slabs that are 101 * used for allocations. Then such a slab becomes a cpu 102 * slab. The cpu slab may be equipped with an additional 103 * freelist that allows lockless access to 104 * free objects in addition to the regular freelist 105 * that requires the slab lock. 106 * 107 * PageError Slab requires special handling due to debug 108 * options set. This moves slab handling out of 109 * the fast path and disables lockless freelists. 110 */ 111 112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 113 SLAB_TRACE | SLAB_DEBUG_FREE) 114 115 static inline int kmem_cache_debug(struct kmem_cache *s) 116 { 117 #ifdef CONFIG_SLUB_DEBUG 118 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 119 #else 120 return 0; 121 #endif 122 } 123 124 /* 125 * Issues still to be resolved: 126 * 127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 128 * 129 * - Variable sizing of the per node arrays 130 */ 131 132 /* Enable to test recovery from slab corruption on boot */ 133 #undef SLUB_RESILIENCY_TEST 134 135 /* Enable to log cmpxchg failures */ 136 #undef SLUB_DEBUG_CMPXCHG 137 138 /* 139 * Mininum number of partial slabs. These will be left on the partial 140 * lists even if they are empty. kmem_cache_shrink may reclaim them. 141 */ 142 #define MIN_PARTIAL 5 143 144 /* 145 * Maximum number of desirable partial slabs. 146 * The existence of more partial slabs makes kmem_cache_shrink 147 * sort the partial list by the number of objects in the. 148 */ 149 #define MAX_PARTIAL 10 150 151 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 152 SLAB_POISON | SLAB_STORE_USER) 153 154 /* 155 * Debugging flags that require metadata to be stored in the slab. These get 156 * disabled when slub_debug=O is used and a cache's min order increases with 157 * metadata. 158 */ 159 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 160 161 /* 162 * Set of flags that will prevent slab merging 163 */ 164 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 166 SLAB_FAILSLAB) 167 168 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 169 SLAB_CACHE_DMA | SLAB_NOTRACK) 170 171 #define OO_SHIFT 16 172 #define OO_MASK ((1 << OO_SHIFT) - 1) 173 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 174 175 /* Internal SLUB flags */ 176 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 177 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 178 179 static int kmem_size = sizeof(struct kmem_cache); 180 181 #ifdef CONFIG_SMP 182 static struct notifier_block slab_notifier; 183 #endif 184 185 static enum { 186 DOWN, /* No slab functionality available */ 187 PARTIAL, /* Kmem_cache_node works */ 188 UP, /* Everything works but does not show up in sysfs */ 189 SYSFS /* Sysfs up */ 190 } slab_state = DOWN; 191 192 /* A list of all slab caches on the system */ 193 static DECLARE_RWSEM(slub_lock); 194 static LIST_HEAD(slab_caches); 195 196 /* 197 * Tracking user of a slab. 198 */ 199 #define TRACK_ADDRS_COUNT 16 200 struct track { 201 unsigned long addr; /* Called from address */ 202 #ifdef CONFIG_STACKTRACE 203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 204 #endif 205 int cpu; /* Was running on cpu */ 206 int pid; /* Pid context */ 207 unsigned long when; /* When did the operation occur */ 208 }; 209 210 enum track_item { TRACK_ALLOC, TRACK_FREE }; 211 212 #ifdef CONFIG_SYSFS 213 static int sysfs_slab_add(struct kmem_cache *); 214 static int sysfs_slab_alias(struct kmem_cache *, const char *); 215 static void sysfs_slab_remove(struct kmem_cache *); 216 217 #else 218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 220 { return 0; } 221 static inline void sysfs_slab_remove(struct kmem_cache *s) 222 { 223 kfree(s->name); 224 kfree(s); 225 } 226 227 #endif 228 229 static inline void stat(const struct kmem_cache *s, enum stat_item si) 230 { 231 #ifdef CONFIG_SLUB_STATS 232 __this_cpu_inc(s->cpu_slab->stat[si]); 233 #endif 234 } 235 236 /******************************************************************** 237 * Core slab cache functions 238 *******************************************************************/ 239 240 int slab_is_available(void) 241 { 242 return slab_state >= UP; 243 } 244 245 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 246 { 247 return s->node[node]; 248 } 249 250 /* Verify that a pointer has an address that is valid within a slab page */ 251 static inline int check_valid_pointer(struct kmem_cache *s, 252 struct page *page, const void *object) 253 { 254 void *base; 255 256 if (!object) 257 return 1; 258 259 base = page_address(page); 260 if (object < base || object >= base + page->objects * s->size || 261 (object - base) % s->size) { 262 return 0; 263 } 264 265 return 1; 266 } 267 268 static inline void *get_freepointer(struct kmem_cache *s, void *object) 269 { 270 return *(void **)(object + s->offset); 271 } 272 273 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 274 { 275 prefetch(object + s->offset); 276 } 277 278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 279 { 280 void *p; 281 282 #ifdef CONFIG_DEBUG_PAGEALLOC 283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 284 #else 285 p = get_freepointer(s, object); 286 #endif 287 return p; 288 } 289 290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 291 { 292 *(void **)(object + s->offset) = fp; 293 } 294 295 /* Loop over all objects in a slab */ 296 #define for_each_object(__p, __s, __addr, __objects) \ 297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 298 __p += (__s)->size) 299 300 /* Determine object index from a given position */ 301 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 302 { 303 return (p - addr) / s->size; 304 } 305 306 static inline size_t slab_ksize(const struct kmem_cache *s) 307 { 308 #ifdef CONFIG_SLUB_DEBUG 309 /* 310 * Debugging requires use of the padding between object 311 * and whatever may come after it. 312 */ 313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 314 return s->objsize; 315 316 #endif 317 /* 318 * If we have the need to store the freelist pointer 319 * back there or track user information then we can 320 * only use the space before that information. 321 */ 322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 323 return s->inuse; 324 /* 325 * Else we can use all the padding etc for the allocation 326 */ 327 return s->size; 328 } 329 330 static inline int order_objects(int order, unsigned long size, int reserved) 331 { 332 return ((PAGE_SIZE << order) - reserved) / size; 333 } 334 335 static inline struct kmem_cache_order_objects oo_make(int order, 336 unsigned long size, int reserved) 337 { 338 struct kmem_cache_order_objects x = { 339 (order << OO_SHIFT) + order_objects(order, size, reserved) 340 }; 341 342 return x; 343 } 344 345 static inline int oo_order(struct kmem_cache_order_objects x) 346 { 347 return x.x >> OO_SHIFT; 348 } 349 350 static inline int oo_objects(struct kmem_cache_order_objects x) 351 { 352 return x.x & OO_MASK; 353 } 354 355 /* 356 * Per slab locking using the pagelock 357 */ 358 static __always_inline void slab_lock(struct page *page) 359 { 360 bit_spin_lock(PG_locked, &page->flags); 361 } 362 363 static __always_inline void slab_unlock(struct page *page) 364 { 365 __bit_spin_unlock(PG_locked, &page->flags); 366 } 367 368 /* Interrupts must be disabled (for the fallback code to work right) */ 369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 370 void *freelist_old, unsigned long counters_old, 371 void *freelist_new, unsigned long counters_new, 372 const char *n) 373 { 374 VM_BUG_ON(!irqs_disabled()); 375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 377 if (s->flags & __CMPXCHG_DOUBLE) { 378 if (cmpxchg_double(&page->freelist, &page->counters, 379 freelist_old, counters_old, 380 freelist_new, counters_new)) 381 return 1; 382 } else 383 #endif 384 { 385 slab_lock(page); 386 if (page->freelist == freelist_old && page->counters == counters_old) { 387 page->freelist = freelist_new; 388 page->counters = counters_new; 389 slab_unlock(page); 390 return 1; 391 } 392 slab_unlock(page); 393 } 394 395 cpu_relax(); 396 stat(s, CMPXCHG_DOUBLE_FAIL); 397 398 #ifdef SLUB_DEBUG_CMPXCHG 399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 400 #endif 401 402 return 0; 403 } 404 405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 406 void *freelist_old, unsigned long counters_old, 407 void *freelist_new, unsigned long counters_new, 408 const char *n) 409 { 410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 412 if (s->flags & __CMPXCHG_DOUBLE) { 413 if (cmpxchg_double(&page->freelist, &page->counters, 414 freelist_old, counters_old, 415 freelist_new, counters_new)) 416 return 1; 417 } else 418 #endif 419 { 420 unsigned long flags; 421 422 local_irq_save(flags); 423 slab_lock(page); 424 if (page->freelist == freelist_old && page->counters == counters_old) { 425 page->freelist = freelist_new; 426 page->counters = counters_new; 427 slab_unlock(page); 428 local_irq_restore(flags); 429 return 1; 430 } 431 slab_unlock(page); 432 local_irq_restore(flags); 433 } 434 435 cpu_relax(); 436 stat(s, CMPXCHG_DOUBLE_FAIL); 437 438 #ifdef SLUB_DEBUG_CMPXCHG 439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 440 #endif 441 442 return 0; 443 } 444 445 #ifdef CONFIG_SLUB_DEBUG 446 /* 447 * Determine a map of object in use on a page. 448 * 449 * Node listlock must be held to guarantee that the page does 450 * not vanish from under us. 451 */ 452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 453 { 454 void *p; 455 void *addr = page_address(page); 456 457 for (p = page->freelist; p; p = get_freepointer(s, p)) 458 set_bit(slab_index(p, s, addr), map); 459 } 460 461 /* 462 * Debug settings: 463 */ 464 #ifdef CONFIG_SLUB_DEBUG_ON 465 static int slub_debug = DEBUG_DEFAULT_FLAGS; 466 #else 467 static int slub_debug; 468 #endif 469 470 static char *slub_debug_slabs; 471 static int disable_higher_order_debug; 472 473 /* 474 * Object debugging 475 */ 476 static void print_section(char *text, u8 *addr, unsigned int length) 477 { 478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 479 length, 1); 480 } 481 482 static struct track *get_track(struct kmem_cache *s, void *object, 483 enum track_item alloc) 484 { 485 struct track *p; 486 487 if (s->offset) 488 p = object + s->offset + sizeof(void *); 489 else 490 p = object + s->inuse; 491 492 return p + alloc; 493 } 494 495 static void set_track(struct kmem_cache *s, void *object, 496 enum track_item alloc, unsigned long addr) 497 { 498 struct track *p = get_track(s, object, alloc); 499 500 if (addr) { 501 #ifdef CONFIG_STACKTRACE 502 struct stack_trace trace; 503 int i; 504 505 trace.nr_entries = 0; 506 trace.max_entries = TRACK_ADDRS_COUNT; 507 trace.entries = p->addrs; 508 trace.skip = 3; 509 save_stack_trace(&trace); 510 511 /* See rant in lockdep.c */ 512 if (trace.nr_entries != 0 && 513 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 514 trace.nr_entries--; 515 516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 517 p->addrs[i] = 0; 518 #endif 519 p->addr = addr; 520 p->cpu = smp_processor_id(); 521 p->pid = current->pid; 522 p->when = jiffies; 523 } else 524 memset(p, 0, sizeof(struct track)); 525 } 526 527 static void init_tracking(struct kmem_cache *s, void *object) 528 { 529 if (!(s->flags & SLAB_STORE_USER)) 530 return; 531 532 set_track(s, object, TRACK_FREE, 0UL); 533 set_track(s, object, TRACK_ALLOC, 0UL); 534 } 535 536 static void print_track(const char *s, struct track *t) 537 { 538 if (!t->addr) 539 return; 540 541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 543 #ifdef CONFIG_STACKTRACE 544 { 545 int i; 546 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 547 if (t->addrs[i]) 548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 549 else 550 break; 551 } 552 #endif 553 } 554 555 static void print_tracking(struct kmem_cache *s, void *object) 556 { 557 if (!(s->flags & SLAB_STORE_USER)) 558 return; 559 560 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 561 print_track("Freed", get_track(s, object, TRACK_FREE)); 562 } 563 564 static void print_page_info(struct page *page) 565 { 566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 567 page, page->objects, page->inuse, page->freelist, page->flags); 568 569 } 570 571 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 572 { 573 va_list args; 574 char buf[100]; 575 576 va_start(args, fmt); 577 vsnprintf(buf, sizeof(buf), fmt, args); 578 va_end(args); 579 printk(KERN_ERR "========================================" 580 "=====================================\n"); 581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); 582 printk(KERN_ERR "----------------------------------------" 583 "-------------------------------------\n\n"); 584 } 585 586 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 587 { 588 va_list args; 589 char buf[100]; 590 591 va_start(args, fmt); 592 vsnprintf(buf, sizeof(buf), fmt, args); 593 va_end(args); 594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 595 } 596 597 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 598 { 599 unsigned int off; /* Offset of last byte */ 600 u8 *addr = page_address(page); 601 602 print_tracking(s, p); 603 604 print_page_info(page); 605 606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 607 p, p - addr, get_freepointer(s, p)); 608 609 if (p > addr + 16) 610 print_section("Bytes b4 ", p - 16, 16); 611 612 print_section("Object ", p, min_t(unsigned long, s->objsize, 613 PAGE_SIZE)); 614 if (s->flags & SLAB_RED_ZONE) 615 print_section("Redzone ", p + s->objsize, 616 s->inuse - s->objsize); 617 618 if (s->offset) 619 off = s->offset + sizeof(void *); 620 else 621 off = s->inuse; 622 623 if (s->flags & SLAB_STORE_USER) 624 off += 2 * sizeof(struct track); 625 626 if (off != s->size) 627 /* Beginning of the filler is the free pointer */ 628 print_section("Padding ", p + off, s->size - off); 629 630 dump_stack(); 631 } 632 633 static void object_err(struct kmem_cache *s, struct page *page, 634 u8 *object, char *reason) 635 { 636 slab_bug(s, "%s", reason); 637 print_trailer(s, page, object); 638 } 639 640 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 641 { 642 va_list args; 643 char buf[100]; 644 645 va_start(args, fmt); 646 vsnprintf(buf, sizeof(buf), fmt, args); 647 va_end(args); 648 slab_bug(s, "%s", buf); 649 print_page_info(page); 650 dump_stack(); 651 } 652 653 static void init_object(struct kmem_cache *s, void *object, u8 val) 654 { 655 u8 *p = object; 656 657 if (s->flags & __OBJECT_POISON) { 658 memset(p, POISON_FREE, s->objsize - 1); 659 p[s->objsize - 1] = POISON_END; 660 } 661 662 if (s->flags & SLAB_RED_ZONE) 663 memset(p + s->objsize, val, s->inuse - s->objsize); 664 } 665 666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 667 void *from, void *to) 668 { 669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 670 memset(from, data, to - from); 671 } 672 673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 674 u8 *object, char *what, 675 u8 *start, unsigned int value, unsigned int bytes) 676 { 677 u8 *fault; 678 u8 *end; 679 680 fault = memchr_inv(start, value, bytes); 681 if (!fault) 682 return 1; 683 684 end = start + bytes; 685 while (end > fault && end[-1] == value) 686 end--; 687 688 slab_bug(s, "%s overwritten", what); 689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 690 fault, end - 1, fault[0], value); 691 print_trailer(s, page, object); 692 693 restore_bytes(s, what, value, fault, end); 694 return 0; 695 } 696 697 /* 698 * Object layout: 699 * 700 * object address 701 * Bytes of the object to be managed. 702 * If the freepointer may overlay the object then the free 703 * pointer is the first word of the object. 704 * 705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 706 * 0xa5 (POISON_END) 707 * 708 * object + s->objsize 709 * Padding to reach word boundary. This is also used for Redzoning. 710 * Padding is extended by another word if Redzoning is enabled and 711 * objsize == inuse. 712 * 713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 714 * 0xcc (RED_ACTIVE) for objects in use. 715 * 716 * object + s->inuse 717 * Meta data starts here. 718 * 719 * A. Free pointer (if we cannot overwrite object on free) 720 * B. Tracking data for SLAB_STORE_USER 721 * C. Padding to reach required alignment boundary or at mininum 722 * one word if debugging is on to be able to detect writes 723 * before the word boundary. 724 * 725 * Padding is done using 0x5a (POISON_INUSE) 726 * 727 * object + s->size 728 * Nothing is used beyond s->size. 729 * 730 * If slabcaches are merged then the objsize and inuse boundaries are mostly 731 * ignored. And therefore no slab options that rely on these boundaries 732 * may be used with merged slabcaches. 733 */ 734 735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 736 { 737 unsigned long off = s->inuse; /* The end of info */ 738 739 if (s->offset) 740 /* Freepointer is placed after the object. */ 741 off += sizeof(void *); 742 743 if (s->flags & SLAB_STORE_USER) 744 /* We also have user information there */ 745 off += 2 * sizeof(struct track); 746 747 if (s->size == off) 748 return 1; 749 750 return check_bytes_and_report(s, page, p, "Object padding", 751 p + off, POISON_INUSE, s->size - off); 752 } 753 754 /* Check the pad bytes at the end of a slab page */ 755 static int slab_pad_check(struct kmem_cache *s, struct page *page) 756 { 757 u8 *start; 758 u8 *fault; 759 u8 *end; 760 int length; 761 int remainder; 762 763 if (!(s->flags & SLAB_POISON)) 764 return 1; 765 766 start = page_address(page); 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 768 end = start + length; 769 remainder = length % s->size; 770 if (!remainder) 771 return 1; 772 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 774 if (!fault) 775 return 1; 776 while (end > fault && end[-1] == POISON_INUSE) 777 end--; 778 779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 780 print_section("Padding ", end - remainder, remainder); 781 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 783 return 0; 784 } 785 786 static int check_object(struct kmem_cache *s, struct page *page, 787 void *object, u8 val) 788 { 789 u8 *p = object; 790 u8 *endobject = object + s->objsize; 791 792 if (s->flags & SLAB_RED_ZONE) { 793 if (!check_bytes_and_report(s, page, object, "Redzone", 794 endobject, val, s->inuse - s->objsize)) 795 return 0; 796 } else { 797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 798 check_bytes_and_report(s, page, p, "Alignment padding", 799 endobject, POISON_INUSE, s->inuse - s->objsize); 800 } 801 } 802 803 if (s->flags & SLAB_POISON) { 804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 805 (!check_bytes_and_report(s, page, p, "Poison", p, 806 POISON_FREE, s->objsize - 1) || 807 !check_bytes_and_report(s, page, p, "Poison", 808 p + s->objsize - 1, POISON_END, 1))) 809 return 0; 810 /* 811 * check_pad_bytes cleans up on its own. 812 */ 813 check_pad_bytes(s, page, p); 814 } 815 816 if (!s->offset && val == SLUB_RED_ACTIVE) 817 /* 818 * Object and freepointer overlap. Cannot check 819 * freepointer while object is allocated. 820 */ 821 return 1; 822 823 /* Check free pointer validity */ 824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 825 object_err(s, page, p, "Freepointer corrupt"); 826 /* 827 * No choice but to zap it and thus lose the remainder 828 * of the free objects in this slab. May cause 829 * another error because the object count is now wrong. 830 */ 831 set_freepointer(s, p, NULL); 832 return 0; 833 } 834 return 1; 835 } 836 837 static int check_slab(struct kmem_cache *s, struct page *page) 838 { 839 int maxobj; 840 841 VM_BUG_ON(!irqs_disabled()); 842 843 if (!PageSlab(page)) { 844 slab_err(s, page, "Not a valid slab page"); 845 return 0; 846 } 847 848 maxobj = order_objects(compound_order(page), s->size, s->reserved); 849 if (page->objects > maxobj) { 850 slab_err(s, page, "objects %u > max %u", 851 s->name, page->objects, maxobj); 852 return 0; 853 } 854 if (page->inuse > page->objects) { 855 slab_err(s, page, "inuse %u > max %u", 856 s->name, page->inuse, page->objects); 857 return 0; 858 } 859 /* Slab_pad_check fixes things up after itself */ 860 slab_pad_check(s, page); 861 return 1; 862 } 863 864 /* 865 * Determine if a certain object on a page is on the freelist. Must hold the 866 * slab lock to guarantee that the chains are in a consistent state. 867 */ 868 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 869 { 870 int nr = 0; 871 void *fp; 872 void *object = NULL; 873 unsigned long max_objects; 874 875 fp = page->freelist; 876 while (fp && nr <= page->objects) { 877 if (fp == search) 878 return 1; 879 if (!check_valid_pointer(s, page, fp)) { 880 if (object) { 881 object_err(s, page, object, 882 "Freechain corrupt"); 883 set_freepointer(s, object, NULL); 884 break; 885 } else { 886 slab_err(s, page, "Freepointer corrupt"); 887 page->freelist = NULL; 888 page->inuse = page->objects; 889 slab_fix(s, "Freelist cleared"); 890 return 0; 891 } 892 break; 893 } 894 object = fp; 895 fp = get_freepointer(s, object); 896 nr++; 897 } 898 899 max_objects = order_objects(compound_order(page), s->size, s->reserved); 900 if (max_objects > MAX_OBJS_PER_PAGE) 901 max_objects = MAX_OBJS_PER_PAGE; 902 903 if (page->objects != max_objects) { 904 slab_err(s, page, "Wrong number of objects. Found %d but " 905 "should be %d", page->objects, max_objects); 906 page->objects = max_objects; 907 slab_fix(s, "Number of objects adjusted."); 908 } 909 if (page->inuse != page->objects - nr) { 910 slab_err(s, page, "Wrong object count. Counter is %d but " 911 "counted were %d", page->inuse, page->objects - nr); 912 page->inuse = page->objects - nr; 913 slab_fix(s, "Object count adjusted."); 914 } 915 return search == NULL; 916 } 917 918 static void trace(struct kmem_cache *s, struct page *page, void *object, 919 int alloc) 920 { 921 if (s->flags & SLAB_TRACE) { 922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 923 s->name, 924 alloc ? "alloc" : "free", 925 object, page->inuse, 926 page->freelist); 927 928 if (!alloc) 929 print_section("Object ", (void *)object, s->objsize); 930 931 dump_stack(); 932 } 933 } 934 935 /* 936 * Hooks for other subsystems that check memory allocations. In a typical 937 * production configuration these hooks all should produce no code at all. 938 */ 939 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 940 { 941 flags &= gfp_allowed_mask; 942 lockdep_trace_alloc(flags); 943 might_sleep_if(flags & __GFP_WAIT); 944 945 return should_failslab(s->objsize, flags, s->flags); 946 } 947 948 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) 949 { 950 flags &= gfp_allowed_mask; 951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags); 953 } 954 955 static inline void slab_free_hook(struct kmem_cache *s, void *x) 956 { 957 kmemleak_free_recursive(x, s->flags); 958 959 /* 960 * Trouble is that we may no longer disable interupts in the fast path 961 * So in order to make the debug calls that expect irqs to be 962 * disabled we need to disable interrupts temporarily. 963 */ 964 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 965 { 966 unsigned long flags; 967 968 local_irq_save(flags); 969 kmemcheck_slab_free(s, x, s->objsize); 970 debug_check_no_locks_freed(x, s->objsize); 971 local_irq_restore(flags); 972 } 973 #endif 974 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 975 debug_check_no_obj_freed(x, s->objsize); 976 } 977 978 /* 979 * Tracking of fully allocated slabs for debugging purposes. 980 * 981 * list_lock must be held. 982 */ 983 static void add_full(struct kmem_cache *s, 984 struct kmem_cache_node *n, struct page *page) 985 { 986 if (!(s->flags & SLAB_STORE_USER)) 987 return; 988 989 list_add(&page->lru, &n->full); 990 } 991 992 /* 993 * list_lock must be held. 994 */ 995 static void remove_full(struct kmem_cache *s, struct page *page) 996 { 997 if (!(s->flags & SLAB_STORE_USER)) 998 return; 999 1000 list_del(&page->lru); 1001 } 1002 1003 /* Tracking of the number of slabs for debugging purposes */ 1004 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1005 { 1006 struct kmem_cache_node *n = get_node(s, node); 1007 1008 return atomic_long_read(&n->nr_slabs); 1009 } 1010 1011 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1012 { 1013 return atomic_long_read(&n->nr_slabs); 1014 } 1015 1016 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1017 { 1018 struct kmem_cache_node *n = get_node(s, node); 1019 1020 /* 1021 * May be called early in order to allocate a slab for the 1022 * kmem_cache_node structure. Solve the chicken-egg 1023 * dilemma by deferring the increment of the count during 1024 * bootstrap (see early_kmem_cache_node_alloc). 1025 */ 1026 if (n) { 1027 atomic_long_inc(&n->nr_slabs); 1028 atomic_long_add(objects, &n->total_objects); 1029 } 1030 } 1031 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1032 { 1033 struct kmem_cache_node *n = get_node(s, node); 1034 1035 atomic_long_dec(&n->nr_slabs); 1036 atomic_long_sub(objects, &n->total_objects); 1037 } 1038 1039 /* Object debug checks for alloc/free paths */ 1040 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1041 void *object) 1042 { 1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1044 return; 1045 1046 init_object(s, object, SLUB_RED_INACTIVE); 1047 init_tracking(s, object); 1048 } 1049 1050 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, 1051 void *object, unsigned long addr) 1052 { 1053 if (!check_slab(s, page)) 1054 goto bad; 1055 1056 if (!check_valid_pointer(s, page, object)) { 1057 object_err(s, page, object, "Freelist Pointer check fails"); 1058 goto bad; 1059 } 1060 1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1062 goto bad; 1063 1064 /* Success perform special debug activities for allocs */ 1065 if (s->flags & SLAB_STORE_USER) 1066 set_track(s, object, TRACK_ALLOC, addr); 1067 trace(s, page, object, 1); 1068 init_object(s, object, SLUB_RED_ACTIVE); 1069 return 1; 1070 1071 bad: 1072 if (PageSlab(page)) { 1073 /* 1074 * If this is a slab page then lets do the best we can 1075 * to avoid issues in the future. Marking all objects 1076 * as used avoids touching the remaining objects. 1077 */ 1078 slab_fix(s, "Marking all objects used"); 1079 page->inuse = page->objects; 1080 page->freelist = NULL; 1081 } 1082 return 0; 1083 } 1084 1085 static noinline int free_debug_processing(struct kmem_cache *s, 1086 struct page *page, void *object, unsigned long addr) 1087 { 1088 unsigned long flags; 1089 int rc = 0; 1090 1091 local_irq_save(flags); 1092 slab_lock(page); 1093 1094 if (!check_slab(s, page)) 1095 goto fail; 1096 1097 if (!check_valid_pointer(s, page, object)) { 1098 slab_err(s, page, "Invalid object pointer 0x%p", object); 1099 goto fail; 1100 } 1101 1102 if (on_freelist(s, page, object)) { 1103 object_err(s, page, object, "Object already free"); 1104 goto fail; 1105 } 1106 1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1108 goto out; 1109 1110 if (unlikely(s != page->slab)) { 1111 if (!PageSlab(page)) { 1112 slab_err(s, page, "Attempt to free object(0x%p) " 1113 "outside of slab", object); 1114 } else if (!page->slab) { 1115 printk(KERN_ERR 1116 "SLUB <none>: no slab for object 0x%p.\n", 1117 object); 1118 dump_stack(); 1119 } else 1120 object_err(s, page, object, 1121 "page slab pointer corrupt."); 1122 goto fail; 1123 } 1124 1125 if (s->flags & SLAB_STORE_USER) 1126 set_track(s, object, TRACK_FREE, addr); 1127 trace(s, page, object, 0); 1128 init_object(s, object, SLUB_RED_INACTIVE); 1129 rc = 1; 1130 out: 1131 slab_unlock(page); 1132 local_irq_restore(flags); 1133 return rc; 1134 1135 fail: 1136 slab_fix(s, "Object at 0x%p not freed", object); 1137 goto out; 1138 } 1139 1140 static int __init setup_slub_debug(char *str) 1141 { 1142 slub_debug = DEBUG_DEFAULT_FLAGS; 1143 if (*str++ != '=' || !*str) 1144 /* 1145 * No options specified. Switch on full debugging. 1146 */ 1147 goto out; 1148 1149 if (*str == ',') 1150 /* 1151 * No options but restriction on slabs. This means full 1152 * debugging for slabs matching a pattern. 1153 */ 1154 goto check_slabs; 1155 1156 if (tolower(*str) == 'o') { 1157 /* 1158 * Avoid enabling debugging on caches if its minimum order 1159 * would increase as a result. 1160 */ 1161 disable_higher_order_debug = 1; 1162 goto out; 1163 } 1164 1165 slub_debug = 0; 1166 if (*str == '-') 1167 /* 1168 * Switch off all debugging measures. 1169 */ 1170 goto out; 1171 1172 /* 1173 * Determine which debug features should be switched on 1174 */ 1175 for (; *str && *str != ','; str++) { 1176 switch (tolower(*str)) { 1177 case 'f': 1178 slub_debug |= SLAB_DEBUG_FREE; 1179 break; 1180 case 'z': 1181 slub_debug |= SLAB_RED_ZONE; 1182 break; 1183 case 'p': 1184 slub_debug |= SLAB_POISON; 1185 break; 1186 case 'u': 1187 slub_debug |= SLAB_STORE_USER; 1188 break; 1189 case 't': 1190 slub_debug |= SLAB_TRACE; 1191 break; 1192 case 'a': 1193 slub_debug |= SLAB_FAILSLAB; 1194 break; 1195 default: 1196 printk(KERN_ERR "slub_debug option '%c' " 1197 "unknown. skipped\n", *str); 1198 } 1199 } 1200 1201 check_slabs: 1202 if (*str == ',') 1203 slub_debug_slabs = str + 1; 1204 out: 1205 return 1; 1206 } 1207 1208 __setup("slub_debug", setup_slub_debug); 1209 1210 static unsigned long kmem_cache_flags(unsigned long objsize, 1211 unsigned long flags, const char *name, 1212 void (*ctor)(void *)) 1213 { 1214 /* 1215 * Enable debugging if selected on the kernel commandline. 1216 */ 1217 if (slub_debug && (!slub_debug_slabs || 1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1219 flags |= slub_debug; 1220 1221 return flags; 1222 } 1223 #else 1224 static inline void setup_object_debug(struct kmem_cache *s, 1225 struct page *page, void *object) {} 1226 1227 static inline int alloc_debug_processing(struct kmem_cache *s, 1228 struct page *page, void *object, unsigned long addr) { return 0; } 1229 1230 static inline int free_debug_processing(struct kmem_cache *s, 1231 struct page *page, void *object, unsigned long addr) { return 0; } 1232 1233 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1234 { return 1; } 1235 static inline int check_object(struct kmem_cache *s, struct page *page, 1236 void *object, u8 val) { return 1; } 1237 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1238 struct page *page) {} 1239 static inline void remove_full(struct kmem_cache *s, struct page *page) {} 1240 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1241 unsigned long flags, const char *name, 1242 void (*ctor)(void *)) 1243 { 1244 return flags; 1245 } 1246 #define slub_debug 0 1247 1248 #define disable_higher_order_debug 0 1249 1250 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1251 { return 0; } 1252 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1253 { return 0; } 1254 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1255 int objects) {} 1256 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1257 int objects) {} 1258 1259 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1260 { return 0; } 1261 1262 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1263 void *object) {} 1264 1265 static inline void slab_free_hook(struct kmem_cache *s, void *x) {} 1266 1267 #endif /* CONFIG_SLUB_DEBUG */ 1268 1269 /* 1270 * Slab allocation and freeing 1271 */ 1272 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1273 struct kmem_cache_order_objects oo) 1274 { 1275 int order = oo_order(oo); 1276 1277 flags |= __GFP_NOTRACK; 1278 1279 if (node == NUMA_NO_NODE) 1280 return alloc_pages(flags, order); 1281 else 1282 return alloc_pages_exact_node(node, flags, order); 1283 } 1284 1285 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1286 { 1287 struct page *page; 1288 struct kmem_cache_order_objects oo = s->oo; 1289 gfp_t alloc_gfp; 1290 1291 flags &= gfp_allowed_mask; 1292 1293 if (flags & __GFP_WAIT) 1294 local_irq_enable(); 1295 1296 flags |= s->allocflags; 1297 1298 /* 1299 * Let the initial higher-order allocation fail under memory pressure 1300 * so we fall-back to the minimum order allocation. 1301 */ 1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1303 1304 page = alloc_slab_page(alloc_gfp, node, oo); 1305 if (unlikely(!page)) { 1306 oo = s->min; 1307 /* 1308 * Allocation may have failed due to fragmentation. 1309 * Try a lower order alloc if possible 1310 */ 1311 page = alloc_slab_page(flags, node, oo); 1312 1313 if (page) 1314 stat(s, ORDER_FALLBACK); 1315 } 1316 1317 if (flags & __GFP_WAIT) 1318 local_irq_disable(); 1319 1320 if (!page) 1321 return NULL; 1322 1323 if (kmemcheck_enabled 1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1325 int pages = 1 << oo_order(oo); 1326 1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1328 1329 /* 1330 * Objects from caches that have a constructor don't get 1331 * cleared when they're allocated, so we need to do it here. 1332 */ 1333 if (s->ctor) 1334 kmemcheck_mark_uninitialized_pages(page, pages); 1335 else 1336 kmemcheck_mark_unallocated_pages(page, pages); 1337 } 1338 1339 page->objects = oo_objects(oo); 1340 mod_zone_page_state(page_zone(page), 1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1343 1 << oo_order(oo)); 1344 1345 return page; 1346 } 1347 1348 static void setup_object(struct kmem_cache *s, struct page *page, 1349 void *object) 1350 { 1351 setup_object_debug(s, page, object); 1352 if (unlikely(s->ctor)) 1353 s->ctor(object); 1354 } 1355 1356 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1357 { 1358 struct page *page; 1359 void *start; 1360 void *last; 1361 void *p; 1362 1363 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1364 1365 page = allocate_slab(s, 1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1367 if (!page) 1368 goto out; 1369 1370 inc_slabs_node(s, page_to_nid(page), page->objects); 1371 page->slab = s; 1372 __SetPageSlab(page); 1373 1374 start = page_address(page); 1375 1376 if (unlikely(s->flags & SLAB_POISON)) 1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1378 1379 last = start; 1380 for_each_object(p, s, start, page->objects) { 1381 setup_object(s, page, last); 1382 set_freepointer(s, last, p); 1383 last = p; 1384 } 1385 setup_object(s, page, last); 1386 set_freepointer(s, last, NULL); 1387 1388 page->freelist = start; 1389 page->inuse = page->objects; 1390 page->frozen = 1; 1391 out: 1392 return page; 1393 } 1394 1395 static void __free_slab(struct kmem_cache *s, struct page *page) 1396 { 1397 int order = compound_order(page); 1398 int pages = 1 << order; 1399 1400 if (kmem_cache_debug(s)) { 1401 void *p; 1402 1403 slab_pad_check(s, page); 1404 for_each_object(p, s, page_address(page), 1405 page->objects) 1406 check_object(s, page, p, SLUB_RED_INACTIVE); 1407 } 1408 1409 kmemcheck_free_shadow(page, compound_order(page)); 1410 1411 mod_zone_page_state(page_zone(page), 1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1414 -pages); 1415 1416 __ClearPageSlab(page); 1417 reset_page_mapcount(page); 1418 if (current->reclaim_state) 1419 current->reclaim_state->reclaimed_slab += pages; 1420 __free_pages(page, order); 1421 } 1422 1423 #define need_reserve_slab_rcu \ 1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1425 1426 static void rcu_free_slab(struct rcu_head *h) 1427 { 1428 struct page *page; 1429 1430 if (need_reserve_slab_rcu) 1431 page = virt_to_head_page(h); 1432 else 1433 page = container_of((struct list_head *)h, struct page, lru); 1434 1435 __free_slab(page->slab, page); 1436 } 1437 1438 static void free_slab(struct kmem_cache *s, struct page *page) 1439 { 1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1441 struct rcu_head *head; 1442 1443 if (need_reserve_slab_rcu) { 1444 int order = compound_order(page); 1445 int offset = (PAGE_SIZE << order) - s->reserved; 1446 1447 VM_BUG_ON(s->reserved != sizeof(*head)); 1448 head = page_address(page) + offset; 1449 } else { 1450 /* 1451 * RCU free overloads the RCU head over the LRU 1452 */ 1453 head = (void *)&page->lru; 1454 } 1455 1456 call_rcu(head, rcu_free_slab); 1457 } else 1458 __free_slab(s, page); 1459 } 1460 1461 static void discard_slab(struct kmem_cache *s, struct page *page) 1462 { 1463 dec_slabs_node(s, page_to_nid(page), page->objects); 1464 free_slab(s, page); 1465 } 1466 1467 /* 1468 * Management of partially allocated slabs. 1469 * 1470 * list_lock must be held. 1471 */ 1472 static inline void add_partial(struct kmem_cache_node *n, 1473 struct page *page, int tail) 1474 { 1475 n->nr_partial++; 1476 if (tail == DEACTIVATE_TO_TAIL) 1477 list_add_tail(&page->lru, &n->partial); 1478 else 1479 list_add(&page->lru, &n->partial); 1480 } 1481 1482 /* 1483 * list_lock must be held. 1484 */ 1485 static inline void remove_partial(struct kmem_cache_node *n, 1486 struct page *page) 1487 { 1488 list_del(&page->lru); 1489 n->nr_partial--; 1490 } 1491 1492 /* 1493 * Lock slab, remove from the partial list and put the object into the 1494 * per cpu freelist. 1495 * 1496 * Returns a list of objects or NULL if it fails. 1497 * 1498 * Must hold list_lock. 1499 */ 1500 static inline void *acquire_slab(struct kmem_cache *s, 1501 struct kmem_cache_node *n, struct page *page, 1502 int mode) 1503 { 1504 void *freelist; 1505 unsigned long counters; 1506 struct page new; 1507 1508 /* 1509 * Zap the freelist and set the frozen bit. 1510 * The old freelist is the list of objects for the 1511 * per cpu allocation list. 1512 */ 1513 do { 1514 freelist = page->freelist; 1515 counters = page->counters; 1516 new.counters = counters; 1517 if (mode) { 1518 new.inuse = page->objects; 1519 new.freelist = NULL; 1520 } else { 1521 new.freelist = freelist; 1522 } 1523 1524 VM_BUG_ON(new.frozen); 1525 new.frozen = 1; 1526 1527 } while (!__cmpxchg_double_slab(s, page, 1528 freelist, counters, 1529 new.freelist, new.counters, 1530 "lock and freeze")); 1531 1532 remove_partial(n, page); 1533 return freelist; 1534 } 1535 1536 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1537 1538 /* 1539 * Try to allocate a partial slab from a specific node. 1540 */ 1541 static void *get_partial_node(struct kmem_cache *s, 1542 struct kmem_cache_node *n, struct kmem_cache_cpu *c) 1543 { 1544 struct page *page, *page2; 1545 void *object = NULL; 1546 1547 /* 1548 * Racy check. If we mistakenly see no partial slabs then we 1549 * just allocate an empty slab. If we mistakenly try to get a 1550 * partial slab and there is none available then get_partials() 1551 * will return NULL. 1552 */ 1553 if (!n || !n->nr_partial) 1554 return NULL; 1555 1556 spin_lock(&n->list_lock); 1557 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1558 void *t = acquire_slab(s, n, page, object == NULL); 1559 int available; 1560 1561 if (!t) 1562 break; 1563 1564 if (!object) { 1565 c->page = page; 1566 c->node = page_to_nid(page); 1567 stat(s, ALLOC_FROM_PARTIAL); 1568 object = t; 1569 available = page->objects - page->inuse; 1570 } else { 1571 available = put_cpu_partial(s, page, 0); 1572 stat(s, CPU_PARTIAL_NODE); 1573 } 1574 if (kmem_cache_debug(s) || available > s->cpu_partial / 2) 1575 break; 1576 1577 } 1578 spin_unlock(&n->list_lock); 1579 return object; 1580 } 1581 1582 /* 1583 * Get a page from somewhere. Search in increasing NUMA distances. 1584 */ 1585 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1586 struct kmem_cache_cpu *c) 1587 { 1588 #ifdef CONFIG_NUMA 1589 struct zonelist *zonelist; 1590 struct zoneref *z; 1591 struct zone *zone; 1592 enum zone_type high_zoneidx = gfp_zone(flags); 1593 void *object; 1594 unsigned int cpuset_mems_cookie; 1595 1596 /* 1597 * The defrag ratio allows a configuration of the tradeoffs between 1598 * inter node defragmentation and node local allocations. A lower 1599 * defrag_ratio increases the tendency to do local allocations 1600 * instead of attempting to obtain partial slabs from other nodes. 1601 * 1602 * If the defrag_ratio is set to 0 then kmalloc() always 1603 * returns node local objects. If the ratio is higher then kmalloc() 1604 * may return off node objects because partial slabs are obtained 1605 * from other nodes and filled up. 1606 * 1607 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1608 * defrag_ratio = 1000) then every (well almost) allocation will 1609 * first attempt to defrag slab caches on other nodes. This means 1610 * scanning over all nodes to look for partial slabs which may be 1611 * expensive if we do it every time we are trying to find a slab 1612 * with available objects. 1613 */ 1614 if (!s->remote_node_defrag_ratio || 1615 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1616 return NULL; 1617 1618 do { 1619 cpuset_mems_cookie = get_mems_allowed(); 1620 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1621 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1622 struct kmem_cache_node *n; 1623 1624 n = get_node(s, zone_to_nid(zone)); 1625 1626 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1627 n->nr_partial > s->min_partial) { 1628 object = get_partial_node(s, n, c); 1629 if (object) { 1630 /* 1631 * Return the object even if 1632 * put_mems_allowed indicated that 1633 * the cpuset mems_allowed was 1634 * updated in parallel. It's a 1635 * harmless race between the alloc 1636 * and the cpuset update. 1637 */ 1638 put_mems_allowed(cpuset_mems_cookie); 1639 return object; 1640 } 1641 } 1642 } 1643 } while (!put_mems_allowed(cpuset_mems_cookie)); 1644 #endif 1645 return NULL; 1646 } 1647 1648 /* 1649 * Get a partial page, lock it and return it. 1650 */ 1651 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1652 struct kmem_cache_cpu *c) 1653 { 1654 void *object; 1655 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1656 1657 object = get_partial_node(s, get_node(s, searchnode), c); 1658 if (object || node != NUMA_NO_NODE) 1659 return object; 1660 1661 return get_any_partial(s, flags, c); 1662 } 1663 1664 #ifdef CONFIG_PREEMPT 1665 /* 1666 * Calculate the next globally unique transaction for disambiguiation 1667 * during cmpxchg. The transactions start with the cpu number and are then 1668 * incremented by CONFIG_NR_CPUS. 1669 */ 1670 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1671 #else 1672 /* 1673 * No preemption supported therefore also no need to check for 1674 * different cpus. 1675 */ 1676 #define TID_STEP 1 1677 #endif 1678 1679 static inline unsigned long next_tid(unsigned long tid) 1680 { 1681 return tid + TID_STEP; 1682 } 1683 1684 static inline unsigned int tid_to_cpu(unsigned long tid) 1685 { 1686 return tid % TID_STEP; 1687 } 1688 1689 static inline unsigned long tid_to_event(unsigned long tid) 1690 { 1691 return tid / TID_STEP; 1692 } 1693 1694 static inline unsigned int init_tid(int cpu) 1695 { 1696 return cpu; 1697 } 1698 1699 static inline void note_cmpxchg_failure(const char *n, 1700 const struct kmem_cache *s, unsigned long tid) 1701 { 1702 #ifdef SLUB_DEBUG_CMPXCHG 1703 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1704 1705 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1706 1707 #ifdef CONFIG_PREEMPT 1708 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1709 printk("due to cpu change %d -> %d\n", 1710 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1711 else 1712 #endif 1713 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1714 printk("due to cpu running other code. Event %ld->%ld\n", 1715 tid_to_event(tid), tid_to_event(actual_tid)); 1716 else 1717 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1718 actual_tid, tid, next_tid(tid)); 1719 #endif 1720 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1721 } 1722 1723 void init_kmem_cache_cpus(struct kmem_cache *s) 1724 { 1725 int cpu; 1726 1727 for_each_possible_cpu(cpu) 1728 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1729 } 1730 1731 /* 1732 * Remove the cpu slab 1733 */ 1734 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1735 { 1736 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1737 struct page *page = c->page; 1738 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1739 int lock = 0; 1740 enum slab_modes l = M_NONE, m = M_NONE; 1741 void *freelist; 1742 void *nextfree; 1743 int tail = DEACTIVATE_TO_HEAD; 1744 struct page new; 1745 struct page old; 1746 1747 if (page->freelist) { 1748 stat(s, DEACTIVATE_REMOTE_FREES); 1749 tail = DEACTIVATE_TO_TAIL; 1750 } 1751 1752 c->tid = next_tid(c->tid); 1753 c->page = NULL; 1754 freelist = c->freelist; 1755 c->freelist = NULL; 1756 1757 /* 1758 * Stage one: Free all available per cpu objects back 1759 * to the page freelist while it is still frozen. Leave the 1760 * last one. 1761 * 1762 * There is no need to take the list->lock because the page 1763 * is still frozen. 1764 */ 1765 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1766 void *prior; 1767 unsigned long counters; 1768 1769 do { 1770 prior = page->freelist; 1771 counters = page->counters; 1772 set_freepointer(s, freelist, prior); 1773 new.counters = counters; 1774 new.inuse--; 1775 VM_BUG_ON(!new.frozen); 1776 1777 } while (!__cmpxchg_double_slab(s, page, 1778 prior, counters, 1779 freelist, new.counters, 1780 "drain percpu freelist")); 1781 1782 freelist = nextfree; 1783 } 1784 1785 /* 1786 * Stage two: Ensure that the page is unfrozen while the 1787 * list presence reflects the actual number of objects 1788 * during unfreeze. 1789 * 1790 * We setup the list membership and then perform a cmpxchg 1791 * with the count. If there is a mismatch then the page 1792 * is not unfrozen but the page is on the wrong list. 1793 * 1794 * Then we restart the process which may have to remove 1795 * the page from the list that we just put it on again 1796 * because the number of objects in the slab may have 1797 * changed. 1798 */ 1799 redo: 1800 1801 old.freelist = page->freelist; 1802 old.counters = page->counters; 1803 VM_BUG_ON(!old.frozen); 1804 1805 /* Determine target state of the slab */ 1806 new.counters = old.counters; 1807 if (freelist) { 1808 new.inuse--; 1809 set_freepointer(s, freelist, old.freelist); 1810 new.freelist = freelist; 1811 } else 1812 new.freelist = old.freelist; 1813 1814 new.frozen = 0; 1815 1816 if (!new.inuse && n->nr_partial > s->min_partial) 1817 m = M_FREE; 1818 else if (new.freelist) { 1819 m = M_PARTIAL; 1820 if (!lock) { 1821 lock = 1; 1822 /* 1823 * Taking the spinlock removes the possiblity 1824 * that acquire_slab() will see a slab page that 1825 * is frozen 1826 */ 1827 spin_lock(&n->list_lock); 1828 } 1829 } else { 1830 m = M_FULL; 1831 if (kmem_cache_debug(s) && !lock) { 1832 lock = 1; 1833 /* 1834 * This also ensures that the scanning of full 1835 * slabs from diagnostic functions will not see 1836 * any frozen slabs. 1837 */ 1838 spin_lock(&n->list_lock); 1839 } 1840 } 1841 1842 if (l != m) { 1843 1844 if (l == M_PARTIAL) 1845 1846 remove_partial(n, page); 1847 1848 else if (l == M_FULL) 1849 1850 remove_full(s, page); 1851 1852 if (m == M_PARTIAL) { 1853 1854 add_partial(n, page, tail); 1855 stat(s, tail); 1856 1857 } else if (m == M_FULL) { 1858 1859 stat(s, DEACTIVATE_FULL); 1860 add_full(s, n, page); 1861 1862 } 1863 } 1864 1865 l = m; 1866 if (!__cmpxchg_double_slab(s, page, 1867 old.freelist, old.counters, 1868 new.freelist, new.counters, 1869 "unfreezing slab")) 1870 goto redo; 1871 1872 if (lock) 1873 spin_unlock(&n->list_lock); 1874 1875 if (m == M_FREE) { 1876 stat(s, DEACTIVATE_EMPTY); 1877 discard_slab(s, page); 1878 stat(s, FREE_SLAB); 1879 } 1880 } 1881 1882 /* Unfreeze all the cpu partial slabs */ 1883 static void unfreeze_partials(struct kmem_cache *s) 1884 { 1885 struct kmem_cache_node *n = NULL; 1886 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); 1887 struct page *page, *discard_page = NULL; 1888 1889 while ((page = c->partial)) { 1890 enum slab_modes { M_PARTIAL, M_FREE }; 1891 enum slab_modes l, m; 1892 struct page new; 1893 struct page old; 1894 1895 c->partial = page->next; 1896 l = M_FREE; 1897 1898 do { 1899 1900 old.freelist = page->freelist; 1901 old.counters = page->counters; 1902 VM_BUG_ON(!old.frozen); 1903 1904 new.counters = old.counters; 1905 new.freelist = old.freelist; 1906 1907 new.frozen = 0; 1908 1909 if (!new.inuse && (!n || n->nr_partial > s->min_partial)) 1910 m = M_FREE; 1911 else { 1912 struct kmem_cache_node *n2 = get_node(s, 1913 page_to_nid(page)); 1914 1915 m = M_PARTIAL; 1916 if (n != n2) { 1917 if (n) 1918 spin_unlock(&n->list_lock); 1919 1920 n = n2; 1921 spin_lock(&n->list_lock); 1922 } 1923 } 1924 1925 if (l != m) { 1926 if (l == M_PARTIAL) { 1927 remove_partial(n, page); 1928 stat(s, FREE_REMOVE_PARTIAL); 1929 } else { 1930 add_partial(n, page, 1931 DEACTIVATE_TO_TAIL); 1932 stat(s, FREE_ADD_PARTIAL); 1933 } 1934 1935 l = m; 1936 } 1937 1938 } while (!cmpxchg_double_slab(s, page, 1939 old.freelist, old.counters, 1940 new.freelist, new.counters, 1941 "unfreezing slab")); 1942 1943 if (m == M_FREE) { 1944 page->next = discard_page; 1945 discard_page = page; 1946 } 1947 } 1948 1949 if (n) 1950 spin_unlock(&n->list_lock); 1951 1952 while (discard_page) { 1953 page = discard_page; 1954 discard_page = discard_page->next; 1955 1956 stat(s, DEACTIVATE_EMPTY); 1957 discard_slab(s, page); 1958 stat(s, FREE_SLAB); 1959 } 1960 } 1961 1962 /* 1963 * Put a page that was just frozen (in __slab_free) into a partial page 1964 * slot if available. This is done without interrupts disabled and without 1965 * preemption disabled. The cmpxchg is racy and may put the partial page 1966 * onto a random cpus partial slot. 1967 * 1968 * If we did not find a slot then simply move all the partials to the 1969 * per node partial list. 1970 */ 1971 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 1972 { 1973 struct page *oldpage; 1974 int pages; 1975 int pobjects; 1976 1977 do { 1978 pages = 0; 1979 pobjects = 0; 1980 oldpage = this_cpu_read(s->cpu_slab->partial); 1981 1982 if (oldpage) { 1983 pobjects = oldpage->pobjects; 1984 pages = oldpage->pages; 1985 if (drain && pobjects > s->cpu_partial) { 1986 unsigned long flags; 1987 /* 1988 * partial array is full. Move the existing 1989 * set to the per node partial list. 1990 */ 1991 local_irq_save(flags); 1992 unfreeze_partials(s); 1993 local_irq_restore(flags); 1994 pobjects = 0; 1995 pages = 0; 1996 stat(s, CPU_PARTIAL_DRAIN); 1997 } 1998 } 1999 2000 pages++; 2001 pobjects += page->objects - page->inuse; 2002 2003 page->pages = pages; 2004 page->pobjects = pobjects; 2005 page->next = oldpage; 2006 2007 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); 2008 return pobjects; 2009 } 2010 2011 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2012 { 2013 stat(s, CPUSLAB_FLUSH); 2014 deactivate_slab(s, c); 2015 } 2016 2017 /* 2018 * Flush cpu slab. 2019 * 2020 * Called from IPI handler with interrupts disabled. 2021 */ 2022 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2023 { 2024 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2025 2026 if (likely(c)) { 2027 if (c->page) 2028 flush_slab(s, c); 2029 2030 unfreeze_partials(s); 2031 } 2032 } 2033 2034 static void flush_cpu_slab(void *d) 2035 { 2036 struct kmem_cache *s = d; 2037 2038 __flush_cpu_slab(s, smp_processor_id()); 2039 } 2040 2041 static bool has_cpu_slab(int cpu, void *info) 2042 { 2043 struct kmem_cache *s = info; 2044 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2045 2046 return c->page || c->partial; 2047 } 2048 2049 static void flush_all(struct kmem_cache *s) 2050 { 2051 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2052 } 2053 2054 /* 2055 * Check if the objects in a per cpu structure fit numa 2056 * locality expectations. 2057 */ 2058 static inline int node_match(struct kmem_cache_cpu *c, int node) 2059 { 2060 #ifdef CONFIG_NUMA 2061 if (node != NUMA_NO_NODE && c->node != node) 2062 return 0; 2063 #endif 2064 return 1; 2065 } 2066 2067 static int count_free(struct page *page) 2068 { 2069 return page->objects - page->inuse; 2070 } 2071 2072 static unsigned long count_partial(struct kmem_cache_node *n, 2073 int (*get_count)(struct page *)) 2074 { 2075 unsigned long flags; 2076 unsigned long x = 0; 2077 struct page *page; 2078 2079 spin_lock_irqsave(&n->list_lock, flags); 2080 list_for_each_entry(page, &n->partial, lru) 2081 x += get_count(page); 2082 spin_unlock_irqrestore(&n->list_lock, flags); 2083 return x; 2084 } 2085 2086 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2087 { 2088 #ifdef CONFIG_SLUB_DEBUG 2089 return atomic_long_read(&n->total_objects); 2090 #else 2091 return 0; 2092 #endif 2093 } 2094 2095 static noinline void 2096 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2097 { 2098 int node; 2099 2100 printk(KERN_WARNING 2101 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2102 nid, gfpflags); 2103 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2104 "default order: %d, min order: %d\n", s->name, s->objsize, 2105 s->size, oo_order(s->oo), oo_order(s->min)); 2106 2107 if (oo_order(s->min) > get_order(s->objsize)) 2108 printk(KERN_WARNING " %s debugging increased min order, use " 2109 "slub_debug=O to disable.\n", s->name); 2110 2111 for_each_online_node(node) { 2112 struct kmem_cache_node *n = get_node(s, node); 2113 unsigned long nr_slabs; 2114 unsigned long nr_objs; 2115 unsigned long nr_free; 2116 2117 if (!n) 2118 continue; 2119 2120 nr_free = count_partial(n, count_free); 2121 nr_slabs = node_nr_slabs(n); 2122 nr_objs = node_nr_objs(n); 2123 2124 printk(KERN_WARNING 2125 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2126 node, nr_slabs, nr_objs, nr_free); 2127 } 2128 } 2129 2130 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2131 int node, struct kmem_cache_cpu **pc) 2132 { 2133 void *object; 2134 struct kmem_cache_cpu *c; 2135 struct page *page = new_slab(s, flags, node); 2136 2137 if (page) { 2138 c = __this_cpu_ptr(s->cpu_slab); 2139 if (c->page) 2140 flush_slab(s, c); 2141 2142 /* 2143 * No other reference to the page yet so we can 2144 * muck around with it freely without cmpxchg 2145 */ 2146 object = page->freelist; 2147 page->freelist = NULL; 2148 2149 stat(s, ALLOC_SLAB); 2150 c->node = page_to_nid(page); 2151 c->page = page; 2152 *pc = c; 2153 } else 2154 object = NULL; 2155 2156 return object; 2157 } 2158 2159 /* 2160 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist 2161 * or deactivate the page. 2162 * 2163 * The page is still frozen if the return value is not NULL. 2164 * 2165 * If this function returns NULL then the page has been unfrozen. 2166 */ 2167 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2168 { 2169 struct page new; 2170 unsigned long counters; 2171 void *freelist; 2172 2173 do { 2174 freelist = page->freelist; 2175 counters = page->counters; 2176 new.counters = counters; 2177 VM_BUG_ON(!new.frozen); 2178 2179 new.inuse = page->objects; 2180 new.frozen = freelist != NULL; 2181 2182 } while (!cmpxchg_double_slab(s, page, 2183 freelist, counters, 2184 NULL, new.counters, 2185 "get_freelist")); 2186 2187 return freelist; 2188 } 2189 2190 /* 2191 * Slow path. The lockless freelist is empty or we need to perform 2192 * debugging duties. 2193 * 2194 * Processing is still very fast if new objects have been freed to the 2195 * regular freelist. In that case we simply take over the regular freelist 2196 * as the lockless freelist and zap the regular freelist. 2197 * 2198 * If that is not working then we fall back to the partial lists. We take the 2199 * first element of the freelist as the object to allocate now and move the 2200 * rest of the freelist to the lockless freelist. 2201 * 2202 * And if we were unable to get a new slab from the partial slab lists then 2203 * we need to allocate a new slab. This is the slowest path since it involves 2204 * a call to the page allocator and the setup of a new slab. 2205 */ 2206 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2207 unsigned long addr, struct kmem_cache_cpu *c) 2208 { 2209 void **object; 2210 unsigned long flags; 2211 2212 local_irq_save(flags); 2213 #ifdef CONFIG_PREEMPT 2214 /* 2215 * We may have been preempted and rescheduled on a different 2216 * cpu before disabling interrupts. Need to reload cpu area 2217 * pointer. 2218 */ 2219 c = this_cpu_ptr(s->cpu_slab); 2220 #endif 2221 2222 if (!c->page) 2223 goto new_slab; 2224 redo: 2225 if (unlikely(!node_match(c, node))) { 2226 stat(s, ALLOC_NODE_MISMATCH); 2227 deactivate_slab(s, c); 2228 goto new_slab; 2229 } 2230 2231 /* must check again c->freelist in case of cpu migration or IRQ */ 2232 object = c->freelist; 2233 if (object) 2234 goto load_freelist; 2235 2236 stat(s, ALLOC_SLOWPATH); 2237 2238 object = get_freelist(s, c->page); 2239 2240 if (!object) { 2241 c->page = NULL; 2242 stat(s, DEACTIVATE_BYPASS); 2243 goto new_slab; 2244 } 2245 2246 stat(s, ALLOC_REFILL); 2247 2248 load_freelist: 2249 c->freelist = get_freepointer(s, object); 2250 c->tid = next_tid(c->tid); 2251 local_irq_restore(flags); 2252 return object; 2253 2254 new_slab: 2255 2256 if (c->partial) { 2257 c->page = c->partial; 2258 c->partial = c->page->next; 2259 c->node = page_to_nid(c->page); 2260 stat(s, CPU_PARTIAL_ALLOC); 2261 c->freelist = NULL; 2262 goto redo; 2263 } 2264 2265 /* Then do expensive stuff like retrieving pages from the partial lists */ 2266 object = get_partial(s, gfpflags, node, c); 2267 2268 if (unlikely(!object)) { 2269 2270 object = new_slab_objects(s, gfpflags, node, &c); 2271 2272 if (unlikely(!object)) { 2273 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2274 slab_out_of_memory(s, gfpflags, node); 2275 2276 local_irq_restore(flags); 2277 return NULL; 2278 } 2279 } 2280 2281 if (likely(!kmem_cache_debug(s))) 2282 goto load_freelist; 2283 2284 /* Only entered in the debug case */ 2285 if (!alloc_debug_processing(s, c->page, object, addr)) 2286 goto new_slab; /* Slab failed checks. Next slab needed */ 2287 2288 c->freelist = get_freepointer(s, object); 2289 deactivate_slab(s, c); 2290 c->node = NUMA_NO_NODE; 2291 local_irq_restore(flags); 2292 return object; 2293 } 2294 2295 /* 2296 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2297 * have the fastpath folded into their functions. So no function call 2298 * overhead for requests that can be satisfied on the fastpath. 2299 * 2300 * The fastpath works by first checking if the lockless freelist can be used. 2301 * If not then __slab_alloc is called for slow processing. 2302 * 2303 * Otherwise we can simply pick the next object from the lockless free list. 2304 */ 2305 static __always_inline void *slab_alloc(struct kmem_cache *s, 2306 gfp_t gfpflags, int node, unsigned long addr) 2307 { 2308 void **object; 2309 struct kmem_cache_cpu *c; 2310 unsigned long tid; 2311 2312 if (slab_pre_alloc_hook(s, gfpflags)) 2313 return NULL; 2314 2315 redo: 2316 2317 /* 2318 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2319 * enabled. We may switch back and forth between cpus while 2320 * reading from one cpu area. That does not matter as long 2321 * as we end up on the original cpu again when doing the cmpxchg. 2322 */ 2323 c = __this_cpu_ptr(s->cpu_slab); 2324 2325 /* 2326 * The transaction ids are globally unique per cpu and per operation on 2327 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2328 * occurs on the right processor and that there was no operation on the 2329 * linked list in between. 2330 */ 2331 tid = c->tid; 2332 barrier(); 2333 2334 object = c->freelist; 2335 if (unlikely(!object || !node_match(c, node))) 2336 2337 object = __slab_alloc(s, gfpflags, node, addr, c); 2338 2339 else { 2340 void *next_object = get_freepointer_safe(s, object); 2341 2342 /* 2343 * The cmpxchg will only match if there was no additional 2344 * operation and if we are on the right processor. 2345 * 2346 * The cmpxchg does the following atomically (without lock semantics!) 2347 * 1. Relocate first pointer to the current per cpu area. 2348 * 2. Verify that tid and freelist have not been changed 2349 * 3. If they were not changed replace tid and freelist 2350 * 2351 * Since this is without lock semantics the protection is only against 2352 * code executing on this cpu *not* from access by other cpus. 2353 */ 2354 if (unlikely(!this_cpu_cmpxchg_double( 2355 s->cpu_slab->freelist, s->cpu_slab->tid, 2356 object, tid, 2357 next_object, next_tid(tid)))) { 2358 2359 note_cmpxchg_failure("slab_alloc", s, tid); 2360 goto redo; 2361 } 2362 prefetch_freepointer(s, next_object); 2363 stat(s, ALLOC_FASTPATH); 2364 } 2365 2366 if (unlikely(gfpflags & __GFP_ZERO) && object) 2367 memset(object, 0, s->objsize); 2368 2369 slab_post_alloc_hook(s, gfpflags, object); 2370 2371 return object; 2372 } 2373 2374 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2375 { 2376 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2377 2378 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 2379 2380 return ret; 2381 } 2382 EXPORT_SYMBOL(kmem_cache_alloc); 2383 2384 #ifdef CONFIG_TRACING 2385 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2386 { 2387 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2388 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2389 return ret; 2390 } 2391 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2392 2393 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 2394 { 2395 void *ret = kmalloc_order(size, flags, order); 2396 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 2397 return ret; 2398 } 2399 EXPORT_SYMBOL(kmalloc_order_trace); 2400 #endif 2401 2402 #ifdef CONFIG_NUMA 2403 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2404 { 2405 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2406 2407 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2408 s->objsize, s->size, gfpflags, node); 2409 2410 return ret; 2411 } 2412 EXPORT_SYMBOL(kmem_cache_alloc_node); 2413 2414 #ifdef CONFIG_TRACING 2415 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2416 gfp_t gfpflags, 2417 int node, size_t size) 2418 { 2419 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2420 2421 trace_kmalloc_node(_RET_IP_, ret, 2422 size, s->size, gfpflags, node); 2423 return ret; 2424 } 2425 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2426 #endif 2427 #endif 2428 2429 /* 2430 * Slow patch handling. This may still be called frequently since objects 2431 * have a longer lifetime than the cpu slabs in most processing loads. 2432 * 2433 * So we still attempt to reduce cache line usage. Just take the slab 2434 * lock and free the item. If there is no additional partial page 2435 * handling required then we can return immediately. 2436 */ 2437 static void __slab_free(struct kmem_cache *s, struct page *page, 2438 void *x, unsigned long addr) 2439 { 2440 void *prior; 2441 void **object = (void *)x; 2442 int was_frozen; 2443 int inuse; 2444 struct page new; 2445 unsigned long counters; 2446 struct kmem_cache_node *n = NULL; 2447 unsigned long uninitialized_var(flags); 2448 2449 stat(s, FREE_SLOWPATH); 2450 2451 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr)) 2452 return; 2453 2454 do { 2455 prior = page->freelist; 2456 counters = page->counters; 2457 set_freepointer(s, object, prior); 2458 new.counters = counters; 2459 was_frozen = new.frozen; 2460 new.inuse--; 2461 if ((!new.inuse || !prior) && !was_frozen && !n) { 2462 2463 if (!kmem_cache_debug(s) && !prior) 2464 2465 /* 2466 * Slab was on no list before and will be partially empty 2467 * We can defer the list move and instead freeze it. 2468 */ 2469 new.frozen = 1; 2470 2471 else { /* Needs to be taken off a list */ 2472 2473 n = get_node(s, page_to_nid(page)); 2474 /* 2475 * Speculatively acquire the list_lock. 2476 * If the cmpxchg does not succeed then we may 2477 * drop the list_lock without any processing. 2478 * 2479 * Otherwise the list_lock will synchronize with 2480 * other processors updating the list of slabs. 2481 */ 2482 spin_lock_irqsave(&n->list_lock, flags); 2483 2484 } 2485 } 2486 inuse = new.inuse; 2487 2488 } while (!cmpxchg_double_slab(s, page, 2489 prior, counters, 2490 object, new.counters, 2491 "__slab_free")); 2492 2493 if (likely(!n)) { 2494 2495 /* 2496 * If we just froze the page then put it onto the 2497 * per cpu partial list. 2498 */ 2499 if (new.frozen && !was_frozen) { 2500 put_cpu_partial(s, page, 1); 2501 stat(s, CPU_PARTIAL_FREE); 2502 } 2503 /* 2504 * The list lock was not taken therefore no list 2505 * activity can be necessary. 2506 */ 2507 if (was_frozen) 2508 stat(s, FREE_FROZEN); 2509 return; 2510 } 2511 2512 /* 2513 * was_frozen may have been set after we acquired the list_lock in 2514 * an earlier loop. So we need to check it here again. 2515 */ 2516 if (was_frozen) 2517 stat(s, FREE_FROZEN); 2518 else { 2519 if (unlikely(!inuse && n->nr_partial > s->min_partial)) 2520 goto slab_empty; 2521 2522 /* 2523 * Objects left in the slab. If it was not on the partial list before 2524 * then add it. 2525 */ 2526 if (unlikely(!prior)) { 2527 remove_full(s, page); 2528 add_partial(n, page, DEACTIVATE_TO_TAIL); 2529 stat(s, FREE_ADD_PARTIAL); 2530 } 2531 } 2532 spin_unlock_irqrestore(&n->list_lock, flags); 2533 return; 2534 2535 slab_empty: 2536 if (prior) { 2537 /* 2538 * Slab on the partial list. 2539 */ 2540 remove_partial(n, page); 2541 stat(s, FREE_REMOVE_PARTIAL); 2542 } else 2543 /* Slab must be on the full list */ 2544 remove_full(s, page); 2545 2546 spin_unlock_irqrestore(&n->list_lock, flags); 2547 stat(s, FREE_SLAB); 2548 discard_slab(s, page); 2549 } 2550 2551 /* 2552 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2553 * can perform fastpath freeing without additional function calls. 2554 * 2555 * The fastpath is only possible if we are freeing to the current cpu slab 2556 * of this processor. This typically the case if we have just allocated 2557 * the item before. 2558 * 2559 * If fastpath is not possible then fall back to __slab_free where we deal 2560 * with all sorts of special processing. 2561 */ 2562 static __always_inline void slab_free(struct kmem_cache *s, 2563 struct page *page, void *x, unsigned long addr) 2564 { 2565 void **object = (void *)x; 2566 struct kmem_cache_cpu *c; 2567 unsigned long tid; 2568 2569 slab_free_hook(s, x); 2570 2571 redo: 2572 /* 2573 * Determine the currently cpus per cpu slab. 2574 * The cpu may change afterward. However that does not matter since 2575 * data is retrieved via this pointer. If we are on the same cpu 2576 * during the cmpxchg then the free will succedd. 2577 */ 2578 c = __this_cpu_ptr(s->cpu_slab); 2579 2580 tid = c->tid; 2581 barrier(); 2582 2583 if (likely(page == c->page)) { 2584 set_freepointer(s, object, c->freelist); 2585 2586 if (unlikely(!this_cpu_cmpxchg_double( 2587 s->cpu_slab->freelist, s->cpu_slab->tid, 2588 c->freelist, tid, 2589 object, next_tid(tid)))) { 2590 2591 note_cmpxchg_failure("slab_free", s, tid); 2592 goto redo; 2593 } 2594 stat(s, FREE_FASTPATH); 2595 } else 2596 __slab_free(s, page, x, addr); 2597 2598 } 2599 2600 void kmem_cache_free(struct kmem_cache *s, void *x) 2601 { 2602 struct page *page; 2603 2604 page = virt_to_head_page(x); 2605 2606 slab_free(s, page, x, _RET_IP_); 2607 2608 trace_kmem_cache_free(_RET_IP_, x); 2609 } 2610 EXPORT_SYMBOL(kmem_cache_free); 2611 2612 /* 2613 * Object placement in a slab is made very easy because we always start at 2614 * offset 0. If we tune the size of the object to the alignment then we can 2615 * get the required alignment by putting one properly sized object after 2616 * another. 2617 * 2618 * Notice that the allocation order determines the sizes of the per cpu 2619 * caches. Each processor has always one slab available for allocations. 2620 * Increasing the allocation order reduces the number of times that slabs 2621 * must be moved on and off the partial lists and is therefore a factor in 2622 * locking overhead. 2623 */ 2624 2625 /* 2626 * Mininum / Maximum order of slab pages. This influences locking overhead 2627 * and slab fragmentation. A higher order reduces the number of partial slabs 2628 * and increases the number of allocations possible without having to 2629 * take the list_lock. 2630 */ 2631 static int slub_min_order; 2632 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2633 static int slub_min_objects; 2634 2635 /* 2636 * Merge control. If this is set then no merging of slab caches will occur. 2637 * (Could be removed. This was introduced to pacify the merge skeptics.) 2638 */ 2639 static int slub_nomerge; 2640 2641 /* 2642 * Calculate the order of allocation given an slab object size. 2643 * 2644 * The order of allocation has significant impact on performance and other 2645 * system components. Generally order 0 allocations should be preferred since 2646 * order 0 does not cause fragmentation in the page allocator. Larger objects 2647 * be problematic to put into order 0 slabs because there may be too much 2648 * unused space left. We go to a higher order if more than 1/16th of the slab 2649 * would be wasted. 2650 * 2651 * In order to reach satisfactory performance we must ensure that a minimum 2652 * number of objects is in one slab. Otherwise we may generate too much 2653 * activity on the partial lists which requires taking the list_lock. This is 2654 * less a concern for large slabs though which are rarely used. 2655 * 2656 * slub_max_order specifies the order where we begin to stop considering the 2657 * number of objects in a slab as critical. If we reach slub_max_order then 2658 * we try to keep the page order as low as possible. So we accept more waste 2659 * of space in favor of a small page order. 2660 * 2661 * Higher order allocations also allow the placement of more objects in a 2662 * slab and thereby reduce object handling overhead. If the user has 2663 * requested a higher mininum order then we start with that one instead of 2664 * the smallest order which will fit the object. 2665 */ 2666 static inline int slab_order(int size, int min_objects, 2667 int max_order, int fract_leftover, int reserved) 2668 { 2669 int order; 2670 int rem; 2671 int min_order = slub_min_order; 2672 2673 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2674 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2675 2676 for (order = max(min_order, 2677 fls(min_objects * size - 1) - PAGE_SHIFT); 2678 order <= max_order; order++) { 2679 2680 unsigned long slab_size = PAGE_SIZE << order; 2681 2682 if (slab_size < min_objects * size + reserved) 2683 continue; 2684 2685 rem = (slab_size - reserved) % size; 2686 2687 if (rem <= slab_size / fract_leftover) 2688 break; 2689 2690 } 2691 2692 return order; 2693 } 2694 2695 static inline int calculate_order(int size, int reserved) 2696 { 2697 int order; 2698 int min_objects; 2699 int fraction; 2700 int max_objects; 2701 2702 /* 2703 * Attempt to find best configuration for a slab. This 2704 * works by first attempting to generate a layout with 2705 * the best configuration and backing off gradually. 2706 * 2707 * First we reduce the acceptable waste in a slab. Then 2708 * we reduce the minimum objects required in a slab. 2709 */ 2710 min_objects = slub_min_objects; 2711 if (!min_objects) 2712 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2713 max_objects = order_objects(slub_max_order, size, reserved); 2714 min_objects = min(min_objects, max_objects); 2715 2716 while (min_objects > 1) { 2717 fraction = 16; 2718 while (fraction >= 4) { 2719 order = slab_order(size, min_objects, 2720 slub_max_order, fraction, reserved); 2721 if (order <= slub_max_order) 2722 return order; 2723 fraction /= 2; 2724 } 2725 min_objects--; 2726 } 2727 2728 /* 2729 * We were unable to place multiple objects in a slab. Now 2730 * lets see if we can place a single object there. 2731 */ 2732 order = slab_order(size, 1, slub_max_order, 1, reserved); 2733 if (order <= slub_max_order) 2734 return order; 2735 2736 /* 2737 * Doh this slab cannot be placed using slub_max_order. 2738 */ 2739 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2740 if (order < MAX_ORDER) 2741 return order; 2742 return -ENOSYS; 2743 } 2744 2745 /* 2746 * Figure out what the alignment of the objects will be. 2747 */ 2748 static unsigned long calculate_alignment(unsigned long flags, 2749 unsigned long align, unsigned long size) 2750 { 2751 /* 2752 * If the user wants hardware cache aligned objects then follow that 2753 * suggestion if the object is sufficiently large. 2754 * 2755 * The hardware cache alignment cannot override the specified 2756 * alignment though. If that is greater then use it. 2757 */ 2758 if (flags & SLAB_HWCACHE_ALIGN) { 2759 unsigned long ralign = cache_line_size(); 2760 while (size <= ralign / 2) 2761 ralign /= 2; 2762 align = max(align, ralign); 2763 } 2764 2765 if (align < ARCH_SLAB_MINALIGN) 2766 align = ARCH_SLAB_MINALIGN; 2767 2768 return ALIGN(align, sizeof(void *)); 2769 } 2770 2771 static void 2772 init_kmem_cache_node(struct kmem_cache_node *n) 2773 { 2774 n->nr_partial = 0; 2775 spin_lock_init(&n->list_lock); 2776 INIT_LIST_HEAD(&n->partial); 2777 #ifdef CONFIG_SLUB_DEBUG 2778 atomic_long_set(&n->nr_slabs, 0); 2779 atomic_long_set(&n->total_objects, 0); 2780 INIT_LIST_HEAD(&n->full); 2781 #endif 2782 } 2783 2784 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2785 { 2786 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2787 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); 2788 2789 /* 2790 * Must align to double word boundary for the double cmpxchg 2791 * instructions to work; see __pcpu_double_call_return_bool(). 2792 */ 2793 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2794 2 * sizeof(void *)); 2795 2796 if (!s->cpu_slab) 2797 return 0; 2798 2799 init_kmem_cache_cpus(s); 2800 2801 return 1; 2802 } 2803 2804 static struct kmem_cache *kmem_cache_node; 2805 2806 /* 2807 * No kmalloc_node yet so do it by hand. We know that this is the first 2808 * slab on the node for this slabcache. There are no concurrent accesses 2809 * possible. 2810 * 2811 * Note that this function only works on the kmalloc_node_cache 2812 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2813 * memory on a fresh node that has no slab structures yet. 2814 */ 2815 static void early_kmem_cache_node_alloc(int node) 2816 { 2817 struct page *page; 2818 struct kmem_cache_node *n; 2819 2820 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2821 2822 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2823 2824 BUG_ON(!page); 2825 if (page_to_nid(page) != node) { 2826 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2827 "node %d\n", node); 2828 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2829 "in order to be able to continue\n"); 2830 } 2831 2832 n = page->freelist; 2833 BUG_ON(!n); 2834 page->freelist = get_freepointer(kmem_cache_node, n); 2835 page->inuse = 1; 2836 page->frozen = 0; 2837 kmem_cache_node->node[node] = n; 2838 #ifdef CONFIG_SLUB_DEBUG 2839 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2840 init_tracking(kmem_cache_node, n); 2841 #endif 2842 init_kmem_cache_node(n); 2843 inc_slabs_node(kmem_cache_node, node, page->objects); 2844 2845 add_partial(n, page, DEACTIVATE_TO_HEAD); 2846 } 2847 2848 static void free_kmem_cache_nodes(struct kmem_cache *s) 2849 { 2850 int node; 2851 2852 for_each_node_state(node, N_NORMAL_MEMORY) { 2853 struct kmem_cache_node *n = s->node[node]; 2854 2855 if (n) 2856 kmem_cache_free(kmem_cache_node, n); 2857 2858 s->node[node] = NULL; 2859 } 2860 } 2861 2862 static int init_kmem_cache_nodes(struct kmem_cache *s) 2863 { 2864 int node; 2865 2866 for_each_node_state(node, N_NORMAL_MEMORY) { 2867 struct kmem_cache_node *n; 2868 2869 if (slab_state == DOWN) { 2870 early_kmem_cache_node_alloc(node); 2871 continue; 2872 } 2873 n = kmem_cache_alloc_node(kmem_cache_node, 2874 GFP_KERNEL, node); 2875 2876 if (!n) { 2877 free_kmem_cache_nodes(s); 2878 return 0; 2879 } 2880 2881 s->node[node] = n; 2882 init_kmem_cache_node(n); 2883 } 2884 return 1; 2885 } 2886 2887 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2888 { 2889 if (min < MIN_PARTIAL) 2890 min = MIN_PARTIAL; 2891 else if (min > MAX_PARTIAL) 2892 min = MAX_PARTIAL; 2893 s->min_partial = min; 2894 } 2895 2896 /* 2897 * calculate_sizes() determines the order and the distribution of data within 2898 * a slab object. 2899 */ 2900 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2901 { 2902 unsigned long flags = s->flags; 2903 unsigned long size = s->objsize; 2904 unsigned long align = s->align; 2905 int order; 2906 2907 /* 2908 * Round up object size to the next word boundary. We can only 2909 * place the free pointer at word boundaries and this determines 2910 * the possible location of the free pointer. 2911 */ 2912 size = ALIGN(size, sizeof(void *)); 2913 2914 #ifdef CONFIG_SLUB_DEBUG 2915 /* 2916 * Determine if we can poison the object itself. If the user of 2917 * the slab may touch the object after free or before allocation 2918 * then we should never poison the object itself. 2919 */ 2920 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2921 !s->ctor) 2922 s->flags |= __OBJECT_POISON; 2923 else 2924 s->flags &= ~__OBJECT_POISON; 2925 2926 2927 /* 2928 * If we are Redzoning then check if there is some space between the 2929 * end of the object and the free pointer. If not then add an 2930 * additional word to have some bytes to store Redzone information. 2931 */ 2932 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2933 size += sizeof(void *); 2934 #endif 2935 2936 /* 2937 * With that we have determined the number of bytes in actual use 2938 * by the object. This is the potential offset to the free pointer. 2939 */ 2940 s->inuse = size; 2941 2942 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2943 s->ctor)) { 2944 /* 2945 * Relocate free pointer after the object if it is not 2946 * permitted to overwrite the first word of the object on 2947 * kmem_cache_free. 2948 * 2949 * This is the case if we do RCU, have a constructor or 2950 * destructor or are poisoning the objects. 2951 */ 2952 s->offset = size; 2953 size += sizeof(void *); 2954 } 2955 2956 #ifdef CONFIG_SLUB_DEBUG 2957 if (flags & SLAB_STORE_USER) 2958 /* 2959 * Need to store information about allocs and frees after 2960 * the object. 2961 */ 2962 size += 2 * sizeof(struct track); 2963 2964 if (flags & SLAB_RED_ZONE) 2965 /* 2966 * Add some empty padding so that we can catch 2967 * overwrites from earlier objects rather than let 2968 * tracking information or the free pointer be 2969 * corrupted if a user writes before the start 2970 * of the object. 2971 */ 2972 size += sizeof(void *); 2973 #endif 2974 2975 /* 2976 * Determine the alignment based on various parameters that the 2977 * user specified and the dynamic determination of cache line size 2978 * on bootup. 2979 */ 2980 align = calculate_alignment(flags, align, s->objsize); 2981 s->align = align; 2982 2983 /* 2984 * SLUB stores one object immediately after another beginning from 2985 * offset 0. In order to align the objects we have to simply size 2986 * each object to conform to the alignment. 2987 */ 2988 size = ALIGN(size, align); 2989 s->size = size; 2990 if (forced_order >= 0) 2991 order = forced_order; 2992 else 2993 order = calculate_order(size, s->reserved); 2994 2995 if (order < 0) 2996 return 0; 2997 2998 s->allocflags = 0; 2999 if (order) 3000 s->allocflags |= __GFP_COMP; 3001 3002 if (s->flags & SLAB_CACHE_DMA) 3003 s->allocflags |= SLUB_DMA; 3004 3005 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3006 s->allocflags |= __GFP_RECLAIMABLE; 3007 3008 /* 3009 * Determine the number of objects per slab 3010 */ 3011 s->oo = oo_make(order, size, s->reserved); 3012 s->min = oo_make(get_order(size), size, s->reserved); 3013 if (oo_objects(s->oo) > oo_objects(s->max)) 3014 s->max = s->oo; 3015 3016 return !!oo_objects(s->oo); 3017 3018 } 3019 3020 static int kmem_cache_open(struct kmem_cache *s, 3021 const char *name, size_t size, 3022 size_t align, unsigned long flags, 3023 void (*ctor)(void *)) 3024 { 3025 memset(s, 0, kmem_size); 3026 s->name = name; 3027 s->ctor = ctor; 3028 s->objsize = size; 3029 s->align = align; 3030 s->flags = kmem_cache_flags(size, flags, name, ctor); 3031 s->reserved = 0; 3032 3033 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3034 s->reserved = sizeof(struct rcu_head); 3035 3036 if (!calculate_sizes(s, -1)) 3037 goto error; 3038 if (disable_higher_order_debug) { 3039 /* 3040 * Disable debugging flags that store metadata if the min slab 3041 * order increased. 3042 */ 3043 if (get_order(s->size) > get_order(s->objsize)) { 3044 s->flags &= ~DEBUG_METADATA_FLAGS; 3045 s->offset = 0; 3046 if (!calculate_sizes(s, -1)) 3047 goto error; 3048 } 3049 } 3050 3051 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3052 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3053 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3054 /* Enable fast mode */ 3055 s->flags |= __CMPXCHG_DOUBLE; 3056 #endif 3057 3058 /* 3059 * The larger the object size is, the more pages we want on the partial 3060 * list to avoid pounding the page allocator excessively. 3061 */ 3062 set_min_partial(s, ilog2(s->size) / 2); 3063 3064 /* 3065 * cpu_partial determined the maximum number of objects kept in the 3066 * per cpu partial lists of a processor. 3067 * 3068 * Per cpu partial lists mainly contain slabs that just have one 3069 * object freed. If they are used for allocation then they can be 3070 * filled up again with minimal effort. The slab will never hit the 3071 * per node partial lists and therefore no locking will be required. 3072 * 3073 * This setting also determines 3074 * 3075 * A) The number of objects from per cpu partial slabs dumped to the 3076 * per node list when we reach the limit. 3077 * B) The number of objects in cpu partial slabs to extract from the 3078 * per node list when we run out of per cpu objects. We only fetch 50% 3079 * to keep some capacity around for frees. 3080 */ 3081 if (kmem_cache_debug(s)) 3082 s->cpu_partial = 0; 3083 else if (s->size >= PAGE_SIZE) 3084 s->cpu_partial = 2; 3085 else if (s->size >= 1024) 3086 s->cpu_partial = 6; 3087 else if (s->size >= 256) 3088 s->cpu_partial = 13; 3089 else 3090 s->cpu_partial = 30; 3091 3092 s->refcount = 1; 3093 #ifdef CONFIG_NUMA 3094 s->remote_node_defrag_ratio = 1000; 3095 #endif 3096 if (!init_kmem_cache_nodes(s)) 3097 goto error; 3098 3099 if (alloc_kmem_cache_cpus(s)) 3100 return 1; 3101 3102 free_kmem_cache_nodes(s); 3103 error: 3104 if (flags & SLAB_PANIC) 3105 panic("Cannot create slab %s size=%lu realsize=%u " 3106 "order=%u offset=%u flags=%lx\n", 3107 s->name, (unsigned long)size, s->size, oo_order(s->oo), 3108 s->offset, flags); 3109 return 0; 3110 } 3111 3112 /* 3113 * Determine the size of a slab object 3114 */ 3115 unsigned int kmem_cache_size(struct kmem_cache *s) 3116 { 3117 return s->objsize; 3118 } 3119 EXPORT_SYMBOL(kmem_cache_size); 3120 3121 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3122 const char *text) 3123 { 3124 #ifdef CONFIG_SLUB_DEBUG 3125 void *addr = page_address(page); 3126 void *p; 3127 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3128 sizeof(long), GFP_ATOMIC); 3129 if (!map) 3130 return; 3131 slab_err(s, page, "%s", text); 3132 slab_lock(page); 3133 3134 get_map(s, page, map); 3135 for_each_object(p, s, addr, page->objects) { 3136 3137 if (!test_bit(slab_index(p, s, addr), map)) { 3138 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3139 p, p - addr); 3140 print_tracking(s, p); 3141 } 3142 } 3143 slab_unlock(page); 3144 kfree(map); 3145 #endif 3146 } 3147 3148 /* 3149 * Attempt to free all partial slabs on a node. 3150 * This is called from kmem_cache_close(). We must be the last thread 3151 * using the cache and therefore we do not need to lock anymore. 3152 */ 3153 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3154 { 3155 struct page *page, *h; 3156 3157 list_for_each_entry_safe(page, h, &n->partial, lru) { 3158 if (!page->inuse) { 3159 remove_partial(n, page); 3160 discard_slab(s, page); 3161 } else { 3162 list_slab_objects(s, page, 3163 "Objects remaining on kmem_cache_close()"); 3164 } 3165 } 3166 } 3167 3168 /* 3169 * Release all resources used by a slab cache. 3170 */ 3171 static inline int kmem_cache_close(struct kmem_cache *s) 3172 { 3173 int node; 3174 3175 flush_all(s); 3176 free_percpu(s->cpu_slab); 3177 /* Attempt to free all objects */ 3178 for_each_node_state(node, N_NORMAL_MEMORY) { 3179 struct kmem_cache_node *n = get_node(s, node); 3180 3181 free_partial(s, n); 3182 if (n->nr_partial || slabs_node(s, node)) 3183 return 1; 3184 } 3185 free_kmem_cache_nodes(s); 3186 return 0; 3187 } 3188 3189 /* 3190 * Close a cache and release the kmem_cache structure 3191 * (must be used for caches created using kmem_cache_create) 3192 */ 3193 void kmem_cache_destroy(struct kmem_cache *s) 3194 { 3195 down_write(&slub_lock); 3196 s->refcount--; 3197 if (!s->refcount) { 3198 list_del(&s->list); 3199 up_write(&slub_lock); 3200 if (kmem_cache_close(s)) { 3201 printk(KERN_ERR "SLUB %s: %s called for cache that " 3202 "still has objects.\n", s->name, __func__); 3203 dump_stack(); 3204 } 3205 if (s->flags & SLAB_DESTROY_BY_RCU) 3206 rcu_barrier(); 3207 sysfs_slab_remove(s); 3208 } else 3209 up_write(&slub_lock); 3210 } 3211 EXPORT_SYMBOL(kmem_cache_destroy); 3212 3213 /******************************************************************** 3214 * Kmalloc subsystem 3215 *******************************************************************/ 3216 3217 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 3218 EXPORT_SYMBOL(kmalloc_caches); 3219 3220 static struct kmem_cache *kmem_cache; 3221 3222 #ifdef CONFIG_ZONE_DMA 3223 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; 3224 #endif 3225 3226 static int __init setup_slub_min_order(char *str) 3227 { 3228 get_option(&str, &slub_min_order); 3229 3230 return 1; 3231 } 3232 3233 __setup("slub_min_order=", setup_slub_min_order); 3234 3235 static int __init setup_slub_max_order(char *str) 3236 { 3237 get_option(&str, &slub_max_order); 3238 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3239 3240 return 1; 3241 } 3242 3243 __setup("slub_max_order=", setup_slub_max_order); 3244 3245 static int __init setup_slub_min_objects(char *str) 3246 { 3247 get_option(&str, &slub_min_objects); 3248 3249 return 1; 3250 } 3251 3252 __setup("slub_min_objects=", setup_slub_min_objects); 3253 3254 static int __init setup_slub_nomerge(char *str) 3255 { 3256 slub_nomerge = 1; 3257 return 1; 3258 } 3259 3260 __setup("slub_nomerge", setup_slub_nomerge); 3261 3262 static struct kmem_cache *__init create_kmalloc_cache(const char *name, 3263 int size, unsigned int flags) 3264 { 3265 struct kmem_cache *s; 3266 3267 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3268 3269 /* 3270 * This function is called with IRQs disabled during early-boot on 3271 * single CPU so there's no need to take slub_lock here. 3272 */ 3273 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN, 3274 flags, NULL)) 3275 goto panic; 3276 3277 list_add(&s->list, &slab_caches); 3278 return s; 3279 3280 panic: 3281 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 3282 return NULL; 3283 } 3284 3285 /* 3286 * Conversion table for small slabs sizes / 8 to the index in the 3287 * kmalloc array. This is necessary for slabs < 192 since we have non power 3288 * of two cache sizes there. The size of larger slabs can be determined using 3289 * fls. 3290 */ 3291 static s8 size_index[24] = { 3292 3, /* 8 */ 3293 4, /* 16 */ 3294 5, /* 24 */ 3295 5, /* 32 */ 3296 6, /* 40 */ 3297 6, /* 48 */ 3298 6, /* 56 */ 3299 6, /* 64 */ 3300 1, /* 72 */ 3301 1, /* 80 */ 3302 1, /* 88 */ 3303 1, /* 96 */ 3304 7, /* 104 */ 3305 7, /* 112 */ 3306 7, /* 120 */ 3307 7, /* 128 */ 3308 2, /* 136 */ 3309 2, /* 144 */ 3310 2, /* 152 */ 3311 2, /* 160 */ 3312 2, /* 168 */ 3313 2, /* 176 */ 3314 2, /* 184 */ 3315 2 /* 192 */ 3316 }; 3317 3318 static inline int size_index_elem(size_t bytes) 3319 { 3320 return (bytes - 1) / 8; 3321 } 3322 3323 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 3324 { 3325 int index; 3326 3327 if (size <= 192) { 3328 if (!size) 3329 return ZERO_SIZE_PTR; 3330 3331 index = size_index[size_index_elem(size)]; 3332 } else 3333 index = fls(size - 1); 3334 3335 #ifdef CONFIG_ZONE_DMA 3336 if (unlikely((flags & SLUB_DMA))) 3337 return kmalloc_dma_caches[index]; 3338 3339 #endif 3340 return kmalloc_caches[index]; 3341 } 3342 3343 void *__kmalloc(size_t size, gfp_t flags) 3344 { 3345 struct kmem_cache *s; 3346 void *ret; 3347 3348 if (unlikely(size > SLUB_MAX_SIZE)) 3349 return kmalloc_large(size, flags); 3350 3351 s = get_slab(size, flags); 3352 3353 if (unlikely(ZERO_OR_NULL_PTR(s))) 3354 return s; 3355 3356 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); 3357 3358 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3359 3360 return ret; 3361 } 3362 EXPORT_SYMBOL(__kmalloc); 3363 3364 #ifdef CONFIG_NUMA 3365 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3366 { 3367 struct page *page; 3368 void *ptr = NULL; 3369 3370 flags |= __GFP_COMP | __GFP_NOTRACK; 3371 page = alloc_pages_node(node, flags, get_order(size)); 3372 if (page) 3373 ptr = page_address(page); 3374 3375 kmemleak_alloc(ptr, size, 1, flags); 3376 return ptr; 3377 } 3378 3379 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3380 { 3381 struct kmem_cache *s; 3382 void *ret; 3383 3384 if (unlikely(size > SLUB_MAX_SIZE)) { 3385 ret = kmalloc_large_node(size, flags, node); 3386 3387 trace_kmalloc_node(_RET_IP_, ret, 3388 size, PAGE_SIZE << get_order(size), 3389 flags, node); 3390 3391 return ret; 3392 } 3393 3394 s = get_slab(size, flags); 3395 3396 if (unlikely(ZERO_OR_NULL_PTR(s))) 3397 return s; 3398 3399 ret = slab_alloc(s, flags, node, _RET_IP_); 3400 3401 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3402 3403 return ret; 3404 } 3405 EXPORT_SYMBOL(__kmalloc_node); 3406 #endif 3407 3408 size_t ksize(const void *object) 3409 { 3410 struct page *page; 3411 3412 if (unlikely(object == ZERO_SIZE_PTR)) 3413 return 0; 3414 3415 page = virt_to_head_page(object); 3416 3417 if (unlikely(!PageSlab(page))) { 3418 WARN_ON(!PageCompound(page)); 3419 return PAGE_SIZE << compound_order(page); 3420 } 3421 3422 return slab_ksize(page->slab); 3423 } 3424 EXPORT_SYMBOL(ksize); 3425 3426 #ifdef CONFIG_SLUB_DEBUG 3427 bool verify_mem_not_deleted(const void *x) 3428 { 3429 struct page *page; 3430 void *object = (void *)x; 3431 unsigned long flags; 3432 bool rv; 3433 3434 if (unlikely(ZERO_OR_NULL_PTR(x))) 3435 return false; 3436 3437 local_irq_save(flags); 3438 3439 page = virt_to_head_page(x); 3440 if (unlikely(!PageSlab(page))) { 3441 /* maybe it was from stack? */ 3442 rv = true; 3443 goto out_unlock; 3444 } 3445 3446 slab_lock(page); 3447 if (on_freelist(page->slab, page, object)) { 3448 object_err(page->slab, page, object, "Object is on free-list"); 3449 rv = false; 3450 } else { 3451 rv = true; 3452 } 3453 slab_unlock(page); 3454 3455 out_unlock: 3456 local_irq_restore(flags); 3457 return rv; 3458 } 3459 EXPORT_SYMBOL(verify_mem_not_deleted); 3460 #endif 3461 3462 void kfree(const void *x) 3463 { 3464 struct page *page; 3465 void *object = (void *)x; 3466 3467 trace_kfree(_RET_IP_, x); 3468 3469 if (unlikely(ZERO_OR_NULL_PTR(x))) 3470 return; 3471 3472 page = virt_to_head_page(x); 3473 if (unlikely(!PageSlab(page))) { 3474 BUG_ON(!PageCompound(page)); 3475 kmemleak_free(x); 3476 put_page(page); 3477 return; 3478 } 3479 slab_free(page->slab, page, object, _RET_IP_); 3480 } 3481 EXPORT_SYMBOL(kfree); 3482 3483 /* 3484 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3485 * the remaining slabs by the number of items in use. The slabs with the 3486 * most items in use come first. New allocations will then fill those up 3487 * and thus they can be removed from the partial lists. 3488 * 3489 * The slabs with the least items are placed last. This results in them 3490 * being allocated from last increasing the chance that the last objects 3491 * are freed in them. 3492 */ 3493 int kmem_cache_shrink(struct kmem_cache *s) 3494 { 3495 int node; 3496 int i; 3497 struct kmem_cache_node *n; 3498 struct page *page; 3499 struct page *t; 3500 int objects = oo_objects(s->max); 3501 struct list_head *slabs_by_inuse = 3502 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3503 unsigned long flags; 3504 3505 if (!slabs_by_inuse) 3506 return -ENOMEM; 3507 3508 flush_all(s); 3509 for_each_node_state(node, N_NORMAL_MEMORY) { 3510 n = get_node(s, node); 3511 3512 if (!n->nr_partial) 3513 continue; 3514 3515 for (i = 0; i < objects; i++) 3516 INIT_LIST_HEAD(slabs_by_inuse + i); 3517 3518 spin_lock_irqsave(&n->list_lock, flags); 3519 3520 /* 3521 * Build lists indexed by the items in use in each slab. 3522 * 3523 * Note that concurrent frees may occur while we hold the 3524 * list_lock. page->inuse here is the upper limit. 3525 */ 3526 list_for_each_entry_safe(page, t, &n->partial, lru) { 3527 list_move(&page->lru, slabs_by_inuse + page->inuse); 3528 if (!page->inuse) 3529 n->nr_partial--; 3530 } 3531 3532 /* 3533 * Rebuild the partial list with the slabs filled up most 3534 * first and the least used slabs at the end. 3535 */ 3536 for (i = objects - 1; i > 0; i--) 3537 list_splice(slabs_by_inuse + i, n->partial.prev); 3538 3539 spin_unlock_irqrestore(&n->list_lock, flags); 3540 3541 /* Release empty slabs */ 3542 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3543 discard_slab(s, page); 3544 } 3545 3546 kfree(slabs_by_inuse); 3547 return 0; 3548 } 3549 EXPORT_SYMBOL(kmem_cache_shrink); 3550 3551 #if defined(CONFIG_MEMORY_HOTPLUG) 3552 static int slab_mem_going_offline_callback(void *arg) 3553 { 3554 struct kmem_cache *s; 3555 3556 down_read(&slub_lock); 3557 list_for_each_entry(s, &slab_caches, list) 3558 kmem_cache_shrink(s); 3559 up_read(&slub_lock); 3560 3561 return 0; 3562 } 3563 3564 static void slab_mem_offline_callback(void *arg) 3565 { 3566 struct kmem_cache_node *n; 3567 struct kmem_cache *s; 3568 struct memory_notify *marg = arg; 3569 int offline_node; 3570 3571 offline_node = marg->status_change_nid; 3572 3573 /* 3574 * If the node still has available memory. we need kmem_cache_node 3575 * for it yet. 3576 */ 3577 if (offline_node < 0) 3578 return; 3579 3580 down_read(&slub_lock); 3581 list_for_each_entry(s, &slab_caches, list) { 3582 n = get_node(s, offline_node); 3583 if (n) { 3584 /* 3585 * if n->nr_slabs > 0, slabs still exist on the node 3586 * that is going down. We were unable to free them, 3587 * and offline_pages() function shouldn't call this 3588 * callback. So, we must fail. 3589 */ 3590 BUG_ON(slabs_node(s, offline_node)); 3591 3592 s->node[offline_node] = NULL; 3593 kmem_cache_free(kmem_cache_node, n); 3594 } 3595 } 3596 up_read(&slub_lock); 3597 } 3598 3599 static int slab_mem_going_online_callback(void *arg) 3600 { 3601 struct kmem_cache_node *n; 3602 struct kmem_cache *s; 3603 struct memory_notify *marg = arg; 3604 int nid = marg->status_change_nid; 3605 int ret = 0; 3606 3607 /* 3608 * If the node's memory is already available, then kmem_cache_node is 3609 * already created. Nothing to do. 3610 */ 3611 if (nid < 0) 3612 return 0; 3613 3614 /* 3615 * We are bringing a node online. No memory is available yet. We must 3616 * allocate a kmem_cache_node structure in order to bring the node 3617 * online. 3618 */ 3619 down_read(&slub_lock); 3620 list_for_each_entry(s, &slab_caches, list) { 3621 /* 3622 * XXX: kmem_cache_alloc_node will fallback to other nodes 3623 * since memory is not yet available from the node that 3624 * is brought up. 3625 */ 3626 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3627 if (!n) { 3628 ret = -ENOMEM; 3629 goto out; 3630 } 3631 init_kmem_cache_node(n); 3632 s->node[nid] = n; 3633 } 3634 out: 3635 up_read(&slub_lock); 3636 return ret; 3637 } 3638 3639 static int slab_memory_callback(struct notifier_block *self, 3640 unsigned long action, void *arg) 3641 { 3642 int ret = 0; 3643 3644 switch (action) { 3645 case MEM_GOING_ONLINE: 3646 ret = slab_mem_going_online_callback(arg); 3647 break; 3648 case MEM_GOING_OFFLINE: 3649 ret = slab_mem_going_offline_callback(arg); 3650 break; 3651 case MEM_OFFLINE: 3652 case MEM_CANCEL_ONLINE: 3653 slab_mem_offline_callback(arg); 3654 break; 3655 case MEM_ONLINE: 3656 case MEM_CANCEL_OFFLINE: 3657 break; 3658 } 3659 if (ret) 3660 ret = notifier_from_errno(ret); 3661 else 3662 ret = NOTIFY_OK; 3663 return ret; 3664 } 3665 3666 #endif /* CONFIG_MEMORY_HOTPLUG */ 3667 3668 /******************************************************************** 3669 * Basic setup of slabs 3670 *******************************************************************/ 3671 3672 /* 3673 * Used for early kmem_cache structures that were allocated using 3674 * the page allocator 3675 */ 3676 3677 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s) 3678 { 3679 int node; 3680 3681 list_add(&s->list, &slab_caches); 3682 s->refcount = -1; 3683 3684 for_each_node_state(node, N_NORMAL_MEMORY) { 3685 struct kmem_cache_node *n = get_node(s, node); 3686 struct page *p; 3687 3688 if (n) { 3689 list_for_each_entry(p, &n->partial, lru) 3690 p->slab = s; 3691 3692 #ifdef CONFIG_SLUB_DEBUG 3693 list_for_each_entry(p, &n->full, lru) 3694 p->slab = s; 3695 #endif 3696 } 3697 } 3698 } 3699 3700 void __init kmem_cache_init(void) 3701 { 3702 int i; 3703 int caches = 0; 3704 struct kmem_cache *temp_kmem_cache; 3705 int order; 3706 struct kmem_cache *temp_kmem_cache_node; 3707 unsigned long kmalloc_size; 3708 3709 if (debug_guardpage_minorder()) 3710 slub_max_order = 0; 3711 3712 kmem_size = offsetof(struct kmem_cache, node) + 3713 nr_node_ids * sizeof(struct kmem_cache_node *); 3714 3715 /* Allocate two kmem_caches from the page allocator */ 3716 kmalloc_size = ALIGN(kmem_size, cache_line_size()); 3717 order = get_order(2 * kmalloc_size); 3718 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order); 3719 3720 /* 3721 * Must first have the slab cache available for the allocations of the 3722 * struct kmem_cache_node's. There is special bootstrap code in 3723 * kmem_cache_open for slab_state == DOWN. 3724 */ 3725 kmem_cache_node = (void *)kmem_cache + kmalloc_size; 3726 3727 kmem_cache_open(kmem_cache_node, "kmem_cache_node", 3728 sizeof(struct kmem_cache_node), 3729 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3730 3731 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3732 3733 /* Able to allocate the per node structures */ 3734 slab_state = PARTIAL; 3735 3736 temp_kmem_cache = kmem_cache; 3737 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size, 3738 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3739 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3740 memcpy(kmem_cache, temp_kmem_cache, kmem_size); 3741 3742 /* 3743 * Allocate kmem_cache_node properly from the kmem_cache slab. 3744 * kmem_cache_node is separately allocated so no need to 3745 * update any list pointers. 3746 */ 3747 temp_kmem_cache_node = kmem_cache_node; 3748 3749 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3750 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size); 3751 3752 kmem_cache_bootstrap_fixup(kmem_cache_node); 3753 3754 caches++; 3755 kmem_cache_bootstrap_fixup(kmem_cache); 3756 caches++; 3757 /* Free temporary boot structure */ 3758 free_pages((unsigned long)temp_kmem_cache, order); 3759 3760 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3761 3762 /* 3763 * Patch up the size_index table if we have strange large alignment 3764 * requirements for the kmalloc array. This is only the case for 3765 * MIPS it seems. The standard arches will not generate any code here. 3766 * 3767 * Largest permitted alignment is 256 bytes due to the way we 3768 * handle the index determination for the smaller caches. 3769 * 3770 * Make sure that nothing crazy happens if someone starts tinkering 3771 * around with ARCH_KMALLOC_MINALIGN 3772 */ 3773 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3774 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3775 3776 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3777 int elem = size_index_elem(i); 3778 if (elem >= ARRAY_SIZE(size_index)) 3779 break; 3780 size_index[elem] = KMALLOC_SHIFT_LOW; 3781 } 3782 3783 if (KMALLOC_MIN_SIZE == 64) { 3784 /* 3785 * The 96 byte size cache is not used if the alignment 3786 * is 64 byte. 3787 */ 3788 for (i = 64 + 8; i <= 96; i += 8) 3789 size_index[size_index_elem(i)] = 7; 3790 } else if (KMALLOC_MIN_SIZE == 128) { 3791 /* 3792 * The 192 byte sized cache is not used if the alignment 3793 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3794 * instead. 3795 */ 3796 for (i = 128 + 8; i <= 192; i += 8) 3797 size_index[size_index_elem(i)] = 8; 3798 } 3799 3800 /* Caches that are not of the two-to-the-power-of size */ 3801 if (KMALLOC_MIN_SIZE <= 32) { 3802 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); 3803 caches++; 3804 } 3805 3806 if (KMALLOC_MIN_SIZE <= 64) { 3807 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); 3808 caches++; 3809 } 3810 3811 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3812 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); 3813 caches++; 3814 } 3815 3816 slab_state = UP; 3817 3818 /* Provide the correct kmalloc names now that the caches are up */ 3819 if (KMALLOC_MIN_SIZE <= 32) { 3820 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); 3821 BUG_ON(!kmalloc_caches[1]->name); 3822 } 3823 3824 if (KMALLOC_MIN_SIZE <= 64) { 3825 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); 3826 BUG_ON(!kmalloc_caches[2]->name); 3827 } 3828 3829 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3830 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3831 3832 BUG_ON(!s); 3833 kmalloc_caches[i]->name = s; 3834 } 3835 3836 #ifdef CONFIG_SMP 3837 register_cpu_notifier(&slab_notifier); 3838 #endif 3839 3840 #ifdef CONFIG_ZONE_DMA 3841 for (i = 0; i < SLUB_PAGE_SHIFT; i++) { 3842 struct kmem_cache *s = kmalloc_caches[i]; 3843 3844 if (s && s->size) { 3845 char *name = kasprintf(GFP_NOWAIT, 3846 "dma-kmalloc-%d", s->objsize); 3847 3848 BUG_ON(!name); 3849 kmalloc_dma_caches[i] = create_kmalloc_cache(name, 3850 s->objsize, SLAB_CACHE_DMA); 3851 } 3852 } 3853 #endif 3854 printk(KERN_INFO 3855 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3856 " CPUs=%d, Nodes=%d\n", 3857 caches, cache_line_size(), 3858 slub_min_order, slub_max_order, slub_min_objects, 3859 nr_cpu_ids, nr_node_ids); 3860 } 3861 3862 void __init kmem_cache_init_late(void) 3863 { 3864 } 3865 3866 /* 3867 * Find a mergeable slab cache 3868 */ 3869 static int slab_unmergeable(struct kmem_cache *s) 3870 { 3871 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3872 return 1; 3873 3874 if (s->ctor) 3875 return 1; 3876 3877 /* 3878 * We may have set a slab to be unmergeable during bootstrap. 3879 */ 3880 if (s->refcount < 0) 3881 return 1; 3882 3883 return 0; 3884 } 3885 3886 static struct kmem_cache *find_mergeable(size_t size, 3887 size_t align, unsigned long flags, const char *name, 3888 void (*ctor)(void *)) 3889 { 3890 struct kmem_cache *s; 3891 3892 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3893 return NULL; 3894 3895 if (ctor) 3896 return NULL; 3897 3898 size = ALIGN(size, sizeof(void *)); 3899 align = calculate_alignment(flags, align, size); 3900 size = ALIGN(size, align); 3901 flags = kmem_cache_flags(size, flags, name, NULL); 3902 3903 list_for_each_entry(s, &slab_caches, list) { 3904 if (slab_unmergeable(s)) 3905 continue; 3906 3907 if (size > s->size) 3908 continue; 3909 3910 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3911 continue; 3912 /* 3913 * Check if alignment is compatible. 3914 * Courtesy of Adrian Drzewiecki 3915 */ 3916 if ((s->size & ~(align - 1)) != s->size) 3917 continue; 3918 3919 if (s->size - size >= sizeof(void *)) 3920 continue; 3921 3922 return s; 3923 } 3924 return NULL; 3925 } 3926 3927 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3928 size_t align, unsigned long flags, void (*ctor)(void *)) 3929 { 3930 struct kmem_cache *s; 3931 char *n; 3932 3933 if (WARN_ON(!name)) 3934 return NULL; 3935 3936 down_write(&slub_lock); 3937 s = find_mergeable(size, align, flags, name, ctor); 3938 if (s) { 3939 s->refcount++; 3940 /* 3941 * Adjust the object sizes so that we clear 3942 * the complete object on kzalloc. 3943 */ 3944 s->objsize = max(s->objsize, (int)size); 3945 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3946 3947 if (sysfs_slab_alias(s, name)) { 3948 s->refcount--; 3949 goto err; 3950 } 3951 up_write(&slub_lock); 3952 return s; 3953 } 3954 3955 n = kstrdup(name, GFP_KERNEL); 3956 if (!n) 3957 goto err; 3958 3959 s = kmalloc(kmem_size, GFP_KERNEL); 3960 if (s) { 3961 if (kmem_cache_open(s, n, 3962 size, align, flags, ctor)) { 3963 list_add(&s->list, &slab_caches); 3964 up_write(&slub_lock); 3965 if (sysfs_slab_add(s)) { 3966 down_write(&slub_lock); 3967 list_del(&s->list); 3968 kfree(n); 3969 kfree(s); 3970 goto err; 3971 } 3972 return s; 3973 } 3974 kfree(s); 3975 } 3976 kfree(n); 3977 err: 3978 up_write(&slub_lock); 3979 3980 if (flags & SLAB_PANIC) 3981 panic("Cannot create slabcache %s\n", name); 3982 else 3983 s = NULL; 3984 return s; 3985 } 3986 EXPORT_SYMBOL(kmem_cache_create); 3987 3988 #ifdef CONFIG_SMP 3989 /* 3990 * Use the cpu notifier to insure that the cpu slabs are flushed when 3991 * necessary. 3992 */ 3993 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3994 unsigned long action, void *hcpu) 3995 { 3996 long cpu = (long)hcpu; 3997 struct kmem_cache *s; 3998 unsigned long flags; 3999 4000 switch (action) { 4001 case CPU_UP_CANCELED: 4002 case CPU_UP_CANCELED_FROZEN: 4003 case CPU_DEAD: 4004 case CPU_DEAD_FROZEN: 4005 down_read(&slub_lock); 4006 list_for_each_entry(s, &slab_caches, list) { 4007 local_irq_save(flags); 4008 __flush_cpu_slab(s, cpu); 4009 local_irq_restore(flags); 4010 } 4011 up_read(&slub_lock); 4012 break; 4013 default: 4014 break; 4015 } 4016 return NOTIFY_OK; 4017 } 4018 4019 static struct notifier_block __cpuinitdata slab_notifier = { 4020 .notifier_call = slab_cpuup_callback 4021 }; 4022 4023 #endif 4024 4025 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4026 { 4027 struct kmem_cache *s; 4028 void *ret; 4029 4030 if (unlikely(size > SLUB_MAX_SIZE)) 4031 return kmalloc_large(size, gfpflags); 4032 4033 s = get_slab(size, gfpflags); 4034 4035 if (unlikely(ZERO_OR_NULL_PTR(s))) 4036 return s; 4037 4038 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); 4039 4040 /* Honor the call site pointer we received. */ 4041 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4042 4043 return ret; 4044 } 4045 4046 #ifdef CONFIG_NUMA 4047 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4048 int node, unsigned long caller) 4049 { 4050 struct kmem_cache *s; 4051 void *ret; 4052 4053 if (unlikely(size > SLUB_MAX_SIZE)) { 4054 ret = kmalloc_large_node(size, gfpflags, node); 4055 4056 trace_kmalloc_node(caller, ret, 4057 size, PAGE_SIZE << get_order(size), 4058 gfpflags, node); 4059 4060 return ret; 4061 } 4062 4063 s = get_slab(size, gfpflags); 4064 4065 if (unlikely(ZERO_OR_NULL_PTR(s))) 4066 return s; 4067 4068 ret = slab_alloc(s, gfpflags, node, caller); 4069 4070 /* Honor the call site pointer we received. */ 4071 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4072 4073 return ret; 4074 } 4075 #endif 4076 4077 #ifdef CONFIG_SYSFS 4078 static int count_inuse(struct page *page) 4079 { 4080 return page->inuse; 4081 } 4082 4083 static int count_total(struct page *page) 4084 { 4085 return page->objects; 4086 } 4087 #endif 4088 4089 #ifdef CONFIG_SLUB_DEBUG 4090 static int validate_slab(struct kmem_cache *s, struct page *page, 4091 unsigned long *map) 4092 { 4093 void *p; 4094 void *addr = page_address(page); 4095 4096 if (!check_slab(s, page) || 4097 !on_freelist(s, page, NULL)) 4098 return 0; 4099 4100 /* Now we know that a valid freelist exists */ 4101 bitmap_zero(map, page->objects); 4102 4103 get_map(s, page, map); 4104 for_each_object(p, s, addr, page->objects) { 4105 if (test_bit(slab_index(p, s, addr), map)) 4106 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4107 return 0; 4108 } 4109 4110 for_each_object(p, s, addr, page->objects) 4111 if (!test_bit(slab_index(p, s, addr), map)) 4112 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4113 return 0; 4114 return 1; 4115 } 4116 4117 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4118 unsigned long *map) 4119 { 4120 slab_lock(page); 4121 validate_slab(s, page, map); 4122 slab_unlock(page); 4123 } 4124 4125 static int validate_slab_node(struct kmem_cache *s, 4126 struct kmem_cache_node *n, unsigned long *map) 4127 { 4128 unsigned long count = 0; 4129 struct page *page; 4130 unsigned long flags; 4131 4132 spin_lock_irqsave(&n->list_lock, flags); 4133 4134 list_for_each_entry(page, &n->partial, lru) { 4135 validate_slab_slab(s, page, map); 4136 count++; 4137 } 4138 if (count != n->nr_partial) 4139 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 4140 "counter=%ld\n", s->name, count, n->nr_partial); 4141 4142 if (!(s->flags & SLAB_STORE_USER)) 4143 goto out; 4144 4145 list_for_each_entry(page, &n->full, lru) { 4146 validate_slab_slab(s, page, map); 4147 count++; 4148 } 4149 if (count != atomic_long_read(&n->nr_slabs)) 4150 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 4151 "counter=%ld\n", s->name, count, 4152 atomic_long_read(&n->nr_slabs)); 4153 4154 out: 4155 spin_unlock_irqrestore(&n->list_lock, flags); 4156 return count; 4157 } 4158 4159 static long validate_slab_cache(struct kmem_cache *s) 4160 { 4161 int node; 4162 unsigned long count = 0; 4163 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4164 sizeof(unsigned long), GFP_KERNEL); 4165 4166 if (!map) 4167 return -ENOMEM; 4168 4169 flush_all(s); 4170 for_each_node_state(node, N_NORMAL_MEMORY) { 4171 struct kmem_cache_node *n = get_node(s, node); 4172 4173 count += validate_slab_node(s, n, map); 4174 } 4175 kfree(map); 4176 return count; 4177 } 4178 /* 4179 * Generate lists of code addresses where slabcache objects are allocated 4180 * and freed. 4181 */ 4182 4183 struct location { 4184 unsigned long count; 4185 unsigned long addr; 4186 long long sum_time; 4187 long min_time; 4188 long max_time; 4189 long min_pid; 4190 long max_pid; 4191 DECLARE_BITMAP(cpus, NR_CPUS); 4192 nodemask_t nodes; 4193 }; 4194 4195 struct loc_track { 4196 unsigned long max; 4197 unsigned long count; 4198 struct location *loc; 4199 }; 4200 4201 static void free_loc_track(struct loc_track *t) 4202 { 4203 if (t->max) 4204 free_pages((unsigned long)t->loc, 4205 get_order(sizeof(struct location) * t->max)); 4206 } 4207 4208 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4209 { 4210 struct location *l; 4211 int order; 4212 4213 order = get_order(sizeof(struct location) * max); 4214 4215 l = (void *)__get_free_pages(flags, order); 4216 if (!l) 4217 return 0; 4218 4219 if (t->count) { 4220 memcpy(l, t->loc, sizeof(struct location) * t->count); 4221 free_loc_track(t); 4222 } 4223 t->max = max; 4224 t->loc = l; 4225 return 1; 4226 } 4227 4228 static int add_location(struct loc_track *t, struct kmem_cache *s, 4229 const struct track *track) 4230 { 4231 long start, end, pos; 4232 struct location *l; 4233 unsigned long caddr; 4234 unsigned long age = jiffies - track->when; 4235 4236 start = -1; 4237 end = t->count; 4238 4239 for ( ; ; ) { 4240 pos = start + (end - start + 1) / 2; 4241 4242 /* 4243 * There is nothing at "end". If we end up there 4244 * we need to add something to before end. 4245 */ 4246 if (pos == end) 4247 break; 4248 4249 caddr = t->loc[pos].addr; 4250 if (track->addr == caddr) { 4251 4252 l = &t->loc[pos]; 4253 l->count++; 4254 if (track->when) { 4255 l->sum_time += age; 4256 if (age < l->min_time) 4257 l->min_time = age; 4258 if (age > l->max_time) 4259 l->max_time = age; 4260 4261 if (track->pid < l->min_pid) 4262 l->min_pid = track->pid; 4263 if (track->pid > l->max_pid) 4264 l->max_pid = track->pid; 4265 4266 cpumask_set_cpu(track->cpu, 4267 to_cpumask(l->cpus)); 4268 } 4269 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4270 return 1; 4271 } 4272 4273 if (track->addr < caddr) 4274 end = pos; 4275 else 4276 start = pos; 4277 } 4278 4279 /* 4280 * Not found. Insert new tracking element. 4281 */ 4282 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4283 return 0; 4284 4285 l = t->loc + pos; 4286 if (pos < t->count) 4287 memmove(l + 1, l, 4288 (t->count - pos) * sizeof(struct location)); 4289 t->count++; 4290 l->count = 1; 4291 l->addr = track->addr; 4292 l->sum_time = age; 4293 l->min_time = age; 4294 l->max_time = age; 4295 l->min_pid = track->pid; 4296 l->max_pid = track->pid; 4297 cpumask_clear(to_cpumask(l->cpus)); 4298 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4299 nodes_clear(l->nodes); 4300 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4301 return 1; 4302 } 4303 4304 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4305 struct page *page, enum track_item alloc, 4306 unsigned long *map) 4307 { 4308 void *addr = page_address(page); 4309 void *p; 4310 4311 bitmap_zero(map, page->objects); 4312 get_map(s, page, map); 4313 4314 for_each_object(p, s, addr, page->objects) 4315 if (!test_bit(slab_index(p, s, addr), map)) 4316 add_location(t, s, get_track(s, p, alloc)); 4317 } 4318 4319 static int list_locations(struct kmem_cache *s, char *buf, 4320 enum track_item alloc) 4321 { 4322 int len = 0; 4323 unsigned long i; 4324 struct loc_track t = { 0, 0, NULL }; 4325 int node; 4326 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4327 sizeof(unsigned long), GFP_KERNEL); 4328 4329 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4330 GFP_TEMPORARY)) { 4331 kfree(map); 4332 return sprintf(buf, "Out of memory\n"); 4333 } 4334 /* Push back cpu slabs */ 4335 flush_all(s); 4336 4337 for_each_node_state(node, N_NORMAL_MEMORY) { 4338 struct kmem_cache_node *n = get_node(s, node); 4339 unsigned long flags; 4340 struct page *page; 4341 4342 if (!atomic_long_read(&n->nr_slabs)) 4343 continue; 4344 4345 spin_lock_irqsave(&n->list_lock, flags); 4346 list_for_each_entry(page, &n->partial, lru) 4347 process_slab(&t, s, page, alloc, map); 4348 list_for_each_entry(page, &n->full, lru) 4349 process_slab(&t, s, page, alloc, map); 4350 spin_unlock_irqrestore(&n->list_lock, flags); 4351 } 4352 4353 for (i = 0; i < t.count; i++) { 4354 struct location *l = &t.loc[i]; 4355 4356 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4357 break; 4358 len += sprintf(buf + len, "%7ld ", l->count); 4359 4360 if (l->addr) 4361 len += sprintf(buf + len, "%pS", (void *)l->addr); 4362 else 4363 len += sprintf(buf + len, "<not-available>"); 4364 4365 if (l->sum_time != l->min_time) { 4366 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4367 l->min_time, 4368 (long)div_u64(l->sum_time, l->count), 4369 l->max_time); 4370 } else 4371 len += sprintf(buf + len, " age=%ld", 4372 l->min_time); 4373 4374 if (l->min_pid != l->max_pid) 4375 len += sprintf(buf + len, " pid=%ld-%ld", 4376 l->min_pid, l->max_pid); 4377 else 4378 len += sprintf(buf + len, " pid=%ld", 4379 l->min_pid); 4380 4381 if (num_online_cpus() > 1 && 4382 !cpumask_empty(to_cpumask(l->cpus)) && 4383 len < PAGE_SIZE - 60) { 4384 len += sprintf(buf + len, " cpus="); 4385 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4386 to_cpumask(l->cpus)); 4387 } 4388 4389 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4390 len < PAGE_SIZE - 60) { 4391 len += sprintf(buf + len, " nodes="); 4392 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4393 l->nodes); 4394 } 4395 4396 len += sprintf(buf + len, "\n"); 4397 } 4398 4399 free_loc_track(&t); 4400 kfree(map); 4401 if (!t.count) 4402 len += sprintf(buf, "No data\n"); 4403 return len; 4404 } 4405 #endif 4406 4407 #ifdef SLUB_RESILIENCY_TEST 4408 static void resiliency_test(void) 4409 { 4410 u8 *p; 4411 4412 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); 4413 4414 printk(KERN_ERR "SLUB resiliency testing\n"); 4415 printk(KERN_ERR "-----------------------\n"); 4416 printk(KERN_ERR "A. Corruption after allocation\n"); 4417 4418 p = kzalloc(16, GFP_KERNEL); 4419 p[16] = 0x12; 4420 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4421 " 0x12->0x%p\n\n", p + 16); 4422 4423 validate_slab_cache(kmalloc_caches[4]); 4424 4425 /* Hmmm... The next two are dangerous */ 4426 p = kzalloc(32, GFP_KERNEL); 4427 p[32 + sizeof(void *)] = 0x34; 4428 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4429 " 0x34 -> -0x%p\n", p); 4430 printk(KERN_ERR 4431 "If allocated object is overwritten then not detectable\n\n"); 4432 4433 validate_slab_cache(kmalloc_caches[5]); 4434 p = kzalloc(64, GFP_KERNEL); 4435 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4436 *p = 0x56; 4437 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4438 p); 4439 printk(KERN_ERR 4440 "If allocated object is overwritten then not detectable\n\n"); 4441 validate_slab_cache(kmalloc_caches[6]); 4442 4443 printk(KERN_ERR "\nB. Corruption after free\n"); 4444 p = kzalloc(128, GFP_KERNEL); 4445 kfree(p); 4446 *p = 0x78; 4447 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4448 validate_slab_cache(kmalloc_caches[7]); 4449 4450 p = kzalloc(256, GFP_KERNEL); 4451 kfree(p); 4452 p[50] = 0x9a; 4453 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4454 p); 4455 validate_slab_cache(kmalloc_caches[8]); 4456 4457 p = kzalloc(512, GFP_KERNEL); 4458 kfree(p); 4459 p[512] = 0xab; 4460 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4461 validate_slab_cache(kmalloc_caches[9]); 4462 } 4463 #else 4464 #ifdef CONFIG_SYSFS 4465 static void resiliency_test(void) {}; 4466 #endif 4467 #endif 4468 4469 #ifdef CONFIG_SYSFS 4470 enum slab_stat_type { 4471 SL_ALL, /* All slabs */ 4472 SL_PARTIAL, /* Only partially allocated slabs */ 4473 SL_CPU, /* Only slabs used for cpu caches */ 4474 SL_OBJECTS, /* Determine allocated objects not slabs */ 4475 SL_TOTAL /* Determine object capacity not slabs */ 4476 }; 4477 4478 #define SO_ALL (1 << SL_ALL) 4479 #define SO_PARTIAL (1 << SL_PARTIAL) 4480 #define SO_CPU (1 << SL_CPU) 4481 #define SO_OBJECTS (1 << SL_OBJECTS) 4482 #define SO_TOTAL (1 << SL_TOTAL) 4483 4484 static ssize_t show_slab_objects(struct kmem_cache *s, 4485 char *buf, unsigned long flags) 4486 { 4487 unsigned long total = 0; 4488 int node; 4489 int x; 4490 unsigned long *nodes; 4491 unsigned long *per_cpu; 4492 4493 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4494 if (!nodes) 4495 return -ENOMEM; 4496 per_cpu = nodes + nr_node_ids; 4497 4498 if (flags & SO_CPU) { 4499 int cpu; 4500 4501 for_each_possible_cpu(cpu) { 4502 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4503 int node = ACCESS_ONCE(c->node); 4504 struct page *page; 4505 4506 if (node < 0) 4507 continue; 4508 page = ACCESS_ONCE(c->page); 4509 if (page) { 4510 if (flags & SO_TOTAL) 4511 x = page->objects; 4512 else if (flags & SO_OBJECTS) 4513 x = page->inuse; 4514 else 4515 x = 1; 4516 4517 total += x; 4518 nodes[node] += x; 4519 } 4520 page = c->partial; 4521 4522 if (page) { 4523 x = page->pobjects; 4524 total += x; 4525 nodes[node] += x; 4526 } 4527 per_cpu[node]++; 4528 } 4529 } 4530 4531 lock_memory_hotplug(); 4532 #ifdef CONFIG_SLUB_DEBUG 4533 if (flags & SO_ALL) { 4534 for_each_node_state(node, N_NORMAL_MEMORY) { 4535 struct kmem_cache_node *n = get_node(s, node); 4536 4537 if (flags & SO_TOTAL) 4538 x = atomic_long_read(&n->total_objects); 4539 else if (flags & SO_OBJECTS) 4540 x = atomic_long_read(&n->total_objects) - 4541 count_partial(n, count_free); 4542 4543 else 4544 x = atomic_long_read(&n->nr_slabs); 4545 total += x; 4546 nodes[node] += x; 4547 } 4548 4549 } else 4550 #endif 4551 if (flags & SO_PARTIAL) { 4552 for_each_node_state(node, N_NORMAL_MEMORY) { 4553 struct kmem_cache_node *n = get_node(s, node); 4554 4555 if (flags & SO_TOTAL) 4556 x = count_partial(n, count_total); 4557 else if (flags & SO_OBJECTS) 4558 x = count_partial(n, count_inuse); 4559 else 4560 x = n->nr_partial; 4561 total += x; 4562 nodes[node] += x; 4563 } 4564 } 4565 x = sprintf(buf, "%lu", total); 4566 #ifdef CONFIG_NUMA 4567 for_each_node_state(node, N_NORMAL_MEMORY) 4568 if (nodes[node]) 4569 x += sprintf(buf + x, " N%d=%lu", 4570 node, nodes[node]); 4571 #endif 4572 unlock_memory_hotplug(); 4573 kfree(nodes); 4574 return x + sprintf(buf + x, "\n"); 4575 } 4576 4577 #ifdef CONFIG_SLUB_DEBUG 4578 static int any_slab_objects(struct kmem_cache *s) 4579 { 4580 int node; 4581 4582 for_each_online_node(node) { 4583 struct kmem_cache_node *n = get_node(s, node); 4584 4585 if (!n) 4586 continue; 4587 4588 if (atomic_long_read(&n->total_objects)) 4589 return 1; 4590 } 4591 return 0; 4592 } 4593 #endif 4594 4595 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4596 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4597 4598 struct slab_attribute { 4599 struct attribute attr; 4600 ssize_t (*show)(struct kmem_cache *s, char *buf); 4601 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4602 }; 4603 4604 #define SLAB_ATTR_RO(_name) \ 4605 static struct slab_attribute _name##_attr = \ 4606 __ATTR(_name, 0400, _name##_show, NULL) 4607 4608 #define SLAB_ATTR(_name) \ 4609 static struct slab_attribute _name##_attr = \ 4610 __ATTR(_name, 0600, _name##_show, _name##_store) 4611 4612 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4613 { 4614 return sprintf(buf, "%d\n", s->size); 4615 } 4616 SLAB_ATTR_RO(slab_size); 4617 4618 static ssize_t align_show(struct kmem_cache *s, char *buf) 4619 { 4620 return sprintf(buf, "%d\n", s->align); 4621 } 4622 SLAB_ATTR_RO(align); 4623 4624 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4625 { 4626 return sprintf(buf, "%d\n", s->objsize); 4627 } 4628 SLAB_ATTR_RO(object_size); 4629 4630 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4631 { 4632 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4633 } 4634 SLAB_ATTR_RO(objs_per_slab); 4635 4636 static ssize_t order_store(struct kmem_cache *s, 4637 const char *buf, size_t length) 4638 { 4639 unsigned long order; 4640 int err; 4641 4642 err = strict_strtoul(buf, 10, &order); 4643 if (err) 4644 return err; 4645 4646 if (order > slub_max_order || order < slub_min_order) 4647 return -EINVAL; 4648 4649 calculate_sizes(s, order); 4650 return length; 4651 } 4652 4653 static ssize_t order_show(struct kmem_cache *s, char *buf) 4654 { 4655 return sprintf(buf, "%d\n", oo_order(s->oo)); 4656 } 4657 SLAB_ATTR(order); 4658 4659 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4660 { 4661 return sprintf(buf, "%lu\n", s->min_partial); 4662 } 4663 4664 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4665 size_t length) 4666 { 4667 unsigned long min; 4668 int err; 4669 4670 err = strict_strtoul(buf, 10, &min); 4671 if (err) 4672 return err; 4673 4674 set_min_partial(s, min); 4675 return length; 4676 } 4677 SLAB_ATTR(min_partial); 4678 4679 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4680 { 4681 return sprintf(buf, "%u\n", s->cpu_partial); 4682 } 4683 4684 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4685 size_t length) 4686 { 4687 unsigned long objects; 4688 int err; 4689 4690 err = strict_strtoul(buf, 10, &objects); 4691 if (err) 4692 return err; 4693 if (objects && kmem_cache_debug(s)) 4694 return -EINVAL; 4695 4696 s->cpu_partial = objects; 4697 flush_all(s); 4698 return length; 4699 } 4700 SLAB_ATTR(cpu_partial); 4701 4702 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4703 { 4704 if (!s->ctor) 4705 return 0; 4706 return sprintf(buf, "%pS\n", s->ctor); 4707 } 4708 SLAB_ATTR_RO(ctor); 4709 4710 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4711 { 4712 return sprintf(buf, "%d\n", s->refcount - 1); 4713 } 4714 SLAB_ATTR_RO(aliases); 4715 4716 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4717 { 4718 return show_slab_objects(s, buf, SO_PARTIAL); 4719 } 4720 SLAB_ATTR_RO(partial); 4721 4722 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4723 { 4724 return show_slab_objects(s, buf, SO_CPU); 4725 } 4726 SLAB_ATTR_RO(cpu_slabs); 4727 4728 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4729 { 4730 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4731 } 4732 SLAB_ATTR_RO(objects); 4733 4734 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4735 { 4736 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4737 } 4738 SLAB_ATTR_RO(objects_partial); 4739 4740 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4741 { 4742 int objects = 0; 4743 int pages = 0; 4744 int cpu; 4745 int len; 4746 4747 for_each_online_cpu(cpu) { 4748 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4749 4750 if (page) { 4751 pages += page->pages; 4752 objects += page->pobjects; 4753 } 4754 } 4755 4756 len = sprintf(buf, "%d(%d)", objects, pages); 4757 4758 #ifdef CONFIG_SMP 4759 for_each_online_cpu(cpu) { 4760 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4761 4762 if (page && len < PAGE_SIZE - 20) 4763 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4764 page->pobjects, page->pages); 4765 } 4766 #endif 4767 return len + sprintf(buf + len, "\n"); 4768 } 4769 SLAB_ATTR_RO(slabs_cpu_partial); 4770 4771 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4772 { 4773 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4774 } 4775 4776 static ssize_t reclaim_account_store(struct kmem_cache *s, 4777 const char *buf, size_t length) 4778 { 4779 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4780 if (buf[0] == '1') 4781 s->flags |= SLAB_RECLAIM_ACCOUNT; 4782 return length; 4783 } 4784 SLAB_ATTR(reclaim_account); 4785 4786 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4787 { 4788 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4789 } 4790 SLAB_ATTR_RO(hwcache_align); 4791 4792 #ifdef CONFIG_ZONE_DMA 4793 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4794 { 4795 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4796 } 4797 SLAB_ATTR_RO(cache_dma); 4798 #endif 4799 4800 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4801 { 4802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4803 } 4804 SLAB_ATTR_RO(destroy_by_rcu); 4805 4806 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4807 { 4808 return sprintf(buf, "%d\n", s->reserved); 4809 } 4810 SLAB_ATTR_RO(reserved); 4811 4812 #ifdef CONFIG_SLUB_DEBUG 4813 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4814 { 4815 return show_slab_objects(s, buf, SO_ALL); 4816 } 4817 SLAB_ATTR_RO(slabs); 4818 4819 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4820 { 4821 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4822 } 4823 SLAB_ATTR_RO(total_objects); 4824 4825 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4826 { 4827 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4828 } 4829 4830 static ssize_t sanity_checks_store(struct kmem_cache *s, 4831 const char *buf, size_t length) 4832 { 4833 s->flags &= ~SLAB_DEBUG_FREE; 4834 if (buf[0] == '1') { 4835 s->flags &= ~__CMPXCHG_DOUBLE; 4836 s->flags |= SLAB_DEBUG_FREE; 4837 } 4838 return length; 4839 } 4840 SLAB_ATTR(sanity_checks); 4841 4842 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4843 { 4844 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4845 } 4846 4847 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4848 size_t length) 4849 { 4850 s->flags &= ~SLAB_TRACE; 4851 if (buf[0] == '1') { 4852 s->flags &= ~__CMPXCHG_DOUBLE; 4853 s->flags |= SLAB_TRACE; 4854 } 4855 return length; 4856 } 4857 SLAB_ATTR(trace); 4858 4859 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4860 { 4861 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4862 } 4863 4864 static ssize_t red_zone_store(struct kmem_cache *s, 4865 const char *buf, size_t length) 4866 { 4867 if (any_slab_objects(s)) 4868 return -EBUSY; 4869 4870 s->flags &= ~SLAB_RED_ZONE; 4871 if (buf[0] == '1') { 4872 s->flags &= ~__CMPXCHG_DOUBLE; 4873 s->flags |= SLAB_RED_ZONE; 4874 } 4875 calculate_sizes(s, -1); 4876 return length; 4877 } 4878 SLAB_ATTR(red_zone); 4879 4880 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4881 { 4882 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4883 } 4884 4885 static ssize_t poison_store(struct kmem_cache *s, 4886 const char *buf, size_t length) 4887 { 4888 if (any_slab_objects(s)) 4889 return -EBUSY; 4890 4891 s->flags &= ~SLAB_POISON; 4892 if (buf[0] == '1') { 4893 s->flags &= ~__CMPXCHG_DOUBLE; 4894 s->flags |= SLAB_POISON; 4895 } 4896 calculate_sizes(s, -1); 4897 return length; 4898 } 4899 SLAB_ATTR(poison); 4900 4901 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4902 { 4903 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4904 } 4905 4906 static ssize_t store_user_store(struct kmem_cache *s, 4907 const char *buf, size_t length) 4908 { 4909 if (any_slab_objects(s)) 4910 return -EBUSY; 4911 4912 s->flags &= ~SLAB_STORE_USER; 4913 if (buf[0] == '1') { 4914 s->flags &= ~__CMPXCHG_DOUBLE; 4915 s->flags |= SLAB_STORE_USER; 4916 } 4917 calculate_sizes(s, -1); 4918 return length; 4919 } 4920 SLAB_ATTR(store_user); 4921 4922 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4923 { 4924 return 0; 4925 } 4926 4927 static ssize_t validate_store(struct kmem_cache *s, 4928 const char *buf, size_t length) 4929 { 4930 int ret = -EINVAL; 4931 4932 if (buf[0] == '1') { 4933 ret = validate_slab_cache(s); 4934 if (ret >= 0) 4935 ret = length; 4936 } 4937 return ret; 4938 } 4939 SLAB_ATTR(validate); 4940 4941 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4942 { 4943 if (!(s->flags & SLAB_STORE_USER)) 4944 return -ENOSYS; 4945 return list_locations(s, buf, TRACK_ALLOC); 4946 } 4947 SLAB_ATTR_RO(alloc_calls); 4948 4949 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4950 { 4951 if (!(s->flags & SLAB_STORE_USER)) 4952 return -ENOSYS; 4953 return list_locations(s, buf, TRACK_FREE); 4954 } 4955 SLAB_ATTR_RO(free_calls); 4956 #endif /* CONFIG_SLUB_DEBUG */ 4957 4958 #ifdef CONFIG_FAILSLAB 4959 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4960 { 4961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4962 } 4963 4964 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4965 size_t length) 4966 { 4967 s->flags &= ~SLAB_FAILSLAB; 4968 if (buf[0] == '1') 4969 s->flags |= SLAB_FAILSLAB; 4970 return length; 4971 } 4972 SLAB_ATTR(failslab); 4973 #endif 4974 4975 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4976 { 4977 return 0; 4978 } 4979 4980 static ssize_t shrink_store(struct kmem_cache *s, 4981 const char *buf, size_t length) 4982 { 4983 if (buf[0] == '1') { 4984 int rc = kmem_cache_shrink(s); 4985 4986 if (rc) 4987 return rc; 4988 } else 4989 return -EINVAL; 4990 return length; 4991 } 4992 SLAB_ATTR(shrink); 4993 4994 #ifdef CONFIG_NUMA 4995 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4996 { 4997 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4998 } 4999 5000 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5001 const char *buf, size_t length) 5002 { 5003 unsigned long ratio; 5004 int err; 5005 5006 err = strict_strtoul(buf, 10, &ratio); 5007 if (err) 5008 return err; 5009 5010 if (ratio <= 100) 5011 s->remote_node_defrag_ratio = ratio * 10; 5012 5013 return length; 5014 } 5015 SLAB_ATTR(remote_node_defrag_ratio); 5016 #endif 5017 5018 #ifdef CONFIG_SLUB_STATS 5019 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5020 { 5021 unsigned long sum = 0; 5022 int cpu; 5023 int len; 5024 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5025 5026 if (!data) 5027 return -ENOMEM; 5028 5029 for_each_online_cpu(cpu) { 5030 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5031 5032 data[cpu] = x; 5033 sum += x; 5034 } 5035 5036 len = sprintf(buf, "%lu", sum); 5037 5038 #ifdef CONFIG_SMP 5039 for_each_online_cpu(cpu) { 5040 if (data[cpu] && len < PAGE_SIZE - 20) 5041 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5042 } 5043 #endif 5044 kfree(data); 5045 return len + sprintf(buf + len, "\n"); 5046 } 5047 5048 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5049 { 5050 int cpu; 5051 5052 for_each_online_cpu(cpu) 5053 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5054 } 5055 5056 #define STAT_ATTR(si, text) \ 5057 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5058 { \ 5059 return show_stat(s, buf, si); \ 5060 } \ 5061 static ssize_t text##_store(struct kmem_cache *s, \ 5062 const char *buf, size_t length) \ 5063 { \ 5064 if (buf[0] != '0') \ 5065 return -EINVAL; \ 5066 clear_stat(s, si); \ 5067 return length; \ 5068 } \ 5069 SLAB_ATTR(text); \ 5070 5071 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5072 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5073 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5074 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5075 STAT_ATTR(FREE_FROZEN, free_frozen); 5076 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5077 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5078 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5079 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5080 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5081 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5082 STAT_ATTR(FREE_SLAB, free_slab); 5083 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5084 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5085 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5086 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5087 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5088 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5089 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5090 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5091 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5092 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5093 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5094 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5095 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5096 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5097 #endif 5098 5099 static struct attribute *slab_attrs[] = { 5100 &slab_size_attr.attr, 5101 &object_size_attr.attr, 5102 &objs_per_slab_attr.attr, 5103 &order_attr.attr, 5104 &min_partial_attr.attr, 5105 &cpu_partial_attr.attr, 5106 &objects_attr.attr, 5107 &objects_partial_attr.attr, 5108 &partial_attr.attr, 5109 &cpu_slabs_attr.attr, 5110 &ctor_attr.attr, 5111 &aliases_attr.attr, 5112 &align_attr.attr, 5113 &hwcache_align_attr.attr, 5114 &reclaim_account_attr.attr, 5115 &destroy_by_rcu_attr.attr, 5116 &shrink_attr.attr, 5117 &reserved_attr.attr, 5118 &slabs_cpu_partial_attr.attr, 5119 #ifdef CONFIG_SLUB_DEBUG 5120 &total_objects_attr.attr, 5121 &slabs_attr.attr, 5122 &sanity_checks_attr.attr, 5123 &trace_attr.attr, 5124 &red_zone_attr.attr, 5125 &poison_attr.attr, 5126 &store_user_attr.attr, 5127 &validate_attr.attr, 5128 &alloc_calls_attr.attr, 5129 &free_calls_attr.attr, 5130 #endif 5131 #ifdef CONFIG_ZONE_DMA 5132 &cache_dma_attr.attr, 5133 #endif 5134 #ifdef CONFIG_NUMA 5135 &remote_node_defrag_ratio_attr.attr, 5136 #endif 5137 #ifdef CONFIG_SLUB_STATS 5138 &alloc_fastpath_attr.attr, 5139 &alloc_slowpath_attr.attr, 5140 &free_fastpath_attr.attr, 5141 &free_slowpath_attr.attr, 5142 &free_frozen_attr.attr, 5143 &free_add_partial_attr.attr, 5144 &free_remove_partial_attr.attr, 5145 &alloc_from_partial_attr.attr, 5146 &alloc_slab_attr.attr, 5147 &alloc_refill_attr.attr, 5148 &alloc_node_mismatch_attr.attr, 5149 &free_slab_attr.attr, 5150 &cpuslab_flush_attr.attr, 5151 &deactivate_full_attr.attr, 5152 &deactivate_empty_attr.attr, 5153 &deactivate_to_head_attr.attr, 5154 &deactivate_to_tail_attr.attr, 5155 &deactivate_remote_frees_attr.attr, 5156 &deactivate_bypass_attr.attr, 5157 &order_fallback_attr.attr, 5158 &cmpxchg_double_fail_attr.attr, 5159 &cmpxchg_double_cpu_fail_attr.attr, 5160 &cpu_partial_alloc_attr.attr, 5161 &cpu_partial_free_attr.attr, 5162 &cpu_partial_node_attr.attr, 5163 &cpu_partial_drain_attr.attr, 5164 #endif 5165 #ifdef CONFIG_FAILSLAB 5166 &failslab_attr.attr, 5167 #endif 5168 5169 NULL 5170 }; 5171 5172 static struct attribute_group slab_attr_group = { 5173 .attrs = slab_attrs, 5174 }; 5175 5176 static ssize_t slab_attr_show(struct kobject *kobj, 5177 struct attribute *attr, 5178 char *buf) 5179 { 5180 struct slab_attribute *attribute; 5181 struct kmem_cache *s; 5182 int err; 5183 5184 attribute = to_slab_attr(attr); 5185 s = to_slab(kobj); 5186 5187 if (!attribute->show) 5188 return -EIO; 5189 5190 err = attribute->show(s, buf); 5191 5192 return err; 5193 } 5194 5195 static ssize_t slab_attr_store(struct kobject *kobj, 5196 struct attribute *attr, 5197 const char *buf, size_t len) 5198 { 5199 struct slab_attribute *attribute; 5200 struct kmem_cache *s; 5201 int err; 5202 5203 attribute = to_slab_attr(attr); 5204 s = to_slab(kobj); 5205 5206 if (!attribute->store) 5207 return -EIO; 5208 5209 err = attribute->store(s, buf, len); 5210 5211 return err; 5212 } 5213 5214 static void kmem_cache_release(struct kobject *kobj) 5215 { 5216 struct kmem_cache *s = to_slab(kobj); 5217 5218 kfree(s->name); 5219 kfree(s); 5220 } 5221 5222 static const struct sysfs_ops slab_sysfs_ops = { 5223 .show = slab_attr_show, 5224 .store = slab_attr_store, 5225 }; 5226 5227 static struct kobj_type slab_ktype = { 5228 .sysfs_ops = &slab_sysfs_ops, 5229 .release = kmem_cache_release 5230 }; 5231 5232 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5233 { 5234 struct kobj_type *ktype = get_ktype(kobj); 5235 5236 if (ktype == &slab_ktype) 5237 return 1; 5238 return 0; 5239 } 5240 5241 static const struct kset_uevent_ops slab_uevent_ops = { 5242 .filter = uevent_filter, 5243 }; 5244 5245 static struct kset *slab_kset; 5246 5247 #define ID_STR_LENGTH 64 5248 5249 /* Create a unique string id for a slab cache: 5250 * 5251 * Format :[flags-]size 5252 */ 5253 static char *create_unique_id(struct kmem_cache *s) 5254 { 5255 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5256 char *p = name; 5257 5258 BUG_ON(!name); 5259 5260 *p++ = ':'; 5261 /* 5262 * First flags affecting slabcache operations. We will only 5263 * get here for aliasable slabs so we do not need to support 5264 * too many flags. The flags here must cover all flags that 5265 * are matched during merging to guarantee that the id is 5266 * unique. 5267 */ 5268 if (s->flags & SLAB_CACHE_DMA) 5269 *p++ = 'd'; 5270 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5271 *p++ = 'a'; 5272 if (s->flags & SLAB_DEBUG_FREE) 5273 *p++ = 'F'; 5274 if (!(s->flags & SLAB_NOTRACK)) 5275 *p++ = 't'; 5276 if (p != name + 1) 5277 *p++ = '-'; 5278 p += sprintf(p, "%07d", s->size); 5279 BUG_ON(p > name + ID_STR_LENGTH - 1); 5280 return name; 5281 } 5282 5283 static int sysfs_slab_add(struct kmem_cache *s) 5284 { 5285 int err; 5286 const char *name; 5287 int unmergeable; 5288 5289 if (slab_state < SYSFS) 5290 /* Defer until later */ 5291 return 0; 5292 5293 unmergeable = slab_unmergeable(s); 5294 if (unmergeable) { 5295 /* 5296 * Slabcache can never be merged so we can use the name proper. 5297 * This is typically the case for debug situations. In that 5298 * case we can catch duplicate names easily. 5299 */ 5300 sysfs_remove_link(&slab_kset->kobj, s->name); 5301 name = s->name; 5302 } else { 5303 /* 5304 * Create a unique name for the slab as a target 5305 * for the symlinks. 5306 */ 5307 name = create_unique_id(s); 5308 } 5309 5310 s->kobj.kset = slab_kset; 5311 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 5312 if (err) { 5313 kobject_put(&s->kobj); 5314 return err; 5315 } 5316 5317 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5318 if (err) { 5319 kobject_del(&s->kobj); 5320 kobject_put(&s->kobj); 5321 return err; 5322 } 5323 kobject_uevent(&s->kobj, KOBJ_ADD); 5324 if (!unmergeable) { 5325 /* Setup first alias */ 5326 sysfs_slab_alias(s, s->name); 5327 kfree(name); 5328 } 5329 return 0; 5330 } 5331 5332 static void sysfs_slab_remove(struct kmem_cache *s) 5333 { 5334 if (slab_state < SYSFS) 5335 /* 5336 * Sysfs has not been setup yet so no need to remove the 5337 * cache from sysfs. 5338 */ 5339 return; 5340 5341 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5342 kobject_del(&s->kobj); 5343 kobject_put(&s->kobj); 5344 } 5345 5346 /* 5347 * Need to buffer aliases during bootup until sysfs becomes 5348 * available lest we lose that information. 5349 */ 5350 struct saved_alias { 5351 struct kmem_cache *s; 5352 const char *name; 5353 struct saved_alias *next; 5354 }; 5355 5356 static struct saved_alias *alias_list; 5357 5358 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5359 { 5360 struct saved_alias *al; 5361 5362 if (slab_state == SYSFS) { 5363 /* 5364 * If we have a leftover link then remove it. 5365 */ 5366 sysfs_remove_link(&slab_kset->kobj, name); 5367 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5368 } 5369 5370 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5371 if (!al) 5372 return -ENOMEM; 5373 5374 al->s = s; 5375 al->name = name; 5376 al->next = alias_list; 5377 alias_list = al; 5378 return 0; 5379 } 5380 5381 static int __init slab_sysfs_init(void) 5382 { 5383 struct kmem_cache *s; 5384 int err; 5385 5386 down_write(&slub_lock); 5387 5388 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5389 if (!slab_kset) { 5390 up_write(&slub_lock); 5391 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5392 return -ENOSYS; 5393 } 5394 5395 slab_state = SYSFS; 5396 5397 list_for_each_entry(s, &slab_caches, list) { 5398 err = sysfs_slab_add(s); 5399 if (err) 5400 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5401 " to sysfs\n", s->name); 5402 } 5403 5404 while (alias_list) { 5405 struct saved_alias *al = alias_list; 5406 5407 alias_list = alias_list->next; 5408 err = sysfs_slab_alias(al->s, al->name); 5409 if (err) 5410 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5411 " %s to sysfs\n", s->name); 5412 kfree(al); 5413 } 5414 5415 up_write(&slub_lock); 5416 resiliency_test(); 5417 return 0; 5418 } 5419 5420 __initcall(slab_sysfs_init); 5421 #endif /* CONFIG_SYSFS */ 5422 5423 /* 5424 * The /proc/slabinfo ABI 5425 */ 5426 #ifdef CONFIG_SLABINFO 5427 static void print_slabinfo_header(struct seq_file *m) 5428 { 5429 seq_puts(m, "slabinfo - version: 2.1\n"); 5430 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 5431 "<objperslab> <pagesperslab>"); 5432 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 5433 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 5434 seq_putc(m, '\n'); 5435 } 5436 5437 static void *s_start(struct seq_file *m, loff_t *pos) 5438 { 5439 loff_t n = *pos; 5440 5441 down_read(&slub_lock); 5442 if (!n) 5443 print_slabinfo_header(m); 5444 5445 return seq_list_start(&slab_caches, *pos); 5446 } 5447 5448 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 5449 { 5450 return seq_list_next(p, &slab_caches, pos); 5451 } 5452 5453 static void s_stop(struct seq_file *m, void *p) 5454 { 5455 up_read(&slub_lock); 5456 } 5457 5458 static int s_show(struct seq_file *m, void *p) 5459 { 5460 unsigned long nr_partials = 0; 5461 unsigned long nr_slabs = 0; 5462 unsigned long nr_inuse = 0; 5463 unsigned long nr_objs = 0; 5464 unsigned long nr_free = 0; 5465 struct kmem_cache *s; 5466 int node; 5467 5468 s = list_entry(p, struct kmem_cache, list); 5469 5470 for_each_online_node(node) { 5471 struct kmem_cache_node *n = get_node(s, node); 5472 5473 if (!n) 5474 continue; 5475 5476 nr_partials += n->nr_partial; 5477 nr_slabs += atomic_long_read(&n->nr_slabs); 5478 nr_objs += atomic_long_read(&n->total_objects); 5479 nr_free += count_partial(n, count_free); 5480 } 5481 5482 nr_inuse = nr_objs - nr_free; 5483 5484 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 5485 nr_objs, s->size, oo_objects(s->oo), 5486 (1 << oo_order(s->oo))); 5487 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 5488 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 5489 0UL); 5490 seq_putc(m, '\n'); 5491 return 0; 5492 } 5493 5494 static const struct seq_operations slabinfo_op = { 5495 .start = s_start, 5496 .next = s_next, 5497 .stop = s_stop, 5498 .show = s_show, 5499 }; 5500 5501 static int slabinfo_open(struct inode *inode, struct file *file) 5502 { 5503 return seq_open(file, &slabinfo_op); 5504 } 5505 5506 static const struct file_operations proc_slabinfo_operations = { 5507 .open = slabinfo_open, 5508 .read = seq_read, 5509 .llseek = seq_lseek, 5510 .release = seq_release, 5511 }; 5512 5513 static int __init slab_proc_init(void) 5514 { 5515 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); 5516 return 0; 5517 } 5518 module_init(slab_proc_init); 5519 #endif /* CONFIG_SLABINFO */ 5520