xref: /openbmc/linux/mm/slub.c (revision aa6159ab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * page->frozen		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 #ifdef CONFIG_SLUB_DEBUG
118 #ifdef CONFIG_SLUB_DEBUG_ON
119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120 #else
121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122 #endif
123 #endif
124 
125 static inline bool kmem_cache_debug(struct kmem_cache *s)
126 {
127 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
128 }
129 
130 void *fixup_red_left(struct kmem_cache *s, void *p)
131 {
132 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
133 		p += s->red_left_pad;
134 
135 	return p;
136 }
137 
138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139 {
140 #ifdef CONFIG_SLUB_CPU_PARTIAL
141 	return !kmem_cache_debug(s);
142 #else
143 	return false;
144 #endif
145 }
146 
147 /*
148  * Issues still to be resolved:
149  *
150  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151  *
152  * - Variable sizing of the per node arrays
153  */
154 
155 /* Enable to test recovery from slab corruption on boot */
156 #undef SLUB_RESILIENCY_TEST
157 
158 /* Enable to log cmpxchg failures */
159 #undef SLUB_DEBUG_CMPXCHG
160 
161 /*
162  * Mininum number of partial slabs. These will be left on the partial
163  * lists even if they are empty. kmem_cache_shrink may reclaim them.
164  */
165 #define MIN_PARTIAL 5
166 
167 /*
168  * Maximum number of desirable partial slabs.
169  * The existence of more partial slabs makes kmem_cache_shrink
170  * sort the partial list by the number of objects in use.
171  */
172 #define MAX_PARTIAL 10
173 
174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
175 				SLAB_POISON | SLAB_STORE_USER)
176 
177 /*
178  * These debug flags cannot use CMPXCHG because there might be consistency
179  * issues when checking or reading debug information
180  */
181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 				SLAB_TRACE)
183 
184 
185 /*
186  * Debugging flags that require metadata to be stored in the slab.  These get
187  * disabled when slub_debug=O is used and a cache's min order increases with
188  * metadata.
189  */
190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191 
192 #define OO_SHIFT	16
193 #define OO_MASK		((1 << OO_SHIFT) - 1)
194 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
195 
196 /* Internal SLUB flags */
197 /* Poison object */
198 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
199 /* Use cmpxchg_double */
200 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
201 
202 /*
203  * Tracking user of a slab.
204  */
205 #define TRACK_ADDRS_COUNT 16
206 struct track {
207 	unsigned long addr;	/* Called from address */
208 #ifdef CONFIG_STACKTRACE
209 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
210 #endif
211 	int cpu;		/* Was running on cpu */
212 	int pid;		/* Pid context */
213 	unsigned long when;	/* When did the operation occur */
214 };
215 
216 enum track_item { TRACK_ALLOC, TRACK_FREE };
217 
218 #ifdef CONFIG_SYSFS
219 static int sysfs_slab_add(struct kmem_cache *);
220 static int sysfs_slab_alias(struct kmem_cache *, const char *);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 #endif
226 
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 	/*
231 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 	 * avoid this_cpu_add()'s irq-disable overhead.
233 	 */
234 	raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237 
238 /********************************************************************
239  * 			Core slab cache functions
240  *******************************************************************/
241 
242 /*
243  * Returns freelist pointer (ptr). With hardening, this is obfuscated
244  * with an XOR of the address where the pointer is held and a per-cache
245  * random number.
246  */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 				 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 	/*
252 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 	 * Normally, this doesn't cause any issues, as both set_freepointer()
254 	 * and get_freepointer() are called with a pointer with the same tag.
255 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 	 * example, when __free_slub() iterates over objects in a cache, it
257 	 * passes untagged pointers to check_object(). check_object() in turns
258 	 * calls get_freepointer() with an untagged pointer, which causes the
259 	 * freepointer to be restored incorrectly.
260 	 */
261 	return (void *)((unsigned long)ptr ^ s->random ^
262 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 #else
264 	return ptr;
265 #endif
266 }
267 
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 					 void *ptr_addr)
271 {
272 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 			    (unsigned long)ptr_addr);
274 }
275 
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 	return freelist_dereference(s, object + s->offset);
279 }
280 
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 	prefetch(object + s->offset);
284 }
285 
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 	unsigned long freepointer_addr;
289 	void *p;
290 
291 	if (!debug_pagealloc_enabled_static())
292 		return get_freepointer(s, object);
293 
294 	freepointer_addr = (unsigned long)object + s->offset;
295 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
296 	return freelist_ptr(s, p, freepointer_addr);
297 }
298 
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
302 
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 	BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306 
307 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309 
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 	for (__p = fixup_red_left(__s, __addr); \
313 		__p < (__addr) + (__objects) * (__s)->size; \
314 		__p += (__s)->size)
315 
316 static inline unsigned int order_objects(unsigned int order, unsigned int size)
317 {
318 	return ((unsigned int)PAGE_SIZE << order) / size;
319 }
320 
321 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
322 		unsigned int size)
323 {
324 	struct kmem_cache_order_objects x = {
325 		(order << OO_SHIFT) + order_objects(order, size)
326 	};
327 
328 	return x;
329 }
330 
331 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
332 {
333 	return x.x >> OO_SHIFT;
334 }
335 
336 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
337 {
338 	return x.x & OO_MASK;
339 }
340 
341 /*
342  * Per slab locking using the pagelock
343  */
344 static __always_inline void slab_lock(struct page *page)
345 {
346 	VM_BUG_ON_PAGE(PageTail(page), page);
347 	bit_spin_lock(PG_locked, &page->flags);
348 }
349 
350 static __always_inline void slab_unlock(struct page *page)
351 {
352 	VM_BUG_ON_PAGE(PageTail(page), page);
353 	__bit_spin_unlock(PG_locked, &page->flags);
354 }
355 
356 /* Interrupts must be disabled (for the fallback code to work right) */
357 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
358 		void *freelist_old, unsigned long counters_old,
359 		void *freelist_new, unsigned long counters_new,
360 		const char *n)
361 {
362 	VM_BUG_ON(!irqs_disabled());
363 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
364     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
365 	if (s->flags & __CMPXCHG_DOUBLE) {
366 		if (cmpxchg_double(&page->freelist, &page->counters,
367 				   freelist_old, counters_old,
368 				   freelist_new, counters_new))
369 			return true;
370 	} else
371 #endif
372 	{
373 		slab_lock(page);
374 		if (page->freelist == freelist_old &&
375 					page->counters == counters_old) {
376 			page->freelist = freelist_new;
377 			page->counters = counters_new;
378 			slab_unlock(page);
379 			return true;
380 		}
381 		slab_unlock(page);
382 	}
383 
384 	cpu_relax();
385 	stat(s, CMPXCHG_DOUBLE_FAIL);
386 
387 #ifdef SLUB_DEBUG_CMPXCHG
388 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
389 #endif
390 
391 	return false;
392 }
393 
394 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
395 		void *freelist_old, unsigned long counters_old,
396 		void *freelist_new, unsigned long counters_new,
397 		const char *n)
398 {
399 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
400     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
401 	if (s->flags & __CMPXCHG_DOUBLE) {
402 		if (cmpxchg_double(&page->freelist, &page->counters,
403 				   freelist_old, counters_old,
404 				   freelist_new, counters_new))
405 			return true;
406 	} else
407 #endif
408 	{
409 		unsigned long flags;
410 
411 		local_irq_save(flags);
412 		slab_lock(page);
413 		if (page->freelist == freelist_old &&
414 					page->counters == counters_old) {
415 			page->freelist = freelist_new;
416 			page->counters = counters_new;
417 			slab_unlock(page);
418 			local_irq_restore(flags);
419 			return true;
420 		}
421 		slab_unlock(page);
422 		local_irq_restore(flags);
423 	}
424 
425 	cpu_relax();
426 	stat(s, CMPXCHG_DOUBLE_FAIL);
427 
428 #ifdef SLUB_DEBUG_CMPXCHG
429 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
430 #endif
431 
432 	return false;
433 }
434 
435 #ifdef CONFIG_SLUB_DEBUG
436 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
437 static DEFINE_SPINLOCK(object_map_lock);
438 
439 /*
440  * Determine a map of object in use on a page.
441  *
442  * Node listlock must be held to guarantee that the page does
443  * not vanish from under us.
444  */
445 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
446 	__acquires(&object_map_lock)
447 {
448 	void *p;
449 	void *addr = page_address(page);
450 
451 	VM_BUG_ON(!irqs_disabled());
452 
453 	spin_lock(&object_map_lock);
454 
455 	bitmap_zero(object_map, page->objects);
456 
457 	for (p = page->freelist; p; p = get_freepointer(s, p))
458 		set_bit(__obj_to_index(s, addr, p), object_map);
459 
460 	return object_map;
461 }
462 
463 static void put_map(unsigned long *map) __releases(&object_map_lock)
464 {
465 	VM_BUG_ON(map != object_map);
466 	spin_unlock(&object_map_lock);
467 }
468 
469 static inline unsigned int size_from_object(struct kmem_cache *s)
470 {
471 	if (s->flags & SLAB_RED_ZONE)
472 		return s->size - s->red_left_pad;
473 
474 	return s->size;
475 }
476 
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 {
479 	if (s->flags & SLAB_RED_ZONE)
480 		p -= s->red_left_pad;
481 
482 	return p;
483 }
484 
485 /*
486  * Debug settings:
487  */
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
493 
494 static char *slub_debug_string;
495 static int disable_higher_order_debug;
496 
497 /*
498  * slub is about to manipulate internal object metadata.  This memory lies
499  * outside the range of the allocated object, so accessing it would normally
500  * be reported by kasan as a bounds error.  metadata_access_enable() is used
501  * to tell kasan that these accesses are OK.
502  */
503 static inline void metadata_access_enable(void)
504 {
505 	kasan_disable_current();
506 }
507 
508 static inline void metadata_access_disable(void)
509 {
510 	kasan_enable_current();
511 }
512 
513 /*
514  * Object debugging
515  */
516 
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 				struct page *page, void *object)
520 {
521 	void *base;
522 
523 	if (!object)
524 		return 1;
525 
526 	base = page_address(page);
527 	object = kasan_reset_tag(object);
528 	object = restore_red_left(s, object);
529 	if (object < base || object >= base + page->objects * s->size ||
530 		(object - base) % s->size) {
531 		return 0;
532 	}
533 
534 	return 1;
535 }
536 
537 static void print_section(char *level, char *text, u8 *addr,
538 			  unsigned int length)
539 {
540 	metadata_access_enable();
541 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
542 			length, 1);
543 	metadata_access_disable();
544 }
545 
546 /*
547  * See comment in calculate_sizes().
548  */
549 static inline bool freeptr_outside_object(struct kmem_cache *s)
550 {
551 	return s->offset >= s->inuse;
552 }
553 
554 /*
555  * Return offset of the end of info block which is inuse + free pointer if
556  * not overlapping with object.
557  */
558 static inline unsigned int get_info_end(struct kmem_cache *s)
559 {
560 	if (freeptr_outside_object(s))
561 		return s->inuse + sizeof(void *);
562 	else
563 		return s->inuse;
564 }
565 
566 static struct track *get_track(struct kmem_cache *s, void *object,
567 	enum track_item alloc)
568 {
569 	struct track *p;
570 
571 	p = object + get_info_end(s);
572 
573 	return p + alloc;
574 }
575 
576 static void set_track(struct kmem_cache *s, void *object,
577 			enum track_item alloc, unsigned long addr)
578 {
579 	struct track *p = get_track(s, object, alloc);
580 
581 	if (addr) {
582 #ifdef CONFIG_STACKTRACE
583 		unsigned int nr_entries;
584 
585 		metadata_access_enable();
586 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
587 		metadata_access_disable();
588 
589 		if (nr_entries < TRACK_ADDRS_COUNT)
590 			p->addrs[nr_entries] = 0;
591 #endif
592 		p->addr = addr;
593 		p->cpu = smp_processor_id();
594 		p->pid = current->pid;
595 		p->when = jiffies;
596 	} else {
597 		memset(p, 0, sizeof(struct track));
598 	}
599 }
600 
601 static void init_tracking(struct kmem_cache *s, void *object)
602 {
603 	if (!(s->flags & SLAB_STORE_USER))
604 		return;
605 
606 	set_track(s, object, TRACK_FREE, 0UL);
607 	set_track(s, object, TRACK_ALLOC, 0UL);
608 }
609 
610 static void print_track(const char *s, struct track *t, unsigned long pr_time)
611 {
612 	if (!t->addr)
613 		return;
614 
615 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
616 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
617 #ifdef CONFIG_STACKTRACE
618 	{
619 		int i;
620 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
621 			if (t->addrs[i])
622 				pr_err("\t%pS\n", (void *)t->addrs[i]);
623 			else
624 				break;
625 	}
626 #endif
627 }
628 
629 void print_tracking(struct kmem_cache *s, void *object)
630 {
631 	unsigned long pr_time = jiffies;
632 	if (!(s->flags & SLAB_STORE_USER))
633 		return;
634 
635 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
636 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
637 }
638 
639 static void print_page_info(struct page *page)
640 {
641 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
642 	       page, page->objects, page->inuse, page->freelist, page->flags);
643 
644 }
645 
646 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
647 {
648 	struct va_format vaf;
649 	va_list args;
650 
651 	va_start(args, fmt);
652 	vaf.fmt = fmt;
653 	vaf.va = &args;
654 	pr_err("=============================================================================\n");
655 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
656 	pr_err("-----------------------------------------------------------------------------\n\n");
657 
658 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
659 	va_end(args);
660 }
661 
662 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
663 {
664 	struct va_format vaf;
665 	va_list args;
666 
667 	va_start(args, fmt);
668 	vaf.fmt = fmt;
669 	vaf.va = &args;
670 	pr_err("FIX %s: %pV\n", s->name, &vaf);
671 	va_end(args);
672 }
673 
674 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
675 			       void **freelist, void *nextfree)
676 {
677 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
678 	    !check_valid_pointer(s, page, nextfree) && freelist) {
679 		object_err(s, page, *freelist, "Freechain corrupt");
680 		*freelist = NULL;
681 		slab_fix(s, "Isolate corrupted freechain");
682 		return true;
683 	}
684 
685 	return false;
686 }
687 
688 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
689 {
690 	unsigned int off;	/* Offset of last byte */
691 	u8 *addr = page_address(page);
692 
693 	print_tracking(s, p);
694 
695 	print_page_info(page);
696 
697 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
698 	       p, p - addr, get_freepointer(s, p));
699 
700 	if (s->flags & SLAB_RED_ZONE)
701 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
702 			      s->red_left_pad);
703 	else if (p > addr + 16)
704 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
705 
706 	print_section(KERN_ERR, "Object ", p,
707 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
708 	if (s->flags & SLAB_RED_ZONE)
709 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
710 			s->inuse - s->object_size);
711 
712 	off = get_info_end(s);
713 
714 	if (s->flags & SLAB_STORE_USER)
715 		off += 2 * sizeof(struct track);
716 
717 	off += kasan_metadata_size(s);
718 
719 	if (off != size_from_object(s))
720 		/* Beginning of the filler is the free pointer */
721 		print_section(KERN_ERR, "Padding ", p + off,
722 			      size_from_object(s) - off);
723 
724 	dump_stack();
725 }
726 
727 void object_err(struct kmem_cache *s, struct page *page,
728 			u8 *object, char *reason)
729 {
730 	slab_bug(s, "%s", reason);
731 	print_trailer(s, page, object);
732 }
733 
734 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
735 			const char *fmt, ...)
736 {
737 	va_list args;
738 	char buf[100];
739 
740 	va_start(args, fmt);
741 	vsnprintf(buf, sizeof(buf), fmt, args);
742 	va_end(args);
743 	slab_bug(s, "%s", buf);
744 	print_page_info(page);
745 	dump_stack();
746 }
747 
748 static void init_object(struct kmem_cache *s, void *object, u8 val)
749 {
750 	u8 *p = object;
751 
752 	if (s->flags & SLAB_RED_ZONE)
753 		memset(p - s->red_left_pad, val, s->red_left_pad);
754 
755 	if (s->flags & __OBJECT_POISON) {
756 		memset(p, POISON_FREE, s->object_size - 1);
757 		p[s->object_size - 1] = POISON_END;
758 	}
759 
760 	if (s->flags & SLAB_RED_ZONE)
761 		memset(p + s->object_size, val, s->inuse - s->object_size);
762 }
763 
764 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
765 						void *from, void *to)
766 {
767 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
768 	memset(from, data, to - from);
769 }
770 
771 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
772 			u8 *object, char *what,
773 			u8 *start, unsigned int value, unsigned int bytes)
774 {
775 	u8 *fault;
776 	u8 *end;
777 	u8 *addr = page_address(page);
778 
779 	metadata_access_enable();
780 	fault = memchr_inv(start, value, bytes);
781 	metadata_access_disable();
782 	if (!fault)
783 		return 1;
784 
785 	end = start + bytes;
786 	while (end > fault && end[-1] == value)
787 		end--;
788 
789 	slab_bug(s, "%s overwritten", what);
790 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
791 					fault, end - 1, fault - addr,
792 					fault[0], value);
793 	print_trailer(s, page, object);
794 
795 	restore_bytes(s, what, value, fault, end);
796 	return 0;
797 }
798 
799 /*
800  * Object layout:
801  *
802  * object address
803  * 	Bytes of the object to be managed.
804  * 	If the freepointer may overlay the object then the free
805  *	pointer is at the middle of the object.
806  *
807  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
808  * 	0xa5 (POISON_END)
809  *
810  * object + s->object_size
811  * 	Padding to reach word boundary. This is also used for Redzoning.
812  * 	Padding is extended by another word if Redzoning is enabled and
813  * 	object_size == inuse.
814  *
815  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
816  * 	0xcc (RED_ACTIVE) for objects in use.
817  *
818  * object + s->inuse
819  * 	Meta data starts here.
820  *
821  * 	A. Free pointer (if we cannot overwrite object on free)
822  * 	B. Tracking data for SLAB_STORE_USER
823  * 	C. Padding to reach required alignment boundary or at mininum
824  * 		one word if debugging is on to be able to detect writes
825  * 		before the word boundary.
826  *
827  *	Padding is done using 0x5a (POISON_INUSE)
828  *
829  * object + s->size
830  * 	Nothing is used beyond s->size.
831  *
832  * If slabcaches are merged then the object_size and inuse boundaries are mostly
833  * ignored. And therefore no slab options that rely on these boundaries
834  * may be used with merged slabcaches.
835  */
836 
837 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
838 {
839 	unsigned long off = get_info_end(s);	/* The end of info */
840 
841 	if (s->flags & SLAB_STORE_USER)
842 		/* We also have user information there */
843 		off += 2 * sizeof(struct track);
844 
845 	off += kasan_metadata_size(s);
846 
847 	if (size_from_object(s) == off)
848 		return 1;
849 
850 	return check_bytes_and_report(s, page, p, "Object padding",
851 			p + off, POISON_INUSE, size_from_object(s) - off);
852 }
853 
854 /* Check the pad bytes at the end of a slab page */
855 static int slab_pad_check(struct kmem_cache *s, struct page *page)
856 {
857 	u8 *start;
858 	u8 *fault;
859 	u8 *end;
860 	u8 *pad;
861 	int length;
862 	int remainder;
863 
864 	if (!(s->flags & SLAB_POISON))
865 		return 1;
866 
867 	start = page_address(page);
868 	length = page_size(page);
869 	end = start + length;
870 	remainder = length % s->size;
871 	if (!remainder)
872 		return 1;
873 
874 	pad = end - remainder;
875 	metadata_access_enable();
876 	fault = memchr_inv(pad, POISON_INUSE, remainder);
877 	metadata_access_disable();
878 	if (!fault)
879 		return 1;
880 	while (end > fault && end[-1] == POISON_INUSE)
881 		end--;
882 
883 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
884 			fault, end - 1, fault - start);
885 	print_section(KERN_ERR, "Padding ", pad, remainder);
886 
887 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
888 	return 0;
889 }
890 
891 static int check_object(struct kmem_cache *s, struct page *page,
892 					void *object, u8 val)
893 {
894 	u8 *p = object;
895 	u8 *endobject = object + s->object_size;
896 
897 	if (s->flags & SLAB_RED_ZONE) {
898 		if (!check_bytes_and_report(s, page, object, "Redzone",
899 			object - s->red_left_pad, val, s->red_left_pad))
900 			return 0;
901 
902 		if (!check_bytes_and_report(s, page, object, "Redzone",
903 			endobject, val, s->inuse - s->object_size))
904 			return 0;
905 	} else {
906 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
907 			check_bytes_and_report(s, page, p, "Alignment padding",
908 				endobject, POISON_INUSE,
909 				s->inuse - s->object_size);
910 		}
911 	}
912 
913 	if (s->flags & SLAB_POISON) {
914 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
915 			(!check_bytes_and_report(s, page, p, "Poison", p,
916 					POISON_FREE, s->object_size - 1) ||
917 			 !check_bytes_and_report(s, page, p, "Poison",
918 				p + s->object_size - 1, POISON_END, 1)))
919 			return 0;
920 		/*
921 		 * check_pad_bytes cleans up on its own.
922 		 */
923 		check_pad_bytes(s, page, p);
924 	}
925 
926 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
927 		/*
928 		 * Object and freepointer overlap. Cannot check
929 		 * freepointer while object is allocated.
930 		 */
931 		return 1;
932 
933 	/* Check free pointer validity */
934 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
935 		object_err(s, page, p, "Freepointer corrupt");
936 		/*
937 		 * No choice but to zap it and thus lose the remainder
938 		 * of the free objects in this slab. May cause
939 		 * another error because the object count is now wrong.
940 		 */
941 		set_freepointer(s, p, NULL);
942 		return 0;
943 	}
944 	return 1;
945 }
946 
947 static int check_slab(struct kmem_cache *s, struct page *page)
948 {
949 	int maxobj;
950 
951 	VM_BUG_ON(!irqs_disabled());
952 
953 	if (!PageSlab(page)) {
954 		slab_err(s, page, "Not a valid slab page");
955 		return 0;
956 	}
957 
958 	maxobj = order_objects(compound_order(page), s->size);
959 	if (page->objects > maxobj) {
960 		slab_err(s, page, "objects %u > max %u",
961 			page->objects, maxobj);
962 		return 0;
963 	}
964 	if (page->inuse > page->objects) {
965 		slab_err(s, page, "inuse %u > max %u",
966 			page->inuse, page->objects);
967 		return 0;
968 	}
969 	/* Slab_pad_check fixes things up after itself */
970 	slab_pad_check(s, page);
971 	return 1;
972 }
973 
974 /*
975  * Determine if a certain object on a page is on the freelist. Must hold the
976  * slab lock to guarantee that the chains are in a consistent state.
977  */
978 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
979 {
980 	int nr = 0;
981 	void *fp;
982 	void *object = NULL;
983 	int max_objects;
984 
985 	fp = page->freelist;
986 	while (fp && nr <= page->objects) {
987 		if (fp == search)
988 			return 1;
989 		if (!check_valid_pointer(s, page, fp)) {
990 			if (object) {
991 				object_err(s, page, object,
992 					"Freechain corrupt");
993 				set_freepointer(s, object, NULL);
994 			} else {
995 				slab_err(s, page, "Freepointer corrupt");
996 				page->freelist = NULL;
997 				page->inuse = page->objects;
998 				slab_fix(s, "Freelist cleared");
999 				return 0;
1000 			}
1001 			break;
1002 		}
1003 		object = fp;
1004 		fp = get_freepointer(s, object);
1005 		nr++;
1006 	}
1007 
1008 	max_objects = order_objects(compound_order(page), s->size);
1009 	if (max_objects > MAX_OBJS_PER_PAGE)
1010 		max_objects = MAX_OBJS_PER_PAGE;
1011 
1012 	if (page->objects != max_objects) {
1013 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1014 			 page->objects, max_objects);
1015 		page->objects = max_objects;
1016 		slab_fix(s, "Number of objects adjusted.");
1017 	}
1018 	if (page->inuse != page->objects - nr) {
1019 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1020 			 page->inuse, page->objects - nr);
1021 		page->inuse = page->objects - nr;
1022 		slab_fix(s, "Object count adjusted.");
1023 	}
1024 	return search == NULL;
1025 }
1026 
1027 static void trace(struct kmem_cache *s, struct page *page, void *object,
1028 								int alloc)
1029 {
1030 	if (s->flags & SLAB_TRACE) {
1031 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1032 			s->name,
1033 			alloc ? "alloc" : "free",
1034 			object, page->inuse,
1035 			page->freelist);
1036 
1037 		if (!alloc)
1038 			print_section(KERN_INFO, "Object ", (void *)object,
1039 					s->object_size);
1040 
1041 		dump_stack();
1042 	}
1043 }
1044 
1045 /*
1046  * Tracking of fully allocated slabs for debugging purposes.
1047  */
1048 static void add_full(struct kmem_cache *s,
1049 	struct kmem_cache_node *n, struct page *page)
1050 {
1051 	if (!(s->flags & SLAB_STORE_USER))
1052 		return;
1053 
1054 	lockdep_assert_held(&n->list_lock);
1055 	list_add(&page->slab_list, &n->full);
1056 }
1057 
1058 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1059 {
1060 	if (!(s->flags & SLAB_STORE_USER))
1061 		return;
1062 
1063 	lockdep_assert_held(&n->list_lock);
1064 	list_del(&page->slab_list);
1065 }
1066 
1067 /* Tracking of the number of slabs for debugging purposes */
1068 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1069 {
1070 	struct kmem_cache_node *n = get_node(s, node);
1071 
1072 	return atomic_long_read(&n->nr_slabs);
1073 }
1074 
1075 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1076 {
1077 	return atomic_long_read(&n->nr_slabs);
1078 }
1079 
1080 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1081 {
1082 	struct kmem_cache_node *n = get_node(s, node);
1083 
1084 	/*
1085 	 * May be called early in order to allocate a slab for the
1086 	 * kmem_cache_node structure. Solve the chicken-egg
1087 	 * dilemma by deferring the increment of the count during
1088 	 * bootstrap (see early_kmem_cache_node_alloc).
1089 	 */
1090 	if (likely(n)) {
1091 		atomic_long_inc(&n->nr_slabs);
1092 		atomic_long_add(objects, &n->total_objects);
1093 	}
1094 }
1095 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1096 {
1097 	struct kmem_cache_node *n = get_node(s, node);
1098 
1099 	atomic_long_dec(&n->nr_slabs);
1100 	atomic_long_sub(objects, &n->total_objects);
1101 }
1102 
1103 /* Object debug checks for alloc/free paths */
1104 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1105 								void *object)
1106 {
1107 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1108 		return;
1109 
1110 	init_object(s, object, SLUB_RED_INACTIVE);
1111 	init_tracking(s, object);
1112 }
1113 
1114 static
1115 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1116 {
1117 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1118 		return;
1119 
1120 	metadata_access_enable();
1121 	memset(addr, POISON_INUSE, page_size(page));
1122 	metadata_access_disable();
1123 }
1124 
1125 static inline int alloc_consistency_checks(struct kmem_cache *s,
1126 					struct page *page, void *object)
1127 {
1128 	if (!check_slab(s, page))
1129 		return 0;
1130 
1131 	if (!check_valid_pointer(s, page, object)) {
1132 		object_err(s, page, object, "Freelist Pointer check fails");
1133 		return 0;
1134 	}
1135 
1136 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1137 		return 0;
1138 
1139 	return 1;
1140 }
1141 
1142 static noinline int alloc_debug_processing(struct kmem_cache *s,
1143 					struct page *page,
1144 					void *object, unsigned long addr)
1145 {
1146 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1147 		if (!alloc_consistency_checks(s, page, object))
1148 			goto bad;
1149 	}
1150 
1151 	/* Success perform special debug activities for allocs */
1152 	if (s->flags & SLAB_STORE_USER)
1153 		set_track(s, object, TRACK_ALLOC, addr);
1154 	trace(s, page, object, 1);
1155 	init_object(s, object, SLUB_RED_ACTIVE);
1156 	return 1;
1157 
1158 bad:
1159 	if (PageSlab(page)) {
1160 		/*
1161 		 * If this is a slab page then lets do the best we can
1162 		 * to avoid issues in the future. Marking all objects
1163 		 * as used avoids touching the remaining objects.
1164 		 */
1165 		slab_fix(s, "Marking all objects used");
1166 		page->inuse = page->objects;
1167 		page->freelist = NULL;
1168 	}
1169 	return 0;
1170 }
1171 
1172 static inline int free_consistency_checks(struct kmem_cache *s,
1173 		struct page *page, void *object, unsigned long addr)
1174 {
1175 	if (!check_valid_pointer(s, page, object)) {
1176 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1177 		return 0;
1178 	}
1179 
1180 	if (on_freelist(s, page, object)) {
1181 		object_err(s, page, object, "Object already free");
1182 		return 0;
1183 	}
1184 
1185 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1186 		return 0;
1187 
1188 	if (unlikely(s != page->slab_cache)) {
1189 		if (!PageSlab(page)) {
1190 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1191 				 object);
1192 		} else if (!page->slab_cache) {
1193 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1194 			       object);
1195 			dump_stack();
1196 		} else
1197 			object_err(s, page, object,
1198 					"page slab pointer corrupt.");
1199 		return 0;
1200 	}
1201 	return 1;
1202 }
1203 
1204 /* Supports checking bulk free of a constructed freelist */
1205 static noinline int free_debug_processing(
1206 	struct kmem_cache *s, struct page *page,
1207 	void *head, void *tail, int bulk_cnt,
1208 	unsigned long addr)
1209 {
1210 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1211 	void *object = head;
1212 	int cnt = 0;
1213 	unsigned long flags;
1214 	int ret = 0;
1215 
1216 	spin_lock_irqsave(&n->list_lock, flags);
1217 	slab_lock(page);
1218 
1219 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1220 		if (!check_slab(s, page))
1221 			goto out;
1222 	}
1223 
1224 next_object:
1225 	cnt++;
1226 
1227 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 		if (!free_consistency_checks(s, page, object, addr))
1229 			goto out;
1230 	}
1231 
1232 	if (s->flags & SLAB_STORE_USER)
1233 		set_track(s, object, TRACK_FREE, addr);
1234 	trace(s, page, object, 0);
1235 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1236 	init_object(s, object, SLUB_RED_INACTIVE);
1237 
1238 	/* Reached end of constructed freelist yet? */
1239 	if (object != tail) {
1240 		object = get_freepointer(s, object);
1241 		goto next_object;
1242 	}
1243 	ret = 1;
1244 
1245 out:
1246 	if (cnt != bulk_cnt)
1247 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1248 			 bulk_cnt, cnt);
1249 
1250 	slab_unlock(page);
1251 	spin_unlock_irqrestore(&n->list_lock, flags);
1252 	if (!ret)
1253 		slab_fix(s, "Object at 0x%p not freed", object);
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Parse a block of slub_debug options. Blocks are delimited by ';'
1259  *
1260  * @str:    start of block
1261  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1262  * @slabs:  return start of list of slabs, or NULL when there's no list
1263  * @init:   assume this is initial parsing and not per-kmem-create parsing
1264  *
1265  * returns the start of next block if there's any, or NULL
1266  */
1267 static char *
1268 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1269 {
1270 	bool higher_order_disable = false;
1271 
1272 	/* Skip any completely empty blocks */
1273 	while (*str && *str == ';')
1274 		str++;
1275 
1276 	if (*str == ',') {
1277 		/*
1278 		 * No options but restriction on slabs. This means full
1279 		 * debugging for slabs matching a pattern.
1280 		 */
1281 		*flags = DEBUG_DEFAULT_FLAGS;
1282 		goto check_slabs;
1283 	}
1284 	*flags = 0;
1285 
1286 	/* Determine which debug features should be switched on */
1287 	for (; *str && *str != ',' && *str != ';'; str++) {
1288 		switch (tolower(*str)) {
1289 		case '-':
1290 			*flags = 0;
1291 			break;
1292 		case 'f':
1293 			*flags |= SLAB_CONSISTENCY_CHECKS;
1294 			break;
1295 		case 'z':
1296 			*flags |= SLAB_RED_ZONE;
1297 			break;
1298 		case 'p':
1299 			*flags |= SLAB_POISON;
1300 			break;
1301 		case 'u':
1302 			*flags |= SLAB_STORE_USER;
1303 			break;
1304 		case 't':
1305 			*flags |= SLAB_TRACE;
1306 			break;
1307 		case 'a':
1308 			*flags |= SLAB_FAILSLAB;
1309 			break;
1310 		case 'o':
1311 			/*
1312 			 * Avoid enabling debugging on caches if its minimum
1313 			 * order would increase as a result.
1314 			 */
1315 			higher_order_disable = true;
1316 			break;
1317 		default:
1318 			if (init)
1319 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1320 		}
1321 	}
1322 check_slabs:
1323 	if (*str == ',')
1324 		*slabs = ++str;
1325 	else
1326 		*slabs = NULL;
1327 
1328 	/* Skip over the slab list */
1329 	while (*str && *str != ';')
1330 		str++;
1331 
1332 	/* Skip any completely empty blocks */
1333 	while (*str && *str == ';')
1334 		str++;
1335 
1336 	if (init && higher_order_disable)
1337 		disable_higher_order_debug = 1;
1338 
1339 	if (*str)
1340 		return str;
1341 	else
1342 		return NULL;
1343 }
1344 
1345 static int __init setup_slub_debug(char *str)
1346 {
1347 	slab_flags_t flags;
1348 	char *saved_str;
1349 	char *slab_list;
1350 	bool global_slub_debug_changed = false;
1351 	bool slab_list_specified = false;
1352 
1353 	slub_debug = DEBUG_DEFAULT_FLAGS;
1354 	if (*str++ != '=' || !*str)
1355 		/*
1356 		 * No options specified. Switch on full debugging.
1357 		 */
1358 		goto out;
1359 
1360 	saved_str = str;
1361 	while (str) {
1362 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1363 
1364 		if (!slab_list) {
1365 			slub_debug = flags;
1366 			global_slub_debug_changed = true;
1367 		} else {
1368 			slab_list_specified = true;
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * For backwards compatibility, a single list of flags with list of
1374 	 * slabs means debugging is only enabled for those slabs, so the global
1375 	 * slub_debug should be 0. We can extended that to multiple lists as
1376 	 * long as there is no option specifying flags without a slab list.
1377 	 */
1378 	if (slab_list_specified) {
1379 		if (!global_slub_debug_changed)
1380 			slub_debug = 0;
1381 		slub_debug_string = saved_str;
1382 	}
1383 out:
1384 	if (slub_debug != 0 || slub_debug_string)
1385 		static_branch_enable(&slub_debug_enabled);
1386 	if ((static_branch_unlikely(&init_on_alloc) ||
1387 	     static_branch_unlikely(&init_on_free)) &&
1388 	    (slub_debug & SLAB_POISON))
1389 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1390 	return 1;
1391 }
1392 
1393 __setup("slub_debug", setup_slub_debug);
1394 
1395 /*
1396  * kmem_cache_flags - apply debugging options to the cache
1397  * @object_size:	the size of an object without meta data
1398  * @flags:		flags to set
1399  * @name:		name of the cache
1400  * @ctor:		constructor function
1401  *
1402  * Debug option(s) are applied to @flags. In addition to the debug
1403  * option(s), if a slab name (or multiple) is specified i.e.
1404  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1405  * then only the select slabs will receive the debug option(s).
1406  */
1407 slab_flags_t kmem_cache_flags(unsigned int object_size,
1408 	slab_flags_t flags, const char *name,
1409 	void (*ctor)(void *))
1410 {
1411 	char *iter;
1412 	size_t len;
1413 	char *next_block;
1414 	slab_flags_t block_flags;
1415 
1416 	len = strlen(name);
1417 	next_block = slub_debug_string;
1418 	/* Go through all blocks of debug options, see if any matches our slab's name */
1419 	while (next_block) {
1420 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1421 		if (!iter)
1422 			continue;
1423 		/* Found a block that has a slab list, search it */
1424 		while (*iter) {
1425 			char *end, *glob;
1426 			size_t cmplen;
1427 
1428 			end = strchrnul(iter, ',');
1429 			if (next_block && next_block < end)
1430 				end = next_block - 1;
1431 
1432 			glob = strnchr(iter, end - iter, '*');
1433 			if (glob)
1434 				cmplen = glob - iter;
1435 			else
1436 				cmplen = max_t(size_t, len, (end - iter));
1437 
1438 			if (!strncmp(name, iter, cmplen)) {
1439 				flags |= block_flags;
1440 				return flags;
1441 			}
1442 
1443 			if (!*end || *end == ';')
1444 				break;
1445 			iter = end + 1;
1446 		}
1447 	}
1448 
1449 	return flags | slub_debug;
1450 }
1451 #else /* !CONFIG_SLUB_DEBUG */
1452 static inline void setup_object_debug(struct kmem_cache *s,
1453 			struct page *page, void *object) {}
1454 static inline
1455 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1456 
1457 static inline int alloc_debug_processing(struct kmem_cache *s,
1458 	struct page *page, void *object, unsigned long addr) { return 0; }
1459 
1460 static inline int free_debug_processing(
1461 	struct kmem_cache *s, struct page *page,
1462 	void *head, void *tail, int bulk_cnt,
1463 	unsigned long addr) { return 0; }
1464 
1465 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1466 			{ return 1; }
1467 static inline int check_object(struct kmem_cache *s, struct page *page,
1468 			void *object, u8 val) { return 1; }
1469 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1470 					struct page *page) {}
1471 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1472 					struct page *page) {}
1473 slab_flags_t kmem_cache_flags(unsigned int object_size,
1474 	slab_flags_t flags, const char *name,
1475 	void (*ctor)(void *))
1476 {
1477 	return flags;
1478 }
1479 #define slub_debug 0
1480 
1481 #define disable_higher_order_debug 0
1482 
1483 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1484 							{ return 0; }
1485 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1486 							{ return 0; }
1487 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1488 							int objects) {}
1489 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1490 							int objects) {}
1491 
1492 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1493 			       void **freelist, void *nextfree)
1494 {
1495 	return false;
1496 }
1497 #endif /* CONFIG_SLUB_DEBUG */
1498 
1499 /*
1500  * Hooks for other subsystems that check memory allocations. In a typical
1501  * production configuration these hooks all should produce no code at all.
1502  */
1503 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1504 {
1505 	ptr = kasan_kmalloc_large(ptr, size, flags);
1506 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1507 	kmemleak_alloc(ptr, size, 1, flags);
1508 	return ptr;
1509 }
1510 
1511 static __always_inline void kfree_hook(void *x)
1512 {
1513 	kmemleak_free(x);
1514 	kasan_kfree_large(x, _RET_IP_);
1515 }
1516 
1517 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1518 {
1519 	kmemleak_free_recursive(x, s->flags);
1520 
1521 	/*
1522 	 * Trouble is that we may no longer disable interrupts in the fast path
1523 	 * So in order to make the debug calls that expect irqs to be
1524 	 * disabled we need to disable interrupts temporarily.
1525 	 */
1526 #ifdef CONFIG_LOCKDEP
1527 	{
1528 		unsigned long flags;
1529 
1530 		local_irq_save(flags);
1531 		debug_check_no_locks_freed(x, s->object_size);
1532 		local_irq_restore(flags);
1533 	}
1534 #endif
1535 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1536 		debug_check_no_obj_freed(x, s->object_size);
1537 
1538 	/* Use KCSAN to help debug racy use-after-free. */
1539 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1540 		__kcsan_check_access(x, s->object_size,
1541 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1542 
1543 	/* KASAN might put x into memory quarantine, delaying its reuse */
1544 	return kasan_slab_free(s, x, _RET_IP_);
1545 }
1546 
1547 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1548 					   void **head, void **tail)
1549 {
1550 
1551 	void *object;
1552 	void *next = *head;
1553 	void *old_tail = *tail ? *tail : *head;
1554 	int rsize;
1555 
1556 	/* Head and tail of the reconstructed freelist */
1557 	*head = NULL;
1558 	*tail = NULL;
1559 
1560 	do {
1561 		object = next;
1562 		next = get_freepointer(s, object);
1563 
1564 		if (slab_want_init_on_free(s)) {
1565 			/*
1566 			 * Clear the object and the metadata, but don't touch
1567 			 * the redzone.
1568 			 */
1569 			memset(object, 0, s->object_size);
1570 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1571 							   : 0;
1572 			memset((char *)object + s->inuse, 0,
1573 			       s->size - s->inuse - rsize);
1574 
1575 		}
1576 		/* If object's reuse doesn't have to be delayed */
1577 		if (!slab_free_hook(s, object)) {
1578 			/* Move object to the new freelist */
1579 			set_freepointer(s, object, *head);
1580 			*head = object;
1581 			if (!*tail)
1582 				*tail = object;
1583 		}
1584 	} while (object != old_tail);
1585 
1586 	if (*head == *tail)
1587 		*tail = NULL;
1588 
1589 	return *head != NULL;
1590 }
1591 
1592 static void *setup_object(struct kmem_cache *s, struct page *page,
1593 				void *object)
1594 {
1595 	setup_object_debug(s, page, object);
1596 	object = kasan_init_slab_obj(s, object);
1597 	if (unlikely(s->ctor)) {
1598 		kasan_unpoison_object_data(s, object);
1599 		s->ctor(object);
1600 		kasan_poison_object_data(s, object);
1601 	}
1602 	return object;
1603 }
1604 
1605 /*
1606  * Slab allocation and freeing
1607  */
1608 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1609 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1610 {
1611 	struct page *page;
1612 	unsigned int order = oo_order(oo);
1613 
1614 	if (node == NUMA_NO_NODE)
1615 		page = alloc_pages(flags, order);
1616 	else
1617 		page = __alloc_pages_node(node, flags, order);
1618 
1619 	if (page)
1620 		account_slab_page(page, order, s);
1621 
1622 	return page;
1623 }
1624 
1625 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1626 /* Pre-initialize the random sequence cache */
1627 static int init_cache_random_seq(struct kmem_cache *s)
1628 {
1629 	unsigned int count = oo_objects(s->oo);
1630 	int err;
1631 
1632 	/* Bailout if already initialised */
1633 	if (s->random_seq)
1634 		return 0;
1635 
1636 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1637 	if (err) {
1638 		pr_err("SLUB: Unable to initialize free list for %s\n",
1639 			s->name);
1640 		return err;
1641 	}
1642 
1643 	/* Transform to an offset on the set of pages */
1644 	if (s->random_seq) {
1645 		unsigned int i;
1646 
1647 		for (i = 0; i < count; i++)
1648 			s->random_seq[i] *= s->size;
1649 	}
1650 	return 0;
1651 }
1652 
1653 /* Initialize each random sequence freelist per cache */
1654 static void __init init_freelist_randomization(void)
1655 {
1656 	struct kmem_cache *s;
1657 
1658 	mutex_lock(&slab_mutex);
1659 
1660 	list_for_each_entry(s, &slab_caches, list)
1661 		init_cache_random_seq(s);
1662 
1663 	mutex_unlock(&slab_mutex);
1664 }
1665 
1666 /* Get the next entry on the pre-computed freelist randomized */
1667 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1668 				unsigned long *pos, void *start,
1669 				unsigned long page_limit,
1670 				unsigned long freelist_count)
1671 {
1672 	unsigned int idx;
1673 
1674 	/*
1675 	 * If the target page allocation failed, the number of objects on the
1676 	 * page might be smaller than the usual size defined by the cache.
1677 	 */
1678 	do {
1679 		idx = s->random_seq[*pos];
1680 		*pos += 1;
1681 		if (*pos >= freelist_count)
1682 			*pos = 0;
1683 	} while (unlikely(idx >= page_limit));
1684 
1685 	return (char *)start + idx;
1686 }
1687 
1688 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1689 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1690 {
1691 	void *start;
1692 	void *cur;
1693 	void *next;
1694 	unsigned long idx, pos, page_limit, freelist_count;
1695 
1696 	if (page->objects < 2 || !s->random_seq)
1697 		return false;
1698 
1699 	freelist_count = oo_objects(s->oo);
1700 	pos = get_random_int() % freelist_count;
1701 
1702 	page_limit = page->objects * s->size;
1703 	start = fixup_red_left(s, page_address(page));
1704 
1705 	/* First entry is used as the base of the freelist */
1706 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1707 				freelist_count);
1708 	cur = setup_object(s, page, cur);
1709 	page->freelist = cur;
1710 
1711 	for (idx = 1; idx < page->objects; idx++) {
1712 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1713 			freelist_count);
1714 		next = setup_object(s, page, next);
1715 		set_freepointer(s, cur, next);
1716 		cur = next;
1717 	}
1718 	set_freepointer(s, cur, NULL);
1719 
1720 	return true;
1721 }
1722 #else
1723 static inline int init_cache_random_seq(struct kmem_cache *s)
1724 {
1725 	return 0;
1726 }
1727 static inline void init_freelist_randomization(void) { }
1728 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1729 {
1730 	return false;
1731 }
1732 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1733 
1734 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1735 {
1736 	struct page *page;
1737 	struct kmem_cache_order_objects oo = s->oo;
1738 	gfp_t alloc_gfp;
1739 	void *start, *p, *next;
1740 	int idx;
1741 	bool shuffle;
1742 
1743 	flags &= gfp_allowed_mask;
1744 
1745 	if (gfpflags_allow_blocking(flags))
1746 		local_irq_enable();
1747 
1748 	flags |= s->allocflags;
1749 
1750 	/*
1751 	 * Let the initial higher-order allocation fail under memory pressure
1752 	 * so we fall-back to the minimum order allocation.
1753 	 */
1754 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1755 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1756 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1757 
1758 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1759 	if (unlikely(!page)) {
1760 		oo = s->min;
1761 		alloc_gfp = flags;
1762 		/*
1763 		 * Allocation may have failed due to fragmentation.
1764 		 * Try a lower order alloc if possible
1765 		 */
1766 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1767 		if (unlikely(!page))
1768 			goto out;
1769 		stat(s, ORDER_FALLBACK);
1770 	}
1771 
1772 	page->objects = oo_objects(oo);
1773 
1774 	page->slab_cache = s;
1775 	__SetPageSlab(page);
1776 	if (page_is_pfmemalloc(page))
1777 		SetPageSlabPfmemalloc(page);
1778 
1779 	kasan_poison_slab(page);
1780 
1781 	start = page_address(page);
1782 
1783 	setup_page_debug(s, page, start);
1784 
1785 	shuffle = shuffle_freelist(s, page);
1786 
1787 	if (!shuffle) {
1788 		start = fixup_red_left(s, start);
1789 		start = setup_object(s, page, start);
1790 		page->freelist = start;
1791 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1792 			next = p + s->size;
1793 			next = setup_object(s, page, next);
1794 			set_freepointer(s, p, next);
1795 			p = next;
1796 		}
1797 		set_freepointer(s, p, NULL);
1798 	}
1799 
1800 	page->inuse = page->objects;
1801 	page->frozen = 1;
1802 
1803 out:
1804 	if (gfpflags_allow_blocking(flags))
1805 		local_irq_disable();
1806 	if (!page)
1807 		return NULL;
1808 
1809 	inc_slabs_node(s, page_to_nid(page), page->objects);
1810 
1811 	return page;
1812 }
1813 
1814 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1815 {
1816 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1817 		flags = kmalloc_fix_flags(flags);
1818 
1819 	return allocate_slab(s,
1820 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1821 }
1822 
1823 static void __free_slab(struct kmem_cache *s, struct page *page)
1824 {
1825 	int order = compound_order(page);
1826 	int pages = 1 << order;
1827 
1828 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1829 		void *p;
1830 
1831 		slab_pad_check(s, page);
1832 		for_each_object(p, s, page_address(page),
1833 						page->objects)
1834 			check_object(s, page, p, SLUB_RED_INACTIVE);
1835 	}
1836 
1837 	__ClearPageSlabPfmemalloc(page);
1838 	__ClearPageSlab(page);
1839 	/* In union with page->mapping where page allocator expects NULL */
1840 	page->slab_cache = NULL;
1841 	if (current->reclaim_state)
1842 		current->reclaim_state->reclaimed_slab += pages;
1843 	unaccount_slab_page(page, order, s);
1844 	__free_pages(page, order);
1845 }
1846 
1847 static void rcu_free_slab(struct rcu_head *h)
1848 {
1849 	struct page *page = container_of(h, struct page, rcu_head);
1850 
1851 	__free_slab(page->slab_cache, page);
1852 }
1853 
1854 static void free_slab(struct kmem_cache *s, struct page *page)
1855 {
1856 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1857 		call_rcu(&page->rcu_head, rcu_free_slab);
1858 	} else
1859 		__free_slab(s, page);
1860 }
1861 
1862 static void discard_slab(struct kmem_cache *s, struct page *page)
1863 {
1864 	dec_slabs_node(s, page_to_nid(page), page->objects);
1865 	free_slab(s, page);
1866 }
1867 
1868 /*
1869  * Management of partially allocated slabs.
1870  */
1871 static inline void
1872 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1873 {
1874 	n->nr_partial++;
1875 	if (tail == DEACTIVATE_TO_TAIL)
1876 		list_add_tail(&page->slab_list, &n->partial);
1877 	else
1878 		list_add(&page->slab_list, &n->partial);
1879 }
1880 
1881 static inline void add_partial(struct kmem_cache_node *n,
1882 				struct page *page, int tail)
1883 {
1884 	lockdep_assert_held(&n->list_lock);
1885 	__add_partial(n, page, tail);
1886 }
1887 
1888 static inline void remove_partial(struct kmem_cache_node *n,
1889 					struct page *page)
1890 {
1891 	lockdep_assert_held(&n->list_lock);
1892 	list_del(&page->slab_list);
1893 	n->nr_partial--;
1894 }
1895 
1896 /*
1897  * Remove slab from the partial list, freeze it and
1898  * return the pointer to the freelist.
1899  *
1900  * Returns a list of objects or NULL if it fails.
1901  */
1902 static inline void *acquire_slab(struct kmem_cache *s,
1903 		struct kmem_cache_node *n, struct page *page,
1904 		int mode, int *objects)
1905 {
1906 	void *freelist;
1907 	unsigned long counters;
1908 	struct page new;
1909 
1910 	lockdep_assert_held(&n->list_lock);
1911 
1912 	/*
1913 	 * Zap the freelist and set the frozen bit.
1914 	 * The old freelist is the list of objects for the
1915 	 * per cpu allocation list.
1916 	 */
1917 	freelist = page->freelist;
1918 	counters = page->counters;
1919 	new.counters = counters;
1920 	*objects = new.objects - new.inuse;
1921 	if (mode) {
1922 		new.inuse = page->objects;
1923 		new.freelist = NULL;
1924 	} else {
1925 		new.freelist = freelist;
1926 	}
1927 
1928 	VM_BUG_ON(new.frozen);
1929 	new.frozen = 1;
1930 
1931 	if (!__cmpxchg_double_slab(s, page,
1932 			freelist, counters,
1933 			new.freelist, new.counters,
1934 			"acquire_slab"))
1935 		return NULL;
1936 
1937 	remove_partial(n, page);
1938 	WARN_ON(!freelist);
1939 	return freelist;
1940 }
1941 
1942 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1943 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1944 
1945 /*
1946  * Try to allocate a partial slab from a specific node.
1947  */
1948 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1949 				struct kmem_cache_cpu *c, gfp_t flags)
1950 {
1951 	struct page *page, *page2;
1952 	void *object = NULL;
1953 	unsigned int available = 0;
1954 	int objects;
1955 
1956 	/*
1957 	 * Racy check. If we mistakenly see no partial slabs then we
1958 	 * just allocate an empty slab. If we mistakenly try to get a
1959 	 * partial slab and there is none available then get_partial()
1960 	 * will return NULL.
1961 	 */
1962 	if (!n || !n->nr_partial)
1963 		return NULL;
1964 
1965 	spin_lock(&n->list_lock);
1966 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1967 		void *t;
1968 
1969 		if (!pfmemalloc_match(page, flags))
1970 			continue;
1971 
1972 		t = acquire_slab(s, n, page, object == NULL, &objects);
1973 		if (!t)
1974 			break;
1975 
1976 		available += objects;
1977 		if (!object) {
1978 			c->page = page;
1979 			stat(s, ALLOC_FROM_PARTIAL);
1980 			object = t;
1981 		} else {
1982 			put_cpu_partial(s, page, 0);
1983 			stat(s, CPU_PARTIAL_NODE);
1984 		}
1985 		if (!kmem_cache_has_cpu_partial(s)
1986 			|| available > slub_cpu_partial(s) / 2)
1987 			break;
1988 
1989 	}
1990 	spin_unlock(&n->list_lock);
1991 	return object;
1992 }
1993 
1994 /*
1995  * Get a page from somewhere. Search in increasing NUMA distances.
1996  */
1997 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1998 		struct kmem_cache_cpu *c)
1999 {
2000 #ifdef CONFIG_NUMA
2001 	struct zonelist *zonelist;
2002 	struct zoneref *z;
2003 	struct zone *zone;
2004 	enum zone_type highest_zoneidx = gfp_zone(flags);
2005 	void *object;
2006 	unsigned int cpuset_mems_cookie;
2007 
2008 	/*
2009 	 * The defrag ratio allows a configuration of the tradeoffs between
2010 	 * inter node defragmentation and node local allocations. A lower
2011 	 * defrag_ratio increases the tendency to do local allocations
2012 	 * instead of attempting to obtain partial slabs from other nodes.
2013 	 *
2014 	 * If the defrag_ratio is set to 0 then kmalloc() always
2015 	 * returns node local objects. If the ratio is higher then kmalloc()
2016 	 * may return off node objects because partial slabs are obtained
2017 	 * from other nodes and filled up.
2018 	 *
2019 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2020 	 * (which makes defrag_ratio = 1000) then every (well almost)
2021 	 * allocation will first attempt to defrag slab caches on other nodes.
2022 	 * This means scanning over all nodes to look for partial slabs which
2023 	 * may be expensive if we do it every time we are trying to find a slab
2024 	 * with available objects.
2025 	 */
2026 	if (!s->remote_node_defrag_ratio ||
2027 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2028 		return NULL;
2029 
2030 	do {
2031 		cpuset_mems_cookie = read_mems_allowed_begin();
2032 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2033 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2034 			struct kmem_cache_node *n;
2035 
2036 			n = get_node(s, zone_to_nid(zone));
2037 
2038 			if (n && cpuset_zone_allowed(zone, flags) &&
2039 					n->nr_partial > s->min_partial) {
2040 				object = get_partial_node(s, n, c, flags);
2041 				if (object) {
2042 					/*
2043 					 * Don't check read_mems_allowed_retry()
2044 					 * here - if mems_allowed was updated in
2045 					 * parallel, that was a harmless race
2046 					 * between allocation and the cpuset
2047 					 * update
2048 					 */
2049 					return object;
2050 				}
2051 			}
2052 		}
2053 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2054 #endif	/* CONFIG_NUMA */
2055 	return NULL;
2056 }
2057 
2058 /*
2059  * Get a partial page, lock it and return it.
2060  */
2061 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2062 		struct kmem_cache_cpu *c)
2063 {
2064 	void *object;
2065 	int searchnode = node;
2066 
2067 	if (node == NUMA_NO_NODE)
2068 		searchnode = numa_mem_id();
2069 
2070 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2071 	if (object || node != NUMA_NO_NODE)
2072 		return object;
2073 
2074 	return get_any_partial(s, flags, c);
2075 }
2076 
2077 #ifdef CONFIG_PREEMPTION
2078 /*
2079  * Calculate the next globally unique transaction for disambiguation
2080  * during cmpxchg. The transactions start with the cpu number and are then
2081  * incremented by CONFIG_NR_CPUS.
2082  */
2083 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2084 #else
2085 /*
2086  * No preemption supported therefore also no need to check for
2087  * different cpus.
2088  */
2089 #define TID_STEP 1
2090 #endif
2091 
2092 static inline unsigned long next_tid(unsigned long tid)
2093 {
2094 	return tid + TID_STEP;
2095 }
2096 
2097 #ifdef SLUB_DEBUG_CMPXCHG
2098 static inline unsigned int tid_to_cpu(unsigned long tid)
2099 {
2100 	return tid % TID_STEP;
2101 }
2102 
2103 static inline unsigned long tid_to_event(unsigned long tid)
2104 {
2105 	return tid / TID_STEP;
2106 }
2107 #endif
2108 
2109 static inline unsigned int init_tid(int cpu)
2110 {
2111 	return cpu;
2112 }
2113 
2114 static inline void note_cmpxchg_failure(const char *n,
2115 		const struct kmem_cache *s, unsigned long tid)
2116 {
2117 #ifdef SLUB_DEBUG_CMPXCHG
2118 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2119 
2120 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2121 
2122 #ifdef CONFIG_PREEMPTION
2123 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2124 		pr_warn("due to cpu change %d -> %d\n",
2125 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2126 	else
2127 #endif
2128 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2129 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2130 			tid_to_event(tid), tid_to_event(actual_tid));
2131 	else
2132 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2133 			actual_tid, tid, next_tid(tid));
2134 #endif
2135 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2136 }
2137 
2138 static void init_kmem_cache_cpus(struct kmem_cache *s)
2139 {
2140 	int cpu;
2141 
2142 	for_each_possible_cpu(cpu)
2143 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2144 }
2145 
2146 /*
2147  * Remove the cpu slab
2148  */
2149 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2150 				void *freelist, struct kmem_cache_cpu *c)
2151 {
2152 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2153 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2154 	int lock = 0;
2155 	enum slab_modes l = M_NONE, m = M_NONE;
2156 	void *nextfree;
2157 	int tail = DEACTIVATE_TO_HEAD;
2158 	struct page new;
2159 	struct page old;
2160 
2161 	if (page->freelist) {
2162 		stat(s, DEACTIVATE_REMOTE_FREES);
2163 		tail = DEACTIVATE_TO_TAIL;
2164 	}
2165 
2166 	/*
2167 	 * Stage one: Free all available per cpu objects back
2168 	 * to the page freelist while it is still frozen. Leave the
2169 	 * last one.
2170 	 *
2171 	 * There is no need to take the list->lock because the page
2172 	 * is still frozen.
2173 	 */
2174 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2175 		void *prior;
2176 		unsigned long counters;
2177 
2178 		/*
2179 		 * If 'nextfree' is invalid, it is possible that the object at
2180 		 * 'freelist' is already corrupted.  So isolate all objects
2181 		 * starting at 'freelist'.
2182 		 */
2183 		if (freelist_corrupted(s, page, &freelist, nextfree))
2184 			break;
2185 
2186 		do {
2187 			prior = page->freelist;
2188 			counters = page->counters;
2189 			set_freepointer(s, freelist, prior);
2190 			new.counters = counters;
2191 			new.inuse--;
2192 			VM_BUG_ON(!new.frozen);
2193 
2194 		} while (!__cmpxchg_double_slab(s, page,
2195 			prior, counters,
2196 			freelist, new.counters,
2197 			"drain percpu freelist"));
2198 
2199 		freelist = nextfree;
2200 	}
2201 
2202 	/*
2203 	 * Stage two: Ensure that the page is unfrozen while the
2204 	 * list presence reflects the actual number of objects
2205 	 * during unfreeze.
2206 	 *
2207 	 * We setup the list membership and then perform a cmpxchg
2208 	 * with the count. If there is a mismatch then the page
2209 	 * is not unfrozen but the page is on the wrong list.
2210 	 *
2211 	 * Then we restart the process which may have to remove
2212 	 * the page from the list that we just put it on again
2213 	 * because the number of objects in the slab may have
2214 	 * changed.
2215 	 */
2216 redo:
2217 
2218 	old.freelist = page->freelist;
2219 	old.counters = page->counters;
2220 	VM_BUG_ON(!old.frozen);
2221 
2222 	/* Determine target state of the slab */
2223 	new.counters = old.counters;
2224 	if (freelist) {
2225 		new.inuse--;
2226 		set_freepointer(s, freelist, old.freelist);
2227 		new.freelist = freelist;
2228 	} else
2229 		new.freelist = old.freelist;
2230 
2231 	new.frozen = 0;
2232 
2233 	if (!new.inuse && n->nr_partial >= s->min_partial)
2234 		m = M_FREE;
2235 	else if (new.freelist) {
2236 		m = M_PARTIAL;
2237 		if (!lock) {
2238 			lock = 1;
2239 			/*
2240 			 * Taking the spinlock removes the possibility
2241 			 * that acquire_slab() will see a slab page that
2242 			 * is frozen
2243 			 */
2244 			spin_lock(&n->list_lock);
2245 		}
2246 	} else {
2247 		m = M_FULL;
2248 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2249 			lock = 1;
2250 			/*
2251 			 * This also ensures that the scanning of full
2252 			 * slabs from diagnostic functions will not see
2253 			 * any frozen slabs.
2254 			 */
2255 			spin_lock(&n->list_lock);
2256 		}
2257 	}
2258 
2259 	if (l != m) {
2260 		if (l == M_PARTIAL)
2261 			remove_partial(n, page);
2262 		else if (l == M_FULL)
2263 			remove_full(s, n, page);
2264 
2265 		if (m == M_PARTIAL)
2266 			add_partial(n, page, tail);
2267 		else if (m == M_FULL)
2268 			add_full(s, n, page);
2269 	}
2270 
2271 	l = m;
2272 	if (!__cmpxchg_double_slab(s, page,
2273 				old.freelist, old.counters,
2274 				new.freelist, new.counters,
2275 				"unfreezing slab"))
2276 		goto redo;
2277 
2278 	if (lock)
2279 		spin_unlock(&n->list_lock);
2280 
2281 	if (m == M_PARTIAL)
2282 		stat(s, tail);
2283 	else if (m == M_FULL)
2284 		stat(s, DEACTIVATE_FULL);
2285 	else if (m == M_FREE) {
2286 		stat(s, DEACTIVATE_EMPTY);
2287 		discard_slab(s, page);
2288 		stat(s, FREE_SLAB);
2289 	}
2290 
2291 	c->page = NULL;
2292 	c->freelist = NULL;
2293 }
2294 
2295 /*
2296  * Unfreeze all the cpu partial slabs.
2297  *
2298  * This function must be called with interrupts disabled
2299  * for the cpu using c (or some other guarantee must be there
2300  * to guarantee no concurrent accesses).
2301  */
2302 static void unfreeze_partials(struct kmem_cache *s,
2303 		struct kmem_cache_cpu *c)
2304 {
2305 #ifdef CONFIG_SLUB_CPU_PARTIAL
2306 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2307 	struct page *page, *discard_page = NULL;
2308 
2309 	while ((page = slub_percpu_partial(c))) {
2310 		struct page new;
2311 		struct page old;
2312 
2313 		slub_set_percpu_partial(c, page);
2314 
2315 		n2 = get_node(s, page_to_nid(page));
2316 		if (n != n2) {
2317 			if (n)
2318 				spin_unlock(&n->list_lock);
2319 
2320 			n = n2;
2321 			spin_lock(&n->list_lock);
2322 		}
2323 
2324 		do {
2325 
2326 			old.freelist = page->freelist;
2327 			old.counters = page->counters;
2328 			VM_BUG_ON(!old.frozen);
2329 
2330 			new.counters = old.counters;
2331 			new.freelist = old.freelist;
2332 
2333 			new.frozen = 0;
2334 
2335 		} while (!__cmpxchg_double_slab(s, page,
2336 				old.freelist, old.counters,
2337 				new.freelist, new.counters,
2338 				"unfreezing slab"));
2339 
2340 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2341 			page->next = discard_page;
2342 			discard_page = page;
2343 		} else {
2344 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2345 			stat(s, FREE_ADD_PARTIAL);
2346 		}
2347 	}
2348 
2349 	if (n)
2350 		spin_unlock(&n->list_lock);
2351 
2352 	while (discard_page) {
2353 		page = discard_page;
2354 		discard_page = discard_page->next;
2355 
2356 		stat(s, DEACTIVATE_EMPTY);
2357 		discard_slab(s, page);
2358 		stat(s, FREE_SLAB);
2359 	}
2360 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2361 }
2362 
2363 /*
2364  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2365  * partial page slot if available.
2366  *
2367  * If we did not find a slot then simply move all the partials to the
2368  * per node partial list.
2369  */
2370 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2371 {
2372 #ifdef CONFIG_SLUB_CPU_PARTIAL
2373 	struct page *oldpage;
2374 	int pages;
2375 	int pobjects;
2376 
2377 	preempt_disable();
2378 	do {
2379 		pages = 0;
2380 		pobjects = 0;
2381 		oldpage = this_cpu_read(s->cpu_slab->partial);
2382 
2383 		if (oldpage) {
2384 			pobjects = oldpage->pobjects;
2385 			pages = oldpage->pages;
2386 			if (drain && pobjects > slub_cpu_partial(s)) {
2387 				unsigned long flags;
2388 				/*
2389 				 * partial array is full. Move the existing
2390 				 * set to the per node partial list.
2391 				 */
2392 				local_irq_save(flags);
2393 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2394 				local_irq_restore(flags);
2395 				oldpage = NULL;
2396 				pobjects = 0;
2397 				pages = 0;
2398 				stat(s, CPU_PARTIAL_DRAIN);
2399 			}
2400 		}
2401 
2402 		pages++;
2403 		pobjects += page->objects - page->inuse;
2404 
2405 		page->pages = pages;
2406 		page->pobjects = pobjects;
2407 		page->next = oldpage;
2408 
2409 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2410 								!= oldpage);
2411 	if (unlikely(!slub_cpu_partial(s))) {
2412 		unsigned long flags;
2413 
2414 		local_irq_save(flags);
2415 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2416 		local_irq_restore(flags);
2417 	}
2418 	preempt_enable();
2419 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2420 }
2421 
2422 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2423 {
2424 	stat(s, CPUSLAB_FLUSH);
2425 	deactivate_slab(s, c->page, c->freelist, c);
2426 
2427 	c->tid = next_tid(c->tid);
2428 }
2429 
2430 /*
2431  * Flush cpu slab.
2432  *
2433  * Called from IPI handler with interrupts disabled.
2434  */
2435 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2436 {
2437 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2438 
2439 	if (c->page)
2440 		flush_slab(s, c);
2441 
2442 	unfreeze_partials(s, c);
2443 }
2444 
2445 static void flush_cpu_slab(void *d)
2446 {
2447 	struct kmem_cache *s = d;
2448 
2449 	__flush_cpu_slab(s, smp_processor_id());
2450 }
2451 
2452 static bool has_cpu_slab(int cpu, void *info)
2453 {
2454 	struct kmem_cache *s = info;
2455 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2456 
2457 	return c->page || slub_percpu_partial(c);
2458 }
2459 
2460 static void flush_all(struct kmem_cache *s)
2461 {
2462 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2463 }
2464 
2465 /*
2466  * Use the cpu notifier to insure that the cpu slabs are flushed when
2467  * necessary.
2468  */
2469 static int slub_cpu_dead(unsigned int cpu)
2470 {
2471 	struct kmem_cache *s;
2472 	unsigned long flags;
2473 
2474 	mutex_lock(&slab_mutex);
2475 	list_for_each_entry(s, &slab_caches, list) {
2476 		local_irq_save(flags);
2477 		__flush_cpu_slab(s, cpu);
2478 		local_irq_restore(flags);
2479 	}
2480 	mutex_unlock(&slab_mutex);
2481 	return 0;
2482 }
2483 
2484 /*
2485  * Check if the objects in a per cpu structure fit numa
2486  * locality expectations.
2487  */
2488 static inline int node_match(struct page *page, int node)
2489 {
2490 #ifdef CONFIG_NUMA
2491 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2492 		return 0;
2493 #endif
2494 	return 1;
2495 }
2496 
2497 #ifdef CONFIG_SLUB_DEBUG
2498 static int count_free(struct page *page)
2499 {
2500 	return page->objects - page->inuse;
2501 }
2502 
2503 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2504 {
2505 	return atomic_long_read(&n->total_objects);
2506 }
2507 #endif /* CONFIG_SLUB_DEBUG */
2508 
2509 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2510 static unsigned long count_partial(struct kmem_cache_node *n,
2511 					int (*get_count)(struct page *))
2512 {
2513 	unsigned long flags;
2514 	unsigned long x = 0;
2515 	struct page *page;
2516 
2517 	spin_lock_irqsave(&n->list_lock, flags);
2518 	list_for_each_entry(page, &n->partial, slab_list)
2519 		x += get_count(page);
2520 	spin_unlock_irqrestore(&n->list_lock, flags);
2521 	return x;
2522 }
2523 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2524 
2525 static noinline void
2526 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2527 {
2528 #ifdef CONFIG_SLUB_DEBUG
2529 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2530 				      DEFAULT_RATELIMIT_BURST);
2531 	int node;
2532 	struct kmem_cache_node *n;
2533 
2534 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2535 		return;
2536 
2537 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2538 		nid, gfpflags, &gfpflags);
2539 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2540 		s->name, s->object_size, s->size, oo_order(s->oo),
2541 		oo_order(s->min));
2542 
2543 	if (oo_order(s->min) > get_order(s->object_size))
2544 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2545 			s->name);
2546 
2547 	for_each_kmem_cache_node(s, node, n) {
2548 		unsigned long nr_slabs;
2549 		unsigned long nr_objs;
2550 		unsigned long nr_free;
2551 
2552 		nr_free  = count_partial(n, count_free);
2553 		nr_slabs = node_nr_slabs(n);
2554 		nr_objs  = node_nr_objs(n);
2555 
2556 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2557 			node, nr_slabs, nr_objs, nr_free);
2558 	}
2559 #endif
2560 }
2561 
2562 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2563 			int node, struct kmem_cache_cpu **pc)
2564 {
2565 	void *freelist;
2566 	struct kmem_cache_cpu *c = *pc;
2567 	struct page *page;
2568 
2569 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2570 
2571 	freelist = get_partial(s, flags, node, c);
2572 
2573 	if (freelist)
2574 		return freelist;
2575 
2576 	page = new_slab(s, flags, node);
2577 	if (page) {
2578 		c = raw_cpu_ptr(s->cpu_slab);
2579 		if (c->page)
2580 			flush_slab(s, c);
2581 
2582 		/*
2583 		 * No other reference to the page yet so we can
2584 		 * muck around with it freely without cmpxchg
2585 		 */
2586 		freelist = page->freelist;
2587 		page->freelist = NULL;
2588 
2589 		stat(s, ALLOC_SLAB);
2590 		c->page = page;
2591 		*pc = c;
2592 	}
2593 
2594 	return freelist;
2595 }
2596 
2597 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2598 {
2599 	if (unlikely(PageSlabPfmemalloc(page)))
2600 		return gfp_pfmemalloc_allowed(gfpflags);
2601 
2602 	return true;
2603 }
2604 
2605 /*
2606  * Check the page->freelist of a page and either transfer the freelist to the
2607  * per cpu freelist or deactivate the page.
2608  *
2609  * The page is still frozen if the return value is not NULL.
2610  *
2611  * If this function returns NULL then the page has been unfrozen.
2612  *
2613  * This function must be called with interrupt disabled.
2614  */
2615 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2616 {
2617 	struct page new;
2618 	unsigned long counters;
2619 	void *freelist;
2620 
2621 	do {
2622 		freelist = page->freelist;
2623 		counters = page->counters;
2624 
2625 		new.counters = counters;
2626 		VM_BUG_ON(!new.frozen);
2627 
2628 		new.inuse = page->objects;
2629 		new.frozen = freelist != NULL;
2630 
2631 	} while (!__cmpxchg_double_slab(s, page,
2632 		freelist, counters,
2633 		NULL, new.counters,
2634 		"get_freelist"));
2635 
2636 	return freelist;
2637 }
2638 
2639 /*
2640  * Slow path. The lockless freelist is empty or we need to perform
2641  * debugging duties.
2642  *
2643  * Processing is still very fast if new objects have been freed to the
2644  * regular freelist. In that case we simply take over the regular freelist
2645  * as the lockless freelist and zap the regular freelist.
2646  *
2647  * If that is not working then we fall back to the partial lists. We take the
2648  * first element of the freelist as the object to allocate now and move the
2649  * rest of the freelist to the lockless freelist.
2650  *
2651  * And if we were unable to get a new slab from the partial slab lists then
2652  * we need to allocate a new slab. This is the slowest path since it involves
2653  * a call to the page allocator and the setup of a new slab.
2654  *
2655  * Version of __slab_alloc to use when we know that interrupts are
2656  * already disabled (which is the case for bulk allocation).
2657  */
2658 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2659 			  unsigned long addr, struct kmem_cache_cpu *c)
2660 {
2661 	void *freelist;
2662 	struct page *page;
2663 
2664 	stat(s, ALLOC_SLOWPATH);
2665 
2666 	page = c->page;
2667 	if (!page) {
2668 		/*
2669 		 * if the node is not online or has no normal memory, just
2670 		 * ignore the node constraint
2671 		 */
2672 		if (unlikely(node != NUMA_NO_NODE &&
2673 			     !node_state(node, N_NORMAL_MEMORY)))
2674 			node = NUMA_NO_NODE;
2675 		goto new_slab;
2676 	}
2677 redo:
2678 
2679 	if (unlikely(!node_match(page, node))) {
2680 		/*
2681 		 * same as above but node_match() being false already
2682 		 * implies node != NUMA_NO_NODE
2683 		 */
2684 		if (!node_state(node, N_NORMAL_MEMORY)) {
2685 			node = NUMA_NO_NODE;
2686 			goto redo;
2687 		} else {
2688 			stat(s, ALLOC_NODE_MISMATCH);
2689 			deactivate_slab(s, page, c->freelist, c);
2690 			goto new_slab;
2691 		}
2692 	}
2693 
2694 	/*
2695 	 * By rights, we should be searching for a slab page that was
2696 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2697 	 * information when the page leaves the per-cpu allocator
2698 	 */
2699 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2700 		deactivate_slab(s, page, c->freelist, c);
2701 		goto new_slab;
2702 	}
2703 
2704 	/* must check again c->freelist in case of cpu migration or IRQ */
2705 	freelist = c->freelist;
2706 	if (freelist)
2707 		goto load_freelist;
2708 
2709 	freelist = get_freelist(s, page);
2710 
2711 	if (!freelist) {
2712 		c->page = NULL;
2713 		stat(s, DEACTIVATE_BYPASS);
2714 		goto new_slab;
2715 	}
2716 
2717 	stat(s, ALLOC_REFILL);
2718 
2719 load_freelist:
2720 	/*
2721 	 * freelist is pointing to the list of objects to be used.
2722 	 * page is pointing to the page from which the objects are obtained.
2723 	 * That page must be frozen for per cpu allocations to work.
2724 	 */
2725 	VM_BUG_ON(!c->page->frozen);
2726 	c->freelist = get_freepointer(s, freelist);
2727 	c->tid = next_tid(c->tid);
2728 	return freelist;
2729 
2730 new_slab:
2731 
2732 	if (slub_percpu_partial(c)) {
2733 		page = c->page = slub_percpu_partial(c);
2734 		slub_set_percpu_partial(c, page);
2735 		stat(s, CPU_PARTIAL_ALLOC);
2736 		goto redo;
2737 	}
2738 
2739 	freelist = new_slab_objects(s, gfpflags, node, &c);
2740 
2741 	if (unlikely(!freelist)) {
2742 		slab_out_of_memory(s, gfpflags, node);
2743 		return NULL;
2744 	}
2745 
2746 	page = c->page;
2747 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2748 		goto load_freelist;
2749 
2750 	/* Only entered in the debug case */
2751 	if (kmem_cache_debug(s) &&
2752 			!alloc_debug_processing(s, page, freelist, addr))
2753 		goto new_slab;	/* Slab failed checks. Next slab needed */
2754 
2755 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2756 	return freelist;
2757 }
2758 
2759 /*
2760  * Another one that disabled interrupt and compensates for possible
2761  * cpu changes by refetching the per cpu area pointer.
2762  */
2763 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2764 			  unsigned long addr, struct kmem_cache_cpu *c)
2765 {
2766 	void *p;
2767 	unsigned long flags;
2768 
2769 	local_irq_save(flags);
2770 #ifdef CONFIG_PREEMPTION
2771 	/*
2772 	 * We may have been preempted and rescheduled on a different
2773 	 * cpu before disabling interrupts. Need to reload cpu area
2774 	 * pointer.
2775 	 */
2776 	c = this_cpu_ptr(s->cpu_slab);
2777 #endif
2778 
2779 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2780 	local_irq_restore(flags);
2781 	return p;
2782 }
2783 
2784 /*
2785  * If the object has been wiped upon free, make sure it's fully initialized by
2786  * zeroing out freelist pointer.
2787  */
2788 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2789 						   void *obj)
2790 {
2791 	if (unlikely(slab_want_init_on_free(s)) && obj)
2792 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2793 }
2794 
2795 /*
2796  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2797  * have the fastpath folded into their functions. So no function call
2798  * overhead for requests that can be satisfied on the fastpath.
2799  *
2800  * The fastpath works by first checking if the lockless freelist can be used.
2801  * If not then __slab_alloc is called for slow processing.
2802  *
2803  * Otherwise we can simply pick the next object from the lockless free list.
2804  */
2805 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2806 		gfp_t gfpflags, int node, unsigned long addr)
2807 {
2808 	void *object;
2809 	struct kmem_cache_cpu *c;
2810 	struct page *page;
2811 	unsigned long tid;
2812 	struct obj_cgroup *objcg = NULL;
2813 
2814 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2815 	if (!s)
2816 		return NULL;
2817 redo:
2818 	/*
2819 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2820 	 * enabled. We may switch back and forth between cpus while
2821 	 * reading from one cpu area. That does not matter as long
2822 	 * as we end up on the original cpu again when doing the cmpxchg.
2823 	 *
2824 	 * We should guarantee that tid and kmem_cache are retrieved on
2825 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2826 	 * to check if it is matched or not.
2827 	 */
2828 	do {
2829 		tid = this_cpu_read(s->cpu_slab->tid);
2830 		c = raw_cpu_ptr(s->cpu_slab);
2831 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2832 		 unlikely(tid != READ_ONCE(c->tid)));
2833 
2834 	/*
2835 	 * Irqless object alloc/free algorithm used here depends on sequence
2836 	 * of fetching cpu_slab's data. tid should be fetched before anything
2837 	 * on c to guarantee that object and page associated with previous tid
2838 	 * won't be used with current tid. If we fetch tid first, object and
2839 	 * page could be one associated with next tid and our alloc/free
2840 	 * request will be failed. In this case, we will retry. So, no problem.
2841 	 */
2842 	barrier();
2843 
2844 	/*
2845 	 * The transaction ids are globally unique per cpu and per operation on
2846 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2847 	 * occurs on the right processor and that there was no operation on the
2848 	 * linked list in between.
2849 	 */
2850 
2851 	object = c->freelist;
2852 	page = c->page;
2853 	if (unlikely(!object || !page || !node_match(page, node))) {
2854 		object = __slab_alloc(s, gfpflags, node, addr, c);
2855 	} else {
2856 		void *next_object = get_freepointer_safe(s, object);
2857 
2858 		/*
2859 		 * The cmpxchg will only match if there was no additional
2860 		 * operation and if we are on the right processor.
2861 		 *
2862 		 * The cmpxchg does the following atomically (without lock
2863 		 * semantics!)
2864 		 * 1. Relocate first pointer to the current per cpu area.
2865 		 * 2. Verify that tid and freelist have not been changed
2866 		 * 3. If they were not changed replace tid and freelist
2867 		 *
2868 		 * Since this is without lock semantics the protection is only
2869 		 * against code executing on this cpu *not* from access by
2870 		 * other cpus.
2871 		 */
2872 		if (unlikely(!this_cpu_cmpxchg_double(
2873 				s->cpu_slab->freelist, s->cpu_slab->tid,
2874 				object, tid,
2875 				next_object, next_tid(tid)))) {
2876 
2877 			note_cmpxchg_failure("slab_alloc", s, tid);
2878 			goto redo;
2879 		}
2880 		prefetch_freepointer(s, next_object);
2881 		stat(s, ALLOC_FASTPATH);
2882 	}
2883 
2884 	maybe_wipe_obj_freeptr(s, object);
2885 
2886 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2887 		memset(object, 0, s->object_size);
2888 
2889 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2890 
2891 	return object;
2892 }
2893 
2894 static __always_inline void *slab_alloc(struct kmem_cache *s,
2895 		gfp_t gfpflags, unsigned long addr)
2896 {
2897 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2898 }
2899 
2900 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2901 {
2902 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2903 
2904 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2905 				s->size, gfpflags);
2906 
2907 	return ret;
2908 }
2909 EXPORT_SYMBOL(kmem_cache_alloc);
2910 
2911 #ifdef CONFIG_TRACING
2912 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2913 {
2914 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2915 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2916 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2917 	return ret;
2918 }
2919 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2920 #endif
2921 
2922 #ifdef CONFIG_NUMA
2923 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2924 {
2925 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2926 
2927 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2928 				    s->object_size, s->size, gfpflags, node);
2929 
2930 	return ret;
2931 }
2932 EXPORT_SYMBOL(kmem_cache_alloc_node);
2933 
2934 #ifdef CONFIG_TRACING
2935 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2936 				    gfp_t gfpflags,
2937 				    int node, size_t size)
2938 {
2939 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2940 
2941 	trace_kmalloc_node(_RET_IP_, ret,
2942 			   size, s->size, gfpflags, node);
2943 
2944 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2945 	return ret;
2946 }
2947 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2948 #endif
2949 #endif	/* CONFIG_NUMA */
2950 
2951 /*
2952  * Slow path handling. This may still be called frequently since objects
2953  * have a longer lifetime than the cpu slabs in most processing loads.
2954  *
2955  * So we still attempt to reduce cache line usage. Just take the slab
2956  * lock and free the item. If there is no additional partial page
2957  * handling required then we can return immediately.
2958  */
2959 static void __slab_free(struct kmem_cache *s, struct page *page,
2960 			void *head, void *tail, int cnt,
2961 			unsigned long addr)
2962 
2963 {
2964 	void *prior;
2965 	int was_frozen;
2966 	struct page new;
2967 	unsigned long counters;
2968 	struct kmem_cache_node *n = NULL;
2969 	unsigned long flags;
2970 
2971 	stat(s, FREE_SLOWPATH);
2972 
2973 	if (kmem_cache_debug(s) &&
2974 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2975 		return;
2976 
2977 	do {
2978 		if (unlikely(n)) {
2979 			spin_unlock_irqrestore(&n->list_lock, flags);
2980 			n = NULL;
2981 		}
2982 		prior = page->freelist;
2983 		counters = page->counters;
2984 		set_freepointer(s, tail, prior);
2985 		new.counters = counters;
2986 		was_frozen = new.frozen;
2987 		new.inuse -= cnt;
2988 		if ((!new.inuse || !prior) && !was_frozen) {
2989 
2990 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2991 
2992 				/*
2993 				 * Slab was on no list before and will be
2994 				 * partially empty
2995 				 * We can defer the list move and instead
2996 				 * freeze it.
2997 				 */
2998 				new.frozen = 1;
2999 
3000 			} else { /* Needs to be taken off a list */
3001 
3002 				n = get_node(s, page_to_nid(page));
3003 				/*
3004 				 * Speculatively acquire the list_lock.
3005 				 * If the cmpxchg does not succeed then we may
3006 				 * drop the list_lock without any processing.
3007 				 *
3008 				 * Otherwise the list_lock will synchronize with
3009 				 * other processors updating the list of slabs.
3010 				 */
3011 				spin_lock_irqsave(&n->list_lock, flags);
3012 
3013 			}
3014 		}
3015 
3016 	} while (!cmpxchg_double_slab(s, page,
3017 		prior, counters,
3018 		head, new.counters,
3019 		"__slab_free"));
3020 
3021 	if (likely(!n)) {
3022 
3023 		if (likely(was_frozen)) {
3024 			/*
3025 			 * The list lock was not taken therefore no list
3026 			 * activity can be necessary.
3027 			 */
3028 			stat(s, FREE_FROZEN);
3029 		} else if (new.frozen) {
3030 			/*
3031 			 * If we just froze the page then put it onto the
3032 			 * per cpu partial list.
3033 			 */
3034 			put_cpu_partial(s, page, 1);
3035 			stat(s, CPU_PARTIAL_FREE);
3036 		}
3037 
3038 		return;
3039 	}
3040 
3041 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3042 		goto slab_empty;
3043 
3044 	/*
3045 	 * Objects left in the slab. If it was not on the partial list before
3046 	 * then add it.
3047 	 */
3048 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3049 		remove_full(s, n, page);
3050 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3051 		stat(s, FREE_ADD_PARTIAL);
3052 	}
3053 	spin_unlock_irqrestore(&n->list_lock, flags);
3054 	return;
3055 
3056 slab_empty:
3057 	if (prior) {
3058 		/*
3059 		 * Slab on the partial list.
3060 		 */
3061 		remove_partial(n, page);
3062 		stat(s, FREE_REMOVE_PARTIAL);
3063 	} else {
3064 		/* Slab must be on the full list */
3065 		remove_full(s, n, page);
3066 	}
3067 
3068 	spin_unlock_irqrestore(&n->list_lock, flags);
3069 	stat(s, FREE_SLAB);
3070 	discard_slab(s, page);
3071 }
3072 
3073 /*
3074  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3075  * can perform fastpath freeing without additional function calls.
3076  *
3077  * The fastpath is only possible if we are freeing to the current cpu slab
3078  * of this processor. This typically the case if we have just allocated
3079  * the item before.
3080  *
3081  * If fastpath is not possible then fall back to __slab_free where we deal
3082  * with all sorts of special processing.
3083  *
3084  * Bulk free of a freelist with several objects (all pointing to the
3085  * same page) possible by specifying head and tail ptr, plus objects
3086  * count (cnt). Bulk free indicated by tail pointer being set.
3087  */
3088 static __always_inline void do_slab_free(struct kmem_cache *s,
3089 				struct page *page, void *head, void *tail,
3090 				int cnt, unsigned long addr)
3091 {
3092 	void *tail_obj = tail ? : head;
3093 	struct kmem_cache_cpu *c;
3094 	unsigned long tid;
3095 
3096 	memcg_slab_free_hook(s, &head, 1);
3097 redo:
3098 	/*
3099 	 * Determine the currently cpus per cpu slab.
3100 	 * The cpu may change afterward. However that does not matter since
3101 	 * data is retrieved via this pointer. If we are on the same cpu
3102 	 * during the cmpxchg then the free will succeed.
3103 	 */
3104 	do {
3105 		tid = this_cpu_read(s->cpu_slab->tid);
3106 		c = raw_cpu_ptr(s->cpu_slab);
3107 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3108 		 unlikely(tid != READ_ONCE(c->tid)));
3109 
3110 	/* Same with comment on barrier() in slab_alloc_node() */
3111 	barrier();
3112 
3113 	if (likely(page == c->page)) {
3114 		void **freelist = READ_ONCE(c->freelist);
3115 
3116 		set_freepointer(s, tail_obj, freelist);
3117 
3118 		if (unlikely(!this_cpu_cmpxchg_double(
3119 				s->cpu_slab->freelist, s->cpu_slab->tid,
3120 				freelist, tid,
3121 				head, next_tid(tid)))) {
3122 
3123 			note_cmpxchg_failure("slab_free", s, tid);
3124 			goto redo;
3125 		}
3126 		stat(s, FREE_FASTPATH);
3127 	} else
3128 		__slab_free(s, page, head, tail_obj, cnt, addr);
3129 
3130 }
3131 
3132 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3133 				      void *head, void *tail, int cnt,
3134 				      unsigned long addr)
3135 {
3136 	/*
3137 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3138 	 * to remove objects, whose reuse must be delayed.
3139 	 */
3140 	if (slab_free_freelist_hook(s, &head, &tail))
3141 		do_slab_free(s, page, head, tail, cnt, addr);
3142 }
3143 
3144 #ifdef CONFIG_KASAN_GENERIC
3145 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3146 {
3147 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3148 }
3149 #endif
3150 
3151 void kmem_cache_free(struct kmem_cache *s, void *x)
3152 {
3153 	s = cache_from_obj(s, x);
3154 	if (!s)
3155 		return;
3156 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3157 	trace_kmem_cache_free(_RET_IP_, x);
3158 }
3159 EXPORT_SYMBOL(kmem_cache_free);
3160 
3161 struct detached_freelist {
3162 	struct page *page;
3163 	void *tail;
3164 	void *freelist;
3165 	int cnt;
3166 	struct kmem_cache *s;
3167 };
3168 
3169 /*
3170  * This function progressively scans the array with free objects (with
3171  * a limited look ahead) and extract objects belonging to the same
3172  * page.  It builds a detached freelist directly within the given
3173  * page/objects.  This can happen without any need for
3174  * synchronization, because the objects are owned by running process.
3175  * The freelist is build up as a single linked list in the objects.
3176  * The idea is, that this detached freelist can then be bulk
3177  * transferred to the real freelist(s), but only requiring a single
3178  * synchronization primitive.  Look ahead in the array is limited due
3179  * to performance reasons.
3180  */
3181 static inline
3182 int build_detached_freelist(struct kmem_cache *s, size_t size,
3183 			    void **p, struct detached_freelist *df)
3184 {
3185 	size_t first_skipped_index = 0;
3186 	int lookahead = 3;
3187 	void *object;
3188 	struct page *page;
3189 
3190 	/* Always re-init detached_freelist */
3191 	df->page = NULL;
3192 
3193 	do {
3194 		object = p[--size];
3195 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3196 	} while (!object && size);
3197 
3198 	if (!object)
3199 		return 0;
3200 
3201 	page = virt_to_head_page(object);
3202 	if (!s) {
3203 		/* Handle kalloc'ed objects */
3204 		if (unlikely(!PageSlab(page))) {
3205 			BUG_ON(!PageCompound(page));
3206 			kfree_hook(object);
3207 			__free_pages(page, compound_order(page));
3208 			p[size] = NULL; /* mark object processed */
3209 			return size;
3210 		}
3211 		/* Derive kmem_cache from object */
3212 		df->s = page->slab_cache;
3213 	} else {
3214 		df->s = cache_from_obj(s, object); /* Support for memcg */
3215 	}
3216 
3217 	/* Start new detached freelist */
3218 	df->page = page;
3219 	set_freepointer(df->s, object, NULL);
3220 	df->tail = object;
3221 	df->freelist = object;
3222 	p[size] = NULL; /* mark object processed */
3223 	df->cnt = 1;
3224 
3225 	while (size) {
3226 		object = p[--size];
3227 		if (!object)
3228 			continue; /* Skip processed objects */
3229 
3230 		/* df->page is always set at this point */
3231 		if (df->page == virt_to_head_page(object)) {
3232 			/* Opportunity build freelist */
3233 			set_freepointer(df->s, object, df->freelist);
3234 			df->freelist = object;
3235 			df->cnt++;
3236 			p[size] = NULL; /* mark object processed */
3237 
3238 			continue;
3239 		}
3240 
3241 		/* Limit look ahead search */
3242 		if (!--lookahead)
3243 			break;
3244 
3245 		if (!first_skipped_index)
3246 			first_skipped_index = size + 1;
3247 	}
3248 
3249 	return first_skipped_index;
3250 }
3251 
3252 /* Note that interrupts must be enabled when calling this function. */
3253 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3254 {
3255 	if (WARN_ON(!size))
3256 		return;
3257 
3258 	memcg_slab_free_hook(s, p, size);
3259 	do {
3260 		struct detached_freelist df;
3261 
3262 		size = build_detached_freelist(s, size, p, &df);
3263 		if (!df.page)
3264 			continue;
3265 
3266 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3267 	} while (likely(size));
3268 }
3269 EXPORT_SYMBOL(kmem_cache_free_bulk);
3270 
3271 /* Note that interrupts must be enabled when calling this function. */
3272 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3273 			  void **p)
3274 {
3275 	struct kmem_cache_cpu *c;
3276 	int i;
3277 	struct obj_cgroup *objcg = NULL;
3278 
3279 	/* memcg and kmem_cache debug support */
3280 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3281 	if (unlikely(!s))
3282 		return false;
3283 	/*
3284 	 * Drain objects in the per cpu slab, while disabling local
3285 	 * IRQs, which protects against PREEMPT and interrupts
3286 	 * handlers invoking normal fastpath.
3287 	 */
3288 	local_irq_disable();
3289 	c = this_cpu_ptr(s->cpu_slab);
3290 
3291 	for (i = 0; i < size; i++) {
3292 		void *object = c->freelist;
3293 
3294 		if (unlikely(!object)) {
3295 			/*
3296 			 * We may have removed an object from c->freelist using
3297 			 * the fastpath in the previous iteration; in that case,
3298 			 * c->tid has not been bumped yet.
3299 			 * Since ___slab_alloc() may reenable interrupts while
3300 			 * allocating memory, we should bump c->tid now.
3301 			 */
3302 			c->tid = next_tid(c->tid);
3303 
3304 			/*
3305 			 * Invoking slow path likely have side-effect
3306 			 * of re-populating per CPU c->freelist
3307 			 */
3308 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3309 					    _RET_IP_, c);
3310 			if (unlikely(!p[i]))
3311 				goto error;
3312 
3313 			c = this_cpu_ptr(s->cpu_slab);
3314 			maybe_wipe_obj_freeptr(s, p[i]);
3315 
3316 			continue; /* goto for-loop */
3317 		}
3318 		c->freelist = get_freepointer(s, object);
3319 		p[i] = object;
3320 		maybe_wipe_obj_freeptr(s, p[i]);
3321 	}
3322 	c->tid = next_tid(c->tid);
3323 	local_irq_enable();
3324 
3325 	/* Clear memory outside IRQ disabled fastpath loop */
3326 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3327 		int j;
3328 
3329 		for (j = 0; j < i; j++)
3330 			memset(p[j], 0, s->object_size);
3331 	}
3332 
3333 	/* memcg and kmem_cache debug support */
3334 	slab_post_alloc_hook(s, objcg, flags, size, p);
3335 	return i;
3336 error:
3337 	local_irq_enable();
3338 	slab_post_alloc_hook(s, objcg, flags, i, p);
3339 	__kmem_cache_free_bulk(s, i, p);
3340 	return 0;
3341 }
3342 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3343 
3344 
3345 /*
3346  * Object placement in a slab is made very easy because we always start at
3347  * offset 0. If we tune the size of the object to the alignment then we can
3348  * get the required alignment by putting one properly sized object after
3349  * another.
3350  *
3351  * Notice that the allocation order determines the sizes of the per cpu
3352  * caches. Each processor has always one slab available for allocations.
3353  * Increasing the allocation order reduces the number of times that slabs
3354  * must be moved on and off the partial lists and is therefore a factor in
3355  * locking overhead.
3356  */
3357 
3358 /*
3359  * Mininum / Maximum order of slab pages. This influences locking overhead
3360  * and slab fragmentation. A higher order reduces the number of partial slabs
3361  * and increases the number of allocations possible without having to
3362  * take the list_lock.
3363  */
3364 static unsigned int slub_min_order;
3365 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3366 static unsigned int slub_min_objects;
3367 
3368 /*
3369  * Calculate the order of allocation given an slab object size.
3370  *
3371  * The order of allocation has significant impact on performance and other
3372  * system components. Generally order 0 allocations should be preferred since
3373  * order 0 does not cause fragmentation in the page allocator. Larger objects
3374  * be problematic to put into order 0 slabs because there may be too much
3375  * unused space left. We go to a higher order if more than 1/16th of the slab
3376  * would be wasted.
3377  *
3378  * In order to reach satisfactory performance we must ensure that a minimum
3379  * number of objects is in one slab. Otherwise we may generate too much
3380  * activity on the partial lists which requires taking the list_lock. This is
3381  * less a concern for large slabs though which are rarely used.
3382  *
3383  * slub_max_order specifies the order where we begin to stop considering the
3384  * number of objects in a slab as critical. If we reach slub_max_order then
3385  * we try to keep the page order as low as possible. So we accept more waste
3386  * of space in favor of a small page order.
3387  *
3388  * Higher order allocations also allow the placement of more objects in a
3389  * slab and thereby reduce object handling overhead. If the user has
3390  * requested a higher mininum order then we start with that one instead of
3391  * the smallest order which will fit the object.
3392  */
3393 static inline unsigned int slab_order(unsigned int size,
3394 		unsigned int min_objects, unsigned int max_order,
3395 		unsigned int fract_leftover)
3396 {
3397 	unsigned int min_order = slub_min_order;
3398 	unsigned int order;
3399 
3400 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3401 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3402 
3403 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3404 			order <= max_order; order++) {
3405 
3406 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3407 		unsigned int rem;
3408 
3409 		rem = slab_size % size;
3410 
3411 		if (rem <= slab_size / fract_leftover)
3412 			break;
3413 	}
3414 
3415 	return order;
3416 }
3417 
3418 static inline int calculate_order(unsigned int size)
3419 {
3420 	unsigned int order;
3421 	unsigned int min_objects;
3422 	unsigned int max_objects;
3423 
3424 	/*
3425 	 * Attempt to find best configuration for a slab. This
3426 	 * works by first attempting to generate a layout with
3427 	 * the best configuration and backing off gradually.
3428 	 *
3429 	 * First we increase the acceptable waste in a slab. Then
3430 	 * we reduce the minimum objects required in a slab.
3431 	 */
3432 	min_objects = slub_min_objects;
3433 	if (!min_objects)
3434 		min_objects = 4 * (fls(num_online_cpus()) + 1);
3435 	max_objects = order_objects(slub_max_order, size);
3436 	min_objects = min(min_objects, max_objects);
3437 
3438 	while (min_objects > 1) {
3439 		unsigned int fraction;
3440 
3441 		fraction = 16;
3442 		while (fraction >= 4) {
3443 			order = slab_order(size, min_objects,
3444 					slub_max_order, fraction);
3445 			if (order <= slub_max_order)
3446 				return order;
3447 			fraction /= 2;
3448 		}
3449 		min_objects--;
3450 	}
3451 
3452 	/*
3453 	 * We were unable to place multiple objects in a slab. Now
3454 	 * lets see if we can place a single object there.
3455 	 */
3456 	order = slab_order(size, 1, slub_max_order, 1);
3457 	if (order <= slub_max_order)
3458 		return order;
3459 
3460 	/*
3461 	 * Doh this slab cannot be placed using slub_max_order.
3462 	 */
3463 	order = slab_order(size, 1, MAX_ORDER, 1);
3464 	if (order < MAX_ORDER)
3465 		return order;
3466 	return -ENOSYS;
3467 }
3468 
3469 static void
3470 init_kmem_cache_node(struct kmem_cache_node *n)
3471 {
3472 	n->nr_partial = 0;
3473 	spin_lock_init(&n->list_lock);
3474 	INIT_LIST_HEAD(&n->partial);
3475 #ifdef CONFIG_SLUB_DEBUG
3476 	atomic_long_set(&n->nr_slabs, 0);
3477 	atomic_long_set(&n->total_objects, 0);
3478 	INIT_LIST_HEAD(&n->full);
3479 #endif
3480 }
3481 
3482 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3483 {
3484 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3485 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3486 
3487 	/*
3488 	 * Must align to double word boundary for the double cmpxchg
3489 	 * instructions to work; see __pcpu_double_call_return_bool().
3490 	 */
3491 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3492 				     2 * sizeof(void *));
3493 
3494 	if (!s->cpu_slab)
3495 		return 0;
3496 
3497 	init_kmem_cache_cpus(s);
3498 
3499 	return 1;
3500 }
3501 
3502 static struct kmem_cache *kmem_cache_node;
3503 
3504 /*
3505  * No kmalloc_node yet so do it by hand. We know that this is the first
3506  * slab on the node for this slabcache. There are no concurrent accesses
3507  * possible.
3508  *
3509  * Note that this function only works on the kmem_cache_node
3510  * when allocating for the kmem_cache_node. This is used for bootstrapping
3511  * memory on a fresh node that has no slab structures yet.
3512  */
3513 static void early_kmem_cache_node_alloc(int node)
3514 {
3515 	struct page *page;
3516 	struct kmem_cache_node *n;
3517 
3518 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3519 
3520 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3521 
3522 	BUG_ON(!page);
3523 	if (page_to_nid(page) != node) {
3524 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3525 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3526 	}
3527 
3528 	n = page->freelist;
3529 	BUG_ON(!n);
3530 #ifdef CONFIG_SLUB_DEBUG
3531 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3532 	init_tracking(kmem_cache_node, n);
3533 #endif
3534 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3535 		      GFP_KERNEL);
3536 	page->freelist = get_freepointer(kmem_cache_node, n);
3537 	page->inuse = 1;
3538 	page->frozen = 0;
3539 	kmem_cache_node->node[node] = n;
3540 	init_kmem_cache_node(n);
3541 	inc_slabs_node(kmem_cache_node, node, page->objects);
3542 
3543 	/*
3544 	 * No locks need to be taken here as it has just been
3545 	 * initialized and there is no concurrent access.
3546 	 */
3547 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3548 }
3549 
3550 static void free_kmem_cache_nodes(struct kmem_cache *s)
3551 {
3552 	int node;
3553 	struct kmem_cache_node *n;
3554 
3555 	for_each_kmem_cache_node(s, node, n) {
3556 		s->node[node] = NULL;
3557 		kmem_cache_free(kmem_cache_node, n);
3558 	}
3559 }
3560 
3561 void __kmem_cache_release(struct kmem_cache *s)
3562 {
3563 	cache_random_seq_destroy(s);
3564 	free_percpu(s->cpu_slab);
3565 	free_kmem_cache_nodes(s);
3566 }
3567 
3568 static int init_kmem_cache_nodes(struct kmem_cache *s)
3569 {
3570 	int node;
3571 
3572 	for_each_node_state(node, N_NORMAL_MEMORY) {
3573 		struct kmem_cache_node *n;
3574 
3575 		if (slab_state == DOWN) {
3576 			early_kmem_cache_node_alloc(node);
3577 			continue;
3578 		}
3579 		n = kmem_cache_alloc_node(kmem_cache_node,
3580 						GFP_KERNEL, node);
3581 
3582 		if (!n) {
3583 			free_kmem_cache_nodes(s);
3584 			return 0;
3585 		}
3586 
3587 		init_kmem_cache_node(n);
3588 		s->node[node] = n;
3589 	}
3590 	return 1;
3591 }
3592 
3593 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3594 {
3595 	if (min < MIN_PARTIAL)
3596 		min = MIN_PARTIAL;
3597 	else if (min > MAX_PARTIAL)
3598 		min = MAX_PARTIAL;
3599 	s->min_partial = min;
3600 }
3601 
3602 static void set_cpu_partial(struct kmem_cache *s)
3603 {
3604 #ifdef CONFIG_SLUB_CPU_PARTIAL
3605 	/*
3606 	 * cpu_partial determined the maximum number of objects kept in the
3607 	 * per cpu partial lists of a processor.
3608 	 *
3609 	 * Per cpu partial lists mainly contain slabs that just have one
3610 	 * object freed. If they are used for allocation then they can be
3611 	 * filled up again with minimal effort. The slab will never hit the
3612 	 * per node partial lists and therefore no locking will be required.
3613 	 *
3614 	 * This setting also determines
3615 	 *
3616 	 * A) The number of objects from per cpu partial slabs dumped to the
3617 	 *    per node list when we reach the limit.
3618 	 * B) The number of objects in cpu partial slabs to extract from the
3619 	 *    per node list when we run out of per cpu objects. We only fetch
3620 	 *    50% to keep some capacity around for frees.
3621 	 */
3622 	if (!kmem_cache_has_cpu_partial(s))
3623 		slub_set_cpu_partial(s, 0);
3624 	else if (s->size >= PAGE_SIZE)
3625 		slub_set_cpu_partial(s, 2);
3626 	else if (s->size >= 1024)
3627 		slub_set_cpu_partial(s, 6);
3628 	else if (s->size >= 256)
3629 		slub_set_cpu_partial(s, 13);
3630 	else
3631 		slub_set_cpu_partial(s, 30);
3632 #endif
3633 }
3634 
3635 /*
3636  * calculate_sizes() determines the order and the distribution of data within
3637  * a slab object.
3638  */
3639 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3640 {
3641 	slab_flags_t flags = s->flags;
3642 	unsigned int size = s->object_size;
3643 	unsigned int freepointer_area;
3644 	unsigned int order;
3645 
3646 	/*
3647 	 * Round up object size to the next word boundary. We can only
3648 	 * place the free pointer at word boundaries and this determines
3649 	 * the possible location of the free pointer.
3650 	 */
3651 	size = ALIGN(size, sizeof(void *));
3652 	/*
3653 	 * This is the area of the object where a freepointer can be
3654 	 * safely written. If redzoning adds more to the inuse size, we
3655 	 * can't use that portion for writing the freepointer, so
3656 	 * s->offset must be limited within this for the general case.
3657 	 */
3658 	freepointer_area = size;
3659 
3660 #ifdef CONFIG_SLUB_DEBUG
3661 	/*
3662 	 * Determine if we can poison the object itself. If the user of
3663 	 * the slab may touch the object after free or before allocation
3664 	 * then we should never poison the object itself.
3665 	 */
3666 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3667 			!s->ctor)
3668 		s->flags |= __OBJECT_POISON;
3669 	else
3670 		s->flags &= ~__OBJECT_POISON;
3671 
3672 
3673 	/*
3674 	 * If we are Redzoning then check if there is some space between the
3675 	 * end of the object and the free pointer. If not then add an
3676 	 * additional word to have some bytes to store Redzone information.
3677 	 */
3678 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3679 		size += sizeof(void *);
3680 #endif
3681 
3682 	/*
3683 	 * With that we have determined the number of bytes in actual use
3684 	 * by the object. This is the potential offset to the free pointer.
3685 	 */
3686 	s->inuse = size;
3687 
3688 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3689 		s->ctor)) {
3690 		/*
3691 		 * Relocate free pointer after the object if it is not
3692 		 * permitted to overwrite the first word of the object on
3693 		 * kmem_cache_free.
3694 		 *
3695 		 * This is the case if we do RCU, have a constructor or
3696 		 * destructor or are poisoning the objects.
3697 		 *
3698 		 * The assumption that s->offset >= s->inuse means free
3699 		 * pointer is outside of the object is used in the
3700 		 * freeptr_outside_object() function. If that is no
3701 		 * longer true, the function needs to be modified.
3702 		 */
3703 		s->offset = size;
3704 		size += sizeof(void *);
3705 	} else if (freepointer_area > sizeof(void *)) {
3706 		/*
3707 		 * Store freelist pointer near middle of object to keep
3708 		 * it away from the edges of the object to avoid small
3709 		 * sized over/underflows from neighboring allocations.
3710 		 */
3711 		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3712 	}
3713 
3714 #ifdef CONFIG_SLUB_DEBUG
3715 	if (flags & SLAB_STORE_USER)
3716 		/*
3717 		 * Need to store information about allocs and frees after
3718 		 * the object.
3719 		 */
3720 		size += 2 * sizeof(struct track);
3721 #endif
3722 
3723 	kasan_cache_create(s, &size, &s->flags);
3724 #ifdef CONFIG_SLUB_DEBUG
3725 	if (flags & SLAB_RED_ZONE) {
3726 		/*
3727 		 * Add some empty padding so that we can catch
3728 		 * overwrites from earlier objects rather than let
3729 		 * tracking information or the free pointer be
3730 		 * corrupted if a user writes before the start
3731 		 * of the object.
3732 		 */
3733 		size += sizeof(void *);
3734 
3735 		s->red_left_pad = sizeof(void *);
3736 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3737 		size += s->red_left_pad;
3738 	}
3739 #endif
3740 
3741 	/*
3742 	 * SLUB stores one object immediately after another beginning from
3743 	 * offset 0. In order to align the objects we have to simply size
3744 	 * each object to conform to the alignment.
3745 	 */
3746 	size = ALIGN(size, s->align);
3747 	s->size = size;
3748 	s->reciprocal_size = reciprocal_value(size);
3749 	if (forced_order >= 0)
3750 		order = forced_order;
3751 	else
3752 		order = calculate_order(size);
3753 
3754 	if ((int)order < 0)
3755 		return 0;
3756 
3757 	s->allocflags = 0;
3758 	if (order)
3759 		s->allocflags |= __GFP_COMP;
3760 
3761 	if (s->flags & SLAB_CACHE_DMA)
3762 		s->allocflags |= GFP_DMA;
3763 
3764 	if (s->flags & SLAB_CACHE_DMA32)
3765 		s->allocflags |= GFP_DMA32;
3766 
3767 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3768 		s->allocflags |= __GFP_RECLAIMABLE;
3769 
3770 	/*
3771 	 * Determine the number of objects per slab
3772 	 */
3773 	s->oo = oo_make(order, size);
3774 	s->min = oo_make(get_order(size), size);
3775 	if (oo_objects(s->oo) > oo_objects(s->max))
3776 		s->max = s->oo;
3777 
3778 	return !!oo_objects(s->oo);
3779 }
3780 
3781 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3782 {
3783 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3784 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3785 	s->random = get_random_long();
3786 #endif
3787 
3788 	if (!calculate_sizes(s, -1))
3789 		goto error;
3790 	if (disable_higher_order_debug) {
3791 		/*
3792 		 * Disable debugging flags that store metadata if the min slab
3793 		 * order increased.
3794 		 */
3795 		if (get_order(s->size) > get_order(s->object_size)) {
3796 			s->flags &= ~DEBUG_METADATA_FLAGS;
3797 			s->offset = 0;
3798 			if (!calculate_sizes(s, -1))
3799 				goto error;
3800 		}
3801 	}
3802 
3803 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3804     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3805 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3806 		/* Enable fast mode */
3807 		s->flags |= __CMPXCHG_DOUBLE;
3808 #endif
3809 
3810 	/*
3811 	 * The larger the object size is, the more pages we want on the partial
3812 	 * list to avoid pounding the page allocator excessively.
3813 	 */
3814 	set_min_partial(s, ilog2(s->size) / 2);
3815 
3816 	set_cpu_partial(s);
3817 
3818 #ifdef CONFIG_NUMA
3819 	s->remote_node_defrag_ratio = 1000;
3820 #endif
3821 
3822 	/* Initialize the pre-computed randomized freelist if slab is up */
3823 	if (slab_state >= UP) {
3824 		if (init_cache_random_seq(s))
3825 			goto error;
3826 	}
3827 
3828 	if (!init_kmem_cache_nodes(s))
3829 		goto error;
3830 
3831 	if (alloc_kmem_cache_cpus(s))
3832 		return 0;
3833 
3834 	free_kmem_cache_nodes(s);
3835 error:
3836 	return -EINVAL;
3837 }
3838 
3839 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3840 			      const char *text)
3841 {
3842 #ifdef CONFIG_SLUB_DEBUG
3843 	void *addr = page_address(page);
3844 	unsigned long *map;
3845 	void *p;
3846 
3847 	slab_err(s, page, text, s->name);
3848 	slab_lock(page);
3849 
3850 	map = get_map(s, page);
3851 	for_each_object(p, s, addr, page->objects) {
3852 
3853 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3854 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3855 			print_tracking(s, p);
3856 		}
3857 	}
3858 	put_map(map);
3859 	slab_unlock(page);
3860 #endif
3861 }
3862 
3863 /*
3864  * Attempt to free all partial slabs on a node.
3865  * This is called from __kmem_cache_shutdown(). We must take list_lock
3866  * because sysfs file might still access partial list after the shutdowning.
3867  */
3868 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3869 {
3870 	LIST_HEAD(discard);
3871 	struct page *page, *h;
3872 
3873 	BUG_ON(irqs_disabled());
3874 	spin_lock_irq(&n->list_lock);
3875 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3876 		if (!page->inuse) {
3877 			remove_partial(n, page);
3878 			list_add(&page->slab_list, &discard);
3879 		} else {
3880 			list_slab_objects(s, page,
3881 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3882 		}
3883 	}
3884 	spin_unlock_irq(&n->list_lock);
3885 
3886 	list_for_each_entry_safe(page, h, &discard, slab_list)
3887 		discard_slab(s, page);
3888 }
3889 
3890 bool __kmem_cache_empty(struct kmem_cache *s)
3891 {
3892 	int node;
3893 	struct kmem_cache_node *n;
3894 
3895 	for_each_kmem_cache_node(s, node, n)
3896 		if (n->nr_partial || slabs_node(s, node))
3897 			return false;
3898 	return true;
3899 }
3900 
3901 /*
3902  * Release all resources used by a slab cache.
3903  */
3904 int __kmem_cache_shutdown(struct kmem_cache *s)
3905 {
3906 	int node;
3907 	struct kmem_cache_node *n;
3908 
3909 	flush_all(s);
3910 	/* Attempt to free all objects */
3911 	for_each_kmem_cache_node(s, node, n) {
3912 		free_partial(s, n);
3913 		if (n->nr_partial || slabs_node(s, node))
3914 			return 1;
3915 	}
3916 	return 0;
3917 }
3918 
3919 /********************************************************************
3920  *		Kmalloc subsystem
3921  *******************************************************************/
3922 
3923 static int __init setup_slub_min_order(char *str)
3924 {
3925 	get_option(&str, (int *)&slub_min_order);
3926 
3927 	return 1;
3928 }
3929 
3930 __setup("slub_min_order=", setup_slub_min_order);
3931 
3932 static int __init setup_slub_max_order(char *str)
3933 {
3934 	get_option(&str, (int *)&slub_max_order);
3935 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3936 
3937 	return 1;
3938 }
3939 
3940 __setup("slub_max_order=", setup_slub_max_order);
3941 
3942 static int __init setup_slub_min_objects(char *str)
3943 {
3944 	get_option(&str, (int *)&slub_min_objects);
3945 
3946 	return 1;
3947 }
3948 
3949 __setup("slub_min_objects=", setup_slub_min_objects);
3950 
3951 void *__kmalloc(size_t size, gfp_t flags)
3952 {
3953 	struct kmem_cache *s;
3954 	void *ret;
3955 
3956 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3957 		return kmalloc_large(size, flags);
3958 
3959 	s = kmalloc_slab(size, flags);
3960 
3961 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3962 		return s;
3963 
3964 	ret = slab_alloc(s, flags, _RET_IP_);
3965 
3966 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3967 
3968 	ret = kasan_kmalloc(s, ret, size, flags);
3969 
3970 	return ret;
3971 }
3972 EXPORT_SYMBOL(__kmalloc);
3973 
3974 #ifdef CONFIG_NUMA
3975 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3976 {
3977 	struct page *page;
3978 	void *ptr = NULL;
3979 	unsigned int order = get_order(size);
3980 
3981 	flags |= __GFP_COMP;
3982 	page = alloc_pages_node(node, flags, order);
3983 	if (page) {
3984 		ptr = page_address(page);
3985 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
3986 				    PAGE_SIZE << order);
3987 	}
3988 
3989 	return kmalloc_large_node_hook(ptr, size, flags);
3990 }
3991 
3992 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3993 {
3994 	struct kmem_cache *s;
3995 	void *ret;
3996 
3997 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3998 		ret = kmalloc_large_node(size, flags, node);
3999 
4000 		trace_kmalloc_node(_RET_IP_, ret,
4001 				   size, PAGE_SIZE << get_order(size),
4002 				   flags, node);
4003 
4004 		return ret;
4005 	}
4006 
4007 	s = kmalloc_slab(size, flags);
4008 
4009 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4010 		return s;
4011 
4012 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
4013 
4014 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4015 
4016 	ret = kasan_kmalloc(s, ret, size, flags);
4017 
4018 	return ret;
4019 }
4020 EXPORT_SYMBOL(__kmalloc_node);
4021 #endif	/* CONFIG_NUMA */
4022 
4023 #ifdef CONFIG_HARDENED_USERCOPY
4024 /*
4025  * Rejects incorrectly sized objects and objects that are to be copied
4026  * to/from userspace but do not fall entirely within the containing slab
4027  * cache's usercopy region.
4028  *
4029  * Returns NULL if check passes, otherwise const char * to name of cache
4030  * to indicate an error.
4031  */
4032 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4033 			 bool to_user)
4034 {
4035 	struct kmem_cache *s;
4036 	unsigned int offset;
4037 	size_t object_size;
4038 
4039 	ptr = kasan_reset_tag(ptr);
4040 
4041 	/* Find object and usable object size. */
4042 	s = page->slab_cache;
4043 
4044 	/* Reject impossible pointers. */
4045 	if (ptr < page_address(page))
4046 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4047 			       to_user, 0, n);
4048 
4049 	/* Find offset within object. */
4050 	offset = (ptr - page_address(page)) % s->size;
4051 
4052 	/* Adjust for redzone and reject if within the redzone. */
4053 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4054 		if (offset < s->red_left_pad)
4055 			usercopy_abort("SLUB object in left red zone",
4056 				       s->name, to_user, offset, n);
4057 		offset -= s->red_left_pad;
4058 	}
4059 
4060 	/* Allow address range falling entirely within usercopy region. */
4061 	if (offset >= s->useroffset &&
4062 	    offset - s->useroffset <= s->usersize &&
4063 	    n <= s->useroffset - offset + s->usersize)
4064 		return;
4065 
4066 	/*
4067 	 * If the copy is still within the allocated object, produce
4068 	 * a warning instead of rejecting the copy. This is intended
4069 	 * to be a temporary method to find any missing usercopy
4070 	 * whitelists.
4071 	 */
4072 	object_size = slab_ksize(s);
4073 	if (usercopy_fallback &&
4074 	    offset <= object_size && n <= object_size - offset) {
4075 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4076 		return;
4077 	}
4078 
4079 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4080 }
4081 #endif /* CONFIG_HARDENED_USERCOPY */
4082 
4083 size_t __ksize(const void *object)
4084 {
4085 	struct page *page;
4086 
4087 	if (unlikely(object == ZERO_SIZE_PTR))
4088 		return 0;
4089 
4090 	page = virt_to_head_page(object);
4091 
4092 	if (unlikely(!PageSlab(page))) {
4093 		WARN_ON(!PageCompound(page));
4094 		return page_size(page);
4095 	}
4096 
4097 	return slab_ksize(page->slab_cache);
4098 }
4099 EXPORT_SYMBOL(__ksize);
4100 
4101 void kfree(const void *x)
4102 {
4103 	struct page *page;
4104 	void *object = (void *)x;
4105 
4106 	trace_kfree(_RET_IP_, x);
4107 
4108 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4109 		return;
4110 
4111 	page = virt_to_head_page(x);
4112 	if (unlikely(!PageSlab(page))) {
4113 		unsigned int order = compound_order(page);
4114 
4115 		BUG_ON(!PageCompound(page));
4116 		kfree_hook(object);
4117 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4118 				    -(PAGE_SIZE << order));
4119 		__free_pages(page, order);
4120 		return;
4121 	}
4122 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4123 }
4124 EXPORT_SYMBOL(kfree);
4125 
4126 #define SHRINK_PROMOTE_MAX 32
4127 
4128 /*
4129  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4130  * up most to the head of the partial lists. New allocations will then
4131  * fill those up and thus they can be removed from the partial lists.
4132  *
4133  * The slabs with the least items are placed last. This results in them
4134  * being allocated from last increasing the chance that the last objects
4135  * are freed in them.
4136  */
4137 int __kmem_cache_shrink(struct kmem_cache *s)
4138 {
4139 	int node;
4140 	int i;
4141 	struct kmem_cache_node *n;
4142 	struct page *page;
4143 	struct page *t;
4144 	struct list_head discard;
4145 	struct list_head promote[SHRINK_PROMOTE_MAX];
4146 	unsigned long flags;
4147 	int ret = 0;
4148 
4149 	flush_all(s);
4150 	for_each_kmem_cache_node(s, node, n) {
4151 		INIT_LIST_HEAD(&discard);
4152 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4153 			INIT_LIST_HEAD(promote + i);
4154 
4155 		spin_lock_irqsave(&n->list_lock, flags);
4156 
4157 		/*
4158 		 * Build lists of slabs to discard or promote.
4159 		 *
4160 		 * Note that concurrent frees may occur while we hold the
4161 		 * list_lock. page->inuse here is the upper limit.
4162 		 */
4163 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4164 			int free = page->objects - page->inuse;
4165 
4166 			/* Do not reread page->inuse */
4167 			barrier();
4168 
4169 			/* We do not keep full slabs on the list */
4170 			BUG_ON(free <= 0);
4171 
4172 			if (free == page->objects) {
4173 				list_move(&page->slab_list, &discard);
4174 				n->nr_partial--;
4175 			} else if (free <= SHRINK_PROMOTE_MAX)
4176 				list_move(&page->slab_list, promote + free - 1);
4177 		}
4178 
4179 		/*
4180 		 * Promote the slabs filled up most to the head of the
4181 		 * partial list.
4182 		 */
4183 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4184 			list_splice(promote + i, &n->partial);
4185 
4186 		spin_unlock_irqrestore(&n->list_lock, flags);
4187 
4188 		/* Release empty slabs */
4189 		list_for_each_entry_safe(page, t, &discard, slab_list)
4190 			discard_slab(s, page);
4191 
4192 		if (slabs_node(s, node))
4193 			ret = 1;
4194 	}
4195 
4196 	return ret;
4197 }
4198 
4199 static int slab_mem_going_offline_callback(void *arg)
4200 {
4201 	struct kmem_cache *s;
4202 
4203 	mutex_lock(&slab_mutex);
4204 	list_for_each_entry(s, &slab_caches, list)
4205 		__kmem_cache_shrink(s);
4206 	mutex_unlock(&slab_mutex);
4207 
4208 	return 0;
4209 }
4210 
4211 static void slab_mem_offline_callback(void *arg)
4212 {
4213 	struct kmem_cache_node *n;
4214 	struct kmem_cache *s;
4215 	struct memory_notify *marg = arg;
4216 	int offline_node;
4217 
4218 	offline_node = marg->status_change_nid_normal;
4219 
4220 	/*
4221 	 * If the node still has available memory. we need kmem_cache_node
4222 	 * for it yet.
4223 	 */
4224 	if (offline_node < 0)
4225 		return;
4226 
4227 	mutex_lock(&slab_mutex);
4228 	list_for_each_entry(s, &slab_caches, list) {
4229 		n = get_node(s, offline_node);
4230 		if (n) {
4231 			/*
4232 			 * if n->nr_slabs > 0, slabs still exist on the node
4233 			 * that is going down. We were unable to free them,
4234 			 * and offline_pages() function shouldn't call this
4235 			 * callback. So, we must fail.
4236 			 */
4237 			BUG_ON(slabs_node(s, offline_node));
4238 
4239 			s->node[offline_node] = NULL;
4240 			kmem_cache_free(kmem_cache_node, n);
4241 		}
4242 	}
4243 	mutex_unlock(&slab_mutex);
4244 }
4245 
4246 static int slab_mem_going_online_callback(void *arg)
4247 {
4248 	struct kmem_cache_node *n;
4249 	struct kmem_cache *s;
4250 	struct memory_notify *marg = arg;
4251 	int nid = marg->status_change_nid_normal;
4252 	int ret = 0;
4253 
4254 	/*
4255 	 * If the node's memory is already available, then kmem_cache_node is
4256 	 * already created. Nothing to do.
4257 	 */
4258 	if (nid < 0)
4259 		return 0;
4260 
4261 	/*
4262 	 * We are bringing a node online. No memory is available yet. We must
4263 	 * allocate a kmem_cache_node structure in order to bring the node
4264 	 * online.
4265 	 */
4266 	mutex_lock(&slab_mutex);
4267 	list_for_each_entry(s, &slab_caches, list) {
4268 		/*
4269 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4270 		 *      since memory is not yet available from the node that
4271 		 *      is brought up.
4272 		 */
4273 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4274 		if (!n) {
4275 			ret = -ENOMEM;
4276 			goto out;
4277 		}
4278 		init_kmem_cache_node(n);
4279 		s->node[nid] = n;
4280 	}
4281 out:
4282 	mutex_unlock(&slab_mutex);
4283 	return ret;
4284 }
4285 
4286 static int slab_memory_callback(struct notifier_block *self,
4287 				unsigned long action, void *arg)
4288 {
4289 	int ret = 0;
4290 
4291 	switch (action) {
4292 	case MEM_GOING_ONLINE:
4293 		ret = slab_mem_going_online_callback(arg);
4294 		break;
4295 	case MEM_GOING_OFFLINE:
4296 		ret = slab_mem_going_offline_callback(arg);
4297 		break;
4298 	case MEM_OFFLINE:
4299 	case MEM_CANCEL_ONLINE:
4300 		slab_mem_offline_callback(arg);
4301 		break;
4302 	case MEM_ONLINE:
4303 	case MEM_CANCEL_OFFLINE:
4304 		break;
4305 	}
4306 	if (ret)
4307 		ret = notifier_from_errno(ret);
4308 	else
4309 		ret = NOTIFY_OK;
4310 	return ret;
4311 }
4312 
4313 static struct notifier_block slab_memory_callback_nb = {
4314 	.notifier_call = slab_memory_callback,
4315 	.priority = SLAB_CALLBACK_PRI,
4316 };
4317 
4318 /********************************************************************
4319  *			Basic setup of slabs
4320  *******************************************************************/
4321 
4322 /*
4323  * Used for early kmem_cache structures that were allocated using
4324  * the page allocator. Allocate them properly then fix up the pointers
4325  * that may be pointing to the wrong kmem_cache structure.
4326  */
4327 
4328 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4329 {
4330 	int node;
4331 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4332 	struct kmem_cache_node *n;
4333 
4334 	memcpy(s, static_cache, kmem_cache->object_size);
4335 
4336 	/*
4337 	 * This runs very early, and only the boot processor is supposed to be
4338 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4339 	 * IPIs around.
4340 	 */
4341 	__flush_cpu_slab(s, smp_processor_id());
4342 	for_each_kmem_cache_node(s, node, n) {
4343 		struct page *p;
4344 
4345 		list_for_each_entry(p, &n->partial, slab_list)
4346 			p->slab_cache = s;
4347 
4348 #ifdef CONFIG_SLUB_DEBUG
4349 		list_for_each_entry(p, &n->full, slab_list)
4350 			p->slab_cache = s;
4351 #endif
4352 	}
4353 	list_add(&s->list, &slab_caches);
4354 	return s;
4355 }
4356 
4357 void __init kmem_cache_init(void)
4358 {
4359 	static __initdata struct kmem_cache boot_kmem_cache,
4360 		boot_kmem_cache_node;
4361 
4362 	if (debug_guardpage_minorder())
4363 		slub_max_order = 0;
4364 
4365 	kmem_cache_node = &boot_kmem_cache_node;
4366 	kmem_cache = &boot_kmem_cache;
4367 
4368 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4369 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4370 
4371 	register_hotmemory_notifier(&slab_memory_callback_nb);
4372 
4373 	/* Able to allocate the per node structures */
4374 	slab_state = PARTIAL;
4375 
4376 	create_boot_cache(kmem_cache, "kmem_cache",
4377 			offsetof(struct kmem_cache, node) +
4378 				nr_node_ids * sizeof(struct kmem_cache_node *),
4379 		       SLAB_HWCACHE_ALIGN, 0, 0);
4380 
4381 	kmem_cache = bootstrap(&boot_kmem_cache);
4382 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4383 
4384 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4385 	setup_kmalloc_cache_index_table();
4386 	create_kmalloc_caches(0);
4387 
4388 	/* Setup random freelists for each cache */
4389 	init_freelist_randomization();
4390 
4391 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4392 				  slub_cpu_dead);
4393 
4394 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4395 		cache_line_size(),
4396 		slub_min_order, slub_max_order, slub_min_objects,
4397 		nr_cpu_ids, nr_node_ids);
4398 }
4399 
4400 void __init kmem_cache_init_late(void)
4401 {
4402 }
4403 
4404 struct kmem_cache *
4405 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4406 		   slab_flags_t flags, void (*ctor)(void *))
4407 {
4408 	struct kmem_cache *s;
4409 
4410 	s = find_mergeable(size, align, flags, name, ctor);
4411 	if (s) {
4412 		s->refcount++;
4413 
4414 		/*
4415 		 * Adjust the object sizes so that we clear
4416 		 * the complete object on kzalloc.
4417 		 */
4418 		s->object_size = max(s->object_size, size);
4419 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4420 
4421 		if (sysfs_slab_alias(s, name)) {
4422 			s->refcount--;
4423 			s = NULL;
4424 		}
4425 	}
4426 
4427 	return s;
4428 }
4429 
4430 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4431 {
4432 	int err;
4433 
4434 	err = kmem_cache_open(s, flags);
4435 	if (err)
4436 		return err;
4437 
4438 	/* Mutex is not taken during early boot */
4439 	if (slab_state <= UP)
4440 		return 0;
4441 
4442 	err = sysfs_slab_add(s);
4443 	if (err)
4444 		__kmem_cache_release(s);
4445 
4446 	return err;
4447 }
4448 
4449 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4450 {
4451 	struct kmem_cache *s;
4452 	void *ret;
4453 
4454 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4455 		return kmalloc_large(size, gfpflags);
4456 
4457 	s = kmalloc_slab(size, gfpflags);
4458 
4459 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4460 		return s;
4461 
4462 	ret = slab_alloc(s, gfpflags, caller);
4463 
4464 	/* Honor the call site pointer we received. */
4465 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4466 
4467 	return ret;
4468 }
4469 EXPORT_SYMBOL(__kmalloc_track_caller);
4470 
4471 #ifdef CONFIG_NUMA
4472 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4473 					int node, unsigned long caller)
4474 {
4475 	struct kmem_cache *s;
4476 	void *ret;
4477 
4478 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4479 		ret = kmalloc_large_node(size, gfpflags, node);
4480 
4481 		trace_kmalloc_node(caller, ret,
4482 				   size, PAGE_SIZE << get_order(size),
4483 				   gfpflags, node);
4484 
4485 		return ret;
4486 	}
4487 
4488 	s = kmalloc_slab(size, gfpflags);
4489 
4490 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4491 		return s;
4492 
4493 	ret = slab_alloc_node(s, gfpflags, node, caller);
4494 
4495 	/* Honor the call site pointer we received. */
4496 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4497 
4498 	return ret;
4499 }
4500 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4501 #endif
4502 
4503 #ifdef CONFIG_SYSFS
4504 static int count_inuse(struct page *page)
4505 {
4506 	return page->inuse;
4507 }
4508 
4509 static int count_total(struct page *page)
4510 {
4511 	return page->objects;
4512 }
4513 #endif
4514 
4515 #ifdef CONFIG_SLUB_DEBUG
4516 static void validate_slab(struct kmem_cache *s, struct page *page)
4517 {
4518 	void *p;
4519 	void *addr = page_address(page);
4520 	unsigned long *map;
4521 
4522 	slab_lock(page);
4523 
4524 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4525 		goto unlock;
4526 
4527 	/* Now we know that a valid freelist exists */
4528 	map = get_map(s, page);
4529 	for_each_object(p, s, addr, page->objects) {
4530 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4531 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4532 
4533 		if (!check_object(s, page, p, val))
4534 			break;
4535 	}
4536 	put_map(map);
4537 unlock:
4538 	slab_unlock(page);
4539 }
4540 
4541 static int validate_slab_node(struct kmem_cache *s,
4542 		struct kmem_cache_node *n)
4543 {
4544 	unsigned long count = 0;
4545 	struct page *page;
4546 	unsigned long flags;
4547 
4548 	spin_lock_irqsave(&n->list_lock, flags);
4549 
4550 	list_for_each_entry(page, &n->partial, slab_list) {
4551 		validate_slab(s, page);
4552 		count++;
4553 	}
4554 	if (count != n->nr_partial)
4555 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4556 		       s->name, count, n->nr_partial);
4557 
4558 	if (!(s->flags & SLAB_STORE_USER))
4559 		goto out;
4560 
4561 	list_for_each_entry(page, &n->full, slab_list) {
4562 		validate_slab(s, page);
4563 		count++;
4564 	}
4565 	if (count != atomic_long_read(&n->nr_slabs))
4566 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4567 		       s->name, count, atomic_long_read(&n->nr_slabs));
4568 
4569 out:
4570 	spin_unlock_irqrestore(&n->list_lock, flags);
4571 	return count;
4572 }
4573 
4574 static long validate_slab_cache(struct kmem_cache *s)
4575 {
4576 	int node;
4577 	unsigned long count = 0;
4578 	struct kmem_cache_node *n;
4579 
4580 	flush_all(s);
4581 	for_each_kmem_cache_node(s, node, n)
4582 		count += validate_slab_node(s, n);
4583 
4584 	return count;
4585 }
4586 /*
4587  * Generate lists of code addresses where slabcache objects are allocated
4588  * and freed.
4589  */
4590 
4591 struct location {
4592 	unsigned long count;
4593 	unsigned long addr;
4594 	long long sum_time;
4595 	long min_time;
4596 	long max_time;
4597 	long min_pid;
4598 	long max_pid;
4599 	DECLARE_BITMAP(cpus, NR_CPUS);
4600 	nodemask_t nodes;
4601 };
4602 
4603 struct loc_track {
4604 	unsigned long max;
4605 	unsigned long count;
4606 	struct location *loc;
4607 };
4608 
4609 static void free_loc_track(struct loc_track *t)
4610 {
4611 	if (t->max)
4612 		free_pages((unsigned long)t->loc,
4613 			get_order(sizeof(struct location) * t->max));
4614 }
4615 
4616 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4617 {
4618 	struct location *l;
4619 	int order;
4620 
4621 	order = get_order(sizeof(struct location) * max);
4622 
4623 	l = (void *)__get_free_pages(flags, order);
4624 	if (!l)
4625 		return 0;
4626 
4627 	if (t->count) {
4628 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4629 		free_loc_track(t);
4630 	}
4631 	t->max = max;
4632 	t->loc = l;
4633 	return 1;
4634 }
4635 
4636 static int add_location(struct loc_track *t, struct kmem_cache *s,
4637 				const struct track *track)
4638 {
4639 	long start, end, pos;
4640 	struct location *l;
4641 	unsigned long caddr;
4642 	unsigned long age = jiffies - track->when;
4643 
4644 	start = -1;
4645 	end = t->count;
4646 
4647 	for ( ; ; ) {
4648 		pos = start + (end - start + 1) / 2;
4649 
4650 		/*
4651 		 * There is nothing at "end". If we end up there
4652 		 * we need to add something to before end.
4653 		 */
4654 		if (pos == end)
4655 			break;
4656 
4657 		caddr = t->loc[pos].addr;
4658 		if (track->addr == caddr) {
4659 
4660 			l = &t->loc[pos];
4661 			l->count++;
4662 			if (track->when) {
4663 				l->sum_time += age;
4664 				if (age < l->min_time)
4665 					l->min_time = age;
4666 				if (age > l->max_time)
4667 					l->max_time = age;
4668 
4669 				if (track->pid < l->min_pid)
4670 					l->min_pid = track->pid;
4671 				if (track->pid > l->max_pid)
4672 					l->max_pid = track->pid;
4673 
4674 				cpumask_set_cpu(track->cpu,
4675 						to_cpumask(l->cpus));
4676 			}
4677 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4678 			return 1;
4679 		}
4680 
4681 		if (track->addr < caddr)
4682 			end = pos;
4683 		else
4684 			start = pos;
4685 	}
4686 
4687 	/*
4688 	 * Not found. Insert new tracking element.
4689 	 */
4690 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4691 		return 0;
4692 
4693 	l = t->loc + pos;
4694 	if (pos < t->count)
4695 		memmove(l + 1, l,
4696 			(t->count - pos) * sizeof(struct location));
4697 	t->count++;
4698 	l->count = 1;
4699 	l->addr = track->addr;
4700 	l->sum_time = age;
4701 	l->min_time = age;
4702 	l->max_time = age;
4703 	l->min_pid = track->pid;
4704 	l->max_pid = track->pid;
4705 	cpumask_clear(to_cpumask(l->cpus));
4706 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4707 	nodes_clear(l->nodes);
4708 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4709 	return 1;
4710 }
4711 
4712 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4713 		struct page *page, enum track_item alloc)
4714 {
4715 	void *addr = page_address(page);
4716 	void *p;
4717 	unsigned long *map;
4718 
4719 	map = get_map(s, page);
4720 	for_each_object(p, s, addr, page->objects)
4721 		if (!test_bit(__obj_to_index(s, addr, p), map))
4722 			add_location(t, s, get_track(s, p, alloc));
4723 	put_map(map);
4724 }
4725 
4726 static int list_locations(struct kmem_cache *s, char *buf,
4727 			  enum track_item alloc)
4728 {
4729 	int len = 0;
4730 	unsigned long i;
4731 	struct loc_track t = { 0, 0, NULL };
4732 	int node;
4733 	struct kmem_cache_node *n;
4734 
4735 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4736 			     GFP_KERNEL)) {
4737 		return sysfs_emit(buf, "Out of memory\n");
4738 	}
4739 	/* Push back cpu slabs */
4740 	flush_all(s);
4741 
4742 	for_each_kmem_cache_node(s, node, n) {
4743 		unsigned long flags;
4744 		struct page *page;
4745 
4746 		if (!atomic_long_read(&n->nr_slabs))
4747 			continue;
4748 
4749 		spin_lock_irqsave(&n->list_lock, flags);
4750 		list_for_each_entry(page, &n->partial, slab_list)
4751 			process_slab(&t, s, page, alloc);
4752 		list_for_each_entry(page, &n->full, slab_list)
4753 			process_slab(&t, s, page, alloc);
4754 		spin_unlock_irqrestore(&n->list_lock, flags);
4755 	}
4756 
4757 	for (i = 0; i < t.count; i++) {
4758 		struct location *l = &t.loc[i];
4759 
4760 		len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4761 
4762 		if (l->addr)
4763 			len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4764 		else
4765 			len += sysfs_emit_at(buf, len, "<not-available>");
4766 
4767 		if (l->sum_time != l->min_time)
4768 			len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4769 					     l->min_time,
4770 					     (long)div_u64(l->sum_time,
4771 							   l->count),
4772 					     l->max_time);
4773 		else
4774 			len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4775 
4776 		if (l->min_pid != l->max_pid)
4777 			len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4778 					     l->min_pid, l->max_pid);
4779 		else
4780 			len += sysfs_emit_at(buf, len, " pid=%ld",
4781 					     l->min_pid);
4782 
4783 		if (num_online_cpus() > 1 &&
4784 		    !cpumask_empty(to_cpumask(l->cpus)))
4785 			len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4786 					     cpumask_pr_args(to_cpumask(l->cpus)));
4787 
4788 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4789 			len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4790 					     nodemask_pr_args(&l->nodes));
4791 
4792 		len += sysfs_emit_at(buf, len, "\n");
4793 	}
4794 
4795 	free_loc_track(&t);
4796 	if (!t.count)
4797 		len += sysfs_emit_at(buf, len, "No data\n");
4798 
4799 	return len;
4800 }
4801 #endif	/* CONFIG_SLUB_DEBUG */
4802 
4803 #ifdef SLUB_RESILIENCY_TEST
4804 static void __init resiliency_test(void)
4805 {
4806 	u8 *p;
4807 	int type = KMALLOC_NORMAL;
4808 
4809 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4810 
4811 	pr_err("SLUB resiliency testing\n");
4812 	pr_err("-----------------------\n");
4813 	pr_err("A. Corruption after allocation\n");
4814 
4815 	p = kzalloc(16, GFP_KERNEL);
4816 	p[16] = 0x12;
4817 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4818 	       p + 16);
4819 
4820 	validate_slab_cache(kmalloc_caches[type][4]);
4821 
4822 	/* Hmmm... The next two are dangerous */
4823 	p = kzalloc(32, GFP_KERNEL);
4824 	p[32 + sizeof(void *)] = 0x34;
4825 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4826 	       p);
4827 	pr_err("If allocated object is overwritten then not detectable\n\n");
4828 
4829 	validate_slab_cache(kmalloc_caches[type][5]);
4830 	p = kzalloc(64, GFP_KERNEL);
4831 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4832 	*p = 0x56;
4833 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4834 	       p);
4835 	pr_err("If allocated object is overwritten then not detectable\n\n");
4836 	validate_slab_cache(kmalloc_caches[type][6]);
4837 
4838 	pr_err("\nB. Corruption after free\n");
4839 	p = kzalloc(128, GFP_KERNEL);
4840 	kfree(p);
4841 	*p = 0x78;
4842 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4843 	validate_slab_cache(kmalloc_caches[type][7]);
4844 
4845 	p = kzalloc(256, GFP_KERNEL);
4846 	kfree(p);
4847 	p[50] = 0x9a;
4848 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4849 	validate_slab_cache(kmalloc_caches[type][8]);
4850 
4851 	p = kzalloc(512, GFP_KERNEL);
4852 	kfree(p);
4853 	p[512] = 0xab;
4854 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4855 	validate_slab_cache(kmalloc_caches[type][9]);
4856 }
4857 #else
4858 #ifdef CONFIG_SYSFS
4859 static void resiliency_test(void) {};
4860 #endif
4861 #endif	/* SLUB_RESILIENCY_TEST */
4862 
4863 #ifdef CONFIG_SYSFS
4864 enum slab_stat_type {
4865 	SL_ALL,			/* All slabs */
4866 	SL_PARTIAL,		/* Only partially allocated slabs */
4867 	SL_CPU,			/* Only slabs used for cpu caches */
4868 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4869 	SL_TOTAL		/* Determine object capacity not slabs */
4870 };
4871 
4872 #define SO_ALL		(1 << SL_ALL)
4873 #define SO_PARTIAL	(1 << SL_PARTIAL)
4874 #define SO_CPU		(1 << SL_CPU)
4875 #define SO_OBJECTS	(1 << SL_OBJECTS)
4876 #define SO_TOTAL	(1 << SL_TOTAL)
4877 
4878 #ifdef CONFIG_MEMCG
4879 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4880 
4881 static int __init setup_slub_memcg_sysfs(char *str)
4882 {
4883 	int v;
4884 
4885 	if (get_option(&str, &v) > 0)
4886 		memcg_sysfs_enabled = v;
4887 
4888 	return 1;
4889 }
4890 
4891 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4892 #endif
4893 
4894 static ssize_t show_slab_objects(struct kmem_cache *s,
4895 				 char *buf, unsigned long flags)
4896 {
4897 	unsigned long total = 0;
4898 	int node;
4899 	int x;
4900 	unsigned long *nodes;
4901 	int len = 0;
4902 
4903 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4904 	if (!nodes)
4905 		return -ENOMEM;
4906 
4907 	if (flags & SO_CPU) {
4908 		int cpu;
4909 
4910 		for_each_possible_cpu(cpu) {
4911 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4912 							       cpu);
4913 			int node;
4914 			struct page *page;
4915 
4916 			page = READ_ONCE(c->page);
4917 			if (!page)
4918 				continue;
4919 
4920 			node = page_to_nid(page);
4921 			if (flags & SO_TOTAL)
4922 				x = page->objects;
4923 			else if (flags & SO_OBJECTS)
4924 				x = page->inuse;
4925 			else
4926 				x = 1;
4927 
4928 			total += x;
4929 			nodes[node] += x;
4930 
4931 			page = slub_percpu_partial_read_once(c);
4932 			if (page) {
4933 				node = page_to_nid(page);
4934 				if (flags & SO_TOTAL)
4935 					WARN_ON_ONCE(1);
4936 				else if (flags & SO_OBJECTS)
4937 					WARN_ON_ONCE(1);
4938 				else
4939 					x = page->pages;
4940 				total += x;
4941 				nodes[node] += x;
4942 			}
4943 		}
4944 	}
4945 
4946 	/*
4947 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4948 	 * already held which will conflict with an existing lock order:
4949 	 *
4950 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4951 	 *
4952 	 * We don't really need mem_hotplug_lock (to hold off
4953 	 * slab_mem_going_offline_callback) here because slab's memory hot
4954 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4955 	 */
4956 
4957 #ifdef CONFIG_SLUB_DEBUG
4958 	if (flags & SO_ALL) {
4959 		struct kmem_cache_node *n;
4960 
4961 		for_each_kmem_cache_node(s, node, n) {
4962 
4963 			if (flags & SO_TOTAL)
4964 				x = atomic_long_read(&n->total_objects);
4965 			else if (flags & SO_OBJECTS)
4966 				x = atomic_long_read(&n->total_objects) -
4967 					count_partial(n, count_free);
4968 			else
4969 				x = atomic_long_read(&n->nr_slabs);
4970 			total += x;
4971 			nodes[node] += x;
4972 		}
4973 
4974 	} else
4975 #endif
4976 	if (flags & SO_PARTIAL) {
4977 		struct kmem_cache_node *n;
4978 
4979 		for_each_kmem_cache_node(s, node, n) {
4980 			if (flags & SO_TOTAL)
4981 				x = count_partial(n, count_total);
4982 			else if (flags & SO_OBJECTS)
4983 				x = count_partial(n, count_inuse);
4984 			else
4985 				x = n->nr_partial;
4986 			total += x;
4987 			nodes[node] += x;
4988 		}
4989 	}
4990 
4991 	len += sysfs_emit_at(buf, len, "%lu", total);
4992 #ifdef CONFIG_NUMA
4993 	for (node = 0; node < nr_node_ids; node++) {
4994 		if (nodes[node])
4995 			len += sysfs_emit_at(buf, len, " N%d=%lu",
4996 					     node, nodes[node]);
4997 	}
4998 #endif
4999 	len += sysfs_emit_at(buf, len, "\n");
5000 	kfree(nodes);
5001 
5002 	return len;
5003 }
5004 
5005 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5006 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5007 
5008 struct slab_attribute {
5009 	struct attribute attr;
5010 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5011 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5012 };
5013 
5014 #define SLAB_ATTR_RO(_name) \
5015 	static struct slab_attribute _name##_attr = \
5016 	__ATTR(_name, 0400, _name##_show, NULL)
5017 
5018 #define SLAB_ATTR(_name) \
5019 	static struct slab_attribute _name##_attr =  \
5020 	__ATTR(_name, 0600, _name##_show, _name##_store)
5021 
5022 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5023 {
5024 	return sysfs_emit(buf, "%u\n", s->size);
5025 }
5026 SLAB_ATTR_RO(slab_size);
5027 
5028 static ssize_t align_show(struct kmem_cache *s, char *buf)
5029 {
5030 	return sysfs_emit(buf, "%u\n", s->align);
5031 }
5032 SLAB_ATTR_RO(align);
5033 
5034 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5035 {
5036 	return sysfs_emit(buf, "%u\n", s->object_size);
5037 }
5038 SLAB_ATTR_RO(object_size);
5039 
5040 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5041 {
5042 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5043 }
5044 SLAB_ATTR_RO(objs_per_slab);
5045 
5046 static ssize_t order_show(struct kmem_cache *s, char *buf)
5047 {
5048 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5049 }
5050 SLAB_ATTR_RO(order);
5051 
5052 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5053 {
5054 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5055 }
5056 
5057 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5058 				 size_t length)
5059 {
5060 	unsigned long min;
5061 	int err;
5062 
5063 	err = kstrtoul(buf, 10, &min);
5064 	if (err)
5065 		return err;
5066 
5067 	set_min_partial(s, min);
5068 	return length;
5069 }
5070 SLAB_ATTR(min_partial);
5071 
5072 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5073 {
5074 	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5075 }
5076 
5077 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5078 				 size_t length)
5079 {
5080 	unsigned int objects;
5081 	int err;
5082 
5083 	err = kstrtouint(buf, 10, &objects);
5084 	if (err)
5085 		return err;
5086 	if (objects && !kmem_cache_has_cpu_partial(s))
5087 		return -EINVAL;
5088 
5089 	slub_set_cpu_partial(s, objects);
5090 	flush_all(s);
5091 	return length;
5092 }
5093 SLAB_ATTR(cpu_partial);
5094 
5095 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5096 {
5097 	if (!s->ctor)
5098 		return 0;
5099 	return sysfs_emit(buf, "%pS\n", s->ctor);
5100 }
5101 SLAB_ATTR_RO(ctor);
5102 
5103 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5104 {
5105 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5106 }
5107 SLAB_ATTR_RO(aliases);
5108 
5109 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5110 {
5111 	return show_slab_objects(s, buf, SO_PARTIAL);
5112 }
5113 SLAB_ATTR_RO(partial);
5114 
5115 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5116 {
5117 	return show_slab_objects(s, buf, SO_CPU);
5118 }
5119 SLAB_ATTR_RO(cpu_slabs);
5120 
5121 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5122 {
5123 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5124 }
5125 SLAB_ATTR_RO(objects);
5126 
5127 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5128 {
5129 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5130 }
5131 SLAB_ATTR_RO(objects_partial);
5132 
5133 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5134 {
5135 	int objects = 0;
5136 	int pages = 0;
5137 	int cpu;
5138 	int len = 0;
5139 
5140 	for_each_online_cpu(cpu) {
5141 		struct page *page;
5142 
5143 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5144 
5145 		if (page) {
5146 			pages += page->pages;
5147 			objects += page->pobjects;
5148 		}
5149 	}
5150 
5151 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5152 
5153 #ifdef CONFIG_SMP
5154 	for_each_online_cpu(cpu) {
5155 		struct page *page;
5156 
5157 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5158 		if (page)
5159 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5160 					     cpu, page->pobjects, page->pages);
5161 	}
5162 #endif
5163 	len += sysfs_emit_at(buf, len, "\n");
5164 
5165 	return len;
5166 }
5167 SLAB_ATTR_RO(slabs_cpu_partial);
5168 
5169 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5170 {
5171 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5172 }
5173 SLAB_ATTR_RO(reclaim_account);
5174 
5175 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5176 {
5177 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5178 }
5179 SLAB_ATTR_RO(hwcache_align);
5180 
5181 #ifdef CONFIG_ZONE_DMA
5182 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5183 {
5184 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5185 }
5186 SLAB_ATTR_RO(cache_dma);
5187 #endif
5188 
5189 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5190 {
5191 	return sysfs_emit(buf, "%u\n", s->usersize);
5192 }
5193 SLAB_ATTR_RO(usersize);
5194 
5195 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5196 {
5197 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5198 }
5199 SLAB_ATTR_RO(destroy_by_rcu);
5200 
5201 #ifdef CONFIG_SLUB_DEBUG
5202 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5203 {
5204 	return show_slab_objects(s, buf, SO_ALL);
5205 }
5206 SLAB_ATTR_RO(slabs);
5207 
5208 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5209 {
5210 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5211 }
5212 SLAB_ATTR_RO(total_objects);
5213 
5214 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5215 {
5216 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5217 }
5218 SLAB_ATTR_RO(sanity_checks);
5219 
5220 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5221 {
5222 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5223 }
5224 SLAB_ATTR_RO(trace);
5225 
5226 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5227 {
5228 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5229 }
5230 
5231 SLAB_ATTR_RO(red_zone);
5232 
5233 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5234 {
5235 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5236 }
5237 
5238 SLAB_ATTR_RO(poison);
5239 
5240 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5241 {
5242 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5243 }
5244 
5245 SLAB_ATTR_RO(store_user);
5246 
5247 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5248 {
5249 	return 0;
5250 }
5251 
5252 static ssize_t validate_store(struct kmem_cache *s,
5253 			const char *buf, size_t length)
5254 {
5255 	int ret = -EINVAL;
5256 
5257 	if (buf[0] == '1') {
5258 		ret = validate_slab_cache(s);
5259 		if (ret >= 0)
5260 			ret = length;
5261 	}
5262 	return ret;
5263 }
5264 SLAB_ATTR(validate);
5265 
5266 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5267 {
5268 	if (!(s->flags & SLAB_STORE_USER))
5269 		return -ENOSYS;
5270 	return list_locations(s, buf, TRACK_ALLOC);
5271 }
5272 SLAB_ATTR_RO(alloc_calls);
5273 
5274 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5275 {
5276 	if (!(s->flags & SLAB_STORE_USER))
5277 		return -ENOSYS;
5278 	return list_locations(s, buf, TRACK_FREE);
5279 }
5280 SLAB_ATTR_RO(free_calls);
5281 #endif /* CONFIG_SLUB_DEBUG */
5282 
5283 #ifdef CONFIG_FAILSLAB
5284 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5285 {
5286 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5287 }
5288 SLAB_ATTR_RO(failslab);
5289 #endif
5290 
5291 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5292 {
5293 	return 0;
5294 }
5295 
5296 static ssize_t shrink_store(struct kmem_cache *s,
5297 			const char *buf, size_t length)
5298 {
5299 	if (buf[0] == '1')
5300 		kmem_cache_shrink(s);
5301 	else
5302 		return -EINVAL;
5303 	return length;
5304 }
5305 SLAB_ATTR(shrink);
5306 
5307 #ifdef CONFIG_NUMA
5308 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5309 {
5310 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5311 }
5312 
5313 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5314 				const char *buf, size_t length)
5315 {
5316 	unsigned int ratio;
5317 	int err;
5318 
5319 	err = kstrtouint(buf, 10, &ratio);
5320 	if (err)
5321 		return err;
5322 	if (ratio > 100)
5323 		return -ERANGE;
5324 
5325 	s->remote_node_defrag_ratio = ratio * 10;
5326 
5327 	return length;
5328 }
5329 SLAB_ATTR(remote_node_defrag_ratio);
5330 #endif
5331 
5332 #ifdef CONFIG_SLUB_STATS
5333 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5334 {
5335 	unsigned long sum  = 0;
5336 	int cpu;
5337 	int len = 0;
5338 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5339 
5340 	if (!data)
5341 		return -ENOMEM;
5342 
5343 	for_each_online_cpu(cpu) {
5344 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5345 
5346 		data[cpu] = x;
5347 		sum += x;
5348 	}
5349 
5350 	len += sysfs_emit_at(buf, len, "%lu", sum);
5351 
5352 #ifdef CONFIG_SMP
5353 	for_each_online_cpu(cpu) {
5354 		if (data[cpu])
5355 			len += sysfs_emit_at(buf, len, " C%d=%u",
5356 					     cpu, data[cpu]);
5357 	}
5358 #endif
5359 	kfree(data);
5360 	len += sysfs_emit_at(buf, len, "\n");
5361 
5362 	return len;
5363 }
5364 
5365 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5366 {
5367 	int cpu;
5368 
5369 	for_each_online_cpu(cpu)
5370 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5371 }
5372 
5373 #define STAT_ATTR(si, text) 					\
5374 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5375 {								\
5376 	return show_stat(s, buf, si);				\
5377 }								\
5378 static ssize_t text##_store(struct kmem_cache *s,		\
5379 				const char *buf, size_t length)	\
5380 {								\
5381 	if (buf[0] != '0')					\
5382 		return -EINVAL;					\
5383 	clear_stat(s, si);					\
5384 	return length;						\
5385 }								\
5386 SLAB_ATTR(text);						\
5387 
5388 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5389 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5390 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5391 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5392 STAT_ATTR(FREE_FROZEN, free_frozen);
5393 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5394 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5395 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5396 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5397 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5398 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5399 STAT_ATTR(FREE_SLAB, free_slab);
5400 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5401 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5402 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5403 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5404 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5405 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5406 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5407 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5408 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5409 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5410 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5411 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5412 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5413 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5414 #endif	/* CONFIG_SLUB_STATS */
5415 
5416 static struct attribute *slab_attrs[] = {
5417 	&slab_size_attr.attr,
5418 	&object_size_attr.attr,
5419 	&objs_per_slab_attr.attr,
5420 	&order_attr.attr,
5421 	&min_partial_attr.attr,
5422 	&cpu_partial_attr.attr,
5423 	&objects_attr.attr,
5424 	&objects_partial_attr.attr,
5425 	&partial_attr.attr,
5426 	&cpu_slabs_attr.attr,
5427 	&ctor_attr.attr,
5428 	&aliases_attr.attr,
5429 	&align_attr.attr,
5430 	&hwcache_align_attr.attr,
5431 	&reclaim_account_attr.attr,
5432 	&destroy_by_rcu_attr.attr,
5433 	&shrink_attr.attr,
5434 	&slabs_cpu_partial_attr.attr,
5435 #ifdef CONFIG_SLUB_DEBUG
5436 	&total_objects_attr.attr,
5437 	&slabs_attr.attr,
5438 	&sanity_checks_attr.attr,
5439 	&trace_attr.attr,
5440 	&red_zone_attr.attr,
5441 	&poison_attr.attr,
5442 	&store_user_attr.attr,
5443 	&validate_attr.attr,
5444 	&alloc_calls_attr.attr,
5445 	&free_calls_attr.attr,
5446 #endif
5447 #ifdef CONFIG_ZONE_DMA
5448 	&cache_dma_attr.attr,
5449 #endif
5450 #ifdef CONFIG_NUMA
5451 	&remote_node_defrag_ratio_attr.attr,
5452 #endif
5453 #ifdef CONFIG_SLUB_STATS
5454 	&alloc_fastpath_attr.attr,
5455 	&alloc_slowpath_attr.attr,
5456 	&free_fastpath_attr.attr,
5457 	&free_slowpath_attr.attr,
5458 	&free_frozen_attr.attr,
5459 	&free_add_partial_attr.attr,
5460 	&free_remove_partial_attr.attr,
5461 	&alloc_from_partial_attr.attr,
5462 	&alloc_slab_attr.attr,
5463 	&alloc_refill_attr.attr,
5464 	&alloc_node_mismatch_attr.attr,
5465 	&free_slab_attr.attr,
5466 	&cpuslab_flush_attr.attr,
5467 	&deactivate_full_attr.attr,
5468 	&deactivate_empty_attr.attr,
5469 	&deactivate_to_head_attr.attr,
5470 	&deactivate_to_tail_attr.attr,
5471 	&deactivate_remote_frees_attr.attr,
5472 	&deactivate_bypass_attr.attr,
5473 	&order_fallback_attr.attr,
5474 	&cmpxchg_double_fail_attr.attr,
5475 	&cmpxchg_double_cpu_fail_attr.attr,
5476 	&cpu_partial_alloc_attr.attr,
5477 	&cpu_partial_free_attr.attr,
5478 	&cpu_partial_node_attr.attr,
5479 	&cpu_partial_drain_attr.attr,
5480 #endif
5481 #ifdef CONFIG_FAILSLAB
5482 	&failslab_attr.attr,
5483 #endif
5484 	&usersize_attr.attr,
5485 
5486 	NULL
5487 };
5488 
5489 static const struct attribute_group slab_attr_group = {
5490 	.attrs = slab_attrs,
5491 };
5492 
5493 static ssize_t slab_attr_show(struct kobject *kobj,
5494 				struct attribute *attr,
5495 				char *buf)
5496 {
5497 	struct slab_attribute *attribute;
5498 	struct kmem_cache *s;
5499 	int err;
5500 
5501 	attribute = to_slab_attr(attr);
5502 	s = to_slab(kobj);
5503 
5504 	if (!attribute->show)
5505 		return -EIO;
5506 
5507 	err = attribute->show(s, buf);
5508 
5509 	return err;
5510 }
5511 
5512 static ssize_t slab_attr_store(struct kobject *kobj,
5513 				struct attribute *attr,
5514 				const char *buf, size_t len)
5515 {
5516 	struct slab_attribute *attribute;
5517 	struct kmem_cache *s;
5518 	int err;
5519 
5520 	attribute = to_slab_attr(attr);
5521 	s = to_slab(kobj);
5522 
5523 	if (!attribute->store)
5524 		return -EIO;
5525 
5526 	err = attribute->store(s, buf, len);
5527 	return err;
5528 }
5529 
5530 static void kmem_cache_release(struct kobject *k)
5531 {
5532 	slab_kmem_cache_release(to_slab(k));
5533 }
5534 
5535 static const struct sysfs_ops slab_sysfs_ops = {
5536 	.show = slab_attr_show,
5537 	.store = slab_attr_store,
5538 };
5539 
5540 static struct kobj_type slab_ktype = {
5541 	.sysfs_ops = &slab_sysfs_ops,
5542 	.release = kmem_cache_release,
5543 };
5544 
5545 static struct kset *slab_kset;
5546 
5547 static inline struct kset *cache_kset(struct kmem_cache *s)
5548 {
5549 	return slab_kset;
5550 }
5551 
5552 #define ID_STR_LENGTH 64
5553 
5554 /* Create a unique string id for a slab cache:
5555  *
5556  * Format	:[flags-]size
5557  */
5558 static char *create_unique_id(struct kmem_cache *s)
5559 {
5560 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5561 	char *p = name;
5562 
5563 	BUG_ON(!name);
5564 
5565 	*p++ = ':';
5566 	/*
5567 	 * First flags affecting slabcache operations. We will only
5568 	 * get here for aliasable slabs so we do not need to support
5569 	 * too many flags. The flags here must cover all flags that
5570 	 * are matched during merging to guarantee that the id is
5571 	 * unique.
5572 	 */
5573 	if (s->flags & SLAB_CACHE_DMA)
5574 		*p++ = 'd';
5575 	if (s->flags & SLAB_CACHE_DMA32)
5576 		*p++ = 'D';
5577 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5578 		*p++ = 'a';
5579 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5580 		*p++ = 'F';
5581 	if (s->flags & SLAB_ACCOUNT)
5582 		*p++ = 'A';
5583 	if (p != name + 1)
5584 		*p++ = '-';
5585 	p += sprintf(p, "%07u", s->size);
5586 
5587 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5588 	return name;
5589 }
5590 
5591 static int sysfs_slab_add(struct kmem_cache *s)
5592 {
5593 	int err;
5594 	const char *name;
5595 	struct kset *kset = cache_kset(s);
5596 	int unmergeable = slab_unmergeable(s);
5597 
5598 	if (!kset) {
5599 		kobject_init(&s->kobj, &slab_ktype);
5600 		return 0;
5601 	}
5602 
5603 	if (!unmergeable && disable_higher_order_debug &&
5604 			(slub_debug & DEBUG_METADATA_FLAGS))
5605 		unmergeable = 1;
5606 
5607 	if (unmergeable) {
5608 		/*
5609 		 * Slabcache can never be merged so we can use the name proper.
5610 		 * This is typically the case for debug situations. In that
5611 		 * case we can catch duplicate names easily.
5612 		 */
5613 		sysfs_remove_link(&slab_kset->kobj, s->name);
5614 		name = s->name;
5615 	} else {
5616 		/*
5617 		 * Create a unique name for the slab as a target
5618 		 * for the symlinks.
5619 		 */
5620 		name = create_unique_id(s);
5621 	}
5622 
5623 	s->kobj.kset = kset;
5624 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5625 	if (err) {
5626 		kobject_put(&s->kobj);
5627 		goto out;
5628 	}
5629 
5630 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5631 	if (err)
5632 		goto out_del_kobj;
5633 
5634 	if (!unmergeable) {
5635 		/* Setup first alias */
5636 		sysfs_slab_alias(s, s->name);
5637 	}
5638 out:
5639 	if (!unmergeable)
5640 		kfree(name);
5641 	return err;
5642 out_del_kobj:
5643 	kobject_del(&s->kobj);
5644 	goto out;
5645 }
5646 
5647 void sysfs_slab_unlink(struct kmem_cache *s)
5648 {
5649 	if (slab_state >= FULL)
5650 		kobject_del(&s->kobj);
5651 }
5652 
5653 void sysfs_slab_release(struct kmem_cache *s)
5654 {
5655 	if (slab_state >= FULL)
5656 		kobject_put(&s->kobj);
5657 }
5658 
5659 /*
5660  * Need to buffer aliases during bootup until sysfs becomes
5661  * available lest we lose that information.
5662  */
5663 struct saved_alias {
5664 	struct kmem_cache *s;
5665 	const char *name;
5666 	struct saved_alias *next;
5667 };
5668 
5669 static struct saved_alias *alias_list;
5670 
5671 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5672 {
5673 	struct saved_alias *al;
5674 
5675 	if (slab_state == FULL) {
5676 		/*
5677 		 * If we have a leftover link then remove it.
5678 		 */
5679 		sysfs_remove_link(&slab_kset->kobj, name);
5680 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5681 	}
5682 
5683 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5684 	if (!al)
5685 		return -ENOMEM;
5686 
5687 	al->s = s;
5688 	al->name = name;
5689 	al->next = alias_list;
5690 	alias_list = al;
5691 	return 0;
5692 }
5693 
5694 static int __init slab_sysfs_init(void)
5695 {
5696 	struct kmem_cache *s;
5697 	int err;
5698 
5699 	mutex_lock(&slab_mutex);
5700 
5701 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5702 	if (!slab_kset) {
5703 		mutex_unlock(&slab_mutex);
5704 		pr_err("Cannot register slab subsystem.\n");
5705 		return -ENOSYS;
5706 	}
5707 
5708 	slab_state = FULL;
5709 
5710 	list_for_each_entry(s, &slab_caches, list) {
5711 		err = sysfs_slab_add(s);
5712 		if (err)
5713 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5714 			       s->name);
5715 	}
5716 
5717 	while (alias_list) {
5718 		struct saved_alias *al = alias_list;
5719 
5720 		alias_list = alias_list->next;
5721 		err = sysfs_slab_alias(al->s, al->name);
5722 		if (err)
5723 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5724 			       al->name);
5725 		kfree(al);
5726 	}
5727 
5728 	mutex_unlock(&slab_mutex);
5729 	resiliency_test();
5730 	return 0;
5731 }
5732 
5733 __initcall(slab_sysfs_init);
5734 #endif /* CONFIG_SYSFS */
5735 
5736 /*
5737  * The /proc/slabinfo ABI
5738  */
5739 #ifdef CONFIG_SLUB_DEBUG
5740 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5741 {
5742 	unsigned long nr_slabs = 0;
5743 	unsigned long nr_objs = 0;
5744 	unsigned long nr_free = 0;
5745 	int node;
5746 	struct kmem_cache_node *n;
5747 
5748 	for_each_kmem_cache_node(s, node, n) {
5749 		nr_slabs += node_nr_slabs(n);
5750 		nr_objs += node_nr_objs(n);
5751 		nr_free += count_partial(n, count_free);
5752 	}
5753 
5754 	sinfo->active_objs = nr_objs - nr_free;
5755 	sinfo->num_objs = nr_objs;
5756 	sinfo->active_slabs = nr_slabs;
5757 	sinfo->num_slabs = nr_slabs;
5758 	sinfo->objects_per_slab = oo_objects(s->oo);
5759 	sinfo->cache_order = oo_order(s->oo);
5760 }
5761 
5762 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5763 {
5764 }
5765 
5766 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5767 		       size_t count, loff_t *ppos)
5768 {
5769 	return -EIO;
5770 }
5771 #endif /* CONFIG_SLUB_DEBUG */
5772