1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * page->frozen The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 #ifdef CONFIG_SLUB_DEBUG 118 #ifdef CONFIG_SLUB_DEBUG_ON 119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 120 #else 121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 122 #endif 123 #endif 124 125 static inline bool kmem_cache_debug(struct kmem_cache *s) 126 { 127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 128 } 129 130 void *fixup_red_left(struct kmem_cache *s, void *p) 131 { 132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 133 p += s->red_left_pad; 134 135 return p; 136 } 137 138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 139 { 140 #ifdef CONFIG_SLUB_CPU_PARTIAL 141 return !kmem_cache_debug(s); 142 #else 143 return false; 144 #endif 145 } 146 147 /* 148 * Issues still to be resolved: 149 * 150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 151 * 152 * - Variable sizing of the per node arrays 153 */ 154 155 /* Enable to test recovery from slab corruption on boot */ 156 #undef SLUB_RESILIENCY_TEST 157 158 /* Enable to log cmpxchg failures */ 159 #undef SLUB_DEBUG_CMPXCHG 160 161 /* 162 * Mininum number of partial slabs. These will be left on the partial 163 * lists even if they are empty. kmem_cache_shrink may reclaim them. 164 */ 165 #define MIN_PARTIAL 5 166 167 /* 168 * Maximum number of desirable partial slabs. 169 * The existence of more partial slabs makes kmem_cache_shrink 170 * sort the partial list by the number of objects in use. 171 */ 172 #define MAX_PARTIAL 10 173 174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 175 SLAB_POISON | SLAB_STORE_USER) 176 177 /* 178 * These debug flags cannot use CMPXCHG because there might be consistency 179 * issues when checking or reading debug information 180 */ 181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 182 SLAB_TRACE) 183 184 185 /* 186 * Debugging flags that require metadata to be stored in the slab. These get 187 * disabled when slub_debug=O is used and a cache's min order increases with 188 * metadata. 189 */ 190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 191 192 #define OO_SHIFT 16 193 #define OO_MASK ((1 << OO_SHIFT) - 1) 194 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 195 196 /* Internal SLUB flags */ 197 /* Poison object */ 198 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 199 /* Use cmpxchg_double */ 200 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 201 202 /* 203 * Tracking user of a slab. 204 */ 205 #define TRACK_ADDRS_COUNT 16 206 struct track { 207 unsigned long addr; /* Called from address */ 208 #ifdef CONFIG_STACKTRACE 209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 210 #endif 211 int cpu; /* Was running on cpu */ 212 int pid; /* Pid context */ 213 unsigned long when; /* When did the operation occur */ 214 }; 215 216 enum track_item { TRACK_ALLOC, TRACK_FREE }; 217 218 #ifdef CONFIG_SYSFS 219 static int sysfs_slab_add(struct kmem_cache *); 220 static int sysfs_slab_alias(struct kmem_cache *, const char *); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 #endif 226 227 static inline void stat(const struct kmem_cache *s, enum stat_item si) 228 { 229 #ifdef CONFIG_SLUB_STATS 230 /* 231 * The rmw is racy on a preemptible kernel but this is acceptable, so 232 * avoid this_cpu_add()'s irq-disable overhead. 233 */ 234 raw_cpu_inc(s->cpu_slab->stat[si]); 235 #endif 236 } 237 238 /******************************************************************** 239 * Core slab cache functions 240 *******************************************************************/ 241 242 /* 243 * Returns freelist pointer (ptr). With hardening, this is obfuscated 244 * with an XOR of the address where the pointer is held and a per-cache 245 * random number. 246 */ 247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 248 unsigned long ptr_addr) 249 { 250 #ifdef CONFIG_SLAB_FREELIST_HARDENED 251 /* 252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 253 * Normally, this doesn't cause any issues, as both set_freepointer() 254 * and get_freepointer() are called with a pointer with the same tag. 255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 256 * example, when __free_slub() iterates over objects in a cache, it 257 * passes untagged pointers to check_object(). check_object() in turns 258 * calls get_freepointer() with an untagged pointer, which causes the 259 * freepointer to be restored incorrectly. 260 */ 261 return (void *)((unsigned long)ptr ^ s->random ^ 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 263 #else 264 return ptr; 265 #endif 266 } 267 268 /* Returns the freelist pointer recorded at location ptr_addr. */ 269 static inline void *freelist_dereference(const struct kmem_cache *s, 270 void *ptr_addr) 271 { 272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 273 (unsigned long)ptr_addr); 274 } 275 276 static inline void *get_freepointer(struct kmem_cache *s, void *object) 277 { 278 return freelist_dereference(s, object + s->offset); 279 } 280 281 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 282 { 283 prefetch(object + s->offset); 284 } 285 286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 287 { 288 unsigned long freepointer_addr; 289 void *p; 290 291 if (!debug_pagealloc_enabled_static()) 292 return get_freepointer(s, object); 293 294 freepointer_addr = (unsigned long)object + s->offset; 295 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 296 return freelist_ptr(s, p, freepointer_addr); 297 } 298 299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 300 { 301 unsigned long freeptr_addr = (unsigned long)object + s->offset; 302 303 #ifdef CONFIG_SLAB_FREELIST_HARDENED 304 BUG_ON(object == fp); /* naive detection of double free or corruption */ 305 #endif 306 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 308 } 309 310 /* Loop over all objects in a slab */ 311 #define for_each_object(__p, __s, __addr, __objects) \ 312 for (__p = fixup_red_left(__s, __addr); \ 313 __p < (__addr) + (__objects) * (__s)->size; \ 314 __p += (__s)->size) 315 316 static inline unsigned int order_objects(unsigned int order, unsigned int size) 317 { 318 return ((unsigned int)PAGE_SIZE << order) / size; 319 } 320 321 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 322 unsigned int size) 323 { 324 struct kmem_cache_order_objects x = { 325 (order << OO_SHIFT) + order_objects(order, size) 326 }; 327 328 return x; 329 } 330 331 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 332 { 333 return x.x >> OO_SHIFT; 334 } 335 336 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 337 { 338 return x.x & OO_MASK; 339 } 340 341 /* 342 * Per slab locking using the pagelock 343 */ 344 static __always_inline void slab_lock(struct page *page) 345 { 346 VM_BUG_ON_PAGE(PageTail(page), page); 347 bit_spin_lock(PG_locked, &page->flags); 348 } 349 350 static __always_inline void slab_unlock(struct page *page) 351 { 352 VM_BUG_ON_PAGE(PageTail(page), page); 353 __bit_spin_unlock(PG_locked, &page->flags); 354 } 355 356 /* Interrupts must be disabled (for the fallback code to work right) */ 357 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 358 void *freelist_old, unsigned long counters_old, 359 void *freelist_new, unsigned long counters_new, 360 const char *n) 361 { 362 VM_BUG_ON(!irqs_disabled()); 363 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 364 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 365 if (s->flags & __CMPXCHG_DOUBLE) { 366 if (cmpxchg_double(&page->freelist, &page->counters, 367 freelist_old, counters_old, 368 freelist_new, counters_new)) 369 return true; 370 } else 371 #endif 372 { 373 slab_lock(page); 374 if (page->freelist == freelist_old && 375 page->counters == counters_old) { 376 page->freelist = freelist_new; 377 page->counters = counters_new; 378 slab_unlock(page); 379 return true; 380 } 381 slab_unlock(page); 382 } 383 384 cpu_relax(); 385 stat(s, CMPXCHG_DOUBLE_FAIL); 386 387 #ifdef SLUB_DEBUG_CMPXCHG 388 pr_info("%s %s: cmpxchg double redo ", n, s->name); 389 #endif 390 391 return false; 392 } 393 394 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 395 void *freelist_old, unsigned long counters_old, 396 void *freelist_new, unsigned long counters_new, 397 const char *n) 398 { 399 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 400 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 401 if (s->flags & __CMPXCHG_DOUBLE) { 402 if (cmpxchg_double(&page->freelist, &page->counters, 403 freelist_old, counters_old, 404 freelist_new, counters_new)) 405 return true; 406 } else 407 #endif 408 { 409 unsigned long flags; 410 411 local_irq_save(flags); 412 slab_lock(page); 413 if (page->freelist == freelist_old && 414 page->counters == counters_old) { 415 page->freelist = freelist_new; 416 page->counters = counters_new; 417 slab_unlock(page); 418 local_irq_restore(flags); 419 return true; 420 } 421 slab_unlock(page); 422 local_irq_restore(flags); 423 } 424 425 cpu_relax(); 426 stat(s, CMPXCHG_DOUBLE_FAIL); 427 428 #ifdef SLUB_DEBUG_CMPXCHG 429 pr_info("%s %s: cmpxchg double redo ", n, s->name); 430 #endif 431 432 return false; 433 } 434 435 #ifdef CONFIG_SLUB_DEBUG 436 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 437 static DEFINE_SPINLOCK(object_map_lock); 438 439 /* 440 * Determine a map of object in use on a page. 441 * 442 * Node listlock must be held to guarantee that the page does 443 * not vanish from under us. 444 */ 445 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 446 __acquires(&object_map_lock) 447 { 448 void *p; 449 void *addr = page_address(page); 450 451 VM_BUG_ON(!irqs_disabled()); 452 453 spin_lock(&object_map_lock); 454 455 bitmap_zero(object_map, page->objects); 456 457 for (p = page->freelist; p; p = get_freepointer(s, p)) 458 set_bit(__obj_to_index(s, addr, p), object_map); 459 460 return object_map; 461 } 462 463 static void put_map(unsigned long *map) __releases(&object_map_lock) 464 { 465 VM_BUG_ON(map != object_map); 466 spin_unlock(&object_map_lock); 467 } 468 469 static inline unsigned int size_from_object(struct kmem_cache *s) 470 { 471 if (s->flags & SLAB_RED_ZONE) 472 return s->size - s->red_left_pad; 473 474 return s->size; 475 } 476 477 static inline void *restore_red_left(struct kmem_cache *s, void *p) 478 { 479 if (s->flags & SLAB_RED_ZONE) 480 p -= s->red_left_pad; 481 482 return p; 483 } 484 485 /* 486 * Debug settings: 487 */ 488 #if defined(CONFIG_SLUB_DEBUG_ON) 489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 490 #else 491 static slab_flags_t slub_debug; 492 #endif 493 494 static char *slub_debug_string; 495 static int disable_higher_order_debug; 496 497 /* 498 * slub is about to manipulate internal object metadata. This memory lies 499 * outside the range of the allocated object, so accessing it would normally 500 * be reported by kasan as a bounds error. metadata_access_enable() is used 501 * to tell kasan that these accesses are OK. 502 */ 503 static inline void metadata_access_enable(void) 504 { 505 kasan_disable_current(); 506 } 507 508 static inline void metadata_access_disable(void) 509 { 510 kasan_enable_current(); 511 } 512 513 /* 514 * Object debugging 515 */ 516 517 /* Verify that a pointer has an address that is valid within a slab page */ 518 static inline int check_valid_pointer(struct kmem_cache *s, 519 struct page *page, void *object) 520 { 521 void *base; 522 523 if (!object) 524 return 1; 525 526 base = page_address(page); 527 object = kasan_reset_tag(object); 528 object = restore_red_left(s, object); 529 if (object < base || object >= base + page->objects * s->size || 530 (object - base) % s->size) { 531 return 0; 532 } 533 534 return 1; 535 } 536 537 static void print_section(char *level, char *text, u8 *addr, 538 unsigned int length) 539 { 540 metadata_access_enable(); 541 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 542 length, 1); 543 metadata_access_disable(); 544 } 545 546 /* 547 * See comment in calculate_sizes(). 548 */ 549 static inline bool freeptr_outside_object(struct kmem_cache *s) 550 { 551 return s->offset >= s->inuse; 552 } 553 554 /* 555 * Return offset of the end of info block which is inuse + free pointer if 556 * not overlapping with object. 557 */ 558 static inline unsigned int get_info_end(struct kmem_cache *s) 559 { 560 if (freeptr_outside_object(s)) 561 return s->inuse + sizeof(void *); 562 else 563 return s->inuse; 564 } 565 566 static struct track *get_track(struct kmem_cache *s, void *object, 567 enum track_item alloc) 568 { 569 struct track *p; 570 571 p = object + get_info_end(s); 572 573 return p + alloc; 574 } 575 576 static void set_track(struct kmem_cache *s, void *object, 577 enum track_item alloc, unsigned long addr) 578 { 579 struct track *p = get_track(s, object, alloc); 580 581 if (addr) { 582 #ifdef CONFIG_STACKTRACE 583 unsigned int nr_entries; 584 585 metadata_access_enable(); 586 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 587 metadata_access_disable(); 588 589 if (nr_entries < TRACK_ADDRS_COUNT) 590 p->addrs[nr_entries] = 0; 591 #endif 592 p->addr = addr; 593 p->cpu = smp_processor_id(); 594 p->pid = current->pid; 595 p->when = jiffies; 596 } else { 597 memset(p, 0, sizeof(struct track)); 598 } 599 } 600 601 static void init_tracking(struct kmem_cache *s, void *object) 602 { 603 if (!(s->flags & SLAB_STORE_USER)) 604 return; 605 606 set_track(s, object, TRACK_FREE, 0UL); 607 set_track(s, object, TRACK_ALLOC, 0UL); 608 } 609 610 static void print_track(const char *s, struct track *t, unsigned long pr_time) 611 { 612 if (!t->addr) 613 return; 614 615 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 616 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 617 #ifdef CONFIG_STACKTRACE 618 { 619 int i; 620 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 621 if (t->addrs[i]) 622 pr_err("\t%pS\n", (void *)t->addrs[i]); 623 else 624 break; 625 } 626 #endif 627 } 628 629 void print_tracking(struct kmem_cache *s, void *object) 630 { 631 unsigned long pr_time = jiffies; 632 if (!(s->flags & SLAB_STORE_USER)) 633 return; 634 635 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 636 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 637 } 638 639 static void print_page_info(struct page *page) 640 { 641 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 642 page, page->objects, page->inuse, page->freelist, page->flags); 643 644 } 645 646 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 647 { 648 struct va_format vaf; 649 va_list args; 650 651 va_start(args, fmt); 652 vaf.fmt = fmt; 653 vaf.va = &args; 654 pr_err("=============================================================================\n"); 655 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 656 pr_err("-----------------------------------------------------------------------------\n\n"); 657 658 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 659 va_end(args); 660 } 661 662 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 663 { 664 struct va_format vaf; 665 va_list args; 666 667 va_start(args, fmt); 668 vaf.fmt = fmt; 669 vaf.va = &args; 670 pr_err("FIX %s: %pV\n", s->name, &vaf); 671 va_end(args); 672 } 673 674 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 675 void **freelist, void *nextfree) 676 { 677 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 678 !check_valid_pointer(s, page, nextfree) && freelist) { 679 object_err(s, page, *freelist, "Freechain corrupt"); 680 *freelist = NULL; 681 slab_fix(s, "Isolate corrupted freechain"); 682 return true; 683 } 684 685 return false; 686 } 687 688 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 689 { 690 unsigned int off; /* Offset of last byte */ 691 u8 *addr = page_address(page); 692 693 print_tracking(s, p); 694 695 print_page_info(page); 696 697 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 698 p, p - addr, get_freepointer(s, p)); 699 700 if (s->flags & SLAB_RED_ZONE) 701 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 702 s->red_left_pad); 703 else if (p > addr + 16) 704 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 705 706 print_section(KERN_ERR, "Object ", p, 707 min_t(unsigned int, s->object_size, PAGE_SIZE)); 708 if (s->flags & SLAB_RED_ZONE) 709 print_section(KERN_ERR, "Redzone ", p + s->object_size, 710 s->inuse - s->object_size); 711 712 off = get_info_end(s); 713 714 if (s->flags & SLAB_STORE_USER) 715 off += 2 * sizeof(struct track); 716 717 off += kasan_metadata_size(s); 718 719 if (off != size_from_object(s)) 720 /* Beginning of the filler is the free pointer */ 721 print_section(KERN_ERR, "Padding ", p + off, 722 size_from_object(s) - off); 723 724 dump_stack(); 725 } 726 727 void object_err(struct kmem_cache *s, struct page *page, 728 u8 *object, char *reason) 729 { 730 slab_bug(s, "%s", reason); 731 print_trailer(s, page, object); 732 } 733 734 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 735 const char *fmt, ...) 736 { 737 va_list args; 738 char buf[100]; 739 740 va_start(args, fmt); 741 vsnprintf(buf, sizeof(buf), fmt, args); 742 va_end(args); 743 slab_bug(s, "%s", buf); 744 print_page_info(page); 745 dump_stack(); 746 } 747 748 static void init_object(struct kmem_cache *s, void *object, u8 val) 749 { 750 u8 *p = object; 751 752 if (s->flags & SLAB_RED_ZONE) 753 memset(p - s->red_left_pad, val, s->red_left_pad); 754 755 if (s->flags & __OBJECT_POISON) { 756 memset(p, POISON_FREE, s->object_size - 1); 757 p[s->object_size - 1] = POISON_END; 758 } 759 760 if (s->flags & SLAB_RED_ZONE) 761 memset(p + s->object_size, val, s->inuse - s->object_size); 762 } 763 764 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 765 void *from, void *to) 766 { 767 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 768 memset(from, data, to - from); 769 } 770 771 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 772 u8 *object, char *what, 773 u8 *start, unsigned int value, unsigned int bytes) 774 { 775 u8 *fault; 776 u8 *end; 777 u8 *addr = page_address(page); 778 779 metadata_access_enable(); 780 fault = memchr_inv(start, value, bytes); 781 metadata_access_disable(); 782 if (!fault) 783 return 1; 784 785 end = start + bytes; 786 while (end > fault && end[-1] == value) 787 end--; 788 789 slab_bug(s, "%s overwritten", what); 790 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 791 fault, end - 1, fault - addr, 792 fault[0], value); 793 print_trailer(s, page, object); 794 795 restore_bytes(s, what, value, fault, end); 796 return 0; 797 } 798 799 /* 800 * Object layout: 801 * 802 * object address 803 * Bytes of the object to be managed. 804 * If the freepointer may overlay the object then the free 805 * pointer is at the middle of the object. 806 * 807 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 808 * 0xa5 (POISON_END) 809 * 810 * object + s->object_size 811 * Padding to reach word boundary. This is also used for Redzoning. 812 * Padding is extended by another word if Redzoning is enabled and 813 * object_size == inuse. 814 * 815 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 816 * 0xcc (RED_ACTIVE) for objects in use. 817 * 818 * object + s->inuse 819 * Meta data starts here. 820 * 821 * A. Free pointer (if we cannot overwrite object on free) 822 * B. Tracking data for SLAB_STORE_USER 823 * C. Padding to reach required alignment boundary or at mininum 824 * one word if debugging is on to be able to detect writes 825 * before the word boundary. 826 * 827 * Padding is done using 0x5a (POISON_INUSE) 828 * 829 * object + s->size 830 * Nothing is used beyond s->size. 831 * 832 * If slabcaches are merged then the object_size and inuse boundaries are mostly 833 * ignored. And therefore no slab options that rely on these boundaries 834 * may be used with merged slabcaches. 835 */ 836 837 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 838 { 839 unsigned long off = get_info_end(s); /* The end of info */ 840 841 if (s->flags & SLAB_STORE_USER) 842 /* We also have user information there */ 843 off += 2 * sizeof(struct track); 844 845 off += kasan_metadata_size(s); 846 847 if (size_from_object(s) == off) 848 return 1; 849 850 return check_bytes_and_report(s, page, p, "Object padding", 851 p + off, POISON_INUSE, size_from_object(s) - off); 852 } 853 854 /* Check the pad bytes at the end of a slab page */ 855 static int slab_pad_check(struct kmem_cache *s, struct page *page) 856 { 857 u8 *start; 858 u8 *fault; 859 u8 *end; 860 u8 *pad; 861 int length; 862 int remainder; 863 864 if (!(s->flags & SLAB_POISON)) 865 return 1; 866 867 start = page_address(page); 868 length = page_size(page); 869 end = start + length; 870 remainder = length % s->size; 871 if (!remainder) 872 return 1; 873 874 pad = end - remainder; 875 metadata_access_enable(); 876 fault = memchr_inv(pad, POISON_INUSE, remainder); 877 metadata_access_disable(); 878 if (!fault) 879 return 1; 880 while (end > fault && end[-1] == POISON_INUSE) 881 end--; 882 883 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 884 fault, end - 1, fault - start); 885 print_section(KERN_ERR, "Padding ", pad, remainder); 886 887 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 888 return 0; 889 } 890 891 static int check_object(struct kmem_cache *s, struct page *page, 892 void *object, u8 val) 893 { 894 u8 *p = object; 895 u8 *endobject = object + s->object_size; 896 897 if (s->flags & SLAB_RED_ZONE) { 898 if (!check_bytes_and_report(s, page, object, "Redzone", 899 object - s->red_left_pad, val, s->red_left_pad)) 900 return 0; 901 902 if (!check_bytes_and_report(s, page, object, "Redzone", 903 endobject, val, s->inuse - s->object_size)) 904 return 0; 905 } else { 906 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 907 check_bytes_and_report(s, page, p, "Alignment padding", 908 endobject, POISON_INUSE, 909 s->inuse - s->object_size); 910 } 911 } 912 913 if (s->flags & SLAB_POISON) { 914 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 915 (!check_bytes_and_report(s, page, p, "Poison", p, 916 POISON_FREE, s->object_size - 1) || 917 !check_bytes_and_report(s, page, p, "Poison", 918 p + s->object_size - 1, POISON_END, 1))) 919 return 0; 920 /* 921 * check_pad_bytes cleans up on its own. 922 */ 923 check_pad_bytes(s, page, p); 924 } 925 926 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 927 /* 928 * Object and freepointer overlap. Cannot check 929 * freepointer while object is allocated. 930 */ 931 return 1; 932 933 /* Check free pointer validity */ 934 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 935 object_err(s, page, p, "Freepointer corrupt"); 936 /* 937 * No choice but to zap it and thus lose the remainder 938 * of the free objects in this slab. May cause 939 * another error because the object count is now wrong. 940 */ 941 set_freepointer(s, p, NULL); 942 return 0; 943 } 944 return 1; 945 } 946 947 static int check_slab(struct kmem_cache *s, struct page *page) 948 { 949 int maxobj; 950 951 VM_BUG_ON(!irqs_disabled()); 952 953 if (!PageSlab(page)) { 954 slab_err(s, page, "Not a valid slab page"); 955 return 0; 956 } 957 958 maxobj = order_objects(compound_order(page), s->size); 959 if (page->objects > maxobj) { 960 slab_err(s, page, "objects %u > max %u", 961 page->objects, maxobj); 962 return 0; 963 } 964 if (page->inuse > page->objects) { 965 slab_err(s, page, "inuse %u > max %u", 966 page->inuse, page->objects); 967 return 0; 968 } 969 /* Slab_pad_check fixes things up after itself */ 970 slab_pad_check(s, page); 971 return 1; 972 } 973 974 /* 975 * Determine if a certain object on a page is on the freelist. Must hold the 976 * slab lock to guarantee that the chains are in a consistent state. 977 */ 978 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 979 { 980 int nr = 0; 981 void *fp; 982 void *object = NULL; 983 int max_objects; 984 985 fp = page->freelist; 986 while (fp && nr <= page->objects) { 987 if (fp == search) 988 return 1; 989 if (!check_valid_pointer(s, page, fp)) { 990 if (object) { 991 object_err(s, page, object, 992 "Freechain corrupt"); 993 set_freepointer(s, object, NULL); 994 } else { 995 slab_err(s, page, "Freepointer corrupt"); 996 page->freelist = NULL; 997 page->inuse = page->objects; 998 slab_fix(s, "Freelist cleared"); 999 return 0; 1000 } 1001 break; 1002 } 1003 object = fp; 1004 fp = get_freepointer(s, object); 1005 nr++; 1006 } 1007 1008 max_objects = order_objects(compound_order(page), s->size); 1009 if (max_objects > MAX_OBJS_PER_PAGE) 1010 max_objects = MAX_OBJS_PER_PAGE; 1011 1012 if (page->objects != max_objects) { 1013 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 1014 page->objects, max_objects); 1015 page->objects = max_objects; 1016 slab_fix(s, "Number of objects adjusted."); 1017 } 1018 if (page->inuse != page->objects - nr) { 1019 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1020 page->inuse, page->objects - nr); 1021 page->inuse = page->objects - nr; 1022 slab_fix(s, "Object count adjusted."); 1023 } 1024 return search == NULL; 1025 } 1026 1027 static void trace(struct kmem_cache *s, struct page *page, void *object, 1028 int alloc) 1029 { 1030 if (s->flags & SLAB_TRACE) { 1031 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1032 s->name, 1033 alloc ? "alloc" : "free", 1034 object, page->inuse, 1035 page->freelist); 1036 1037 if (!alloc) 1038 print_section(KERN_INFO, "Object ", (void *)object, 1039 s->object_size); 1040 1041 dump_stack(); 1042 } 1043 } 1044 1045 /* 1046 * Tracking of fully allocated slabs for debugging purposes. 1047 */ 1048 static void add_full(struct kmem_cache *s, 1049 struct kmem_cache_node *n, struct page *page) 1050 { 1051 if (!(s->flags & SLAB_STORE_USER)) 1052 return; 1053 1054 lockdep_assert_held(&n->list_lock); 1055 list_add(&page->slab_list, &n->full); 1056 } 1057 1058 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1059 { 1060 if (!(s->flags & SLAB_STORE_USER)) 1061 return; 1062 1063 lockdep_assert_held(&n->list_lock); 1064 list_del(&page->slab_list); 1065 } 1066 1067 /* Tracking of the number of slabs for debugging purposes */ 1068 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1069 { 1070 struct kmem_cache_node *n = get_node(s, node); 1071 1072 return atomic_long_read(&n->nr_slabs); 1073 } 1074 1075 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1076 { 1077 return atomic_long_read(&n->nr_slabs); 1078 } 1079 1080 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1081 { 1082 struct kmem_cache_node *n = get_node(s, node); 1083 1084 /* 1085 * May be called early in order to allocate a slab for the 1086 * kmem_cache_node structure. Solve the chicken-egg 1087 * dilemma by deferring the increment of the count during 1088 * bootstrap (see early_kmem_cache_node_alloc). 1089 */ 1090 if (likely(n)) { 1091 atomic_long_inc(&n->nr_slabs); 1092 atomic_long_add(objects, &n->total_objects); 1093 } 1094 } 1095 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1096 { 1097 struct kmem_cache_node *n = get_node(s, node); 1098 1099 atomic_long_dec(&n->nr_slabs); 1100 atomic_long_sub(objects, &n->total_objects); 1101 } 1102 1103 /* Object debug checks for alloc/free paths */ 1104 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1105 void *object) 1106 { 1107 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1108 return; 1109 1110 init_object(s, object, SLUB_RED_INACTIVE); 1111 init_tracking(s, object); 1112 } 1113 1114 static 1115 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1116 { 1117 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1118 return; 1119 1120 metadata_access_enable(); 1121 memset(addr, POISON_INUSE, page_size(page)); 1122 metadata_access_disable(); 1123 } 1124 1125 static inline int alloc_consistency_checks(struct kmem_cache *s, 1126 struct page *page, void *object) 1127 { 1128 if (!check_slab(s, page)) 1129 return 0; 1130 1131 if (!check_valid_pointer(s, page, object)) { 1132 object_err(s, page, object, "Freelist Pointer check fails"); 1133 return 0; 1134 } 1135 1136 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1137 return 0; 1138 1139 return 1; 1140 } 1141 1142 static noinline int alloc_debug_processing(struct kmem_cache *s, 1143 struct page *page, 1144 void *object, unsigned long addr) 1145 { 1146 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1147 if (!alloc_consistency_checks(s, page, object)) 1148 goto bad; 1149 } 1150 1151 /* Success perform special debug activities for allocs */ 1152 if (s->flags & SLAB_STORE_USER) 1153 set_track(s, object, TRACK_ALLOC, addr); 1154 trace(s, page, object, 1); 1155 init_object(s, object, SLUB_RED_ACTIVE); 1156 return 1; 1157 1158 bad: 1159 if (PageSlab(page)) { 1160 /* 1161 * If this is a slab page then lets do the best we can 1162 * to avoid issues in the future. Marking all objects 1163 * as used avoids touching the remaining objects. 1164 */ 1165 slab_fix(s, "Marking all objects used"); 1166 page->inuse = page->objects; 1167 page->freelist = NULL; 1168 } 1169 return 0; 1170 } 1171 1172 static inline int free_consistency_checks(struct kmem_cache *s, 1173 struct page *page, void *object, unsigned long addr) 1174 { 1175 if (!check_valid_pointer(s, page, object)) { 1176 slab_err(s, page, "Invalid object pointer 0x%p", object); 1177 return 0; 1178 } 1179 1180 if (on_freelist(s, page, object)) { 1181 object_err(s, page, object, "Object already free"); 1182 return 0; 1183 } 1184 1185 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1186 return 0; 1187 1188 if (unlikely(s != page->slab_cache)) { 1189 if (!PageSlab(page)) { 1190 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1191 object); 1192 } else if (!page->slab_cache) { 1193 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1194 object); 1195 dump_stack(); 1196 } else 1197 object_err(s, page, object, 1198 "page slab pointer corrupt."); 1199 return 0; 1200 } 1201 return 1; 1202 } 1203 1204 /* Supports checking bulk free of a constructed freelist */ 1205 static noinline int free_debug_processing( 1206 struct kmem_cache *s, struct page *page, 1207 void *head, void *tail, int bulk_cnt, 1208 unsigned long addr) 1209 { 1210 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1211 void *object = head; 1212 int cnt = 0; 1213 unsigned long flags; 1214 int ret = 0; 1215 1216 spin_lock_irqsave(&n->list_lock, flags); 1217 slab_lock(page); 1218 1219 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1220 if (!check_slab(s, page)) 1221 goto out; 1222 } 1223 1224 next_object: 1225 cnt++; 1226 1227 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1228 if (!free_consistency_checks(s, page, object, addr)) 1229 goto out; 1230 } 1231 1232 if (s->flags & SLAB_STORE_USER) 1233 set_track(s, object, TRACK_FREE, addr); 1234 trace(s, page, object, 0); 1235 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1236 init_object(s, object, SLUB_RED_INACTIVE); 1237 1238 /* Reached end of constructed freelist yet? */ 1239 if (object != tail) { 1240 object = get_freepointer(s, object); 1241 goto next_object; 1242 } 1243 ret = 1; 1244 1245 out: 1246 if (cnt != bulk_cnt) 1247 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1248 bulk_cnt, cnt); 1249 1250 slab_unlock(page); 1251 spin_unlock_irqrestore(&n->list_lock, flags); 1252 if (!ret) 1253 slab_fix(s, "Object at 0x%p not freed", object); 1254 return ret; 1255 } 1256 1257 /* 1258 * Parse a block of slub_debug options. Blocks are delimited by ';' 1259 * 1260 * @str: start of block 1261 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1262 * @slabs: return start of list of slabs, or NULL when there's no list 1263 * @init: assume this is initial parsing and not per-kmem-create parsing 1264 * 1265 * returns the start of next block if there's any, or NULL 1266 */ 1267 static char * 1268 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1269 { 1270 bool higher_order_disable = false; 1271 1272 /* Skip any completely empty blocks */ 1273 while (*str && *str == ';') 1274 str++; 1275 1276 if (*str == ',') { 1277 /* 1278 * No options but restriction on slabs. This means full 1279 * debugging for slabs matching a pattern. 1280 */ 1281 *flags = DEBUG_DEFAULT_FLAGS; 1282 goto check_slabs; 1283 } 1284 *flags = 0; 1285 1286 /* Determine which debug features should be switched on */ 1287 for (; *str && *str != ',' && *str != ';'; str++) { 1288 switch (tolower(*str)) { 1289 case '-': 1290 *flags = 0; 1291 break; 1292 case 'f': 1293 *flags |= SLAB_CONSISTENCY_CHECKS; 1294 break; 1295 case 'z': 1296 *flags |= SLAB_RED_ZONE; 1297 break; 1298 case 'p': 1299 *flags |= SLAB_POISON; 1300 break; 1301 case 'u': 1302 *flags |= SLAB_STORE_USER; 1303 break; 1304 case 't': 1305 *flags |= SLAB_TRACE; 1306 break; 1307 case 'a': 1308 *flags |= SLAB_FAILSLAB; 1309 break; 1310 case 'o': 1311 /* 1312 * Avoid enabling debugging on caches if its minimum 1313 * order would increase as a result. 1314 */ 1315 higher_order_disable = true; 1316 break; 1317 default: 1318 if (init) 1319 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1320 } 1321 } 1322 check_slabs: 1323 if (*str == ',') 1324 *slabs = ++str; 1325 else 1326 *slabs = NULL; 1327 1328 /* Skip over the slab list */ 1329 while (*str && *str != ';') 1330 str++; 1331 1332 /* Skip any completely empty blocks */ 1333 while (*str && *str == ';') 1334 str++; 1335 1336 if (init && higher_order_disable) 1337 disable_higher_order_debug = 1; 1338 1339 if (*str) 1340 return str; 1341 else 1342 return NULL; 1343 } 1344 1345 static int __init setup_slub_debug(char *str) 1346 { 1347 slab_flags_t flags; 1348 char *saved_str; 1349 char *slab_list; 1350 bool global_slub_debug_changed = false; 1351 bool slab_list_specified = false; 1352 1353 slub_debug = DEBUG_DEFAULT_FLAGS; 1354 if (*str++ != '=' || !*str) 1355 /* 1356 * No options specified. Switch on full debugging. 1357 */ 1358 goto out; 1359 1360 saved_str = str; 1361 while (str) { 1362 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1363 1364 if (!slab_list) { 1365 slub_debug = flags; 1366 global_slub_debug_changed = true; 1367 } else { 1368 slab_list_specified = true; 1369 } 1370 } 1371 1372 /* 1373 * For backwards compatibility, a single list of flags with list of 1374 * slabs means debugging is only enabled for those slabs, so the global 1375 * slub_debug should be 0. We can extended that to multiple lists as 1376 * long as there is no option specifying flags without a slab list. 1377 */ 1378 if (slab_list_specified) { 1379 if (!global_slub_debug_changed) 1380 slub_debug = 0; 1381 slub_debug_string = saved_str; 1382 } 1383 out: 1384 if (slub_debug != 0 || slub_debug_string) 1385 static_branch_enable(&slub_debug_enabled); 1386 if ((static_branch_unlikely(&init_on_alloc) || 1387 static_branch_unlikely(&init_on_free)) && 1388 (slub_debug & SLAB_POISON)) 1389 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1390 return 1; 1391 } 1392 1393 __setup("slub_debug", setup_slub_debug); 1394 1395 /* 1396 * kmem_cache_flags - apply debugging options to the cache 1397 * @object_size: the size of an object without meta data 1398 * @flags: flags to set 1399 * @name: name of the cache 1400 * @ctor: constructor function 1401 * 1402 * Debug option(s) are applied to @flags. In addition to the debug 1403 * option(s), if a slab name (or multiple) is specified i.e. 1404 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1405 * then only the select slabs will receive the debug option(s). 1406 */ 1407 slab_flags_t kmem_cache_flags(unsigned int object_size, 1408 slab_flags_t flags, const char *name, 1409 void (*ctor)(void *)) 1410 { 1411 char *iter; 1412 size_t len; 1413 char *next_block; 1414 slab_flags_t block_flags; 1415 1416 len = strlen(name); 1417 next_block = slub_debug_string; 1418 /* Go through all blocks of debug options, see if any matches our slab's name */ 1419 while (next_block) { 1420 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1421 if (!iter) 1422 continue; 1423 /* Found a block that has a slab list, search it */ 1424 while (*iter) { 1425 char *end, *glob; 1426 size_t cmplen; 1427 1428 end = strchrnul(iter, ','); 1429 if (next_block && next_block < end) 1430 end = next_block - 1; 1431 1432 glob = strnchr(iter, end - iter, '*'); 1433 if (glob) 1434 cmplen = glob - iter; 1435 else 1436 cmplen = max_t(size_t, len, (end - iter)); 1437 1438 if (!strncmp(name, iter, cmplen)) { 1439 flags |= block_flags; 1440 return flags; 1441 } 1442 1443 if (!*end || *end == ';') 1444 break; 1445 iter = end + 1; 1446 } 1447 } 1448 1449 return flags | slub_debug; 1450 } 1451 #else /* !CONFIG_SLUB_DEBUG */ 1452 static inline void setup_object_debug(struct kmem_cache *s, 1453 struct page *page, void *object) {} 1454 static inline 1455 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1456 1457 static inline int alloc_debug_processing(struct kmem_cache *s, 1458 struct page *page, void *object, unsigned long addr) { return 0; } 1459 1460 static inline int free_debug_processing( 1461 struct kmem_cache *s, struct page *page, 1462 void *head, void *tail, int bulk_cnt, 1463 unsigned long addr) { return 0; } 1464 1465 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1466 { return 1; } 1467 static inline int check_object(struct kmem_cache *s, struct page *page, 1468 void *object, u8 val) { return 1; } 1469 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1470 struct page *page) {} 1471 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1472 struct page *page) {} 1473 slab_flags_t kmem_cache_flags(unsigned int object_size, 1474 slab_flags_t flags, const char *name, 1475 void (*ctor)(void *)) 1476 { 1477 return flags; 1478 } 1479 #define slub_debug 0 1480 1481 #define disable_higher_order_debug 0 1482 1483 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1484 { return 0; } 1485 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1486 { return 0; } 1487 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1488 int objects) {} 1489 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1490 int objects) {} 1491 1492 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 1493 void **freelist, void *nextfree) 1494 { 1495 return false; 1496 } 1497 #endif /* CONFIG_SLUB_DEBUG */ 1498 1499 /* 1500 * Hooks for other subsystems that check memory allocations. In a typical 1501 * production configuration these hooks all should produce no code at all. 1502 */ 1503 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1504 { 1505 ptr = kasan_kmalloc_large(ptr, size, flags); 1506 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1507 kmemleak_alloc(ptr, size, 1, flags); 1508 return ptr; 1509 } 1510 1511 static __always_inline void kfree_hook(void *x) 1512 { 1513 kmemleak_free(x); 1514 kasan_kfree_large(x, _RET_IP_); 1515 } 1516 1517 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1518 { 1519 kmemleak_free_recursive(x, s->flags); 1520 1521 /* 1522 * Trouble is that we may no longer disable interrupts in the fast path 1523 * So in order to make the debug calls that expect irqs to be 1524 * disabled we need to disable interrupts temporarily. 1525 */ 1526 #ifdef CONFIG_LOCKDEP 1527 { 1528 unsigned long flags; 1529 1530 local_irq_save(flags); 1531 debug_check_no_locks_freed(x, s->object_size); 1532 local_irq_restore(flags); 1533 } 1534 #endif 1535 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1536 debug_check_no_obj_freed(x, s->object_size); 1537 1538 /* Use KCSAN to help debug racy use-after-free. */ 1539 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1540 __kcsan_check_access(x, s->object_size, 1541 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1542 1543 /* KASAN might put x into memory quarantine, delaying its reuse */ 1544 return kasan_slab_free(s, x, _RET_IP_); 1545 } 1546 1547 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1548 void **head, void **tail) 1549 { 1550 1551 void *object; 1552 void *next = *head; 1553 void *old_tail = *tail ? *tail : *head; 1554 int rsize; 1555 1556 /* Head and tail of the reconstructed freelist */ 1557 *head = NULL; 1558 *tail = NULL; 1559 1560 do { 1561 object = next; 1562 next = get_freepointer(s, object); 1563 1564 if (slab_want_init_on_free(s)) { 1565 /* 1566 * Clear the object and the metadata, but don't touch 1567 * the redzone. 1568 */ 1569 memset(object, 0, s->object_size); 1570 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1571 : 0; 1572 memset((char *)object + s->inuse, 0, 1573 s->size - s->inuse - rsize); 1574 1575 } 1576 /* If object's reuse doesn't have to be delayed */ 1577 if (!slab_free_hook(s, object)) { 1578 /* Move object to the new freelist */ 1579 set_freepointer(s, object, *head); 1580 *head = object; 1581 if (!*tail) 1582 *tail = object; 1583 } 1584 } while (object != old_tail); 1585 1586 if (*head == *tail) 1587 *tail = NULL; 1588 1589 return *head != NULL; 1590 } 1591 1592 static void *setup_object(struct kmem_cache *s, struct page *page, 1593 void *object) 1594 { 1595 setup_object_debug(s, page, object); 1596 object = kasan_init_slab_obj(s, object); 1597 if (unlikely(s->ctor)) { 1598 kasan_unpoison_object_data(s, object); 1599 s->ctor(object); 1600 kasan_poison_object_data(s, object); 1601 } 1602 return object; 1603 } 1604 1605 /* 1606 * Slab allocation and freeing 1607 */ 1608 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1609 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1610 { 1611 struct page *page; 1612 unsigned int order = oo_order(oo); 1613 1614 if (node == NUMA_NO_NODE) 1615 page = alloc_pages(flags, order); 1616 else 1617 page = __alloc_pages_node(node, flags, order); 1618 1619 if (page) 1620 account_slab_page(page, order, s); 1621 1622 return page; 1623 } 1624 1625 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1626 /* Pre-initialize the random sequence cache */ 1627 static int init_cache_random_seq(struct kmem_cache *s) 1628 { 1629 unsigned int count = oo_objects(s->oo); 1630 int err; 1631 1632 /* Bailout if already initialised */ 1633 if (s->random_seq) 1634 return 0; 1635 1636 err = cache_random_seq_create(s, count, GFP_KERNEL); 1637 if (err) { 1638 pr_err("SLUB: Unable to initialize free list for %s\n", 1639 s->name); 1640 return err; 1641 } 1642 1643 /* Transform to an offset on the set of pages */ 1644 if (s->random_seq) { 1645 unsigned int i; 1646 1647 for (i = 0; i < count; i++) 1648 s->random_seq[i] *= s->size; 1649 } 1650 return 0; 1651 } 1652 1653 /* Initialize each random sequence freelist per cache */ 1654 static void __init init_freelist_randomization(void) 1655 { 1656 struct kmem_cache *s; 1657 1658 mutex_lock(&slab_mutex); 1659 1660 list_for_each_entry(s, &slab_caches, list) 1661 init_cache_random_seq(s); 1662 1663 mutex_unlock(&slab_mutex); 1664 } 1665 1666 /* Get the next entry on the pre-computed freelist randomized */ 1667 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1668 unsigned long *pos, void *start, 1669 unsigned long page_limit, 1670 unsigned long freelist_count) 1671 { 1672 unsigned int idx; 1673 1674 /* 1675 * If the target page allocation failed, the number of objects on the 1676 * page might be smaller than the usual size defined by the cache. 1677 */ 1678 do { 1679 idx = s->random_seq[*pos]; 1680 *pos += 1; 1681 if (*pos >= freelist_count) 1682 *pos = 0; 1683 } while (unlikely(idx >= page_limit)); 1684 1685 return (char *)start + idx; 1686 } 1687 1688 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1689 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1690 { 1691 void *start; 1692 void *cur; 1693 void *next; 1694 unsigned long idx, pos, page_limit, freelist_count; 1695 1696 if (page->objects < 2 || !s->random_seq) 1697 return false; 1698 1699 freelist_count = oo_objects(s->oo); 1700 pos = get_random_int() % freelist_count; 1701 1702 page_limit = page->objects * s->size; 1703 start = fixup_red_left(s, page_address(page)); 1704 1705 /* First entry is used as the base of the freelist */ 1706 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1707 freelist_count); 1708 cur = setup_object(s, page, cur); 1709 page->freelist = cur; 1710 1711 for (idx = 1; idx < page->objects; idx++) { 1712 next = next_freelist_entry(s, page, &pos, start, page_limit, 1713 freelist_count); 1714 next = setup_object(s, page, next); 1715 set_freepointer(s, cur, next); 1716 cur = next; 1717 } 1718 set_freepointer(s, cur, NULL); 1719 1720 return true; 1721 } 1722 #else 1723 static inline int init_cache_random_seq(struct kmem_cache *s) 1724 { 1725 return 0; 1726 } 1727 static inline void init_freelist_randomization(void) { } 1728 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1729 { 1730 return false; 1731 } 1732 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1733 1734 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1735 { 1736 struct page *page; 1737 struct kmem_cache_order_objects oo = s->oo; 1738 gfp_t alloc_gfp; 1739 void *start, *p, *next; 1740 int idx; 1741 bool shuffle; 1742 1743 flags &= gfp_allowed_mask; 1744 1745 if (gfpflags_allow_blocking(flags)) 1746 local_irq_enable(); 1747 1748 flags |= s->allocflags; 1749 1750 /* 1751 * Let the initial higher-order allocation fail under memory pressure 1752 * so we fall-back to the minimum order allocation. 1753 */ 1754 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1755 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1756 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1757 1758 page = alloc_slab_page(s, alloc_gfp, node, oo); 1759 if (unlikely(!page)) { 1760 oo = s->min; 1761 alloc_gfp = flags; 1762 /* 1763 * Allocation may have failed due to fragmentation. 1764 * Try a lower order alloc if possible 1765 */ 1766 page = alloc_slab_page(s, alloc_gfp, node, oo); 1767 if (unlikely(!page)) 1768 goto out; 1769 stat(s, ORDER_FALLBACK); 1770 } 1771 1772 page->objects = oo_objects(oo); 1773 1774 page->slab_cache = s; 1775 __SetPageSlab(page); 1776 if (page_is_pfmemalloc(page)) 1777 SetPageSlabPfmemalloc(page); 1778 1779 kasan_poison_slab(page); 1780 1781 start = page_address(page); 1782 1783 setup_page_debug(s, page, start); 1784 1785 shuffle = shuffle_freelist(s, page); 1786 1787 if (!shuffle) { 1788 start = fixup_red_left(s, start); 1789 start = setup_object(s, page, start); 1790 page->freelist = start; 1791 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1792 next = p + s->size; 1793 next = setup_object(s, page, next); 1794 set_freepointer(s, p, next); 1795 p = next; 1796 } 1797 set_freepointer(s, p, NULL); 1798 } 1799 1800 page->inuse = page->objects; 1801 page->frozen = 1; 1802 1803 out: 1804 if (gfpflags_allow_blocking(flags)) 1805 local_irq_disable(); 1806 if (!page) 1807 return NULL; 1808 1809 inc_slabs_node(s, page_to_nid(page), page->objects); 1810 1811 return page; 1812 } 1813 1814 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1815 { 1816 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 1817 flags = kmalloc_fix_flags(flags); 1818 1819 return allocate_slab(s, 1820 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1821 } 1822 1823 static void __free_slab(struct kmem_cache *s, struct page *page) 1824 { 1825 int order = compound_order(page); 1826 int pages = 1 << order; 1827 1828 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 1829 void *p; 1830 1831 slab_pad_check(s, page); 1832 for_each_object(p, s, page_address(page), 1833 page->objects) 1834 check_object(s, page, p, SLUB_RED_INACTIVE); 1835 } 1836 1837 __ClearPageSlabPfmemalloc(page); 1838 __ClearPageSlab(page); 1839 /* In union with page->mapping where page allocator expects NULL */ 1840 page->slab_cache = NULL; 1841 if (current->reclaim_state) 1842 current->reclaim_state->reclaimed_slab += pages; 1843 unaccount_slab_page(page, order, s); 1844 __free_pages(page, order); 1845 } 1846 1847 static void rcu_free_slab(struct rcu_head *h) 1848 { 1849 struct page *page = container_of(h, struct page, rcu_head); 1850 1851 __free_slab(page->slab_cache, page); 1852 } 1853 1854 static void free_slab(struct kmem_cache *s, struct page *page) 1855 { 1856 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1857 call_rcu(&page->rcu_head, rcu_free_slab); 1858 } else 1859 __free_slab(s, page); 1860 } 1861 1862 static void discard_slab(struct kmem_cache *s, struct page *page) 1863 { 1864 dec_slabs_node(s, page_to_nid(page), page->objects); 1865 free_slab(s, page); 1866 } 1867 1868 /* 1869 * Management of partially allocated slabs. 1870 */ 1871 static inline void 1872 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1873 { 1874 n->nr_partial++; 1875 if (tail == DEACTIVATE_TO_TAIL) 1876 list_add_tail(&page->slab_list, &n->partial); 1877 else 1878 list_add(&page->slab_list, &n->partial); 1879 } 1880 1881 static inline void add_partial(struct kmem_cache_node *n, 1882 struct page *page, int tail) 1883 { 1884 lockdep_assert_held(&n->list_lock); 1885 __add_partial(n, page, tail); 1886 } 1887 1888 static inline void remove_partial(struct kmem_cache_node *n, 1889 struct page *page) 1890 { 1891 lockdep_assert_held(&n->list_lock); 1892 list_del(&page->slab_list); 1893 n->nr_partial--; 1894 } 1895 1896 /* 1897 * Remove slab from the partial list, freeze it and 1898 * return the pointer to the freelist. 1899 * 1900 * Returns a list of objects or NULL if it fails. 1901 */ 1902 static inline void *acquire_slab(struct kmem_cache *s, 1903 struct kmem_cache_node *n, struct page *page, 1904 int mode, int *objects) 1905 { 1906 void *freelist; 1907 unsigned long counters; 1908 struct page new; 1909 1910 lockdep_assert_held(&n->list_lock); 1911 1912 /* 1913 * Zap the freelist and set the frozen bit. 1914 * The old freelist is the list of objects for the 1915 * per cpu allocation list. 1916 */ 1917 freelist = page->freelist; 1918 counters = page->counters; 1919 new.counters = counters; 1920 *objects = new.objects - new.inuse; 1921 if (mode) { 1922 new.inuse = page->objects; 1923 new.freelist = NULL; 1924 } else { 1925 new.freelist = freelist; 1926 } 1927 1928 VM_BUG_ON(new.frozen); 1929 new.frozen = 1; 1930 1931 if (!__cmpxchg_double_slab(s, page, 1932 freelist, counters, 1933 new.freelist, new.counters, 1934 "acquire_slab")) 1935 return NULL; 1936 1937 remove_partial(n, page); 1938 WARN_ON(!freelist); 1939 return freelist; 1940 } 1941 1942 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1943 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1944 1945 /* 1946 * Try to allocate a partial slab from a specific node. 1947 */ 1948 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1949 struct kmem_cache_cpu *c, gfp_t flags) 1950 { 1951 struct page *page, *page2; 1952 void *object = NULL; 1953 unsigned int available = 0; 1954 int objects; 1955 1956 /* 1957 * Racy check. If we mistakenly see no partial slabs then we 1958 * just allocate an empty slab. If we mistakenly try to get a 1959 * partial slab and there is none available then get_partial() 1960 * will return NULL. 1961 */ 1962 if (!n || !n->nr_partial) 1963 return NULL; 1964 1965 spin_lock(&n->list_lock); 1966 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1967 void *t; 1968 1969 if (!pfmemalloc_match(page, flags)) 1970 continue; 1971 1972 t = acquire_slab(s, n, page, object == NULL, &objects); 1973 if (!t) 1974 break; 1975 1976 available += objects; 1977 if (!object) { 1978 c->page = page; 1979 stat(s, ALLOC_FROM_PARTIAL); 1980 object = t; 1981 } else { 1982 put_cpu_partial(s, page, 0); 1983 stat(s, CPU_PARTIAL_NODE); 1984 } 1985 if (!kmem_cache_has_cpu_partial(s) 1986 || available > slub_cpu_partial(s) / 2) 1987 break; 1988 1989 } 1990 spin_unlock(&n->list_lock); 1991 return object; 1992 } 1993 1994 /* 1995 * Get a page from somewhere. Search in increasing NUMA distances. 1996 */ 1997 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1998 struct kmem_cache_cpu *c) 1999 { 2000 #ifdef CONFIG_NUMA 2001 struct zonelist *zonelist; 2002 struct zoneref *z; 2003 struct zone *zone; 2004 enum zone_type highest_zoneidx = gfp_zone(flags); 2005 void *object; 2006 unsigned int cpuset_mems_cookie; 2007 2008 /* 2009 * The defrag ratio allows a configuration of the tradeoffs between 2010 * inter node defragmentation and node local allocations. A lower 2011 * defrag_ratio increases the tendency to do local allocations 2012 * instead of attempting to obtain partial slabs from other nodes. 2013 * 2014 * If the defrag_ratio is set to 0 then kmalloc() always 2015 * returns node local objects. If the ratio is higher then kmalloc() 2016 * may return off node objects because partial slabs are obtained 2017 * from other nodes and filled up. 2018 * 2019 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2020 * (which makes defrag_ratio = 1000) then every (well almost) 2021 * allocation will first attempt to defrag slab caches on other nodes. 2022 * This means scanning over all nodes to look for partial slabs which 2023 * may be expensive if we do it every time we are trying to find a slab 2024 * with available objects. 2025 */ 2026 if (!s->remote_node_defrag_ratio || 2027 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2028 return NULL; 2029 2030 do { 2031 cpuset_mems_cookie = read_mems_allowed_begin(); 2032 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2033 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2034 struct kmem_cache_node *n; 2035 2036 n = get_node(s, zone_to_nid(zone)); 2037 2038 if (n && cpuset_zone_allowed(zone, flags) && 2039 n->nr_partial > s->min_partial) { 2040 object = get_partial_node(s, n, c, flags); 2041 if (object) { 2042 /* 2043 * Don't check read_mems_allowed_retry() 2044 * here - if mems_allowed was updated in 2045 * parallel, that was a harmless race 2046 * between allocation and the cpuset 2047 * update 2048 */ 2049 return object; 2050 } 2051 } 2052 } 2053 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2054 #endif /* CONFIG_NUMA */ 2055 return NULL; 2056 } 2057 2058 /* 2059 * Get a partial page, lock it and return it. 2060 */ 2061 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2062 struct kmem_cache_cpu *c) 2063 { 2064 void *object; 2065 int searchnode = node; 2066 2067 if (node == NUMA_NO_NODE) 2068 searchnode = numa_mem_id(); 2069 2070 object = get_partial_node(s, get_node(s, searchnode), c, flags); 2071 if (object || node != NUMA_NO_NODE) 2072 return object; 2073 2074 return get_any_partial(s, flags, c); 2075 } 2076 2077 #ifdef CONFIG_PREEMPTION 2078 /* 2079 * Calculate the next globally unique transaction for disambiguation 2080 * during cmpxchg. The transactions start with the cpu number and are then 2081 * incremented by CONFIG_NR_CPUS. 2082 */ 2083 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2084 #else 2085 /* 2086 * No preemption supported therefore also no need to check for 2087 * different cpus. 2088 */ 2089 #define TID_STEP 1 2090 #endif 2091 2092 static inline unsigned long next_tid(unsigned long tid) 2093 { 2094 return tid + TID_STEP; 2095 } 2096 2097 #ifdef SLUB_DEBUG_CMPXCHG 2098 static inline unsigned int tid_to_cpu(unsigned long tid) 2099 { 2100 return tid % TID_STEP; 2101 } 2102 2103 static inline unsigned long tid_to_event(unsigned long tid) 2104 { 2105 return tid / TID_STEP; 2106 } 2107 #endif 2108 2109 static inline unsigned int init_tid(int cpu) 2110 { 2111 return cpu; 2112 } 2113 2114 static inline void note_cmpxchg_failure(const char *n, 2115 const struct kmem_cache *s, unsigned long tid) 2116 { 2117 #ifdef SLUB_DEBUG_CMPXCHG 2118 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2119 2120 pr_info("%s %s: cmpxchg redo ", n, s->name); 2121 2122 #ifdef CONFIG_PREEMPTION 2123 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2124 pr_warn("due to cpu change %d -> %d\n", 2125 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2126 else 2127 #endif 2128 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2129 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2130 tid_to_event(tid), tid_to_event(actual_tid)); 2131 else 2132 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2133 actual_tid, tid, next_tid(tid)); 2134 #endif 2135 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2136 } 2137 2138 static void init_kmem_cache_cpus(struct kmem_cache *s) 2139 { 2140 int cpu; 2141 2142 for_each_possible_cpu(cpu) 2143 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2144 } 2145 2146 /* 2147 * Remove the cpu slab 2148 */ 2149 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2150 void *freelist, struct kmem_cache_cpu *c) 2151 { 2152 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2153 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2154 int lock = 0; 2155 enum slab_modes l = M_NONE, m = M_NONE; 2156 void *nextfree; 2157 int tail = DEACTIVATE_TO_HEAD; 2158 struct page new; 2159 struct page old; 2160 2161 if (page->freelist) { 2162 stat(s, DEACTIVATE_REMOTE_FREES); 2163 tail = DEACTIVATE_TO_TAIL; 2164 } 2165 2166 /* 2167 * Stage one: Free all available per cpu objects back 2168 * to the page freelist while it is still frozen. Leave the 2169 * last one. 2170 * 2171 * There is no need to take the list->lock because the page 2172 * is still frozen. 2173 */ 2174 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2175 void *prior; 2176 unsigned long counters; 2177 2178 /* 2179 * If 'nextfree' is invalid, it is possible that the object at 2180 * 'freelist' is already corrupted. So isolate all objects 2181 * starting at 'freelist'. 2182 */ 2183 if (freelist_corrupted(s, page, &freelist, nextfree)) 2184 break; 2185 2186 do { 2187 prior = page->freelist; 2188 counters = page->counters; 2189 set_freepointer(s, freelist, prior); 2190 new.counters = counters; 2191 new.inuse--; 2192 VM_BUG_ON(!new.frozen); 2193 2194 } while (!__cmpxchg_double_slab(s, page, 2195 prior, counters, 2196 freelist, new.counters, 2197 "drain percpu freelist")); 2198 2199 freelist = nextfree; 2200 } 2201 2202 /* 2203 * Stage two: Ensure that the page is unfrozen while the 2204 * list presence reflects the actual number of objects 2205 * during unfreeze. 2206 * 2207 * We setup the list membership and then perform a cmpxchg 2208 * with the count. If there is a mismatch then the page 2209 * is not unfrozen but the page is on the wrong list. 2210 * 2211 * Then we restart the process which may have to remove 2212 * the page from the list that we just put it on again 2213 * because the number of objects in the slab may have 2214 * changed. 2215 */ 2216 redo: 2217 2218 old.freelist = page->freelist; 2219 old.counters = page->counters; 2220 VM_BUG_ON(!old.frozen); 2221 2222 /* Determine target state of the slab */ 2223 new.counters = old.counters; 2224 if (freelist) { 2225 new.inuse--; 2226 set_freepointer(s, freelist, old.freelist); 2227 new.freelist = freelist; 2228 } else 2229 new.freelist = old.freelist; 2230 2231 new.frozen = 0; 2232 2233 if (!new.inuse && n->nr_partial >= s->min_partial) 2234 m = M_FREE; 2235 else if (new.freelist) { 2236 m = M_PARTIAL; 2237 if (!lock) { 2238 lock = 1; 2239 /* 2240 * Taking the spinlock removes the possibility 2241 * that acquire_slab() will see a slab page that 2242 * is frozen 2243 */ 2244 spin_lock(&n->list_lock); 2245 } 2246 } else { 2247 m = M_FULL; 2248 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { 2249 lock = 1; 2250 /* 2251 * This also ensures that the scanning of full 2252 * slabs from diagnostic functions will not see 2253 * any frozen slabs. 2254 */ 2255 spin_lock(&n->list_lock); 2256 } 2257 } 2258 2259 if (l != m) { 2260 if (l == M_PARTIAL) 2261 remove_partial(n, page); 2262 else if (l == M_FULL) 2263 remove_full(s, n, page); 2264 2265 if (m == M_PARTIAL) 2266 add_partial(n, page, tail); 2267 else if (m == M_FULL) 2268 add_full(s, n, page); 2269 } 2270 2271 l = m; 2272 if (!__cmpxchg_double_slab(s, page, 2273 old.freelist, old.counters, 2274 new.freelist, new.counters, 2275 "unfreezing slab")) 2276 goto redo; 2277 2278 if (lock) 2279 spin_unlock(&n->list_lock); 2280 2281 if (m == M_PARTIAL) 2282 stat(s, tail); 2283 else if (m == M_FULL) 2284 stat(s, DEACTIVATE_FULL); 2285 else if (m == M_FREE) { 2286 stat(s, DEACTIVATE_EMPTY); 2287 discard_slab(s, page); 2288 stat(s, FREE_SLAB); 2289 } 2290 2291 c->page = NULL; 2292 c->freelist = NULL; 2293 } 2294 2295 /* 2296 * Unfreeze all the cpu partial slabs. 2297 * 2298 * This function must be called with interrupts disabled 2299 * for the cpu using c (or some other guarantee must be there 2300 * to guarantee no concurrent accesses). 2301 */ 2302 static void unfreeze_partials(struct kmem_cache *s, 2303 struct kmem_cache_cpu *c) 2304 { 2305 #ifdef CONFIG_SLUB_CPU_PARTIAL 2306 struct kmem_cache_node *n = NULL, *n2 = NULL; 2307 struct page *page, *discard_page = NULL; 2308 2309 while ((page = slub_percpu_partial(c))) { 2310 struct page new; 2311 struct page old; 2312 2313 slub_set_percpu_partial(c, page); 2314 2315 n2 = get_node(s, page_to_nid(page)); 2316 if (n != n2) { 2317 if (n) 2318 spin_unlock(&n->list_lock); 2319 2320 n = n2; 2321 spin_lock(&n->list_lock); 2322 } 2323 2324 do { 2325 2326 old.freelist = page->freelist; 2327 old.counters = page->counters; 2328 VM_BUG_ON(!old.frozen); 2329 2330 new.counters = old.counters; 2331 new.freelist = old.freelist; 2332 2333 new.frozen = 0; 2334 2335 } while (!__cmpxchg_double_slab(s, page, 2336 old.freelist, old.counters, 2337 new.freelist, new.counters, 2338 "unfreezing slab")); 2339 2340 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2341 page->next = discard_page; 2342 discard_page = page; 2343 } else { 2344 add_partial(n, page, DEACTIVATE_TO_TAIL); 2345 stat(s, FREE_ADD_PARTIAL); 2346 } 2347 } 2348 2349 if (n) 2350 spin_unlock(&n->list_lock); 2351 2352 while (discard_page) { 2353 page = discard_page; 2354 discard_page = discard_page->next; 2355 2356 stat(s, DEACTIVATE_EMPTY); 2357 discard_slab(s, page); 2358 stat(s, FREE_SLAB); 2359 } 2360 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2361 } 2362 2363 /* 2364 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2365 * partial page slot if available. 2366 * 2367 * If we did not find a slot then simply move all the partials to the 2368 * per node partial list. 2369 */ 2370 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2371 { 2372 #ifdef CONFIG_SLUB_CPU_PARTIAL 2373 struct page *oldpage; 2374 int pages; 2375 int pobjects; 2376 2377 preempt_disable(); 2378 do { 2379 pages = 0; 2380 pobjects = 0; 2381 oldpage = this_cpu_read(s->cpu_slab->partial); 2382 2383 if (oldpage) { 2384 pobjects = oldpage->pobjects; 2385 pages = oldpage->pages; 2386 if (drain && pobjects > slub_cpu_partial(s)) { 2387 unsigned long flags; 2388 /* 2389 * partial array is full. Move the existing 2390 * set to the per node partial list. 2391 */ 2392 local_irq_save(flags); 2393 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2394 local_irq_restore(flags); 2395 oldpage = NULL; 2396 pobjects = 0; 2397 pages = 0; 2398 stat(s, CPU_PARTIAL_DRAIN); 2399 } 2400 } 2401 2402 pages++; 2403 pobjects += page->objects - page->inuse; 2404 2405 page->pages = pages; 2406 page->pobjects = pobjects; 2407 page->next = oldpage; 2408 2409 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2410 != oldpage); 2411 if (unlikely(!slub_cpu_partial(s))) { 2412 unsigned long flags; 2413 2414 local_irq_save(flags); 2415 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2416 local_irq_restore(flags); 2417 } 2418 preempt_enable(); 2419 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2420 } 2421 2422 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2423 { 2424 stat(s, CPUSLAB_FLUSH); 2425 deactivate_slab(s, c->page, c->freelist, c); 2426 2427 c->tid = next_tid(c->tid); 2428 } 2429 2430 /* 2431 * Flush cpu slab. 2432 * 2433 * Called from IPI handler with interrupts disabled. 2434 */ 2435 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2436 { 2437 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2438 2439 if (c->page) 2440 flush_slab(s, c); 2441 2442 unfreeze_partials(s, c); 2443 } 2444 2445 static void flush_cpu_slab(void *d) 2446 { 2447 struct kmem_cache *s = d; 2448 2449 __flush_cpu_slab(s, smp_processor_id()); 2450 } 2451 2452 static bool has_cpu_slab(int cpu, void *info) 2453 { 2454 struct kmem_cache *s = info; 2455 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2456 2457 return c->page || slub_percpu_partial(c); 2458 } 2459 2460 static void flush_all(struct kmem_cache *s) 2461 { 2462 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); 2463 } 2464 2465 /* 2466 * Use the cpu notifier to insure that the cpu slabs are flushed when 2467 * necessary. 2468 */ 2469 static int slub_cpu_dead(unsigned int cpu) 2470 { 2471 struct kmem_cache *s; 2472 unsigned long flags; 2473 2474 mutex_lock(&slab_mutex); 2475 list_for_each_entry(s, &slab_caches, list) { 2476 local_irq_save(flags); 2477 __flush_cpu_slab(s, cpu); 2478 local_irq_restore(flags); 2479 } 2480 mutex_unlock(&slab_mutex); 2481 return 0; 2482 } 2483 2484 /* 2485 * Check if the objects in a per cpu structure fit numa 2486 * locality expectations. 2487 */ 2488 static inline int node_match(struct page *page, int node) 2489 { 2490 #ifdef CONFIG_NUMA 2491 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2492 return 0; 2493 #endif 2494 return 1; 2495 } 2496 2497 #ifdef CONFIG_SLUB_DEBUG 2498 static int count_free(struct page *page) 2499 { 2500 return page->objects - page->inuse; 2501 } 2502 2503 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2504 { 2505 return atomic_long_read(&n->total_objects); 2506 } 2507 #endif /* CONFIG_SLUB_DEBUG */ 2508 2509 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2510 static unsigned long count_partial(struct kmem_cache_node *n, 2511 int (*get_count)(struct page *)) 2512 { 2513 unsigned long flags; 2514 unsigned long x = 0; 2515 struct page *page; 2516 2517 spin_lock_irqsave(&n->list_lock, flags); 2518 list_for_each_entry(page, &n->partial, slab_list) 2519 x += get_count(page); 2520 spin_unlock_irqrestore(&n->list_lock, flags); 2521 return x; 2522 } 2523 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2524 2525 static noinline void 2526 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2527 { 2528 #ifdef CONFIG_SLUB_DEBUG 2529 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2530 DEFAULT_RATELIMIT_BURST); 2531 int node; 2532 struct kmem_cache_node *n; 2533 2534 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2535 return; 2536 2537 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2538 nid, gfpflags, &gfpflags); 2539 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2540 s->name, s->object_size, s->size, oo_order(s->oo), 2541 oo_order(s->min)); 2542 2543 if (oo_order(s->min) > get_order(s->object_size)) 2544 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2545 s->name); 2546 2547 for_each_kmem_cache_node(s, node, n) { 2548 unsigned long nr_slabs; 2549 unsigned long nr_objs; 2550 unsigned long nr_free; 2551 2552 nr_free = count_partial(n, count_free); 2553 nr_slabs = node_nr_slabs(n); 2554 nr_objs = node_nr_objs(n); 2555 2556 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2557 node, nr_slabs, nr_objs, nr_free); 2558 } 2559 #endif 2560 } 2561 2562 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2563 int node, struct kmem_cache_cpu **pc) 2564 { 2565 void *freelist; 2566 struct kmem_cache_cpu *c = *pc; 2567 struct page *page; 2568 2569 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2570 2571 freelist = get_partial(s, flags, node, c); 2572 2573 if (freelist) 2574 return freelist; 2575 2576 page = new_slab(s, flags, node); 2577 if (page) { 2578 c = raw_cpu_ptr(s->cpu_slab); 2579 if (c->page) 2580 flush_slab(s, c); 2581 2582 /* 2583 * No other reference to the page yet so we can 2584 * muck around with it freely without cmpxchg 2585 */ 2586 freelist = page->freelist; 2587 page->freelist = NULL; 2588 2589 stat(s, ALLOC_SLAB); 2590 c->page = page; 2591 *pc = c; 2592 } 2593 2594 return freelist; 2595 } 2596 2597 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2598 { 2599 if (unlikely(PageSlabPfmemalloc(page))) 2600 return gfp_pfmemalloc_allowed(gfpflags); 2601 2602 return true; 2603 } 2604 2605 /* 2606 * Check the page->freelist of a page and either transfer the freelist to the 2607 * per cpu freelist or deactivate the page. 2608 * 2609 * The page is still frozen if the return value is not NULL. 2610 * 2611 * If this function returns NULL then the page has been unfrozen. 2612 * 2613 * This function must be called with interrupt disabled. 2614 */ 2615 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2616 { 2617 struct page new; 2618 unsigned long counters; 2619 void *freelist; 2620 2621 do { 2622 freelist = page->freelist; 2623 counters = page->counters; 2624 2625 new.counters = counters; 2626 VM_BUG_ON(!new.frozen); 2627 2628 new.inuse = page->objects; 2629 new.frozen = freelist != NULL; 2630 2631 } while (!__cmpxchg_double_slab(s, page, 2632 freelist, counters, 2633 NULL, new.counters, 2634 "get_freelist")); 2635 2636 return freelist; 2637 } 2638 2639 /* 2640 * Slow path. The lockless freelist is empty or we need to perform 2641 * debugging duties. 2642 * 2643 * Processing is still very fast if new objects have been freed to the 2644 * regular freelist. In that case we simply take over the regular freelist 2645 * as the lockless freelist and zap the regular freelist. 2646 * 2647 * If that is not working then we fall back to the partial lists. We take the 2648 * first element of the freelist as the object to allocate now and move the 2649 * rest of the freelist to the lockless freelist. 2650 * 2651 * And if we were unable to get a new slab from the partial slab lists then 2652 * we need to allocate a new slab. This is the slowest path since it involves 2653 * a call to the page allocator and the setup of a new slab. 2654 * 2655 * Version of __slab_alloc to use when we know that interrupts are 2656 * already disabled (which is the case for bulk allocation). 2657 */ 2658 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2659 unsigned long addr, struct kmem_cache_cpu *c) 2660 { 2661 void *freelist; 2662 struct page *page; 2663 2664 stat(s, ALLOC_SLOWPATH); 2665 2666 page = c->page; 2667 if (!page) { 2668 /* 2669 * if the node is not online or has no normal memory, just 2670 * ignore the node constraint 2671 */ 2672 if (unlikely(node != NUMA_NO_NODE && 2673 !node_state(node, N_NORMAL_MEMORY))) 2674 node = NUMA_NO_NODE; 2675 goto new_slab; 2676 } 2677 redo: 2678 2679 if (unlikely(!node_match(page, node))) { 2680 /* 2681 * same as above but node_match() being false already 2682 * implies node != NUMA_NO_NODE 2683 */ 2684 if (!node_state(node, N_NORMAL_MEMORY)) { 2685 node = NUMA_NO_NODE; 2686 goto redo; 2687 } else { 2688 stat(s, ALLOC_NODE_MISMATCH); 2689 deactivate_slab(s, page, c->freelist, c); 2690 goto new_slab; 2691 } 2692 } 2693 2694 /* 2695 * By rights, we should be searching for a slab page that was 2696 * PFMEMALLOC but right now, we are losing the pfmemalloc 2697 * information when the page leaves the per-cpu allocator 2698 */ 2699 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2700 deactivate_slab(s, page, c->freelist, c); 2701 goto new_slab; 2702 } 2703 2704 /* must check again c->freelist in case of cpu migration or IRQ */ 2705 freelist = c->freelist; 2706 if (freelist) 2707 goto load_freelist; 2708 2709 freelist = get_freelist(s, page); 2710 2711 if (!freelist) { 2712 c->page = NULL; 2713 stat(s, DEACTIVATE_BYPASS); 2714 goto new_slab; 2715 } 2716 2717 stat(s, ALLOC_REFILL); 2718 2719 load_freelist: 2720 /* 2721 * freelist is pointing to the list of objects to be used. 2722 * page is pointing to the page from which the objects are obtained. 2723 * That page must be frozen for per cpu allocations to work. 2724 */ 2725 VM_BUG_ON(!c->page->frozen); 2726 c->freelist = get_freepointer(s, freelist); 2727 c->tid = next_tid(c->tid); 2728 return freelist; 2729 2730 new_slab: 2731 2732 if (slub_percpu_partial(c)) { 2733 page = c->page = slub_percpu_partial(c); 2734 slub_set_percpu_partial(c, page); 2735 stat(s, CPU_PARTIAL_ALLOC); 2736 goto redo; 2737 } 2738 2739 freelist = new_slab_objects(s, gfpflags, node, &c); 2740 2741 if (unlikely(!freelist)) { 2742 slab_out_of_memory(s, gfpflags, node); 2743 return NULL; 2744 } 2745 2746 page = c->page; 2747 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2748 goto load_freelist; 2749 2750 /* Only entered in the debug case */ 2751 if (kmem_cache_debug(s) && 2752 !alloc_debug_processing(s, page, freelist, addr)) 2753 goto new_slab; /* Slab failed checks. Next slab needed */ 2754 2755 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2756 return freelist; 2757 } 2758 2759 /* 2760 * Another one that disabled interrupt and compensates for possible 2761 * cpu changes by refetching the per cpu area pointer. 2762 */ 2763 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2764 unsigned long addr, struct kmem_cache_cpu *c) 2765 { 2766 void *p; 2767 unsigned long flags; 2768 2769 local_irq_save(flags); 2770 #ifdef CONFIG_PREEMPTION 2771 /* 2772 * We may have been preempted and rescheduled on a different 2773 * cpu before disabling interrupts. Need to reload cpu area 2774 * pointer. 2775 */ 2776 c = this_cpu_ptr(s->cpu_slab); 2777 #endif 2778 2779 p = ___slab_alloc(s, gfpflags, node, addr, c); 2780 local_irq_restore(flags); 2781 return p; 2782 } 2783 2784 /* 2785 * If the object has been wiped upon free, make sure it's fully initialized by 2786 * zeroing out freelist pointer. 2787 */ 2788 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2789 void *obj) 2790 { 2791 if (unlikely(slab_want_init_on_free(s)) && obj) 2792 memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); 2793 } 2794 2795 /* 2796 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2797 * have the fastpath folded into their functions. So no function call 2798 * overhead for requests that can be satisfied on the fastpath. 2799 * 2800 * The fastpath works by first checking if the lockless freelist can be used. 2801 * If not then __slab_alloc is called for slow processing. 2802 * 2803 * Otherwise we can simply pick the next object from the lockless free list. 2804 */ 2805 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2806 gfp_t gfpflags, int node, unsigned long addr) 2807 { 2808 void *object; 2809 struct kmem_cache_cpu *c; 2810 struct page *page; 2811 unsigned long tid; 2812 struct obj_cgroup *objcg = NULL; 2813 2814 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); 2815 if (!s) 2816 return NULL; 2817 redo: 2818 /* 2819 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2820 * enabled. We may switch back and forth between cpus while 2821 * reading from one cpu area. That does not matter as long 2822 * as we end up on the original cpu again when doing the cmpxchg. 2823 * 2824 * We should guarantee that tid and kmem_cache are retrieved on 2825 * the same cpu. It could be different if CONFIG_PREEMPTION so we need 2826 * to check if it is matched or not. 2827 */ 2828 do { 2829 tid = this_cpu_read(s->cpu_slab->tid); 2830 c = raw_cpu_ptr(s->cpu_slab); 2831 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2832 unlikely(tid != READ_ONCE(c->tid))); 2833 2834 /* 2835 * Irqless object alloc/free algorithm used here depends on sequence 2836 * of fetching cpu_slab's data. tid should be fetched before anything 2837 * on c to guarantee that object and page associated with previous tid 2838 * won't be used with current tid. If we fetch tid first, object and 2839 * page could be one associated with next tid and our alloc/free 2840 * request will be failed. In this case, we will retry. So, no problem. 2841 */ 2842 barrier(); 2843 2844 /* 2845 * The transaction ids are globally unique per cpu and per operation on 2846 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2847 * occurs on the right processor and that there was no operation on the 2848 * linked list in between. 2849 */ 2850 2851 object = c->freelist; 2852 page = c->page; 2853 if (unlikely(!object || !page || !node_match(page, node))) { 2854 object = __slab_alloc(s, gfpflags, node, addr, c); 2855 } else { 2856 void *next_object = get_freepointer_safe(s, object); 2857 2858 /* 2859 * The cmpxchg will only match if there was no additional 2860 * operation and if we are on the right processor. 2861 * 2862 * The cmpxchg does the following atomically (without lock 2863 * semantics!) 2864 * 1. Relocate first pointer to the current per cpu area. 2865 * 2. Verify that tid and freelist have not been changed 2866 * 3. If they were not changed replace tid and freelist 2867 * 2868 * Since this is without lock semantics the protection is only 2869 * against code executing on this cpu *not* from access by 2870 * other cpus. 2871 */ 2872 if (unlikely(!this_cpu_cmpxchg_double( 2873 s->cpu_slab->freelist, s->cpu_slab->tid, 2874 object, tid, 2875 next_object, next_tid(tid)))) { 2876 2877 note_cmpxchg_failure("slab_alloc", s, tid); 2878 goto redo; 2879 } 2880 prefetch_freepointer(s, next_object); 2881 stat(s, ALLOC_FASTPATH); 2882 } 2883 2884 maybe_wipe_obj_freeptr(s, object); 2885 2886 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2887 memset(object, 0, s->object_size); 2888 2889 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object); 2890 2891 return object; 2892 } 2893 2894 static __always_inline void *slab_alloc(struct kmem_cache *s, 2895 gfp_t gfpflags, unsigned long addr) 2896 { 2897 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2898 } 2899 2900 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2901 { 2902 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2903 2904 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2905 s->size, gfpflags); 2906 2907 return ret; 2908 } 2909 EXPORT_SYMBOL(kmem_cache_alloc); 2910 2911 #ifdef CONFIG_TRACING 2912 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2913 { 2914 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2915 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2916 ret = kasan_kmalloc(s, ret, size, gfpflags); 2917 return ret; 2918 } 2919 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2920 #endif 2921 2922 #ifdef CONFIG_NUMA 2923 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2924 { 2925 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2926 2927 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2928 s->object_size, s->size, gfpflags, node); 2929 2930 return ret; 2931 } 2932 EXPORT_SYMBOL(kmem_cache_alloc_node); 2933 2934 #ifdef CONFIG_TRACING 2935 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2936 gfp_t gfpflags, 2937 int node, size_t size) 2938 { 2939 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2940 2941 trace_kmalloc_node(_RET_IP_, ret, 2942 size, s->size, gfpflags, node); 2943 2944 ret = kasan_kmalloc(s, ret, size, gfpflags); 2945 return ret; 2946 } 2947 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2948 #endif 2949 #endif /* CONFIG_NUMA */ 2950 2951 /* 2952 * Slow path handling. This may still be called frequently since objects 2953 * have a longer lifetime than the cpu slabs in most processing loads. 2954 * 2955 * So we still attempt to reduce cache line usage. Just take the slab 2956 * lock and free the item. If there is no additional partial page 2957 * handling required then we can return immediately. 2958 */ 2959 static void __slab_free(struct kmem_cache *s, struct page *page, 2960 void *head, void *tail, int cnt, 2961 unsigned long addr) 2962 2963 { 2964 void *prior; 2965 int was_frozen; 2966 struct page new; 2967 unsigned long counters; 2968 struct kmem_cache_node *n = NULL; 2969 unsigned long flags; 2970 2971 stat(s, FREE_SLOWPATH); 2972 2973 if (kmem_cache_debug(s) && 2974 !free_debug_processing(s, page, head, tail, cnt, addr)) 2975 return; 2976 2977 do { 2978 if (unlikely(n)) { 2979 spin_unlock_irqrestore(&n->list_lock, flags); 2980 n = NULL; 2981 } 2982 prior = page->freelist; 2983 counters = page->counters; 2984 set_freepointer(s, tail, prior); 2985 new.counters = counters; 2986 was_frozen = new.frozen; 2987 new.inuse -= cnt; 2988 if ((!new.inuse || !prior) && !was_frozen) { 2989 2990 if (kmem_cache_has_cpu_partial(s) && !prior) { 2991 2992 /* 2993 * Slab was on no list before and will be 2994 * partially empty 2995 * We can defer the list move and instead 2996 * freeze it. 2997 */ 2998 new.frozen = 1; 2999 3000 } else { /* Needs to be taken off a list */ 3001 3002 n = get_node(s, page_to_nid(page)); 3003 /* 3004 * Speculatively acquire the list_lock. 3005 * If the cmpxchg does not succeed then we may 3006 * drop the list_lock without any processing. 3007 * 3008 * Otherwise the list_lock will synchronize with 3009 * other processors updating the list of slabs. 3010 */ 3011 spin_lock_irqsave(&n->list_lock, flags); 3012 3013 } 3014 } 3015 3016 } while (!cmpxchg_double_slab(s, page, 3017 prior, counters, 3018 head, new.counters, 3019 "__slab_free")); 3020 3021 if (likely(!n)) { 3022 3023 if (likely(was_frozen)) { 3024 /* 3025 * The list lock was not taken therefore no list 3026 * activity can be necessary. 3027 */ 3028 stat(s, FREE_FROZEN); 3029 } else if (new.frozen) { 3030 /* 3031 * If we just froze the page then put it onto the 3032 * per cpu partial list. 3033 */ 3034 put_cpu_partial(s, page, 1); 3035 stat(s, CPU_PARTIAL_FREE); 3036 } 3037 3038 return; 3039 } 3040 3041 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3042 goto slab_empty; 3043 3044 /* 3045 * Objects left in the slab. If it was not on the partial list before 3046 * then add it. 3047 */ 3048 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3049 remove_full(s, n, page); 3050 add_partial(n, page, DEACTIVATE_TO_TAIL); 3051 stat(s, FREE_ADD_PARTIAL); 3052 } 3053 spin_unlock_irqrestore(&n->list_lock, flags); 3054 return; 3055 3056 slab_empty: 3057 if (prior) { 3058 /* 3059 * Slab on the partial list. 3060 */ 3061 remove_partial(n, page); 3062 stat(s, FREE_REMOVE_PARTIAL); 3063 } else { 3064 /* Slab must be on the full list */ 3065 remove_full(s, n, page); 3066 } 3067 3068 spin_unlock_irqrestore(&n->list_lock, flags); 3069 stat(s, FREE_SLAB); 3070 discard_slab(s, page); 3071 } 3072 3073 /* 3074 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3075 * can perform fastpath freeing without additional function calls. 3076 * 3077 * The fastpath is only possible if we are freeing to the current cpu slab 3078 * of this processor. This typically the case if we have just allocated 3079 * the item before. 3080 * 3081 * If fastpath is not possible then fall back to __slab_free where we deal 3082 * with all sorts of special processing. 3083 * 3084 * Bulk free of a freelist with several objects (all pointing to the 3085 * same page) possible by specifying head and tail ptr, plus objects 3086 * count (cnt). Bulk free indicated by tail pointer being set. 3087 */ 3088 static __always_inline void do_slab_free(struct kmem_cache *s, 3089 struct page *page, void *head, void *tail, 3090 int cnt, unsigned long addr) 3091 { 3092 void *tail_obj = tail ? : head; 3093 struct kmem_cache_cpu *c; 3094 unsigned long tid; 3095 3096 memcg_slab_free_hook(s, &head, 1); 3097 redo: 3098 /* 3099 * Determine the currently cpus per cpu slab. 3100 * The cpu may change afterward. However that does not matter since 3101 * data is retrieved via this pointer. If we are on the same cpu 3102 * during the cmpxchg then the free will succeed. 3103 */ 3104 do { 3105 tid = this_cpu_read(s->cpu_slab->tid); 3106 c = raw_cpu_ptr(s->cpu_slab); 3107 } while (IS_ENABLED(CONFIG_PREEMPTION) && 3108 unlikely(tid != READ_ONCE(c->tid))); 3109 3110 /* Same with comment on barrier() in slab_alloc_node() */ 3111 barrier(); 3112 3113 if (likely(page == c->page)) { 3114 void **freelist = READ_ONCE(c->freelist); 3115 3116 set_freepointer(s, tail_obj, freelist); 3117 3118 if (unlikely(!this_cpu_cmpxchg_double( 3119 s->cpu_slab->freelist, s->cpu_slab->tid, 3120 freelist, tid, 3121 head, next_tid(tid)))) { 3122 3123 note_cmpxchg_failure("slab_free", s, tid); 3124 goto redo; 3125 } 3126 stat(s, FREE_FASTPATH); 3127 } else 3128 __slab_free(s, page, head, tail_obj, cnt, addr); 3129 3130 } 3131 3132 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3133 void *head, void *tail, int cnt, 3134 unsigned long addr) 3135 { 3136 /* 3137 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3138 * to remove objects, whose reuse must be delayed. 3139 */ 3140 if (slab_free_freelist_hook(s, &head, &tail)) 3141 do_slab_free(s, page, head, tail, cnt, addr); 3142 } 3143 3144 #ifdef CONFIG_KASAN_GENERIC 3145 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3146 { 3147 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3148 } 3149 #endif 3150 3151 void kmem_cache_free(struct kmem_cache *s, void *x) 3152 { 3153 s = cache_from_obj(s, x); 3154 if (!s) 3155 return; 3156 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3157 trace_kmem_cache_free(_RET_IP_, x); 3158 } 3159 EXPORT_SYMBOL(kmem_cache_free); 3160 3161 struct detached_freelist { 3162 struct page *page; 3163 void *tail; 3164 void *freelist; 3165 int cnt; 3166 struct kmem_cache *s; 3167 }; 3168 3169 /* 3170 * This function progressively scans the array with free objects (with 3171 * a limited look ahead) and extract objects belonging to the same 3172 * page. It builds a detached freelist directly within the given 3173 * page/objects. This can happen without any need for 3174 * synchronization, because the objects are owned by running process. 3175 * The freelist is build up as a single linked list in the objects. 3176 * The idea is, that this detached freelist can then be bulk 3177 * transferred to the real freelist(s), but only requiring a single 3178 * synchronization primitive. Look ahead in the array is limited due 3179 * to performance reasons. 3180 */ 3181 static inline 3182 int build_detached_freelist(struct kmem_cache *s, size_t size, 3183 void **p, struct detached_freelist *df) 3184 { 3185 size_t first_skipped_index = 0; 3186 int lookahead = 3; 3187 void *object; 3188 struct page *page; 3189 3190 /* Always re-init detached_freelist */ 3191 df->page = NULL; 3192 3193 do { 3194 object = p[--size]; 3195 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3196 } while (!object && size); 3197 3198 if (!object) 3199 return 0; 3200 3201 page = virt_to_head_page(object); 3202 if (!s) { 3203 /* Handle kalloc'ed objects */ 3204 if (unlikely(!PageSlab(page))) { 3205 BUG_ON(!PageCompound(page)); 3206 kfree_hook(object); 3207 __free_pages(page, compound_order(page)); 3208 p[size] = NULL; /* mark object processed */ 3209 return size; 3210 } 3211 /* Derive kmem_cache from object */ 3212 df->s = page->slab_cache; 3213 } else { 3214 df->s = cache_from_obj(s, object); /* Support for memcg */ 3215 } 3216 3217 /* Start new detached freelist */ 3218 df->page = page; 3219 set_freepointer(df->s, object, NULL); 3220 df->tail = object; 3221 df->freelist = object; 3222 p[size] = NULL; /* mark object processed */ 3223 df->cnt = 1; 3224 3225 while (size) { 3226 object = p[--size]; 3227 if (!object) 3228 continue; /* Skip processed objects */ 3229 3230 /* df->page is always set at this point */ 3231 if (df->page == virt_to_head_page(object)) { 3232 /* Opportunity build freelist */ 3233 set_freepointer(df->s, object, df->freelist); 3234 df->freelist = object; 3235 df->cnt++; 3236 p[size] = NULL; /* mark object processed */ 3237 3238 continue; 3239 } 3240 3241 /* Limit look ahead search */ 3242 if (!--lookahead) 3243 break; 3244 3245 if (!first_skipped_index) 3246 first_skipped_index = size + 1; 3247 } 3248 3249 return first_skipped_index; 3250 } 3251 3252 /* Note that interrupts must be enabled when calling this function. */ 3253 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3254 { 3255 if (WARN_ON(!size)) 3256 return; 3257 3258 memcg_slab_free_hook(s, p, size); 3259 do { 3260 struct detached_freelist df; 3261 3262 size = build_detached_freelist(s, size, p, &df); 3263 if (!df.page) 3264 continue; 3265 3266 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3267 } while (likely(size)); 3268 } 3269 EXPORT_SYMBOL(kmem_cache_free_bulk); 3270 3271 /* Note that interrupts must be enabled when calling this function. */ 3272 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3273 void **p) 3274 { 3275 struct kmem_cache_cpu *c; 3276 int i; 3277 struct obj_cgroup *objcg = NULL; 3278 3279 /* memcg and kmem_cache debug support */ 3280 s = slab_pre_alloc_hook(s, &objcg, size, flags); 3281 if (unlikely(!s)) 3282 return false; 3283 /* 3284 * Drain objects in the per cpu slab, while disabling local 3285 * IRQs, which protects against PREEMPT and interrupts 3286 * handlers invoking normal fastpath. 3287 */ 3288 local_irq_disable(); 3289 c = this_cpu_ptr(s->cpu_slab); 3290 3291 for (i = 0; i < size; i++) { 3292 void *object = c->freelist; 3293 3294 if (unlikely(!object)) { 3295 /* 3296 * We may have removed an object from c->freelist using 3297 * the fastpath in the previous iteration; in that case, 3298 * c->tid has not been bumped yet. 3299 * Since ___slab_alloc() may reenable interrupts while 3300 * allocating memory, we should bump c->tid now. 3301 */ 3302 c->tid = next_tid(c->tid); 3303 3304 /* 3305 * Invoking slow path likely have side-effect 3306 * of re-populating per CPU c->freelist 3307 */ 3308 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3309 _RET_IP_, c); 3310 if (unlikely(!p[i])) 3311 goto error; 3312 3313 c = this_cpu_ptr(s->cpu_slab); 3314 maybe_wipe_obj_freeptr(s, p[i]); 3315 3316 continue; /* goto for-loop */ 3317 } 3318 c->freelist = get_freepointer(s, object); 3319 p[i] = object; 3320 maybe_wipe_obj_freeptr(s, p[i]); 3321 } 3322 c->tid = next_tid(c->tid); 3323 local_irq_enable(); 3324 3325 /* Clear memory outside IRQ disabled fastpath loop */ 3326 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3327 int j; 3328 3329 for (j = 0; j < i; j++) 3330 memset(p[j], 0, s->object_size); 3331 } 3332 3333 /* memcg and kmem_cache debug support */ 3334 slab_post_alloc_hook(s, objcg, flags, size, p); 3335 return i; 3336 error: 3337 local_irq_enable(); 3338 slab_post_alloc_hook(s, objcg, flags, i, p); 3339 __kmem_cache_free_bulk(s, i, p); 3340 return 0; 3341 } 3342 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3343 3344 3345 /* 3346 * Object placement in a slab is made very easy because we always start at 3347 * offset 0. If we tune the size of the object to the alignment then we can 3348 * get the required alignment by putting one properly sized object after 3349 * another. 3350 * 3351 * Notice that the allocation order determines the sizes of the per cpu 3352 * caches. Each processor has always one slab available for allocations. 3353 * Increasing the allocation order reduces the number of times that slabs 3354 * must be moved on and off the partial lists and is therefore a factor in 3355 * locking overhead. 3356 */ 3357 3358 /* 3359 * Mininum / Maximum order of slab pages. This influences locking overhead 3360 * and slab fragmentation. A higher order reduces the number of partial slabs 3361 * and increases the number of allocations possible without having to 3362 * take the list_lock. 3363 */ 3364 static unsigned int slub_min_order; 3365 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3366 static unsigned int slub_min_objects; 3367 3368 /* 3369 * Calculate the order of allocation given an slab object size. 3370 * 3371 * The order of allocation has significant impact on performance and other 3372 * system components. Generally order 0 allocations should be preferred since 3373 * order 0 does not cause fragmentation in the page allocator. Larger objects 3374 * be problematic to put into order 0 slabs because there may be too much 3375 * unused space left. We go to a higher order if more than 1/16th of the slab 3376 * would be wasted. 3377 * 3378 * In order to reach satisfactory performance we must ensure that a minimum 3379 * number of objects is in one slab. Otherwise we may generate too much 3380 * activity on the partial lists which requires taking the list_lock. This is 3381 * less a concern for large slabs though which are rarely used. 3382 * 3383 * slub_max_order specifies the order where we begin to stop considering the 3384 * number of objects in a slab as critical. If we reach slub_max_order then 3385 * we try to keep the page order as low as possible. So we accept more waste 3386 * of space in favor of a small page order. 3387 * 3388 * Higher order allocations also allow the placement of more objects in a 3389 * slab and thereby reduce object handling overhead. If the user has 3390 * requested a higher mininum order then we start with that one instead of 3391 * the smallest order which will fit the object. 3392 */ 3393 static inline unsigned int slab_order(unsigned int size, 3394 unsigned int min_objects, unsigned int max_order, 3395 unsigned int fract_leftover) 3396 { 3397 unsigned int min_order = slub_min_order; 3398 unsigned int order; 3399 3400 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3401 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3402 3403 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3404 order <= max_order; order++) { 3405 3406 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3407 unsigned int rem; 3408 3409 rem = slab_size % size; 3410 3411 if (rem <= slab_size / fract_leftover) 3412 break; 3413 } 3414 3415 return order; 3416 } 3417 3418 static inline int calculate_order(unsigned int size) 3419 { 3420 unsigned int order; 3421 unsigned int min_objects; 3422 unsigned int max_objects; 3423 3424 /* 3425 * Attempt to find best configuration for a slab. This 3426 * works by first attempting to generate a layout with 3427 * the best configuration and backing off gradually. 3428 * 3429 * First we increase the acceptable waste in a slab. Then 3430 * we reduce the minimum objects required in a slab. 3431 */ 3432 min_objects = slub_min_objects; 3433 if (!min_objects) 3434 min_objects = 4 * (fls(num_online_cpus()) + 1); 3435 max_objects = order_objects(slub_max_order, size); 3436 min_objects = min(min_objects, max_objects); 3437 3438 while (min_objects > 1) { 3439 unsigned int fraction; 3440 3441 fraction = 16; 3442 while (fraction >= 4) { 3443 order = slab_order(size, min_objects, 3444 slub_max_order, fraction); 3445 if (order <= slub_max_order) 3446 return order; 3447 fraction /= 2; 3448 } 3449 min_objects--; 3450 } 3451 3452 /* 3453 * We were unable to place multiple objects in a slab. Now 3454 * lets see if we can place a single object there. 3455 */ 3456 order = slab_order(size, 1, slub_max_order, 1); 3457 if (order <= slub_max_order) 3458 return order; 3459 3460 /* 3461 * Doh this slab cannot be placed using slub_max_order. 3462 */ 3463 order = slab_order(size, 1, MAX_ORDER, 1); 3464 if (order < MAX_ORDER) 3465 return order; 3466 return -ENOSYS; 3467 } 3468 3469 static void 3470 init_kmem_cache_node(struct kmem_cache_node *n) 3471 { 3472 n->nr_partial = 0; 3473 spin_lock_init(&n->list_lock); 3474 INIT_LIST_HEAD(&n->partial); 3475 #ifdef CONFIG_SLUB_DEBUG 3476 atomic_long_set(&n->nr_slabs, 0); 3477 atomic_long_set(&n->total_objects, 0); 3478 INIT_LIST_HEAD(&n->full); 3479 #endif 3480 } 3481 3482 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3483 { 3484 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3485 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3486 3487 /* 3488 * Must align to double word boundary for the double cmpxchg 3489 * instructions to work; see __pcpu_double_call_return_bool(). 3490 */ 3491 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3492 2 * sizeof(void *)); 3493 3494 if (!s->cpu_slab) 3495 return 0; 3496 3497 init_kmem_cache_cpus(s); 3498 3499 return 1; 3500 } 3501 3502 static struct kmem_cache *kmem_cache_node; 3503 3504 /* 3505 * No kmalloc_node yet so do it by hand. We know that this is the first 3506 * slab on the node for this slabcache. There are no concurrent accesses 3507 * possible. 3508 * 3509 * Note that this function only works on the kmem_cache_node 3510 * when allocating for the kmem_cache_node. This is used for bootstrapping 3511 * memory on a fresh node that has no slab structures yet. 3512 */ 3513 static void early_kmem_cache_node_alloc(int node) 3514 { 3515 struct page *page; 3516 struct kmem_cache_node *n; 3517 3518 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3519 3520 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3521 3522 BUG_ON(!page); 3523 if (page_to_nid(page) != node) { 3524 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3525 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3526 } 3527 3528 n = page->freelist; 3529 BUG_ON(!n); 3530 #ifdef CONFIG_SLUB_DEBUG 3531 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3532 init_tracking(kmem_cache_node, n); 3533 #endif 3534 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3535 GFP_KERNEL); 3536 page->freelist = get_freepointer(kmem_cache_node, n); 3537 page->inuse = 1; 3538 page->frozen = 0; 3539 kmem_cache_node->node[node] = n; 3540 init_kmem_cache_node(n); 3541 inc_slabs_node(kmem_cache_node, node, page->objects); 3542 3543 /* 3544 * No locks need to be taken here as it has just been 3545 * initialized and there is no concurrent access. 3546 */ 3547 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3548 } 3549 3550 static void free_kmem_cache_nodes(struct kmem_cache *s) 3551 { 3552 int node; 3553 struct kmem_cache_node *n; 3554 3555 for_each_kmem_cache_node(s, node, n) { 3556 s->node[node] = NULL; 3557 kmem_cache_free(kmem_cache_node, n); 3558 } 3559 } 3560 3561 void __kmem_cache_release(struct kmem_cache *s) 3562 { 3563 cache_random_seq_destroy(s); 3564 free_percpu(s->cpu_slab); 3565 free_kmem_cache_nodes(s); 3566 } 3567 3568 static int init_kmem_cache_nodes(struct kmem_cache *s) 3569 { 3570 int node; 3571 3572 for_each_node_state(node, N_NORMAL_MEMORY) { 3573 struct kmem_cache_node *n; 3574 3575 if (slab_state == DOWN) { 3576 early_kmem_cache_node_alloc(node); 3577 continue; 3578 } 3579 n = kmem_cache_alloc_node(kmem_cache_node, 3580 GFP_KERNEL, node); 3581 3582 if (!n) { 3583 free_kmem_cache_nodes(s); 3584 return 0; 3585 } 3586 3587 init_kmem_cache_node(n); 3588 s->node[node] = n; 3589 } 3590 return 1; 3591 } 3592 3593 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3594 { 3595 if (min < MIN_PARTIAL) 3596 min = MIN_PARTIAL; 3597 else if (min > MAX_PARTIAL) 3598 min = MAX_PARTIAL; 3599 s->min_partial = min; 3600 } 3601 3602 static void set_cpu_partial(struct kmem_cache *s) 3603 { 3604 #ifdef CONFIG_SLUB_CPU_PARTIAL 3605 /* 3606 * cpu_partial determined the maximum number of objects kept in the 3607 * per cpu partial lists of a processor. 3608 * 3609 * Per cpu partial lists mainly contain slabs that just have one 3610 * object freed. If they are used for allocation then they can be 3611 * filled up again with minimal effort. The slab will never hit the 3612 * per node partial lists and therefore no locking will be required. 3613 * 3614 * This setting also determines 3615 * 3616 * A) The number of objects from per cpu partial slabs dumped to the 3617 * per node list when we reach the limit. 3618 * B) The number of objects in cpu partial slabs to extract from the 3619 * per node list when we run out of per cpu objects. We only fetch 3620 * 50% to keep some capacity around for frees. 3621 */ 3622 if (!kmem_cache_has_cpu_partial(s)) 3623 slub_set_cpu_partial(s, 0); 3624 else if (s->size >= PAGE_SIZE) 3625 slub_set_cpu_partial(s, 2); 3626 else if (s->size >= 1024) 3627 slub_set_cpu_partial(s, 6); 3628 else if (s->size >= 256) 3629 slub_set_cpu_partial(s, 13); 3630 else 3631 slub_set_cpu_partial(s, 30); 3632 #endif 3633 } 3634 3635 /* 3636 * calculate_sizes() determines the order and the distribution of data within 3637 * a slab object. 3638 */ 3639 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3640 { 3641 slab_flags_t flags = s->flags; 3642 unsigned int size = s->object_size; 3643 unsigned int freepointer_area; 3644 unsigned int order; 3645 3646 /* 3647 * Round up object size to the next word boundary. We can only 3648 * place the free pointer at word boundaries and this determines 3649 * the possible location of the free pointer. 3650 */ 3651 size = ALIGN(size, sizeof(void *)); 3652 /* 3653 * This is the area of the object where a freepointer can be 3654 * safely written. If redzoning adds more to the inuse size, we 3655 * can't use that portion for writing the freepointer, so 3656 * s->offset must be limited within this for the general case. 3657 */ 3658 freepointer_area = size; 3659 3660 #ifdef CONFIG_SLUB_DEBUG 3661 /* 3662 * Determine if we can poison the object itself. If the user of 3663 * the slab may touch the object after free or before allocation 3664 * then we should never poison the object itself. 3665 */ 3666 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3667 !s->ctor) 3668 s->flags |= __OBJECT_POISON; 3669 else 3670 s->flags &= ~__OBJECT_POISON; 3671 3672 3673 /* 3674 * If we are Redzoning then check if there is some space between the 3675 * end of the object and the free pointer. If not then add an 3676 * additional word to have some bytes to store Redzone information. 3677 */ 3678 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3679 size += sizeof(void *); 3680 #endif 3681 3682 /* 3683 * With that we have determined the number of bytes in actual use 3684 * by the object. This is the potential offset to the free pointer. 3685 */ 3686 s->inuse = size; 3687 3688 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3689 s->ctor)) { 3690 /* 3691 * Relocate free pointer after the object if it is not 3692 * permitted to overwrite the first word of the object on 3693 * kmem_cache_free. 3694 * 3695 * This is the case if we do RCU, have a constructor or 3696 * destructor or are poisoning the objects. 3697 * 3698 * The assumption that s->offset >= s->inuse means free 3699 * pointer is outside of the object is used in the 3700 * freeptr_outside_object() function. If that is no 3701 * longer true, the function needs to be modified. 3702 */ 3703 s->offset = size; 3704 size += sizeof(void *); 3705 } else if (freepointer_area > sizeof(void *)) { 3706 /* 3707 * Store freelist pointer near middle of object to keep 3708 * it away from the edges of the object to avoid small 3709 * sized over/underflows from neighboring allocations. 3710 */ 3711 s->offset = ALIGN(freepointer_area / 2, sizeof(void *)); 3712 } 3713 3714 #ifdef CONFIG_SLUB_DEBUG 3715 if (flags & SLAB_STORE_USER) 3716 /* 3717 * Need to store information about allocs and frees after 3718 * the object. 3719 */ 3720 size += 2 * sizeof(struct track); 3721 #endif 3722 3723 kasan_cache_create(s, &size, &s->flags); 3724 #ifdef CONFIG_SLUB_DEBUG 3725 if (flags & SLAB_RED_ZONE) { 3726 /* 3727 * Add some empty padding so that we can catch 3728 * overwrites from earlier objects rather than let 3729 * tracking information or the free pointer be 3730 * corrupted if a user writes before the start 3731 * of the object. 3732 */ 3733 size += sizeof(void *); 3734 3735 s->red_left_pad = sizeof(void *); 3736 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3737 size += s->red_left_pad; 3738 } 3739 #endif 3740 3741 /* 3742 * SLUB stores one object immediately after another beginning from 3743 * offset 0. In order to align the objects we have to simply size 3744 * each object to conform to the alignment. 3745 */ 3746 size = ALIGN(size, s->align); 3747 s->size = size; 3748 s->reciprocal_size = reciprocal_value(size); 3749 if (forced_order >= 0) 3750 order = forced_order; 3751 else 3752 order = calculate_order(size); 3753 3754 if ((int)order < 0) 3755 return 0; 3756 3757 s->allocflags = 0; 3758 if (order) 3759 s->allocflags |= __GFP_COMP; 3760 3761 if (s->flags & SLAB_CACHE_DMA) 3762 s->allocflags |= GFP_DMA; 3763 3764 if (s->flags & SLAB_CACHE_DMA32) 3765 s->allocflags |= GFP_DMA32; 3766 3767 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3768 s->allocflags |= __GFP_RECLAIMABLE; 3769 3770 /* 3771 * Determine the number of objects per slab 3772 */ 3773 s->oo = oo_make(order, size); 3774 s->min = oo_make(get_order(size), size); 3775 if (oo_objects(s->oo) > oo_objects(s->max)) 3776 s->max = s->oo; 3777 3778 return !!oo_objects(s->oo); 3779 } 3780 3781 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3782 { 3783 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3784 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3785 s->random = get_random_long(); 3786 #endif 3787 3788 if (!calculate_sizes(s, -1)) 3789 goto error; 3790 if (disable_higher_order_debug) { 3791 /* 3792 * Disable debugging flags that store metadata if the min slab 3793 * order increased. 3794 */ 3795 if (get_order(s->size) > get_order(s->object_size)) { 3796 s->flags &= ~DEBUG_METADATA_FLAGS; 3797 s->offset = 0; 3798 if (!calculate_sizes(s, -1)) 3799 goto error; 3800 } 3801 } 3802 3803 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3804 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3805 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3806 /* Enable fast mode */ 3807 s->flags |= __CMPXCHG_DOUBLE; 3808 #endif 3809 3810 /* 3811 * The larger the object size is, the more pages we want on the partial 3812 * list to avoid pounding the page allocator excessively. 3813 */ 3814 set_min_partial(s, ilog2(s->size) / 2); 3815 3816 set_cpu_partial(s); 3817 3818 #ifdef CONFIG_NUMA 3819 s->remote_node_defrag_ratio = 1000; 3820 #endif 3821 3822 /* Initialize the pre-computed randomized freelist if slab is up */ 3823 if (slab_state >= UP) { 3824 if (init_cache_random_seq(s)) 3825 goto error; 3826 } 3827 3828 if (!init_kmem_cache_nodes(s)) 3829 goto error; 3830 3831 if (alloc_kmem_cache_cpus(s)) 3832 return 0; 3833 3834 free_kmem_cache_nodes(s); 3835 error: 3836 return -EINVAL; 3837 } 3838 3839 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3840 const char *text) 3841 { 3842 #ifdef CONFIG_SLUB_DEBUG 3843 void *addr = page_address(page); 3844 unsigned long *map; 3845 void *p; 3846 3847 slab_err(s, page, text, s->name); 3848 slab_lock(page); 3849 3850 map = get_map(s, page); 3851 for_each_object(p, s, addr, page->objects) { 3852 3853 if (!test_bit(__obj_to_index(s, addr, p), map)) { 3854 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3855 print_tracking(s, p); 3856 } 3857 } 3858 put_map(map); 3859 slab_unlock(page); 3860 #endif 3861 } 3862 3863 /* 3864 * Attempt to free all partial slabs on a node. 3865 * This is called from __kmem_cache_shutdown(). We must take list_lock 3866 * because sysfs file might still access partial list after the shutdowning. 3867 */ 3868 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3869 { 3870 LIST_HEAD(discard); 3871 struct page *page, *h; 3872 3873 BUG_ON(irqs_disabled()); 3874 spin_lock_irq(&n->list_lock); 3875 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3876 if (!page->inuse) { 3877 remove_partial(n, page); 3878 list_add(&page->slab_list, &discard); 3879 } else { 3880 list_slab_objects(s, page, 3881 "Objects remaining in %s on __kmem_cache_shutdown()"); 3882 } 3883 } 3884 spin_unlock_irq(&n->list_lock); 3885 3886 list_for_each_entry_safe(page, h, &discard, slab_list) 3887 discard_slab(s, page); 3888 } 3889 3890 bool __kmem_cache_empty(struct kmem_cache *s) 3891 { 3892 int node; 3893 struct kmem_cache_node *n; 3894 3895 for_each_kmem_cache_node(s, node, n) 3896 if (n->nr_partial || slabs_node(s, node)) 3897 return false; 3898 return true; 3899 } 3900 3901 /* 3902 * Release all resources used by a slab cache. 3903 */ 3904 int __kmem_cache_shutdown(struct kmem_cache *s) 3905 { 3906 int node; 3907 struct kmem_cache_node *n; 3908 3909 flush_all(s); 3910 /* Attempt to free all objects */ 3911 for_each_kmem_cache_node(s, node, n) { 3912 free_partial(s, n); 3913 if (n->nr_partial || slabs_node(s, node)) 3914 return 1; 3915 } 3916 return 0; 3917 } 3918 3919 /******************************************************************** 3920 * Kmalloc subsystem 3921 *******************************************************************/ 3922 3923 static int __init setup_slub_min_order(char *str) 3924 { 3925 get_option(&str, (int *)&slub_min_order); 3926 3927 return 1; 3928 } 3929 3930 __setup("slub_min_order=", setup_slub_min_order); 3931 3932 static int __init setup_slub_max_order(char *str) 3933 { 3934 get_option(&str, (int *)&slub_max_order); 3935 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3936 3937 return 1; 3938 } 3939 3940 __setup("slub_max_order=", setup_slub_max_order); 3941 3942 static int __init setup_slub_min_objects(char *str) 3943 { 3944 get_option(&str, (int *)&slub_min_objects); 3945 3946 return 1; 3947 } 3948 3949 __setup("slub_min_objects=", setup_slub_min_objects); 3950 3951 void *__kmalloc(size_t size, gfp_t flags) 3952 { 3953 struct kmem_cache *s; 3954 void *ret; 3955 3956 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3957 return kmalloc_large(size, flags); 3958 3959 s = kmalloc_slab(size, flags); 3960 3961 if (unlikely(ZERO_OR_NULL_PTR(s))) 3962 return s; 3963 3964 ret = slab_alloc(s, flags, _RET_IP_); 3965 3966 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3967 3968 ret = kasan_kmalloc(s, ret, size, flags); 3969 3970 return ret; 3971 } 3972 EXPORT_SYMBOL(__kmalloc); 3973 3974 #ifdef CONFIG_NUMA 3975 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3976 { 3977 struct page *page; 3978 void *ptr = NULL; 3979 unsigned int order = get_order(size); 3980 3981 flags |= __GFP_COMP; 3982 page = alloc_pages_node(node, flags, order); 3983 if (page) { 3984 ptr = page_address(page); 3985 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, 3986 PAGE_SIZE << order); 3987 } 3988 3989 return kmalloc_large_node_hook(ptr, size, flags); 3990 } 3991 3992 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3993 { 3994 struct kmem_cache *s; 3995 void *ret; 3996 3997 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3998 ret = kmalloc_large_node(size, flags, node); 3999 4000 trace_kmalloc_node(_RET_IP_, ret, 4001 size, PAGE_SIZE << get_order(size), 4002 flags, node); 4003 4004 return ret; 4005 } 4006 4007 s = kmalloc_slab(size, flags); 4008 4009 if (unlikely(ZERO_OR_NULL_PTR(s))) 4010 return s; 4011 4012 ret = slab_alloc_node(s, flags, node, _RET_IP_); 4013 4014 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 4015 4016 ret = kasan_kmalloc(s, ret, size, flags); 4017 4018 return ret; 4019 } 4020 EXPORT_SYMBOL(__kmalloc_node); 4021 #endif /* CONFIG_NUMA */ 4022 4023 #ifdef CONFIG_HARDENED_USERCOPY 4024 /* 4025 * Rejects incorrectly sized objects and objects that are to be copied 4026 * to/from userspace but do not fall entirely within the containing slab 4027 * cache's usercopy region. 4028 * 4029 * Returns NULL if check passes, otherwise const char * to name of cache 4030 * to indicate an error. 4031 */ 4032 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4033 bool to_user) 4034 { 4035 struct kmem_cache *s; 4036 unsigned int offset; 4037 size_t object_size; 4038 4039 ptr = kasan_reset_tag(ptr); 4040 4041 /* Find object and usable object size. */ 4042 s = page->slab_cache; 4043 4044 /* Reject impossible pointers. */ 4045 if (ptr < page_address(page)) 4046 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4047 to_user, 0, n); 4048 4049 /* Find offset within object. */ 4050 offset = (ptr - page_address(page)) % s->size; 4051 4052 /* Adjust for redzone and reject if within the redzone. */ 4053 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4054 if (offset < s->red_left_pad) 4055 usercopy_abort("SLUB object in left red zone", 4056 s->name, to_user, offset, n); 4057 offset -= s->red_left_pad; 4058 } 4059 4060 /* Allow address range falling entirely within usercopy region. */ 4061 if (offset >= s->useroffset && 4062 offset - s->useroffset <= s->usersize && 4063 n <= s->useroffset - offset + s->usersize) 4064 return; 4065 4066 /* 4067 * If the copy is still within the allocated object, produce 4068 * a warning instead of rejecting the copy. This is intended 4069 * to be a temporary method to find any missing usercopy 4070 * whitelists. 4071 */ 4072 object_size = slab_ksize(s); 4073 if (usercopy_fallback && 4074 offset <= object_size && n <= object_size - offset) { 4075 usercopy_warn("SLUB object", s->name, to_user, offset, n); 4076 return; 4077 } 4078 4079 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4080 } 4081 #endif /* CONFIG_HARDENED_USERCOPY */ 4082 4083 size_t __ksize(const void *object) 4084 { 4085 struct page *page; 4086 4087 if (unlikely(object == ZERO_SIZE_PTR)) 4088 return 0; 4089 4090 page = virt_to_head_page(object); 4091 4092 if (unlikely(!PageSlab(page))) { 4093 WARN_ON(!PageCompound(page)); 4094 return page_size(page); 4095 } 4096 4097 return slab_ksize(page->slab_cache); 4098 } 4099 EXPORT_SYMBOL(__ksize); 4100 4101 void kfree(const void *x) 4102 { 4103 struct page *page; 4104 void *object = (void *)x; 4105 4106 trace_kfree(_RET_IP_, x); 4107 4108 if (unlikely(ZERO_OR_NULL_PTR(x))) 4109 return; 4110 4111 page = virt_to_head_page(x); 4112 if (unlikely(!PageSlab(page))) { 4113 unsigned int order = compound_order(page); 4114 4115 BUG_ON(!PageCompound(page)); 4116 kfree_hook(object); 4117 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, 4118 -(PAGE_SIZE << order)); 4119 __free_pages(page, order); 4120 return; 4121 } 4122 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 4123 } 4124 EXPORT_SYMBOL(kfree); 4125 4126 #define SHRINK_PROMOTE_MAX 32 4127 4128 /* 4129 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4130 * up most to the head of the partial lists. New allocations will then 4131 * fill those up and thus they can be removed from the partial lists. 4132 * 4133 * The slabs with the least items are placed last. This results in them 4134 * being allocated from last increasing the chance that the last objects 4135 * are freed in them. 4136 */ 4137 int __kmem_cache_shrink(struct kmem_cache *s) 4138 { 4139 int node; 4140 int i; 4141 struct kmem_cache_node *n; 4142 struct page *page; 4143 struct page *t; 4144 struct list_head discard; 4145 struct list_head promote[SHRINK_PROMOTE_MAX]; 4146 unsigned long flags; 4147 int ret = 0; 4148 4149 flush_all(s); 4150 for_each_kmem_cache_node(s, node, n) { 4151 INIT_LIST_HEAD(&discard); 4152 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4153 INIT_LIST_HEAD(promote + i); 4154 4155 spin_lock_irqsave(&n->list_lock, flags); 4156 4157 /* 4158 * Build lists of slabs to discard or promote. 4159 * 4160 * Note that concurrent frees may occur while we hold the 4161 * list_lock. page->inuse here is the upper limit. 4162 */ 4163 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4164 int free = page->objects - page->inuse; 4165 4166 /* Do not reread page->inuse */ 4167 barrier(); 4168 4169 /* We do not keep full slabs on the list */ 4170 BUG_ON(free <= 0); 4171 4172 if (free == page->objects) { 4173 list_move(&page->slab_list, &discard); 4174 n->nr_partial--; 4175 } else if (free <= SHRINK_PROMOTE_MAX) 4176 list_move(&page->slab_list, promote + free - 1); 4177 } 4178 4179 /* 4180 * Promote the slabs filled up most to the head of the 4181 * partial list. 4182 */ 4183 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4184 list_splice(promote + i, &n->partial); 4185 4186 spin_unlock_irqrestore(&n->list_lock, flags); 4187 4188 /* Release empty slabs */ 4189 list_for_each_entry_safe(page, t, &discard, slab_list) 4190 discard_slab(s, page); 4191 4192 if (slabs_node(s, node)) 4193 ret = 1; 4194 } 4195 4196 return ret; 4197 } 4198 4199 static int slab_mem_going_offline_callback(void *arg) 4200 { 4201 struct kmem_cache *s; 4202 4203 mutex_lock(&slab_mutex); 4204 list_for_each_entry(s, &slab_caches, list) 4205 __kmem_cache_shrink(s); 4206 mutex_unlock(&slab_mutex); 4207 4208 return 0; 4209 } 4210 4211 static void slab_mem_offline_callback(void *arg) 4212 { 4213 struct kmem_cache_node *n; 4214 struct kmem_cache *s; 4215 struct memory_notify *marg = arg; 4216 int offline_node; 4217 4218 offline_node = marg->status_change_nid_normal; 4219 4220 /* 4221 * If the node still has available memory. we need kmem_cache_node 4222 * for it yet. 4223 */ 4224 if (offline_node < 0) 4225 return; 4226 4227 mutex_lock(&slab_mutex); 4228 list_for_each_entry(s, &slab_caches, list) { 4229 n = get_node(s, offline_node); 4230 if (n) { 4231 /* 4232 * if n->nr_slabs > 0, slabs still exist on the node 4233 * that is going down. We were unable to free them, 4234 * and offline_pages() function shouldn't call this 4235 * callback. So, we must fail. 4236 */ 4237 BUG_ON(slabs_node(s, offline_node)); 4238 4239 s->node[offline_node] = NULL; 4240 kmem_cache_free(kmem_cache_node, n); 4241 } 4242 } 4243 mutex_unlock(&slab_mutex); 4244 } 4245 4246 static int slab_mem_going_online_callback(void *arg) 4247 { 4248 struct kmem_cache_node *n; 4249 struct kmem_cache *s; 4250 struct memory_notify *marg = arg; 4251 int nid = marg->status_change_nid_normal; 4252 int ret = 0; 4253 4254 /* 4255 * If the node's memory is already available, then kmem_cache_node is 4256 * already created. Nothing to do. 4257 */ 4258 if (nid < 0) 4259 return 0; 4260 4261 /* 4262 * We are bringing a node online. No memory is available yet. We must 4263 * allocate a kmem_cache_node structure in order to bring the node 4264 * online. 4265 */ 4266 mutex_lock(&slab_mutex); 4267 list_for_each_entry(s, &slab_caches, list) { 4268 /* 4269 * XXX: kmem_cache_alloc_node will fallback to other nodes 4270 * since memory is not yet available from the node that 4271 * is brought up. 4272 */ 4273 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4274 if (!n) { 4275 ret = -ENOMEM; 4276 goto out; 4277 } 4278 init_kmem_cache_node(n); 4279 s->node[nid] = n; 4280 } 4281 out: 4282 mutex_unlock(&slab_mutex); 4283 return ret; 4284 } 4285 4286 static int slab_memory_callback(struct notifier_block *self, 4287 unsigned long action, void *arg) 4288 { 4289 int ret = 0; 4290 4291 switch (action) { 4292 case MEM_GOING_ONLINE: 4293 ret = slab_mem_going_online_callback(arg); 4294 break; 4295 case MEM_GOING_OFFLINE: 4296 ret = slab_mem_going_offline_callback(arg); 4297 break; 4298 case MEM_OFFLINE: 4299 case MEM_CANCEL_ONLINE: 4300 slab_mem_offline_callback(arg); 4301 break; 4302 case MEM_ONLINE: 4303 case MEM_CANCEL_OFFLINE: 4304 break; 4305 } 4306 if (ret) 4307 ret = notifier_from_errno(ret); 4308 else 4309 ret = NOTIFY_OK; 4310 return ret; 4311 } 4312 4313 static struct notifier_block slab_memory_callback_nb = { 4314 .notifier_call = slab_memory_callback, 4315 .priority = SLAB_CALLBACK_PRI, 4316 }; 4317 4318 /******************************************************************** 4319 * Basic setup of slabs 4320 *******************************************************************/ 4321 4322 /* 4323 * Used for early kmem_cache structures that were allocated using 4324 * the page allocator. Allocate them properly then fix up the pointers 4325 * that may be pointing to the wrong kmem_cache structure. 4326 */ 4327 4328 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4329 { 4330 int node; 4331 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4332 struct kmem_cache_node *n; 4333 4334 memcpy(s, static_cache, kmem_cache->object_size); 4335 4336 /* 4337 * This runs very early, and only the boot processor is supposed to be 4338 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4339 * IPIs around. 4340 */ 4341 __flush_cpu_slab(s, smp_processor_id()); 4342 for_each_kmem_cache_node(s, node, n) { 4343 struct page *p; 4344 4345 list_for_each_entry(p, &n->partial, slab_list) 4346 p->slab_cache = s; 4347 4348 #ifdef CONFIG_SLUB_DEBUG 4349 list_for_each_entry(p, &n->full, slab_list) 4350 p->slab_cache = s; 4351 #endif 4352 } 4353 list_add(&s->list, &slab_caches); 4354 return s; 4355 } 4356 4357 void __init kmem_cache_init(void) 4358 { 4359 static __initdata struct kmem_cache boot_kmem_cache, 4360 boot_kmem_cache_node; 4361 4362 if (debug_guardpage_minorder()) 4363 slub_max_order = 0; 4364 4365 kmem_cache_node = &boot_kmem_cache_node; 4366 kmem_cache = &boot_kmem_cache; 4367 4368 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4369 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4370 4371 register_hotmemory_notifier(&slab_memory_callback_nb); 4372 4373 /* Able to allocate the per node structures */ 4374 slab_state = PARTIAL; 4375 4376 create_boot_cache(kmem_cache, "kmem_cache", 4377 offsetof(struct kmem_cache, node) + 4378 nr_node_ids * sizeof(struct kmem_cache_node *), 4379 SLAB_HWCACHE_ALIGN, 0, 0); 4380 4381 kmem_cache = bootstrap(&boot_kmem_cache); 4382 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4383 4384 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4385 setup_kmalloc_cache_index_table(); 4386 create_kmalloc_caches(0); 4387 4388 /* Setup random freelists for each cache */ 4389 init_freelist_randomization(); 4390 4391 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4392 slub_cpu_dead); 4393 4394 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4395 cache_line_size(), 4396 slub_min_order, slub_max_order, slub_min_objects, 4397 nr_cpu_ids, nr_node_ids); 4398 } 4399 4400 void __init kmem_cache_init_late(void) 4401 { 4402 } 4403 4404 struct kmem_cache * 4405 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4406 slab_flags_t flags, void (*ctor)(void *)) 4407 { 4408 struct kmem_cache *s; 4409 4410 s = find_mergeable(size, align, flags, name, ctor); 4411 if (s) { 4412 s->refcount++; 4413 4414 /* 4415 * Adjust the object sizes so that we clear 4416 * the complete object on kzalloc. 4417 */ 4418 s->object_size = max(s->object_size, size); 4419 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4420 4421 if (sysfs_slab_alias(s, name)) { 4422 s->refcount--; 4423 s = NULL; 4424 } 4425 } 4426 4427 return s; 4428 } 4429 4430 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4431 { 4432 int err; 4433 4434 err = kmem_cache_open(s, flags); 4435 if (err) 4436 return err; 4437 4438 /* Mutex is not taken during early boot */ 4439 if (slab_state <= UP) 4440 return 0; 4441 4442 err = sysfs_slab_add(s); 4443 if (err) 4444 __kmem_cache_release(s); 4445 4446 return err; 4447 } 4448 4449 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4450 { 4451 struct kmem_cache *s; 4452 void *ret; 4453 4454 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4455 return kmalloc_large(size, gfpflags); 4456 4457 s = kmalloc_slab(size, gfpflags); 4458 4459 if (unlikely(ZERO_OR_NULL_PTR(s))) 4460 return s; 4461 4462 ret = slab_alloc(s, gfpflags, caller); 4463 4464 /* Honor the call site pointer we received. */ 4465 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4466 4467 return ret; 4468 } 4469 EXPORT_SYMBOL(__kmalloc_track_caller); 4470 4471 #ifdef CONFIG_NUMA 4472 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4473 int node, unsigned long caller) 4474 { 4475 struct kmem_cache *s; 4476 void *ret; 4477 4478 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4479 ret = kmalloc_large_node(size, gfpflags, node); 4480 4481 trace_kmalloc_node(caller, ret, 4482 size, PAGE_SIZE << get_order(size), 4483 gfpflags, node); 4484 4485 return ret; 4486 } 4487 4488 s = kmalloc_slab(size, gfpflags); 4489 4490 if (unlikely(ZERO_OR_NULL_PTR(s))) 4491 return s; 4492 4493 ret = slab_alloc_node(s, gfpflags, node, caller); 4494 4495 /* Honor the call site pointer we received. */ 4496 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4497 4498 return ret; 4499 } 4500 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4501 #endif 4502 4503 #ifdef CONFIG_SYSFS 4504 static int count_inuse(struct page *page) 4505 { 4506 return page->inuse; 4507 } 4508 4509 static int count_total(struct page *page) 4510 { 4511 return page->objects; 4512 } 4513 #endif 4514 4515 #ifdef CONFIG_SLUB_DEBUG 4516 static void validate_slab(struct kmem_cache *s, struct page *page) 4517 { 4518 void *p; 4519 void *addr = page_address(page); 4520 unsigned long *map; 4521 4522 slab_lock(page); 4523 4524 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4525 goto unlock; 4526 4527 /* Now we know that a valid freelist exists */ 4528 map = get_map(s, page); 4529 for_each_object(p, s, addr, page->objects) { 4530 u8 val = test_bit(__obj_to_index(s, addr, p), map) ? 4531 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4532 4533 if (!check_object(s, page, p, val)) 4534 break; 4535 } 4536 put_map(map); 4537 unlock: 4538 slab_unlock(page); 4539 } 4540 4541 static int validate_slab_node(struct kmem_cache *s, 4542 struct kmem_cache_node *n) 4543 { 4544 unsigned long count = 0; 4545 struct page *page; 4546 unsigned long flags; 4547 4548 spin_lock_irqsave(&n->list_lock, flags); 4549 4550 list_for_each_entry(page, &n->partial, slab_list) { 4551 validate_slab(s, page); 4552 count++; 4553 } 4554 if (count != n->nr_partial) 4555 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4556 s->name, count, n->nr_partial); 4557 4558 if (!(s->flags & SLAB_STORE_USER)) 4559 goto out; 4560 4561 list_for_each_entry(page, &n->full, slab_list) { 4562 validate_slab(s, page); 4563 count++; 4564 } 4565 if (count != atomic_long_read(&n->nr_slabs)) 4566 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4567 s->name, count, atomic_long_read(&n->nr_slabs)); 4568 4569 out: 4570 spin_unlock_irqrestore(&n->list_lock, flags); 4571 return count; 4572 } 4573 4574 static long validate_slab_cache(struct kmem_cache *s) 4575 { 4576 int node; 4577 unsigned long count = 0; 4578 struct kmem_cache_node *n; 4579 4580 flush_all(s); 4581 for_each_kmem_cache_node(s, node, n) 4582 count += validate_slab_node(s, n); 4583 4584 return count; 4585 } 4586 /* 4587 * Generate lists of code addresses where slabcache objects are allocated 4588 * and freed. 4589 */ 4590 4591 struct location { 4592 unsigned long count; 4593 unsigned long addr; 4594 long long sum_time; 4595 long min_time; 4596 long max_time; 4597 long min_pid; 4598 long max_pid; 4599 DECLARE_BITMAP(cpus, NR_CPUS); 4600 nodemask_t nodes; 4601 }; 4602 4603 struct loc_track { 4604 unsigned long max; 4605 unsigned long count; 4606 struct location *loc; 4607 }; 4608 4609 static void free_loc_track(struct loc_track *t) 4610 { 4611 if (t->max) 4612 free_pages((unsigned long)t->loc, 4613 get_order(sizeof(struct location) * t->max)); 4614 } 4615 4616 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4617 { 4618 struct location *l; 4619 int order; 4620 4621 order = get_order(sizeof(struct location) * max); 4622 4623 l = (void *)__get_free_pages(flags, order); 4624 if (!l) 4625 return 0; 4626 4627 if (t->count) { 4628 memcpy(l, t->loc, sizeof(struct location) * t->count); 4629 free_loc_track(t); 4630 } 4631 t->max = max; 4632 t->loc = l; 4633 return 1; 4634 } 4635 4636 static int add_location(struct loc_track *t, struct kmem_cache *s, 4637 const struct track *track) 4638 { 4639 long start, end, pos; 4640 struct location *l; 4641 unsigned long caddr; 4642 unsigned long age = jiffies - track->when; 4643 4644 start = -1; 4645 end = t->count; 4646 4647 for ( ; ; ) { 4648 pos = start + (end - start + 1) / 2; 4649 4650 /* 4651 * There is nothing at "end". If we end up there 4652 * we need to add something to before end. 4653 */ 4654 if (pos == end) 4655 break; 4656 4657 caddr = t->loc[pos].addr; 4658 if (track->addr == caddr) { 4659 4660 l = &t->loc[pos]; 4661 l->count++; 4662 if (track->when) { 4663 l->sum_time += age; 4664 if (age < l->min_time) 4665 l->min_time = age; 4666 if (age > l->max_time) 4667 l->max_time = age; 4668 4669 if (track->pid < l->min_pid) 4670 l->min_pid = track->pid; 4671 if (track->pid > l->max_pid) 4672 l->max_pid = track->pid; 4673 4674 cpumask_set_cpu(track->cpu, 4675 to_cpumask(l->cpus)); 4676 } 4677 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4678 return 1; 4679 } 4680 4681 if (track->addr < caddr) 4682 end = pos; 4683 else 4684 start = pos; 4685 } 4686 4687 /* 4688 * Not found. Insert new tracking element. 4689 */ 4690 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4691 return 0; 4692 4693 l = t->loc + pos; 4694 if (pos < t->count) 4695 memmove(l + 1, l, 4696 (t->count - pos) * sizeof(struct location)); 4697 t->count++; 4698 l->count = 1; 4699 l->addr = track->addr; 4700 l->sum_time = age; 4701 l->min_time = age; 4702 l->max_time = age; 4703 l->min_pid = track->pid; 4704 l->max_pid = track->pid; 4705 cpumask_clear(to_cpumask(l->cpus)); 4706 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4707 nodes_clear(l->nodes); 4708 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4709 return 1; 4710 } 4711 4712 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4713 struct page *page, enum track_item alloc) 4714 { 4715 void *addr = page_address(page); 4716 void *p; 4717 unsigned long *map; 4718 4719 map = get_map(s, page); 4720 for_each_object(p, s, addr, page->objects) 4721 if (!test_bit(__obj_to_index(s, addr, p), map)) 4722 add_location(t, s, get_track(s, p, alloc)); 4723 put_map(map); 4724 } 4725 4726 static int list_locations(struct kmem_cache *s, char *buf, 4727 enum track_item alloc) 4728 { 4729 int len = 0; 4730 unsigned long i; 4731 struct loc_track t = { 0, 0, NULL }; 4732 int node; 4733 struct kmem_cache_node *n; 4734 4735 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4736 GFP_KERNEL)) { 4737 return sysfs_emit(buf, "Out of memory\n"); 4738 } 4739 /* Push back cpu slabs */ 4740 flush_all(s); 4741 4742 for_each_kmem_cache_node(s, node, n) { 4743 unsigned long flags; 4744 struct page *page; 4745 4746 if (!atomic_long_read(&n->nr_slabs)) 4747 continue; 4748 4749 spin_lock_irqsave(&n->list_lock, flags); 4750 list_for_each_entry(page, &n->partial, slab_list) 4751 process_slab(&t, s, page, alloc); 4752 list_for_each_entry(page, &n->full, slab_list) 4753 process_slab(&t, s, page, alloc); 4754 spin_unlock_irqrestore(&n->list_lock, flags); 4755 } 4756 4757 for (i = 0; i < t.count; i++) { 4758 struct location *l = &t.loc[i]; 4759 4760 len += sysfs_emit_at(buf, len, "%7ld ", l->count); 4761 4762 if (l->addr) 4763 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr); 4764 else 4765 len += sysfs_emit_at(buf, len, "<not-available>"); 4766 4767 if (l->sum_time != l->min_time) 4768 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld", 4769 l->min_time, 4770 (long)div_u64(l->sum_time, 4771 l->count), 4772 l->max_time); 4773 else 4774 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time); 4775 4776 if (l->min_pid != l->max_pid) 4777 len += sysfs_emit_at(buf, len, " pid=%ld-%ld", 4778 l->min_pid, l->max_pid); 4779 else 4780 len += sysfs_emit_at(buf, len, " pid=%ld", 4781 l->min_pid); 4782 4783 if (num_online_cpus() > 1 && 4784 !cpumask_empty(to_cpumask(l->cpus))) 4785 len += sysfs_emit_at(buf, len, " cpus=%*pbl", 4786 cpumask_pr_args(to_cpumask(l->cpus))); 4787 4788 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 4789 len += sysfs_emit_at(buf, len, " nodes=%*pbl", 4790 nodemask_pr_args(&l->nodes)); 4791 4792 len += sysfs_emit_at(buf, len, "\n"); 4793 } 4794 4795 free_loc_track(&t); 4796 if (!t.count) 4797 len += sysfs_emit_at(buf, len, "No data\n"); 4798 4799 return len; 4800 } 4801 #endif /* CONFIG_SLUB_DEBUG */ 4802 4803 #ifdef SLUB_RESILIENCY_TEST 4804 static void __init resiliency_test(void) 4805 { 4806 u8 *p; 4807 int type = KMALLOC_NORMAL; 4808 4809 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4810 4811 pr_err("SLUB resiliency testing\n"); 4812 pr_err("-----------------------\n"); 4813 pr_err("A. Corruption after allocation\n"); 4814 4815 p = kzalloc(16, GFP_KERNEL); 4816 p[16] = 0x12; 4817 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4818 p + 16); 4819 4820 validate_slab_cache(kmalloc_caches[type][4]); 4821 4822 /* Hmmm... The next two are dangerous */ 4823 p = kzalloc(32, GFP_KERNEL); 4824 p[32 + sizeof(void *)] = 0x34; 4825 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4826 p); 4827 pr_err("If allocated object is overwritten then not detectable\n\n"); 4828 4829 validate_slab_cache(kmalloc_caches[type][5]); 4830 p = kzalloc(64, GFP_KERNEL); 4831 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4832 *p = 0x56; 4833 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4834 p); 4835 pr_err("If allocated object is overwritten then not detectable\n\n"); 4836 validate_slab_cache(kmalloc_caches[type][6]); 4837 4838 pr_err("\nB. Corruption after free\n"); 4839 p = kzalloc(128, GFP_KERNEL); 4840 kfree(p); 4841 *p = 0x78; 4842 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4843 validate_slab_cache(kmalloc_caches[type][7]); 4844 4845 p = kzalloc(256, GFP_KERNEL); 4846 kfree(p); 4847 p[50] = 0x9a; 4848 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4849 validate_slab_cache(kmalloc_caches[type][8]); 4850 4851 p = kzalloc(512, GFP_KERNEL); 4852 kfree(p); 4853 p[512] = 0xab; 4854 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4855 validate_slab_cache(kmalloc_caches[type][9]); 4856 } 4857 #else 4858 #ifdef CONFIG_SYSFS 4859 static void resiliency_test(void) {}; 4860 #endif 4861 #endif /* SLUB_RESILIENCY_TEST */ 4862 4863 #ifdef CONFIG_SYSFS 4864 enum slab_stat_type { 4865 SL_ALL, /* All slabs */ 4866 SL_PARTIAL, /* Only partially allocated slabs */ 4867 SL_CPU, /* Only slabs used for cpu caches */ 4868 SL_OBJECTS, /* Determine allocated objects not slabs */ 4869 SL_TOTAL /* Determine object capacity not slabs */ 4870 }; 4871 4872 #define SO_ALL (1 << SL_ALL) 4873 #define SO_PARTIAL (1 << SL_PARTIAL) 4874 #define SO_CPU (1 << SL_CPU) 4875 #define SO_OBJECTS (1 << SL_OBJECTS) 4876 #define SO_TOTAL (1 << SL_TOTAL) 4877 4878 #ifdef CONFIG_MEMCG 4879 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4880 4881 static int __init setup_slub_memcg_sysfs(char *str) 4882 { 4883 int v; 4884 4885 if (get_option(&str, &v) > 0) 4886 memcg_sysfs_enabled = v; 4887 4888 return 1; 4889 } 4890 4891 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4892 #endif 4893 4894 static ssize_t show_slab_objects(struct kmem_cache *s, 4895 char *buf, unsigned long flags) 4896 { 4897 unsigned long total = 0; 4898 int node; 4899 int x; 4900 unsigned long *nodes; 4901 int len = 0; 4902 4903 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4904 if (!nodes) 4905 return -ENOMEM; 4906 4907 if (flags & SO_CPU) { 4908 int cpu; 4909 4910 for_each_possible_cpu(cpu) { 4911 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4912 cpu); 4913 int node; 4914 struct page *page; 4915 4916 page = READ_ONCE(c->page); 4917 if (!page) 4918 continue; 4919 4920 node = page_to_nid(page); 4921 if (flags & SO_TOTAL) 4922 x = page->objects; 4923 else if (flags & SO_OBJECTS) 4924 x = page->inuse; 4925 else 4926 x = 1; 4927 4928 total += x; 4929 nodes[node] += x; 4930 4931 page = slub_percpu_partial_read_once(c); 4932 if (page) { 4933 node = page_to_nid(page); 4934 if (flags & SO_TOTAL) 4935 WARN_ON_ONCE(1); 4936 else if (flags & SO_OBJECTS) 4937 WARN_ON_ONCE(1); 4938 else 4939 x = page->pages; 4940 total += x; 4941 nodes[node] += x; 4942 } 4943 } 4944 } 4945 4946 /* 4947 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 4948 * already held which will conflict with an existing lock order: 4949 * 4950 * mem_hotplug_lock->slab_mutex->kernfs_mutex 4951 * 4952 * We don't really need mem_hotplug_lock (to hold off 4953 * slab_mem_going_offline_callback) here because slab's memory hot 4954 * unplug code doesn't destroy the kmem_cache->node[] data. 4955 */ 4956 4957 #ifdef CONFIG_SLUB_DEBUG 4958 if (flags & SO_ALL) { 4959 struct kmem_cache_node *n; 4960 4961 for_each_kmem_cache_node(s, node, n) { 4962 4963 if (flags & SO_TOTAL) 4964 x = atomic_long_read(&n->total_objects); 4965 else if (flags & SO_OBJECTS) 4966 x = atomic_long_read(&n->total_objects) - 4967 count_partial(n, count_free); 4968 else 4969 x = atomic_long_read(&n->nr_slabs); 4970 total += x; 4971 nodes[node] += x; 4972 } 4973 4974 } else 4975 #endif 4976 if (flags & SO_PARTIAL) { 4977 struct kmem_cache_node *n; 4978 4979 for_each_kmem_cache_node(s, node, n) { 4980 if (flags & SO_TOTAL) 4981 x = count_partial(n, count_total); 4982 else if (flags & SO_OBJECTS) 4983 x = count_partial(n, count_inuse); 4984 else 4985 x = n->nr_partial; 4986 total += x; 4987 nodes[node] += x; 4988 } 4989 } 4990 4991 len += sysfs_emit_at(buf, len, "%lu", total); 4992 #ifdef CONFIG_NUMA 4993 for (node = 0; node < nr_node_ids; node++) { 4994 if (nodes[node]) 4995 len += sysfs_emit_at(buf, len, " N%d=%lu", 4996 node, nodes[node]); 4997 } 4998 #endif 4999 len += sysfs_emit_at(buf, len, "\n"); 5000 kfree(nodes); 5001 5002 return len; 5003 } 5004 5005 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5006 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5007 5008 struct slab_attribute { 5009 struct attribute attr; 5010 ssize_t (*show)(struct kmem_cache *s, char *buf); 5011 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5012 }; 5013 5014 #define SLAB_ATTR_RO(_name) \ 5015 static struct slab_attribute _name##_attr = \ 5016 __ATTR(_name, 0400, _name##_show, NULL) 5017 5018 #define SLAB_ATTR(_name) \ 5019 static struct slab_attribute _name##_attr = \ 5020 __ATTR(_name, 0600, _name##_show, _name##_store) 5021 5022 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5023 { 5024 return sysfs_emit(buf, "%u\n", s->size); 5025 } 5026 SLAB_ATTR_RO(slab_size); 5027 5028 static ssize_t align_show(struct kmem_cache *s, char *buf) 5029 { 5030 return sysfs_emit(buf, "%u\n", s->align); 5031 } 5032 SLAB_ATTR_RO(align); 5033 5034 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5035 { 5036 return sysfs_emit(buf, "%u\n", s->object_size); 5037 } 5038 SLAB_ATTR_RO(object_size); 5039 5040 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5041 { 5042 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5043 } 5044 SLAB_ATTR_RO(objs_per_slab); 5045 5046 static ssize_t order_show(struct kmem_cache *s, char *buf) 5047 { 5048 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5049 } 5050 SLAB_ATTR_RO(order); 5051 5052 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5053 { 5054 return sysfs_emit(buf, "%lu\n", s->min_partial); 5055 } 5056 5057 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5058 size_t length) 5059 { 5060 unsigned long min; 5061 int err; 5062 5063 err = kstrtoul(buf, 10, &min); 5064 if (err) 5065 return err; 5066 5067 set_min_partial(s, min); 5068 return length; 5069 } 5070 SLAB_ATTR(min_partial); 5071 5072 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5073 { 5074 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s)); 5075 } 5076 5077 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5078 size_t length) 5079 { 5080 unsigned int objects; 5081 int err; 5082 5083 err = kstrtouint(buf, 10, &objects); 5084 if (err) 5085 return err; 5086 if (objects && !kmem_cache_has_cpu_partial(s)) 5087 return -EINVAL; 5088 5089 slub_set_cpu_partial(s, objects); 5090 flush_all(s); 5091 return length; 5092 } 5093 SLAB_ATTR(cpu_partial); 5094 5095 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5096 { 5097 if (!s->ctor) 5098 return 0; 5099 return sysfs_emit(buf, "%pS\n", s->ctor); 5100 } 5101 SLAB_ATTR_RO(ctor); 5102 5103 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5104 { 5105 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5106 } 5107 SLAB_ATTR_RO(aliases); 5108 5109 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5110 { 5111 return show_slab_objects(s, buf, SO_PARTIAL); 5112 } 5113 SLAB_ATTR_RO(partial); 5114 5115 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5116 { 5117 return show_slab_objects(s, buf, SO_CPU); 5118 } 5119 SLAB_ATTR_RO(cpu_slabs); 5120 5121 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5122 { 5123 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5124 } 5125 SLAB_ATTR_RO(objects); 5126 5127 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5128 { 5129 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5130 } 5131 SLAB_ATTR_RO(objects_partial); 5132 5133 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5134 { 5135 int objects = 0; 5136 int pages = 0; 5137 int cpu; 5138 int len = 0; 5139 5140 for_each_online_cpu(cpu) { 5141 struct page *page; 5142 5143 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5144 5145 if (page) { 5146 pages += page->pages; 5147 objects += page->pobjects; 5148 } 5149 } 5150 5151 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages); 5152 5153 #ifdef CONFIG_SMP 5154 for_each_online_cpu(cpu) { 5155 struct page *page; 5156 5157 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5158 if (page) 5159 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5160 cpu, page->pobjects, page->pages); 5161 } 5162 #endif 5163 len += sysfs_emit_at(buf, len, "\n"); 5164 5165 return len; 5166 } 5167 SLAB_ATTR_RO(slabs_cpu_partial); 5168 5169 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5170 { 5171 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5172 } 5173 SLAB_ATTR_RO(reclaim_account); 5174 5175 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5176 { 5177 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5178 } 5179 SLAB_ATTR_RO(hwcache_align); 5180 5181 #ifdef CONFIG_ZONE_DMA 5182 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5183 { 5184 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5185 } 5186 SLAB_ATTR_RO(cache_dma); 5187 #endif 5188 5189 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5190 { 5191 return sysfs_emit(buf, "%u\n", s->usersize); 5192 } 5193 SLAB_ATTR_RO(usersize); 5194 5195 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5196 { 5197 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5198 } 5199 SLAB_ATTR_RO(destroy_by_rcu); 5200 5201 #ifdef CONFIG_SLUB_DEBUG 5202 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5203 { 5204 return show_slab_objects(s, buf, SO_ALL); 5205 } 5206 SLAB_ATTR_RO(slabs); 5207 5208 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5209 { 5210 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5211 } 5212 SLAB_ATTR_RO(total_objects); 5213 5214 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5215 { 5216 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5217 } 5218 SLAB_ATTR_RO(sanity_checks); 5219 5220 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5221 { 5222 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5223 } 5224 SLAB_ATTR_RO(trace); 5225 5226 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5227 { 5228 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5229 } 5230 5231 SLAB_ATTR_RO(red_zone); 5232 5233 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5234 { 5235 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5236 } 5237 5238 SLAB_ATTR_RO(poison); 5239 5240 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5241 { 5242 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5243 } 5244 5245 SLAB_ATTR_RO(store_user); 5246 5247 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5248 { 5249 return 0; 5250 } 5251 5252 static ssize_t validate_store(struct kmem_cache *s, 5253 const char *buf, size_t length) 5254 { 5255 int ret = -EINVAL; 5256 5257 if (buf[0] == '1') { 5258 ret = validate_slab_cache(s); 5259 if (ret >= 0) 5260 ret = length; 5261 } 5262 return ret; 5263 } 5264 SLAB_ATTR(validate); 5265 5266 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5267 { 5268 if (!(s->flags & SLAB_STORE_USER)) 5269 return -ENOSYS; 5270 return list_locations(s, buf, TRACK_ALLOC); 5271 } 5272 SLAB_ATTR_RO(alloc_calls); 5273 5274 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5275 { 5276 if (!(s->flags & SLAB_STORE_USER)) 5277 return -ENOSYS; 5278 return list_locations(s, buf, TRACK_FREE); 5279 } 5280 SLAB_ATTR_RO(free_calls); 5281 #endif /* CONFIG_SLUB_DEBUG */ 5282 5283 #ifdef CONFIG_FAILSLAB 5284 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5285 { 5286 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5287 } 5288 SLAB_ATTR_RO(failslab); 5289 #endif 5290 5291 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5292 { 5293 return 0; 5294 } 5295 5296 static ssize_t shrink_store(struct kmem_cache *s, 5297 const char *buf, size_t length) 5298 { 5299 if (buf[0] == '1') 5300 kmem_cache_shrink(s); 5301 else 5302 return -EINVAL; 5303 return length; 5304 } 5305 SLAB_ATTR(shrink); 5306 5307 #ifdef CONFIG_NUMA 5308 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5309 { 5310 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5311 } 5312 5313 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5314 const char *buf, size_t length) 5315 { 5316 unsigned int ratio; 5317 int err; 5318 5319 err = kstrtouint(buf, 10, &ratio); 5320 if (err) 5321 return err; 5322 if (ratio > 100) 5323 return -ERANGE; 5324 5325 s->remote_node_defrag_ratio = ratio * 10; 5326 5327 return length; 5328 } 5329 SLAB_ATTR(remote_node_defrag_ratio); 5330 #endif 5331 5332 #ifdef CONFIG_SLUB_STATS 5333 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5334 { 5335 unsigned long sum = 0; 5336 int cpu; 5337 int len = 0; 5338 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5339 5340 if (!data) 5341 return -ENOMEM; 5342 5343 for_each_online_cpu(cpu) { 5344 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5345 5346 data[cpu] = x; 5347 sum += x; 5348 } 5349 5350 len += sysfs_emit_at(buf, len, "%lu", sum); 5351 5352 #ifdef CONFIG_SMP 5353 for_each_online_cpu(cpu) { 5354 if (data[cpu]) 5355 len += sysfs_emit_at(buf, len, " C%d=%u", 5356 cpu, data[cpu]); 5357 } 5358 #endif 5359 kfree(data); 5360 len += sysfs_emit_at(buf, len, "\n"); 5361 5362 return len; 5363 } 5364 5365 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5366 { 5367 int cpu; 5368 5369 for_each_online_cpu(cpu) 5370 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5371 } 5372 5373 #define STAT_ATTR(si, text) \ 5374 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5375 { \ 5376 return show_stat(s, buf, si); \ 5377 } \ 5378 static ssize_t text##_store(struct kmem_cache *s, \ 5379 const char *buf, size_t length) \ 5380 { \ 5381 if (buf[0] != '0') \ 5382 return -EINVAL; \ 5383 clear_stat(s, si); \ 5384 return length; \ 5385 } \ 5386 SLAB_ATTR(text); \ 5387 5388 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5389 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5390 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5391 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5392 STAT_ATTR(FREE_FROZEN, free_frozen); 5393 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5394 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5395 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5396 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5397 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5398 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5399 STAT_ATTR(FREE_SLAB, free_slab); 5400 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5401 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5402 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5403 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5404 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5405 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5406 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5407 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5408 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5409 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5410 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5411 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5412 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5413 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5414 #endif /* CONFIG_SLUB_STATS */ 5415 5416 static struct attribute *slab_attrs[] = { 5417 &slab_size_attr.attr, 5418 &object_size_attr.attr, 5419 &objs_per_slab_attr.attr, 5420 &order_attr.attr, 5421 &min_partial_attr.attr, 5422 &cpu_partial_attr.attr, 5423 &objects_attr.attr, 5424 &objects_partial_attr.attr, 5425 &partial_attr.attr, 5426 &cpu_slabs_attr.attr, 5427 &ctor_attr.attr, 5428 &aliases_attr.attr, 5429 &align_attr.attr, 5430 &hwcache_align_attr.attr, 5431 &reclaim_account_attr.attr, 5432 &destroy_by_rcu_attr.attr, 5433 &shrink_attr.attr, 5434 &slabs_cpu_partial_attr.attr, 5435 #ifdef CONFIG_SLUB_DEBUG 5436 &total_objects_attr.attr, 5437 &slabs_attr.attr, 5438 &sanity_checks_attr.attr, 5439 &trace_attr.attr, 5440 &red_zone_attr.attr, 5441 &poison_attr.attr, 5442 &store_user_attr.attr, 5443 &validate_attr.attr, 5444 &alloc_calls_attr.attr, 5445 &free_calls_attr.attr, 5446 #endif 5447 #ifdef CONFIG_ZONE_DMA 5448 &cache_dma_attr.attr, 5449 #endif 5450 #ifdef CONFIG_NUMA 5451 &remote_node_defrag_ratio_attr.attr, 5452 #endif 5453 #ifdef CONFIG_SLUB_STATS 5454 &alloc_fastpath_attr.attr, 5455 &alloc_slowpath_attr.attr, 5456 &free_fastpath_attr.attr, 5457 &free_slowpath_attr.attr, 5458 &free_frozen_attr.attr, 5459 &free_add_partial_attr.attr, 5460 &free_remove_partial_attr.attr, 5461 &alloc_from_partial_attr.attr, 5462 &alloc_slab_attr.attr, 5463 &alloc_refill_attr.attr, 5464 &alloc_node_mismatch_attr.attr, 5465 &free_slab_attr.attr, 5466 &cpuslab_flush_attr.attr, 5467 &deactivate_full_attr.attr, 5468 &deactivate_empty_attr.attr, 5469 &deactivate_to_head_attr.attr, 5470 &deactivate_to_tail_attr.attr, 5471 &deactivate_remote_frees_attr.attr, 5472 &deactivate_bypass_attr.attr, 5473 &order_fallback_attr.attr, 5474 &cmpxchg_double_fail_attr.attr, 5475 &cmpxchg_double_cpu_fail_attr.attr, 5476 &cpu_partial_alloc_attr.attr, 5477 &cpu_partial_free_attr.attr, 5478 &cpu_partial_node_attr.attr, 5479 &cpu_partial_drain_attr.attr, 5480 #endif 5481 #ifdef CONFIG_FAILSLAB 5482 &failslab_attr.attr, 5483 #endif 5484 &usersize_attr.attr, 5485 5486 NULL 5487 }; 5488 5489 static const struct attribute_group slab_attr_group = { 5490 .attrs = slab_attrs, 5491 }; 5492 5493 static ssize_t slab_attr_show(struct kobject *kobj, 5494 struct attribute *attr, 5495 char *buf) 5496 { 5497 struct slab_attribute *attribute; 5498 struct kmem_cache *s; 5499 int err; 5500 5501 attribute = to_slab_attr(attr); 5502 s = to_slab(kobj); 5503 5504 if (!attribute->show) 5505 return -EIO; 5506 5507 err = attribute->show(s, buf); 5508 5509 return err; 5510 } 5511 5512 static ssize_t slab_attr_store(struct kobject *kobj, 5513 struct attribute *attr, 5514 const char *buf, size_t len) 5515 { 5516 struct slab_attribute *attribute; 5517 struct kmem_cache *s; 5518 int err; 5519 5520 attribute = to_slab_attr(attr); 5521 s = to_slab(kobj); 5522 5523 if (!attribute->store) 5524 return -EIO; 5525 5526 err = attribute->store(s, buf, len); 5527 return err; 5528 } 5529 5530 static void kmem_cache_release(struct kobject *k) 5531 { 5532 slab_kmem_cache_release(to_slab(k)); 5533 } 5534 5535 static const struct sysfs_ops slab_sysfs_ops = { 5536 .show = slab_attr_show, 5537 .store = slab_attr_store, 5538 }; 5539 5540 static struct kobj_type slab_ktype = { 5541 .sysfs_ops = &slab_sysfs_ops, 5542 .release = kmem_cache_release, 5543 }; 5544 5545 static struct kset *slab_kset; 5546 5547 static inline struct kset *cache_kset(struct kmem_cache *s) 5548 { 5549 return slab_kset; 5550 } 5551 5552 #define ID_STR_LENGTH 64 5553 5554 /* Create a unique string id for a slab cache: 5555 * 5556 * Format :[flags-]size 5557 */ 5558 static char *create_unique_id(struct kmem_cache *s) 5559 { 5560 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5561 char *p = name; 5562 5563 BUG_ON(!name); 5564 5565 *p++ = ':'; 5566 /* 5567 * First flags affecting slabcache operations. We will only 5568 * get here for aliasable slabs so we do not need to support 5569 * too many flags. The flags here must cover all flags that 5570 * are matched during merging to guarantee that the id is 5571 * unique. 5572 */ 5573 if (s->flags & SLAB_CACHE_DMA) 5574 *p++ = 'd'; 5575 if (s->flags & SLAB_CACHE_DMA32) 5576 *p++ = 'D'; 5577 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5578 *p++ = 'a'; 5579 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5580 *p++ = 'F'; 5581 if (s->flags & SLAB_ACCOUNT) 5582 *p++ = 'A'; 5583 if (p != name + 1) 5584 *p++ = '-'; 5585 p += sprintf(p, "%07u", s->size); 5586 5587 BUG_ON(p > name + ID_STR_LENGTH - 1); 5588 return name; 5589 } 5590 5591 static int sysfs_slab_add(struct kmem_cache *s) 5592 { 5593 int err; 5594 const char *name; 5595 struct kset *kset = cache_kset(s); 5596 int unmergeable = slab_unmergeable(s); 5597 5598 if (!kset) { 5599 kobject_init(&s->kobj, &slab_ktype); 5600 return 0; 5601 } 5602 5603 if (!unmergeable && disable_higher_order_debug && 5604 (slub_debug & DEBUG_METADATA_FLAGS)) 5605 unmergeable = 1; 5606 5607 if (unmergeable) { 5608 /* 5609 * Slabcache can never be merged so we can use the name proper. 5610 * This is typically the case for debug situations. In that 5611 * case we can catch duplicate names easily. 5612 */ 5613 sysfs_remove_link(&slab_kset->kobj, s->name); 5614 name = s->name; 5615 } else { 5616 /* 5617 * Create a unique name for the slab as a target 5618 * for the symlinks. 5619 */ 5620 name = create_unique_id(s); 5621 } 5622 5623 s->kobj.kset = kset; 5624 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5625 if (err) { 5626 kobject_put(&s->kobj); 5627 goto out; 5628 } 5629 5630 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5631 if (err) 5632 goto out_del_kobj; 5633 5634 if (!unmergeable) { 5635 /* Setup first alias */ 5636 sysfs_slab_alias(s, s->name); 5637 } 5638 out: 5639 if (!unmergeable) 5640 kfree(name); 5641 return err; 5642 out_del_kobj: 5643 kobject_del(&s->kobj); 5644 goto out; 5645 } 5646 5647 void sysfs_slab_unlink(struct kmem_cache *s) 5648 { 5649 if (slab_state >= FULL) 5650 kobject_del(&s->kobj); 5651 } 5652 5653 void sysfs_slab_release(struct kmem_cache *s) 5654 { 5655 if (slab_state >= FULL) 5656 kobject_put(&s->kobj); 5657 } 5658 5659 /* 5660 * Need to buffer aliases during bootup until sysfs becomes 5661 * available lest we lose that information. 5662 */ 5663 struct saved_alias { 5664 struct kmem_cache *s; 5665 const char *name; 5666 struct saved_alias *next; 5667 }; 5668 5669 static struct saved_alias *alias_list; 5670 5671 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5672 { 5673 struct saved_alias *al; 5674 5675 if (slab_state == FULL) { 5676 /* 5677 * If we have a leftover link then remove it. 5678 */ 5679 sysfs_remove_link(&slab_kset->kobj, name); 5680 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5681 } 5682 5683 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5684 if (!al) 5685 return -ENOMEM; 5686 5687 al->s = s; 5688 al->name = name; 5689 al->next = alias_list; 5690 alias_list = al; 5691 return 0; 5692 } 5693 5694 static int __init slab_sysfs_init(void) 5695 { 5696 struct kmem_cache *s; 5697 int err; 5698 5699 mutex_lock(&slab_mutex); 5700 5701 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 5702 if (!slab_kset) { 5703 mutex_unlock(&slab_mutex); 5704 pr_err("Cannot register slab subsystem.\n"); 5705 return -ENOSYS; 5706 } 5707 5708 slab_state = FULL; 5709 5710 list_for_each_entry(s, &slab_caches, list) { 5711 err = sysfs_slab_add(s); 5712 if (err) 5713 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5714 s->name); 5715 } 5716 5717 while (alias_list) { 5718 struct saved_alias *al = alias_list; 5719 5720 alias_list = alias_list->next; 5721 err = sysfs_slab_alias(al->s, al->name); 5722 if (err) 5723 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5724 al->name); 5725 kfree(al); 5726 } 5727 5728 mutex_unlock(&slab_mutex); 5729 resiliency_test(); 5730 return 0; 5731 } 5732 5733 __initcall(slab_sysfs_init); 5734 #endif /* CONFIG_SYSFS */ 5735 5736 /* 5737 * The /proc/slabinfo ABI 5738 */ 5739 #ifdef CONFIG_SLUB_DEBUG 5740 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5741 { 5742 unsigned long nr_slabs = 0; 5743 unsigned long nr_objs = 0; 5744 unsigned long nr_free = 0; 5745 int node; 5746 struct kmem_cache_node *n; 5747 5748 for_each_kmem_cache_node(s, node, n) { 5749 nr_slabs += node_nr_slabs(n); 5750 nr_objs += node_nr_objs(n); 5751 nr_free += count_partial(n, count_free); 5752 } 5753 5754 sinfo->active_objs = nr_objs - nr_free; 5755 sinfo->num_objs = nr_objs; 5756 sinfo->active_slabs = nr_slabs; 5757 sinfo->num_slabs = nr_slabs; 5758 sinfo->objects_per_slab = oo_objects(s->oo); 5759 sinfo->cache_order = oo_order(s->oo); 5760 } 5761 5762 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5763 { 5764 } 5765 5766 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5767 size_t count, loff_t *ppos) 5768 { 5769 return -EIO; 5770 } 5771 #endif /* CONFIG_SLUB_DEBUG */ 5772